xref: /linux/kernel/fork.c (revision 55f3538c4923e9dfca132e99ebec370e8094afda)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rtmutex.h>
25 #include <linux/init.h>
26 #include <linux/unistd.h>
27 #include <linux/module.h>
28 #include <linux/vmalloc.h>
29 #include <linux/completion.h>
30 #include <linux/personality.h>
31 #include <linux/mempolicy.h>
32 #include <linux/sem.h>
33 #include <linux/file.h>
34 #include <linux/fdtable.h>
35 #include <linux/iocontext.h>
36 #include <linux/key.h>
37 #include <linux/binfmts.h>
38 #include <linux/mman.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/hmm.h>
41 #include <linux/fs.h>
42 #include <linux/mm.h>
43 #include <linux/vmacache.h>
44 #include <linux/nsproxy.h>
45 #include <linux/capability.h>
46 #include <linux/cpu.h>
47 #include <linux/cgroup.h>
48 #include <linux/security.h>
49 #include <linux/hugetlb.h>
50 #include <linux/seccomp.h>
51 #include <linux/swap.h>
52 #include <linux/syscalls.h>
53 #include <linux/jiffies.h>
54 #include <linux/futex.h>
55 #include <linux/compat.h>
56 #include <linux/kthread.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/rcupdate.h>
59 #include <linux/ptrace.h>
60 #include <linux/mount.h>
61 #include <linux/audit.h>
62 #include <linux/memcontrol.h>
63 #include <linux/ftrace.h>
64 #include <linux/proc_fs.h>
65 #include <linux/profile.h>
66 #include <linux/rmap.h>
67 #include <linux/ksm.h>
68 #include <linux/acct.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/tsacct_kern.h>
71 #include <linux/cn_proc.h>
72 #include <linux/freezer.h>
73 #include <linux/delayacct.h>
74 #include <linux/taskstats_kern.h>
75 #include <linux/random.h>
76 #include <linux/tty.h>
77 #include <linux/blkdev.h>
78 #include <linux/fs_struct.h>
79 #include <linux/magic.h>
80 #include <linux/sched/mm.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94 
95 #include <asm/pgtable.h>
96 #include <asm/pgalloc.h>
97 #include <linux/uaccess.h>
98 #include <asm/mmu_context.h>
99 #include <asm/cacheflush.h>
100 #include <asm/tlbflush.h>
101 
102 #include <trace/events/sched.h>
103 
104 #define CREATE_TRACE_POINTS
105 #include <trace/events/task.h>
106 
107 /*
108  * Minimum number of threads to boot the kernel
109  */
110 #define MIN_THREADS 20
111 
112 /*
113  * Maximum number of threads
114  */
115 #define MAX_THREADS FUTEX_TID_MASK
116 
117 /*
118  * Protected counters by write_lock_irq(&tasklist_lock)
119  */
120 unsigned long total_forks;	/* Handle normal Linux uptimes. */
121 int nr_threads;			/* The idle threads do not count.. */
122 
123 int max_threads;		/* tunable limit on nr_threads */
124 
125 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
126 
127 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
128 
129 #ifdef CONFIG_PROVE_RCU
130 int lockdep_tasklist_lock_is_held(void)
131 {
132 	return lockdep_is_held(&tasklist_lock);
133 }
134 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
135 #endif /* #ifdef CONFIG_PROVE_RCU */
136 
137 int nr_processes(void)
138 {
139 	int cpu;
140 	int total = 0;
141 
142 	for_each_possible_cpu(cpu)
143 		total += per_cpu(process_counts, cpu);
144 
145 	return total;
146 }
147 
148 void __weak arch_release_task_struct(struct task_struct *tsk)
149 {
150 }
151 
152 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
153 static struct kmem_cache *task_struct_cachep;
154 
155 static inline struct task_struct *alloc_task_struct_node(int node)
156 {
157 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
158 }
159 
160 static inline void free_task_struct(struct task_struct *tsk)
161 {
162 	kmem_cache_free(task_struct_cachep, tsk);
163 }
164 #endif
165 
166 void __weak arch_release_thread_stack(unsigned long *stack)
167 {
168 }
169 
170 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
171 
172 /*
173  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
174  * kmemcache based allocator.
175  */
176 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
177 
178 #ifdef CONFIG_VMAP_STACK
179 /*
180  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
181  * flush.  Try to minimize the number of calls by caching stacks.
182  */
183 #define NR_CACHED_STACKS 2
184 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
185 
186 static int free_vm_stack_cache(unsigned int cpu)
187 {
188 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
189 	int i;
190 
191 	for (i = 0; i < NR_CACHED_STACKS; i++) {
192 		struct vm_struct *vm_stack = cached_vm_stacks[i];
193 
194 		if (!vm_stack)
195 			continue;
196 
197 		vfree(vm_stack->addr);
198 		cached_vm_stacks[i] = NULL;
199 	}
200 
201 	return 0;
202 }
203 #endif
204 
205 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
206 {
207 #ifdef CONFIG_VMAP_STACK
208 	void *stack;
209 	int i;
210 
211 	for (i = 0; i < NR_CACHED_STACKS; i++) {
212 		struct vm_struct *s;
213 
214 		s = this_cpu_xchg(cached_stacks[i], NULL);
215 
216 		if (!s)
217 			continue;
218 
219 #ifdef CONFIG_DEBUG_KMEMLEAK
220 		/* Clear stale pointers from reused stack. */
221 		memset(s->addr, 0, THREAD_SIZE);
222 #endif
223 		tsk->stack_vm_area = s;
224 		return s->addr;
225 	}
226 
227 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
228 				     VMALLOC_START, VMALLOC_END,
229 				     THREADINFO_GFP,
230 				     PAGE_KERNEL,
231 				     0, node, __builtin_return_address(0));
232 
233 	/*
234 	 * We can't call find_vm_area() in interrupt context, and
235 	 * free_thread_stack() can be called in interrupt context,
236 	 * so cache the vm_struct.
237 	 */
238 	if (stack)
239 		tsk->stack_vm_area = find_vm_area(stack);
240 	return stack;
241 #else
242 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
243 					     THREAD_SIZE_ORDER);
244 
245 	return page ? page_address(page) : NULL;
246 #endif
247 }
248 
249 static inline void free_thread_stack(struct task_struct *tsk)
250 {
251 #ifdef CONFIG_VMAP_STACK
252 	if (task_stack_vm_area(tsk)) {
253 		int i;
254 
255 		for (i = 0; i < NR_CACHED_STACKS; i++) {
256 			if (this_cpu_cmpxchg(cached_stacks[i],
257 					NULL, tsk->stack_vm_area) != NULL)
258 				continue;
259 
260 			return;
261 		}
262 
263 		vfree_atomic(tsk->stack);
264 		return;
265 	}
266 #endif
267 
268 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
269 }
270 # else
271 static struct kmem_cache *thread_stack_cache;
272 
273 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
274 						  int node)
275 {
276 	return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
277 }
278 
279 static void free_thread_stack(struct task_struct *tsk)
280 {
281 	kmem_cache_free(thread_stack_cache, tsk->stack);
282 }
283 
284 void thread_stack_cache_init(void)
285 {
286 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
287 					THREAD_SIZE, THREAD_SIZE, 0, 0,
288 					THREAD_SIZE, NULL);
289 	BUG_ON(thread_stack_cache == NULL);
290 }
291 # endif
292 #endif
293 
294 /* SLAB cache for signal_struct structures (tsk->signal) */
295 static struct kmem_cache *signal_cachep;
296 
297 /* SLAB cache for sighand_struct structures (tsk->sighand) */
298 struct kmem_cache *sighand_cachep;
299 
300 /* SLAB cache for files_struct structures (tsk->files) */
301 struct kmem_cache *files_cachep;
302 
303 /* SLAB cache for fs_struct structures (tsk->fs) */
304 struct kmem_cache *fs_cachep;
305 
306 /* SLAB cache for vm_area_struct structures */
307 struct kmem_cache *vm_area_cachep;
308 
309 /* SLAB cache for mm_struct structures (tsk->mm) */
310 static struct kmem_cache *mm_cachep;
311 
312 static void account_kernel_stack(struct task_struct *tsk, int account)
313 {
314 	void *stack = task_stack_page(tsk);
315 	struct vm_struct *vm = task_stack_vm_area(tsk);
316 
317 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
318 
319 	if (vm) {
320 		int i;
321 
322 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
323 
324 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
325 			mod_zone_page_state(page_zone(vm->pages[i]),
326 					    NR_KERNEL_STACK_KB,
327 					    PAGE_SIZE / 1024 * account);
328 		}
329 
330 		/* All stack pages belong to the same memcg. */
331 		mod_memcg_page_state(vm->pages[0], MEMCG_KERNEL_STACK_KB,
332 				     account * (THREAD_SIZE / 1024));
333 	} else {
334 		/*
335 		 * All stack pages are in the same zone and belong to the
336 		 * same memcg.
337 		 */
338 		struct page *first_page = virt_to_page(stack);
339 
340 		mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
341 				    THREAD_SIZE / 1024 * account);
342 
343 		mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
344 				     account * (THREAD_SIZE / 1024));
345 	}
346 }
347 
348 static void release_task_stack(struct task_struct *tsk)
349 {
350 	if (WARN_ON(tsk->state != TASK_DEAD))
351 		return;  /* Better to leak the stack than to free prematurely */
352 
353 	account_kernel_stack(tsk, -1);
354 	arch_release_thread_stack(tsk->stack);
355 	free_thread_stack(tsk);
356 	tsk->stack = NULL;
357 #ifdef CONFIG_VMAP_STACK
358 	tsk->stack_vm_area = NULL;
359 #endif
360 }
361 
362 #ifdef CONFIG_THREAD_INFO_IN_TASK
363 void put_task_stack(struct task_struct *tsk)
364 {
365 	if (atomic_dec_and_test(&tsk->stack_refcount))
366 		release_task_stack(tsk);
367 }
368 #endif
369 
370 void free_task(struct task_struct *tsk)
371 {
372 #ifndef CONFIG_THREAD_INFO_IN_TASK
373 	/*
374 	 * The task is finally done with both the stack and thread_info,
375 	 * so free both.
376 	 */
377 	release_task_stack(tsk);
378 #else
379 	/*
380 	 * If the task had a separate stack allocation, it should be gone
381 	 * by now.
382 	 */
383 	WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
384 #endif
385 	rt_mutex_debug_task_free(tsk);
386 	ftrace_graph_exit_task(tsk);
387 	put_seccomp_filter(tsk);
388 	arch_release_task_struct(tsk);
389 	if (tsk->flags & PF_KTHREAD)
390 		free_kthread_struct(tsk);
391 	free_task_struct(tsk);
392 }
393 EXPORT_SYMBOL(free_task);
394 
395 #ifdef CONFIG_MMU
396 static __latent_entropy int dup_mmap(struct mm_struct *mm,
397 					struct mm_struct *oldmm)
398 {
399 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
400 	struct rb_node **rb_link, *rb_parent;
401 	int retval;
402 	unsigned long charge;
403 	LIST_HEAD(uf);
404 
405 	uprobe_start_dup_mmap();
406 	if (down_write_killable(&oldmm->mmap_sem)) {
407 		retval = -EINTR;
408 		goto fail_uprobe_end;
409 	}
410 	flush_cache_dup_mm(oldmm);
411 	uprobe_dup_mmap(oldmm, mm);
412 	/*
413 	 * Not linked in yet - no deadlock potential:
414 	 */
415 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
416 
417 	/* No ordering required: file already has been exposed. */
418 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
419 
420 	mm->total_vm = oldmm->total_vm;
421 	mm->data_vm = oldmm->data_vm;
422 	mm->exec_vm = oldmm->exec_vm;
423 	mm->stack_vm = oldmm->stack_vm;
424 
425 	rb_link = &mm->mm_rb.rb_node;
426 	rb_parent = NULL;
427 	pprev = &mm->mmap;
428 	retval = ksm_fork(mm, oldmm);
429 	if (retval)
430 		goto out;
431 	retval = khugepaged_fork(mm, oldmm);
432 	if (retval)
433 		goto out;
434 
435 	prev = NULL;
436 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
437 		struct file *file;
438 
439 		if (mpnt->vm_flags & VM_DONTCOPY) {
440 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
441 			continue;
442 		}
443 		charge = 0;
444 		if (mpnt->vm_flags & VM_ACCOUNT) {
445 			unsigned long len = vma_pages(mpnt);
446 
447 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
448 				goto fail_nomem;
449 			charge = len;
450 		}
451 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
452 		if (!tmp)
453 			goto fail_nomem;
454 		*tmp = *mpnt;
455 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
456 		retval = vma_dup_policy(mpnt, tmp);
457 		if (retval)
458 			goto fail_nomem_policy;
459 		tmp->vm_mm = mm;
460 		retval = dup_userfaultfd(tmp, &uf);
461 		if (retval)
462 			goto fail_nomem_anon_vma_fork;
463 		if (tmp->vm_flags & VM_WIPEONFORK) {
464 			/* VM_WIPEONFORK gets a clean slate in the child. */
465 			tmp->anon_vma = NULL;
466 			if (anon_vma_prepare(tmp))
467 				goto fail_nomem_anon_vma_fork;
468 		} else if (anon_vma_fork(tmp, mpnt))
469 			goto fail_nomem_anon_vma_fork;
470 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
471 		tmp->vm_next = tmp->vm_prev = NULL;
472 		file = tmp->vm_file;
473 		if (file) {
474 			struct inode *inode = file_inode(file);
475 			struct address_space *mapping = file->f_mapping;
476 
477 			get_file(file);
478 			if (tmp->vm_flags & VM_DENYWRITE)
479 				atomic_dec(&inode->i_writecount);
480 			i_mmap_lock_write(mapping);
481 			if (tmp->vm_flags & VM_SHARED)
482 				atomic_inc(&mapping->i_mmap_writable);
483 			flush_dcache_mmap_lock(mapping);
484 			/* insert tmp into the share list, just after mpnt */
485 			vma_interval_tree_insert_after(tmp, mpnt,
486 					&mapping->i_mmap);
487 			flush_dcache_mmap_unlock(mapping);
488 			i_mmap_unlock_write(mapping);
489 		}
490 
491 		/*
492 		 * Clear hugetlb-related page reserves for children. This only
493 		 * affects MAP_PRIVATE mappings. Faults generated by the child
494 		 * are not guaranteed to succeed, even if read-only
495 		 */
496 		if (is_vm_hugetlb_page(tmp))
497 			reset_vma_resv_huge_pages(tmp);
498 
499 		/*
500 		 * Link in the new vma and copy the page table entries.
501 		 */
502 		*pprev = tmp;
503 		pprev = &tmp->vm_next;
504 		tmp->vm_prev = prev;
505 		prev = tmp;
506 
507 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
508 		rb_link = &tmp->vm_rb.rb_right;
509 		rb_parent = &tmp->vm_rb;
510 
511 		mm->map_count++;
512 		if (!(tmp->vm_flags & VM_WIPEONFORK))
513 			retval = copy_page_range(mm, oldmm, mpnt);
514 
515 		if (tmp->vm_ops && tmp->vm_ops->open)
516 			tmp->vm_ops->open(tmp);
517 
518 		if (retval)
519 			goto out;
520 	}
521 	/* a new mm has just been created */
522 	arch_dup_mmap(oldmm, mm);
523 	retval = 0;
524 out:
525 	up_write(&mm->mmap_sem);
526 	flush_tlb_mm(oldmm);
527 	up_write(&oldmm->mmap_sem);
528 	dup_userfaultfd_complete(&uf);
529 fail_uprobe_end:
530 	uprobe_end_dup_mmap();
531 	return retval;
532 fail_nomem_anon_vma_fork:
533 	mpol_put(vma_policy(tmp));
534 fail_nomem_policy:
535 	kmem_cache_free(vm_area_cachep, tmp);
536 fail_nomem:
537 	retval = -ENOMEM;
538 	vm_unacct_memory(charge);
539 	goto out;
540 }
541 
542 static inline int mm_alloc_pgd(struct mm_struct *mm)
543 {
544 	mm->pgd = pgd_alloc(mm);
545 	if (unlikely(!mm->pgd))
546 		return -ENOMEM;
547 	return 0;
548 }
549 
550 static inline void mm_free_pgd(struct mm_struct *mm)
551 {
552 	pgd_free(mm, mm->pgd);
553 }
554 #else
555 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
556 {
557 	down_write(&oldmm->mmap_sem);
558 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
559 	up_write(&oldmm->mmap_sem);
560 	return 0;
561 }
562 #define mm_alloc_pgd(mm)	(0)
563 #define mm_free_pgd(mm)
564 #endif /* CONFIG_MMU */
565 
566 static void check_mm(struct mm_struct *mm)
567 {
568 	int i;
569 
570 	for (i = 0; i < NR_MM_COUNTERS; i++) {
571 		long x = atomic_long_read(&mm->rss_stat.count[i]);
572 
573 		if (unlikely(x))
574 			printk(KERN_ALERT "BUG: Bad rss-counter state "
575 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
576 	}
577 
578 	if (mm_pgtables_bytes(mm))
579 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
580 				mm_pgtables_bytes(mm));
581 
582 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
583 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
584 #endif
585 }
586 
587 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
588 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
589 
590 /*
591  * Called when the last reference to the mm
592  * is dropped: either by a lazy thread or by
593  * mmput. Free the page directory and the mm.
594  */
595 static void __mmdrop(struct mm_struct *mm)
596 {
597 	BUG_ON(mm == &init_mm);
598 	mm_free_pgd(mm);
599 	destroy_context(mm);
600 	hmm_mm_destroy(mm);
601 	mmu_notifier_mm_destroy(mm);
602 	check_mm(mm);
603 	put_user_ns(mm->user_ns);
604 	free_mm(mm);
605 }
606 
607 void mmdrop(struct mm_struct *mm)
608 {
609 	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
610 		__mmdrop(mm);
611 }
612 EXPORT_SYMBOL_GPL(mmdrop);
613 
614 static void mmdrop_async_fn(struct work_struct *work)
615 {
616 	struct mm_struct *mm;
617 
618 	mm = container_of(work, struct mm_struct, async_put_work);
619 	__mmdrop(mm);
620 }
621 
622 static void mmdrop_async(struct mm_struct *mm)
623 {
624 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
625 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
626 		schedule_work(&mm->async_put_work);
627 	}
628 }
629 
630 static inline void free_signal_struct(struct signal_struct *sig)
631 {
632 	taskstats_tgid_free(sig);
633 	sched_autogroup_exit(sig);
634 	/*
635 	 * __mmdrop is not safe to call from softirq context on x86 due to
636 	 * pgd_dtor so postpone it to the async context
637 	 */
638 	if (sig->oom_mm)
639 		mmdrop_async(sig->oom_mm);
640 	kmem_cache_free(signal_cachep, sig);
641 }
642 
643 static inline void put_signal_struct(struct signal_struct *sig)
644 {
645 	if (atomic_dec_and_test(&sig->sigcnt))
646 		free_signal_struct(sig);
647 }
648 
649 void __put_task_struct(struct task_struct *tsk)
650 {
651 	WARN_ON(!tsk->exit_state);
652 	WARN_ON(atomic_read(&tsk->usage));
653 	WARN_ON(tsk == current);
654 
655 	cgroup_free(tsk);
656 	task_numa_free(tsk);
657 	security_task_free(tsk);
658 	exit_creds(tsk);
659 	delayacct_tsk_free(tsk);
660 	put_signal_struct(tsk->signal);
661 
662 	if (!profile_handoff_task(tsk))
663 		free_task(tsk);
664 }
665 EXPORT_SYMBOL_GPL(__put_task_struct);
666 
667 void __init __weak arch_task_cache_init(void) { }
668 
669 /*
670  * set_max_threads
671  */
672 static void set_max_threads(unsigned int max_threads_suggested)
673 {
674 	u64 threads;
675 
676 	/*
677 	 * The number of threads shall be limited such that the thread
678 	 * structures may only consume a small part of the available memory.
679 	 */
680 	if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
681 		threads = MAX_THREADS;
682 	else
683 		threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
684 				    (u64) THREAD_SIZE * 8UL);
685 
686 	if (threads > max_threads_suggested)
687 		threads = max_threads_suggested;
688 
689 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
690 }
691 
692 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
693 /* Initialized by the architecture: */
694 int arch_task_struct_size __read_mostly;
695 #endif
696 
697 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
698 {
699 	/* Fetch thread_struct whitelist for the architecture. */
700 	arch_thread_struct_whitelist(offset, size);
701 
702 	/*
703 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
704 	 * adjust offset to position of thread_struct in task_struct.
705 	 */
706 	if (unlikely(*size == 0))
707 		*offset = 0;
708 	else
709 		*offset += offsetof(struct task_struct, thread);
710 }
711 
712 void __init fork_init(void)
713 {
714 	int i;
715 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
716 #ifndef ARCH_MIN_TASKALIGN
717 #define ARCH_MIN_TASKALIGN	0
718 #endif
719 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
720 	unsigned long useroffset, usersize;
721 
722 	/* create a slab on which task_structs can be allocated */
723 	task_struct_whitelist(&useroffset, &usersize);
724 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
725 			arch_task_struct_size, align,
726 			SLAB_PANIC|SLAB_ACCOUNT,
727 			useroffset, usersize, NULL);
728 #endif
729 
730 	/* do the arch specific task caches init */
731 	arch_task_cache_init();
732 
733 	set_max_threads(MAX_THREADS);
734 
735 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
736 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
737 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
738 		init_task.signal->rlim[RLIMIT_NPROC];
739 
740 	for (i = 0; i < UCOUNT_COUNTS; i++) {
741 		init_user_ns.ucount_max[i] = max_threads/2;
742 	}
743 
744 #ifdef CONFIG_VMAP_STACK
745 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
746 			  NULL, free_vm_stack_cache);
747 #endif
748 
749 	lockdep_init_task(&init_task);
750 }
751 
752 int __weak arch_dup_task_struct(struct task_struct *dst,
753 					       struct task_struct *src)
754 {
755 	*dst = *src;
756 	return 0;
757 }
758 
759 void set_task_stack_end_magic(struct task_struct *tsk)
760 {
761 	unsigned long *stackend;
762 
763 	stackend = end_of_stack(tsk);
764 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
765 }
766 
767 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
768 {
769 	struct task_struct *tsk;
770 	unsigned long *stack;
771 	struct vm_struct *stack_vm_area;
772 	int err;
773 
774 	if (node == NUMA_NO_NODE)
775 		node = tsk_fork_get_node(orig);
776 	tsk = alloc_task_struct_node(node);
777 	if (!tsk)
778 		return NULL;
779 
780 	stack = alloc_thread_stack_node(tsk, node);
781 	if (!stack)
782 		goto free_tsk;
783 
784 	stack_vm_area = task_stack_vm_area(tsk);
785 
786 	err = arch_dup_task_struct(tsk, orig);
787 
788 	/*
789 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
790 	 * sure they're properly initialized before using any stack-related
791 	 * functions again.
792 	 */
793 	tsk->stack = stack;
794 #ifdef CONFIG_VMAP_STACK
795 	tsk->stack_vm_area = stack_vm_area;
796 #endif
797 #ifdef CONFIG_THREAD_INFO_IN_TASK
798 	atomic_set(&tsk->stack_refcount, 1);
799 #endif
800 
801 	if (err)
802 		goto free_stack;
803 
804 #ifdef CONFIG_SECCOMP
805 	/*
806 	 * We must handle setting up seccomp filters once we're under
807 	 * the sighand lock in case orig has changed between now and
808 	 * then. Until then, filter must be NULL to avoid messing up
809 	 * the usage counts on the error path calling free_task.
810 	 */
811 	tsk->seccomp.filter = NULL;
812 #endif
813 
814 	setup_thread_stack(tsk, orig);
815 	clear_user_return_notifier(tsk);
816 	clear_tsk_need_resched(tsk);
817 	set_task_stack_end_magic(tsk);
818 
819 #ifdef CONFIG_CC_STACKPROTECTOR
820 	tsk->stack_canary = get_random_canary();
821 #endif
822 
823 	/*
824 	 * One for us, one for whoever does the "release_task()" (usually
825 	 * parent)
826 	 */
827 	atomic_set(&tsk->usage, 2);
828 #ifdef CONFIG_BLK_DEV_IO_TRACE
829 	tsk->btrace_seq = 0;
830 #endif
831 	tsk->splice_pipe = NULL;
832 	tsk->task_frag.page = NULL;
833 	tsk->wake_q.next = NULL;
834 
835 	account_kernel_stack(tsk, 1);
836 
837 	kcov_task_init(tsk);
838 
839 #ifdef CONFIG_FAULT_INJECTION
840 	tsk->fail_nth = 0;
841 #endif
842 
843 	return tsk;
844 
845 free_stack:
846 	free_thread_stack(tsk);
847 free_tsk:
848 	free_task_struct(tsk);
849 	return NULL;
850 }
851 
852 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
853 
854 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
855 
856 static int __init coredump_filter_setup(char *s)
857 {
858 	default_dump_filter =
859 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
860 		MMF_DUMP_FILTER_MASK;
861 	return 1;
862 }
863 
864 __setup("coredump_filter=", coredump_filter_setup);
865 
866 #include <linux/init_task.h>
867 
868 static void mm_init_aio(struct mm_struct *mm)
869 {
870 #ifdef CONFIG_AIO
871 	spin_lock_init(&mm->ioctx_lock);
872 	mm->ioctx_table = NULL;
873 #endif
874 }
875 
876 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
877 {
878 #ifdef CONFIG_MEMCG
879 	mm->owner = p;
880 #endif
881 }
882 
883 static void mm_init_uprobes_state(struct mm_struct *mm)
884 {
885 #ifdef CONFIG_UPROBES
886 	mm->uprobes_state.xol_area = NULL;
887 #endif
888 }
889 
890 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
891 	struct user_namespace *user_ns)
892 {
893 	mm->mmap = NULL;
894 	mm->mm_rb = RB_ROOT;
895 	mm->vmacache_seqnum = 0;
896 	atomic_set(&mm->mm_users, 1);
897 	atomic_set(&mm->mm_count, 1);
898 	init_rwsem(&mm->mmap_sem);
899 	INIT_LIST_HEAD(&mm->mmlist);
900 	mm->core_state = NULL;
901 	mm_pgtables_bytes_init(mm);
902 	mm->map_count = 0;
903 	mm->locked_vm = 0;
904 	mm->pinned_vm = 0;
905 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
906 	spin_lock_init(&mm->page_table_lock);
907 	mm_init_cpumask(mm);
908 	mm_init_aio(mm);
909 	mm_init_owner(mm, p);
910 	RCU_INIT_POINTER(mm->exe_file, NULL);
911 	mmu_notifier_mm_init(mm);
912 	hmm_mm_init(mm);
913 	init_tlb_flush_pending(mm);
914 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
915 	mm->pmd_huge_pte = NULL;
916 #endif
917 	mm_init_uprobes_state(mm);
918 
919 	if (current->mm) {
920 		mm->flags = current->mm->flags & MMF_INIT_MASK;
921 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
922 	} else {
923 		mm->flags = default_dump_filter;
924 		mm->def_flags = 0;
925 	}
926 
927 	if (mm_alloc_pgd(mm))
928 		goto fail_nopgd;
929 
930 	if (init_new_context(p, mm))
931 		goto fail_nocontext;
932 
933 	mm->user_ns = get_user_ns(user_ns);
934 	return mm;
935 
936 fail_nocontext:
937 	mm_free_pgd(mm);
938 fail_nopgd:
939 	free_mm(mm);
940 	return NULL;
941 }
942 
943 /*
944  * Allocate and initialize an mm_struct.
945  */
946 struct mm_struct *mm_alloc(void)
947 {
948 	struct mm_struct *mm;
949 
950 	mm = allocate_mm();
951 	if (!mm)
952 		return NULL;
953 
954 	memset(mm, 0, sizeof(*mm));
955 	return mm_init(mm, current, current_user_ns());
956 }
957 
958 static inline void __mmput(struct mm_struct *mm)
959 {
960 	VM_BUG_ON(atomic_read(&mm->mm_users));
961 
962 	uprobe_clear_state(mm);
963 	exit_aio(mm);
964 	ksm_exit(mm);
965 	khugepaged_exit(mm); /* must run before exit_mmap */
966 	exit_mmap(mm);
967 	mm_put_huge_zero_page(mm);
968 	set_mm_exe_file(mm, NULL);
969 	if (!list_empty(&mm->mmlist)) {
970 		spin_lock(&mmlist_lock);
971 		list_del(&mm->mmlist);
972 		spin_unlock(&mmlist_lock);
973 	}
974 	if (mm->binfmt)
975 		module_put(mm->binfmt->module);
976 	mmdrop(mm);
977 }
978 
979 /*
980  * Decrement the use count and release all resources for an mm.
981  */
982 void mmput(struct mm_struct *mm)
983 {
984 	might_sleep();
985 
986 	if (atomic_dec_and_test(&mm->mm_users))
987 		__mmput(mm);
988 }
989 EXPORT_SYMBOL_GPL(mmput);
990 
991 #ifdef CONFIG_MMU
992 static void mmput_async_fn(struct work_struct *work)
993 {
994 	struct mm_struct *mm = container_of(work, struct mm_struct,
995 					    async_put_work);
996 
997 	__mmput(mm);
998 }
999 
1000 void mmput_async(struct mm_struct *mm)
1001 {
1002 	if (atomic_dec_and_test(&mm->mm_users)) {
1003 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1004 		schedule_work(&mm->async_put_work);
1005 	}
1006 }
1007 #endif
1008 
1009 /**
1010  * set_mm_exe_file - change a reference to the mm's executable file
1011  *
1012  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1013  *
1014  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1015  * invocations: in mmput() nobody alive left, in execve task is single
1016  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1017  * mm->exe_file, but does so without using set_mm_exe_file() in order
1018  * to do avoid the need for any locks.
1019  */
1020 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1021 {
1022 	struct file *old_exe_file;
1023 
1024 	/*
1025 	 * It is safe to dereference the exe_file without RCU as
1026 	 * this function is only called if nobody else can access
1027 	 * this mm -- see comment above for justification.
1028 	 */
1029 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1030 
1031 	if (new_exe_file)
1032 		get_file(new_exe_file);
1033 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1034 	if (old_exe_file)
1035 		fput(old_exe_file);
1036 }
1037 
1038 /**
1039  * get_mm_exe_file - acquire a reference to the mm's executable file
1040  *
1041  * Returns %NULL if mm has no associated executable file.
1042  * User must release file via fput().
1043  */
1044 struct file *get_mm_exe_file(struct mm_struct *mm)
1045 {
1046 	struct file *exe_file;
1047 
1048 	rcu_read_lock();
1049 	exe_file = rcu_dereference(mm->exe_file);
1050 	if (exe_file && !get_file_rcu(exe_file))
1051 		exe_file = NULL;
1052 	rcu_read_unlock();
1053 	return exe_file;
1054 }
1055 EXPORT_SYMBOL(get_mm_exe_file);
1056 
1057 /**
1058  * get_task_exe_file - acquire a reference to the task's executable file
1059  *
1060  * Returns %NULL if task's mm (if any) has no associated executable file or
1061  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1062  * User must release file via fput().
1063  */
1064 struct file *get_task_exe_file(struct task_struct *task)
1065 {
1066 	struct file *exe_file = NULL;
1067 	struct mm_struct *mm;
1068 
1069 	task_lock(task);
1070 	mm = task->mm;
1071 	if (mm) {
1072 		if (!(task->flags & PF_KTHREAD))
1073 			exe_file = get_mm_exe_file(mm);
1074 	}
1075 	task_unlock(task);
1076 	return exe_file;
1077 }
1078 EXPORT_SYMBOL(get_task_exe_file);
1079 
1080 /**
1081  * get_task_mm - acquire a reference to the task's mm
1082  *
1083  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1084  * this kernel workthread has transiently adopted a user mm with use_mm,
1085  * to do its AIO) is not set and if so returns a reference to it, after
1086  * bumping up the use count.  User must release the mm via mmput()
1087  * after use.  Typically used by /proc and ptrace.
1088  */
1089 struct mm_struct *get_task_mm(struct task_struct *task)
1090 {
1091 	struct mm_struct *mm;
1092 
1093 	task_lock(task);
1094 	mm = task->mm;
1095 	if (mm) {
1096 		if (task->flags & PF_KTHREAD)
1097 			mm = NULL;
1098 		else
1099 			mmget(mm);
1100 	}
1101 	task_unlock(task);
1102 	return mm;
1103 }
1104 EXPORT_SYMBOL_GPL(get_task_mm);
1105 
1106 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1107 {
1108 	struct mm_struct *mm;
1109 	int err;
1110 
1111 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1112 	if (err)
1113 		return ERR_PTR(err);
1114 
1115 	mm = get_task_mm(task);
1116 	if (mm && mm != current->mm &&
1117 			!ptrace_may_access(task, mode)) {
1118 		mmput(mm);
1119 		mm = ERR_PTR(-EACCES);
1120 	}
1121 	mutex_unlock(&task->signal->cred_guard_mutex);
1122 
1123 	return mm;
1124 }
1125 
1126 static void complete_vfork_done(struct task_struct *tsk)
1127 {
1128 	struct completion *vfork;
1129 
1130 	task_lock(tsk);
1131 	vfork = tsk->vfork_done;
1132 	if (likely(vfork)) {
1133 		tsk->vfork_done = NULL;
1134 		complete(vfork);
1135 	}
1136 	task_unlock(tsk);
1137 }
1138 
1139 static int wait_for_vfork_done(struct task_struct *child,
1140 				struct completion *vfork)
1141 {
1142 	int killed;
1143 
1144 	freezer_do_not_count();
1145 	killed = wait_for_completion_killable(vfork);
1146 	freezer_count();
1147 
1148 	if (killed) {
1149 		task_lock(child);
1150 		child->vfork_done = NULL;
1151 		task_unlock(child);
1152 	}
1153 
1154 	put_task_struct(child);
1155 	return killed;
1156 }
1157 
1158 /* Please note the differences between mmput and mm_release.
1159  * mmput is called whenever we stop holding onto a mm_struct,
1160  * error success whatever.
1161  *
1162  * mm_release is called after a mm_struct has been removed
1163  * from the current process.
1164  *
1165  * This difference is important for error handling, when we
1166  * only half set up a mm_struct for a new process and need to restore
1167  * the old one.  Because we mmput the new mm_struct before
1168  * restoring the old one. . .
1169  * Eric Biederman 10 January 1998
1170  */
1171 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1172 {
1173 	/* Get rid of any futexes when releasing the mm */
1174 #ifdef CONFIG_FUTEX
1175 	if (unlikely(tsk->robust_list)) {
1176 		exit_robust_list(tsk);
1177 		tsk->robust_list = NULL;
1178 	}
1179 #ifdef CONFIG_COMPAT
1180 	if (unlikely(tsk->compat_robust_list)) {
1181 		compat_exit_robust_list(tsk);
1182 		tsk->compat_robust_list = NULL;
1183 	}
1184 #endif
1185 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1186 		exit_pi_state_list(tsk);
1187 #endif
1188 
1189 	uprobe_free_utask(tsk);
1190 
1191 	/* Get rid of any cached register state */
1192 	deactivate_mm(tsk, mm);
1193 
1194 	/*
1195 	 * Signal userspace if we're not exiting with a core dump
1196 	 * because we want to leave the value intact for debugging
1197 	 * purposes.
1198 	 */
1199 	if (tsk->clear_child_tid) {
1200 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1201 		    atomic_read(&mm->mm_users) > 1) {
1202 			/*
1203 			 * We don't check the error code - if userspace has
1204 			 * not set up a proper pointer then tough luck.
1205 			 */
1206 			put_user(0, tsk->clear_child_tid);
1207 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1208 					1, NULL, NULL, 0);
1209 		}
1210 		tsk->clear_child_tid = NULL;
1211 	}
1212 
1213 	/*
1214 	 * All done, finally we can wake up parent and return this mm to him.
1215 	 * Also kthread_stop() uses this completion for synchronization.
1216 	 */
1217 	if (tsk->vfork_done)
1218 		complete_vfork_done(tsk);
1219 }
1220 
1221 /*
1222  * Allocate a new mm structure and copy contents from the
1223  * mm structure of the passed in task structure.
1224  */
1225 static struct mm_struct *dup_mm(struct task_struct *tsk)
1226 {
1227 	struct mm_struct *mm, *oldmm = current->mm;
1228 	int err;
1229 
1230 	mm = allocate_mm();
1231 	if (!mm)
1232 		goto fail_nomem;
1233 
1234 	memcpy(mm, oldmm, sizeof(*mm));
1235 
1236 	if (!mm_init(mm, tsk, mm->user_ns))
1237 		goto fail_nomem;
1238 
1239 	err = dup_mmap(mm, oldmm);
1240 	if (err)
1241 		goto free_pt;
1242 
1243 	mm->hiwater_rss = get_mm_rss(mm);
1244 	mm->hiwater_vm = mm->total_vm;
1245 
1246 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1247 		goto free_pt;
1248 
1249 	return mm;
1250 
1251 free_pt:
1252 	/* don't put binfmt in mmput, we haven't got module yet */
1253 	mm->binfmt = NULL;
1254 	mmput(mm);
1255 
1256 fail_nomem:
1257 	return NULL;
1258 }
1259 
1260 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1261 {
1262 	struct mm_struct *mm, *oldmm;
1263 	int retval;
1264 
1265 	tsk->min_flt = tsk->maj_flt = 0;
1266 	tsk->nvcsw = tsk->nivcsw = 0;
1267 #ifdef CONFIG_DETECT_HUNG_TASK
1268 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1269 #endif
1270 
1271 	tsk->mm = NULL;
1272 	tsk->active_mm = NULL;
1273 
1274 	/*
1275 	 * Are we cloning a kernel thread?
1276 	 *
1277 	 * We need to steal a active VM for that..
1278 	 */
1279 	oldmm = current->mm;
1280 	if (!oldmm)
1281 		return 0;
1282 
1283 	/* initialize the new vmacache entries */
1284 	vmacache_flush(tsk);
1285 
1286 	if (clone_flags & CLONE_VM) {
1287 		mmget(oldmm);
1288 		mm = oldmm;
1289 		goto good_mm;
1290 	}
1291 
1292 	retval = -ENOMEM;
1293 	mm = dup_mm(tsk);
1294 	if (!mm)
1295 		goto fail_nomem;
1296 
1297 good_mm:
1298 	tsk->mm = mm;
1299 	tsk->active_mm = mm;
1300 	return 0;
1301 
1302 fail_nomem:
1303 	return retval;
1304 }
1305 
1306 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1307 {
1308 	struct fs_struct *fs = current->fs;
1309 	if (clone_flags & CLONE_FS) {
1310 		/* tsk->fs is already what we want */
1311 		spin_lock(&fs->lock);
1312 		if (fs->in_exec) {
1313 			spin_unlock(&fs->lock);
1314 			return -EAGAIN;
1315 		}
1316 		fs->users++;
1317 		spin_unlock(&fs->lock);
1318 		return 0;
1319 	}
1320 	tsk->fs = copy_fs_struct(fs);
1321 	if (!tsk->fs)
1322 		return -ENOMEM;
1323 	return 0;
1324 }
1325 
1326 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1327 {
1328 	struct files_struct *oldf, *newf;
1329 	int error = 0;
1330 
1331 	/*
1332 	 * A background process may not have any files ...
1333 	 */
1334 	oldf = current->files;
1335 	if (!oldf)
1336 		goto out;
1337 
1338 	if (clone_flags & CLONE_FILES) {
1339 		atomic_inc(&oldf->count);
1340 		goto out;
1341 	}
1342 
1343 	newf = dup_fd(oldf, &error);
1344 	if (!newf)
1345 		goto out;
1346 
1347 	tsk->files = newf;
1348 	error = 0;
1349 out:
1350 	return error;
1351 }
1352 
1353 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1354 {
1355 #ifdef CONFIG_BLOCK
1356 	struct io_context *ioc = current->io_context;
1357 	struct io_context *new_ioc;
1358 
1359 	if (!ioc)
1360 		return 0;
1361 	/*
1362 	 * Share io context with parent, if CLONE_IO is set
1363 	 */
1364 	if (clone_flags & CLONE_IO) {
1365 		ioc_task_link(ioc);
1366 		tsk->io_context = ioc;
1367 	} else if (ioprio_valid(ioc->ioprio)) {
1368 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1369 		if (unlikely(!new_ioc))
1370 			return -ENOMEM;
1371 
1372 		new_ioc->ioprio = ioc->ioprio;
1373 		put_io_context(new_ioc);
1374 	}
1375 #endif
1376 	return 0;
1377 }
1378 
1379 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1380 {
1381 	struct sighand_struct *sig;
1382 
1383 	if (clone_flags & CLONE_SIGHAND) {
1384 		atomic_inc(&current->sighand->count);
1385 		return 0;
1386 	}
1387 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1388 	rcu_assign_pointer(tsk->sighand, sig);
1389 	if (!sig)
1390 		return -ENOMEM;
1391 
1392 	atomic_set(&sig->count, 1);
1393 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1394 	return 0;
1395 }
1396 
1397 void __cleanup_sighand(struct sighand_struct *sighand)
1398 {
1399 	if (atomic_dec_and_test(&sighand->count)) {
1400 		signalfd_cleanup(sighand);
1401 		/*
1402 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1403 		 * without an RCU grace period, see __lock_task_sighand().
1404 		 */
1405 		kmem_cache_free(sighand_cachep, sighand);
1406 	}
1407 }
1408 
1409 #ifdef CONFIG_POSIX_TIMERS
1410 /*
1411  * Initialize POSIX timer handling for a thread group.
1412  */
1413 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1414 {
1415 	unsigned long cpu_limit;
1416 
1417 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1418 	if (cpu_limit != RLIM_INFINITY) {
1419 		sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1420 		sig->cputimer.running = true;
1421 	}
1422 
1423 	/* The timer lists. */
1424 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1425 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1426 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1427 }
1428 #else
1429 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1430 #endif
1431 
1432 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1433 {
1434 	struct signal_struct *sig;
1435 
1436 	if (clone_flags & CLONE_THREAD)
1437 		return 0;
1438 
1439 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1440 	tsk->signal = sig;
1441 	if (!sig)
1442 		return -ENOMEM;
1443 
1444 	sig->nr_threads = 1;
1445 	atomic_set(&sig->live, 1);
1446 	atomic_set(&sig->sigcnt, 1);
1447 
1448 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1449 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1450 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1451 
1452 	init_waitqueue_head(&sig->wait_chldexit);
1453 	sig->curr_target = tsk;
1454 	init_sigpending(&sig->shared_pending);
1455 	seqlock_init(&sig->stats_lock);
1456 	prev_cputime_init(&sig->prev_cputime);
1457 
1458 #ifdef CONFIG_POSIX_TIMERS
1459 	INIT_LIST_HEAD(&sig->posix_timers);
1460 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1461 	sig->real_timer.function = it_real_fn;
1462 #endif
1463 
1464 	task_lock(current->group_leader);
1465 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1466 	task_unlock(current->group_leader);
1467 
1468 	posix_cpu_timers_init_group(sig);
1469 
1470 	tty_audit_fork(sig);
1471 	sched_autogroup_fork(sig);
1472 
1473 	sig->oom_score_adj = current->signal->oom_score_adj;
1474 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1475 
1476 	mutex_init(&sig->cred_guard_mutex);
1477 
1478 	return 0;
1479 }
1480 
1481 static void copy_seccomp(struct task_struct *p)
1482 {
1483 #ifdef CONFIG_SECCOMP
1484 	/*
1485 	 * Must be called with sighand->lock held, which is common to
1486 	 * all threads in the group. Holding cred_guard_mutex is not
1487 	 * needed because this new task is not yet running and cannot
1488 	 * be racing exec.
1489 	 */
1490 	assert_spin_locked(&current->sighand->siglock);
1491 
1492 	/* Ref-count the new filter user, and assign it. */
1493 	get_seccomp_filter(current);
1494 	p->seccomp = current->seccomp;
1495 
1496 	/*
1497 	 * Explicitly enable no_new_privs here in case it got set
1498 	 * between the task_struct being duplicated and holding the
1499 	 * sighand lock. The seccomp state and nnp must be in sync.
1500 	 */
1501 	if (task_no_new_privs(current))
1502 		task_set_no_new_privs(p);
1503 
1504 	/*
1505 	 * If the parent gained a seccomp mode after copying thread
1506 	 * flags and between before we held the sighand lock, we have
1507 	 * to manually enable the seccomp thread flag here.
1508 	 */
1509 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1510 		set_tsk_thread_flag(p, TIF_SECCOMP);
1511 #endif
1512 }
1513 
1514 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1515 {
1516 	current->clear_child_tid = tidptr;
1517 
1518 	return task_pid_vnr(current);
1519 }
1520 
1521 static void rt_mutex_init_task(struct task_struct *p)
1522 {
1523 	raw_spin_lock_init(&p->pi_lock);
1524 #ifdef CONFIG_RT_MUTEXES
1525 	p->pi_waiters = RB_ROOT_CACHED;
1526 	p->pi_top_task = NULL;
1527 	p->pi_blocked_on = NULL;
1528 #endif
1529 }
1530 
1531 #ifdef CONFIG_POSIX_TIMERS
1532 /*
1533  * Initialize POSIX timer handling for a single task.
1534  */
1535 static void posix_cpu_timers_init(struct task_struct *tsk)
1536 {
1537 	tsk->cputime_expires.prof_exp = 0;
1538 	tsk->cputime_expires.virt_exp = 0;
1539 	tsk->cputime_expires.sched_exp = 0;
1540 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1541 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1542 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1543 }
1544 #else
1545 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1546 #endif
1547 
1548 static inline void
1549 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1550 {
1551 	 task->pids[type].pid = pid;
1552 }
1553 
1554 static inline void rcu_copy_process(struct task_struct *p)
1555 {
1556 #ifdef CONFIG_PREEMPT_RCU
1557 	p->rcu_read_lock_nesting = 0;
1558 	p->rcu_read_unlock_special.s = 0;
1559 	p->rcu_blocked_node = NULL;
1560 	INIT_LIST_HEAD(&p->rcu_node_entry);
1561 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1562 #ifdef CONFIG_TASKS_RCU
1563 	p->rcu_tasks_holdout = false;
1564 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1565 	p->rcu_tasks_idle_cpu = -1;
1566 #endif /* #ifdef CONFIG_TASKS_RCU */
1567 }
1568 
1569 /*
1570  * This creates a new process as a copy of the old one,
1571  * but does not actually start it yet.
1572  *
1573  * It copies the registers, and all the appropriate
1574  * parts of the process environment (as per the clone
1575  * flags). The actual kick-off is left to the caller.
1576  */
1577 static __latent_entropy struct task_struct *copy_process(
1578 					unsigned long clone_flags,
1579 					unsigned long stack_start,
1580 					unsigned long stack_size,
1581 					int __user *child_tidptr,
1582 					struct pid *pid,
1583 					int trace,
1584 					unsigned long tls,
1585 					int node)
1586 {
1587 	int retval;
1588 	struct task_struct *p;
1589 
1590 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1591 		return ERR_PTR(-EINVAL);
1592 
1593 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1594 		return ERR_PTR(-EINVAL);
1595 
1596 	/*
1597 	 * Thread groups must share signals as well, and detached threads
1598 	 * can only be started up within the thread group.
1599 	 */
1600 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1601 		return ERR_PTR(-EINVAL);
1602 
1603 	/*
1604 	 * Shared signal handlers imply shared VM. By way of the above,
1605 	 * thread groups also imply shared VM. Blocking this case allows
1606 	 * for various simplifications in other code.
1607 	 */
1608 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1609 		return ERR_PTR(-EINVAL);
1610 
1611 	/*
1612 	 * Siblings of global init remain as zombies on exit since they are
1613 	 * not reaped by their parent (swapper). To solve this and to avoid
1614 	 * multi-rooted process trees, prevent global and container-inits
1615 	 * from creating siblings.
1616 	 */
1617 	if ((clone_flags & CLONE_PARENT) &&
1618 				current->signal->flags & SIGNAL_UNKILLABLE)
1619 		return ERR_PTR(-EINVAL);
1620 
1621 	/*
1622 	 * If the new process will be in a different pid or user namespace
1623 	 * do not allow it to share a thread group with the forking task.
1624 	 */
1625 	if (clone_flags & CLONE_THREAD) {
1626 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1627 		    (task_active_pid_ns(current) !=
1628 				current->nsproxy->pid_ns_for_children))
1629 			return ERR_PTR(-EINVAL);
1630 	}
1631 
1632 	retval = -ENOMEM;
1633 	p = dup_task_struct(current, node);
1634 	if (!p)
1635 		goto fork_out;
1636 
1637 	/*
1638 	 * This _must_ happen before we call free_task(), i.e. before we jump
1639 	 * to any of the bad_fork_* labels. This is to avoid freeing
1640 	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1641 	 * kernel threads (PF_KTHREAD).
1642 	 */
1643 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1644 	/*
1645 	 * Clear TID on mm_release()?
1646 	 */
1647 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1648 
1649 	ftrace_graph_init_task(p);
1650 
1651 	rt_mutex_init_task(p);
1652 
1653 #ifdef CONFIG_PROVE_LOCKING
1654 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1655 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1656 #endif
1657 	retval = -EAGAIN;
1658 	if (atomic_read(&p->real_cred->user->processes) >=
1659 			task_rlimit(p, RLIMIT_NPROC)) {
1660 		if (p->real_cred->user != INIT_USER &&
1661 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1662 			goto bad_fork_free;
1663 	}
1664 	current->flags &= ~PF_NPROC_EXCEEDED;
1665 
1666 	retval = copy_creds(p, clone_flags);
1667 	if (retval < 0)
1668 		goto bad_fork_free;
1669 
1670 	/*
1671 	 * If multiple threads are within copy_process(), then this check
1672 	 * triggers too late. This doesn't hurt, the check is only there
1673 	 * to stop root fork bombs.
1674 	 */
1675 	retval = -EAGAIN;
1676 	if (nr_threads >= max_threads)
1677 		goto bad_fork_cleanup_count;
1678 
1679 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1680 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1681 	p->flags |= PF_FORKNOEXEC;
1682 	INIT_LIST_HEAD(&p->children);
1683 	INIT_LIST_HEAD(&p->sibling);
1684 	rcu_copy_process(p);
1685 	p->vfork_done = NULL;
1686 	spin_lock_init(&p->alloc_lock);
1687 
1688 	init_sigpending(&p->pending);
1689 
1690 	p->utime = p->stime = p->gtime = 0;
1691 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1692 	p->utimescaled = p->stimescaled = 0;
1693 #endif
1694 	prev_cputime_init(&p->prev_cputime);
1695 
1696 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1697 	seqcount_init(&p->vtime.seqcount);
1698 	p->vtime.starttime = 0;
1699 	p->vtime.state = VTIME_INACTIVE;
1700 #endif
1701 
1702 #if defined(SPLIT_RSS_COUNTING)
1703 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1704 #endif
1705 
1706 	p->default_timer_slack_ns = current->timer_slack_ns;
1707 
1708 	task_io_accounting_init(&p->ioac);
1709 	acct_clear_integrals(p);
1710 
1711 	posix_cpu_timers_init(p);
1712 
1713 	p->start_time = ktime_get_ns();
1714 	p->real_start_time = ktime_get_boot_ns();
1715 	p->io_context = NULL;
1716 	p->audit_context = NULL;
1717 	cgroup_fork(p);
1718 #ifdef CONFIG_NUMA
1719 	p->mempolicy = mpol_dup(p->mempolicy);
1720 	if (IS_ERR(p->mempolicy)) {
1721 		retval = PTR_ERR(p->mempolicy);
1722 		p->mempolicy = NULL;
1723 		goto bad_fork_cleanup_threadgroup_lock;
1724 	}
1725 #endif
1726 #ifdef CONFIG_CPUSETS
1727 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1728 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1729 	seqcount_init(&p->mems_allowed_seq);
1730 #endif
1731 #ifdef CONFIG_TRACE_IRQFLAGS
1732 	p->irq_events = 0;
1733 	p->hardirqs_enabled = 0;
1734 	p->hardirq_enable_ip = 0;
1735 	p->hardirq_enable_event = 0;
1736 	p->hardirq_disable_ip = _THIS_IP_;
1737 	p->hardirq_disable_event = 0;
1738 	p->softirqs_enabled = 1;
1739 	p->softirq_enable_ip = _THIS_IP_;
1740 	p->softirq_enable_event = 0;
1741 	p->softirq_disable_ip = 0;
1742 	p->softirq_disable_event = 0;
1743 	p->hardirq_context = 0;
1744 	p->softirq_context = 0;
1745 #endif
1746 
1747 	p->pagefault_disabled = 0;
1748 
1749 #ifdef CONFIG_LOCKDEP
1750 	p->lockdep_depth = 0; /* no locks held yet */
1751 	p->curr_chain_key = 0;
1752 	p->lockdep_recursion = 0;
1753 	lockdep_init_task(p);
1754 #endif
1755 
1756 #ifdef CONFIG_DEBUG_MUTEXES
1757 	p->blocked_on = NULL; /* not blocked yet */
1758 #endif
1759 #ifdef CONFIG_BCACHE
1760 	p->sequential_io	= 0;
1761 	p->sequential_io_avg	= 0;
1762 #endif
1763 
1764 	/* Perform scheduler related setup. Assign this task to a CPU. */
1765 	retval = sched_fork(clone_flags, p);
1766 	if (retval)
1767 		goto bad_fork_cleanup_policy;
1768 
1769 	retval = perf_event_init_task(p);
1770 	if (retval)
1771 		goto bad_fork_cleanup_policy;
1772 	retval = audit_alloc(p);
1773 	if (retval)
1774 		goto bad_fork_cleanup_perf;
1775 	/* copy all the process information */
1776 	shm_init_task(p);
1777 	retval = security_task_alloc(p, clone_flags);
1778 	if (retval)
1779 		goto bad_fork_cleanup_audit;
1780 	retval = copy_semundo(clone_flags, p);
1781 	if (retval)
1782 		goto bad_fork_cleanup_security;
1783 	retval = copy_files(clone_flags, p);
1784 	if (retval)
1785 		goto bad_fork_cleanup_semundo;
1786 	retval = copy_fs(clone_flags, p);
1787 	if (retval)
1788 		goto bad_fork_cleanup_files;
1789 	retval = copy_sighand(clone_flags, p);
1790 	if (retval)
1791 		goto bad_fork_cleanup_fs;
1792 	retval = copy_signal(clone_flags, p);
1793 	if (retval)
1794 		goto bad_fork_cleanup_sighand;
1795 	retval = copy_mm(clone_flags, p);
1796 	if (retval)
1797 		goto bad_fork_cleanup_signal;
1798 	retval = copy_namespaces(clone_flags, p);
1799 	if (retval)
1800 		goto bad_fork_cleanup_mm;
1801 	retval = copy_io(clone_flags, p);
1802 	if (retval)
1803 		goto bad_fork_cleanup_namespaces;
1804 	retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1805 	if (retval)
1806 		goto bad_fork_cleanup_io;
1807 
1808 	if (pid != &init_struct_pid) {
1809 		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1810 		if (IS_ERR(pid)) {
1811 			retval = PTR_ERR(pid);
1812 			goto bad_fork_cleanup_thread;
1813 		}
1814 	}
1815 
1816 #ifdef CONFIG_BLOCK
1817 	p->plug = NULL;
1818 #endif
1819 #ifdef CONFIG_FUTEX
1820 	p->robust_list = NULL;
1821 #ifdef CONFIG_COMPAT
1822 	p->compat_robust_list = NULL;
1823 #endif
1824 	INIT_LIST_HEAD(&p->pi_state_list);
1825 	p->pi_state_cache = NULL;
1826 #endif
1827 	/*
1828 	 * sigaltstack should be cleared when sharing the same VM
1829 	 */
1830 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1831 		sas_ss_reset(p);
1832 
1833 	/*
1834 	 * Syscall tracing and stepping should be turned off in the
1835 	 * child regardless of CLONE_PTRACE.
1836 	 */
1837 	user_disable_single_step(p);
1838 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1839 #ifdef TIF_SYSCALL_EMU
1840 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1841 #endif
1842 	clear_all_latency_tracing(p);
1843 
1844 	/* ok, now we should be set up.. */
1845 	p->pid = pid_nr(pid);
1846 	if (clone_flags & CLONE_THREAD) {
1847 		p->exit_signal = -1;
1848 		p->group_leader = current->group_leader;
1849 		p->tgid = current->tgid;
1850 	} else {
1851 		if (clone_flags & CLONE_PARENT)
1852 			p->exit_signal = current->group_leader->exit_signal;
1853 		else
1854 			p->exit_signal = (clone_flags & CSIGNAL);
1855 		p->group_leader = p;
1856 		p->tgid = p->pid;
1857 	}
1858 
1859 	p->nr_dirtied = 0;
1860 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1861 	p->dirty_paused_when = 0;
1862 
1863 	p->pdeath_signal = 0;
1864 	INIT_LIST_HEAD(&p->thread_group);
1865 	p->task_works = NULL;
1866 
1867 	cgroup_threadgroup_change_begin(current);
1868 	/*
1869 	 * Ensure that the cgroup subsystem policies allow the new process to be
1870 	 * forked. It should be noted the the new process's css_set can be changed
1871 	 * between here and cgroup_post_fork() if an organisation operation is in
1872 	 * progress.
1873 	 */
1874 	retval = cgroup_can_fork(p);
1875 	if (retval)
1876 		goto bad_fork_free_pid;
1877 
1878 	/*
1879 	 * Make it visible to the rest of the system, but dont wake it up yet.
1880 	 * Need tasklist lock for parent etc handling!
1881 	 */
1882 	write_lock_irq(&tasklist_lock);
1883 
1884 	/* CLONE_PARENT re-uses the old parent */
1885 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1886 		p->real_parent = current->real_parent;
1887 		p->parent_exec_id = current->parent_exec_id;
1888 	} else {
1889 		p->real_parent = current;
1890 		p->parent_exec_id = current->self_exec_id;
1891 	}
1892 
1893 	klp_copy_process(p);
1894 
1895 	spin_lock(&current->sighand->siglock);
1896 
1897 	/*
1898 	 * Copy seccomp details explicitly here, in case they were changed
1899 	 * before holding sighand lock.
1900 	 */
1901 	copy_seccomp(p);
1902 
1903 	/*
1904 	 * Process group and session signals need to be delivered to just the
1905 	 * parent before the fork or both the parent and the child after the
1906 	 * fork. Restart if a signal comes in before we add the new process to
1907 	 * it's process group.
1908 	 * A fatal signal pending means that current will exit, so the new
1909 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1910 	*/
1911 	recalc_sigpending();
1912 	if (signal_pending(current)) {
1913 		retval = -ERESTARTNOINTR;
1914 		goto bad_fork_cancel_cgroup;
1915 	}
1916 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
1917 		retval = -ENOMEM;
1918 		goto bad_fork_cancel_cgroup;
1919 	}
1920 
1921 	if (likely(p->pid)) {
1922 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1923 
1924 		init_task_pid(p, PIDTYPE_PID, pid);
1925 		if (thread_group_leader(p)) {
1926 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1927 			init_task_pid(p, PIDTYPE_SID, task_session(current));
1928 
1929 			if (is_child_reaper(pid)) {
1930 				ns_of_pid(pid)->child_reaper = p;
1931 				p->signal->flags |= SIGNAL_UNKILLABLE;
1932 			}
1933 
1934 			p->signal->leader_pid = pid;
1935 			p->signal->tty = tty_kref_get(current->signal->tty);
1936 			/*
1937 			 * Inherit has_child_subreaper flag under the same
1938 			 * tasklist_lock with adding child to the process tree
1939 			 * for propagate_has_child_subreaper optimization.
1940 			 */
1941 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
1942 							 p->real_parent->signal->is_child_subreaper;
1943 			list_add_tail(&p->sibling, &p->real_parent->children);
1944 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1945 			attach_pid(p, PIDTYPE_PGID);
1946 			attach_pid(p, PIDTYPE_SID);
1947 			__this_cpu_inc(process_counts);
1948 		} else {
1949 			current->signal->nr_threads++;
1950 			atomic_inc(&current->signal->live);
1951 			atomic_inc(&current->signal->sigcnt);
1952 			list_add_tail_rcu(&p->thread_group,
1953 					  &p->group_leader->thread_group);
1954 			list_add_tail_rcu(&p->thread_node,
1955 					  &p->signal->thread_head);
1956 		}
1957 		attach_pid(p, PIDTYPE_PID);
1958 		nr_threads++;
1959 	}
1960 
1961 	total_forks++;
1962 	spin_unlock(&current->sighand->siglock);
1963 	syscall_tracepoint_update(p);
1964 	write_unlock_irq(&tasklist_lock);
1965 
1966 	proc_fork_connector(p);
1967 	cgroup_post_fork(p);
1968 	cgroup_threadgroup_change_end(current);
1969 	perf_event_fork(p);
1970 
1971 	trace_task_newtask(p, clone_flags);
1972 	uprobe_copy_process(p, clone_flags);
1973 
1974 	return p;
1975 
1976 bad_fork_cancel_cgroup:
1977 	spin_unlock(&current->sighand->siglock);
1978 	write_unlock_irq(&tasklist_lock);
1979 	cgroup_cancel_fork(p);
1980 bad_fork_free_pid:
1981 	cgroup_threadgroup_change_end(current);
1982 	if (pid != &init_struct_pid)
1983 		free_pid(pid);
1984 bad_fork_cleanup_thread:
1985 	exit_thread(p);
1986 bad_fork_cleanup_io:
1987 	if (p->io_context)
1988 		exit_io_context(p);
1989 bad_fork_cleanup_namespaces:
1990 	exit_task_namespaces(p);
1991 bad_fork_cleanup_mm:
1992 	if (p->mm)
1993 		mmput(p->mm);
1994 bad_fork_cleanup_signal:
1995 	if (!(clone_flags & CLONE_THREAD))
1996 		free_signal_struct(p->signal);
1997 bad_fork_cleanup_sighand:
1998 	__cleanup_sighand(p->sighand);
1999 bad_fork_cleanup_fs:
2000 	exit_fs(p); /* blocking */
2001 bad_fork_cleanup_files:
2002 	exit_files(p); /* blocking */
2003 bad_fork_cleanup_semundo:
2004 	exit_sem(p);
2005 bad_fork_cleanup_security:
2006 	security_task_free(p);
2007 bad_fork_cleanup_audit:
2008 	audit_free(p);
2009 bad_fork_cleanup_perf:
2010 	perf_event_free_task(p);
2011 bad_fork_cleanup_policy:
2012 	lockdep_free_task(p);
2013 #ifdef CONFIG_NUMA
2014 	mpol_put(p->mempolicy);
2015 bad_fork_cleanup_threadgroup_lock:
2016 #endif
2017 	delayacct_tsk_free(p);
2018 bad_fork_cleanup_count:
2019 	atomic_dec(&p->cred->user->processes);
2020 	exit_creds(p);
2021 bad_fork_free:
2022 	p->state = TASK_DEAD;
2023 	put_task_stack(p);
2024 	free_task(p);
2025 fork_out:
2026 	return ERR_PTR(retval);
2027 }
2028 
2029 static inline void init_idle_pids(struct pid_link *links)
2030 {
2031 	enum pid_type type;
2032 
2033 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2034 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
2035 		links[type].pid = &init_struct_pid;
2036 	}
2037 }
2038 
2039 struct task_struct *fork_idle(int cpu)
2040 {
2041 	struct task_struct *task;
2042 	task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
2043 			    cpu_to_node(cpu));
2044 	if (!IS_ERR(task)) {
2045 		init_idle_pids(task->pids);
2046 		init_idle(task, cpu);
2047 	}
2048 
2049 	return task;
2050 }
2051 
2052 /*
2053  *  Ok, this is the main fork-routine.
2054  *
2055  * It copies the process, and if successful kick-starts
2056  * it and waits for it to finish using the VM if required.
2057  */
2058 long _do_fork(unsigned long clone_flags,
2059 	      unsigned long stack_start,
2060 	      unsigned long stack_size,
2061 	      int __user *parent_tidptr,
2062 	      int __user *child_tidptr,
2063 	      unsigned long tls)
2064 {
2065 	struct task_struct *p;
2066 	int trace = 0;
2067 	long nr;
2068 
2069 	/*
2070 	 * Determine whether and which event to report to ptracer.  When
2071 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2072 	 * requested, no event is reported; otherwise, report if the event
2073 	 * for the type of forking is enabled.
2074 	 */
2075 	if (!(clone_flags & CLONE_UNTRACED)) {
2076 		if (clone_flags & CLONE_VFORK)
2077 			trace = PTRACE_EVENT_VFORK;
2078 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
2079 			trace = PTRACE_EVENT_CLONE;
2080 		else
2081 			trace = PTRACE_EVENT_FORK;
2082 
2083 		if (likely(!ptrace_event_enabled(current, trace)))
2084 			trace = 0;
2085 	}
2086 
2087 	p = copy_process(clone_flags, stack_start, stack_size,
2088 			 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2089 	add_latent_entropy();
2090 	/*
2091 	 * Do this prior waking up the new thread - the thread pointer
2092 	 * might get invalid after that point, if the thread exits quickly.
2093 	 */
2094 	if (!IS_ERR(p)) {
2095 		struct completion vfork;
2096 		struct pid *pid;
2097 
2098 		trace_sched_process_fork(current, p);
2099 
2100 		pid = get_task_pid(p, PIDTYPE_PID);
2101 		nr = pid_vnr(pid);
2102 
2103 		if (clone_flags & CLONE_PARENT_SETTID)
2104 			put_user(nr, parent_tidptr);
2105 
2106 		if (clone_flags & CLONE_VFORK) {
2107 			p->vfork_done = &vfork;
2108 			init_completion(&vfork);
2109 			get_task_struct(p);
2110 		}
2111 
2112 		wake_up_new_task(p);
2113 
2114 		/* forking complete and child started to run, tell ptracer */
2115 		if (unlikely(trace))
2116 			ptrace_event_pid(trace, pid);
2117 
2118 		if (clone_flags & CLONE_VFORK) {
2119 			if (!wait_for_vfork_done(p, &vfork))
2120 				ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2121 		}
2122 
2123 		put_pid(pid);
2124 	} else {
2125 		nr = PTR_ERR(p);
2126 	}
2127 	return nr;
2128 }
2129 
2130 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2131 /* For compatibility with architectures that call do_fork directly rather than
2132  * using the syscall entry points below. */
2133 long do_fork(unsigned long clone_flags,
2134 	      unsigned long stack_start,
2135 	      unsigned long stack_size,
2136 	      int __user *parent_tidptr,
2137 	      int __user *child_tidptr)
2138 {
2139 	return _do_fork(clone_flags, stack_start, stack_size,
2140 			parent_tidptr, child_tidptr, 0);
2141 }
2142 #endif
2143 
2144 /*
2145  * Create a kernel thread.
2146  */
2147 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2148 {
2149 	return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2150 		(unsigned long)arg, NULL, NULL, 0);
2151 }
2152 
2153 #ifdef __ARCH_WANT_SYS_FORK
2154 SYSCALL_DEFINE0(fork)
2155 {
2156 #ifdef CONFIG_MMU
2157 	return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2158 #else
2159 	/* can not support in nommu mode */
2160 	return -EINVAL;
2161 #endif
2162 }
2163 #endif
2164 
2165 #ifdef __ARCH_WANT_SYS_VFORK
2166 SYSCALL_DEFINE0(vfork)
2167 {
2168 	return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2169 			0, NULL, NULL, 0);
2170 }
2171 #endif
2172 
2173 #ifdef __ARCH_WANT_SYS_CLONE
2174 #ifdef CONFIG_CLONE_BACKWARDS
2175 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2176 		 int __user *, parent_tidptr,
2177 		 unsigned long, tls,
2178 		 int __user *, child_tidptr)
2179 #elif defined(CONFIG_CLONE_BACKWARDS2)
2180 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2181 		 int __user *, parent_tidptr,
2182 		 int __user *, child_tidptr,
2183 		 unsigned long, tls)
2184 #elif defined(CONFIG_CLONE_BACKWARDS3)
2185 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2186 		int, stack_size,
2187 		int __user *, parent_tidptr,
2188 		int __user *, child_tidptr,
2189 		unsigned long, tls)
2190 #else
2191 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2192 		 int __user *, parent_tidptr,
2193 		 int __user *, child_tidptr,
2194 		 unsigned long, tls)
2195 #endif
2196 {
2197 	return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2198 }
2199 #endif
2200 
2201 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2202 {
2203 	struct task_struct *leader, *parent, *child;
2204 	int res;
2205 
2206 	read_lock(&tasklist_lock);
2207 	leader = top = top->group_leader;
2208 down:
2209 	for_each_thread(leader, parent) {
2210 		list_for_each_entry(child, &parent->children, sibling) {
2211 			res = visitor(child, data);
2212 			if (res) {
2213 				if (res < 0)
2214 					goto out;
2215 				leader = child;
2216 				goto down;
2217 			}
2218 up:
2219 			;
2220 		}
2221 	}
2222 
2223 	if (leader != top) {
2224 		child = leader;
2225 		parent = child->real_parent;
2226 		leader = parent->group_leader;
2227 		goto up;
2228 	}
2229 out:
2230 	read_unlock(&tasklist_lock);
2231 }
2232 
2233 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2234 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2235 #endif
2236 
2237 static void sighand_ctor(void *data)
2238 {
2239 	struct sighand_struct *sighand = data;
2240 
2241 	spin_lock_init(&sighand->siglock);
2242 	init_waitqueue_head(&sighand->signalfd_wqh);
2243 }
2244 
2245 void __init proc_caches_init(void)
2246 {
2247 	sighand_cachep = kmem_cache_create("sighand_cache",
2248 			sizeof(struct sighand_struct), 0,
2249 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2250 			SLAB_ACCOUNT, sighand_ctor);
2251 	signal_cachep = kmem_cache_create("signal_cache",
2252 			sizeof(struct signal_struct), 0,
2253 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2254 			NULL);
2255 	files_cachep = kmem_cache_create("files_cache",
2256 			sizeof(struct files_struct), 0,
2257 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2258 			NULL);
2259 	fs_cachep = kmem_cache_create("fs_cache",
2260 			sizeof(struct fs_struct), 0,
2261 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2262 			NULL);
2263 	/*
2264 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2265 	 * whole struct cpumask for the OFFSTACK case. We could change
2266 	 * this to *only* allocate as much of it as required by the
2267 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
2268 	 * is at the end of the structure, exactly for that reason.
2269 	 */
2270 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2271 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2272 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2273 			offsetof(struct mm_struct, saved_auxv),
2274 			sizeof_field(struct mm_struct, saved_auxv),
2275 			NULL);
2276 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2277 	mmap_init();
2278 	nsproxy_cache_init();
2279 }
2280 
2281 /*
2282  * Check constraints on flags passed to the unshare system call.
2283  */
2284 static int check_unshare_flags(unsigned long unshare_flags)
2285 {
2286 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2287 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2288 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2289 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2290 		return -EINVAL;
2291 	/*
2292 	 * Not implemented, but pretend it works if there is nothing
2293 	 * to unshare.  Note that unsharing the address space or the
2294 	 * signal handlers also need to unshare the signal queues (aka
2295 	 * CLONE_THREAD).
2296 	 */
2297 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2298 		if (!thread_group_empty(current))
2299 			return -EINVAL;
2300 	}
2301 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2302 		if (atomic_read(&current->sighand->count) > 1)
2303 			return -EINVAL;
2304 	}
2305 	if (unshare_flags & CLONE_VM) {
2306 		if (!current_is_single_threaded())
2307 			return -EINVAL;
2308 	}
2309 
2310 	return 0;
2311 }
2312 
2313 /*
2314  * Unshare the filesystem structure if it is being shared
2315  */
2316 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2317 {
2318 	struct fs_struct *fs = current->fs;
2319 
2320 	if (!(unshare_flags & CLONE_FS) || !fs)
2321 		return 0;
2322 
2323 	/* don't need lock here; in the worst case we'll do useless copy */
2324 	if (fs->users == 1)
2325 		return 0;
2326 
2327 	*new_fsp = copy_fs_struct(fs);
2328 	if (!*new_fsp)
2329 		return -ENOMEM;
2330 
2331 	return 0;
2332 }
2333 
2334 /*
2335  * Unshare file descriptor table if it is being shared
2336  */
2337 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2338 {
2339 	struct files_struct *fd = current->files;
2340 	int error = 0;
2341 
2342 	if ((unshare_flags & CLONE_FILES) &&
2343 	    (fd && atomic_read(&fd->count) > 1)) {
2344 		*new_fdp = dup_fd(fd, &error);
2345 		if (!*new_fdp)
2346 			return error;
2347 	}
2348 
2349 	return 0;
2350 }
2351 
2352 /*
2353  * unshare allows a process to 'unshare' part of the process
2354  * context which was originally shared using clone.  copy_*
2355  * functions used by do_fork() cannot be used here directly
2356  * because they modify an inactive task_struct that is being
2357  * constructed. Here we are modifying the current, active,
2358  * task_struct.
2359  */
2360 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2361 {
2362 	struct fs_struct *fs, *new_fs = NULL;
2363 	struct files_struct *fd, *new_fd = NULL;
2364 	struct cred *new_cred = NULL;
2365 	struct nsproxy *new_nsproxy = NULL;
2366 	int do_sysvsem = 0;
2367 	int err;
2368 
2369 	/*
2370 	 * If unsharing a user namespace must also unshare the thread group
2371 	 * and unshare the filesystem root and working directories.
2372 	 */
2373 	if (unshare_flags & CLONE_NEWUSER)
2374 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2375 	/*
2376 	 * If unsharing vm, must also unshare signal handlers.
2377 	 */
2378 	if (unshare_flags & CLONE_VM)
2379 		unshare_flags |= CLONE_SIGHAND;
2380 	/*
2381 	 * If unsharing a signal handlers, must also unshare the signal queues.
2382 	 */
2383 	if (unshare_flags & CLONE_SIGHAND)
2384 		unshare_flags |= CLONE_THREAD;
2385 	/*
2386 	 * If unsharing namespace, must also unshare filesystem information.
2387 	 */
2388 	if (unshare_flags & CLONE_NEWNS)
2389 		unshare_flags |= CLONE_FS;
2390 
2391 	err = check_unshare_flags(unshare_flags);
2392 	if (err)
2393 		goto bad_unshare_out;
2394 	/*
2395 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2396 	 * to a new ipc namespace, the semaphore arrays from the old
2397 	 * namespace are unreachable.
2398 	 */
2399 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2400 		do_sysvsem = 1;
2401 	err = unshare_fs(unshare_flags, &new_fs);
2402 	if (err)
2403 		goto bad_unshare_out;
2404 	err = unshare_fd(unshare_flags, &new_fd);
2405 	if (err)
2406 		goto bad_unshare_cleanup_fs;
2407 	err = unshare_userns(unshare_flags, &new_cred);
2408 	if (err)
2409 		goto bad_unshare_cleanup_fd;
2410 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2411 					 new_cred, new_fs);
2412 	if (err)
2413 		goto bad_unshare_cleanup_cred;
2414 
2415 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2416 		if (do_sysvsem) {
2417 			/*
2418 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2419 			 */
2420 			exit_sem(current);
2421 		}
2422 		if (unshare_flags & CLONE_NEWIPC) {
2423 			/* Orphan segments in old ns (see sem above). */
2424 			exit_shm(current);
2425 			shm_init_task(current);
2426 		}
2427 
2428 		if (new_nsproxy)
2429 			switch_task_namespaces(current, new_nsproxy);
2430 
2431 		task_lock(current);
2432 
2433 		if (new_fs) {
2434 			fs = current->fs;
2435 			spin_lock(&fs->lock);
2436 			current->fs = new_fs;
2437 			if (--fs->users)
2438 				new_fs = NULL;
2439 			else
2440 				new_fs = fs;
2441 			spin_unlock(&fs->lock);
2442 		}
2443 
2444 		if (new_fd) {
2445 			fd = current->files;
2446 			current->files = new_fd;
2447 			new_fd = fd;
2448 		}
2449 
2450 		task_unlock(current);
2451 
2452 		if (new_cred) {
2453 			/* Install the new user namespace */
2454 			commit_creds(new_cred);
2455 			new_cred = NULL;
2456 		}
2457 	}
2458 
2459 	perf_event_namespaces(current);
2460 
2461 bad_unshare_cleanup_cred:
2462 	if (new_cred)
2463 		put_cred(new_cred);
2464 bad_unshare_cleanup_fd:
2465 	if (new_fd)
2466 		put_files_struct(new_fd);
2467 
2468 bad_unshare_cleanup_fs:
2469 	if (new_fs)
2470 		free_fs_struct(new_fs);
2471 
2472 bad_unshare_out:
2473 	return err;
2474 }
2475 
2476 /*
2477  *	Helper to unshare the files of the current task.
2478  *	We don't want to expose copy_files internals to
2479  *	the exec layer of the kernel.
2480  */
2481 
2482 int unshare_files(struct files_struct **displaced)
2483 {
2484 	struct task_struct *task = current;
2485 	struct files_struct *copy = NULL;
2486 	int error;
2487 
2488 	error = unshare_fd(CLONE_FILES, &copy);
2489 	if (error || !copy) {
2490 		*displaced = NULL;
2491 		return error;
2492 	}
2493 	*displaced = task->files;
2494 	task_lock(task);
2495 	task->files = copy;
2496 	task_unlock(task);
2497 	return 0;
2498 }
2499 
2500 int sysctl_max_threads(struct ctl_table *table, int write,
2501 		       void __user *buffer, size_t *lenp, loff_t *ppos)
2502 {
2503 	struct ctl_table t;
2504 	int ret;
2505 	int threads = max_threads;
2506 	int min = MIN_THREADS;
2507 	int max = MAX_THREADS;
2508 
2509 	t = *table;
2510 	t.data = &threads;
2511 	t.extra1 = &min;
2512 	t.extra2 = &max;
2513 
2514 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2515 	if (ret || !write)
2516 		return ret;
2517 
2518 	set_max_threads(threads);
2519 
2520 	return 0;
2521 }
2522