xref: /linux/kernel/fork.c (revision 5e8d780d745c1619aba81fe7166c5a4b5cad2b84)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/config.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/unistd.h>
18 #include <linux/smp_lock.h>
19 #include <linux/module.h>
20 #include <linux/vmalloc.h>
21 #include <linux/completion.h>
22 #include <linux/namespace.h>
23 #include <linux/personality.h>
24 #include <linux/mempolicy.h>
25 #include <linux/sem.h>
26 #include <linux/file.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/fs.h>
31 #include <linux/capability.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/security.h>
35 #include <linux/swap.h>
36 #include <linux/syscalls.h>
37 #include <linux/jiffies.h>
38 #include <linux/futex.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ptrace.h>
41 #include <linux/mount.h>
42 #include <linux/audit.h>
43 #include <linux/profile.h>
44 #include <linux/rmap.h>
45 #include <linux/acct.h>
46 #include <linux/cn_proc.h>
47 
48 #include <asm/pgtable.h>
49 #include <asm/pgalloc.h>
50 #include <asm/uaccess.h>
51 #include <asm/mmu_context.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlbflush.h>
54 
55 /*
56  * Protected counters by write_lock_irq(&tasklist_lock)
57  */
58 unsigned long total_forks;	/* Handle normal Linux uptimes. */
59 int nr_threads; 		/* The idle threads do not count.. */
60 
61 int max_threads;		/* tunable limit on nr_threads */
62 
63 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
64 
65  __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
66 
67 EXPORT_SYMBOL(tasklist_lock);
68 
69 int nr_processes(void)
70 {
71 	int cpu;
72 	int total = 0;
73 
74 	for_each_online_cpu(cpu)
75 		total += per_cpu(process_counts, cpu);
76 
77 	return total;
78 }
79 
80 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
81 # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
82 # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
83 static kmem_cache_t *task_struct_cachep;
84 #endif
85 
86 /* SLAB cache for signal_struct structures (tsk->signal) */
87 static kmem_cache_t *signal_cachep;
88 
89 /* SLAB cache for sighand_struct structures (tsk->sighand) */
90 kmem_cache_t *sighand_cachep;
91 
92 /* SLAB cache for files_struct structures (tsk->files) */
93 kmem_cache_t *files_cachep;
94 
95 /* SLAB cache for fs_struct structures (tsk->fs) */
96 kmem_cache_t *fs_cachep;
97 
98 /* SLAB cache for vm_area_struct structures */
99 kmem_cache_t *vm_area_cachep;
100 
101 /* SLAB cache for mm_struct structures (tsk->mm) */
102 static kmem_cache_t *mm_cachep;
103 
104 void free_task(struct task_struct *tsk)
105 {
106 	free_thread_info(tsk->thread_info);
107 	rt_mutex_debug_task_free(tsk);
108 	free_task_struct(tsk);
109 }
110 EXPORT_SYMBOL(free_task);
111 
112 void __put_task_struct(struct task_struct *tsk)
113 {
114 	WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
115 	WARN_ON(atomic_read(&tsk->usage));
116 	WARN_ON(tsk == current);
117 
118 	security_task_free(tsk);
119 	free_uid(tsk->user);
120 	put_group_info(tsk->group_info);
121 
122 	if (!profile_handoff_task(tsk))
123 		free_task(tsk);
124 }
125 
126 void __init fork_init(unsigned long mempages)
127 {
128 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
129 #ifndef ARCH_MIN_TASKALIGN
130 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
131 #endif
132 	/* create a slab on which task_structs can be allocated */
133 	task_struct_cachep =
134 		kmem_cache_create("task_struct", sizeof(struct task_struct),
135 			ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
136 #endif
137 
138 	/*
139 	 * The default maximum number of threads is set to a safe
140 	 * value: the thread structures can take up at most half
141 	 * of memory.
142 	 */
143 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
144 
145 	/*
146 	 * we need to allow at least 20 threads to boot a system
147 	 */
148 	if(max_threads < 20)
149 		max_threads = 20;
150 
151 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
152 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
153 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
154 		init_task.signal->rlim[RLIMIT_NPROC];
155 }
156 
157 static struct task_struct *dup_task_struct(struct task_struct *orig)
158 {
159 	struct task_struct *tsk;
160 	struct thread_info *ti;
161 
162 	prepare_to_copy(orig);
163 
164 	tsk = alloc_task_struct();
165 	if (!tsk)
166 		return NULL;
167 
168 	ti = alloc_thread_info(tsk);
169 	if (!ti) {
170 		free_task_struct(tsk);
171 		return NULL;
172 	}
173 
174 	*tsk = *orig;
175 	tsk->thread_info = ti;
176 	setup_thread_stack(tsk, orig);
177 
178 	/* One for us, one for whoever does the "release_task()" (usually parent) */
179 	atomic_set(&tsk->usage,2);
180 	atomic_set(&tsk->fs_excl, 0);
181 	tsk->btrace_seq = 0;
182 	tsk->splice_pipe = NULL;
183 	return tsk;
184 }
185 
186 #ifdef CONFIG_MMU
187 static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
188 {
189 	struct vm_area_struct *mpnt, *tmp, **pprev;
190 	struct rb_node **rb_link, *rb_parent;
191 	int retval;
192 	unsigned long charge;
193 	struct mempolicy *pol;
194 
195 	down_write(&oldmm->mmap_sem);
196 	flush_cache_mm(oldmm);
197 	down_write(&mm->mmap_sem);
198 
199 	mm->locked_vm = 0;
200 	mm->mmap = NULL;
201 	mm->mmap_cache = NULL;
202 	mm->free_area_cache = oldmm->mmap_base;
203 	mm->cached_hole_size = ~0UL;
204 	mm->map_count = 0;
205 	cpus_clear(mm->cpu_vm_mask);
206 	mm->mm_rb = RB_ROOT;
207 	rb_link = &mm->mm_rb.rb_node;
208 	rb_parent = NULL;
209 	pprev = &mm->mmap;
210 
211 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
212 		struct file *file;
213 
214 		if (mpnt->vm_flags & VM_DONTCOPY) {
215 			long pages = vma_pages(mpnt);
216 			mm->total_vm -= pages;
217 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
218 								-pages);
219 			continue;
220 		}
221 		charge = 0;
222 		if (mpnt->vm_flags & VM_ACCOUNT) {
223 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
224 			if (security_vm_enough_memory(len))
225 				goto fail_nomem;
226 			charge = len;
227 		}
228 		tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
229 		if (!tmp)
230 			goto fail_nomem;
231 		*tmp = *mpnt;
232 		pol = mpol_copy(vma_policy(mpnt));
233 		retval = PTR_ERR(pol);
234 		if (IS_ERR(pol))
235 			goto fail_nomem_policy;
236 		vma_set_policy(tmp, pol);
237 		tmp->vm_flags &= ~VM_LOCKED;
238 		tmp->vm_mm = mm;
239 		tmp->vm_next = NULL;
240 		anon_vma_link(tmp);
241 		file = tmp->vm_file;
242 		if (file) {
243 			struct inode *inode = file->f_dentry->d_inode;
244 			get_file(file);
245 			if (tmp->vm_flags & VM_DENYWRITE)
246 				atomic_dec(&inode->i_writecount);
247 
248 			/* insert tmp into the share list, just after mpnt */
249 			spin_lock(&file->f_mapping->i_mmap_lock);
250 			tmp->vm_truncate_count = mpnt->vm_truncate_count;
251 			flush_dcache_mmap_lock(file->f_mapping);
252 			vma_prio_tree_add(tmp, mpnt);
253 			flush_dcache_mmap_unlock(file->f_mapping);
254 			spin_unlock(&file->f_mapping->i_mmap_lock);
255 		}
256 
257 		/*
258 		 * Link in the new vma and copy the page table entries.
259 		 */
260 		*pprev = tmp;
261 		pprev = &tmp->vm_next;
262 
263 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
264 		rb_link = &tmp->vm_rb.rb_right;
265 		rb_parent = &tmp->vm_rb;
266 
267 		mm->map_count++;
268 		retval = copy_page_range(mm, oldmm, mpnt);
269 
270 		if (tmp->vm_ops && tmp->vm_ops->open)
271 			tmp->vm_ops->open(tmp);
272 
273 		if (retval)
274 			goto out;
275 	}
276 	retval = 0;
277 out:
278 	up_write(&mm->mmap_sem);
279 	flush_tlb_mm(oldmm);
280 	up_write(&oldmm->mmap_sem);
281 	return retval;
282 fail_nomem_policy:
283 	kmem_cache_free(vm_area_cachep, tmp);
284 fail_nomem:
285 	retval = -ENOMEM;
286 	vm_unacct_memory(charge);
287 	goto out;
288 }
289 
290 static inline int mm_alloc_pgd(struct mm_struct * mm)
291 {
292 	mm->pgd = pgd_alloc(mm);
293 	if (unlikely(!mm->pgd))
294 		return -ENOMEM;
295 	return 0;
296 }
297 
298 static inline void mm_free_pgd(struct mm_struct * mm)
299 {
300 	pgd_free(mm->pgd);
301 }
302 #else
303 #define dup_mmap(mm, oldmm)	(0)
304 #define mm_alloc_pgd(mm)	(0)
305 #define mm_free_pgd(mm)
306 #endif /* CONFIG_MMU */
307 
308  __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
309 
310 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
311 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
312 
313 #include <linux/init_task.h>
314 
315 static struct mm_struct * mm_init(struct mm_struct * mm)
316 {
317 	atomic_set(&mm->mm_users, 1);
318 	atomic_set(&mm->mm_count, 1);
319 	init_rwsem(&mm->mmap_sem);
320 	INIT_LIST_HEAD(&mm->mmlist);
321 	mm->core_waiters = 0;
322 	mm->nr_ptes = 0;
323 	set_mm_counter(mm, file_rss, 0);
324 	set_mm_counter(mm, anon_rss, 0);
325 	spin_lock_init(&mm->page_table_lock);
326 	rwlock_init(&mm->ioctx_list_lock);
327 	mm->ioctx_list = NULL;
328 	mm->free_area_cache = TASK_UNMAPPED_BASE;
329 	mm->cached_hole_size = ~0UL;
330 
331 	if (likely(!mm_alloc_pgd(mm))) {
332 		mm->def_flags = 0;
333 		return mm;
334 	}
335 	free_mm(mm);
336 	return NULL;
337 }
338 
339 /*
340  * Allocate and initialize an mm_struct.
341  */
342 struct mm_struct * mm_alloc(void)
343 {
344 	struct mm_struct * mm;
345 
346 	mm = allocate_mm();
347 	if (mm) {
348 		memset(mm, 0, sizeof(*mm));
349 		mm = mm_init(mm);
350 	}
351 	return mm;
352 }
353 
354 /*
355  * Called when the last reference to the mm
356  * is dropped: either by a lazy thread or by
357  * mmput. Free the page directory and the mm.
358  */
359 void fastcall __mmdrop(struct mm_struct *mm)
360 {
361 	BUG_ON(mm == &init_mm);
362 	mm_free_pgd(mm);
363 	destroy_context(mm);
364 	free_mm(mm);
365 }
366 
367 /*
368  * Decrement the use count and release all resources for an mm.
369  */
370 void mmput(struct mm_struct *mm)
371 {
372 	might_sleep();
373 
374 	if (atomic_dec_and_test(&mm->mm_users)) {
375 		exit_aio(mm);
376 		exit_mmap(mm);
377 		if (!list_empty(&mm->mmlist)) {
378 			spin_lock(&mmlist_lock);
379 			list_del(&mm->mmlist);
380 			spin_unlock(&mmlist_lock);
381 		}
382 		put_swap_token(mm);
383 		mmdrop(mm);
384 	}
385 }
386 EXPORT_SYMBOL_GPL(mmput);
387 
388 /**
389  * get_task_mm - acquire a reference to the task's mm
390  *
391  * Returns %NULL if the task has no mm.  Checks PF_BORROWED_MM (meaning
392  * this kernel workthread has transiently adopted a user mm with use_mm,
393  * to do its AIO) is not set and if so returns a reference to it, after
394  * bumping up the use count.  User must release the mm via mmput()
395  * after use.  Typically used by /proc and ptrace.
396  */
397 struct mm_struct *get_task_mm(struct task_struct *task)
398 {
399 	struct mm_struct *mm;
400 
401 	task_lock(task);
402 	mm = task->mm;
403 	if (mm) {
404 		if (task->flags & PF_BORROWED_MM)
405 			mm = NULL;
406 		else
407 			atomic_inc(&mm->mm_users);
408 	}
409 	task_unlock(task);
410 	return mm;
411 }
412 EXPORT_SYMBOL_GPL(get_task_mm);
413 
414 /* Please note the differences between mmput and mm_release.
415  * mmput is called whenever we stop holding onto a mm_struct,
416  * error success whatever.
417  *
418  * mm_release is called after a mm_struct has been removed
419  * from the current process.
420  *
421  * This difference is important for error handling, when we
422  * only half set up a mm_struct for a new process and need to restore
423  * the old one.  Because we mmput the new mm_struct before
424  * restoring the old one. . .
425  * Eric Biederman 10 January 1998
426  */
427 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
428 {
429 	struct completion *vfork_done = tsk->vfork_done;
430 
431 	/* Get rid of any cached register state */
432 	deactivate_mm(tsk, mm);
433 
434 	/* notify parent sleeping on vfork() */
435 	if (vfork_done) {
436 		tsk->vfork_done = NULL;
437 		complete(vfork_done);
438 	}
439 	if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
440 		u32 __user * tidptr = tsk->clear_child_tid;
441 		tsk->clear_child_tid = NULL;
442 
443 		/*
444 		 * We don't check the error code - if userspace has
445 		 * not set up a proper pointer then tough luck.
446 		 */
447 		put_user(0, tidptr);
448 		sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
449 	}
450 }
451 
452 /*
453  * Allocate a new mm structure and copy contents from the
454  * mm structure of the passed in task structure.
455  */
456 static struct mm_struct *dup_mm(struct task_struct *tsk)
457 {
458 	struct mm_struct *mm, *oldmm = current->mm;
459 	int err;
460 
461 	if (!oldmm)
462 		return NULL;
463 
464 	mm = allocate_mm();
465 	if (!mm)
466 		goto fail_nomem;
467 
468 	memcpy(mm, oldmm, sizeof(*mm));
469 
470 	if (!mm_init(mm))
471 		goto fail_nomem;
472 
473 	if (init_new_context(tsk, mm))
474 		goto fail_nocontext;
475 
476 	err = dup_mmap(mm, oldmm);
477 	if (err)
478 		goto free_pt;
479 
480 	mm->hiwater_rss = get_mm_rss(mm);
481 	mm->hiwater_vm = mm->total_vm;
482 
483 	return mm;
484 
485 free_pt:
486 	mmput(mm);
487 
488 fail_nomem:
489 	return NULL;
490 
491 fail_nocontext:
492 	/*
493 	 * If init_new_context() failed, we cannot use mmput() to free the mm
494 	 * because it calls destroy_context()
495 	 */
496 	mm_free_pgd(mm);
497 	free_mm(mm);
498 	return NULL;
499 }
500 
501 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
502 {
503 	struct mm_struct * mm, *oldmm;
504 	int retval;
505 
506 	tsk->min_flt = tsk->maj_flt = 0;
507 	tsk->nvcsw = tsk->nivcsw = 0;
508 
509 	tsk->mm = NULL;
510 	tsk->active_mm = NULL;
511 
512 	/*
513 	 * Are we cloning a kernel thread?
514 	 *
515 	 * We need to steal a active VM for that..
516 	 */
517 	oldmm = current->mm;
518 	if (!oldmm)
519 		return 0;
520 
521 	if (clone_flags & CLONE_VM) {
522 		atomic_inc(&oldmm->mm_users);
523 		mm = oldmm;
524 		goto good_mm;
525 	}
526 
527 	retval = -ENOMEM;
528 	mm = dup_mm(tsk);
529 	if (!mm)
530 		goto fail_nomem;
531 
532 good_mm:
533 	tsk->mm = mm;
534 	tsk->active_mm = mm;
535 	return 0;
536 
537 fail_nomem:
538 	return retval;
539 }
540 
541 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
542 {
543 	struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
544 	/* We don't need to lock fs - think why ;-) */
545 	if (fs) {
546 		atomic_set(&fs->count, 1);
547 		rwlock_init(&fs->lock);
548 		fs->umask = old->umask;
549 		read_lock(&old->lock);
550 		fs->rootmnt = mntget(old->rootmnt);
551 		fs->root = dget(old->root);
552 		fs->pwdmnt = mntget(old->pwdmnt);
553 		fs->pwd = dget(old->pwd);
554 		if (old->altroot) {
555 			fs->altrootmnt = mntget(old->altrootmnt);
556 			fs->altroot = dget(old->altroot);
557 		} else {
558 			fs->altrootmnt = NULL;
559 			fs->altroot = NULL;
560 		}
561 		read_unlock(&old->lock);
562 	}
563 	return fs;
564 }
565 
566 struct fs_struct *copy_fs_struct(struct fs_struct *old)
567 {
568 	return __copy_fs_struct(old);
569 }
570 
571 EXPORT_SYMBOL_GPL(copy_fs_struct);
572 
573 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
574 {
575 	if (clone_flags & CLONE_FS) {
576 		atomic_inc(&current->fs->count);
577 		return 0;
578 	}
579 	tsk->fs = __copy_fs_struct(current->fs);
580 	if (!tsk->fs)
581 		return -ENOMEM;
582 	return 0;
583 }
584 
585 static int count_open_files(struct fdtable *fdt)
586 {
587 	int size = fdt->max_fdset;
588 	int i;
589 
590 	/* Find the last open fd */
591 	for (i = size/(8*sizeof(long)); i > 0; ) {
592 		if (fdt->open_fds->fds_bits[--i])
593 			break;
594 	}
595 	i = (i+1) * 8 * sizeof(long);
596 	return i;
597 }
598 
599 static struct files_struct *alloc_files(void)
600 {
601 	struct files_struct *newf;
602 	struct fdtable *fdt;
603 
604 	newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
605 	if (!newf)
606 		goto out;
607 
608 	atomic_set(&newf->count, 1);
609 
610 	spin_lock_init(&newf->file_lock);
611 	newf->next_fd = 0;
612 	fdt = &newf->fdtab;
613 	fdt->max_fds = NR_OPEN_DEFAULT;
614 	fdt->max_fdset = EMBEDDED_FD_SET_SIZE;
615 	fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
616 	fdt->open_fds = (fd_set *)&newf->open_fds_init;
617 	fdt->fd = &newf->fd_array[0];
618 	INIT_RCU_HEAD(&fdt->rcu);
619 	fdt->free_files = NULL;
620 	fdt->next = NULL;
621 	rcu_assign_pointer(newf->fdt, fdt);
622 out:
623 	return newf;
624 }
625 
626 /*
627  * Allocate a new files structure and copy contents from the
628  * passed in files structure.
629  * errorp will be valid only when the returned files_struct is NULL.
630  */
631 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
632 {
633 	struct files_struct *newf;
634 	struct file **old_fds, **new_fds;
635 	int open_files, size, i, expand;
636 	struct fdtable *old_fdt, *new_fdt;
637 
638 	*errorp = -ENOMEM;
639 	newf = alloc_files();
640 	if (!newf)
641 		goto out;
642 
643 	spin_lock(&oldf->file_lock);
644 	old_fdt = files_fdtable(oldf);
645 	new_fdt = files_fdtable(newf);
646 	size = old_fdt->max_fdset;
647 	open_files = count_open_files(old_fdt);
648 	expand = 0;
649 
650 	/*
651 	 * Check whether we need to allocate a larger fd array or fd set.
652 	 * Note: we're not a clone task, so the open count won't  change.
653 	 */
654 	if (open_files > new_fdt->max_fdset) {
655 		new_fdt->max_fdset = 0;
656 		expand = 1;
657 	}
658 	if (open_files > new_fdt->max_fds) {
659 		new_fdt->max_fds = 0;
660 		expand = 1;
661 	}
662 
663 	/* if the old fdset gets grown now, we'll only copy up to "size" fds */
664 	if (expand) {
665 		spin_unlock(&oldf->file_lock);
666 		spin_lock(&newf->file_lock);
667 		*errorp = expand_files(newf, open_files-1);
668 		spin_unlock(&newf->file_lock);
669 		if (*errorp < 0)
670 			goto out_release;
671 		new_fdt = files_fdtable(newf);
672 		/*
673 		 * Reacquire the oldf lock and a pointer to its fd table
674 		 * who knows it may have a new bigger fd table. We need
675 		 * the latest pointer.
676 		 */
677 		spin_lock(&oldf->file_lock);
678 		old_fdt = files_fdtable(oldf);
679 	}
680 
681 	old_fds = old_fdt->fd;
682 	new_fds = new_fdt->fd;
683 
684 	memcpy(new_fdt->open_fds->fds_bits, old_fdt->open_fds->fds_bits, open_files/8);
685 	memcpy(new_fdt->close_on_exec->fds_bits, old_fdt->close_on_exec->fds_bits, open_files/8);
686 
687 	for (i = open_files; i != 0; i--) {
688 		struct file *f = *old_fds++;
689 		if (f) {
690 			get_file(f);
691 		} else {
692 			/*
693 			 * The fd may be claimed in the fd bitmap but not yet
694 			 * instantiated in the files array if a sibling thread
695 			 * is partway through open().  So make sure that this
696 			 * fd is available to the new process.
697 			 */
698 			FD_CLR(open_files - i, new_fdt->open_fds);
699 		}
700 		rcu_assign_pointer(*new_fds++, f);
701 	}
702 	spin_unlock(&oldf->file_lock);
703 
704 	/* compute the remainder to be cleared */
705 	size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
706 
707 	/* This is long word aligned thus could use a optimized version */
708 	memset(new_fds, 0, size);
709 
710 	if (new_fdt->max_fdset > open_files) {
711 		int left = (new_fdt->max_fdset-open_files)/8;
712 		int start = open_files / (8 * sizeof(unsigned long));
713 
714 		memset(&new_fdt->open_fds->fds_bits[start], 0, left);
715 		memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
716 	}
717 
718 out:
719 	return newf;
720 
721 out_release:
722 	free_fdset (new_fdt->close_on_exec, new_fdt->max_fdset);
723 	free_fdset (new_fdt->open_fds, new_fdt->max_fdset);
724 	free_fd_array(new_fdt->fd, new_fdt->max_fds);
725 	kmem_cache_free(files_cachep, newf);
726 	return NULL;
727 }
728 
729 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
730 {
731 	struct files_struct *oldf, *newf;
732 	int error = 0;
733 
734 	/*
735 	 * A background process may not have any files ...
736 	 */
737 	oldf = current->files;
738 	if (!oldf)
739 		goto out;
740 
741 	if (clone_flags & CLONE_FILES) {
742 		atomic_inc(&oldf->count);
743 		goto out;
744 	}
745 
746 	/*
747 	 * Note: we may be using current for both targets (See exec.c)
748 	 * This works because we cache current->files (old) as oldf. Don't
749 	 * break this.
750 	 */
751 	tsk->files = NULL;
752 	newf = dup_fd(oldf, &error);
753 	if (!newf)
754 		goto out;
755 
756 	tsk->files = newf;
757 	error = 0;
758 out:
759 	return error;
760 }
761 
762 /*
763  *	Helper to unshare the files of the current task.
764  *	We don't want to expose copy_files internals to
765  *	the exec layer of the kernel.
766  */
767 
768 int unshare_files(void)
769 {
770 	struct files_struct *files  = current->files;
771 	int rc;
772 
773 	BUG_ON(!files);
774 
775 	/* This can race but the race causes us to copy when we don't
776 	   need to and drop the copy */
777 	if(atomic_read(&files->count) == 1)
778 	{
779 		atomic_inc(&files->count);
780 		return 0;
781 	}
782 	rc = copy_files(0, current);
783 	if(rc)
784 		current->files = files;
785 	return rc;
786 }
787 
788 EXPORT_SYMBOL(unshare_files);
789 
790 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
791 {
792 	struct sighand_struct *sig;
793 
794 	if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
795 		atomic_inc(&current->sighand->count);
796 		return 0;
797 	}
798 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
799 	rcu_assign_pointer(tsk->sighand, sig);
800 	if (!sig)
801 		return -ENOMEM;
802 	atomic_set(&sig->count, 1);
803 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
804 	return 0;
805 }
806 
807 void __cleanup_sighand(struct sighand_struct *sighand)
808 {
809 	if (atomic_dec_and_test(&sighand->count))
810 		kmem_cache_free(sighand_cachep, sighand);
811 }
812 
813 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
814 {
815 	struct signal_struct *sig;
816 	int ret;
817 
818 	if (clone_flags & CLONE_THREAD) {
819 		atomic_inc(&current->signal->count);
820 		atomic_inc(&current->signal->live);
821 		return 0;
822 	}
823 	sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
824 	tsk->signal = sig;
825 	if (!sig)
826 		return -ENOMEM;
827 
828 	ret = copy_thread_group_keys(tsk);
829 	if (ret < 0) {
830 		kmem_cache_free(signal_cachep, sig);
831 		return ret;
832 	}
833 
834 	atomic_set(&sig->count, 1);
835 	atomic_set(&sig->live, 1);
836 	init_waitqueue_head(&sig->wait_chldexit);
837 	sig->flags = 0;
838 	sig->group_exit_code = 0;
839 	sig->group_exit_task = NULL;
840 	sig->group_stop_count = 0;
841 	sig->curr_target = NULL;
842 	init_sigpending(&sig->shared_pending);
843 	INIT_LIST_HEAD(&sig->posix_timers);
844 
845 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_REL);
846 	sig->it_real_incr.tv64 = 0;
847 	sig->real_timer.function = it_real_fn;
848 	sig->tsk = tsk;
849 
850 	sig->it_virt_expires = cputime_zero;
851 	sig->it_virt_incr = cputime_zero;
852 	sig->it_prof_expires = cputime_zero;
853 	sig->it_prof_incr = cputime_zero;
854 
855 	sig->leader = 0;	/* session leadership doesn't inherit */
856 	sig->tty_old_pgrp = 0;
857 
858 	sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
859 	sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
860 	sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
861 	sig->sched_time = 0;
862 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
863 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
864 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
865 
866 	task_lock(current->group_leader);
867 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
868 	task_unlock(current->group_leader);
869 
870 	if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
871 		/*
872 		 * New sole thread in the process gets an expiry time
873 		 * of the whole CPU time limit.
874 		 */
875 		tsk->it_prof_expires =
876 			secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
877 	}
878 	acct_init_pacct(&sig->pacct);
879 
880 	return 0;
881 }
882 
883 void __cleanup_signal(struct signal_struct *sig)
884 {
885 	exit_thread_group_keys(sig);
886 	kmem_cache_free(signal_cachep, sig);
887 }
888 
889 static inline void cleanup_signal(struct task_struct *tsk)
890 {
891 	struct signal_struct *sig = tsk->signal;
892 
893 	atomic_dec(&sig->live);
894 
895 	if (atomic_dec_and_test(&sig->count))
896 		__cleanup_signal(sig);
897 }
898 
899 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
900 {
901 	unsigned long new_flags = p->flags;
902 
903 	new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE);
904 	new_flags |= PF_FORKNOEXEC;
905 	if (!(clone_flags & CLONE_PTRACE))
906 		p->ptrace = 0;
907 	p->flags = new_flags;
908 }
909 
910 asmlinkage long sys_set_tid_address(int __user *tidptr)
911 {
912 	current->clear_child_tid = tidptr;
913 
914 	return current->pid;
915 }
916 
917 static inline void rt_mutex_init_task(struct task_struct *p)
918 {
919 #ifdef CONFIG_RT_MUTEXES
920 	spin_lock_init(&p->pi_lock);
921 	plist_head_init(&p->pi_waiters, &p->pi_lock);
922 	p->pi_blocked_on = NULL;
923 # ifdef CONFIG_DEBUG_RT_MUTEXES
924 	spin_lock_init(&p->held_list_lock);
925 	INIT_LIST_HEAD(&p->held_list_head);
926 # endif
927 #endif
928 }
929 
930 /*
931  * This creates a new process as a copy of the old one,
932  * but does not actually start it yet.
933  *
934  * It copies the registers, and all the appropriate
935  * parts of the process environment (as per the clone
936  * flags). The actual kick-off is left to the caller.
937  */
938 static task_t *copy_process(unsigned long clone_flags,
939 				 unsigned long stack_start,
940 				 struct pt_regs *regs,
941 				 unsigned long stack_size,
942 				 int __user *parent_tidptr,
943 				 int __user *child_tidptr,
944 				 int pid)
945 {
946 	int retval;
947 	struct task_struct *p = NULL;
948 
949 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
950 		return ERR_PTR(-EINVAL);
951 
952 	/*
953 	 * Thread groups must share signals as well, and detached threads
954 	 * can only be started up within the thread group.
955 	 */
956 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
957 		return ERR_PTR(-EINVAL);
958 
959 	/*
960 	 * Shared signal handlers imply shared VM. By way of the above,
961 	 * thread groups also imply shared VM. Blocking this case allows
962 	 * for various simplifications in other code.
963 	 */
964 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
965 		return ERR_PTR(-EINVAL);
966 
967 	retval = security_task_create(clone_flags);
968 	if (retval)
969 		goto fork_out;
970 
971 	retval = -ENOMEM;
972 	p = dup_task_struct(current);
973 	if (!p)
974 		goto fork_out;
975 
976 	retval = -EAGAIN;
977 	if (atomic_read(&p->user->processes) >=
978 			p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
979 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
980 				p->user != &root_user)
981 			goto bad_fork_free;
982 	}
983 
984 	atomic_inc(&p->user->__count);
985 	atomic_inc(&p->user->processes);
986 	get_group_info(p->group_info);
987 
988 	/*
989 	 * If multiple threads are within copy_process(), then this check
990 	 * triggers too late. This doesn't hurt, the check is only there
991 	 * to stop root fork bombs.
992 	 */
993 	if (nr_threads >= max_threads)
994 		goto bad_fork_cleanup_count;
995 
996 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
997 		goto bad_fork_cleanup_count;
998 
999 	if (p->binfmt && !try_module_get(p->binfmt->module))
1000 		goto bad_fork_cleanup_put_domain;
1001 
1002 	p->did_exec = 0;
1003 	copy_flags(clone_flags, p);
1004 	p->pid = pid;
1005 	retval = -EFAULT;
1006 	if (clone_flags & CLONE_PARENT_SETTID)
1007 		if (put_user(p->pid, parent_tidptr))
1008 			goto bad_fork_cleanup;
1009 
1010 	INIT_LIST_HEAD(&p->children);
1011 	INIT_LIST_HEAD(&p->sibling);
1012 	p->vfork_done = NULL;
1013 	spin_lock_init(&p->alloc_lock);
1014 
1015 	clear_tsk_thread_flag(p, TIF_SIGPENDING);
1016 	init_sigpending(&p->pending);
1017 
1018 	p->utime = cputime_zero;
1019 	p->stime = cputime_zero;
1020  	p->sched_time = 0;
1021 	p->rchar = 0;		/* I/O counter: bytes read */
1022 	p->wchar = 0;		/* I/O counter: bytes written */
1023 	p->syscr = 0;		/* I/O counter: read syscalls */
1024 	p->syscw = 0;		/* I/O counter: write syscalls */
1025 	acct_clear_integrals(p);
1026 
1027  	p->it_virt_expires = cputime_zero;
1028 	p->it_prof_expires = cputime_zero;
1029  	p->it_sched_expires = 0;
1030  	INIT_LIST_HEAD(&p->cpu_timers[0]);
1031  	INIT_LIST_HEAD(&p->cpu_timers[1]);
1032  	INIT_LIST_HEAD(&p->cpu_timers[2]);
1033 
1034 	p->lock_depth = -1;		/* -1 = no lock */
1035 	do_posix_clock_monotonic_gettime(&p->start_time);
1036 	p->security = NULL;
1037 	p->io_context = NULL;
1038 	p->io_wait = NULL;
1039 	p->audit_context = NULL;
1040 	cpuset_fork(p);
1041 #ifdef CONFIG_NUMA
1042  	p->mempolicy = mpol_copy(p->mempolicy);
1043  	if (IS_ERR(p->mempolicy)) {
1044  		retval = PTR_ERR(p->mempolicy);
1045  		p->mempolicy = NULL;
1046  		goto bad_fork_cleanup_cpuset;
1047  	}
1048 	mpol_fix_fork_child_flag(p);
1049 #endif
1050 
1051 	rt_mutex_init_task(p);
1052 
1053 #ifdef CONFIG_DEBUG_MUTEXES
1054 	p->blocked_on = NULL; /* not blocked yet */
1055 #endif
1056 
1057 	p->tgid = p->pid;
1058 	if (clone_flags & CLONE_THREAD)
1059 		p->tgid = current->tgid;
1060 
1061 	if ((retval = security_task_alloc(p)))
1062 		goto bad_fork_cleanup_policy;
1063 	if ((retval = audit_alloc(p)))
1064 		goto bad_fork_cleanup_security;
1065 	/* copy all the process information */
1066 	if ((retval = copy_semundo(clone_flags, p)))
1067 		goto bad_fork_cleanup_audit;
1068 	if ((retval = copy_files(clone_flags, p)))
1069 		goto bad_fork_cleanup_semundo;
1070 	if ((retval = copy_fs(clone_flags, p)))
1071 		goto bad_fork_cleanup_files;
1072 	if ((retval = copy_sighand(clone_flags, p)))
1073 		goto bad_fork_cleanup_fs;
1074 	if ((retval = copy_signal(clone_flags, p)))
1075 		goto bad_fork_cleanup_sighand;
1076 	if ((retval = copy_mm(clone_flags, p)))
1077 		goto bad_fork_cleanup_signal;
1078 	if ((retval = copy_keys(clone_flags, p)))
1079 		goto bad_fork_cleanup_mm;
1080 	if ((retval = copy_namespace(clone_flags, p)))
1081 		goto bad_fork_cleanup_keys;
1082 	retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1083 	if (retval)
1084 		goto bad_fork_cleanup_namespace;
1085 
1086 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1087 	/*
1088 	 * Clear TID on mm_release()?
1089 	 */
1090 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1091 	p->robust_list = NULL;
1092 #ifdef CONFIG_COMPAT
1093 	p->compat_robust_list = NULL;
1094 #endif
1095 	INIT_LIST_HEAD(&p->pi_state_list);
1096 	p->pi_state_cache = NULL;
1097 
1098 	/*
1099 	 * sigaltstack should be cleared when sharing the same VM
1100 	 */
1101 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1102 		p->sas_ss_sp = p->sas_ss_size = 0;
1103 
1104 	/*
1105 	 * Syscall tracing should be turned off in the child regardless
1106 	 * of CLONE_PTRACE.
1107 	 */
1108 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1109 #ifdef TIF_SYSCALL_EMU
1110 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1111 #endif
1112 
1113 	/* Our parent execution domain becomes current domain
1114 	   These must match for thread signalling to apply */
1115 
1116 	p->parent_exec_id = p->self_exec_id;
1117 
1118 	/* ok, now we should be set up.. */
1119 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1120 	p->pdeath_signal = 0;
1121 	p->exit_state = 0;
1122 
1123 	/*
1124 	 * Ok, make it visible to the rest of the system.
1125 	 * We dont wake it up yet.
1126 	 */
1127 	p->group_leader = p;
1128 	INIT_LIST_HEAD(&p->thread_group);
1129 	INIT_LIST_HEAD(&p->ptrace_children);
1130 	INIT_LIST_HEAD(&p->ptrace_list);
1131 
1132 	/* Perform scheduler related setup. Assign this task to a CPU. */
1133 	sched_fork(p, clone_flags);
1134 
1135 	/* Need tasklist lock for parent etc handling! */
1136 	write_lock_irq(&tasklist_lock);
1137 
1138 	/*
1139 	 * The task hasn't been attached yet, so its cpus_allowed mask will
1140 	 * not be changed, nor will its assigned CPU.
1141 	 *
1142 	 * The cpus_allowed mask of the parent may have changed after it was
1143 	 * copied first time - so re-copy it here, then check the child's CPU
1144 	 * to ensure it is on a valid CPU (and if not, just force it back to
1145 	 * parent's CPU). This avoids alot of nasty races.
1146 	 */
1147 	p->cpus_allowed = current->cpus_allowed;
1148 	if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1149 			!cpu_online(task_cpu(p))))
1150 		set_task_cpu(p, smp_processor_id());
1151 
1152 	/* CLONE_PARENT re-uses the old parent */
1153 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1154 		p->real_parent = current->real_parent;
1155 	else
1156 		p->real_parent = current;
1157 	p->parent = p->real_parent;
1158 
1159 	spin_lock(&current->sighand->siglock);
1160 
1161 	/*
1162 	 * Process group and session signals need to be delivered to just the
1163 	 * parent before the fork or both the parent and the child after the
1164 	 * fork. Restart if a signal comes in before we add the new process to
1165 	 * it's process group.
1166 	 * A fatal signal pending means that current will exit, so the new
1167 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1168  	 */
1169  	recalc_sigpending();
1170 	if (signal_pending(current)) {
1171 		spin_unlock(&current->sighand->siglock);
1172 		write_unlock_irq(&tasklist_lock);
1173 		retval = -ERESTARTNOINTR;
1174 		goto bad_fork_cleanup_namespace;
1175 	}
1176 
1177 	if (clone_flags & CLONE_THREAD) {
1178 		p->group_leader = current->group_leader;
1179 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1180 
1181 		if (!cputime_eq(current->signal->it_virt_expires,
1182 				cputime_zero) ||
1183 		    !cputime_eq(current->signal->it_prof_expires,
1184 				cputime_zero) ||
1185 		    current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1186 		    !list_empty(&current->signal->cpu_timers[0]) ||
1187 		    !list_empty(&current->signal->cpu_timers[1]) ||
1188 		    !list_empty(&current->signal->cpu_timers[2])) {
1189 			/*
1190 			 * Have child wake up on its first tick to check
1191 			 * for process CPU timers.
1192 			 */
1193 			p->it_prof_expires = jiffies_to_cputime(1);
1194 		}
1195 	}
1196 
1197 	/*
1198 	 * inherit ioprio
1199 	 */
1200 	p->ioprio = current->ioprio;
1201 
1202 	if (likely(p->pid)) {
1203 		add_parent(p);
1204 		if (unlikely(p->ptrace & PT_PTRACED))
1205 			__ptrace_link(p, current->parent);
1206 
1207 		if (thread_group_leader(p)) {
1208 			p->signal->tty = current->signal->tty;
1209 			p->signal->pgrp = process_group(current);
1210 			p->signal->session = current->signal->session;
1211 			attach_pid(p, PIDTYPE_PGID, process_group(p));
1212 			attach_pid(p, PIDTYPE_SID, p->signal->session);
1213 
1214 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1215 			__get_cpu_var(process_counts)++;
1216 		}
1217 		attach_pid(p, PIDTYPE_PID, p->pid);
1218 		nr_threads++;
1219 	}
1220 
1221 	total_forks++;
1222 	spin_unlock(&current->sighand->siglock);
1223 	write_unlock_irq(&tasklist_lock);
1224 	proc_fork_connector(p);
1225 	return p;
1226 
1227 bad_fork_cleanup_namespace:
1228 	exit_namespace(p);
1229 bad_fork_cleanup_keys:
1230 	exit_keys(p);
1231 bad_fork_cleanup_mm:
1232 	if (p->mm)
1233 		mmput(p->mm);
1234 bad_fork_cleanup_signal:
1235 	cleanup_signal(p);
1236 bad_fork_cleanup_sighand:
1237 	__cleanup_sighand(p->sighand);
1238 bad_fork_cleanup_fs:
1239 	exit_fs(p); /* blocking */
1240 bad_fork_cleanup_files:
1241 	exit_files(p); /* blocking */
1242 bad_fork_cleanup_semundo:
1243 	exit_sem(p);
1244 bad_fork_cleanup_audit:
1245 	audit_free(p);
1246 bad_fork_cleanup_security:
1247 	security_task_free(p);
1248 bad_fork_cleanup_policy:
1249 #ifdef CONFIG_NUMA
1250 	mpol_free(p->mempolicy);
1251 bad_fork_cleanup_cpuset:
1252 #endif
1253 	cpuset_exit(p);
1254 bad_fork_cleanup:
1255 	if (p->binfmt)
1256 		module_put(p->binfmt->module);
1257 bad_fork_cleanup_put_domain:
1258 	module_put(task_thread_info(p)->exec_domain->module);
1259 bad_fork_cleanup_count:
1260 	put_group_info(p->group_info);
1261 	atomic_dec(&p->user->processes);
1262 	free_uid(p->user);
1263 bad_fork_free:
1264 	free_task(p);
1265 fork_out:
1266 	return ERR_PTR(retval);
1267 }
1268 
1269 struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1270 {
1271 	memset(regs, 0, sizeof(struct pt_regs));
1272 	return regs;
1273 }
1274 
1275 task_t * __devinit fork_idle(int cpu)
1276 {
1277 	task_t *task;
1278 	struct pt_regs regs;
1279 
1280 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1281 	if (!task)
1282 		return ERR_PTR(-ENOMEM);
1283 	init_idle(task, cpu);
1284 
1285 	return task;
1286 }
1287 
1288 static inline int fork_traceflag (unsigned clone_flags)
1289 {
1290 	if (clone_flags & CLONE_UNTRACED)
1291 		return 0;
1292 	else if (clone_flags & CLONE_VFORK) {
1293 		if (current->ptrace & PT_TRACE_VFORK)
1294 			return PTRACE_EVENT_VFORK;
1295 	} else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1296 		if (current->ptrace & PT_TRACE_CLONE)
1297 			return PTRACE_EVENT_CLONE;
1298 	} else if (current->ptrace & PT_TRACE_FORK)
1299 		return PTRACE_EVENT_FORK;
1300 
1301 	return 0;
1302 }
1303 
1304 /*
1305  *  Ok, this is the main fork-routine.
1306  *
1307  * It copies the process, and if successful kick-starts
1308  * it and waits for it to finish using the VM if required.
1309  */
1310 long do_fork(unsigned long clone_flags,
1311 	      unsigned long stack_start,
1312 	      struct pt_regs *regs,
1313 	      unsigned long stack_size,
1314 	      int __user *parent_tidptr,
1315 	      int __user *child_tidptr)
1316 {
1317 	struct task_struct *p;
1318 	int trace = 0;
1319 	struct pid *pid = alloc_pid();
1320 	long nr;
1321 
1322 	if (!pid)
1323 		return -EAGAIN;
1324 	nr = pid->nr;
1325 	if (unlikely(current->ptrace)) {
1326 		trace = fork_traceflag (clone_flags);
1327 		if (trace)
1328 			clone_flags |= CLONE_PTRACE;
1329 	}
1330 
1331 	p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, nr);
1332 	/*
1333 	 * Do this prior waking up the new thread - the thread pointer
1334 	 * might get invalid after that point, if the thread exits quickly.
1335 	 */
1336 	if (!IS_ERR(p)) {
1337 		struct completion vfork;
1338 
1339 		if (clone_flags & CLONE_VFORK) {
1340 			p->vfork_done = &vfork;
1341 			init_completion(&vfork);
1342 		}
1343 
1344 		if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1345 			/*
1346 			 * We'll start up with an immediate SIGSTOP.
1347 			 */
1348 			sigaddset(&p->pending.signal, SIGSTOP);
1349 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1350 		}
1351 
1352 		if (!(clone_flags & CLONE_STOPPED))
1353 			wake_up_new_task(p, clone_flags);
1354 		else
1355 			p->state = TASK_STOPPED;
1356 
1357 		if (unlikely (trace)) {
1358 			current->ptrace_message = nr;
1359 			ptrace_notify ((trace << 8) | SIGTRAP);
1360 		}
1361 
1362 		if (clone_flags & CLONE_VFORK) {
1363 			wait_for_completion(&vfork);
1364 			if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE))
1365 				ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1366 		}
1367 	} else {
1368 		free_pid(pid);
1369 		nr = PTR_ERR(p);
1370 	}
1371 	return nr;
1372 }
1373 
1374 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1375 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1376 #endif
1377 
1378 static void sighand_ctor(void *data, kmem_cache_t *cachep, unsigned long flags)
1379 {
1380 	struct sighand_struct *sighand = data;
1381 
1382 	if ((flags & (SLAB_CTOR_VERIFY | SLAB_CTOR_CONSTRUCTOR)) ==
1383 					SLAB_CTOR_CONSTRUCTOR)
1384 		spin_lock_init(&sighand->siglock);
1385 }
1386 
1387 void __init proc_caches_init(void)
1388 {
1389 	sighand_cachep = kmem_cache_create("sighand_cache",
1390 			sizeof(struct sighand_struct), 0,
1391 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1392 			sighand_ctor, NULL);
1393 	signal_cachep = kmem_cache_create("signal_cache",
1394 			sizeof(struct signal_struct), 0,
1395 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1396 	files_cachep = kmem_cache_create("files_cache",
1397 			sizeof(struct files_struct), 0,
1398 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1399 	fs_cachep = kmem_cache_create("fs_cache",
1400 			sizeof(struct fs_struct), 0,
1401 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1402 	vm_area_cachep = kmem_cache_create("vm_area_struct",
1403 			sizeof(struct vm_area_struct), 0,
1404 			SLAB_PANIC, NULL, NULL);
1405 	mm_cachep = kmem_cache_create("mm_struct",
1406 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1407 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1408 }
1409 
1410 
1411 /*
1412  * Check constraints on flags passed to the unshare system call and
1413  * force unsharing of additional process context as appropriate.
1414  */
1415 static inline void check_unshare_flags(unsigned long *flags_ptr)
1416 {
1417 	/*
1418 	 * If unsharing a thread from a thread group, must also
1419 	 * unshare vm.
1420 	 */
1421 	if (*flags_ptr & CLONE_THREAD)
1422 		*flags_ptr |= CLONE_VM;
1423 
1424 	/*
1425 	 * If unsharing vm, must also unshare signal handlers.
1426 	 */
1427 	if (*flags_ptr & CLONE_VM)
1428 		*flags_ptr |= CLONE_SIGHAND;
1429 
1430 	/*
1431 	 * If unsharing signal handlers and the task was created
1432 	 * using CLONE_THREAD, then must unshare the thread
1433 	 */
1434 	if ((*flags_ptr & CLONE_SIGHAND) &&
1435 	    (atomic_read(&current->signal->count) > 1))
1436 		*flags_ptr |= CLONE_THREAD;
1437 
1438 	/*
1439 	 * If unsharing namespace, must also unshare filesystem information.
1440 	 */
1441 	if (*flags_ptr & CLONE_NEWNS)
1442 		*flags_ptr |= CLONE_FS;
1443 }
1444 
1445 /*
1446  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1447  */
1448 static int unshare_thread(unsigned long unshare_flags)
1449 {
1450 	if (unshare_flags & CLONE_THREAD)
1451 		return -EINVAL;
1452 
1453 	return 0;
1454 }
1455 
1456 /*
1457  * Unshare the filesystem structure if it is being shared
1458  */
1459 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1460 {
1461 	struct fs_struct *fs = current->fs;
1462 
1463 	if ((unshare_flags & CLONE_FS) &&
1464 	    (fs && atomic_read(&fs->count) > 1)) {
1465 		*new_fsp = __copy_fs_struct(current->fs);
1466 		if (!*new_fsp)
1467 			return -ENOMEM;
1468 	}
1469 
1470 	return 0;
1471 }
1472 
1473 /*
1474  * Unshare the namespace structure if it is being shared
1475  */
1476 static int unshare_namespace(unsigned long unshare_flags, struct namespace **new_nsp, struct fs_struct *new_fs)
1477 {
1478 	struct namespace *ns = current->namespace;
1479 
1480 	if ((unshare_flags & CLONE_NEWNS) &&
1481 	    (ns && atomic_read(&ns->count) > 1)) {
1482 		if (!capable(CAP_SYS_ADMIN))
1483 			return -EPERM;
1484 
1485 		*new_nsp = dup_namespace(current, new_fs ? new_fs : current->fs);
1486 		if (!*new_nsp)
1487 			return -ENOMEM;
1488 	}
1489 
1490 	return 0;
1491 }
1492 
1493 /*
1494  * Unsharing of sighand for tasks created with CLONE_SIGHAND is not
1495  * supported yet
1496  */
1497 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1498 {
1499 	struct sighand_struct *sigh = current->sighand;
1500 
1501 	if ((unshare_flags & CLONE_SIGHAND) &&
1502 	    (sigh && atomic_read(&sigh->count) > 1))
1503 		return -EINVAL;
1504 	else
1505 		return 0;
1506 }
1507 
1508 /*
1509  * Unshare vm if it is being shared
1510  */
1511 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1512 {
1513 	struct mm_struct *mm = current->mm;
1514 
1515 	if ((unshare_flags & CLONE_VM) &&
1516 	    (mm && atomic_read(&mm->mm_users) > 1)) {
1517 		return -EINVAL;
1518 	}
1519 
1520 	return 0;
1521 }
1522 
1523 /*
1524  * Unshare file descriptor table if it is being shared
1525  */
1526 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1527 {
1528 	struct files_struct *fd = current->files;
1529 	int error = 0;
1530 
1531 	if ((unshare_flags & CLONE_FILES) &&
1532 	    (fd && atomic_read(&fd->count) > 1)) {
1533 		*new_fdp = dup_fd(fd, &error);
1534 		if (!*new_fdp)
1535 			return error;
1536 	}
1537 
1538 	return 0;
1539 }
1540 
1541 /*
1542  * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1543  * supported yet
1544  */
1545 static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
1546 {
1547 	if (unshare_flags & CLONE_SYSVSEM)
1548 		return -EINVAL;
1549 
1550 	return 0;
1551 }
1552 
1553 /*
1554  * unshare allows a process to 'unshare' part of the process
1555  * context which was originally shared using clone.  copy_*
1556  * functions used by do_fork() cannot be used here directly
1557  * because they modify an inactive task_struct that is being
1558  * constructed. Here we are modifying the current, active,
1559  * task_struct.
1560  */
1561 asmlinkage long sys_unshare(unsigned long unshare_flags)
1562 {
1563 	int err = 0;
1564 	struct fs_struct *fs, *new_fs = NULL;
1565 	struct namespace *ns, *new_ns = NULL;
1566 	struct sighand_struct *sigh, *new_sigh = NULL;
1567 	struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1568 	struct files_struct *fd, *new_fd = NULL;
1569 	struct sem_undo_list *new_ulist = NULL;
1570 
1571 	check_unshare_flags(&unshare_flags);
1572 
1573 	/* Return -EINVAL for all unsupported flags */
1574 	err = -EINVAL;
1575 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1576 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM))
1577 		goto bad_unshare_out;
1578 
1579 	if ((err = unshare_thread(unshare_flags)))
1580 		goto bad_unshare_out;
1581 	if ((err = unshare_fs(unshare_flags, &new_fs)))
1582 		goto bad_unshare_cleanup_thread;
1583 	if ((err = unshare_namespace(unshare_flags, &new_ns, new_fs)))
1584 		goto bad_unshare_cleanup_fs;
1585 	if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1586 		goto bad_unshare_cleanup_ns;
1587 	if ((err = unshare_vm(unshare_flags, &new_mm)))
1588 		goto bad_unshare_cleanup_sigh;
1589 	if ((err = unshare_fd(unshare_flags, &new_fd)))
1590 		goto bad_unshare_cleanup_vm;
1591 	if ((err = unshare_semundo(unshare_flags, &new_ulist)))
1592 		goto bad_unshare_cleanup_fd;
1593 
1594 	if (new_fs || new_ns || new_sigh || new_mm || new_fd || new_ulist) {
1595 
1596 		task_lock(current);
1597 
1598 		if (new_fs) {
1599 			fs = current->fs;
1600 			current->fs = new_fs;
1601 			new_fs = fs;
1602 		}
1603 
1604 		if (new_ns) {
1605 			ns = current->namespace;
1606 			current->namespace = new_ns;
1607 			new_ns = ns;
1608 		}
1609 
1610 		if (new_sigh) {
1611 			sigh = current->sighand;
1612 			rcu_assign_pointer(current->sighand, new_sigh);
1613 			new_sigh = sigh;
1614 		}
1615 
1616 		if (new_mm) {
1617 			mm = current->mm;
1618 			active_mm = current->active_mm;
1619 			current->mm = new_mm;
1620 			current->active_mm = new_mm;
1621 			activate_mm(active_mm, new_mm);
1622 			new_mm = mm;
1623 		}
1624 
1625 		if (new_fd) {
1626 			fd = current->files;
1627 			current->files = new_fd;
1628 			new_fd = fd;
1629 		}
1630 
1631 		task_unlock(current);
1632 	}
1633 
1634 bad_unshare_cleanup_fd:
1635 	if (new_fd)
1636 		put_files_struct(new_fd);
1637 
1638 bad_unshare_cleanup_vm:
1639 	if (new_mm)
1640 		mmput(new_mm);
1641 
1642 bad_unshare_cleanup_sigh:
1643 	if (new_sigh)
1644 		if (atomic_dec_and_test(&new_sigh->count))
1645 			kmem_cache_free(sighand_cachep, new_sigh);
1646 
1647 bad_unshare_cleanup_ns:
1648 	if (new_ns)
1649 		put_namespace(new_ns);
1650 
1651 bad_unshare_cleanup_fs:
1652 	if (new_fs)
1653 		put_fs_struct(new_fs);
1654 
1655 bad_unshare_cleanup_thread:
1656 bad_unshare_out:
1657 	return err;
1658 }
1659