1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/binfmts.h> 41 #include <linux/mman.h> 42 #include <linux/mmu_notifier.h> 43 #include <linux/fs.h> 44 #include <linux/mm.h> 45 #include <linux/vmacache.h> 46 #include <linux/nsproxy.h> 47 #include <linux/capability.h> 48 #include <linux/cpu.h> 49 #include <linux/cgroup.h> 50 #include <linux/security.h> 51 #include <linux/hugetlb.h> 52 #include <linux/seccomp.h> 53 #include <linux/swap.h> 54 #include <linux/syscalls.h> 55 #include <linux/jiffies.h> 56 #include <linux/futex.h> 57 #include <linux/compat.h> 58 #include <linux/kthread.h> 59 #include <linux/task_io_accounting_ops.h> 60 #include <linux/rcupdate.h> 61 #include <linux/ptrace.h> 62 #include <linux/mount.h> 63 #include <linux/audit.h> 64 #include <linux/memcontrol.h> 65 #include <linux/ftrace.h> 66 #include <linux/proc_fs.h> 67 #include <linux/profile.h> 68 #include <linux/rmap.h> 69 #include <linux/ksm.h> 70 #include <linux/acct.h> 71 #include <linux/userfaultfd_k.h> 72 #include <linux/tsacct_kern.h> 73 #include <linux/cn_proc.h> 74 #include <linux/freezer.h> 75 #include <linux/delayacct.h> 76 #include <linux/taskstats_kern.h> 77 #include <linux/random.h> 78 #include <linux/tty.h> 79 #include <linux/blkdev.h> 80 #include <linux/fs_struct.h> 81 #include <linux/magic.h> 82 #include <linux/perf_event.h> 83 #include <linux/posix-timers.h> 84 #include <linux/user-return-notifier.h> 85 #include <linux/oom.h> 86 #include <linux/khugepaged.h> 87 #include <linux/signalfd.h> 88 #include <linux/uprobes.h> 89 #include <linux/aio.h> 90 #include <linux/compiler.h> 91 #include <linux/sysctl.h> 92 #include <linux/kcov.h> 93 #include <linux/livepatch.h> 94 #include <linux/thread_info.h> 95 #include <linux/stackleak.h> 96 #include <linux/kasan.h> 97 #include <linux/scs.h> 98 #include <linux/io_uring.h> 99 #include <linux/bpf.h> 100 101 #include <asm/pgalloc.h> 102 #include <linux/uaccess.h> 103 #include <asm/mmu_context.h> 104 #include <asm/cacheflush.h> 105 #include <asm/tlbflush.h> 106 107 #include <trace/events/sched.h> 108 109 #define CREATE_TRACE_POINTS 110 #include <trace/events/task.h> 111 112 /* 113 * Minimum number of threads to boot the kernel 114 */ 115 #define MIN_THREADS 20 116 117 /* 118 * Maximum number of threads 119 */ 120 #define MAX_THREADS FUTEX_TID_MASK 121 122 /* 123 * Protected counters by write_lock_irq(&tasklist_lock) 124 */ 125 unsigned long total_forks; /* Handle normal Linux uptimes. */ 126 int nr_threads; /* The idle threads do not count.. */ 127 128 static int max_threads; /* tunable limit on nr_threads */ 129 130 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 131 132 static const char * const resident_page_types[] = { 133 NAMED_ARRAY_INDEX(MM_FILEPAGES), 134 NAMED_ARRAY_INDEX(MM_ANONPAGES), 135 NAMED_ARRAY_INDEX(MM_SWAPENTS), 136 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 137 }; 138 139 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 140 141 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 142 143 #ifdef CONFIG_PROVE_RCU 144 int lockdep_tasklist_lock_is_held(void) 145 { 146 return lockdep_is_held(&tasklist_lock); 147 } 148 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 149 #endif /* #ifdef CONFIG_PROVE_RCU */ 150 151 int nr_processes(void) 152 { 153 int cpu; 154 int total = 0; 155 156 for_each_possible_cpu(cpu) 157 total += per_cpu(process_counts, cpu); 158 159 return total; 160 } 161 162 void __weak arch_release_task_struct(struct task_struct *tsk) 163 { 164 } 165 166 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 167 static struct kmem_cache *task_struct_cachep; 168 169 static inline struct task_struct *alloc_task_struct_node(int node) 170 { 171 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 172 } 173 174 static inline void free_task_struct(struct task_struct *tsk) 175 { 176 kmem_cache_free(task_struct_cachep, tsk); 177 } 178 #endif 179 180 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 181 182 /* 183 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 184 * kmemcache based allocator. 185 */ 186 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 187 188 #ifdef CONFIG_VMAP_STACK 189 /* 190 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 191 * flush. Try to minimize the number of calls by caching stacks. 192 */ 193 #define NR_CACHED_STACKS 2 194 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 195 196 static int free_vm_stack_cache(unsigned int cpu) 197 { 198 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 199 int i; 200 201 for (i = 0; i < NR_CACHED_STACKS; i++) { 202 struct vm_struct *vm_stack = cached_vm_stacks[i]; 203 204 if (!vm_stack) 205 continue; 206 207 vfree(vm_stack->addr); 208 cached_vm_stacks[i] = NULL; 209 } 210 211 return 0; 212 } 213 #endif 214 215 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node) 216 { 217 #ifdef CONFIG_VMAP_STACK 218 void *stack; 219 int i; 220 221 for (i = 0; i < NR_CACHED_STACKS; i++) { 222 struct vm_struct *s; 223 224 s = this_cpu_xchg(cached_stacks[i], NULL); 225 226 if (!s) 227 continue; 228 229 /* Mark stack accessible for KASAN. */ 230 kasan_unpoison_range(s->addr, THREAD_SIZE); 231 232 /* Clear stale pointers from reused stack. */ 233 memset(s->addr, 0, THREAD_SIZE); 234 235 tsk->stack_vm_area = s; 236 tsk->stack = s->addr; 237 return s->addr; 238 } 239 240 /* 241 * Allocated stacks are cached and later reused by new threads, 242 * so memcg accounting is performed manually on assigning/releasing 243 * stacks to tasks. Drop __GFP_ACCOUNT. 244 */ 245 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 246 VMALLOC_START, VMALLOC_END, 247 THREADINFO_GFP & ~__GFP_ACCOUNT, 248 PAGE_KERNEL, 249 0, node, __builtin_return_address(0)); 250 251 /* 252 * We can't call find_vm_area() in interrupt context, and 253 * free_thread_stack() can be called in interrupt context, 254 * so cache the vm_struct. 255 */ 256 if (stack) { 257 tsk->stack_vm_area = find_vm_area(stack); 258 tsk->stack = stack; 259 } 260 return stack; 261 #else 262 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 263 THREAD_SIZE_ORDER); 264 265 if (likely(page)) { 266 tsk->stack = kasan_reset_tag(page_address(page)); 267 return tsk->stack; 268 } 269 return NULL; 270 #endif 271 } 272 273 static inline void free_thread_stack(struct task_struct *tsk) 274 { 275 #ifdef CONFIG_VMAP_STACK 276 struct vm_struct *vm = task_stack_vm_area(tsk); 277 278 if (vm) { 279 int i; 280 281 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 282 memcg_kmem_uncharge_page(vm->pages[i], 0); 283 284 for (i = 0; i < NR_CACHED_STACKS; i++) { 285 if (this_cpu_cmpxchg(cached_stacks[i], 286 NULL, tsk->stack_vm_area) != NULL) 287 continue; 288 289 return; 290 } 291 292 vfree_atomic(tsk->stack); 293 return; 294 } 295 #endif 296 297 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER); 298 } 299 # else 300 static struct kmem_cache *thread_stack_cache; 301 302 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, 303 int node) 304 { 305 unsigned long *stack; 306 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 307 stack = kasan_reset_tag(stack); 308 tsk->stack = stack; 309 return stack; 310 } 311 312 static void free_thread_stack(struct task_struct *tsk) 313 { 314 kmem_cache_free(thread_stack_cache, tsk->stack); 315 } 316 317 void thread_stack_cache_init(void) 318 { 319 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 320 THREAD_SIZE, THREAD_SIZE, 0, 0, 321 THREAD_SIZE, NULL); 322 BUG_ON(thread_stack_cache == NULL); 323 } 324 # endif 325 #endif 326 327 /* SLAB cache for signal_struct structures (tsk->signal) */ 328 static struct kmem_cache *signal_cachep; 329 330 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 331 struct kmem_cache *sighand_cachep; 332 333 /* SLAB cache for files_struct structures (tsk->files) */ 334 struct kmem_cache *files_cachep; 335 336 /* SLAB cache for fs_struct structures (tsk->fs) */ 337 struct kmem_cache *fs_cachep; 338 339 /* SLAB cache for vm_area_struct structures */ 340 static struct kmem_cache *vm_area_cachep; 341 342 /* SLAB cache for mm_struct structures (tsk->mm) */ 343 static struct kmem_cache *mm_cachep; 344 345 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 346 { 347 struct vm_area_struct *vma; 348 349 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 350 if (vma) 351 vma_init(vma, mm); 352 return vma; 353 } 354 355 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 356 { 357 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 358 359 if (new) { 360 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 361 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 362 /* 363 * orig->shared.rb may be modified concurrently, but the clone 364 * will be reinitialized. 365 */ 366 *new = data_race(*orig); 367 INIT_LIST_HEAD(&new->anon_vma_chain); 368 new->vm_next = new->vm_prev = NULL; 369 } 370 return new; 371 } 372 373 void vm_area_free(struct vm_area_struct *vma) 374 { 375 kmem_cache_free(vm_area_cachep, vma); 376 } 377 378 static void account_kernel_stack(struct task_struct *tsk, int account) 379 { 380 void *stack = task_stack_page(tsk); 381 struct vm_struct *vm = task_stack_vm_area(tsk); 382 383 if (vm) { 384 int i; 385 386 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 387 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 388 account * (PAGE_SIZE / 1024)); 389 } else { 390 /* All stack pages are in the same node. */ 391 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 392 account * (THREAD_SIZE / 1024)); 393 } 394 } 395 396 static int memcg_charge_kernel_stack(struct task_struct *tsk) 397 { 398 #ifdef CONFIG_VMAP_STACK 399 struct vm_struct *vm = task_stack_vm_area(tsk); 400 int ret; 401 402 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 403 404 if (vm) { 405 int i; 406 407 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 408 409 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 410 /* 411 * If memcg_kmem_charge_page() fails, page's 412 * memory cgroup pointer is NULL, and 413 * memcg_kmem_uncharge_page() in free_thread_stack() 414 * will ignore this page. 415 */ 416 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 417 0); 418 if (ret) 419 return ret; 420 } 421 } 422 #endif 423 return 0; 424 } 425 426 static void release_task_stack(struct task_struct *tsk) 427 { 428 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 429 return; /* Better to leak the stack than to free prematurely */ 430 431 account_kernel_stack(tsk, -1); 432 free_thread_stack(tsk); 433 tsk->stack = NULL; 434 #ifdef CONFIG_VMAP_STACK 435 tsk->stack_vm_area = NULL; 436 #endif 437 } 438 439 #ifdef CONFIG_THREAD_INFO_IN_TASK 440 void put_task_stack(struct task_struct *tsk) 441 { 442 if (refcount_dec_and_test(&tsk->stack_refcount)) 443 release_task_stack(tsk); 444 } 445 #endif 446 447 void free_task(struct task_struct *tsk) 448 { 449 release_user_cpus_ptr(tsk); 450 scs_release(tsk); 451 452 #ifndef CONFIG_THREAD_INFO_IN_TASK 453 /* 454 * The task is finally done with both the stack and thread_info, 455 * so free both. 456 */ 457 release_task_stack(tsk); 458 #else 459 /* 460 * If the task had a separate stack allocation, it should be gone 461 * by now. 462 */ 463 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 464 #endif 465 rt_mutex_debug_task_free(tsk); 466 ftrace_graph_exit_task(tsk); 467 arch_release_task_struct(tsk); 468 if (tsk->flags & PF_KTHREAD) 469 free_kthread_struct(tsk); 470 free_task_struct(tsk); 471 } 472 EXPORT_SYMBOL(free_task); 473 474 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 475 { 476 struct file *exe_file; 477 478 exe_file = get_mm_exe_file(oldmm); 479 RCU_INIT_POINTER(mm->exe_file, exe_file); 480 /* 481 * We depend on the oldmm having properly denied write access to the 482 * exe_file already. 483 */ 484 if (exe_file && deny_write_access(exe_file)) 485 pr_warn_once("deny_write_access() failed in %s\n", __func__); 486 } 487 488 #ifdef CONFIG_MMU 489 static __latent_entropy int dup_mmap(struct mm_struct *mm, 490 struct mm_struct *oldmm) 491 { 492 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 493 struct rb_node **rb_link, *rb_parent; 494 int retval; 495 unsigned long charge; 496 LIST_HEAD(uf); 497 498 uprobe_start_dup_mmap(); 499 if (mmap_write_lock_killable(oldmm)) { 500 retval = -EINTR; 501 goto fail_uprobe_end; 502 } 503 flush_cache_dup_mm(oldmm); 504 uprobe_dup_mmap(oldmm, mm); 505 /* 506 * Not linked in yet - no deadlock potential: 507 */ 508 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 509 510 /* No ordering required: file already has been exposed. */ 511 dup_mm_exe_file(mm, oldmm); 512 513 mm->total_vm = oldmm->total_vm; 514 mm->data_vm = oldmm->data_vm; 515 mm->exec_vm = oldmm->exec_vm; 516 mm->stack_vm = oldmm->stack_vm; 517 518 rb_link = &mm->mm_rb.rb_node; 519 rb_parent = NULL; 520 pprev = &mm->mmap; 521 retval = ksm_fork(mm, oldmm); 522 if (retval) 523 goto out; 524 retval = khugepaged_fork(mm, oldmm); 525 if (retval) 526 goto out; 527 528 prev = NULL; 529 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 530 struct file *file; 531 532 if (mpnt->vm_flags & VM_DONTCOPY) { 533 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 534 continue; 535 } 536 charge = 0; 537 /* 538 * Don't duplicate many vmas if we've been oom-killed (for 539 * example) 540 */ 541 if (fatal_signal_pending(current)) { 542 retval = -EINTR; 543 goto out; 544 } 545 if (mpnt->vm_flags & VM_ACCOUNT) { 546 unsigned long len = vma_pages(mpnt); 547 548 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 549 goto fail_nomem; 550 charge = len; 551 } 552 tmp = vm_area_dup(mpnt); 553 if (!tmp) 554 goto fail_nomem; 555 retval = vma_dup_policy(mpnt, tmp); 556 if (retval) 557 goto fail_nomem_policy; 558 tmp->vm_mm = mm; 559 retval = dup_userfaultfd(tmp, &uf); 560 if (retval) 561 goto fail_nomem_anon_vma_fork; 562 if (tmp->vm_flags & VM_WIPEONFORK) { 563 /* 564 * VM_WIPEONFORK gets a clean slate in the child. 565 * Don't prepare anon_vma until fault since we don't 566 * copy page for current vma. 567 */ 568 tmp->anon_vma = NULL; 569 } else if (anon_vma_fork(tmp, mpnt)) 570 goto fail_nomem_anon_vma_fork; 571 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT); 572 file = tmp->vm_file; 573 if (file) { 574 struct address_space *mapping = file->f_mapping; 575 576 get_file(file); 577 i_mmap_lock_write(mapping); 578 if (tmp->vm_flags & VM_SHARED) 579 mapping_allow_writable(mapping); 580 flush_dcache_mmap_lock(mapping); 581 /* insert tmp into the share list, just after mpnt */ 582 vma_interval_tree_insert_after(tmp, mpnt, 583 &mapping->i_mmap); 584 flush_dcache_mmap_unlock(mapping); 585 i_mmap_unlock_write(mapping); 586 } 587 588 /* 589 * Clear hugetlb-related page reserves for children. This only 590 * affects MAP_PRIVATE mappings. Faults generated by the child 591 * are not guaranteed to succeed, even if read-only 592 */ 593 if (is_vm_hugetlb_page(tmp)) 594 reset_vma_resv_huge_pages(tmp); 595 596 /* 597 * Link in the new vma and copy the page table entries. 598 */ 599 *pprev = tmp; 600 pprev = &tmp->vm_next; 601 tmp->vm_prev = prev; 602 prev = tmp; 603 604 __vma_link_rb(mm, tmp, rb_link, rb_parent); 605 rb_link = &tmp->vm_rb.rb_right; 606 rb_parent = &tmp->vm_rb; 607 608 mm->map_count++; 609 if (!(tmp->vm_flags & VM_WIPEONFORK)) 610 retval = copy_page_range(tmp, mpnt); 611 612 if (tmp->vm_ops && tmp->vm_ops->open) 613 tmp->vm_ops->open(tmp); 614 615 if (retval) 616 goto out; 617 } 618 /* a new mm has just been created */ 619 retval = arch_dup_mmap(oldmm, mm); 620 out: 621 mmap_write_unlock(mm); 622 flush_tlb_mm(oldmm); 623 mmap_write_unlock(oldmm); 624 dup_userfaultfd_complete(&uf); 625 fail_uprobe_end: 626 uprobe_end_dup_mmap(); 627 return retval; 628 fail_nomem_anon_vma_fork: 629 mpol_put(vma_policy(tmp)); 630 fail_nomem_policy: 631 vm_area_free(tmp); 632 fail_nomem: 633 retval = -ENOMEM; 634 vm_unacct_memory(charge); 635 goto out; 636 } 637 638 static inline int mm_alloc_pgd(struct mm_struct *mm) 639 { 640 mm->pgd = pgd_alloc(mm); 641 if (unlikely(!mm->pgd)) 642 return -ENOMEM; 643 return 0; 644 } 645 646 static inline void mm_free_pgd(struct mm_struct *mm) 647 { 648 pgd_free(mm, mm->pgd); 649 } 650 #else 651 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 652 { 653 mmap_write_lock(oldmm); 654 dup_mm_exe_file(mm, oldmm); 655 mmap_write_unlock(oldmm); 656 return 0; 657 } 658 #define mm_alloc_pgd(mm) (0) 659 #define mm_free_pgd(mm) 660 #endif /* CONFIG_MMU */ 661 662 static void check_mm(struct mm_struct *mm) 663 { 664 int i; 665 666 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 667 "Please make sure 'struct resident_page_types[]' is updated as well"); 668 669 for (i = 0; i < NR_MM_COUNTERS; i++) { 670 long x = atomic_long_read(&mm->rss_stat.count[i]); 671 672 if (unlikely(x)) 673 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 674 mm, resident_page_types[i], x); 675 } 676 677 if (mm_pgtables_bytes(mm)) 678 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 679 mm_pgtables_bytes(mm)); 680 681 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 682 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 683 #endif 684 } 685 686 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 687 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 688 689 /* 690 * Called when the last reference to the mm 691 * is dropped: either by a lazy thread or by 692 * mmput. Free the page directory and the mm. 693 */ 694 void __mmdrop(struct mm_struct *mm) 695 { 696 BUG_ON(mm == &init_mm); 697 WARN_ON_ONCE(mm == current->mm); 698 WARN_ON_ONCE(mm == current->active_mm); 699 mm_free_pgd(mm); 700 destroy_context(mm); 701 mmu_notifier_subscriptions_destroy(mm); 702 check_mm(mm); 703 put_user_ns(mm->user_ns); 704 free_mm(mm); 705 } 706 EXPORT_SYMBOL_GPL(__mmdrop); 707 708 static void mmdrop_async_fn(struct work_struct *work) 709 { 710 struct mm_struct *mm; 711 712 mm = container_of(work, struct mm_struct, async_put_work); 713 __mmdrop(mm); 714 } 715 716 static void mmdrop_async(struct mm_struct *mm) 717 { 718 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 719 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 720 schedule_work(&mm->async_put_work); 721 } 722 } 723 724 static inline void free_signal_struct(struct signal_struct *sig) 725 { 726 taskstats_tgid_free(sig); 727 sched_autogroup_exit(sig); 728 /* 729 * __mmdrop is not safe to call from softirq context on x86 due to 730 * pgd_dtor so postpone it to the async context 731 */ 732 if (sig->oom_mm) 733 mmdrop_async(sig->oom_mm); 734 kmem_cache_free(signal_cachep, sig); 735 } 736 737 static inline void put_signal_struct(struct signal_struct *sig) 738 { 739 if (refcount_dec_and_test(&sig->sigcnt)) 740 free_signal_struct(sig); 741 } 742 743 void __put_task_struct(struct task_struct *tsk) 744 { 745 WARN_ON(!tsk->exit_state); 746 WARN_ON(refcount_read(&tsk->usage)); 747 WARN_ON(tsk == current); 748 749 io_uring_free(tsk); 750 cgroup_free(tsk); 751 task_numa_free(tsk, true); 752 security_task_free(tsk); 753 bpf_task_storage_free(tsk); 754 exit_creds(tsk); 755 delayacct_tsk_free(tsk); 756 put_signal_struct(tsk->signal); 757 sched_core_free(tsk); 758 759 if (!profile_handoff_task(tsk)) 760 free_task(tsk); 761 } 762 EXPORT_SYMBOL_GPL(__put_task_struct); 763 764 void __init __weak arch_task_cache_init(void) { } 765 766 /* 767 * set_max_threads 768 */ 769 static void set_max_threads(unsigned int max_threads_suggested) 770 { 771 u64 threads; 772 unsigned long nr_pages = totalram_pages(); 773 774 /* 775 * The number of threads shall be limited such that the thread 776 * structures may only consume a small part of the available memory. 777 */ 778 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 779 threads = MAX_THREADS; 780 else 781 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 782 (u64) THREAD_SIZE * 8UL); 783 784 if (threads > max_threads_suggested) 785 threads = max_threads_suggested; 786 787 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 788 } 789 790 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 791 /* Initialized by the architecture: */ 792 int arch_task_struct_size __read_mostly; 793 #endif 794 795 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 796 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 797 { 798 /* Fetch thread_struct whitelist for the architecture. */ 799 arch_thread_struct_whitelist(offset, size); 800 801 /* 802 * Handle zero-sized whitelist or empty thread_struct, otherwise 803 * adjust offset to position of thread_struct in task_struct. 804 */ 805 if (unlikely(*size == 0)) 806 *offset = 0; 807 else 808 *offset += offsetof(struct task_struct, thread); 809 } 810 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 811 812 void __init fork_init(void) 813 { 814 int i; 815 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 816 #ifndef ARCH_MIN_TASKALIGN 817 #define ARCH_MIN_TASKALIGN 0 818 #endif 819 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 820 unsigned long useroffset, usersize; 821 822 /* create a slab on which task_structs can be allocated */ 823 task_struct_whitelist(&useroffset, &usersize); 824 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 825 arch_task_struct_size, align, 826 SLAB_PANIC|SLAB_ACCOUNT, 827 useroffset, usersize, NULL); 828 #endif 829 830 /* do the arch specific task caches init */ 831 arch_task_cache_init(); 832 833 set_max_threads(MAX_THREADS); 834 835 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 836 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 837 init_task.signal->rlim[RLIMIT_SIGPENDING] = 838 init_task.signal->rlim[RLIMIT_NPROC]; 839 840 for (i = 0; i < MAX_PER_NAMESPACE_UCOUNTS; i++) 841 init_user_ns.ucount_max[i] = max_threads/2; 842 843 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 844 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 845 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 846 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 847 848 #ifdef CONFIG_VMAP_STACK 849 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 850 NULL, free_vm_stack_cache); 851 #endif 852 853 scs_init(); 854 855 lockdep_init_task(&init_task); 856 uprobes_init(); 857 } 858 859 int __weak arch_dup_task_struct(struct task_struct *dst, 860 struct task_struct *src) 861 { 862 *dst = *src; 863 return 0; 864 } 865 866 void set_task_stack_end_magic(struct task_struct *tsk) 867 { 868 unsigned long *stackend; 869 870 stackend = end_of_stack(tsk); 871 *stackend = STACK_END_MAGIC; /* for overflow detection */ 872 } 873 874 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 875 { 876 struct task_struct *tsk; 877 unsigned long *stack; 878 struct vm_struct *stack_vm_area __maybe_unused; 879 int err; 880 881 if (node == NUMA_NO_NODE) 882 node = tsk_fork_get_node(orig); 883 tsk = alloc_task_struct_node(node); 884 if (!tsk) 885 return NULL; 886 887 stack = alloc_thread_stack_node(tsk, node); 888 if (!stack) 889 goto free_tsk; 890 891 if (memcg_charge_kernel_stack(tsk)) 892 goto free_stack; 893 894 stack_vm_area = task_stack_vm_area(tsk); 895 896 err = arch_dup_task_struct(tsk, orig); 897 898 /* 899 * arch_dup_task_struct() clobbers the stack-related fields. Make 900 * sure they're properly initialized before using any stack-related 901 * functions again. 902 */ 903 tsk->stack = stack; 904 #ifdef CONFIG_VMAP_STACK 905 tsk->stack_vm_area = stack_vm_area; 906 #endif 907 #ifdef CONFIG_THREAD_INFO_IN_TASK 908 refcount_set(&tsk->stack_refcount, 1); 909 #endif 910 911 if (err) 912 goto free_stack; 913 914 err = scs_prepare(tsk, node); 915 if (err) 916 goto free_stack; 917 918 #ifdef CONFIG_SECCOMP 919 /* 920 * We must handle setting up seccomp filters once we're under 921 * the sighand lock in case orig has changed between now and 922 * then. Until then, filter must be NULL to avoid messing up 923 * the usage counts on the error path calling free_task. 924 */ 925 tsk->seccomp.filter = NULL; 926 #endif 927 928 setup_thread_stack(tsk, orig); 929 clear_user_return_notifier(tsk); 930 clear_tsk_need_resched(tsk); 931 set_task_stack_end_magic(tsk); 932 clear_syscall_work_syscall_user_dispatch(tsk); 933 934 #ifdef CONFIG_STACKPROTECTOR 935 tsk->stack_canary = get_random_canary(); 936 #endif 937 if (orig->cpus_ptr == &orig->cpus_mask) 938 tsk->cpus_ptr = &tsk->cpus_mask; 939 dup_user_cpus_ptr(tsk, orig, node); 940 941 /* 942 * One for the user space visible state that goes away when reaped. 943 * One for the scheduler. 944 */ 945 refcount_set(&tsk->rcu_users, 2); 946 /* One for the rcu users */ 947 refcount_set(&tsk->usage, 1); 948 #ifdef CONFIG_BLK_DEV_IO_TRACE 949 tsk->btrace_seq = 0; 950 #endif 951 tsk->splice_pipe = NULL; 952 tsk->task_frag.page = NULL; 953 tsk->wake_q.next = NULL; 954 tsk->pf_io_worker = NULL; 955 956 account_kernel_stack(tsk, 1); 957 958 kcov_task_init(tsk); 959 kmap_local_fork(tsk); 960 961 #ifdef CONFIG_FAULT_INJECTION 962 tsk->fail_nth = 0; 963 #endif 964 965 #ifdef CONFIG_BLK_CGROUP 966 tsk->throttle_queue = NULL; 967 tsk->use_memdelay = 0; 968 #endif 969 970 #ifdef CONFIG_MEMCG 971 tsk->active_memcg = NULL; 972 #endif 973 return tsk; 974 975 free_stack: 976 free_thread_stack(tsk); 977 free_tsk: 978 free_task_struct(tsk); 979 return NULL; 980 } 981 982 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 983 984 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 985 986 static int __init coredump_filter_setup(char *s) 987 { 988 default_dump_filter = 989 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 990 MMF_DUMP_FILTER_MASK; 991 return 1; 992 } 993 994 __setup("coredump_filter=", coredump_filter_setup); 995 996 #include <linux/init_task.h> 997 998 static void mm_init_aio(struct mm_struct *mm) 999 { 1000 #ifdef CONFIG_AIO 1001 spin_lock_init(&mm->ioctx_lock); 1002 mm->ioctx_table = NULL; 1003 #endif 1004 } 1005 1006 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1007 struct task_struct *p) 1008 { 1009 #ifdef CONFIG_MEMCG 1010 if (mm->owner == p) 1011 WRITE_ONCE(mm->owner, NULL); 1012 #endif 1013 } 1014 1015 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1016 { 1017 #ifdef CONFIG_MEMCG 1018 mm->owner = p; 1019 #endif 1020 } 1021 1022 static void mm_init_pasid(struct mm_struct *mm) 1023 { 1024 #ifdef CONFIG_IOMMU_SUPPORT 1025 mm->pasid = INIT_PASID; 1026 #endif 1027 } 1028 1029 static void mm_init_uprobes_state(struct mm_struct *mm) 1030 { 1031 #ifdef CONFIG_UPROBES 1032 mm->uprobes_state.xol_area = NULL; 1033 #endif 1034 } 1035 1036 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1037 struct user_namespace *user_ns) 1038 { 1039 mm->mmap = NULL; 1040 mm->mm_rb = RB_ROOT; 1041 mm->vmacache_seqnum = 0; 1042 atomic_set(&mm->mm_users, 1); 1043 atomic_set(&mm->mm_count, 1); 1044 seqcount_init(&mm->write_protect_seq); 1045 mmap_init_lock(mm); 1046 INIT_LIST_HEAD(&mm->mmlist); 1047 mm->core_state = NULL; 1048 mm_pgtables_bytes_init(mm); 1049 mm->map_count = 0; 1050 mm->locked_vm = 0; 1051 atomic64_set(&mm->pinned_vm, 0); 1052 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1053 spin_lock_init(&mm->page_table_lock); 1054 spin_lock_init(&mm->arg_lock); 1055 mm_init_cpumask(mm); 1056 mm_init_aio(mm); 1057 mm_init_owner(mm, p); 1058 mm_init_pasid(mm); 1059 RCU_INIT_POINTER(mm->exe_file, NULL); 1060 mmu_notifier_subscriptions_init(mm); 1061 init_tlb_flush_pending(mm); 1062 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1063 mm->pmd_huge_pte = NULL; 1064 #endif 1065 mm_init_uprobes_state(mm); 1066 hugetlb_count_init(mm); 1067 1068 if (current->mm) { 1069 mm->flags = current->mm->flags & MMF_INIT_MASK; 1070 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1071 } else { 1072 mm->flags = default_dump_filter; 1073 mm->def_flags = 0; 1074 } 1075 1076 if (mm_alloc_pgd(mm)) 1077 goto fail_nopgd; 1078 1079 if (init_new_context(p, mm)) 1080 goto fail_nocontext; 1081 1082 mm->user_ns = get_user_ns(user_ns); 1083 return mm; 1084 1085 fail_nocontext: 1086 mm_free_pgd(mm); 1087 fail_nopgd: 1088 free_mm(mm); 1089 return NULL; 1090 } 1091 1092 /* 1093 * Allocate and initialize an mm_struct. 1094 */ 1095 struct mm_struct *mm_alloc(void) 1096 { 1097 struct mm_struct *mm; 1098 1099 mm = allocate_mm(); 1100 if (!mm) 1101 return NULL; 1102 1103 memset(mm, 0, sizeof(*mm)); 1104 return mm_init(mm, current, current_user_ns()); 1105 } 1106 1107 static inline void __mmput(struct mm_struct *mm) 1108 { 1109 VM_BUG_ON(atomic_read(&mm->mm_users)); 1110 1111 uprobe_clear_state(mm); 1112 exit_aio(mm); 1113 ksm_exit(mm); 1114 khugepaged_exit(mm); /* must run before exit_mmap */ 1115 exit_mmap(mm); 1116 mm_put_huge_zero_page(mm); 1117 set_mm_exe_file(mm, NULL); 1118 if (!list_empty(&mm->mmlist)) { 1119 spin_lock(&mmlist_lock); 1120 list_del(&mm->mmlist); 1121 spin_unlock(&mmlist_lock); 1122 } 1123 if (mm->binfmt) 1124 module_put(mm->binfmt->module); 1125 mmdrop(mm); 1126 } 1127 1128 /* 1129 * Decrement the use count and release all resources for an mm. 1130 */ 1131 void mmput(struct mm_struct *mm) 1132 { 1133 might_sleep(); 1134 1135 if (atomic_dec_and_test(&mm->mm_users)) 1136 __mmput(mm); 1137 } 1138 EXPORT_SYMBOL_GPL(mmput); 1139 1140 #ifdef CONFIG_MMU 1141 static void mmput_async_fn(struct work_struct *work) 1142 { 1143 struct mm_struct *mm = container_of(work, struct mm_struct, 1144 async_put_work); 1145 1146 __mmput(mm); 1147 } 1148 1149 void mmput_async(struct mm_struct *mm) 1150 { 1151 if (atomic_dec_and_test(&mm->mm_users)) { 1152 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1153 schedule_work(&mm->async_put_work); 1154 } 1155 } 1156 #endif 1157 1158 /** 1159 * set_mm_exe_file - change a reference to the mm's executable file 1160 * 1161 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1162 * 1163 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1164 * invocations: in mmput() nobody alive left, in execve task is single 1165 * threaded. 1166 * 1167 * Can only fail if new_exe_file != NULL. 1168 */ 1169 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1170 { 1171 struct file *old_exe_file; 1172 1173 /* 1174 * It is safe to dereference the exe_file without RCU as 1175 * this function is only called if nobody else can access 1176 * this mm -- see comment above for justification. 1177 */ 1178 old_exe_file = rcu_dereference_raw(mm->exe_file); 1179 1180 if (new_exe_file) { 1181 /* 1182 * We expect the caller (i.e., sys_execve) to already denied 1183 * write access, so this is unlikely to fail. 1184 */ 1185 if (unlikely(deny_write_access(new_exe_file))) 1186 return -EACCES; 1187 get_file(new_exe_file); 1188 } 1189 rcu_assign_pointer(mm->exe_file, new_exe_file); 1190 if (old_exe_file) { 1191 allow_write_access(old_exe_file); 1192 fput(old_exe_file); 1193 } 1194 return 0; 1195 } 1196 1197 /** 1198 * replace_mm_exe_file - replace a reference to the mm's executable file 1199 * 1200 * This changes mm's executable file (shown as symlink /proc/[pid]/exe), 1201 * dealing with concurrent invocation and without grabbing the mmap lock in 1202 * write mode. 1203 * 1204 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1205 */ 1206 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1207 { 1208 struct vm_area_struct *vma; 1209 struct file *old_exe_file; 1210 int ret = 0; 1211 1212 /* Forbid mm->exe_file change if old file still mapped. */ 1213 old_exe_file = get_mm_exe_file(mm); 1214 if (old_exe_file) { 1215 mmap_read_lock(mm); 1216 for (vma = mm->mmap; vma && !ret; vma = vma->vm_next) { 1217 if (!vma->vm_file) 1218 continue; 1219 if (path_equal(&vma->vm_file->f_path, 1220 &old_exe_file->f_path)) 1221 ret = -EBUSY; 1222 } 1223 mmap_read_unlock(mm); 1224 fput(old_exe_file); 1225 if (ret) 1226 return ret; 1227 } 1228 1229 /* set the new file, lockless */ 1230 ret = deny_write_access(new_exe_file); 1231 if (ret) 1232 return -EACCES; 1233 get_file(new_exe_file); 1234 1235 old_exe_file = xchg(&mm->exe_file, new_exe_file); 1236 if (old_exe_file) { 1237 /* 1238 * Don't race with dup_mmap() getting the file and disallowing 1239 * write access while someone might open the file writable. 1240 */ 1241 mmap_read_lock(mm); 1242 allow_write_access(old_exe_file); 1243 fput(old_exe_file); 1244 mmap_read_unlock(mm); 1245 } 1246 return 0; 1247 } 1248 1249 /** 1250 * get_mm_exe_file - acquire a reference to the mm's executable file 1251 * 1252 * Returns %NULL if mm has no associated executable file. 1253 * User must release file via fput(). 1254 */ 1255 struct file *get_mm_exe_file(struct mm_struct *mm) 1256 { 1257 struct file *exe_file; 1258 1259 rcu_read_lock(); 1260 exe_file = rcu_dereference(mm->exe_file); 1261 if (exe_file && !get_file_rcu(exe_file)) 1262 exe_file = NULL; 1263 rcu_read_unlock(); 1264 return exe_file; 1265 } 1266 1267 /** 1268 * get_task_exe_file - acquire a reference to the task's executable file 1269 * 1270 * Returns %NULL if task's mm (if any) has no associated executable file or 1271 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1272 * User must release file via fput(). 1273 */ 1274 struct file *get_task_exe_file(struct task_struct *task) 1275 { 1276 struct file *exe_file = NULL; 1277 struct mm_struct *mm; 1278 1279 task_lock(task); 1280 mm = task->mm; 1281 if (mm) { 1282 if (!(task->flags & PF_KTHREAD)) 1283 exe_file = get_mm_exe_file(mm); 1284 } 1285 task_unlock(task); 1286 return exe_file; 1287 } 1288 1289 /** 1290 * get_task_mm - acquire a reference to the task's mm 1291 * 1292 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1293 * this kernel workthread has transiently adopted a user mm with use_mm, 1294 * to do its AIO) is not set and if so returns a reference to it, after 1295 * bumping up the use count. User must release the mm via mmput() 1296 * after use. Typically used by /proc and ptrace. 1297 */ 1298 struct mm_struct *get_task_mm(struct task_struct *task) 1299 { 1300 struct mm_struct *mm; 1301 1302 task_lock(task); 1303 mm = task->mm; 1304 if (mm) { 1305 if (task->flags & PF_KTHREAD) 1306 mm = NULL; 1307 else 1308 mmget(mm); 1309 } 1310 task_unlock(task); 1311 return mm; 1312 } 1313 EXPORT_SYMBOL_GPL(get_task_mm); 1314 1315 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1316 { 1317 struct mm_struct *mm; 1318 int err; 1319 1320 err = down_read_killable(&task->signal->exec_update_lock); 1321 if (err) 1322 return ERR_PTR(err); 1323 1324 mm = get_task_mm(task); 1325 if (mm && mm != current->mm && 1326 !ptrace_may_access(task, mode)) { 1327 mmput(mm); 1328 mm = ERR_PTR(-EACCES); 1329 } 1330 up_read(&task->signal->exec_update_lock); 1331 1332 return mm; 1333 } 1334 1335 static void complete_vfork_done(struct task_struct *tsk) 1336 { 1337 struct completion *vfork; 1338 1339 task_lock(tsk); 1340 vfork = tsk->vfork_done; 1341 if (likely(vfork)) { 1342 tsk->vfork_done = NULL; 1343 complete(vfork); 1344 } 1345 task_unlock(tsk); 1346 } 1347 1348 static int wait_for_vfork_done(struct task_struct *child, 1349 struct completion *vfork) 1350 { 1351 int killed; 1352 1353 freezer_do_not_count(); 1354 cgroup_enter_frozen(); 1355 killed = wait_for_completion_killable(vfork); 1356 cgroup_leave_frozen(false); 1357 freezer_count(); 1358 1359 if (killed) { 1360 task_lock(child); 1361 child->vfork_done = NULL; 1362 task_unlock(child); 1363 } 1364 1365 put_task_struct(child); 1366 return killed; 1367 } 1368 1369 /* Please note the differences between mmput and mm_release. 1370 * mmput is called whenever we stop holding onto a mm_struct, 1371 * error success whatever. 1372 * 1373 * mm_release is called after a mm_struct has been removed 1374 * from the current process. 1375 * 1376 * This difference is important for error handling, when we 1377 * only half set up a mm_struct for a new process and need to restore 1378 * the old one. Because we mmput the new mm_struct before 1379 * restoring the old one. . . 1380 * Eric Biederman 10 January 1998 1381 */ 1382 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1383 { 1384 uprobe_free_utask(tsk); 1385 1386 /* Get rid of any cached register state */ 1387 deactivate_mm(tsk, mm); 1388 1389 /* 1390 * Signal userspace if we're not exiting with a core dump 1391 * because we want to leave the value intact for debugging 1392 * purposes. 1393 */ 1394 if (tsk->clear_child_tid) { 1395 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) && 1396 atomic_read(&mm->mm_users) > 1) { 1397 /* 1398 * We don't check the error code - if userspace has 1399 * not set up a proper pointer then tough luck. 1400 */ 1401 put_user(0, tsk->clear_child_tid); 1402 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1403 1, NULL, NULL, 0, 0); 1404 } 1405 tsk->clear_child_tid = NULL; 1406 } 1407 1408 /* 1409 * All done, finally we can wake up parent and return this mm to him. 1410 * Also kthread_stop() uses this completion for synchronization. 1411 */ 1412 if (tsk->vfork_done) 1413 complete_vfork_done(tsk); 1414 } 1415 1416 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1417 { 1418 futex_exit_release(tsk); 1419 mm_release(tsk, mm); 1420 } 1421 1422 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1423 { 1424 futex_exec_release(tsk); 1425 mm_release(tsk, mm); 1426 } 1427 1428 /** 1429 * dup_mm() - duplicates an existing mm structure 1430 * @tsk: the task_struct with which the new mm will be associated. 1431 * @oldmm: the mm to duplicate. 1432 * 1433 * Allocates a new mm structure and duplicates the provided @oldmm structure 1434 * content into it. 1435 * 1436 * Return: the duplicated mm or NULL on failure. 1437 */ 1438 static struct mm_struct *dup_mm(struct task_struct *tsk, 1439 struct mm_struct *oldmm) 1440 { 1441 struct mm_struct *mm; 1442 int err; 1443 1444 mm = allocate_mm(); 1445 if (!mm) 1446 goto fail_nomem; 1447 1448 memcpy(mm, oldmm, sizeof(*mm)); 1449 1450 if (!mm_init(mm, tsk, mm->user_ns)) 1451 goto fail_nomem; 1452 1453 err = dup_mmap(mm, oldmm); 1454 if (err) 1455 goto free_pt; 1456 1457 mm->hiwater_rss = get_mm_rss(mm); 1458 mm->hiwater_vm = mm->total_vm; 1459 1460 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1461 goto free_pt; 1462 1463 return mm; 1464 1465 free_pt: 1466 /* don't put binfmt in mmput, we haven't got module yet */ 1467 mm->binfmt = NULL; 1468 mm_init_owner(mm, NULL); 1469 mmput(mm); 1470 1471 fail_nomem: 1472 return NULL; 1473 } 1474 1475 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1476 { 1477 struct mm_struct *mm, *oldmm; 1478 1479 tsk->min_flt = tsk->maj_flt = 0; 1480 tsk->nvcsw = tsk->nivcsw = 0; 1481 #ifdef CONFIG_DETECT_HUNG_TASK 1482 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1483 tsk->last_switch_time = 0; 1484 #endif 1485 1486 tsk->mm = NULL; 1487 tsk->active_mm = NULL; 1488 1489 /* 1490 * Are we cloning a kernel thread? 1491 * 1492 * We need to steal a active VM for that.. 1493 */ 1494 oldmm = current->mm; 1495 if (!oldmm) 1496 return 0; 1497 1498 /* initialize the new vmacache entries */ 1499 vmacache_flush(tsk); 1500 1501 if (clone_flags & CLONE_VM) { 1502 mmget(oldmm); 1503 mm = oldmm; 1504 } else { 1505 mm = dup_mm(tsk, current->mm); 1506 if (!mm) 1507 return -ENOMEM; 1508 } 1509 1510 tsk->mm = mm; 1511 tsk->active_mm = mm; 1512 return 0; 1513 } 1514 1515 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1516 { 1517 struct fs_struct *fs = current->fs; 1518 if (clone_flags & CLONE_FS) { 1519 /* tsk->fs is already what we want */ 1520 spin_lock(&fs->lock); 1521 if (fs->in_exec) { 1522 spin_unlock(&fs->lock); 1523 return -EAGAIN; 1524 } 1525 fs->users++; 1526 spin_unlock(&fs->lock); 1527 return 0; 1528 } 1529 tsk->fs = copy_fs_struct(fs); 1530 if (!tsk->fs) 1531 return -ENOMEM; 1532 return 0; 1533 } 1534 1535 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1536 { 1537 struct files_struct *oldf, *newf; 1538 int error = 0; 1539 1540 /* 1541 * A background process may not have any files ... 1542 */ 1543 oldf = current->files; 1544 if (!oldf) 1545 goto out; 1546 1547 if (clone_flags & CLONE_FILES) { 1548 atomic_inc(&oldf->count); 1549 goto out; 1550 } 1551 1552 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1553 if (!newf) 1554 goto out; 1555 1556 tsk->files = newf; 1557 error = 0; 1558 out: 1559 return error; 1560 } 1561 1562 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 1563 { 1564 #ifdef CONFIG_BLOCK 1565 struct io_context *ioc = current->io_context; 1566 struct io_context *new_ioc; 1567 1568 if (!ioc) 1569 return 0; 1570 /* 1571 * Share io context with parent, if CLONE_IO is set 1572 */ 1573 if (clone_flags & CLONE_IO) { 1574 ioc_task_link(ioc); 1575 tsk->io_context = ioc; 1576 } else if (ioprio_valid(ioc->ioprio)) { 1577 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); 1578 if (unlikely(!new_ioc)) 1579 return -ENOMEM; 1580 1581 new_ioc->ioprio = ioc->ioprio; 1582 put_io_context(new_ioc); 1583 } 1584 #endif 1585 return 0; 1586 } 1587 1588 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1589 { 1590 struct sighand_struct *sig; 1591 1592 if (clone_flags & CLONE_SIGHAND) { 1593 refcount_inc(¤t->sighand->count); 1594 return 0; 1595 } 1596 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1597 RCU_INIT_POINTER(tsk->sighand, sig); 1598 if (!sig) 1599 return -ENOMEM; 1600 1601 refcount_set(&sig->count, 1); 1602 spin_lock_irq(¤t->sighand->siglock); 1603 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1604 spin_unlock_irq(¤t->sighand->siglock); 1605 1606 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1607 if (clone_flags & CLONE_CLEAR_SIGHAND) 1608 flush_signal_handlers(tsk, 0); 1609 1610 return 0; 1611 } 1612 1613 void __cleanup_sighand(struct sighand_struct *sighand) 1614 { 1615 if (refcount_dec_and_test(&sighand->count)) { 1616 signalfd_cleanup(sighand); 1617 /* 1618 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1619 * without an RCU grace period, see __lock_task_sighand(). 1620 */ 1621 kmem_cache_free(sighand_cachep, sighand); 1622 } 1623 } 1624 1625 /* 1626 * Initialize POSIX timer handling for a thread group. 1627 */ 1628 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1629 { 1630 struct posix_cputimers *pct = &sig->posix_cputimers; 1631 unsigned long cpu_limit; 1632 1633 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1634 posix_cputimers_group_init(pct, cpu_limit); 1635 } 1636 1637 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1638 { 1639 struct signal_struct *sig; 1640 1641 if (clone_flags & CLONE_THREAD) 1642 return 0; 1643 1644 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1645 tsk->signal = sig; 1646 if (!sig) 1647 return -ENOMEM; 1648 1649 sig->nr_threads = 1; 1650 atomic_set(&sig->live, 1); 1651 refcount_set(&sig->sigcnt, 1); 1652 1653 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1654 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1655 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1656 1657 init_waitqueue_head(&sig->wait_chldexit); 1658 sig->curr_target = tsk; 1659 init_sigpending(&sig->shared_pending); 1660 INIT_HLIST_HEAD(&sig->multiprocess); 1661 seqlock_init(&sig->stats_lock); 1662 prev_cputime_init(&sig->prev_cputime); 1663 1664 #ifdef CONFIG_POSIX_TIMERS 1665 INIT_LIST_HEAD(&sig->posix_timers); 1666 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1667 sig->real_timer.function = it_real_fn; 1668 #endif 1669 1670 task_lock(current->group_leader); 1671 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1672 task_unlock(current->group_leader); 1673 1674 posix_cpu_timers_init_group(sig); 1675 1676 tty_audit_fork(sig); 1677 sched_autogroup_fork(sig); 1678 1679 sig->oom_score_adj = current->signal->oom_score_adj; 1680 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1681 1682 mutex_init(&sig->cred_guard_mutex); 1683 init_rwsem(&sig->exec_update_lock); 1684 1685 return 0; 1686 } 1687 1688 static void copy_seccomp(struct task_struct *p) 1689 { 1690 #ifdef CONFIG_SECCOMP 1691 /* 1692 * Must be called with sighand->lock held, which is common to 1693 * all threads in the group. Holding cred_guard_mutex is not 1694 * needed because this new task is not yet running and cannot 1695 * be racing exec. 1696 */ 1697 assert_spin_locked(¤t->sighand->siglock); 1698 1699 /* Ref-count the new filter user, and assign it. */ 1700 get_seccomp_filter(current); 1701 p->seccomp = current->seccomp; 1702 1703 /* 1704 * Explicitly enable no_new_privs here in case it got set 1705 * between the task_struct being duplicated and holding the 1706 * sighand lock. The seccomp state and nnp must be in sync. 1707 */ 1708 if (task_no_new_privs(current)) 1709 task_set_no_new_privs(p); 1710 1711 /* 1712 * If the parent gained a seccomp mode after copying thread 1713 * flags and between before we held the sighand lock, we have 1714 * to manually enable the seccomp thread flag here. 1715 */ 1716 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1717 set_task_syscall_work(p, SECCOMP); 1718 #endif 1719 } 1720 1721 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1722 { 1723 current->clear_child_tid = tidptr; 1724 1725 return task_pid_vnr(current); 1726 } 1727 1728 static void rt_mutex_init_task(struct task_struct *p) 1729 { 1730 raw_spin_lock_init(&p->pi_lock); 1731 #ifdef CONFIG_RT_MUTEXES 1732 p->pi_waiters = RB_ROOT_CACHED; 1733 p->pi_top_task = NULL; 1734 p->pi_blocked_on = NULL; 1735 #endif 1736 } 1737 1738 static inline void init_task_pid_links(struct task_struct *task) 1739 { 1740 enum pid_type type; 1741 1742 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1743 INIT_HLIST_NODE(&task->pid_links[type]); 1744 } 1745 1746 static inline void 1747 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1748 { 1749 if (type == PIDTYPE_PID) 1750 task->thread_pid = pid; 1751 else 1752 task->signal->pids[type] = pid; 1753 } 1754 1755 static inline void rcu_copy_process(struct task_struct *p) 1756 { 1757 #ifdef CONFIG_PREEMPT_RCU 1758 p->rcu_read_lock_nesting = 0; 1759 p->rcu_read_unlock_special.s = 0; 1760 p->rcu_blocked_node = NULL; 1761 INIT_LIST_HEAD(&p->rcu_node_entry); 1762 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1763 #ifdef CONFIG_TASKS_RCU 1764 p->rcu_tasks_holdout = false; 1765 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1766 p->rcu_tasks_idle_cpu = -1; 1767 #endif /* #ifdef CONFIG_TASKS_RCU */ 1768 #ifdef CONFIG_TASKS_TRACE_RCU 1769 p->trc_reader_nesting = 0; 1770 p->trc_reader_special.s = 0; 1771 INIT_LIST_HEAD(&p->trc_holdout_list); 1772 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1773 } 1774 1775 struct pid *pidfd_pid(const struct file *file) 1776 { 1777 if (file->f_op == &pidfd_fops) 1778 return file->private_data; 1779 1780 return ERR_PTR(-EBADF); 1781 } 1782 1783 static int pidfd_release(struct inode *inode, struct file *file) 1784 { 1785 struct pid *pid = file->private_data; 1786 1787 file->private_data = NULL; 1788 put_pid(pid); 1789 return 0; 1790 } 1791 1792 #ifdef CONFIG_PROC_FS 1793 /** 1794 * pidfd_show_fdinfo - print information about a pidfd 1795 * @m: proc fdinfo file 1796 * @f: file referencing a pidfd 1797 * 1798 * Pid: 1799 * This function will print the pid that a given pidfd refers to in the 1800 * pid namespace of the procfs instance. 1801 * If the pid namespace of the process is not a descendant of the pid 1802 * namespace of the procfs instance 0 will be shown as its pid. This is 1803 * similar to calling getppid() on a process whose parent is outside of 1804 * its pid namespace. 1805 * 1806 * NSpid: 1807 * If pid namespaces are supported then this function will also print 1808 * the pid of a given pidfd refers to for all descendant pid namespaces 1809 * starting from the current pid namespace of the instance, i.e. the 1810 * Pid field and the first entry in the NSpid field will be identical. 1811 * If the pid namespace of the process is not a descendant of the pid 1812 * namespace of the procfs instance 0 will be shown as its first NSpid 1813 * entry and no others will be shown. 1814 * Note that this differs from the Pid and NSpid fields in 1815 * /proc/<pid>/status where Pid and NSpid are always shown relative to 1816 * the pid namespace of the procfs instance. The difference becomes 1817 * obvious when sending around a pidfd between pid namespaces from a 1818 * different branch of the tree, i.e. where no ancestral relation is 1819 * present between the pid namespaces: 1820 * - create two new pid namespaces ns1 and ns2 in the initial pid 1821 * namespace (also take care to create new mount namespaces in the 1822 * new pid namespace and mount procfs) 1823 * - create a process with a pidfd in ns1 1824 * - send pidfd from ns1 to ns2 1825 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 1826 * have exactly one entry, which is 0 1827 */ 1828 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 1829 { 1830 struct pid *pid = f->private_data; 1831 struct pid_namespace *ns; 1832 pid_t nr = -1; 1833 1834 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 1835 ns = proc_pid_ns(file_inode(m->file)->i_sb); 1836 nr = pid_nr_ns(pid, ns); 1837 } 1838 1839 seq_put_decimal_ll(m, "Pid:\t", nr); 1840 1841 #ifdef CONFIG_PID_NS 1842 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 1843 if (nr > 0) { 1844 int i; 1845 1846 /* If nr is non-zero it means that 'pid' is valid and that 1847 * ns, i.e. the pid namespace associated with the procfs 1848 * instance, is in the pid namespace hierarchy of pid. 1849 * Start at one below the already printed level. 1850 */ 1851 for (i = ns->level + 1; i <= pid->level; i++) 1852 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 1853 } 1854 #endif 1855 seq_putc(m, '\n'); 1856 } 1857 #endif 1858 1859 /* 1860 * Poll support for process exit notification. 1861 */ 1862 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 1863 { 1864 struct pid *pid = file->private_data; 1865 __poll_t poll_flags = 0; 1866 1867 poll_wait(file, &pid->wait_pidfd, pts); 1868 1869 /* 1870 * Inform pollers only when the whole thread group exits. 1871 * If the thread group leader exits before all other threads in the 1872 * group, then poll(2) should block, similar to the wait(2) family. 1873 */ 1874 if (thread_group_exited(pid)) 1875 poll_flags = EPOLLIN | EPOLLRDNORM; 1876 1877 return poll_flags; 1878 } 1879 1880 const struct file_operations pidfd_fops = { 1881 .release = pidfd_release, 1882 .poll = pidfd_poll, 1883 #ifdef CONFIG_PROC_FS 1884 .show_fdinfo = pidfd_show_fdinfo, 1885 #endif 1886 }; 1887 1888 static void __delayed_free_task(struct rcu_head *rhp) 1889 { 1890 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1891 1892 free_task(tsk); 1893 } 1894 1895 static __always_inline void delayed_free_task(struct task_struct *tsk) 1896 { 1897 if (IS_ENABLED(CONFIG_MEMCG)) 1898 call_rcu(&tsk->rcu, __delayed_free_task); 1899 else 1900 free_task(tsk); 1901 } 1902 1903 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 1904 { 1905 /* Skip if kernel thread */ 1906 if (!tsk->mm) 1907 return; 1908 1909 /* Skip if spawning a thread or using vfork */ 1910 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 1911 return; 1912 1913 /* We need to synchronize with __set_oom_adj */ 1914 mutex_lock(&oom_adj_mutex); 1915 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 1916 /* Update the values in case they were changed after copy_signal */ 1917 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 1918 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 1919 mutex_unlock(&oom_adj_mutex); 1920 } 1921 1922 /* 1923 * This creates a new process as a copy of the old one, 1924 * but does not actually start it yet. 1925 * 1926 * It copies the registers, and all the appropriate 1927 * parts of the process environment (as per the clone 1928 * flags). The actual kick-off is left to the caller. 1929 */ 1930 static __latent_entropy struct task_struct *copy_process( 1931 struct pid *pid, 1932 int trace, 1933 int node, 1934 struct kernel_clone_args *args) 1935 { 1936 int pidfd = -1, retval; 1937 struct task_struct *p; 1938 struct multiprocess_signals delayed; 1939 struct file *pidfile = NULL; 1940 u64 clone_flags = args->flags; 1941 struct nsproxy *nsp = current->nsproxy; 1942 1943 /* 1944 * Don't allow sharing the root directory with processes in a different 1945 * namespace 1946 */ 1947 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1948 return ERR_PTR(-EINVAL); 1949 1950 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1951 return ERR_PTR(-EINVAL); 1952 1953 /* 1954 * Thread groups must share signals as well, and detached threads 1955 * can only be started up within the thread group. 1956 */ 1957 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1958 return ERR_PTR(-EINVAL); 1959 1960 /* 1961 * Shared signal handlers imply shared VM. By way of the above, 1962 * thread groups also imply shared VM. Blocking this case allows 1963 * for various simplifications in other code. 1964 */ 1965 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1966 return ERR_PTR(-EINVAL); 1967 1968 /* 1969 * Siblings of global init remain as zombies on exit since they are 1970 * not reaped by their parent (swapper). To solve this and to avoid 1971 * multi-rooted process trees, prevent global and container-inits 1972 * from creating siblings. 1973 */ 1974 if ((clone_flags & CLONE_PARENT) && 1975 current->signal->flags & SIGNAL_UNKILLABLE) 1976 return ERR_PTR(-EINVAL); 1977 1978 /* 1979 * If the new process will be in a different pid or user namespace 1980 * do not allow it to share a thread group with the forking task. 1981 */ 1982 if (clone_flags & CLONE_THREAD) { 1983 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 1984 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 1985 return ERR_PTR(-EINVAL); 1986 } 1987 1988 /* 1989 * If the new process will be in a different time namespace 1990 * do not allow it to share VM or a thread group with the forking task. 1991 */ 1992 if (clone_flags & (CLONE_THREAD | CLONE_VM)) { 1993 if (nsp->time_ns != nsp->time_ns_for_children) 1994 return ERR_PTR(-EINVAL); 1995 } 1996 1997 if (clone_flags & CLONE_PIDFD) { 1998 /* 1999 * - CLONE_DETACHED is blocked so that we can potentially 2000 * reuse it later for CLONE_PIDFD. 2001 * - CLONE_THREAD is blocked until someone really needs it. 2002 */ 2003 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 2004 return ERR_PTR(-EINVAL); 2005 } 2006 2007 /* 2008 * Force any signals received before this point to be delivered 2009 * before the fork happens. Collect up signals sent to multiple 2010 * processes that happen during the fork and delay them so that 2011 * they appear to happen after the fork. 2012 */ 2013 sigemptyset(&delayed.signal); 2014 INIT_HLIST_NODE(&delayed.node); 2015 2016 spin_lock_irq(¤t->sighand->siglock); 2017 if (!(clone_flags & CLONE_THREAD)) 2018 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2019 recalc_sigpending(); 2020 spin_unlock_irq(¤t->sighand->siglock); 2021 retval = -ERESTARTNOINTR; 2022 if (task_sigpending(current)) 2023 goto fork_out; 2024 2025 retval = -ENOMEM; 2026 p = dup_task_struct(current, node); 2027 if (!p) 2028 goto fork_out; 2029 if (args->io_thread) { 2030 /* 2031 * Mark us an IO worker, and block any signal that isn't 2032 * fatal or STOP 2033 */ 2034 p->flags |= PF_IO_WORKER; 2035 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2036 } 2037 2038 /* 2039 * This _must_ happen before we call free_task(), i.e. before we jump 2040 * to any of the bad_fork_* labels. This is to avoid freeing 2041 * p->set_child_tid which is (ab)used as a kthread's data pointer for 2042 * kernel threads (PF_KTHREAD). 2043 */ 2044 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2045 /* 2046 * Clear TID on mm_release()? 2047 */ 2048 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2049 2050 ftrace_graph_init_task(p); 2051 2052 rt_mutex_init_task(p); 2053 2054 lockdep_assert_irqs_enabled(); 2055 #ifdef CONFIG_PROVE_LOCKING 2056 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2057 #endif 2058 retval = -EAGAIN; 2059 if (is_ucounts_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2060 if (p->real_cred->user != INIT_USER && 2061 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2062 goto bad_fork_free; 2063 } 2064 current->flags &= ~PF_NPROC_EXCEEDED; 2065 2066 retval = copy_creds(p, clone_flags); 2067 if (retval < 0) 2068 goto bad_fork_free; 2069 2070 /* 2071 * If multiple threads are within copy_process(), then this check 2072 * triggers too late. This doesn't hurt, the check is only there 2073 * to stop root fork bombs. 2074 */ 2075 retval = -EAGAIN; 2076 if (data_race(nr_threads >= max_threads)) 2077 goto bad_fork_cleanup_count; 2078 2079 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2080 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2081 p->flags |= PF_FORKNOEXEC; 2082 INIT_LIST_HEAD(&p->children); 2083 INIT_LIST_HEAD(&p->sibling); 2084 rcu_copy_process(p); 2085 p->vfork_done = NULL; 2086 spin_lock_init(&p->alloc_lock); 2087 2088 init_sigpending(&p->pending); 2089 2090 p->utime = p->stime = p->gtime = 0; 2091 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2092 p->utimescaled = p->stimescaled = 0; 2093 #endif 2094 prev_cputime_init(&p->prev_cputime); 2095 2096 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2097 seqcount_init(&p->vtime.seqcount); 2098 p->vtime.starttime = 0; 2099 p->vtime.state = VTIME_INACTIVE; 2100 #endif 2101 2102 #ifdef CONFIG_IO_URING 2103 p->io_uring = NULL; 2104 #endif 2105 2106 #if defined(SPLIT_RSS_COUNTING) 2107 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 2108 #endif 2109 2110 p->default_timer_slack_ns = current->timer_slack_ns; 2111 2112 #ifdef CONFIG_PSI 2113 p->psi_flags = 0; 2114 #endif 2115 2116 task_io_accounting_init(&p->ioac); 2117 acct_clear_integrals(p); 2118 2119 posix_cputimers_init(&p->posix_cputimers); 2120 2121 p->io_context = NULL; 2122 audit_set_context(p, NULL); 2123 cgroup_fork(p); 2124 #ifdef CONFIG_NUMA 2125 p->mempolicy = mpol_dup(p->mempolicy); 2126 if (IS_ERR(p->mempolicy)) { 2127 retval = PTR_ERR(p->mempolicy); 2128 p->mempolicy = NULL; 2129 goto bad_fork_cleanup_threadgroup_lock; 2130 } 2131 #endif 2132 #ifdef CONFIG_CPUSETS 2133 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2134 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2135 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2136 #endif 2137 #ifdef CONFIG_TRACE_IRQFLAGS 2138 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2139 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2140 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2141 p->softirqs_enabled = 1; 2142 p->softirq_context = 0; 2143 #endif 2144 2145 p->pagefault_disabled = 0; 2146 2147 #ifdef CONFIG_LOCKDEP 2148 lockdep_init_task(p); 2149 #endif 2150 2151 #ifdef CONFIG_DEBUG_MUTEXES 2152 p->blocked_on = NULL; /* not blocked yet */ 2153 #endif 2154 #ifdef CONFIG_BCACHE 2155 p->sequential_io = 0; 2156 p->sequential_io_avg = 0; 2157 #endif 2158 #ifdef CONFIG_BPF_SYSCALL 2159 RCU_INIT_POINTER(p->bpf_storage, NULL); 2160 p->bpf_ctx = NULL; 2161 #endif 2162 2163 /* Perform scheduler related setup. Assign this task to a CPU. */ 2164 retval = sched_fork(clone_flags, p); 2165 if (retval) 2166 goto bad_fork_cleanup_policy; 2167 2168 retval = perf_event_init_task(p, clone_flags); 2169 if (retval) 2170 goto bad_fork_cleanup_policy; 2171 retval = audit_alloc(p); 2172 if (retval) 2173 goto bad_fork_cleanup_perf; 2174 /* copy all the process information */ 2175 shm_init_task(p); 2176 retval = security_task_alloc(p, clone_flags); 2177 if (retval) 2178 goto bad_fork_cleanup_audit; 2179 retval = copy_semundo(clone_flags, p); 2180 if (retval) 2181 goto bad_fork_cleanup_security; 2182 retval = copy_files(clone_flags, p); 2183 if (retval) 2184 goto bad_fork_cleanup_semundo; 2185 retval = copy_fs(clone_flags, p); 2186 if (retval) 2187 goto bad_fork_cleanup_files; 2188 retval = copy_sighand(clone_flags, p); 2189 if (retval) 2190 goto bad_fork_cleanup_fs; 2191 retval = copy_signal(clone_flags, p); 2192 if (retval) 2193 goto bad_fork_cleanup_sighand; 2194 retval = copy_mm(clone_flags, p); 2195 if (retval) 2196 goto bad_fork_cleanup_signal; 2197 retval = copy_namespaces(clone_flags, p); 2198 if (retval) 2199 goto bad_fork_cleanup_mm; 2200 retval = copy_io(clone_flags, p); 2201 if (retval) 2202 goto bad_fork_cleanup_namespaces; 2203 retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls); 2204 if (retval) 2205 goto bad_fork_cleanup_io; 2206 2207 stackleak_task_init(p); 2208 2209 if (pid != &init_struct_pid) { 2210 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2211 args->set_tid_size); 2212 if (IS_ERR(pid)) { 2213 retval = PTR_ERR(pid); 2214 goto bad_fork_cleanup_thread; 2215 } 2216 } 2217 2218 /* 2219 * This has to happen after we've potentially unshared the file 2220 * descriptor table (so that the pidfd doesn't leak into the child 2221 * if the fd table isn't shared). 2222 */ 2223 if (clone_flags & CLONE_PIDFD) { 2224 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2225 if (retval < 0) 2226 goto bad_fork_free_pid; 2227 2228 pidfd = retval; 2229 2230 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2231 O_RDWR | O_CLOEXEC); 2232 if (IS_ERR(pidfile)) { 2233 put_unused_fd(pidfd); 2234 retval = PTR_ERR(pidfile); 2235 goto bad_fork_free_pid; 2236 } 2237 get_pid(pid); /* held by pidfile now */ 2238 2239 retval = put_user(pidfd, args->pidfd); 2240 if (retval) 2241 goto bad_fork_put_pidfd; 2242 } 2243 2244 #ifdef CONFIG_BLOCK 2245 p->plug = NULL; 2246 #endif 2247 futex_init_task(p); 2248 2249 /* 2250 * sigaltstack should be cleared when sharing the same VM 2251 */ 2252 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2253 sas_ss_reset(p); 2254 2255 /* 2256 * Syscall tracing and stepping should be turned off in the 2257 * child regardless of CLONE_PTRACE. 2258 */ 2259 user_disable_single_step(p); 2260 clear_task_syscall_work(p, SYSCALL_TRACE); 2261 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2262 clear_task_syscall_work(p, SYSCALL_EMU); 2263 #endif 2264 clear_tsk_latency_tracing(p); 2265 2266 /* ok, now we should be set up.. */ 2267 p->pid = pid_nr(pid); 2268 if (clone_flags & CLONE_THREAD) { 2269 p->group_leader = current->group_leader; 2270 p->tgid = current->tgid; 2271 } else { 2272 p->group_leader = p; 2273 p->tgid = p->pid; 2274 } 2275 2276 p->nr_dirtied = 0; 2277 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2278 p->dirty_paused_when = 0; 2279 2280 p->pdeath_signal = 0; 2281 INIT_LIST_HEAD(&p->thread_group); 2282 p->task_works = NULL; 2283 2284 #ifdef CONFIG_KRETPROBES 2285 p->kretprobe_instances.first = NULL; 2286 #endif 2287 2288 /* 2289 * Ensure that the cgroup subsystem policies allow the new process to be 2290 * forked. It should be noted that the new process's css_set can be changed 2291 * between here and cgroup_post_fork() if an organisation operation is in 2292 * progress. 2293 */ 2294 retval = cgroup_can_fork(p, args); 2295 if (retval) 2296 goto bad_fork_put_pidfd; 2297 2298 /* 2299 * From this point on we must avoid any synchronous user-space 2300 * communication until we take the tasklist-lock. In particular, we do 2301 * not want user-space to be able to predict the process start-time by 2302 * stalling fork(2) after we recorded the start_time but before it is 2303 * visible to the system. 2304 */ 2305 2306 p->start_time = ktime_get_ns(); 2307 p->start_boottime = ktime_get_boottime_ns(); 2308 2309 /* 2310 * Make it visible to the rest of the system, but dont wake it up yet. 2311 * Need tasklist lock for parent etc handling! 2312 */ 2313 write_lock_irq(&tasklist_lock); 2314 2315 /* CLONE_PARENT re-uses the old parent */ 2316 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2317 p->real_parent = current->real_parent; 2318 p->parent_exec_id = current->parent_exec_id; 2319 if (clone_flags & CLONE_THREAD) 2320 p->exit_signal = -1; 2321 else 2322 p->exit_signal = current->group_leader->exit_signal; 2323 } else { 2324 p->real_parent = current; 2325 p->parent_exec_id = current->self_exec_id; 2326 p->exit_signal = args->exit_signal; 2327 } 2328 2329 klp_copy_process(p); 2330 2331 sched_core_fork(p); 2332 2333 spin_lock(¤t->sighand->siglock); 2334 2335 /* 2336 * Copy seccomp details explicitly here, in case they were changed 2337 * before holding sighand lock. 2338 */ 2339 copy_seccomp(p); 2340 2341 rseq_fork(p, clone_flags); 2342 2343 /* Don't start children in a dying pid namespace */ 2344 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2345 retval = -ENOMEM; 2346 goto bad_fork_cancel_cgroup; 2347 } 2348 2349 /* Let kill terminate clone/fork in the middle */ 2350 if (fatal_signal_pending(current)) { 2351 retval = -EINTR; 2352 goto bad_fork_cancel_cgroup; 2353 } 2354 2355 /* past the last point of failure */ 2356 if (pidfile) 2357 fd_install(pidfd, pidfile); 2358 2359 init_task_pid_links(p); 2360 if (likely(p->pid)) { 2361 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2362 2363 init_task_pid(p, PIDTYPE_PID, pid); 2364 if (thread_group_leader(p)) { 2365 init_task_pid(p, PIDTYPE_TGID, pid); 2366 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2367 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2368 2369 if (is_child_reaper(pid)) { 2370 ns_of_pid(pid)->child_reaper = p; 2371 p->signal->flags |= SIGNAL_UNKILLABLE; 2372 } 2373 p->signal->shared_pending.signal = delayed.signal; 2374 p->signal->tty = tty_kref_get(current->signal->tty); 2375 /* 2376 * Inherit has_child_subreaper flag under the same 2377 * tasklist_lock with adding child to the process tree 2378 * for propagate_has_child_subreaper optimization. 2379 */ 2380 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2381 p->real_parent->signal->is_child_subreaper; 2382 list_add_tail(&p->sibling, &p->real_parent->children); 2383 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2384 attach_pid(p, PIDTYPE_TGID); 2385 attach_pid(p, PIDTYPE_PGID); 2386 attach_pid(p, PIDTYPE_SID); 2387 __this_cpu_inc(process_counts); 2388 } else { 2389 current->signal->nr_threads++; 2390 atomic_inc(¤t->signal->live); 2391 refcount_inc(¤t->signal->sigcnt); 2392 task_join_group_stop(p); 2393 list_add_tail_rcu(&p->thread_group, 2394 &p->group_leader->thread_group); 2395 list_add_tail_rcu(&p->thread_node, 2396 &p->signal->thread_head); 2397 } 2398 attach_pid(p, PIDTYPE_PID); 2399 nr_threads++; 2400 } 2401 total_forks++; 2402 hlist_del_init(&delayed.node); 2403 spin_unlock(¤t->sighand->siglock); 2404 syscall_tracepoint_update(p); 2405 write_unlock_irq(&tasklist_lock); 2406 2407 proc_fork_connector(p); 2408 sched_post_fork(p); 2409 cgroup_post_fork(p, args); 2410 perf_event_fork(p); 2411 2412 trace_task_newtask(p, clone_flags); 2413 uprobe_copy_process(p, clone_flags); 2414 2415 copy_oom_score_adj(clone_flags, p); 2416 2417 return p; 2418 2419 bad_fork_cancel_cgroup: 2420 sched_core_free(p); 2421 spin_unlock(¤t->sighand->siglock); 2422 write_unlock_irq(&tasklist_lock); 2423 cgroup_cancel_fork(p, args); 2424 bad_fork_put_pidfd: 2425 if (clone_flags & CLONE_PIDFD) { 2426 fput(pidfile); 2427 put_unused_fd(pidfd); 2428 } 2429 bad_fork_free_pid: 2430 if (pid != &init_struct_pid) 2431 free_pid(pid); 2432 bad_fork_cleanup_thread: 2433 exit_thread(p); 2434 bad_fork_cleanup_io: 2435 if (p->io_context) 2436 exit_io_context(p); 2437 bad_fork_cleanup_namespaces: 2438 exit_task_namespaces(p); 2439 bad_fork_cleanup_mm: 2440 if (p->mm) { 2441 mm_clear_owner(p->mm, p); 2442 mmput(p->mm); 2443 } 2444 bad_fork_cleanup_signal: 2445 if (!(clone_flags & CLONE_THREAD)) 2446 free_signal_struct(p->signal); 2447 bad_fork_cleanup_sighand: 2448 __cleanup_sighand(p->sighand); 2449 bad_fork_cleanup_fs: 2450 exit_fs(p); /* blocking */ 2451 bad_fork_cleanup_files: 2452 exit_files(p); /* blocking */ 2453 bad_fork_cleanup_semundo: 2454 exit_sem(p); 2455 bad_fork_cleanup_security: 2456 security_task_free(p); 2457 bad_fork_cleanup_audit: 2458 audit_free(p); 2459 bad_fork_cleanup_perf: 2460 perf_event_free_task(p); 2461 bad_fork_cleanup_policy: 2462 lockdep_free_task(p); 2463 #ifdef CONFIG_NUMA 2464 mpol_put(p->mempolicy); 2465 bad_fork_cleanup_threadgroup_lock: 2466 #endif 2467 delayacct_tsk_free(p); 2468 bad_fork_cleanup_count: 2469 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2470 exit_creds(p); 2471 bad_fork_free: 2472 WRITE_ONCE(p->__state, TASK_DEAD); 2473 put_task_stack(p); 2474 delayed_free_task(p); 2475 fork_out: 2476 spin_lock_irq(¤t->sighand->siglock); 2477 hlist_del_init(&delayed.node); 2478 spin_unlock_irq(¤t->sighand->siglock); 2479 return ERR_PTR(retval); 2480 } 2481 2482 static inline void init_idle_pids(struct task_struct *idle) 2483 { 2484 enum pid_type type; 2485 2486 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2487 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2488 init_task_pid(idle, type, &init_struct_pid); 2489 } 2490 } 2491 2492 struct task_struct * __init fork_idle(int cpu) 2493 { 2494 struct task_struct *task; 2495 struct kernel_clone_args args = { 2496 .flags = CLONE_VM, 2497 }; 2498 2499 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2500 if (!IS_ERR(task)) { 2501 init_idle_pids(task); 2502 init_idle(task, cpu); 2503 } 2504 2505 return task; 2506 } 2507 2508 struct mm_struct *copy_init_mm(void) 2509 { 2510 return dup_mm(NULL, &init_mm); 2511 } 2512 2513 /* 2514 * This is like kernel_clone(), but shaved down and tailored to just 2515 * creating io_uring workers. It returns a created task, or an error pointer. 2516 * The returned task is inactive, and the caller must fire it up through 2517 * wake_up_new_task(p). All signals are blocked in the created task. 2518 */ 2519 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2520 { 2521 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2522 CLONE_IO; 2523 struct kernel_clone_args args = { 2524 .flags = ((lower_32_bits(flags) | CLONE_VM | 2525 CLONE_UNTRACED) & ~CSIGNAL), 2526 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2527 .stack = (unsigned long)fn, 2528 .stack_size = (unsigned long)arg, 2529 .io_thread = 1, 2530 }; 2531 2532 return copy_process(NULL, 0, node, &args); 2533 } 2534 2535 /* 2536 * Ok, this is the main fork-routine. 2537 * 2538 * It copies the process, and if successful kick-starts 2539 * it and waits for it to finish using the VM if required. 2540 * 2541 * args->exit_signal is expected to be checked for sanity by the caller. 2542 */ 2543 pid_t kernel_clone(struct kernel_clone_args *args) 2544 { 2545 u64 clone_flags = args->flags; 2546 struct completion vfork; 2547 struct pid *pid; 2548 struct task_struct *p; 2549 int trace = 0; 2550 pid_t nr; 2551 2552 /* 2553 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2554 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2555 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2556 * field in struct clone_args and it still doesn't make sense to have 2557 * them both point at the same memory location. Performing this check 2558 * here has the advantage that we don't need to have a separate helper 2559 * to check for legacy clone(). 2560 */ 2561 if ((args->flags & CLONE_PIDFD) && 2562 (args->flags & CLONE_PARENT_SETTID) && 2563 (args->pidfd == args->parent_tid)) 2564 return -EINVAL; 2565 2566 /* 2567 * Determine whether and which event to report to ptracer. When 2568 * called from kernel_thread or CLONE_UNTRACED is explicitly 2569 * requested, no event is reported; otherwise, report if the event 2570 * for the type of forking is enabled. 2571 */ 2572 if (!(clone_flags & CLONE_UNTRACED)) { 2573 if (clone_flags & CLONE_VFORK) 2574 trace = PTRACE_EVENT_VFORK; 2575 else if (args->exit_signal != SIGCHLD) 2576 trace = PTRACE_EVENT_CLONE; 2577 else 2578 trace = PTRACE_EVENT_FORK; 2579 2580 if (likely(!ptrace_event_enabled(current, trace))) 2581 trace = 0; 2582 } 2583 2584 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2585 add_latent_entropy(); 2586 2587 if (IS_ERR(p)) 2588 return PTR_ERR(p); 2589 2590 /* 2591 * Do this prior waking up the new thread - the thread pointer 2592 * might get invalid after that point, if the thread exits quickly. 2593 */ 2594 trace_sched_process_fork(current, p); 2595 2596 pid = get_task_pid(p, PIDTYPE_PID); 2597 nr = pid_vnr(pid); 2598 2599 if (clone_flags & CLONE_PARENT_SETTID) 2600 put_user(nr, args->parent_tid); 2601 2602 if (clone_flags & CLONE_VFORK) { 2603 p->vfork_done = &vfork; 2604 init_completion(&vfork); 2605 get_task_struct(p); 2606 } 2607 2608 wake_up_new_task(p); 2609 2610 /* forking complete and child started to run, tell ptracer */ 2611 if (unlikely(trace)) 2612 ptrace_event_pid(trace, pid); 2613 2614 if (clone_flags & CLONE_VFORK) { 2615 if (!wait_for_vfork_done(p, &vfork)) 2616 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2617 } 2618 2619 put_pid(pid); 2620 return nr; 2621 } 2622 2623 /* 2624 * Create a kernel thread. 2625 */ 2626 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 2627 { 2628 struct kernel_clone_args args = { 2629 .flags = ((lower_32_bits(flags) | CLONE_VM | 2630 CLONE_UNTRACED) & ~CSIGNAL), 2631 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2632 .stack = (unsigned long)fn, 2633 .stack_size = (unsigned long)arg, 2634 }; 2635 2636 return kernel_clone(&args); 2637 } 2638 2639 #ifdef __ARCH_WANT_SYS_FORK 2640 SYSCALL_DEFINE0(fork) 2641 { 2642 #ifdef CONFIG_MMU 2643 struct kernel_clone_args args = { 2644 .exit_signal = SIGCHLD, 2645 }; 2646 2647 return kernel_clone(&args); 2648 #else 2649 /* can not support in nommu mode */ 2650 return -EINVAL; 2651 #endif 2652 } 2653 #endif 2654 2655 #ifdef __ARCH_WANT_SYS_VFORK 2656 SYSCALL_DEFINE0(vfork) 2657 { 2658 struct kernel_clone_args args = { 2659 .flags = CLONE_VFORK | CLONE_VM, 2660 .exit_signal = SIGCHLD, 2661 }; 2662 2663 return kernel_clone(&args); 2664 } 2665 #endif 2666 2667 #ifdef __ARCH_WANT_SYS_CLONE 2668 #ifdef CONFIG_CLONE_BACKWARDS 2669 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2670 int __user *, parent_tidptr, 2671 unsigned long, tls, 2672 int __user *, child_tidptr) 2673 #elif defined(CONFIG_CLONE_BACKWARDS2) 2674 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2675 int __user *, parent_tidptr, 2676 int __user *, child_tidptr, 2677 unsigned long, tls) 2678 #elif defined(CONFIG_CLONE_BACKWARDS3) 2679 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2680 int, stack_size, 2681 int __user *, parent_tidptr, 2682 int __user *, child_tidptr, 2683 unsigned long, tls) 2684 #else 2685 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2686 int __user *, parent_tidptr, 2687 int __user *, child_tidptr, 2688 unsigned long, tls) 2689 #endif 2690 { 2691 struct kernel_clone_args args = { 2692 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2693 .pidfd = parent_tidptr, 2694 .child_tid = child_tidptr, 2695 .parent_tid = parent_tidptr, 2696 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2697 .stack = newsp, 2698 .tls = tls, 2699 }; 2700 2701 return kernel_clone(&args); 2702 } 2703 #endif 2704 2705 #ifdef __ARCH_WANT_SYS_CLONE3 2706 2707 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2708 struct clone_args __user *uargs, 2709 size_t usize) 2710 { 2711 int err; 2712 struct clone_args args; 2713 pid_t *kset_tid = kargs->set_tid; 2714 2715 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2716 CLONE_ARGS_SIZE_VER0); 2717 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2718 CLONE_ARGS_SIZE_VER1); 2719 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2720 CLONE_ARGS_SIZE_VER2); 2721 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2722 2723 if (unlikely(usize > PAGE_SIZE)) 2724 return -E2BIG; 2725 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2726 return -EINVAL; 2727 2728 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2729 if (err) 2730 return err; 2731 2732 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2733 return -EINVAL; 2734 2735 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2736 return -EINVAL; 2737 2738 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2739 return -EINVAL; 2740 2741 /* 2742 * Verify that higher 32bits of exit_signal are unset and that 2743 * it is a valid signal 2744 */ 2745 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2746 !valid_signal(args.exit_signal))) 2747 return -EINVAL; 2748 2749 if ((args.flags & CLONE_INTO_CGROUP) && 2750 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2751 return -EINVAL; 2752 2753 *kargs = (struct kernel_clone_args){ 2754 .flags = args.flags, 2755 .pidfd = u64_to_user_ptr(args.pidfd), 2756 .child_tid = u64_to_user_ptr(args.child_tid), 2757 .parent_tid = u64_to_user_ptr(args.parent_tid), 2758 .exit_signal = args.exit_signal, 2759 .stack = args.stack, 2760 .stack_size = args.stack_size, 2761 .tls = args.tls, 2762 .set_tid_size = args.set_tid_size, 2763 .cgroup = args.cgroup, 2764 }; 2765 2766 if (args.set_tid && 2767 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2768 (kargs->set_tid_size * sizeof(pid_t)))) 2769 return -EFAULT; 2770 2771 kargs->set_tid = kset_tid; 2772 2773 return 0; 2774 } 2775 2776 /** 2777 * clone3_stack_valid - check and prepare stack 2778 * @kargs: kernel clone args 2779 * 2780 * Verify that the stack arguments userspace gave us are sane. 2781 * In addition, set the stack direction for userspace since it's easy for us to 2782 * determine. 2783 */ 2784 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 2785 { 2786 if (kargs->stack == 0) { 2787 if (kargs->stack_size > 0) 2788 return false; 2789 } else { 2790 if (kargs->stack_size == 0) 2791 return false; 2792 2793 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 2794 return false; 2795 2796 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64) 2797 kargs->stack += kargs->stack_size; 2798 #endif 2799 } 2800 2801 return true; 2802 } 2803 2804 static bool clone3_args_valid(struct kernel_clone_args *kargs) 2805 { 2806 /* Verify that no unknown flags are passed along. */ 2807 if (kargs->flags & 2808 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 2809 return false; 2810 2811 /* 2812 * - make the CLONE_DETACHED bit reusable for clone3 2813 * - make the CSIGNAL bits reusable for clone3 2814 */ 2815 if (kargs->flags & (CLONE_DETACHED | CSIGNAL)) 2816 return false; 2817 2818 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 2819 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 2820 return false; 2821 2822 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 2823 kargs->exit_signal) 2824 return false; 2825 2826 if (!clone3_stack_valid(kargs)) 2827 return false; 2828 2829 return true; 2830 } 2831 2832 /** 2833 * clone3 - create a new process with specific properties 2834 * @uargs: argument structure 2835 * @size: size of @uargs 2836 * 2837 * clone3() is the extensible successor to clone()/clone2(). 2838 * It takes a struct as argument that is versioned by its size. 2839 * 2840 * Return: On success, a positive PID for the child process. 2841 * On error, a negative errno number. 2842 */ 2843 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 2844 { 2845 int err; 2846 2847 struct kernel_clone_args kargs; 2848 pid_t set_tid[MAX_PID_NS_LEVEL]; 2849 2850 kargs.set_tid = set_tid; 2851 2852 err = copy_clone_args_from_user(&kargs, uargs, size); 2853 if (err) 2854 return err; 2855 2856 if (!clone3_args_valid(&kargs)) 2857 return -EINVAL; 2858 2859 return kernel_clone(&kargs); 2860 } 2861 #endif 2862 2863 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2864 { 2865 struct task_struct *leader, *parent, *child; 2866 int res; 2867 2868 read_lock(&tasklist_lock); 2869 leader = top = top->group_leader; 2870 down: 2871 for_each_thread(leader, parent) { 2872 list_for_each_entry(child, &parent->children, sibling) { 2873 res = visitor(child, data); 2874 if (res) { 2875 if (res < 0) 2876 goto out; 2877 leader = child; 2878 goto down; 2879 } 2880 up: 2881 ; 2882 } 2883 } 2884 2885 if (leader != top) { 2886 child = leader; 2887 parent = child->real_parent; 2888 leader = parent->group_leader; 2889 goto up; 2890 } 2891 out: 2892 read_unlock(&tasklist_lock); 2893 } 2894 2895 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 2896 #define ARCH_MIN_MMSTRUCT_ALIGN 0 2897 #endif 2898 2899 static void sighand_ctor(void *data) 2900 { 2901 struct sighand_struct *sighand = data; 2902 2903 spin_lock_init(&sighand->siglock); 2904 init_waitqueue_head(&sighand->signalfd_wqh); 2905 } 2906 2907 void __init proc_caches_init(void) 2908 { 2909 unsigned int mm_size; 2910 2911 sighand_cachep = kmem_cache_create("sighand_cache", 2912 sizeof(struct sighand_struct), 0, 2913 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 2914 SLAB_ACCOUNT, sighand_ctor); 2915 signal_cachep = kmem_cache_create("signal_cache", 2916 sizeof(struct signal_struct), 0, 2917 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2918 NULL); 2919 files_cachep = kmem_cache_create("files_cache", 2920 sizeof(struct files_struct), 0, 2921 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2922 NULL); 2923 fs_cachep = kmem_cache_create("fs_cache", 2924 sizeof(struct fs_struct), 0, 2925 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2926 NULL); 2927 2928 /* 2929 * The mm_cpumask is located at the end of mm_struct, and is 2930 * dynamically sized based on the maximum CPU number this system 2931 * can have, taking hotplug into account (nr_cpu_ids). 2932 */ 2933 mm_size = sizeof(struct mm_struct) + cpumask_size(); 2934 2935 mm_cachep = kmem_cache_create_usercopy("mm_struct", 2936 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 2937 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2938 offsetof(struct mm_struct, saved_auxv), 2939 sizeof_field(struct mm_struct, saved_auxv), 2940 NULL); 2941 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 2942 mmap_init(); 2943 nsproxy_cache_init(); 2944 } 2945 2946 /* 2947 * Check constraints on flags passed to the unshare system call. 2948 */ 2949 static int check_unshare_flags(unsigned long unshare_flags) 2950 { 2951 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 2952 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 2953 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 2954 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 2955 CLONE_NEWTIME)) 2956 return -EINVAL; 2957 /* 2958 * Not implemented, but pretend it works if there is nothing 2959 * to unshare. Note that unsharing the address space or the 2960 * signal handlers also need to unshare the signal queues (aka 2961 * CLONE_THREAD). 2962 */ 2963 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 2964 if (!thread_group_empty(current)) 2965 return -EINVAL; 2966 } 2967 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 2968 if (refcount_read(¤t->sighand->count) > 1) 2969 return -EINVAL; 2970 } 2971 if (unshare_flags & CLONE_VM) { 2972 if (!current_is_single_threaded()) 2973 return -EINVAL; 2974 } 2975 2976 return 0; 2977 } 2978 2979 /* 2980 * Unshare the filesystem structure if it is being shared 2981 */ 2982 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 2983 { 2984 struct fs_struct *fs = current->fs; 2985 2986 if (!(unshare_flags & CLONE_FS) || !fs) 2987 return 0; 2988 2989 /* don't need lock here; in the worst case we'll do useless copy */ 2990 if (fs->users == 1) 2991 return 0; 2992 2993 *new_fsp = copy_fs_struct(fs); 2994 if (!*new_fsp) 2995 return -ENOMEM; 2996 2997 return 0; 2998 } 2999 3000 /* 3001 * Unshare file descriptor table if it is being shared 3002 */ 3003 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 3004 struct files_struct **new_fdp) 3005 { 3006 struct files_struct *fd = current->files; 3007 int error = 0; 3008 3009 if ((unshare_flags & CLONE_FILES) && 3010 (fd && atomic_read(&fd->count) > 1)) { 3011 *new_fdp = dup_fd(fd, max_fds, &error); 3012 if (!*new_fdp) 3013 return error; 3014 } 3015 3016 return 0; 3017 } 3018 3019 /* 3020 * unshare allows a process to 'unshare' part of the process 3021 * context which was originally shared using clone. copy_* 3022 * functions used by kernel_clone() cannot be used here directly 3023 * because they modify an inactive task_struct that is being 3024 * constructed. Here we are modifying the current, active, 3025 * task_struct. 3026 */ 3027 int ksys_unshare(unsigned long unshare_flags) 3028 { 3029 struct fs_struct *fs, *new_fs = NULL; 3030 struct files_struct *fd, *new_fd = NULL; 3031 struct cred *new_cred = NULL; 3032 struct nsproxy *new_nsproxy = NULL; 3033 int do_sysvsem = 0; 3034 int err; 3035 3036 /* 3037 * If unsharing a user namespace must also unshare the thread group 3038 * and unshare the filesystem root and working directories. 3039 */ 3040 if (unshare_flags & CLONE_NEWUSER) 3041 unshare_flags |= CLONE_THREAD | CLONE_FS; 3042 /* 3043 * If unsharing vm, must also unshare signal handlers. 3044 */ 3045 if (unshare_flags & CLONE_VM) 3046 unshare_flags |= CLONE_SIGHAND; 3047 /* 3048 * If unsharing a signal handlers, must also unshare the signal queues. 3049 */ 3050 if (unshare_flags & CLONE_SIGHAND) 3051 unshare_flags |= CLONE_THREAD; 3052 /* 3053 * If unsharing namespace, must also unshare filesystem information. 3054 */ 3055 if (unshare_flags & CLONE_NEWNS) 3056 unshare_flags |= CLONE_FS; 3057 3058 err = check_unshare_flags(unshare_flags); 3059 if (err) 3060 goto bad_unshare_out; 3061 /* 3062 * CLONE_NEWIPC must also detach from the undolist: after switching 3063 * to a new ipc namespace, the semaphore arrays from the old 3064 * namespace are unreachable. 3065 */ 3066 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3067 do_sysvsem = 1; 3068 err = unshare_fs(unshare_flags, &new_fs); 3069 if (err) 3070 goto bad_unshare_out; 3071 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 3072 if (err) 3073 goto bad_unshare_cleanup_fs; 3074 err = unshare_userns(unshare_flags, &new_cred); 3075 if (err) 3076 goto bad_unshare_cleanup_fd; 3077 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3078 new_cred, new_fs); 3079 if (err) 3080 goto bad_unshare_cleanup_cred; 3081 3082 if (new_cred) { 3083 err = set_cred_ucounts(new_cred); 3084 if (err) 3085 goto bad_unshare_cleanup_cred; 3086 } 3087 3088 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3089 if (do_sysvsem) { 3090 /* 3091 * CLONE_SYSVSEM is equivalent to sys_exit(). 3092 */ 3093 exit_sem(current); 3094 } 3095 if (unshare_flags & CLONE_NEWIPC) { 3096 /* Orphan segments in old ns (see sem above). */ 3097 exit_shm(current); 3098 shm_init_task(current); 3099 } 3100 3101 if (new_nsproxy) 3102 switch_task_namespaces(current, new_nsproxy); 3103 3104 task_lock(current); 3105 3106 if (new_fs) { 3107 fs = current->fs; 3108 spin_lock(&fs->lock); 3109 current->fs = new_fs; 3110 if (--fs->users) 3111 new_fs = NULL; 3112 else 3113 new_fs = fs; 3114 spin_unlock(&fs->lock); 3115 } 3116 3117 if (new_fd) { 3118 fd = current->files; 3119 current->files = new_fd; 3120 new_fd = fd; 3121 } 3122 3123 task_unlock(current); 3124 3125 if (new_cred) { 3126 /* Install the new user namespace */ 3127 commit_creds(new_cred); 3128 new_cred = NULL; 3129 } 3130 } 3131 3132 perf_event_namespaces(current); 3133 3134 bad_unshare_cleanup_cred: 3135 if (new_cred) 3136 put_cred(new_cred); 3137 bad_unshare_cleanup_fd: 3138 if (new_fd) 3139 put_files_struct(new_fd); 3140 3141 bad_unshare_cleanup_fs: 3142 if (new_fs) 3143 free_fs_struct(new_fs); 3144 3145 bad_unshare_out: 3146 return err; 3147 } 3148 3149 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3150 { 3151 return ksys_unshare(unshare_flags); 3152 } 3153 3154 /* 3155 * Helper to unshare the files of the current task. 3156 * We don't want to expose copy_files internals to 3157 * the exec layer of the kernel. 3158 */ 3159 3160 int unshare_files(void) 3161 { 3162 struct task_struct *task = current; 3163 struct files_struct *old, *copy = NULL; 3164 int error; 3165 3166 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3167 if (error || !copy) 3168 return error; 3169 3170 old = task->files; 3171 task_lock(task); 3172 task->files = copy; 3173 task_unlock(task); 3174 put_files_struct(old); 3175 return 0; 3176 } 3177 3178 int sysctl_max_threads(struct ctl_table *table, int write, 3179 void *buffer, size_t *lenp, loff_t *ppos) 3180 { 3181 struct ctl_table t; 3182 int ret; 3183 int threads = max_threads; 3184 int min = 1; 3185 int max = MAX_THREADS; 3186 3187 t = *table; 3188 t.data = &threads; 3189 t.extra1 = &min; 3190 t.extra2 = &max; 3191 3192 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3193 if (ret || !write) 3194 return ret; 3195 3196 max_threads = threads; 3197 3198 return 0; 3199 } 3200