xref: /linux/kernel/fork.c (revision 5499b45190237ca90dd2ac86395cf464fe1f4cc7)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/tracehook.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/proc_fs.h>
62 #include <linux/blkdev.h>
63 #include <linux/fs_struct.h>
64 #include <linux/magic.h>
65 #include <linux/perf_event.h>
66 #include <linux/posix-timers.h>
67 #include <linux/user-return-notifier.h>
68 
69 #include <asm/pgtable.h>
70 #include <asm/pgalloc.h>
71 #include <asm/uaccess.h>
72 #include <asm/mmu_context.h>
73 #include <asm/cacheflush.h>
74 #include <asm/tlbflush.h>
75 
76 #include <trace/events/sched.h>
77 
78 /*
79  * Protected counters by write_lock_irq(&tasklist_lock)
80  */
81 unsigned long total_forks;	/* Handle normal Linux uptimes. */
82 int nr_threads; 		/* The idle threads do not count.. */
83 
84 int max_threads;		/* tunable limit on nr_threads */
85 
86 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
87 
88 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
89 EXPORT_SYMBOL_GPL(tasklist_lock);
90 
91 int nr_processes(void)
92 {
93 	int cpu;
94 	int total = 0;
95 
96 	for_each_possible_cpu(cpu)
97 		total += per_cpu(process_counts, cpu);
98 
99 	return total;
100 }
101 
102 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
103 # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
104 # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
105 static struct kmem_cache *task_struct_cachep;
106 #endif
107 
108 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
109 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
110 {
111 #ifdef CONFIG_DEBUG_STACK_USAGE
112 	gfp_t mask = GFP_KERNEL | __GFP_ZERO;
113 #else
114 	gfp_t mask = GFP_KERNEL;
115 #endif
116 	return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
117 }
118 
119 static inline void free_thread_info(struct thread_info *ti)
120 {
121 	free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
122 }
123 #endif
124 
125 /* SLAB cache for signal_struct structures (tsk->signal) */
126 static struct kmem_cache *signal_cachep;
127 
128 /* SLAB cache for sighand_struct structures (tsk->sighand) */
129 struct kmem_cache *sighand_cachep;
130 
131 /* SLAB cache for files_struct structures (tsk->files) */
132 struct kmem_cache *files_cachep;
133 
134 /* SLAB cache for fs_struct structures (tsk->fs) */
135 struct kmem_cache *fs_cachep;
136 
137 /* SLAB cache for vm_area_struct structures */
138 struct kmem_cache *vm_area_cachep;
139 
140 /* SLAB cache for mm_struct structures (tsk->mm) */
141 static struct kmem_cache *mm_cachep;
142 
143 static void account_kernel_stack(struct thread_info *ti, int account)
144 {
145 	struct zone *zone = page_zone(virt_to_page(ti));
146 
147 	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
148 }
149 
150 void free_task(struct task_struct *tsk)
151 {
152 	prop_local_destroy_single(&tsk->dirties);
153 	account_kernel_stack(tsk->stack, -1);
154 	free_thread_info(tsk->stack);
155 	rt_mutex_debug_task_free(tsk);
156 	ftrace_graph_exit_task(tsk);
157 	free_task_struct(tsk);
158 }
159 EXPORT_SYMBOL(free_task);
160 
161 void __put_task_struct(struct task_struct *tsk)
162 {
163 	WARN_ON(!tsk->exit_state);
164 	WARN_ON(atomic_read(&tsk->usage));
165 	WARN_ON(tsk == current);
166 
167 	exit_creds(tsk);
168 	delayacct_tsk_free(tsk);
169 
170 	if (!profile_handoff_task(tsk))
171 		free_task(tsk);
172 }
173 
174 /*
175  * macro override instead of weak attribute alias, to workaround
176  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
177  */
178 #ifndef arch_task_cache_init
179 #define arch_task_cache_init()
180 #endif
181 
182 void __init fork_init(unsigned long mempages)
183 {
184 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
185 #ifndef ARCH_MIN_TASKALIGN
186 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
187 #endif
188 	/* create a slab on which task_structs can be allocated */
189 	task_struct_cachep =
190 		kmem_cache_create("task_struct", sizeof(struct task_struct),
191 			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
192 #endif
193 
194 	/* do the arch specific task caches init */
195 	arch_task_cache_init();
196 
197 	/*
198 	 * The default maximum number of threads is set to a safe
199 	 * value: the thread structures can take up at most half
200 	 * of memory.
201 	 */
202 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
203 
204 	/*
205 	 * we need to allow at least 20 threads to boot a system
206 	 */
207 	if(max_threads < 20)
208 		max_threads = 20;
209 
210 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
211 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
212 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
213 		init_task.signal->rlim[RLIMIT_NPROC];
214 }
215 
216 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
217 					       struct task_struct *src)
218 {
219 	*dst = *src;
220 	return 0;
221 }
222 
223 static struct task_struct *dup_task_struct(struct task_struct *orig)
224 {
225 	struct task_struct *tsk;
226 	struct thread_info *ti;
227 	unsigned long *stackend;
228 
229 	int err;
230 
231 	prepare_to_copy(orig);
232 
233 	tsk = alloc_task_struct();
234 	if (!tsk)
235 		return NULL;
236 
237 	ti = alloc_thread_info(tsk);
238 	if (!ti) {
239 		free_task_struct(tsk);
240 		return NULL;
241 	}
242 
243  	err = arch_dup_task_struct(tsk, orig);
244 	if (err)
245 		goto out;
246 
247 	tsk->stack = ti;
248 
249 	err = prop_local_init_single(&tsk->dirties);
250 	if (err)
251 		goto out;
252 
253 	setup_thread_stack(tsk, orig);
254 	clear_user_return_notifier(tsk);
255 	stackend = end_of_stack(tsk);
256 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
257 
258 #ifdef CONFIG_CC_STACKPROTECTOR
259 	tsk->stack_canary = get_random_int();
260 #endif
261 
262 	/* One for us, one for whoever does the "release_task()" (usually parent) */
263 	atomic_set(&tsk->usage,2);
264 	atomic_set(&tsk->fs_excl, 0);
265 #ifdef CONFIG_BLK_DEV_IO_TRACE
266 	tsk->btrace_seq = 0;
267 #endif
268 	tsk->splice_pipe = NULL;
269 
270 	account_kernel_stack(ti, 1);
271 
272 	return tsk;
273 
274 out:
275 	free_thread_info(ti);
276 	free_task_struct(tsk);
277 	return NULL;
278 }
279 
280 #ifdef CONFIG_MMU
281 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
282 {
283 	struct vm_area_struct *mpnt, *tmp, **pprev;
284 	struct rb_node **rb_link, *rb_parent;
285 	int retval;
286 	unsigned long charge;
287 	struct mempolicy *pol;
288 
289 	down_write(&oldmm->mmap_sem);
290 	flush_cache_dup_mm(oldmm);
291 	/*
292 	 * Not linked in yet - no deadlock potential:
293 	 */
294 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
295 
296 	mm->locked_vm = 0;
297 	mm->mmap = NULL;
298 	mm->mmap_cache = NULL;
299 	mm->free_area_cache = oldmm->mmap_base;
300 	mm->cached_hole_size = ~0UL;
301 	mm->map_count = 0;
302 	cpumask_clear(mm_cpumask(mm));
303 	mm->mm_rb = RB_ROOT;
304 	rb_link = &mm->mm_rb.rb_node;
305 	rb_parent = NULL;
306 	pprev = &mm->mmap;
307 	retval = ksm_fork(mm, oldmm);
308 	if (retval)
309 		goto out;
310 
311 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
312 		struct file *file;
313 
314 		if (mpnt->vm_flags & VM_DONTCOPY) {
315 			long pages = vma_pages(mpnt);
316 			mm->total_vm -= pages;
317 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
318 								-pages);
319 			continue;
320 		}
321 		charge = 0;
322 		if (mpnt->vm_flags & VM_ACCOUNT) {
323 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
324 			if (security_vm_enough_memory(len))
325 				goto fail_nomem;
326 			charge = len;
327 		}
328 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
329 		if (!tmp)
330 			goto fail_nomem;
331 		*tmp = *mpnt;
332 		pol = mpol_dup(vma_policy(mpnt));
333 		retval = PTR_ERR(pol);
334 		if (IS_ERR(pol))
335 			goto fail_nomem_policy;
336 		vma_set_policy(tmp, pol);
337 		tmp->vm_flags &= ~VM_LOCKED;
338 		tmp->vm_mm = mm;
339 		tmp->vm_next = NULL;
340 		anon_vma_link(tmp);
341 		file = tmp->vm_file;
342 		if (file) {
343 			struct inode *inode = file->f_path.dentry->d_inode;
344 			struct address_space *mapping = file->f_mapping;
345 
346 			get_file(file);
347 			if (tmp->vm_flags & VM_DENYWRITE)
348 				atomic_dec(&inode->i_writecount);
349 			spin_lock(&mapping->i_mmap_lock);
350 			if (tmp->vm_flags & VM_SHARED)
351 				mapping->i_mmap_writable++;
352 			tmp->vm_truncate_count = mpnt->vm_truncate_count;
353 			flush_dcache_mmap_lock(mapping);
354 			/* insert tmp into the share list, just after mpnt */
355 			vma_prio_tree_add(tmp, mpnt);
356 			flush_dcache_mmap_unlock(mapping);
357 			spin_unlock(&mapping->i_mmap_lock);
358 		}
359 
360 		/*
361 		 * Clear hugetlb-related page reserves for children. This only
362 		 * affects MAP_PRIVATE mappings. Faults generated by the child
363 		 * are not guaranteed to succeed, even if read-only
364 		 */
365 		if (is_vm_hugetlb_page(tmp))
366 			reset_vma_resv_huge_pages(tmp);
367 
368 		/*
369 		 * Link in the new vma and copy the page table entries.
370 		 */
371 		*pprev = tmp;
372 		pprev = &tmp->vm_next;
373 
374 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
375 		rb_link = &tmp->vm_rb.rb_right;
376 		rb_parent = &tmp->vm_rb;
377 
378 		mm->map_count++;
379 		retval = copy_page_range(mm, oldmm, mpnt);
380 
381 		if (tmp->vm_ops && tmp->vm_ops->open)
382 			tmp->vm_ops->open(tmp);
383 
384 		if (retval)
385 			goto out;
386 	}
387 	/* a new mm has just been created */
388 	arch_dup_mmap(oldmm, mm);
389 	retval = 0;
390 out:
391 	up_write(&mm->mmap_sem);
392 	flush_tlb_mm(oldmm);
393 	up_write(&oldmm->mmap_sem);
394 	return retval;
395 fail_nomem_policy:
396 	kmem_cache_free(vm_area_cachep, tmp);
397 fail_nomem:
398 	retval = -ENOMEM;
399 	vm_unacct_memory(charge);
400 	goto out;
401 }
402 
403 static inline int mm_alloc_pgd(struct mm_struct * mm)
404 {
405 	mm->pgd = pgd_alloc(mm);
406 	if (unlikely(!mm->pgd))
407 		return -ENOMEM;
408 	return 0;
409 }
410 
411 static inline void mm_free_pgd(struct mm_struct * mm)
412 {
413 	pgd_free(mm, mm->pgd);
414 }
415 #else
416 #define dup_mmap(mm, oldmm)	(0)
417 #define mm_alloc_pgd(mm)	(0)
418 #define mm_free_pgd(mm)
419 #endif /* CONFIG_MMU */
420 
421 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
422 
423 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
424 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
425 
426 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
427 
428 static int __init coredump_filter_setup(char *s)
429 {
430 	default_dump_filter =
431 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
432 		MMF_DUMP_FILTER_MASK;
433 	return 1;
434 }
435 
436 __setup("coredump_filter=", coredump_filter_setup);
437 
438 #include <linux/init_task.h>
439 
440 static void mm_init_aio(struct mm_struct *mm)
441 {
442 #ifdef CONFIG_AIO
443 	spin_lock_init(&mm->ioctx_lock);
444 	INIT_HLIST_HEAD(&mm->ioctx_list);
445 #endif
446 }
447 
448 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
449 {
450 	atomic_set(&mm->mm_users, 1);
451 	atomic_set(&mm->mm_count, 1);
452 	init_rwsem(&mm->mmap_sem);
453 	INIT_LIST_HEAD(&mm->mmlist);
454 	mm->flags = (current->mm) ?
455 		(current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
456 	mm->core_state = NULL;
457 	mm->nr_ptes = 0;
458 	set_mm_counter(mm, file_rss, 0);
459 	set_mm_counter(mm, anon_rss, 0);
460 	spin_lock_init(&mm->page_table_lock);
461 	mm->free_area_cache = TASK_UNMAPPED_BASE;
462 	mm->cached_hole_size = ~0UL;
463 	mm_init_aio(mm);
464 	mm_init_owner(mm, p);
465 
466 	if (likely(!mm_alloc_pgd(mm))) {
467 		mm->def_flags = 0;
468 		mmu_notifier_mm_init(mm);
469 		return mm;
470 	}
471 
472 	free_mm(mm);
473 	return NULL;
474 }
475 
476 /*
477  * Allocate and initialize an mm_struct.
478  */
479 struct mm_struct * mm_alloc(void)
480 {
481 	struct mm_struct * mm;
482 
483 	mm = allocate_mm();
484 	if (mm) {
485 		memset(mm, 0, sizeof(*mm));
486 		mm = mm_init(mm, current);
487 	}
488 	return mm;
489 }
490 
491 /*
492  * Called when the last reference to the mm
493  * is dropped: either by a lazy thread or by
494  * mmput. Free the page directory and the mm.
495  */
496 void __mmdrop(struct mm_struct *mm)
497 {
498 	BUG_ON(mm == &init_mm);
499 	mm_free_pgd(mm);
500 	destroy_context(mm);
501 	mmu_notifier_mm_destroy(mm);
502 	free_mm(mm);
503 }
504 EXPORT_SYMBOL_GPL(__mmdrop);
505 
506 /*
507  * Decrement the use count and release all resources for an mm.
508  */
509 void mmput(struct mm_struct *mm)
510 {
511 	might_sleep();
512 
513 	if (atomic_dec_and_test(&mm->mm_users)) {
514 		exit_aio(mm);
515 		ksm_exit(mm);
516 		exit_mmap(mm);
517 		set_mm_exe_file(mm, NULL);
518 		if (!list_empty(&mm->mmlist)) {
519 			spin_lock(&mmlist_lock);
520 			list_del(&mm->mmlist);
521 			spin_unlock(&mmlist_lock);
522 		}
523 		put_swap_token(mm);
524 		if (mm->binfmt)
525 			module_put(mm->binfmt->module);
526 		mmdrop(mm);
527 	}
528 }
529 EXPORT_SYMBOL_GPL(mmput);
530 
531 /**
532  * get_task_mm - acquire a reference to the task's mm
533  *
534  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
535  * this kernel workthread has transiently adopted a user mm with use_mm,
536  * to do its AIO) is not set and if so returns a reference to it, after
537  * bumping up the use count.  User must release the mm via mmput()
538  * after use.  Typically used by /proc and ptrace.
539  */
540 struct mm_struct *get_task_mm(struct task_struct *task)
541 {
542 	struct mm_struct *mm;
543 
544 	task_lock(task);
545 	mm = task->mm;
546 	if (mm) {
547 		if (task->flags & PF_KTHREAD)
548 			mm = NULL;
549 		else
550 			atomic_inc(&mm->mm_users);
551 	}
552 	task_unlock(task);
553 	return mm;
554 }
555 EXPORT_SYMBOL_GPL(get_task_mm);
556 
557 /* Please note the differences between mmput and mm_release.
558  * mmput is called whenever we stop holding onto a mm_struct,
559  * error success whatever.
560  *
561  * mm_release is called after a mm_struct has been removed
562  * from the current process.
563  *
564  * This difference is important for error handling, when we
565  * only half set up a mm_struct for a new process and need to restore
566  * the old one.  Because we mmput the new mm_struct before
567  * restoring the old one. . .
568  * Eric Biederman 10 January 1998
569  */
570 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
571 {
572 	struct completion *vfork_done = tsk->vfork_done;
573 
574 	/* Get rid of any futexes when releasing the mm */
575 #ifdef CONFIG_FUTEX
576 	if (unlikely(tsk->robust_list)) {
577 		exit_robust_list(tsk);
578 		tsk->robust_list = NULL;
579 	}
580 #ifdef CONFIG_COMPAT
581 	if (unlikely(tsk->compat_robust_list)) {
582 		compat_exit_robust_list(tsk);
583 		tsk->compat_robust_list = NULL;
584 	}
585 #endif
586 	if (unlikely(!list_empty(&tsk->pi_state_list)))
587 		exit_pi_state_list(tsk);
588 #endif
589 
590 	/* Get rid of any cached register state */
591 	deactivate_mm(tsk, mm);
592 
593 	/* notify parent sleeping on vfork() */
594 	if (vfork_done) {
595 		tsk->vfork_done = NULL;
596 		complete(vfork_done);
597 	}
598 
599 	/*
600 	 * If we're exiting normally, clear a user-space tid field if
601 	 * requested.  We leave this alone when dying by signal, to leave
602 	 * the value intact in a core dump, and to save the unnecessary
603 	 * trouble otherwise.  Userland only wants this done for a sys_exit.
604 	 */
605 	if (tsk->clear_child_tid) {
606 		if (!(tsk->flags & PF_SIGNALED) &&
607 		    atomic_read(&mm->mm_users) > 1) {
608 			/*
609 			 * We don't check the error code - if userspace has
610 			 * not set up a proper pointer then tough luck.
611 			 */
612 			put_user(0, tsk->clear_child_tid);
613 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
614 					1, NULL, NULL, 0);
615 		}
616 		tsk->clear_child_tid = NULL;
617 	}
618 }
619 
620 /*
621  * Allocate a new mm structure and copy contents from the
622  * mm structure of the passed in task structure.
623  */
624 struct mm_struct *dup_mm(struct task_struct *tsk)
625 {
626 	struct mm_struct *mm, *oldmm = current->mm;
627 	int err;
628 
629 	if (!oldmm)
630 		return NULL;
631 
632 	mm = allocate_mm();
633 	if (!mm)
634 		goto fail_nomem;
635 
636 	memcpy(mm, oldmm, sizeof(*mm));
637 
638 	/* Initializing for Swap token stuff */
639 	mm->token_priority = 0;
640 	mm->last_interval = 0;
641 
642 	if (!mm_init(mm, tsk))
643 		goto fail_nomem;
644 
645 	if (init_new_context(tsk, mm))
646 		goto fail_nocontext;
647 
648 	dup_mm_exe_file(oldmm, mm);
649 
650 	err = dup_mmap(mm, oldmm);
651 	if (err)
652 		goto free_pt;
653 
654 	mm->hiwater_rss = get_mm_rss(mm);
655 	mm->hiwater_vm = mm->total_vm;
656 
657 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
658 		goto free_pt;
659 
660 	return mm;
661 
662 free_pt:
663 	/* don't put binfmt in mmput, we haven't got module yet */
664 	mm->binfmt = NULL;
665 	mmput(mm);
666 
667 fail_nomem:
668 	return NULL;
669 
670 fail_nocontext:
671 	/*
672 	 * If init_new_context() failed, we cannot use mmput() to free the mm
673 	 * because it calls destroy_context()
674 	 */
675 	mm_free_pgd(mm);
676 	free_mm(mm);
677 	return NULL;
678 }
679 
680 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
681 {
682 	struct mm_struct * mm, *oldmm;
683 	int retval;
684 
685 	tsk->min_flt = tsk->maj_flt = 0;
686 	tsk->nvcsw = tsk->nivcsw = 0;
687 #ifdef CONFIG_DETECT_HUNG_TASK
688 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
689 #endif
690 
691 	tsk->mm = NULL;
692 	tsk->active_mm = NULL;
693 
694 	/*
695 	 * Are we cloning a kernel thread?
696 	 *
697 	 * We need to steal a active VM for that..
698 	 */
699 	oldmm = current->mm;
700 	if (!oldmm)
701 		return 0;
702 
703 	if (clone_flags & CLONE_VM) {
704 		atomic_inc(&oldmm->mm_users);
705 		mm = oldmm;
706 		goto good_mm;
707 	}
708 
709 	retval = -ENOMEM;
710 	mm = dup_mm(tsk);
711 	if (!mm)
712 		goto fail_nomem;
713 
714 good_mm:
715 	/* Initializing for Swap token stuff */
716 	mm->token_priority = 0;
717 	mm->last_interval = 0;
718 
719 	tsk->mm = mm;
720 	tsk->active_mm = mm;
721 	return 0;
722 
723 fail_nomem:
724 	return retval;
725 }
726 
727 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
728 {
729 	struct fs_struct *fs = current->fs;
730 	if (clone_flags & CLONE_FS) {
731 		/* tsk->fs is already what we want */
732 		write_lock(&fs->lock);
733 		if (fs->in_exec) {
734 			write_unlock(&fs->lock);
735 			return -EAGAIN;
736 		}
737 		fs->users++;
738 		write_unlock(&fs->lock);
739 		return 0;
740 	}
741 	tsk->fs = copy_fs_struct(fs);
742 	if (!tsk->fs)
743 		return -ENOMEM;
744 	return 0;
745 }
746 
747 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
748 {
749 	struct files_struct *oldf, *newf;
750 	int error = 0;
751 
752 	/*
753 	 * A background process may not have any files ...
754 	 */
755 	oldf = current->files;
756 	if (!oldf)
757 		goto out;
758 
759 	if (clone_flags & CLONE_FILES) {
760 		atomic_inc(&oldf->count);
761 		goto out;
762 	}
763 
764 	newf = dup_fd(oldf, &error);
765 	if (!newf)
766 		goto out;
767 
768 	tsk->files = newf;
769 	error = 0;
770 out:
771 	return error;
772 }
773 
774 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
775 {
776 #ifdef CONFIG_BLOCK
777 	struct io_context *ioc = current->io_context;
778 
779 	if (!ioc)
780 		return 0;
781 	/*
782 	 * Share io context with parent, if CLONE_IO is set
783 	 */
784 	if (clone_flags & CLONE_IO) {
785 		tsk->io_context = ioc_task_link(ioc);
786 		if (unlikely(!tsk->io_context))
787 			return -ENOMEM;
788 	} else if (ioprio_valid(ioc->ioprio)) {
789 		tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
790 		if (unlikely(!tsk->io_context))
791 			return -ENOMEM;
792 
793 		tsk->io_context->ioprio = ioc->ioprio;
794 	}
795 #endif
796 	return 0;
797 }
798 
799 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
800 {
801 	struct sighand_struct *sig;
802 
803 	if (clone_flags & CLONE_SIGHAND) {
804 		atomic_inc(&current->sighand->count);
805 		return 0;
806 	}
807 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
808 	rcu_assign_pointer(tsk->sighand, sig);
809 	if (!sig)
810 		return -ENOMEM;
811 	atomic_set(&sig->count, 1);
812 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
813 	return 0;
814 }
815 
816 void __cleanup_sighand(struct sighand_struct *sighand)
817 {
818 	if (atomic_dec_and_test(&sighand->count))
819 		kmem_cache_free(sighand_cachep, sighand);
820 }
821 
822 
823 /*
824  * Initialize POSIX timer handling for a thread group.
825  */
826 static void posix_cpu_timers_init_group(struct signal_struct *sig)
827 {
828 	/* Thread group counters. */
829 	thread_group_cputime_init(sig);
830 
831 	/* Expiration times and increments. */
832 	sig->it[CPUCLOCK_PROF].expires = cputime_zero;
833 	sig->it[CPUCLOCK_PROF].incr = cputime_zero;
834 	sig->it[CPUCLOCK_VIRT].expires = cputime_zero;
835 	sig->it[CPUCLOCK_VIRT].incr = cputime_zero;
836 
837 	/* Cached expiration times. */
838 	sig->cputime_expires.prof_exp = cputime_zero;
839 	sig->cputime_expires.virt_exp = cputime_zero;
840 	sig->cputime_expires.sched_exp = 0;
841 
842 	if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
843 		sig->cputime_expires.prof_exp =
844 			secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
845 		sig->cputimer.running = 1;
846 	}
847 
848 	/* The timer lists. */
849 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
850 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
851 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
852 }
853 
854 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
855 {
856 	struct signal_struct *sig;
857 
858 	if (clone_flags & CLONE_THREAD)
859 		return 0;
860 
861 	sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
862 	tsk->signal = sig;
863 	if (!sig)
864 		return -ENOMEM;
865 
866 	atomic_set(&sig->count, 1);
867 	atomic_set(&sig->live, 1);
868 	init_waitqueue_head(&sig->wait_chldexit);
869 	sig->flags = 0;
870 	if (clone_flags & CLONE_NEWPID)
871 		sig->flags |= SIGNAL_UNKILLABLE;
872 	sig->group_exit_code = 0;
873 	sig->group_exit_task = NULL;
874 	sig->group_stop_count = 0;
875 	sig->curr_target = tsk;
876 	init_sigpending(&sig->shared_pending);
877 	INIT_LIST_HEAD(&sig->posix_timers);
878 
879 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
880 	sig->it_real_incr.tv64 = 0;
881 	sig->real_timer.function = it_real_fn;
882 
883 	sig->leader = 0;	/* session leadership doesn't inherit */
884 	sig->tty_old_pgrp = NULL;
885 	sig->tty = NULL;
886 
887 	sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
888 	sig->gtime = cputime_zero;
889 	sig->cgtime = cputime_zero;
890 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
891 	sig->prev_utime = sig->prev_stime = cputime_zero;
892 #endif
893 	sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
894 	sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
895 	sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
896 	sig->maxrss = sig->cmaxrss = 0;
897 	task_io_accounting_init(&sig->ioac);
898 	sig->sum_sched_runtime = 0;
899 	taskstats_tgid_init(sig);
900 
901 	task_lock(current->group_leader);
902 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
903 	task_unlock(current->group_leader);
904 
905 	posix_cpu_timers_init_group(sig);
906 
907 	acct_init_pacct(&sig->pacct);
908 
909 	tty_audit_fork(sig);
910 
911 	sig->oom_adj = current->signal->oom_adj;
912 
913 	return 0;
914 }
915 
916 void __cleanup_signal(struct signal_struct *sig)
917 {
918 	thread_group_cputime_free(sig);
919 	tty_kref_put(sig->tty);
920 	kmem_cache_free(signal_cachep, sig);
921 }
922 
923 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
924 {
925 	unsigned long new_flags = p->flags;
926 
927 	new_flags &= ~PF_SUPERPRIV;
928 	new_flags |= PF_FORKNOEXEC;
929 	new_flags |= PF_STARTING;
930 	p->flags = new_flags;
931 	clear_freeze_flag(p);
932 }
933 
934 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
935 {
936 	current->clear_child_tid = tidptr;
937 
938 	return task_pid_vnr(current);
939 }
940 
941 static void rt_mutex_init_task(struct task_struct *p)
942 {
943 	raw_spin_lock_init(&p->pi_lock);
944 #ifdef CONFIG_RT_MUTEXES
945 	plist_head_init_raw(&p->pi_waiters, &p->pi_lock);
946 	p->pi_blocked_on = NULL;
947 #endif
948 }
949 
950 #ifdef CONFIG_MM_OWNER
951 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
952 {
953 	mm->owner = p;
954 }
955 #endif /* CONFIG_MM_OWNER */
956 
957 /*
958  * Initialize POSIX timer handling for a single task.
959  */
960 static void posix_cpu_timers_init(struct task_struct *tsk)
961 {
962 	tsk->cputime_expires.prof_exp = cputime_zero;
963 	tsk->cputime_expires.virt_exp = cputime_zero;
964 	tsk->cputime_expires.sched_exp = 0;
965 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
966 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
967 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
968 }
969 
970 /*
971  * This creates a new process as a copy of the old one,
972  * but does not actually start it yet.
973  *
974  * It copies the registers, and all the appropriate
975  * parts of the process environment (as per the clone
976  * flags). The actual kick-off is left to the caller.
977  */
978 static struct task_struct *copy_process(unsigned long clone_flags,
979 					unsigned long stack_start,
980 					struct pt_regs *regs,
981 					unsigned long stack_size,
982 					int __user *child_tidptr,
983 					struct pid *pid,
984 					int trace)
985 {
986 	int retval;
987 	struct task_struct *p;
988 	int cgroup_callbacks_done = 0;
989 
990 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
991 		return ERR_PTR(-EINVAL);
992 
993 	/*
994 	 * Thread groups must share signals as well, and detached threads
995 	 * can only be started up within the thread group.
996 	 */
997 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
998 		return ERR_PTR(-EINVAL);
999 
1000 	/*
1001 	 * Shared signal handlers imply shared VM. By way of the above,
1002 	 * thread groups also imply shared VM. Blocking this case allows
1003 	 * for various simplifications in other code.
1004 	 */
1005 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1006 		return ERR_PTR(-EINVAL);
1007 
1008 	/*
1009 	 * Siblings of global init remain as zombies on exit since they are
1010 	 * not reaped by their parent (swapper). To solve this and to avoid
1011 	 * multi-rooted process trees, prevent global and container-inits
1012 	 * from creating siblings.
1013 	 */
1014 	if ((clone_flags & CLONE_PARENT) &&
1015 				current->signal->flags & SIGNAL_UNKILLABLE)
1016 		return ERR_PTR(-EINVAL);
1017 
1018 	retval = security_task_create(clone_flags);
1019 	if (retval)
1020 		goto fork_out;
1021 
1022 	retval = -ENOMEM;
1023 	p = dup_task_struct(current);
1024 	if (!p)
1025 		goto fork_out;
1026 
1027 	ftrace_graph_init_task(p);
1028 
1029 	rt_mutex_init_task(p);
1030 
1031 #ifdef CONFIG_PROVE_LOCKING
1032 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1033 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1034 #endif
1035 	retval = -EAGAIN;
1036 	if (atomic_read(&p->real_cred->user->processes) >=
1037 			p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
1038 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1039 		    p->real_cred->user != INIT_USER)
1040 			goto bad_fork_free;
1041 	}
1042 
1043 	retval = copy_creds(p, clone_flags);
1044 	if (retval < 0)
1045 		goto bad_fork_free;
1046 
1047 	/*
1048 	 * If multiple threads are within copy_process(), then this check
1049 	 * triggers too late. This doesn't hurt, the check is only there
1050 	 * to stop root fork bombs.
1051 	 */
1052 	retval = -EAGAIN;
1053 	if (nr_threads >= max_threads)
1054 		goto bad_fork_cleanup_count;
1055 
1056 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1057 		goto bad_fork_cleanup_count;
1058 
1059 	p->did_exec = 0;
1060 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1061 	copy_flags(clone_flags, p);
1062 	INIT_LIST_HEAD(&p->children);
1063 	INIT_LIST_HEAD(&p->sibling);
1064 	rcu_copy_process(p);
1065 	p->vfork_done = NULL;
1066 	spin_lock_init(&p->alloc_lock);
1067 
1068 	init_sigpending(&p->pending);
1069 
1070 	p->utime = cputime_zero;
1071 	p->stime = cputime_zero;
1072 	p->gtime = cputime_zero;
1073 	p->utimescaled = cputime_zero;
1074 	p->stimescaled = cputime_zero;
1075 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1076 	p->prev_utime = cputime_zero;
1077 	p->prev_stime = cputime_zero;
1078 #endif
1079 
1080 	p->default_timer_slack_ns = current->timer_slack_ns;
1081 
1082 	task_io_accounting_init(&p->ioac);
1083 	acct_clear_integrals(p);
1084 
1085 	posix_cpu_timers_init(p);
1086 
1087 	p->lock_depth = -1;		/* -1 = no lock */
1088 	do_posix_clock_monotonic_gettime(&p->start_time);
1089 	p->real_start_time = p->start_time;
1090 	monotonic_to_bootbased(&p->real_start_time);
1091 	p->io_context = NULL;
1092 	p->audit_context = NULL;
1093 	cgroup_fork(p);
1094 #ifdef CONFIG_NUMA
1095 	p->mempolicy = mpol_dup(p->mempolicy);
1096  	if (IS_ERR(p->mempolicy)) {
1097  		retval = PTR_ERR(p->mempolicy);
1098  		p->mempolicy = NULL;
1099  		goto bad_fork_cleanup_cgroup;
1100  	}
1101 	mpol_fix_fork_child_flag(p);
1102 #endif
1103 #ifdef CONFIG_TRACE_IRQFLAGS
1104 	p->irq_events = 0;
1105 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1106 	p->hardirqs_enabled = 1;
1107 #else
1108 	p->hardirqs_enabled = 0;
1109 #endif
1110 	p->hardirq_enable_ip = 0;
1111 	p->hardirq_enable_event = 0;
1112 	p->hardirq_disable_ip = _THIS_IP_;
1113 	p->hardirq_disable_event = 0;
1114 	p->softirqs_enabled = 1;
1115 	p->softirq_enable_ip = _THIS_IP_;
1116 	p->softirq_enable_event = 0;
1117 	p->softirq_disable_ip = 0;
1118 	p->softirq_disable_event = 0;
1119 	p->hardirq_context = 0;
1120 	p->softirq_context = 0;
1121 #endif
1122 #ifdef CONFIG_LOCKDEP
1123 	p->lockdep_depth = 0; /* no locks held yet */
1124 	p->curr_chain_key = 0;
1125 	p->lockdep_recursion = 0;
1126 #endif
1127 
1128 #ifdef CONFIG_DEBUG_MUTEXES
1129 	p->blocked_on = NULL; /* not blocked yet */
1130 #endif
1131 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1132 	p->memcg_batch.do_batch = 0;
1133 	p->memcg_batch.memcg = NULL;
1134 #endif
1135 
1136 	p->bts = NULL;
1137 
1138 	p->stack_start = stack_start;
1139 
1140 	/* Perform scheduler related setup. Assign this task to a CPU. */
1141 	sched_fork(p, clone_flags);
1142 
1143 	retval = perf_event_init_task(p);
1144 	if (retval)
1145 		goto bad_fork_cleanup_policy;
1146 
1147 	if ((retval = audit_alloc(p)))
1148 		goto bad_fork_cleanup_policy;
1149 	/* copy all the process information */
1150 	if ((retval = copy_semundo(clone_flags, p)))
1151 		goto bad_fork_cleanup_audit;
1152 	if ((retval = copy_files(clone_flags, p)))
1153 		goto bad_fork_cleanup_semundo;
1154 	if ((retval = copy_fs(clone_flags, p)))
1155 		goto bad_fork_cleanup_files;
1156 	if ((retval = copy_sighand(clone_flags, p)))
1157 		goto bad_fork_cleanup_fs;
1158 	if ((retval = copy_signal(clone_flags, p)))
1159 		goto bad_fork_cleanup_sighand;
1160 	if ((retval = copy_mm(clone_flags, p)))
1161 		goto bad_fork_cleanup_signal;
1162 	if ((retval = copy_namespaces(clone_flags, p)))
1163 		goto bad_fork_cleanup_mm;
1164 	if ((retval = copy_io(clone_flags, p)))
1165 		goto bad_fork_cleanup_namespaces;
1166 	retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1167 	if (retval)
1168 		goto bad_fork_cleanup_io;
1169 
1170 	if (pid != &init_struct_pid) {
1171 		retval = -ENOMEM;
1172 		pid = alloc_pid(p->nsproxy->pid_ns);
1173 		if (!pid)
1174 			goto bad_fork_cleanup_io;
1175 
1176 		if (clone_flags & CLONE_NEWPID) {
1177 			retval = pid_ns_prepare_proc(p->nsproxy->pid_ns);
1178 			if (retval < 0)
1179 				goto bad_fork_free_pid;
1180 		}
1181 	}
1182 
1183 	p->pid = pid_nr(pid);
1184 	p->tgid = p->pid;
1185 	if (clone_flags & CLONE_THREAD)
1186 		p->tgid = current->tgid;
1187 
1188 	if (current->nsproxy != p->nsproxy) {
1189 		retval = ns_cgroup_clone(p, pid);
1190 		if (retval)
1191 			goto bad_fork_free_pid;
1192 	}
1193 
1194 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1195 	/*
1196 	 * Clear TID on mm_release()?
1197 	 */
1198 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1199 #ifdef CONFIG_FUTEX
1200 	p->robust_list = NULL;
1201 #ifdef CONFIG_COMPAT
1202 	p->compat_robust_list = NULL;
1203 #endif
1204 	INIT_LIST_HEAD(&p->pi_state_list);
1205 	p->pi_state_cache = NULL;
1206 #endif
1207 	/*
1208 	 * sigaltstack should be cleared when sharing the same VM
1209 	 */
1210 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1211 		p->sas_ss_sp = p->sas_ss_size = 0;
1212 
1213 	/*
1214 	 * Syscall tracing and stepping should be turned off in the
1215 	 * child regardless of CLONE_PTRACE.
1216 	 */
1217 	user_disable_single_step(p);
1218 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1219 #ifdef TIF_SYSCALL_EMU
1220 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1221 #endif
1222 	clear_all_latency_tracing(p);
1223 
1224 	/* ok, now we should be set up.. */
1225 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1226 	p->pdeath_signal = 0;
1227 	p->exit_state = 0;
1228 
1229 	/*
1230 	 * Ok, make it visible to the rest of the system.
1231 	 * We dont wake it up yet.
1232 	 */
1233 	p->group_leader = p;
1234 	INIT_LIST_HEAD(&p->thread_group);
1235 
1236 	/* Now that the task is set up, run cgroup callbacks if
1237 	 * necessary. We need to run them before the task is visible
1238 	 * on the tasklist. */
1239 	cgroup_fork_callbacks(p);
1240 	cgroup_callbacks_done = 1;
1241 
1242 	/* Need tasklist lock for parent etc handling! */
1243 	write_lock_irq(&tasklist_lock);
1244 
1245 	/* CLONE_PARENT re-uses the old parent */
1246 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1247 		p->real_parent = current->real_parent;
1248 		p->parent_exec_id = current->parent_exec_id;
1249 	} else {
1250 		p->real_parent = current;
1251 		p->parent_exec_id = current->self_exec_id;
1252 	}
1253 
1254 	spin_lock(&current->sighand->siglock);
1255 
1256 	/*
1257 	 * Process group and session signals need to be delivered to just the
1258 	 * parent before the fork or both the parent and the child after the
1259 	 * fork. Restart if a signal comes in before we add the new process to
1260 	 * it's process group.
1261 	 * A fatal signal pending means that current will exit, so the new
1262 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1263  	 */
1264 	recalc_sigpending();
1265 	if (signal_pending(current)) {
1266 		spin_unlock(&current->sighand->siglock);
1267 		write_unlock_irq(&tasklist_lock);
1268 		retval = -ERESTARTNOINTR;
1269 		goto bad_fork_free_pid;
1270 	}
1271 
1272 	if (clone_flags & CLONE_THREAD) {
1273 		atomic_inc(&current->signal->count);
1274 		atomic_inc(&current->signal->live);
1275 		p->group_leader = current->group_leader;
1276 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1277 	}
1278 
1279 	if (likely(p->pid)) {
1280 		tracehook_finish_clone(p, clone_flags, trace);
1281 
1282 		if (thread_group_leader(p)) {
1283 			if (clone_flags & CLONE_NEWPID)
1284 				p->nsproxy->pid_ns->child_reaper = p;
1285 
1286 			p->signal->leader_pid = pid;
1287 			tty_kref_put(p->signal->tty);
1288 			p->signal->tty = tty_kref_get(current->signal->tty);
1289 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1290 			attach_pid(p, PIDTYPE_SID, task_session(current));
1291 			list_add_tail(&p->sibling, &p->real_parent->children);
1292 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1293 			__get_cpu_var(process_counts)++;
1294 		}
1295 		attach_pid(p, PIDTYPE_PID, pid);
1296 		nr_threads++;
1297 	}
1298 
1299 	total_forks++;
1300 	spin_unlock(&current->sighand->siglock);
1301 	write_unlock_irq(&tasklist_lock);
1302 	proc_fork_connector(p);
1303 	cgroup_post_fork(p);
1304 	perf_event_fork(p);
1305 	return p;
1306 
1307 bad_fork_free_pid:
1308 	if (pid != &init_struct_pid)
1309 		free_pid(pid);
1310 bad_fork_cleanup_io:
1311 	if (p->io_context)
1312 		exit_io_context(p);
1313 bad_fork_cleanup_namespaces:
1314 	exit_task_namespaces(p);
1315 bad_fork_cleanup_mm:
1316 	if (p->mm)
1317 		mmput(p->mm);
1318 bad_fork_cleanup_signal:
1319 	if (!(clone_flags & CLONE_THREAD))
1320 		__cleanup_signal(p->signal);
1321 bad_fork_cleanup_sighand:
1322 	__cleanup_sighand(p->sighand);
1323 bad_fork_cleanup_fs:
1324 	exit_fs(p); /* blocking */
1325 bad_fork_cleanup_files:
1326 	exit_files(p); /* blocking */
1327 bad_fork_cleanup_semundo:
1328 	exit_sem(p);
1329 bad_fork_cleanup_audit:
1330 	audit_free(p);
1331 bad_fork_cleanup_policy:
1332 	perf_event_free_task(p);
1333 #ifdef CONFIG_NUMA
1334 	mpol_put(p->mempolicy);
1335 bad_fork_cleanup_cgroup:
1336 #endif
1337 	cgroup_exit(p, cgroup_callbacks_done);
1338 	delayacct_tsk_free(p);
1339 	module_put(task_thread_info(p)->exec_domain->module);
1340 bad_fork_cleanup_count:
1341 	atomic_dec(&p->cred->user->processes);
1342 	exit_creds(p);
1343 bad_fork_free:
1344 	free_task(p);
1345 fork_out:
1346 	return ERR_PTR(retval);
1347 }
1348 
1349 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1350 {
1351 	memset(regs, 0, sizeof(struct pt_regs));
1352 	return regs;
1353 }
1354 
1355 struct task_struct * __cpuinit fork_idle(int cpu)
1356 {
1357 	struct task_struct *task;
1358 	struct pt_regs regs;
1359 
1360 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1361 			    &init_struct_pid, 0);
1362 	if (!IS_ERR(task))
1363 		init_idle(task, cpu);
1364 
1365 	return task;
1366 }
1367 
1368 /*
1369  *  Ok, this is the main fork-routine.
1370  *
1371  * It copies the process, and if successful kick-starts
1372  * it and waits for it to finish using the VM if required.
1373  */
1374 long do_fork(unsigned long clone_flags,
1375 	      unsigned long stack_start,
1376 	      struct pt_regs *regs,
1377 	      unsigned long stack_size,
1378 	      int __user *parent_tidptr,
1379 	      int __user *child_tidptr)
1380 {
1381 	struct task_struct *p;
1382 	int trace = 0;
1383 	long nr;
1384 
1385 	/*
1386 	 * Do some preliminary argument and permissions checking before we
1387 	 * actually start allocating stuff
1388 	 */
1389 	if (clone_flags & CLONE_NEWUSER) {
1390 		if (clone_flags & CLONE_THREAD)
1391 			return -EINVAL;
1392 		/* hopefully this check will go away when userns support is
1393 		 * complete
1394 		 */
1395 		if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1396 				!capable(CAP_SETGID))
1397 			return -EPERM;
1398 	}
1399 
1400 	/*
1401 	 * We hope to recycle these flags after 2.6.26
1402 	 */
1403 	if (unlikely(clone_flags & CLONE_STOPPED)) {
1404 		static int __read_mostly count = 100;
1405 
1406 		if (count > 0 && printk_ratelimit()) {
1407 			char comm[TASK_COMM_LEN];
1408 
1409 			count--;
1410 			printk(KERN_INFO "fork(): process `%s' used deprecated "
1411 					"clone flags 0x%lx\n",
1412 				get_task_comm(comm, current),
1413 				clone_flags & CLONE_STOPPED);
1414 		}
1415 	}
1416 
1417 	/*
1418 	 * When called from kernel_thread, don't do user tracing stuff.
1419 	 */
1420 	if (likely(user_mode(regs)))
1421 		trace = tracehook_prepare_clone(clone_flags);
1422 
1423 	p = copy_process(clone_flags, stack_start, regs, stack_size,
1424 			 child_tidptr, NULL, trace);
1425 	/*
1426 	 * Do this prior waking up the new thread - the thread pointer
1427 	 * might get invalid after that point, if the thread exits quickly.
1428 	 */
1429 	if (!IS_ERR(p)) {
1430 		struct completion vfork;
1431 
1432 		trace_sched_process_fork(current, p);
1433 
1434 		nr = task_pid_vnr(p);
1435 
1436 		if (clone_flags & CLONE_PARENT_SETTID)
1437 			put_user(nr, parent_tidptr);
1438 
1439 		if (clone_flags & CLONE_VFORK) {
1440 			p->vfork_done = &vfork;
1441 			init_completion(&vfork);
1442 		}
1443 
1444 		audit_finish_fork(p);
1445 		tracehook_report_clone(regs, clone_flags, nr, p);
1446 
1447 		/*
1448 		 * We set PF_STARTING at creation in case tracing wants to
1449 		 * use this to distinguish a fully live task from one that
1450 		 * hasn't gotten to tracehook_report_clone() yet.  Now we
1451 		 * clear it and set the child going.
1452 		 */
1453 		p->flags &= ~PF_STARTING;
1454 
1455 		if (unlikely(clone_flags & CLONE_STOPPED)) {
1456 			/*
1457 			 * We'll start up with an immediate SIGSTOP.
1458 			 */
1459 			sigaddset(&p->pending.signal, SIGSTOP);
1460 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1461 			__set_task_state(p, TASK_STOPPED);
1462 		} else {
1463 			wake_up_new_task(p, clone_flags);
1464 		}
1465 
1466 		tracehook_report_clone_complete(trace, regs,
1467 						clone_flags, nr, p);
1468 
1469 		if (clone_flags & CLONE_VFORK) {
1470 			freezer_do_not_count();
1471 			wait_for_completion(&vfork);
1472 			freezer_count();
1473 			tracehook_report_vfork_done(p, nr);
1474 		}
1475 	} else {
1476 		nr = PTR_ERR(p);
1477 	}
1478 	return nr;
1479 }
1480 
1481 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1482 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1483 #endif
1484 
1485 static void sighand_ctor(void *data)
1486 {
1487 	struct sighand_struct *sighand = data;
1488 
1489 	spin_lock_init(&sighand->siglock);
1490 	init_waitqueue_head(&sighand->signalfd_wqh);
1491 }
1492 
1493 void __init proc_caches_init(void)
1494 {
1495 	sighand_cachep = kmem_cache_create("sighand_cache",
1496 			sizeof(struct sighand_struct), 0,
1497 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1498 			SLAB_NOTRACK, sighand_ctor);
1499 	signal_cachep = kmem_cache_create("signal_cache",
1500 			sizeof(struct signal_struct), 0,
1501 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1502 	files_cachep = kmem_cache_create("files_cache",
1503 			sizeof(struct files_struct), 0,
1504 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1505 	fs_cachep = kmem_cache_create("fs_cache",
1506 			sizeof(struct fs_struct), 0,
1507 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1508 	mm_cachep = kmem_cache_create("mm_struct",
1509 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1510 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1511 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1512 	mmap_init();
1513 }
1514 
1515 /*
1516  * Check constraints on flags passed to the unshare system call and
1517  * force unsharing of additional process context as appropriate.
1518  */
1519 static void check_unshare_flags(unsigned long *flags_ptr)
1520 {
1521 	/*
1522 	 * If unsharing a thread from a thread group, must also
1523 	 * unshare vm.
1524 	 */
1525 	if (*flags_ptr & CLONE_THREAD)
1526 		*flags_ptr |= CLONE_VM;
1527 
1528 	/*
1529 	 * If unsharing vm, must also unshare signal handlers.
1530 	 */
1531 	if (*flags_ptr & CLONE_VM)
1532 		*flags_ptr |= CLONE_SIGHAND;
1533 
1534 	/*
1535 	 * If unsharing signal handlers and the task was created
1536 	 * using CLONE_THREAD, then must unshare the thread
1537 	 */
1538 	if ((*flags_ptr & CLONE_SIGHAND) &&
1539 	    (atomic_read(&current->signal->count) > 1))
1540 		*flags_ptr |= CLONE_THREAD;
1541 
1542 	/*
1543 	 * If unsharing namespace, must also unshare filesystem information.
1544 	 */
1545 	if (*flags_ptr & CLONE_NEWNS)
1546 		*flags_ptr |= CLONE_FS;
1547 }
1548 
1549 /*
1550  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1551  */
1552 static int unshare_thread(unsigned long unshare_flags)
1553 {
1554 	if (unshare_flags & CLONE_THREAD)
1555 		return -EINVAL;
1556 
1557 	return 0;
1558 }
1559 
1560 /*
1561  * Unshare the filesystem structure if it is being shared
1562  */
1563 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1564 {
1565 	struct fs_struct *fs = current->fs;
1566 
1567 	if (!(unshare_flags & CLONE_FS) || !fs)
1568 		return 0;
1569 
1570 	/* don't need lock here; in the worst case we'll do useless copy */
1571 	if (fs->users == 1)
1572 		return 0;
1573 
1574 	*new_fsp = copy_fs_struct(fs);
1575 	if (!*new_fsp)
1576 		return -ENOMEM;
1577 
1578 	return 0;
1579 }
1580 
1581 /*
1582  * Unsharing of sighand is not supported yet
1583  */
1584 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1585 {
1586 	struct sighand_struct *sigh = current->sighand;
1587 
1588 	if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1589 		return -EINVAL;
1590 	else
1591 		return 0;
1592 }
1593 
1594 /*
1595  * Unshare vm if it is being shared
1596  */
1597 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1598 {
1599 	struct mm_struct *mm = current->mm;
1600 
1601 	if ((unshare_flags & CLONE_VM) &&
1602 	    (mm && atomic_read(&mm->mm_users) > 1)) {
1603 		return -EINVAL;
1604 	}
1605 
1606 	return 0;
1607 }
1608 
1609 /*
1610  * Unshare file descriptor table if it is being shared
1611  */
1612 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1613 {
1614 	struct files_struct *fd = current->files;
1615 	int error = 0;
1616 
1617 	if ((unshare_flags & CLONE_FILES) &&
1618 	    (fd && atomic_read(&fd->count) > 1)) {
1619 		*new_fdp = dup_fd(fd, &error);
1620 		if (!*new_fdp)
1621 			return error;
1622 	}
1623 
1624 	return 0;
1625 }
1626 
1627 /*
1628  * unshare allows a process to 'unshare' part of the process
1629  * context which was originally shared using clone.  copy_*
1630  * functions used by do_fork() cannot be used here directly
1631  * because they modify an inactive task_struct that is being
1632  * constructed. Here we are modifying the current, active,
1633  * task_struct.
1634  */
1635 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1636 {
1637 	int err = 0;
1638 	struct fs_struct *fs, *new_fs = NULL;
1639 	struct sighand_struct *new_sigh = NULL;
1640 	struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1641 	struct files_struct *fd, *new_fd = NULL;
1642 	struct nsproxy *new_nsproxy = NULL;
1643 	int do_sysvsem = 0;
1644 
1645 	check_unshare_flags(&unshare_flags);
1646 
1647 	/* Return -EINVAL for all unsupported flags */
1648 	err = -EINVAL;
1649 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1650 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1651 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1652 		goto bad_unshare_out;
1653 
1654 	/*
1655 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1656 	 * to a new ipc namespace, the semaphore arrays from the old
1657 	 * namespace are unreachable.
1658 	 */
1659 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1660 		do_sysvsem = 1;
1661 	if ((err = unshare_thread(unshare_flags)))
1662 		goto bad_unshare_out;
1663 	if ((err = unshare_fs(unshare_flags, &new_fs)))
1664 		goto bad_unshare_cleanup_thread;
1665 	if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1666 		goto bad_unshare_cleanup_fs;
1667 	if ((err = unshare_vm(unshare_flags, &new_mm)))
1668 		goto bad_unshare_cleanup_sigh;
1669 	if ((err = unshare_fd(unshare_flags, &new_fd)))
1670 		goto bad_unshare_cleanup_vm;
1671 	if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1672 			new_fs)))
1673 		goto bad_unshare_cleanup_fd;
1674 
1675 	if (new_fs ||  new_mm || new_fd || do_sysvsem || new_nsproxy) {
1676 		if (do_sysvsem) {
1677 			/*
1678 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1679 			 */
1680 			exit_sem(current);
1681 		}
1682 
1683 		if (new_nsproxy) {
1684 			switch_task_namespaces(current, new_nsproxy);
1685 			new_nsproxy = NULL;
1686 		}
1687 
1688 		task_lock(current);
1689 
1690 		if (new_fs) {
1691 			fs = current->fs;
1692 			write_lock(&fs->lock);
1693 			current->fs = new_fs;
1694 			if (--fs->users)
1695 				new_fs = NULL;
1696 			else
1697 				new_fs = fs;
1698 			write_unlock(&fs->lock);
1699 		}
1700 
1701 		if (new_mm) {
1702 			mm = current->mm;
1703 			active_mm = current->active_mm;
1704 			current->mm = new_mm;
1705 			current->active_mm = new_mm;
1706 			activate_mm(active_mm, new_mm);
1707 			new_mm = mm;
1708 		}
1709 
1710 		if (new_fd) {
1711 			fd = current->files;
1712 			current->files = new_fd;
1713 			new_fd = fd;
1714 		}
1715 
1716 		task_unlock(current);
1717 	}
1718 
1719 	if (new_nsproxy)
1720 		put_nsproxy(new_nsproxy);
1721 
1722 bad_unshare_cleanup_fd:
1723 	if (new_fd)
1724 		put_files_struct(new_fd);
1725 
1726 bad_unshare_cleanup_vm:
1727 	if (new_mm)
1728 		mmput(new_mm);
1729 
1730 bad_unshare_cleanup_sigh:
1731 	if (new_sigh)
1732 		if (atomic_dec_and_test(&new_sigh->count))
1733 			kmem_cache_free(sighand_cachep, new_sigh);
1734 
1735 bad_unshare_cleanup_fs:
1736 	if (new_fs)
1737 		free_fs_struct(new_fs);
1738 
1739 bad_unshare_cleanup_thread:
1740 bad_unshare_out:
1741 	return err;
1742 }
1743 
1744 /*
1745  *	Helper to unshare the files of the current task.
1746  *	We don't want to expose copy_files internals to
1747  *	the exec layer of the kernel.
1748  */
1749 
1750 int unshare_files(struct files_struct **displaced)
1751 {
1752 	struct task_struct *task = current;
1753 	struct files_struct *copy = NULL;
1754 	int error;
1755 
1756 	error = unshare_fd(CLONE_FILES, &copy);
1757 	if (error || !copy) {
1758 		*displaced = NULL;
1759 		return error;
1760 	}
1761 	*displaced = task->files;
1762 	task_lock(task);
1763 	task->files = copy;
1764 	task_unlock(task);
1765 	return 0;
1766 }
1767