xref: /linux/kernel/fork.c (revision 4eca0ef49af9b2b0c52ef2b58e045ab34629796b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/tty.h>
79 #include <linux/fs_struct.h>
80 #include <linux/magic.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94 #include <linux/stackleak.h>
95 #include <linux/kasan.h>
96 #include <linux/scs.h>
97 #include <linux/io_uring.h>
98 #include <linux/bpf.h>
99 #include <linux/stackprotector.h>
100 #include <linux/user_events.h>
101 #include <linux/iommu.h>
102 
103 #include <asm/pgalloc.h>
104 #include <linux/uaccess.h>
105 #include <asm/mmu_context.h>
106 #include <asm/cacheflush.h>
107 #include <asm/tlbflush.h>
108 
109 #include <trace/events/sched.h>
110 
111 #define CREATE_TRACE_POINTS
112 #include <trace/events/task.h>
113 
114 /*
115  * Minimum number of threads to boot the kernel
116  */
117 #define MIN_THREADS 20
118 
119 /*
120  * Maximum number of threads
121  */
122 #define MAX_THREADS FUTEX_TID_MASK
123 
124 /*
125  * Protected counters by write_lock_irq(&tasklist_lock)
126  */
127 unsigned long total_forks;	/* Handle normal Linux uptimes. */
128 int nr_threads;			/* The idle threads do not count.. */
129 
130 static int max_threads;		/* tunable limit on nr_threads */
131 
132 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
133 
134 static const char * const resident_page_types[] = {
135 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
136 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
137 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
138 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
139 };
140 
141 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
142 
143 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
144 
145 #ifdef CONFIG_PROVE_RCU
146 int lockdep_tasklist_lock_is_held(void)
147 {
148 	return lockdep_is_held(&tasklist_lock);
149 }
150 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
151 #endif /* #ifdef CONFIG_PROVE_RCU */
152 
153 int nr_processes(void)
154 {
155 	int cpu;
156 	int total = 0;
157 
158 	for_each_possible_cpu(cpu)
159 		total += per_cpu(process_counts, cpu);
160 
161 	return total;
162 }
163 
164 void __weak arch_release_task_struct(struct task_struct *tsk)
165 {
166 }
167 
168 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
169 static struct kmem_cache *task_struct_cachep;
170 
171 static inline struct task_struct *alloc_task_struct_node(int node)
172 {
173 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
174 }
175 
176 static inline void free_task_struct(struct task_struct *tsk)
177 {
178 	kmem_cache_free(task_struct_cachep, tsk);
179 }
180 #endif
181 
182 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
183 
184 /*
185  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
186  * kmemcache based allocator.
187  */
188 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
189 
190 #  ifdef CONFIG_VMAP_STACK
191 /*
192  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
193  * flush.  Try to minimize the number of calls by caching stacks.
194  */
195 #define NR_CACHED_STACKS 2
196 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
197 
198 struct vm_stack {
199 	struct rcu_head rcu;
200 	struct vm_struct *stack_vm_area;
201 };
202 
203 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
204 {
205 	unsigned int i;
206 
207 	for (i = 0; i < NR_CACHED_STACKS; i++) {
208 		if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
209 			continue;
210 		return true;
211 	}
212 	return false;
213 }
214 
215 static void thread_stack_free_rcu(struct rcu_head *rh)
216 {
217 	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
218 
219 	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
220 		return;
221 
222 	vfree(vm_stack);
223 }
224 
225 static void thread_stack_delayed_free(struct task_struct *tsk)
226 {
227 	struct vm_stack *vm_stack = tsk->stack;
228 
229 	vm_stack->stack_vm_area = tsk->stack_vm_area;
230 	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
231 }
232 
233 static int free_vm_stack_cache(unsigned int cpu)
234 {
235 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
236 	int i;
237 
238 	for (i = 0; i < NR_CACHED_STACKS; i++) {
239 		struct vm_struct *vm_stack = cached_vm_stacks[i];
240 
241 		if (!vm_stack)
242 			continue;
243 
244 		vfree(vm_stack->addr);
245 		cached_vm_stacks[i] = NULL;
246 	}
247 
248 	return 0;
249 }
250 
251 static int memcg_charge_kernel_stack(struct vm_struct *vm)
252 {
253 	int i;
254 	int ret;
255 	int nr_charged = 0;
256 
257 	BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
258 
259 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
260 		ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
261 		if (ret)
262 			goto err;
263 		nr_charged++;
264 	}
265 	return 0;
266 err:
267 	for (i = 0; i < nr_charged; i++)
268 		memcg_kmem_uncharge_page(vm->pages[i], 0);
269 	return ret;
270 }
271 
272 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
273 {
274 	struct vm_struct *vm;
275 	void *stack;
276 	int i;
277 
278 	for (i = 0; i < NR_CACHED_STACKS; i++) {
279 		struct vm_struct *s;
280 
281 		s = this_cpu_xchg(cached_stacks[i], NULL);
282 
283 		if (!s)
284 			continue;
285 
286 		/* Reset stack metadata. */
287 		kasan_unpoison_range(s->addr, THREAD_SIZE);
288 
289 		stack = kasan_reset_tag(s->addr);
290 
291 		/* Clear stale pointers from reused stack. */
292 		memset(stack, 0, THREAD_SIZE);
293 
294 		if (memcg_charge_kernel_stack(s)) {
295 			vfree(s->addr);
296 			return -ENOMEM;
297 		}
298 
299 		tsk->stack_vm_area = s;
300 		tsk->stack = stack;
301 		return 0;
302 	}
303 
304 	/*
305 	 * Allocated stacks are cached and later reused by new threads,
306 	 * so memcg accounting is performed manually on assigning/releasing
307 	 * stacks to tasks. Drop __GFP_ACCOUNT.
308 	 */
309 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
310 				     VMALLOC_START, VMALLOC_END,
311 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
312 				     PAGE_KERNEL,
313 				     0, node, __builtin_return_address(0));
314 	if (!stack)
315 		return -ENOMEM;
316 
317 	vm = find_vm_area(stack);
318 	if (memcg_charge_kernel_stack(vm)) {
319 		vfree(stack);
320 		return -ENOMEM;
321 	}
322 	/*
323 	 * We can't call find_vm_area() in interrupt context, and
324 	 * free_thread_stack() can be called in interrupt context,
325 	 * so cache the vm_struct.
326 	 */
327 	tsk->stack_vm_area = vm;
328 	stack = kasan_reset_tag(stack);
329 	tsk->stack = stack;
330 	return 0;
331 }
332 
333 static void free_thread_stack(struct task_struct *tsk)
334 {
335 	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
336 		thread_stack_delayed_free(tsk);
337 
338 	tsk->stack = NULL;
339 	tsk->stack_vm_area = NULL;
340 }
341 
342 #  else /* !CONFIG_VMAP_STACK */
343 
344 static void thread_stack_free_rcu(struct rcu_head *rh)
345 {
346 	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
347 }
348 
349 static void thread_stack_delayed_free(struct task_struct *tsk)
350 {
351 	struct rcu_head *rh = tsk->stack;
352 
353 	call_rcu(rh, thread_stack_free_rcu);
354 }
355 
356 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
357 {
358 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
359 					     THREAD_SIZE_ORDER);
360 
361 	if (likely(page)) {
362 		tsk->stack = kasan_reset_tag(page_address(page));
363 		return 0;
364 	}
365 	return -ENOMEM;
366 }
367 
368 static void free_thread_stack(struct task_struct *tsk)
369 {
370 	thread_stack_delayed_free(tsk);
371 	tsk->stack = NULL;
372 }
373 
374 #  endif /* CONFIG_VMAP_STACK */
375 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
376 
377 static struct kmem_cache *thread_stack_cache;
378 
379 static void thread_stack_free_rcu(struct rcu_head *rh)
380 {
381 	kmem_cache_free(thread_stack_cache, rh);
382 }
383 
384 static void thread_stack_delayed_free(struct task_struct *tsk)
385 {
386 	struct rcu_head *rh = tsk->stack;
387 
388 	call_rcu(rh, thread_stack_free_rcu);
389 }
390 
391 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
392 {
393 	unsigned long *stack;
394 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
395 	stack = kasan_reset_tag(stack);
396 	tsk->stack = stack;
397 	return stack ? 0 : -ENOMEM;
398 }
399 
400 static void free_thread_stack(struct task_struct *tsk)
401 {
402 	thread_stack_delayed_free(tsk);
403 	tsk->stack = NULL;
404 }
405 
406 void thread_stack_cache_init(void)
407 {
408 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
409 					THREAD_SIZE, THREAD_SIZE, 0, 0,
410 					THREAD_SIZE, NULL);
411 	BUG_ON(thread_stack_cache == NULL);
412 }
413 
414 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
415 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
416 
417 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
418 {
419 	unsigned long *stack;
420 
421 	stack = arch_alloc_thread_stack_node(tsk, node);
422 	tsk->stack = stack;
423 	return stack ? 0 : -ENOMEM;
424 }
425 
426 static void free_thread_stack(struct task_struct *tsk)
427 {
428 	arch_free_thread_stack(tsk);
429 	tsk->stack = NULL;
430 }
431 
432 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
433 
434 /* SLAB cache for signal_struct structures (tsk->signal) */
435 static struct kmem_cache *signal_cachep;
436 
437 /* SLAB cache for sighand_struct structures (tsk->sighand) */
438 struct kmem_cache *sighand_cachep;
439 
440 /* SLAB cache for files_struct structures (tsk->files) */
441 struct kmem_cache *files_cachep;
442 
443 /* SLAB cache for fs_struct structures (tsk->fs) */
444 struct kmem_cache *fs_cachep;
445 
446 /* SLAB cache for vm_area_struct structures */
447 static struct kmem_cache *vm_area_cachep;
448 
449 /* SLAB cache for mm_struct structures (tsk->mm) */
450 static struct kmem_cache *mm_cachep;
451 
452 #ifdef CONFIG_PER_VMA_LOCK
453 
454 /* SLAB cache for vm_area_struct.lock */
455 static struct kmem_cache *vma_lock_cachep;
456 
457 static bool vma_lock_alloc(struct vm_area_struct *vma)
458 {
459 	vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
460 	if (!vma->vm_lock)
461 		return false;
462 
463 	init_rwsem(&vma->vm_lock->lock);
464 	vma->vm_lock_seq = -1;
465 
466 	return true;
467 }
468 
469 static inline void vma_lock_free(struct vm_area_struct *vma)
470 {
471 	kmem_cache_free(vma_lock_cachep, vma->vm_lock);
472 }
473 
474 #else /* CONFIG_PER_VMA_LOCK */
475 
476 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
477 static inline void vma_lock_free(struct vm_area_struct *vma) {}
478 
479 #endif /* CONFIG_PER_VMA_LOCK */
480 
481 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
482 {
483 	struct vm_area_struct *vma;
484 
485 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
486 	if (!vma)
487 		return NULL;
488 
489 	vma_init(vma, mm);
490 	if (!vma_lock_alloc(vma)) {
491 		kmem_cache_free(vm_area_cachep, vma);
492 		return NULL;
493 	}
494 
495 	return vma;
496 }
497 
498 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
499 {
500 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
501 
502 	if (!new)
503 		return NULL;
504 
505 	ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
506 	ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
507 	/*
508 	 * orig->shared.rb may be modified concurrently, but the clone
509 	 * will be reinitialized.
510 	 */
511 	data_race(memcpy(new, orig, sizeof(*new)));
512 	if (!vma_lock_alloc(new)) {
513 		kmem_cache_free(vm_area_cachep, new);
514 		return NULL;
515 	}
516 	INIT_LIST_HEAD(&new->anon_vma_chain);
517 	vma_numab_state_init(new);
518 	dup_anon_vma_name(orig, new);
519 
520 	return new;
521 }
522 
523 void __vm_area_free(struct vm_area_struct *vma)
524 {
525 	vma_numab_state_free(vma);
526 	free_anon_vma_name(vma);
527 	vma_lock_free(vma);
528 	kmem_cache_free(vm_area_cachep, vma);
529 }
530 
531 #ifdef CONFIG_PER_VMA_LOCK
532 static void vm_area_free_rcu_cb(struct rcu_head *head)
533 {
534 	struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
535 						  vm_rcu);
536 
537 	/* The vma should not be locked while being destroyed. */
538 	VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
539 	__vm_area_free(vma);
540 }
541 #endif
542 
543 void vm_area_free(struct vm_area_struct *vma)
544 {
545 #ifdef CONFIG_PER_VMA_LOCK
546 	call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
547 #else
548 	__vm_area_free(vma);
549 #endif
550 }
551 
552 static void account_kernel_stack(struct task_struct *tsk, int account)
553 {
554 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
555 		struct vm_struct *vm = task_stack_vm_area(tsk);
556 		int i;
557 
558 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
559 			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
560 					      account * (PAGE_SIZE / 1024));
561 	} else {
562 		void *stack = task_stack_page(tsk);
563 
564 		/* All stack pages are in the same node. */
565 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
566 				      account * (THREAD_SIZE / 1024));
567 	}
568 }
569 
570 void exit_task_stack_account(struct task_struct *tsk)
571 {
572 	account_kernel_stack(tsk, -1);
573 
574 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
575 		struct vm_struct *vm;
576 		int i;
577 
578 		vm = task_stack_vm_area(tsk);
579 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
580 			memcg_kmem_uncharge_page(vm->pages[i], 0);
581 	}
582 }
583 
584 static void release_task_stack(struct task_struct *tsk)
585 {
586 	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
587 		return;  /* Better to leak the stack than to free prematurely */
588 
589 	free_thread_stack(tsk);
590 }
591 
592 #ifdef CONFIG_THREAD_INFO_IN_TASK
593 void put_task_stack(struct task_struct *tsk)
594 {
595 	if (refcount_dec_and_test(&tsk->stack_refcount))
596 		release_task_stack(tsk);
597 }
598 #endif
599 
600 void free_task(struct task_struct *tsk)
601 {
602 #ifdef CONFIG_SECCOMP
603 	WARN_ON_ONCE(tsk->seccomp.filter);
604 #endif
605 	release_user_cpus_ptr(tsk);
606 	scs_release(tsk);
607 
608 #ifndef CONFIG_THREAD_INFO_IN_TASK
609 	/*
610 	 * The task is finally done with both the stack and thread_info,
611 	 * so free both.
612 	 */
613 	release_task_stack(tsk);
614 #else
615 	/*
616 	 * If the task had a separate stack allocation, it should be gone
617 	 * by now.
618 	 */
619 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
620 #endif
621 	rt_mutex_debug_task_free(tsk);
622 	ftrace_graph_exit_task(tsk);
623 	arch_release_task_struct(tsk);
624 	if (tsk->flags & PF_KTHREAD)
625 		free_kthread_struct(tsk);
626 	bpf_task_storage_free(tsk);
627 	free_task_struct(tsk);
628 }
629 EXPORT_SYMBOL(free_task);
630 
631 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
632 {
633 	struct file *exe_file;
634 
635 	exe_file = get_mm_exe_file(oldmm);
636 	RCU_INIT_POINTER(mm->exe_file, exe_file);
637 	/*
638 	 * We depend on the oldmm having properly denied write access to the
639 	 * exe_file already.
640 	 */
641 	if (exe_file && deny_write_access(exe_file))
642 		pr_warn_once("deny_write_access() failed in %s\n", __func__);
643 }
644 
645 #ifdef CONFIG_MMU
646 static __latent_entropy int dup_mmap(struct mm_struct *mm,
647 					struct mm_struct *oldmm)
648 {
649 	struct vm_area_struct *mpnt, *tmp;
650 	int retval;
651 	unsigned long charge = 0;
652 	LIST_HEAD(uf);
653 	VMA_ITERATOR(vmi, mm, 0);
654 
655 	uprobe_start_dup_mmap();
656 	if (mmap_write_lock_killable(oldmm)) {
657 		retval = -EINTR;
658 		goto fail_uprobe_end;
659 	}
660 	flush_cache_dup_mm(oldmm);
661 	uprobe_dup_mmap(oldmm, mm);
662 	/*
663 	 * Not linked in yet - no deadlock potential:
664 	 */
665 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
666 
667 	/* No ordering required: file already has been exposed. */
668 	dup_mm_exe_file(mm, oldmm);
669 
670 	mm->total_vm = oldmm->total_vm;
671 	mm->data_vm = oldmm->data_vm;
672 	mm->exec_vm = oldmm->exec_vm;
673 	mm->stack_vm = oldmm->stack_vm;
674 
675 	retval = ksm_fork(mm, oldmm);
676 	if (retval)
677 		goto out;
678 	khugepaged_fork(mm, oldmm);
679 
680 	/* Use __mt_dup() to efficiently build an identical maple tree. */
681 	retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL);
682 	if (unlikely(retval))
683 		goto out;
684 
685 	mt_clear_in_rcu(vmi.mas.tree);
686 	for_each_vma(vmi, mpnt) {
687 		struct file *file;
688 
689 		vma_start_write(mpnt);
690 		if (mpnt->vm_flags & VM_DONTCOPY) {
691 			retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start,
692 						    mpnt->vm_end, GFP_KERNEL);
693 			if (retval)
694 				goto loop_out;
695 
696 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
697 			continue;
698 		}
699 		charge = 0;
700 		/*
701 		 * Don't duplicate many vmas if we've been oom-killed (for
702 		 * example)
703 		 */
704 		if (fatal_signal_pending(current)) {
705 			retval = -EINTR;
706 			goto loop_out;
707 		}
708 		if (mpnt->vm_flags & VM_ACCOUNT) {
709 			unsigned long len = vma_pages(mpnt);
710 
711 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
712 				goto fail_nomem;
713 			charge = len;
714 		}
715 		tmp = vm_area_dup(mpnt);
716 		if (!tmp)
717 			goto fail_nomem;
718 		retval = vma_dup_policy(mpnt, tmp);
719 		if (retval)
720 			goto fail_nomem_policy;
721 		tmp->vm_mm = mm;
722 		retval = dup_userfaultfd(tmp, &uf);
723 		if (retval)
724 			goto fail_nomem_anon_vma_fork;
725 		if (tmp->vm_flags & VM_WIPEONFORK) {
726 			/*
727 			 * VM_WIPEONFORK gets a clean slate in the child.
728 			 * Don't prepare anon_vma until fault since we don't
729 			 * copy page for current vma.
730 			 */
731 			tmp->anon_vma = NULL;
732 		} else if (anon_vma_fork(tmp, mpnt))
733 			goto fail_nomem_anon_vma_fork;
734 		vm_flags_clear(tmp, VM_LOCKED_MASK);
735 		file = tmp->vm_file;
736 		if (file) {
737 			struct address_space *mapping = file->f_mapping;
738 
739 			get_file(file);
740 			i_mmap_lock_write(mapping);
741 			if (vma_is_shared_maywrite(tmp))
742 				mapping_allow_writable(mapping);
743 			flush_dcache_mmap_lock(mapping);
744 			/* insert tmp into the share list, just after mpnt */
745 			vma_interval_tree_insert_after(tmp, mpnt,
746 					&mapping->i_mmap);
747 			flush_dcache_mmap_unlock(mapping);
748 			i_mmap_unlock_write(mapping);
749 		}
750 
751 		/*
752 		 * Copy/update hugetlb private vma information.
753 		 */
754 		if (is_vm_hugetlb_page(tmp))
755 			hugetlb_dup_vma_private(tmp);
756 
757 		/*
758 		 * Link the vma into the MT. After using __mt_dup(), memory
759 		 * allocation is not necessary here, so it cannot fail.
760 		 */
761 		vma_iter_bulk_store(&vmi, tmp);
762 
763 		mm->map_count++;
764 		if (!(tmp->vm_flags & VM_WIPEONFORK))
765 			retval = copy_page_range(tmp, mpnt);
766 
767 		if (tmp->vm_ops && tmp->vm_ops->open)
768 			tmp->vm_ops->open(tmp);
769 
770 		if (retval) {
771 			mpnt = vma_next(&vmi);
772 			goto loop_out;
773 		}
774 	}
775 	/* a new mm has just been created */
776 	retval = arch_dup_mmap(oldmm, mm);
777 loop_out:
778 	vma_iter_free(&vmi);
779 	if (!retval) {
780 		mt_set_in_rcu(vmi.mas.tree);
781 	} else if (mpnt) {
782 		/*
783 		 * The entire maple tree has already been duplicated. If the
784 		 * mmap duplication fails, mark the failure point with
785 		 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered,
786 		 * stop releasing VMAs that have not been duplicated after this
787 		 * point.
788 		 */
789 		mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1);
790 		mas_store(&vmi.mas, XA_ZERO_ENTRY);
791 	}
792 out:
793 	mmap_write_unlock(mm);
794 	flush_tlb_mm(oldmm);
795 	mmap_write_unlock(oldmm);
796 	dup_userfaultfd_complete(&uf);
797 fail_uprobe_end:
798 	uprobe_end_dup_mmap();
799 	return retval;
800 
801 fail_nomem_anon_vma_fork:
802 	mpol_put(vma_policy(tmp));
803 fail_nomem_policy:
804 	vm_area_free(tmp);
805 fail_nomem:
806 	retval = -ENOMEM;
807 	vm_unacct_memory(charge);
808 	goto loop_out;
809 }
810 
811 static inline int mm_alloc_pgd(struct mm_struct *mm)
812 {
813 	mm->pgd = pgd_alloc(mm);
814 	if (unlikely(!mm->pgd))
815 		return -ENOMEM;
816 	return 0;
817 }
818 
819 static inline void mm_free_pgd(struct mm_struct *mm)
820 {
821 	pgd_free(mm, mm->pgd);
822 }
823 #else
824 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
825 {
826 	mmap_write_lock(oldmm);
827 	dup_mm_exe_file(mm, oldmm);
828 	mmap_write_unlock(oldmm);
829 	return 0;
830 }
831 #define mm_alloc_pgd(mm)	(0)
832 #define mm_free_pgd(mm)
833 #endif /* CONFIG_MMU */
834 
835 static void check_mm(struct mm_struct *mm)
836 {
837 	int i;
838 
839 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
840 			 "Please make sure 'struct resident_page_types[]' is updated as well");
841 
842 	for (i = 0; i < NR_MM_COUNTERS; i++) {
843 		long x = percpu_counter_sum(&mm->rss_stat[i]);
844 
845 		if (unlikely(x))
846 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
847 				 mm, resident_page_types[i], x);
848 	}
849 
850 	if (mm_pgtables_bytes(mm))
851 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
852 				mm_pgtables_bytes(mm));
853 
854 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
855 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
856 #endif
857 }
858 
859 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
860 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
861 
862 static void do_check_lazy_tlb(void *arg)
863 {
864 	struct mm_struct *mm = arg;
865 
866 	WARN_ON_ONCE(current->active_mm == mm);
867 }
868 
869 static void do_shoot_lazy_tlb(void *arg)
870 {
871 	struct mm_struct *mm = arg;
872 
873 	if (current->active_mm == mm) {
874 		WARN_ON_ONCE(current->mm);
875 		current->active_mm = &init_mm;
876 		switch_mm(mm, &init_mm, current);
877 	}
878 }
879 
880 static void cleanup_lazy_tlbs(struct mm_struct *mm)
881 {
882 	if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
883 		/*
884 		 * In this case, lazy tlb mms are refounted and would not reach
885 		 * __mmdrop until all CPUs have switched away and mmdrop()ed.
886 		 */
887 		return;
888 	}
889 
890 	/*
891 	 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
892 	 * requires lazy mm users to switch to another mm when the refcount
893 	 * drops to zero, before the mm is freed. This requires IPIs here to
894 	 * switch kernel threads to init_mm.
895 	 *
896 	 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
897 	 * switch with the final userspace teardown TLB flush which leaves the
898 	 * mm lazy on this CPU but no others, reducing the need for additional
899 	 * IPIs here. There are cases where a final IPI is still required here,
900 	 * such as the final mmdrop being performed on a different CPU than the
901 	 * one exiting, or kernel threads using the mm when userspace exits.
902 	 *
903 	 * IPI overheads have not found to be expensive, but they could be
904 	 * reduced in a number of possible ways, for example (roughly
905 	 * increasing order of complexity):
906 	 * - The last lazy reference created by exit_mm() could instead switch
907 	 *   to init_mm, however it's probable this will run on the same CPU
908 	 *   immediately afterwards, so this may not reduce IPIs much.
909 	 * - A batch of mms requiring IPIs could be gathered and freed at once.
910 	 * - CPUs store active_mm where it can be remotely checked without a
911 	 *   lock, to filter out false-positives in the cpumask.
912 	 * - After mm_users or mm_count reaches zero, switching away from the
913 	 *   mm could clear mm_cpumask to reduce some IPIs, perhaps together
914 	 *   with some batching or delaying of the final IPIs.
915 	 * - A delayed freeing and RCU-like quiescing sequence based on mm
916 	 *   switching to avoid IPIs completely.
917 	 */
918 	on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
919 	if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
920 		on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
921 }
922 
923 /*
924  * Called when the last reference to the mm
925  * is dropped: either by a lazy thread or by
926  * mmput. Free the page directory and the mm.
927  */
928 void __mmdrop(struct mm_struct *mm)
929 {
930 	BUG_ON(mm == &init_mm);
931 	WARN_ON_ONCE(mm == current->mm);
932 
933 	/* Ensure no CPUs are using this as their lazy tlb mm */
934 	cleanup_lazy_tlbs(mm);
935 
936 	WARN_ON_ONCE(mm == current->active_mm);
937 	mm_free_pgd(mm);
938 	destroy_context(mm);
939 	mmu_notifier_subscriptions_destroy(mm);
940 	check_mm(mm);
941 	put_user_ns(mm->user_ns);
942 	mm_pasid_drop(mm);
943 	mm_destroy_cid(mm);
944 	percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
945 
946 	free_mm(mm);
947 }
948 EXPORT_SYMBOL_GPL(__mmdrop);
949 
950 static void mmdrop_async_fn(struct work_struct *work)
951 {
952 	struct mm_struct *mm;
953 
954 	mm = container_of(work, struct mm_struct, async_put_work);
955 	__mmdrop(mm);
956 }
957 
958 static void mmdrop_async(struct mm_struct *mm)
959 {
960 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
961 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
962 		schedule_work(&mm->async_put_work);
963 	}
964 }
965 
966 static inline void free_signal_struct(struct signal_struct *sig)
967 {
968 	taskstats_tgid_free(sig);
969 	sched_autogroup_exit(sig);
970 	/*
971 	 * __mmdrop is not safe to call from softirq context on x86 due to
972 	 * pgd_dtor so postpone it to the async context
973 	 */
974 	if (sig->oom_mm)
975 		mmdrop_async(sig->oom_mm);
976 	kmem_cache_free(signal_cachep, sig);
977 }
978 
979 static inline void put_signal_struct(struct signal_struct *sig)
980 {
981 	if (refcount_dec_and_test(&sig->sigcnt))
982 		free_signal_struct(sig);
983 }
984 
985 void __put_task_struct(struct task_struct *tsk)
986 {
987 	WARN_ON(!tsk->exit_state);
988 	WARN_ON(refcount_read(&tsk->usage));
989 	WARN_ON(tsk == current);
990 
991 	io_uring_free(tsk);
992 	cgroup_free(tsk);
993 	task_numa_free(tsk, true);
994 	security_task_free(tsk);
995 	exit_creds(tsk);
996 	delayacct_tsk_free(tsk);
997 	put_signal_struct(tsk->signal);
998 	sched_core_free(tsk);
999 	free_task(tsk);
1000 }
1001 EXPORT_SYMBOL_GPL(__put_task_struct);
1002 
1003 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
1004 {
1005 	struct task_struct *task = container_of(rhp, struct task_struct, rcu);
1006 
1007 	__put_task_struct(task);
1008 }
1009 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
1010 
1011 void __init __weak arch_task_cache_init(void) { }
1012 
1013 /*
1014  * set_max_threads
1015  */
1016 static void set_max_threads(unsigned int max_threads_suggested)
1017 {
1018 	u64 threads;
1019 	unsigned long nr_pages = totalram_pages();
1020 
1021 	/*
1022 	 * The number of threads shall be limited such that the thread
1023 	 * structures may only consume a small part of the available memory.
1024 	 */
1025 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
1026 		threads = MAX_THREADS;
1027 	else
1028 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
1029 				    (u64) THREAD_SIZE * 8UL);
1030 
1031 	if (threads > max_threads_suggested)
1032 		threads = max_threads_suggested;
1033 
1034 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
1035 }
1036 
1037 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1038 /* Initialized by the architecture: */
1039 int arch_task_struct_size __read_mostly;
1040 #endif
1041 
1042 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
1043 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
1044 {
1045 	/* Fetch thread_struct whitelist for the architecture. */
1046 	arch_thread_struct_whitelist(offset, size);
1047 
1048 	/*
1049 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
1050 	 * adjust offset to position of thread_struct in task_struct.
1051 	 */
1052 	if (unlikely(*size == 0))
1053 		*offset = 0;
1054 	else
1055 		*offset += offsetof(struct task_struct, thread);
1056 }
1057 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
1058 
1059 void __init fork_init(void)
1060 {
1061 	int i;
1062 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
1063 #ifndef ARCH_MIN_TASKALIGN
1064 #define ARCH_MIN_TASKALIGN	0
1065 #endif
1066 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1067 	unsigned long useroffset, usersize;
1068 
1069 	/* create a slab on which task_structs can be allocated */
1070 	task_struct_whitelist(&useroffset, &usersize);
1071 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1072 			arch_task_struct_size, align,
1073 			SLAB_PANIC|SLAB_ACCOUNT,
1074 			useroffset, usersize, NULL);
1075 #endif
1076 
1077 	/* do the arch specific task caches init */
1078 	arch_task_cache_init();
1079 
1080 	set_max_threads(MAX_THREADS);
1081 
1082 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1083 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1084 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
1085 		init_task.signal->rlim[RLIMIT_NPROC];
1086 
1087 	for (i = 0; i < UCOUNT_COUNTS; i++)
1088 		init_user_ns.ucount_max[i] = max_threads/2;
1089 
1090 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
1091 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
1092 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1093 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
1094 
1095 #ifdef CONFIG_VMAP_STACK
1096 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1097 			  NULL, free_vm_stack_cache);
1098 #endif
1099 
1100 	scs_init();
1101 
1102 	lockdep_init_task(&init_task);
1103 	uprobes_init();
1104 }
1105 
1106 int __weak arch_dup_task_struct(struct task_struct *dst,
1107 					       struct task_struct *src)
1108 {
1109 	*dst = *src;
1110 	return 0;
1111 }
1112 
1113 void set_task_stack_end_magic(struct task_struct *tsk)
1114 {
1115 	unsigned long *stackend;
1116 
1117 	stackend = end_of_stack(tsk);
1118 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
1119 }
1120 
1121 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1122 {
1123 	struct task_struct *tsk;
1124 	int err;
1125 
1126 	if (node == NUMA_NO_NODE)
1127 		node = tsk_fork_get_node(orig);
1128 	tsk = alloc_task_struct_node(node);
1129 	if (!tsk)
1130 		return NULL;
1131 
1132 	err = arch_dup_task_struct(tsk, orig);
1133 	if (err)
1134 		goto free_tsk;
1135 
1136 	err = alloc_thread_stack_node(tsk, node);
1137 	if (err)
1138 		goto free_tsk;
1139 
1140 #ifdef CONFIG_THREAD_INFO_IN_TASK
1141 	refcount_set(&tsk->stack_refcount, 1);
1142 #endif
1143 	account_kernel_stack(tsk, 1);
1144 
1145 	err = scs_prepare(tsk, node);
1146 	if (err)
1147 		goto free_stack;
1148 
1149 #ifdef CONFIG_SECCOMP
1150 	/*
1151 	 * We must handle setting up seccomp filters once we're under
1152 	 * the sighand lock in case orig has changed between now and
1153 	 * then. Until then, filter must be NULL to avoid messing up
1154 	 * the usage counts on the error path calling free_task.
1155 	 */
1156 	tsk->seccomp.filter = NULL;
1157 #endif
1158 
1159 	setup_thread_stack(tsk, orig);
1160 	clear_user_return_notifier(tsk);
1161 	clear_tsk_need_resched(tsk);
1162 	set_task_stack_end_magic(tsk);
1163 	clear_syscall_work_syscall_user_dispatch(tsk);
1164 
1165 #ifdef CONFIG_STACKPROTECTOR
1166 	tsk->stack_canary = get_random_canary();
1167 #endif
1168 	if (orig->cpus_ptr == &orig->cpus_mask)
1169 		tsk->cpus_ptr = &tsk->cpus_mask;
1170 	dup_user_cpus_ptr(tsk, orig, node);
1171 
1172 	/*
1173 	 * One for the user space visible state that goes away when reaped.
1174 	 * One for the scheduler.
1175 	 */
1176 	refcount_set(&tsk->rcu_users, 2);
1177 	/* One for the rcu users */
1178 	refcount_set(&tsk->usage, 1);
1179 #ifdef CONFIG_BLK_DEV_IO_TRACE
1180 	tsk->btrace_seq = 0;
1181 #endif
1182 	tsk->splice_pipe = NULL;
1183 	tsk->task_frag.page = NULL;
1184 	tsk->wake_q.next = NULL;
1185 	tsk->worker_private = NULL;
1186 
1187 	kcov_task_init(tsk);
1188 	kmsan_task_create(tsk);
1189 	kmap_local_fork(tsk);
1190 
1191 #ifdef CONFIG_FAULT_INJECTION
1192 	tsk->fail_nth = 0;
1193 #endif
1194 
1195 #ifdef CONFIG_BLK_CGROUP
1196 	tsk->throttle_disk = NULL;
1197 	tsk->use_memdelay = 0;
1198 #endif
1199 
1200 #ifdef CONFIG_IOMMU_SVA
1201 	tsk->pasid_activated = 0;
1202 #endif
1203 
1204 #ifdef CONFIG_MEMCG
1205 	tsk->active_memcg = NULL;
1206 #endif
1207 
1208 #ifdef CONFIG_CPU_SUP_INTEL
1209 	tsk->reported_split_lock = 0;
1210 #endif
1211 
1212 #ifdef CONFIG_SCHED_MM_CID
1213 	tsk->mm_cid = -1;
1214 	tsk->last_mm_cid = -1;
1215 	tsk->mm_cid_active = 0;
1216 	tsk->migrate_from_cpu = -1;
1217 #endif
1218 	return tsk;
1219 
1220 free_stack:
1221 	exit_task_stack_account(tsk);
1222 	free_thread_stack(tsk);
1223 free_tsk:
1224 	free_task_struct(tsk);
1225 	return NULL;
1226 }
1227 
1228 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1229 
1230 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1231 
1232 static int __init coredump_filter_setup(char *s)
1233 {
1234 	default_dump_filter =
1235 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1236 		MMF_DUMP_FILTER_MASK;
1237 	return 1;
1238 }
1239 
1240 __setup("coredump_filter=", coredump_filter_setup);
1241 
1242 #include <linux/init_task.h>
1243 
1244 static void mm_init_aio(struct mm_struct *mm)
1245 {
1246 #ifdef CONFIG_AIO
1247 	spin_lock_init(&mm->ioctx_lock);
1248 	mm->ioctx_table = NULL;
1249 #endif
1250 }
1251 
1252 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1253 					   struct task_struct *p)
1254 {
1255 #ifdef CONFIG_MEMCG
1256 	if (mm->owner == p)
1257 		WRITE_ONCE(mm->owner, NULL);
1258 #endif
1259 }
1260 
1261 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1262 {
1263 #ifdef CONFIG_MEMCG
1264 	mm->owner = p;
1265 #endif
1266 }
1267 
1268 static void mm_init_uprobes_state(struct mm_struct *mm)
1269 {
1270 #ifdef CONFIG_UPROBES
1271 	mm->uprobes_state.xol_area = NULL;
1272 #endif
1273 }
1274 
1275 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1276 	struct user_namespace *user_ns)
1277 {
1278 	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1279 	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1280 	atomic_set(&mm->mm_users, 1);
1281 	atomic_set(&mm->mm_count, 1);
1282 	seqcount_init(&mm->write_protect_seq);
1283 	mmap_init_lock(mm);
1284 	INIT_LIST_HEAD(&mm->mmlist);
1285 #ifdef CONFIG_PER_VMA_LOCK
1286 	mm->mm_lock_seq = 0;
1287 #endif
1288 	mm_pgtables_bytes_init(mm);
1289 	mm->map_count = 0;
1290 	mm->locked_vm = 0;
1291 	atomic64_set(&mm->pinned_vm, 0);
1292 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1293 	spin_lock_init(&mm->page_table_lock);
1294 	spin_lock_init(&mm->arg_lock);
1295 	mm_init_cpumask(mm);
1296 	mm_init_aio(mm);
1297 	mm_init_owner(mm, p);
1298 	mm_pasid_init(mm);
1299 	RCU_INIT_POINTER(mm->exe_file, NULL);
1300 	mmu_notifier_subscriptions_init(mm);
1301 	init_tlb_flush_pending(mm);
1302 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1303 	mm->pmd_huge_pte = NULL;
1304 #endif
1305 	mm_init_uprobes_state(mm);
1306 	hugetlb_count_init(mm);
1307 
1308 	if (current->mm) {
1309 		mm->flags = mmf_init_flags(current->mm->flags);
1310 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1311 	} else {
1312 		mm->flags = default_dump_filter;
1313 		mm->def_flags = 0;
1314 	}
1315 
1316 	if (mm_alloc_pgd(mm))
1317 		goto fail_nopgd;
1318 
1319 	if (init_new_context(p, mm))
1320 		goto fail_nocontext;
1321 
1322 	if (mm_alloc_cid(mm))
1323 		goto fail_cid;
1324 
1325 	if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1326 				     NR_MM_COUNTERS))
1327 		goto fail_pcpu;
1328 
1329 	mm->user_ns = get_user_ns(user_ns);
1330 	lru_gen_init_mm(mm);
1331 	return mm;
1332 
1333 fail_pcpu:
1334 	mm_destroy_cid(mm);
1335 fail_cid:
1336 	destroy_context(mm);
1337 fail_nocontext:
1338 	mm_free_pgd(mm);
1339 fail_nopgd:
1340 	free_mm(mm);
1341 	return NULL;
1342 }
1343 
1344 /*
1345  * Allocate and initialize an mm_struct.
1346  */
1347 struct mm_struct *mm_alloc(void)
1348 {
1349 	struct mm_struct *mm;
1350 
1351 	mm = allocate_mm();
1352 	if (!mm)
1353 		return NULL;
1354 
1355 	memset(mm, 0, sizeof(*mm));
1356 	return mm_init(mm, current, current_user_ns());
1357 }
1358 
1359 static inline void __mmput(struct mm_struct *mm)
1360 {
1361 	VM_BUG_ON(atomic_read(&mm->mm_users));
1362 
1363 	uprobe_clear_state(mm);
1364 	exit_aio(mm);
1365 	ksm_exit(mm);
1366 	khugepaged_exit(mm); /* must run before exit_mmap */
1367 	exit_mmap(mm);
1368 	mm_put_huge_zero_page(mm);
1369 	set_mm_exe_file(mm, NULL);
1370 	if (!list_empty(&mm->mmlist)) {
1371 		spin_lock(&mmlist_lock);
1372 		list_del(&mm->mmlist);
1373 		spin_unlock(&mmlist_lock);
1374 	}
1375 	if (mm->binfmt)
1376 		module_put(mm->binfmt->module);
1377 	lru_gen_del_mm(mm);
1378 	mmdrop(mm);
1379 }
1380 
1381 /*
1382  * Decrement the use count and release all resources for an mm.
1383  */
1384 void mmput(struct mm_struct *mm)
1385 {
1386 	might_sleep();
1387 
1388 	if (atomic_dec_and_test(&mm->mm_users))
1389 		__mmput(mm);
1390 }
1391 EXPORT_SYMBOL_GPL(mmput);
1392 
1393 #ifdef CONFIG_MMU
1394 static void mmput_async_fn(struct work_struct *work)
1395 {
1396 	struct mm_struct *mm = container_of(work, struct mm_struct,
1397 					    async_put_work);
1398 
1399 	__mmput(mm);
1400 }
1401 
1402 void mmput_async(struct mm_struct *mm)
1403 {
1404 	if (atomic_dec_and_test(&mm->mm_users)) {
1405 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1406 		schedule_work(&mm->async_put_work);
1407 	}
1408 }
1409 EXPORT_SYMBOL_GPL(mmput_async);
1410 #endif
1411 
1412 /**
1413  * set_mm_exe_file - change a reference to the mm's executable file
1414  * @mm: The mm to change.
1415  * @new_exe_file: The new file to use.
1416  *
1417  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1418  *
1419  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1420  * invocations: in mmput() nobody alive left, in execve it happens before
1421  * the new mm is made visible to anyone.
1422  *
1423  * Can only fail if new_exe_file != NULL.
1424  */
1425 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1426 {
1427 	struct file *old_exe_file;
1428 
1429 	/*
1430 	 * It is safe to dereference the exe_file without RCU as
1431 	 * this function is only called if nobody else can access
1432 	 * this mm -- see comment above for justification.
1433 	 */
1434 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1435 
1436 	if (new_exe_file) {
1437 		/*
1438 		 * We expect the caller (i.e., sys_execve) to already denied
1439 		 * write access, so this is unlikely to fail.
1440 		 */
1441 		if (unlikely(deny_write_access(new_exe_file)))
1442 			return -EACCES;
1443 		get_file(new_exe_file);
1444 	}
1445 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1446 	if (old_exe_file) {
1447 		allow_write_access(old_exe_file);
1448 		fput(old_exe_file);
1449 	}
1450 	return 0;
1451 }
1452 
1453 /**
1454  * replace_mm_exe_file - replace a reference to the mm's executable file
1455  * @mm: The mm to change.
1456  * @new_exe_file: The new file to use.
1457  *
1458  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1459  *
1460  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1461  */
1462 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1463 {
1464 	struct vm_area_struct *vma;
1465 	struct file *old_exe_file;
1466 	int ret = 0;
1467 
1468 	/* Forbid mm->exe_file change if old file still mapped. */
1469 	old_exe_file = get_mm_exe_file(mm);
1470 	if (old_exe_file) {
1471 		VMA_ITERATOR(vmi, mm, 0);
1472 		mmap_read_lock(mm);
1473 		for_each_vma(vmi, vma) {
1474 			if (!vma->vm_file)
1475 				continue;
1476 			if (path_equal(&vma->vm_file->f_path,
1477 				       &old_exe_file->f_path)) {
1478 				ret = -EBUSY;
1479 				break;
1480 			}
1481 		}
1482 		mmap_read_unlock(mm);
1483 		fput(old_exe_file);
1484 		if (ret)
1485 			return ret;
1486 	}
1487 
1488 	ret = deny_write_access(new_exe_file);
1489 	if (ret)
1490 		return -EACCES;
1491 	get_file(new_exe_file);
1492 
1493 	/* set the new file */
1494 	mmap_write_lock(mm);
1495 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1496 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1497 	mmap_write_unlock(mm);
1498 
1499 	if (old_exe_file) {
1500 		allow_write_access(old_exe_file);
1501 		fput(old_exe_file);
1502 	}
1503 	return 0;
1504 }
1505 
1506 /**
1507  * get_mm_exe_file - acquire a reference to the mm's executable file
1508  * @mm: The mm of interest.
1509  *
1510  * Returns %NULL if mm has no associated executable file.
1511  * User must release file via fput().
1512  */
1513 struct file *get_mm_exe_file(struct mm_struct *mm)
1514 {
1515 	struct file *exe_file;
1516 
1517 	rcu_read_lock();
1518 	exe_file = get_file_rcu(&mm->exe_file);
1519 	rcu_read_unlock();
1520 	return exe_file;
1521 }
1522 
1523 /**
1524  * get_task_exe_file - acquire a reference to the task's executable file
1525  * @task: The task.
1526  *
1527  * Returns %NULL if task's mm (if any) has no associated executable file or
1528  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1529  * User must release file via fput().
1530  */
1531 struct file *get_task_exe_file(struct task_struct *task)
1532 {
1533 	struct file *exe_file = NULL;
1534 	struct mm_struct *mm;
1535 
1536 	task_lock(task);
1537 	mm = task->mm;
1538 	if (mm) {
1539 		if (!(task->flags & PF_KTHREAD))
1540 			exe_file = get_mm_exe_file(mm);
1541 	}
1542 	task_unlock(task);
1543 	return exe_file;
1544 }
1545 
1546 /**
1547  * get_task_mm - acquire a reference to the task's mm
1548  * @task: The task.
1549  *
1550  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1551  * this kernel workthread has transiently adopted a user mm with use_mm,
1552  * to do its AIO) is not set and if so returns a reference to it, after
1553  * bumping up the use count.  User must release the mm via mmput()
1554  * after use.  Typically used by /proc and ptrace.
1555  */
1556 struct mm_struct *get_task_mm(struct task_struct *task)
1557 {
1558 	struct mm_struct *mm;
1559 
1560 	task_lock(task);
1561 	mm = task->mm;
1562 	if (mm) {
1563 		if (task->flags & PF_KTHREAD)
1564 			mm = NULL;
1565 		else
1566 			mmget(mm);
1567 	}
1568 	task_unlock(task);
1569 	return mm;
1570 }
1571 EXPORT_SYMBOL_GPL(get_task_mm);
1572 
1573 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1574 {
1575 	struct mm_struct *mm;
1576 	int err;
1577 
1578 	err =  down_read_killable(&task->signal->exec_update_lock);
1579 	if (err)
1580 		return ERR_PTR(err);
1581 
1582 	mm = get_task_mm(task);
1583 	if (mm && mm != current->mm &&
1584 			!ptrace_may_access(task, mode)) {
1585 		mmput(mm);
1586 		mm = ERR_PTR(-EACCES);
1587 	}
1588 	up_read(&task->signal->exec_update_lock);
1589 
1590 	return mm;
1591 }
1592 
1593 static void complete_vfork_done(struct task_struct *tsk)
1594 {
1595 	struct completion *vfork;
1596 
1597 	task_lock(tsk);
1598 	vfork = tsk->vfork_done;
1599 	if (likely(vfork)) {
1600 		tsk->vfork_done = NULL;
1601 		complete(vfork);
1602 	}
1603 	task_unlock(tsk);
1604 }
1605 
1606 static int wait_for_vfork_done(struct task_struct *child,
1607 				struct completion *vfork)
1608 {
1609 	unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE;
1610 	int killed;
1611 
1612 	cgroup_enter_frozen();
1613 	killed = wait_for_completion_state(vfork, state);
1614 	cgroup_leave_frozen(false);
1615 
1616 	if (killed) {
1617 		task_lock(child);
1618 		child->vfork_done = NULL;
1619 		task_unlock(child);
1620 	}
1621 
1622 	put_task_struct(child);
1623 	return killed;
1624 }
1625 
1626 /* Please note the differences between mmput and mm_release.
1627  * mmput is called whenever we stop holding onto a mm_struct,
1628  * error success whatever.
1629  *
1630  * mm_release is called after a mm_struct has been removed
1631  * from the current process.
1632  *
1633  * This difference is important for error handling, when we
1634  * only half set up a mm_struct for a new process and need to restore
1635  * the old one.  Because we mmput the new mm_struct before
1636  * restoring the old one. . .
1637  * Eric Biederman 10 January 1998
1638  */
1639 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1640 {
1641 	uprobe_free_utask(tsk);
1642 
1643 	/* Get rid of any cached register state */
1644 	deactivate_mm(tsk, mm);
1645 
1646 	/*
1647 	 * Signal userspace if we're not exiting with a core dump
1648 	 * because we want to leave the value intact for debugging
1649 	 * purposes.
1650 	 */
1651 	if (tsk->clear_child_tid) {
1652 		if (atomic_read(&mm->mm_users) > 1) {
1653 			/*
1654 			 * We don't check the error code - if userspace has
1655 			 * not set up a proper pointer then tough luck.
1656 			 */
1657 			put_user(0, tsk->clear_child_tid);
1658 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1659 					1, NULL, NULL, 0, 0);
1660 		}
1661 		tsk->clear_child_tid = NULL;
1662 	}
1663 
1664 	/*
1665 	 * All done, finally we can wake up parent and return this mm to him.
1666 	 * Also kthread_stop() uses this completion for synchronization.
1667 	 */
1668 	if (tsk->vfork_done)
1669 		complete_vfork_done(tsk);
1670 }
1671 
1672 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1673 {
1674 	futex_exit_release(tsk);
1675 	mm_release(tsk, mm);
1676 }
1677 
1678 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1679 {
1680 	futex_exec_release(tsk);
1681 	mm_release(tsk, mm);
1682 }
1683 
1684 /**
1685  * dup_mm() - duplicates an existing mm structure
1686  * @tsk: the task_struct with which the new mm will be associated.
1687  * @oldmm: the mm to duplicate.
1688  *
1689  * Allocates a new mm structure and duplicates the provided @oldmm structure
1690  * content into it.
1691  *
1692  * Return: the duplicated mm or NULL on failure.
1693  */
1694 static struct mm_struct *dup_mm(struct task_struct *tsk,
1695 				struct mm_struct *oldmm)
1696 {
1697 	struct mm_struct *mm;
1698 	int err;
1699 
1700 	mm = allocate_mm();
1701 	if (!mm)
1702 		goto fail_nomem;
1703 
1704 	memcpy(mm, oldmm, sizeof(*mm));
1705 
1706 	if (!mm_init(mm, tsk, mm->user_ns))
1707 		goto fail_nomem;
1708 
1709 	err = dup_mmap(mm, oldmm);
1710 	if (err)
1711 		goto free_pt;
1712 
1713 	mm->hiwater_rss = get_mm_rss(mm);
1714 	mm->hiwater_vm = mm->total_vm;
1715 
1716 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1717 		goto free_pt;
1718 
1719 	return mm;
1720 
1721 free_pt:
1722 	/* don't put binfmt in mmput, we haven't got module yet */
1723 	mm->binfmt = NULL;
1724 	mm_init_owner(mm, NULL);
1725 	mmput(mm);
1726 
1727 fail_nomem:
1728 	return NULL;
1729 }
1730 
1731 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1732 {
1733 	struct mm_struct *mm, *oldmm;
1734 
1735 	tsk->min_flt = tsk->maj_flt = 0;
1736 	tsk->nvcsw = tsk->nivcsw = 0;
1737 #ifdef CONFIG_DETECT_HUNG_TASK
1738 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1739 	tsk->last_switch_time = 0;
1740 #endif
1741 
1742 	tsk->mm = NULL;
1743 	tsk->active_mm = NULL;
1744 
1745 	/*
1746 	 * Are we cloning a kernel thread?
1747 	 *
1748 	 * We need to steal a active VM for that..
1749 	 */
1750 	oldmm = current->mm;
1751 	if (!oldmm)
1752 		return 0;
1753 
1754 	if (clone_flags & CLONE_VM) {
1755 		mmget(oldmm);
1756 		mm = oldmm;
1757 	} else {
1758 		mm = dup_mm(tsk, current->mm);
1759 		if (!mm)
1760 			return -ENOMEM;
1761 	}
1762 
1763 	tsk->mm = mm;
1764 	tsk->active_mm = mm;
1765 	sched_mm_cid_fork(tsk);
1766 	return 0;
1767 }
1768 
1769 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1770 {
1771 	struct fs_struct *fs = current->fs;
1772 	if (clone_flags & CLONE_FS) {
1773 		/* tsk->fs is already what we want */
1774 		spin_lock(&fs->lock);
1775 		if (fs->in_exec) {
1776 			spin_unlock(&fs->lock);
1777 			return -EAGAIN;
1778 		}
1779 		fs->users++;
1780 		spin_unlock(&fs->lock);
1781 		return 0;
1782 	}
1783 	tsk->fs = copy_fs_struct(fs);
1784 	if (!tsk->fs)
1785 		return -ENOMEM;
1786 	return 0;
1787 }
1788 
1789 static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1790 		      int no_files)
1791 {
1792 	struct files_struct *oldf, *newf;
1793 	int error = 0;
1794 
1795 	/*
1796 	 * A background process may not have any files ...
1797 	 */
1798 	oldf = current->files;
1799 	if (!oldf)
1800 		goto out;
1801 
1802 	if (no_files) {
1803 		tsk->files = NULL;
1804 		goto out;
1805 	}
1806 
1807 	if (clone_flags & CLONE_FILES) {
1808 		atomic_inc(&oldf->count);
1809 		goto out;
1810 	}
1811 
1812 	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1813 	if (!newf)
1814 		goto out;
1815 
1816 	tsk->files = newf;
1817 	error = 0;
1818 out:
1819 	return error;
1820 }
1821 
1822 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1823 {
1824 	struct sighand_struct *sig;
1825 
1826 	if (clone_flags & CLONE_SIGHAND) {
1827 		refcount_inc(&current->sighand->count);
1828 		return 0;
1829 	}
1830 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1831 	RCU_INIT_POINTER(tsk->sighand, sig);
1832 	if (!sig)
1833 		return -ENOMEM;
1834 
1835 	refcount_set(&sig->count, 1);
1836 	spin_lock_irq(&current->sighand->siglock);
1837 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1838 	spin_unlock_irq(&current->sighand->siglock);
1839 
1840 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1841 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1842 		flush_signal_handlers(tsk, 0);
1843 
1844 	return 0;
1845 }
1846 
1847 void __cleanup_sighand(struct sighand_struct *sighand)
1848 {
1849 	if (refcount_dec_and_test(&sighand->count)) {
1850 		signalfd_cleanup(sighand);
1851 		/*
1852 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1853 		 * without an RCU grace period, see __lock_task_sighand().
1854 		 */
1855 		kmem_cache_free(sighand_cachep, sighand);
1856 	}
1857 }
1858 
1859 /*
1860  * Initialize POSIX timer handling for a thread group.
1861  */
1862 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1863 {
1864 	struct posix_cputimers *pct = &sig->posix_cputimers;
1865 	unsigned long cpu_limit;
1866 
1867 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1868 	posix_cputimers_group_init(pct, cpu_limit);
1869 }
1870 
1871 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1872 {
1873 	struct signal_struct *sig;
1874 
1875 	if (clone_flags & CLONE_THREAD)
1876 		return 0;
1877 
1878 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1879 	tsk->signal = sig;
1880 	if (!sig)
1881 		return -ENOMEM;
1882 
1883 	sig->nr_threads = 1;
1884 	sig->quick_threads = 1;
1885 	atomic_set(&sig->live, 1);
1886 	refcount_set(&sig->sigcnt, 1);
1887 
1888 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1889 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1890 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1891 
1892 	init_waitqueue_head(&sig->wait_chldexit);
1893 	sig->curr_target = tsk;
1894 	init_sigpending(&sig->shared_pending);
1895 	INIT_HLIST_HEAD(&sig->multiprocess);
1896 	seqlock_init(&sig->stats_lock);
1897 	prev_cputime_init(&sig->prev_cputime);
1898 
1899 #ifdef CONFIG_POSIX_TIMERS
1900 	INIT_LIST_HEAD(&sig->posix_timers);
1901 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1902 	sig->real_timer.function = it_real_fn;
1903 #endif
1904 
1905 	task_lock(current->group_leader);
1906 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1907 	task_unlock(current->group_leader);
1908 
1909 	posix_cpu_timers_init_group(sig);
1910 
1911 	tty_audit_fork(sig);
1912 	sched_autogroup_fork(sig);
1913 
1914 	sig->oom_score_adj = current->signal->oom_score_adj;
1915 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1916 
1917 	mutex_init(&sig->cred_guard_mutex);
1918 	init_rwsem(&sig->exec_update_lock);
1919 
1920 	return 0;
1921 }
1922 
1923 static void copy_seccomp(struct task_struct *p)
1924 {
1925 #ifdef CONFIG_SECCOMP
1926 	/*
1927 	 * Must be called with sighand->lock held, which is common to
1928 	 * all threads in the group. Holding cred_guard_mutex is not
1929 	 * needed because this new task is not yet running and cannot
1930 	 * be racing exec.
1931 	 */
1932 	assert_spin_locked(&current->sighand->siglock);
1933 
1934 	/* Ref-count the new filter user, and assign it. */
1935 	get_seccomp_filter(current);
1936 	p->seccomp = current->seccomp;
1937 
1938 	/*
1939 	 * Explicitly enable no_new_privs here in case it got set
1940 	 * between the task_struct being duplicated and holding the
1941 	 * sighand lock. The seccomp state and nnp must be in sync.
1942 	 */
1943 	if (task_no_new_privs(current))
1944 		task_set_no_new_privs(p);
1945 
1946 	/*
1947 	 * If the parent gained a seccomp mode after copying thread
1948 	 * flags and between before we held the sighand lock, we have
1949 	 * to manually enable the seccomp thread flag here.
1950 	 */
1951 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1952 		set_task_syscall_work(p, SECCOMP);
1953 #endif
1954 }
1955 
1956 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1957 {
1958 	current->clear_child_tid = tidptr;
1959 
1960 	return task_pid_vnr(current);
1961 }
1962 
1963 static void rt_mutex_init_task(struct task_struct *p)
1964 {
1965 	raw_spin_lock_init(&p->pi_lock);
1966 #ifdef CONFIG_RT_MUTEXES
1967 	p->pi_waiters = RB_ROOT_CACHED;
1968 	p->pi_top_task = NULL;
1969 	p->pi_blocked_on = NULL;
1970 #endif
1971 }
1972 
1973 static inline void init_task_pid_links(struct task_struct *task)
1974 {
1975 	enum pid_type type;
1976 
1977 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1978 		INIT_HLIST_NODE(&task->pid_links[type]);
1979 }
1980 
1981 static inline void
1982 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1983 {
1984 	if (type == PIDTYPE_PID)
1985 		task->thread_pid = pid;
1986 	else
1987 		task->signal->pids[type] = pid;
1988 }
1989 
1990 static inline void rcu_copy_process(struct task_struct *p)
1991 {
1992 #ifdef CONFIG_PREEMPT_RCU
1993 	p->rcu_read_lock_nesting = 0;
1994 	p->rcu_read_unlock_special.s = 0;
1995 	p->rcu_blocked_node = NULL;
1996 	INIT_LIST_HEAD(&p->rcu_node_entry);
1997 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1998 #ifdef CONFIG_TASKS_RCU
1999 	p->rcu_tasks_holdout = false;
2000 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
2001 	p->rcu_tasks_idle_cpu = -1;
2002 #endif /* #ifdef CONFIG_TASKS_RCU */
2003 #ifdef CONFIG_TASKS_TRACE_RCU
2004 	p->trc_reader_nesting = 0;
2005 	p->trc_reader_special.s = 0;
2006 	INIT_LIST_HEAD(&p->trc_holdout_list);
2007 	INIT_LIST_HEAD(&p->trc_blkd_node);
2008 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
2009 }
2010 
2011 struct pid *pidfd_pid(const struct file *file)
2012 {
2013 	if (file->f_op == &pidfd_fops)
2014 		return file->private_data;
2015 
2016 	return ERR_PTR(-EBADF);
2017 }
2018 
2019 static int pidfd_release(struct inode *inode, struct file *file)
2020 {
2021 	struct pid *pid = file->private_data;
2022 
2023 	file->private_data = NULL;
2024 	put_pid(pid);
2025 	return 0;
2026 }
2027 
2028 #ifdef CONFIG_PROC_FS
2029 /**
2030  * pidfd_show_fdinfo - print information about a pidfd
2031  * @m: proc fdinfo file
2032  * @f: file referencing a pidfd
2033  *
2034  * Pid:
2035  * This function will print the pid that a given pidfd refers to in the
2036  * pid namespace of the procfs instance.
2037  * If the pid namespace of the process is not a descendant of the pid
2038  * namespace of the procfs instance 0 will be shown as its pid. This is
2039  * similar to calling getppid() on a process whose parent is outside of
2040  * its pid namespace.
2041  *
2042  * NSpid:
2043  * If pid namespaces are supported then this function will also print
2044  * the pid of a given pidfd refers to for all descendant pid namespaces
2045  * starting from the current pid namespace of the instance, i.e. the
2046  * Pid field and the first entry in the NSpid field will be identical.
2047  * If the pid namespace of the process is not a descendant of the pid
2048  * namespace of the procfs instance 0 will be shown as its first NSpid
2049  * entry and no others will be shown.
2050  * Note that this differs from the Pid and NSpid fields in
2051  * /proc/<pid>/status where Pid and NSpid are always shown relative to
2052  * the  pid namespace of the procfs instance. The difference becomes
2053  * obvious when sending around a pidfd between pid namespaces from a
2054  * different branch of the tree, i.e. where no ancestral relation is
2055  * present between the pid namespaces:
2056  * - create two new pid namespaces ns1 and ns2 in the initial pid
2057  *   namespace (also take care to create new mount namespaces in the
2058  *   new pid namespace and mount procfs)
2059  * - create a process with a pidfd in ns1
2060  * - send pidfd from ns1 to ns2
2061  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
2062  *   have exactly one entry, which is 0
2063  */
2064 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
2065 {
2066 	struct pid *pid = f->private_data;
2067 	struct pid_namespace *ns;
2068 	pid_t nr = -1;
2069 
2070 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
2071 		ns = proc_pid_ns(file_inode(m->file)->i_sb);
2072 		nr = pid_nr_ns(pid, ns);
2073 	}
2074 
2075 	seq_put_decimal_ll(m, "Pid:\t", nr);
2076 
2077 #ifdef CONFIG_PID_NS
2078 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
2079 	if (nr > 0) {
2080 		int i;
2081 
2082 		/* If nr is non-zero it means that 'pid' is valid and that
2083 		 * ns, i.e. the pid namespace associated with the procfs
2084 		 * instance, is in the pid namespace hierarchy of pid.
2085 		 * Start at one below the already printed level.
2086 		 */
2087 		for (i = ns->level + 1; i <= pid->level; i++)
2088 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
2089 	}
2090 #endif
2091 	seq_putc(m, '\n');
2092 }
2093 #endif
2094 
2095 /*
2096  * Poll support for process exit notification.
2097  */
2098 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
2099 {
2100 	struct pid *pid = file->private_data;
2101 	__poll_t poll_flags = 0;
2102 
2103 	poll_wait(file, &pid->wait_pidfd, pts);
2104 
2105 	/*
2106 	 * Inform pollers only when the whole thread group exits.
2107 	 * If the thread group leader exits before all other threads in the
2108 	 * group, then poll(2) should block, similar to the wait(2) family.
2109 	 */
2110 	if (thread_group_exited(pid))
2111 		poll_flags = EPOLLIN | EPOLLRDNORM;
2112 
2113 	return poll_flags;
2114 }
2115 
2116 const struct file_operations pidfd_fops = {
2117 	.release = pidfd_release,
2118 	.poll = pidfd_poll,
2119 #ifdef CONFIG_PROC_FS
2120 	.show_fdinfo = pidfd_show_fdinfo,
2121 #endif
2122 };
2123 
2124 /**
2125  * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2126  * @pid:   the struct pid for which to create a pidfd
2127  * @flags: flags of the new @pidfd
2128  * @ret: Where to return the file for the pidfd.
2129  *
2130  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2131  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2132  *
2133  * The helper doesn't perform checks on @pid which makes it useful for pidfds
2134  * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
2135  * pidfd file are prepared.
2136  *
2137  * If this function returns successfully the caller is responsible to either
2138  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2139  * order to install the pidfd into its file descriptor table or they must use
2140  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2141  * respectively.
2142  *
2143  * This function is useful when a pidfd must already be reserved but there
2144  * might still be points of failure afterwards and the caller wants to ensure
2145  * that no pidfd is leaked into its file descriptor table.
2146  *
2147  * Return: On success, a reserved pidfd is returned from the function and a new
2148  *         pidfd file is returned in the last argument to the function. On
2149  *         error, a negative error code is returned from the function and the
2150  *         last argument remains unchanged.
2151  */
2152 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2153 {
2154 	int pidfd;
2155 	struct file *pidfd_file;
2156 
2157 	if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC))
2158 		return -EINVAL;
2159 
2160 	pidfd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2161 	if (pidfd < 0)
2162 		return pidfd;
2163 
2164 	pidfd_file = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2165 					flags | O_RDWR | O_CLOEXEC);
2166 	if (IS_ERR(pidfd_file)) {
2167 		put_unused_fd(pidfd);
2168 		return PTR_ERR(pidfd_file);
2169 	}
2170 	get_pid(pid); /* held by pidfd_file now */
2171 	*ret = pidfd_file;
2172 	return pidfd;
2173 }
2174 
2175 /**
2176  * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2177  * @pid:   the struct pid for which to create a pidfd
2178  * @flags: flags of the new @pidfd
2179  * @ret: Where to return the pidfd.
2180  *
2181  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2182  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2183  *
2184  * The helper verifies that @pid is used as a thread group leader.
2185  *
2186  * If this function returns successfully the caller is responsible to either
2187  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2188  * order to install the pidfd into its file descriptor table or they must use
2189  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2190  * respectively.
2191  *
2192  * This function is useful when a pidfd must already be reserved but there
2193  * might still be points of failure afterwards and the caller wants to ensure
2194  * that no pidfd is leaked into its file descriptor table.
2195  *
2196  * Return: On success, a reserved pidfd is returned from the function and a new
2197  *         pidfd file is returned in the last argument to the function. On
2198  *         error, a negative error code is returned from the function and the
2199  *         last argument remains unchanged.
2200  */
2201 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2202 {
2203 	if (!pid || !pid_has_task(pid, PIDTYPE_TGID))
2204 		return -EINVAL;
2205 
2206 	return __pidfd_prepare(pid, flags, ret);
2207 }
2208 
2209 static void __delayed_free_task(struct rcu_head *rhp)
2210 {
2211 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2212 
2213 	free_task(tsk);
2214 }
2215 
2216 static __always_inline void delayed_free_task(struct task_struct *tsk)
2217 {
2218 	if (IS_ENABLED(CONFIG_MEMCG))
2219 		call_rcu(&tsk->rcu, __delayed_free_task);
2220 	else
2221 		free_task(tsk);
2222 }
2223 
2224 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2225 {
2226 	/* Skip if kernel thread */
2227 	if (!tsk->mm)
2228 		return;
2229 
2230 	/* Skip if spawning a thread or using vfork */
2231 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2232 		return;
2233 
2234 	/* We need to synchronize with __set_oom_adj */
2235 	mutex_lock(&oom_adj_mutex);
2236 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2237 	/* Update the values in case they were changed after copy_signal */
2238 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2239 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2240 	mutex_unlock(&oom_adj_mutex);
2241 }
2242 
2243 #ifdef CONFIG_RV
2244 static void rv_task_fork(struct task_struct *p)
2245 {
2246 	int i;
2247 
2248 	for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2249 		p->rv[i].da_mon.monitoring = false;
2250 }
2251 #else
2252 #define rv_task_fork(p) do {} while (0)
2253 #endif
2254 
2255 /*
2256  * This creates a new process as a copy of the old one,
2257  * but does not actually start it yet.
2258  *
2259  * It copies the registers, and all the appropriate
2260  * parts of the process environment (as per the clone
2261  * flags). The actual kick-off is left to the caller.
2262  */
2263 __latent_entropy struct task_struct *copy_process(
2264 					struct pid *pid,
2265 					int trace,
2266 					int node,
2267 					struct kernel_clone_args *args)
2268 {
2269 	int pidfd = -1, retval;
2270 	struct task_struct *p;
2271 	struct multiprocess_signals delayed;
2272 	struct file *pidfile = NULL;
2273 	const u64 clone_flags = args->flags;
2274 	struct nsproxy *nsp = current->nsproxy;
2275 
2276 	/*
2277 	 * Don't allow sharing the root directory with processes in a different
2278 	 * namespace
2279 	 */
2280 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2281 		return ERR_PTR(-EINVAL);
2282 
2283 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2284 		return ERR_PTR(-EINVAL);
2285 
2286 	/*
2287 	 * Thread groups must share signals as well, and detached threads
2288 	 * can only be started up within the thread group.
2289 	 */
2290 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2291 		return ERR_PTR(-EINVAL);
2292 
2293 	/*
2294 	 * Shared signal handlers imply shared VM. By way of the above,
2295 	 * thread groups also imply shared VM. Blocking this case allows
2296 	 * for various simplifications in other code.
2297 	 */
2298 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2299 		return ERR_PTR(-EINVAL);
2300 
2301 	/*
2302 	 * Siblings of global init remain as zombies on exit since they are
2303 	 * not reaped by their parent (swapper). To solve this and to avoid
2304 	 * multi-rooted process trees, prevent global and container-inits
2305 	 * from creating siblings.
2306 	 */
2307 	if ((clone_flags & CLONE_PARENT) &&
2308 				current->signal->flags & SIGNAL_UNKILLABLE)
2309 		return ERR_PTR(-EINVAL);
2310 
2311 	/*
2312 	 * If the new process will be in a different pid or user namespace
2313 	 * do not allow it to share a thread group with the forking task.
2314 	 */
2315 	if (clone_flags & CLONE_THREAD) {
2316 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2317 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2318 			return ERR_PTR(-EINVAL);
2319 	}
2320 
2321 	if (clone_flags & CLONE_PIDFD) {
2322 		/*
2323 		 * - CLONE_DETACHED is blocked so that we can potentially
2324 		 *   reuse it later for CLONE_PIDFD.
2325 		 * - CLONE_THREAD is blocked until someone really needs it.
2326 		 */
2327 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2328 			return ERR_PTR(-EINVAL);
2329 	}
2330 
2331 	/*
2332 	 * Force any signals received before this point to be delivered
2333 	 * before the fork happens.  Collect up signals sent to multiple
2334 	 * processes that happen during the fork and delay them so that
2335 	 * they appear to happen after the fork.
2336 	 */
2337 	sigemptyset(&delayed.signal);
2338 	INIT_HLIST_NODE(&delayed.node);
2339 
2340 	spin_lock_irq(&current->sighand->siglock);
2341 	if (!(clone_flags & CLONE_THREAD))
2342 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2343 	recalc_sigpending();
2344 	spin_unlock_irq(&current->sighand->siglock);
2345 	retval = -ERESTARTNOINTR;
2346 	if (task_sigpending(current))
2347 		goto fork_out;
2348 
2349 	retval = -ENOMEM;
2350 	p = dup_task_struct(current, node);
2351 	if (!p)
2352 		goto fork_out;
2353 	p->flags &= ~PF_KTHREAD;
2354 	if (args->kthread)
2355 		p->flags |= PF_KTHREAD;
2356 	if (args->user_worker) {
2357 		/*
2358 		 * Mark us a user worker, and block any signal that isn't
2359 		 * fatal or STOP
2360 		 */
2361 		p->flags |= PF_USER_WORKER;
2362 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2363 	}
2364 	if (args->io_thread)
2365 		p->flags |= PF_IO_WORKER;
2366 
2367 	if (args->name)
2368 		strscpy_pad(p->comm, args->name, sizeof(p->comm));
2369 
2370 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2371 	/*
2372 	 * Clear TID on mm_release()?
2373 	 */
2374 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2375 
2376 	ftrace_graph_init_task(p);
2377 
2378 	rt_mutex_init_task(p);
2379 
2380 	lockdep_assert_irqs_enabled();
2381 #ifdef CONFIG_PROVE_LOCKING
2382 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2383 #endif
2384 	retval = copy_creds(p, clone_flags);
2385 	if (retval < 0)
2386 		goto bad_fork_free;
2387 
2388 	retval = -EAGAIN;
2389 	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2390 		if (p->real_cred->user != INIT_USER &&
2391 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2392 			goto bad_fork_cleanup_count;
2393 	}
2394 	current->flags &= ~PF_NPROC_EXCEEDED;
2395 
2396 	/*
2397 	 * If multiple threads are within copy_process(), then this check
2398 	 * triggers too late. This doesn't hurt, the check is only there
2399 	 * to stop root fork bombs.
2400 	 */
2401 	retval = -EAGAIN;
2402 	if (data_race(nr_threads >= max_threads))
2403 		goto bad_fork_cleanup_count;
2404 
2405 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2406 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2407 	p->flags |= PF_FORKNOEXEC;
2408 	INIT_LIST_HEAD(&p->children);
2409 	INIT_LIST_HEAD(&p->sibling);
2410 	rcu_copy_process(p);
2411 	p->vfork_done = NULL;
2412 	spin_lock_init(&p->alloc_lock);
2413 
2414 	init_sigpending(&p->pending);
2415 
2416 	p->utime = p->stime = p->gtime = 0;
2417 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2418 	p->utimescaled = p->stimescaled = 0;
2419 #endif
2420 	prev_cputime_init(&p->prev_cputime);
2421 
2422 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2423 	seqcount_init(&p->vtime.seqcount);
2424 	p->vtime.starttime = 0;
2425 	p->vtime.state = VTIME_INACTIVE;
2426 #endif
2427 
2428 #ifdef CONFIG_IO_URING
2429 	p->io_uring = NULL;
2430 #endif
2431 
2432 	p->default_timer_slack_ns = current->timer_slack_ns;
2433 
2434 #ifdef CONFIG_PSI
2435 	p->psi_flags = 0;
2436 #endif
2437 
2438 	task_io_accounting_init(&p->ioac);
2439 	acct_clear_integrals(p);
2440 
2441 	posix_cputimers_init(&p->posix_cputimers);
2442 
2443 	p->io_context = NULL;
2444 	audit_set_context(p, NULL);
2445 	cgroup_fork(p);
2446 	if (args->kthread) {
2447 		if (!set_kthread_struct(p))
2448 			goto bad_fork_cleanup_delayacct;
2449 	}
2450 #ifdef CONFIG_NUMA
2451 	p->mempolicy = mpol_dup(p->mempolicy);
2452 	if (IS_ERR(p->mempolicy)) {
2453 		retval = PTR_ERR(p->mempolicy);
2454 		p->mempolicy = NULL;
2455 		goto bad_fork_cleanup_delayacct;
2456 	}
2457 #endif
2458 #ifdef CONFIG_CPUSETS
2459 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2460 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2461 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2462 #endif
2463 #ifdef CONFIG_TRACE_IRQFLAGS
2464 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2465 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2466 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2467 	p->softirqs_enabled		= 1;
2468 	p->softirq_context		= 0;
2469 #endif
2470 
2471 	p->pagefault_disabled = 0;
2472 
2473 #ifdef CONFIG_LOCKDEP
2474 	lockdep_init_task(p);
2475 #endif
2476 
2477 #ifdef CONFIG_DEBUG_MUTEXES
2478 	p->blocked_on = NULL; /* not blocked yet */
2479 #endif
2480 #ifdef CONFIG_BCACHE
2481 	p->sequential_io	= 0;
2482 	p->sequential_io_avg	= 0;
2483 #endif
2484 #ifdef CONFIG_BPF_SYSCALL
2485 	RCU_INIT_POINTER(p->bpf_storage, NULL);
2486 	p->bpf_ctx = NULL;
2487 #endif
2488 
2489 	/* Perform scheduler related setup. Assign this task to a CPU. */
2490 	retval = sched_fork(clone_flags, p);
2491 	if (retval)
2492 		goto bad_fork_cleanup_policy;
2493 
2494 	retval = perf_event_init_task(p, clone_flags);
2495 	if (retval)
2496 		goto bad_fork_cleanup_policy;
2497 	retval = audit_alloc(p);
2498 	if (retval)
2499 		goto bad_fork_cleanup_perf;
2500 	/* copy all the process information */
2501 	shm_init_task(p);
2502 	retval = security_task_alloc(p, clone_flags);
2503 	if (retval)
2504 		goto bad_fork_cleanup_audit;
2505 	retval = copy_semundo(clone_flags, p);
2506 	if (retval)
2507 		goto bad_fork_cleanup_security;
2508 	retval = copy_files(clone_flags, p, args->no_files);
2509 	if (retval)
2510 		goto bad_fork_cleanup_semundo;
2511 	retval = copy_fs(clone_flags, p);
2512 	if (retval)
2513 		goto bad_fork_cleanup_files;
2514 	retval = copy_sighand(clone_flags, p);
2515 	if (retval)
2516 		goto bad_fork_cleanup_fs;
2517 	retval = copy_signal(clone_flags, p);
2518 	if (retval)
2519 		goto bad_fork_cleanup_sighand;
2520 	retval = copy_mm(clone_flags, p);
2521 	if (retval)
2522 		goto bad_fork_cleanup_signal;
2523 	retval = copy_namespaces(clone_flags, p);
2524 	if (retval)
2525 		goto bad_fork_cleanup_mm;
2526 	retval = copy_io(clone_flags, p);
2527 	if (retval)
2528 		goto bad_fork_cleanup_namespaces;
2529 	retval = copy_thread(p, args);
2530 	if (retval)
2531 		goto bad_fork_cleanup_io;
2532 
2533 	stackleak_task_init(p);
2534 
2535 	if (pid != &init_struct_pid) {
2536 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2537 				args->set_tid_size);
2538 		if (IS_ERR(pid)) {
2539 			retval = PTR_ERR(pid);
2540 			goto bad_fork_cleanup_thread;
2541 		}
2542 	}
2543 
2544 	/*
2545 	 * This has to happen after we've potentially unshared the file
2546 	 * descriptor table (so that the pidfd doesn't leak into the child
2547 	 * if the fd table isn't shared).
2548 	 */
2549 	if (clone_flags & CLONE_PIDFD) {
2550 		/* Note that no task has been attached to @pid yet. */
2551 		retval = __pidfd_prepare(pid, O_RDWR | O_CLOEXEC, &pidfile);
2552 		if (retval < 0)
2553 			goto bad_fork_free_pid;
2554 		pidfd = retval;
2555 
2556 		retval = put_user(pidfd, args->pidfd);
2557 		if (retval)
2558 			goto bad_fork_put_pidfd;
2559 	}
2560 
2561 #ifdef CONFIG_BLOCK
2562 	p->plug = NULL;
2563 #endif
2564 	futex_init_task(p);
2565 
2566 	/*
2567 	 * sigaltstack should be cleared when sharing the same VM
2568 	 */
2569 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2570 		sas_ss_reset(p);
2571 
2572 	/*
2573 	 * Syscall tracing and stepping should be turned off in the
2574 	 * child regardless of CLONE_PTRACE.
2575 	 */
2576 	user_disable_single_step(p);
2577 	clear_task_syscall_work(p, SYSCALL_TRACE);
2578 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2579 	clear_task_syscall_work(p, SYSCALL_EMU);
2580 #endif
2581 	clear_tsk_latency_tracing(p);
2582 
2583 	/* ok, now we should be set up.. */
2584 	p->pid = pid_nr(pid);
2585 	if (clone_flags & CLONE_THREAD) {
2586 		p->group_leader = current->group_leader;
2587 		p->tgid = current->tgid;
2588 	} else {
2589 		p->group_leader = p;
2590 		p->tgid = p->pid;
2591 	}
2592 
2593 	p->nr_dirtied = 0;
2594 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2595 	p->dirty_paused_when = 0;
2596 
2597 	p->pdeath_signal = 0;
2598 	p->task_works = NULL;
2599 	clear_posix_cputimers_work(p);
2600 
2601 #ifdef CONFIG_KRETPROBES
2602 	p->kretprobe_instances.first = NULL;
2603 #endif
2604 #ifdef CONFIG_RETHOOK
2605 	p->rethooks.first = NULL;
2606 #endif
2607 
2608 	/*
2609 	 * Ensure that the cgroup subsystem policies allow the new process to be
2610 	 * forked. It should be noted that the new process's css_set can be changed
2611 	 * between here and cgroup_post_fork() if an organisation operation is in
2612 	 * progress.
2613 	 */
2614 	retval = cgroup_can_fork(p, args);
2615 	if (retval)
2616 		goto bad_fork_put_pidfd;
2617 
2618 	/*
2619 	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2620 	 * the new task on the correct runqueue. All this *before* the task
2621 	 * becomes visible.
2622 	 *
2623 	 * This isn't part of ->can_fork() because while the re-cloning is
2624 	 * cgroup specific, it unconditionally needs to place the task on a
2625 	 * runqueue.
2626 	 */
2627 	sched_cgroup_fork(p, args);
2628 
2629 	/*
2630 	 * From this point on we must avoid any synchronous user-space
2631 	 * communication until we take the tasklist-lock. In particular, we do
2632 	 * not want user-space to be able to predict the process start-time by
2633 	 * stalling fork(2) after we recorded the start_time but before it is
2634 	 * visible to the system.
2635 	 */
2636 
2637 	p->start_time = ktime_get_ns();
2638 	p->start_boottime = ktime_get_boottime_ns();
2639 
2640 	/*
2641 	 * Make it visible to the rest of the system, but dont wake it up yet.
2642 	 * Need tasklist lock for parent etc handling!
2643 	 */
2644 	write_lock_irq(&tasklist_lock);
2645 
2646 	/* CLONE_PARENT re-uses the old parent */
2647 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2648 		p->real_parent = current->real_parent;
2649 		p->parent_exec_id = current->parent_exec_id;
2650 		if (clone_flags & CLONE_THREAD)
2651 			p->exit_signal = -1;
2652 		else
2653 			p->exit_signal = current->group_leader->exit_signal;
2654 	} else {
2655 		p->real_parent = current;
2656 		p->parent_exec_id = current->self_exec_id;
2657 		p->exit_signal = args->exit_signal;
2658 	}
2659 
2660 	klp_copy_process(p);
2661 
2662 	sched_core_fork(p);
2663 
2664 	spin_lock(&current->sighand->siglock);
2665 
2666 	rv_task_fork(p);
2667 
2668 	rseq_fork(p, clone_flags);
2669 
2670 	/* Don't start children in a dying pid namespace */
2671 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2672 		retval = -ENOMEM;
2673 		goto bad_fork_cancel_cgroup;
2674 	}
2675 
2676 	/* Let kill terminate clone/fork in the middle */
2677 	if (fatal_signal_pending(current)) {
2678 		retval = -EINTR;
2679 		goto bad_fork_cancel_cgroup;
2680 	}
2681 
2682 	/* No more failure paths after this point. */
2683 
2684 	/*
2685 	 * Copy seccomp details explicitly here, in case they were changed
2686 	 * before holding sighand lock.
2687 	 */
2688 	copy_seccomp(p);
2689 
2690 	init_task_pid_links(p);
2691 	if (likely(p->pid)) {
2692 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2693 
2694 		init_task_pid(p, PIDTYPE_PID, pid);
2695 		if (thread_group_leader(p)) {
2696 			init_task_pid(p, PIDTYPE_TGID, pid);
2697 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2698 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2699 
2700 			if (is_child_reaper(pid)) {
2701 				ns_of_pid(pid)->child_reaper = p;
2702 				p->signal->flags |= SIGNAL_UNKILLABLE;
2703 			}
2704 			p->signal->shared_pending.signal = delayed.signal;
2705 			p->signal->tty = tty_kref_get(current->signal->tty);
2706 			/*
2707 			 * Inherit has_child_subreaper flag under the same
2708 			 * tasklist_lock with adding child to the process tree
2709 			 * for propagate_has_child_subreaper optimization.
2710 			 */
2711 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2712 							 p->real_parent->signal->is_child_subreaper;
2713 			list_add_tail(&p->sibling, &p->real_parent->children);
2714 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2715 			attach_pid(p, PIDTYPE_TGID);
2716 			attach_pid(p, PIDTYPE_PGID);
2717 			attach_pid(p, PIDTYPE_SID);
2718 			__this_cpu_inc(process_counts);
2719 		} else {
2720 			current->signal->nr_threads++;
2721 			current->signal->quick_threads++;
2722 			atomic_inc(&current->signal->live);
2723 			refcount_inc(&current->signal->sigcnt);
2724 			task_join_group_stop(p);
2725 			list_add_tail_rcu(&p->thread_node,
2726 					  &p->signal->thread_head);
2727 		}
2728 		attach_pid(p, PIDTYPE_PID);
2729 		nr_threads++;
2730 	}
2731 	total_forks++;
2732 	hlist_del_init(&delayed.node);
2733 	spin_unlock(&current->sighand->siglock);
2734 	syscall_tracepoint_update(p);
2735 	write_unlock_irq(&tasklist_lock);
2736 
2737 	if (pidfile)
2738 		fd_install(pidfd, pidfile);
2739 
2740 	proc_fork_connector(p);
2741 	sched_post_fork(p);
2742 	cgroup_post_fork(p, args);
2743 	perf_event_fork(p);
2744 
2745 	trace_task_newtask(p, clone_flags);
2746 	uprobe_copy_process(p, clone_flags);
2747 	user_events_fork(p, clone_flags);
2748 
2749 	copy_oom_score_adj(clone_flags, p);
2750 
2751 	return p;
2752 
2753 bad_fork_cancel_cgroup:
2754 	sched_core_free(p);
2755 	spin_unlock(&current->sighand->siglock);
2756 	write_unlock_irq(&tasklist_lock);
2757 	cgroup_cancel_fork(p, args);
2758 bad_fork_put_pidfd:
2759 	if (clone_flags & CLONE_PIDFD) {
2760 		fput(pidfile);
2761 		put_unused_fd(pidfd);
2762 	}
2763 bad_fork_free_pid:
2764 	if (pid != &init_struct_pid)
2765 		free_pid(pid);
2766 bad_fork_cleanup_thread:
2767 	exit_thread(p);
2768 bad_fork_cleanup_io:
2769 	if (p->io_context)
2770 		exit_io_context(p);
2771 bad_fork_cleanup_namespaces:
2772 	exit_task_namespaces(p);
2773 bad_fork_cleanup_mm:
2774 	if (p->mm) {
2775 		mm_clear_owner(p->mm, p);
2776 		mmput(p->mm);
2777 	}
2778 bad_fork_cleanup_signal:
2779 	if (!(clone_flags & CLONE_THREAD))
2780 		free_signal_struct(p->signal);
2781 bad_fork_cleanup_sighand:
2782 	__cleanup_sighand(p->sighand);
2783 bad_fork_cleanup_fs:
2784 	exit_fs(p); /* blocking */
2785 bad_fork_cleanup_files:
2786 	exit_files(p); /* blocking */
2787 bad_fork_cleanup_semundo:
2788 	exit_sem(p);
2789 bad_fork_cleanup_security:
2790 	security_task_free(p);
2791 bad_fork_cleanup_audit:
2792 	audit_free(p);
2793 bad_fork_cleanup_perf:
2794 	perf_event_free_task(p);
2795 bad_fork_cleanup_policy:
2796 	lockdep_free_task(p);
2797 #ifdef CONFIG_NUMA
2798 	mpol_put(p->mempolicy);
2799 #endif
2800 bad_fork_cleanup_delayacct:
2801 	delayacct_tsk_free(p);
2802 bad_fork_cleanup_count:
2803 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2804 	exit_creds(p);
2805 bad_fork_free:
2806 	WRITE_ONCE(p->__state, TASK_DEAD);
2807 	exit_task_stack_account(p);
2808 	put_task_stack(p);
2809 	delayed_free_task(p);
2810 fork_out:
2811 	spin_lock_irq(&current->sighand->siglock);
2812 	hlist_del_init(&delayed.node);
2813 	spin_unlock_irq(&current->sighand->siglock);
2814 	return ERR_PTR(retval);
2815 }
2816 
2817 static inline void init_idle_pids(struct task_struct *idle)
2818 {
2819 	enum pid_type type;
2820 
2821 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2822 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2823 		init_task_pid(idle, type, &init_struct_pid);
2824 	}
2825 }
2826 
2827 static int idle_dummy(void *dummy)
2828 {
2829 	/* This function is never called */
2830 	return 0;
2831 }
2832 
2833 struct task_struct * __init fork_idle(int cpu)
2834 {
2835 	struct task_struct *task;
2836 	struct kernel_clone_args args = {
2837 		.flags		= CLONE_VM,
2838 		.fn		= &idle_dummy,
2839 		.fn_arg		= NULL,
2840 		.kthread	= 1,
2841 		.idle		= 1,
2842 	};
2843 
2844 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2845 	if (!IS_ERR(task)) {
2846 		init_idle_pids(task);
2847 		init_idle(task, cpu);
2848 	}
2849 
2850 	return task;
2851 }
2852 
2853 /*
2854  * This is like kernel_clone(), but shaved down and tailored to just
2855  * creating io_uring workers. It returns a created task, or an error pointer.
2856  * The returned task is inactive, and the caller must fire it up through
2857  * wake_up_new_task(p). All signals are blocked in the created task.
2858  */
2859 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2860 {
2861 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2862 				CLONE_IO;
2863 	struct kernel_clone_args args = {
2864 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2865 				    CLONE_UNTRACED) & ~CSIGNAL),
2866 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2867 		.fn		= fn,
2868 		.fn_arg		= arg,
2869 		.io_thread	= 1,
2870 		.user_worker	= 1,
2871 	};
2872 
2873 	return copy_process(NULL, 0, node, &args);
2874 }
2875 
2876 /*
2877  *  Ok, this is the main fork-routine.
2878  *
2879  * It copies the process, and if successful kick-starts
2880  * it and waits for it to finish using the VM if required.
2881  *
2882  * args->exit_signal is expected to be checked for sanity by the caller.
2883  */
2884 pid_t kernel_clone(struct kernel_clone_args *args)
2885 {
2886 	u64 clone_flags = args->flags;
2887 	struct completion vfork;
2888 	struct pid *pid;
2889 	struct task_struct *p;
2890 	int trace = 0;
2891 	pid_t nr;
2892 
2893 	/*
2894 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2895 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2896 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2897 	 * field in struct clone_args and it still doesn't make sense to have
2898 	 * them both point at the same memory location. Performing this check
2899 	 * here has the advantage that we don't need to have a separate helper
2900 	 * to check for legacy clone().
2901 	 */
2902 	if ((args->flags & CLONE_PIDFD) &&
2903 	    (args->flags & CLONE_PARENT_SETTID) &&
2904 	    (args->pidfd == args->parent_tid))
2905 		return -EINVAL;
2906 
2907 	/*
2908 	 * Determine whether and which event to report to ptracer.  When
2909 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2910 	 * requested, no event is reported; otherwise, report if the event
2911 	 * for the type of forking is enabled.
2912 	 */
2913 	if (!(clone_flags & CLONE_UNTRACED)) {
2914 		if (clone_flags & CLONE_VFORK)
2915 			trace = PTRACE_EVENT_VFORK;
2916 		else if (args->exit_signal != SIGCHLD)
2917 			trace = PTRACE_EVENT_CLONE;
2918 		else
2919 			trace = PTRACE_EVENT_FORK;
2920 
2921 		if (likely(!ptrace_event_enabled(current, trace)))
2922 			trace = 0;
2923 	}
2924 
2925 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2926 	add_latent_entropy();
2927 
2928 	if (IS_ERR(p))
2929 		return PTR_ERR(p);
2930 
2931 	/*
2932 	 * Do this prior waking up the new thread - the thread pointer
2933 	 * might get invalid after that point, if the thread exits quickly.
2934 	 */
2935 	trace_sched_process_fork(current, p);
2936 
2937 	pid = get_task_pid(p, PIDTYPE_PID);
2938 	nr = pid_vnr(pid);
2939 
2940 	if (clone_flags & CLONE_PARENT_SETTID)
2941 		put_user(nr, args->parent_tid);
2942 
2943 	if (clone_flags & CLONE_VFORK) {
2944 		p->vfork_done = &vfork;
2945 		init_completion(&vfork);
2946 		get_task_struct(p);
2947 	}
2948 
2949 	if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) {
2950 		/* lock the task to synchronize with memcg migration */
2951 		task_lock(p);
2952 		lru_gen_add_mm(p->mm);
2953 		task_unlock(p);
2954 	}
2955 
2956 	wake_up_new_task(p);
2957 
2958 	/* forking complete and child started to run, tell ptracer */
2959 	if (unlikely(trace))
2960 		ptrace_event_pid(trace, pid);
2961 
2962 	if (clone_flags & CLONE_VFORK) {
2963 		if (!wait_for_vfork_done(p, &vfork))
2964 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2965 	}
2966 
2967 	put_pid(pid);
2968 	return nr;
2969 }
2970 
2971 /*
2972  * Create a kernel thread.
2973  */
2974 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2975 		    unsigned long flags)
2976 {
2977 	struct kernel_clone_args args = {
2978 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2979 				    CLONE_UNTRACED) & ~CSIGNAL),
2980 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2981 		.fn		= fn,
2982 		.fn_arg		= arg,
2983 		.name		= name,
2984 		.kthread	= 1,
2985 	};
2986 
2987 	return kernel_clone(&args);
2988 }
2989 
2990 /*
2991  * Create a user mode thread.
2992  */
2993 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2994 {
2995 	struct kernel_clone_args args = {
2996 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2997 				    CLONE_UNTRACED) & ~CSIGNAL),
2998 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2999 		.fn		= fn,
3000 		.fn_arg		= arg,
3001 	};
3002 
3003 	return kernel_clone(&args);
3004 }
3005 
3006 #ifdef __ARCH_WANT_SYS_FORK
3007 SYSCALL_DEFINE0(fork)
3008 {
3009 #ifdef CONFIG_MMU
3010 	struct kernel_clone_args args = {
3011 		.exit_signal = SIGCHLD,
3012 	};
3013 
3014 	return kernel_clone(&args);
3015 #else
3016 	/* can not support in nommu mode */
3017 	return -EINVAL;
3018 #endif
3019 }
3020 #endif
3021 
3022 #ifdef __ARCH_WANT_SYS_VFORK
3023 SYSCALL_DEFINE0(vfork)
3024 {
3025 	struct kernel_clone_args args = {
3026 		.flags		= CLONE_VFORK | CLONE_VM,
3027 		.exit_signal	= SIGCHLD,
3028 	};
3029 
3030 	return kernel_clone(&args);
3031 }
3032 #endif
3033 
3034 #ifdef __ARCH_WANT_SYS_CLONE
3035 #ifdef CONFIG_CLONE_BACKWARDS
3036 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3037 		 int __user *, parent_tidptr,
3038 		 unsigned long, tls,
3039 		 int __user *, child_tidptr)
3040 #elif defined(CONFIG_CLONE_BACKWARDS2)
3041 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
3042 		 int __user *, parent_tidptr,
3043 		 int __user *, child_tidptr,
3044 		 unsigned long, tls)
3045 #elif defined(CONFIG_CLONE_BACKWARDS3)
3046 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
3047 		int, stack_size,
3048 		int __user *, parent_tidptr,
3049 		int __user *, child_tidptr,
3050 		unsigned long, tls)
3051 #else
3052 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3053 		 int __user *, parent_tidptr,
3054 		 int __user *, child_tidptr,
3055 		 unsigned long, tls)
3056 #endif
3057 {
3058 	struct kernel_clone_args args = {
3059 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
3060 		.pidfd		= parent_tidptr,
3061 		.child_tid	= child_tidptr,
3062 		.parent_tid	= parent_tidptr,
3063 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
3064 		.stack		= newsp,
3065 		.tls		= tls,
3066 	};
3067 
3068 	return kernel_clone(&args);
3069 }
3070 #endif
3071 
3072 #ifdef __ARCH_WANT_SYS_CLONE3
3073 
3074 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
3075 					      struct clone_args __user *uargs,
3076 					      size_t usize)
3077 {
3078 	int err;
3079 	struct clone_args args;
3080 	pid_t *kset_tid = kargs->set_tid;
3081 
3082 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
3083 		     CLONE_ARGS_SIZE_VER0);
3084 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
3085 		     CLONE_ARGS_SIZE_VER1);
3086 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
3087 		     CLONE_ARGS_SIZE_VER2);
3088 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
3089 
3090 	if (unlikely(usize > PAGE_SIZE))
3091 		return -E2BIG;
3092 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
3093 		return -EINVAL;
3094 
3095 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
3096 	if (err)
3097 		return err;
3098 
3099 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
3100 		return -EINVAL;
3101 
3102 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
3103 		return -EINVAL;
3104 
3105 	if (unlikely(args.set_tid && args.set_tid_size == 0))
3106 		return -EINVAL;
3107 
3108 	/*
3109 	 * Verify that higher 32bits of exit_signal are unset and that
3110 	 * it is a valid signal
3111 	 */
3112 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
3113 		     !valid_signal(args.exit_signal)))
3114 		return -EINVAL;
3115 
3116 	if ((args.flags & CLONE_INTO_CGROUP) &&
3117 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
3118 		return -EINVAL;
3119 
3120 	*kargs = (struct kernel_clone_args){
3121 		.flags		= args.flags,
3122 		.pidfd		= u64_to_user_ptr(args.pidfd),
3123 		.child_tid	= u64_to_user_ptr(args.child_tid),
3124 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
3125 		.exit_signal	= args.exit_signal,
3126 		.stack		= args.stack,
3127 		.stack_size	= args.stack_size,
3128 		.tls		= args.tls,
3129 		.set_tid_size	= args.set_tid_size,
3130 		.cgroup		= args.cgroup,
3131 	};
3132 
3133 	if (args.set_tid &&
3134 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
3135 			(kargs->set_tid_size * sizeof(pid_t))))
3136 		return -EFAULT;
3137 
3138 	kargs->set_tid = kset_tid;
3139 
3140 	return 0;
3141 }
3142 
3143 /**
3144  * clone3_stack_valid - check and prepare stack
3145  * @kargs: kernel clone args
3146  *
3147  * Verify that the stack arguments userspace gave us are sane.
3148  * In addition, set the stack direction for userspace since it's easy for us to
3149  * determine.
3150  */
3151 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3152 {
3153 	if (kargs->stack == 0) {
3154 		if (kargs->stack_size > 0)
3155 			return false;
3156 	} else {
3157 		if (kargs->stack_size == 0)
3158 			return false;
3159 
3160 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3161 			return false;
3162 
3163 #if !defined(CONFIG_STACK_GROWSUP)
3164 		kargs->stack += kargs->stack_size;
3165 #endif
3166 	}
3167 
3168 	return true;
3169 }
3170 
3171 static bool clone3_args_valid(struct kernel_clone_args *kargs)
3172 {
3173 	/* Verify that no unknown flags are passed along. */
3174 	if (kargs->flags &
3175 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3176 		return false;
3177 
3178 	/*
3179 	 * - make the CLONE_DETACHED bit reusable for clone3
3180 	 * - make the CSIGNAL bits reusable for clone3
3181 	 */
3182 	if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3183 		return false;
3184 
3185 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3186 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3187 		return false;
3188 
3189 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3190 	    kargs->exit_signal)
3191 		return false;
3192 
3193 	if (!clone3_stack_valid(kargs))
3194 		return false;
3195 
3196 	return true;
3197 }
3198 
3199 /**
3200  * sys_clone3 - create a new process with specific properties
3201  * @uargs: argument structure
3202  * @size:  size of @uargs
3203  *
3204  * clone3() is the extensible successor to clone()/clone2().
3205  * It takes a struct as argument that is versioned by its size.
3206  *
3207  * Return: On success, a positive PID for the child process.
3208  *         On error, a negative errno number.
3209  */
3210 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3211 {
3212 	int err;
3213 
3214 	struct kernel_clone_args kargs;
3215 	pid_t set_tid[MAX_PID_NS_LEVEL];
3216 
3217 	kargs.set_tid = set_tid;
3218 
3219 	err = copy_clone_args_from_user(&kargs, uargs, size);
3220 	if (err)
3221 		return err;
3222 
3223 	if (!clone3_args_valid(&kargs))
3224 		return -EINVAL;
3225 
3226 	return kernel_clone(&kargs);
3227 }
3228 #endif
3229 
3230 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3231 {
3232 	struct task_struct *leader, *parent, *child;
3233 	int res;
3234 
3235 	read_lock(&tasklist_lock);
3236 	leader = top = top->group_leader;
3237 down:
3238 	for_each_thread(leader, parent) {
3239 		list_for_each_entry(child, &parent->children, sibling) {
3240 			res = visitor(child, data);
3241 			if (res) {
3242 				if (res < 0)
3243 					goto out;
3244 				leader = child;
3245 				goto down;
3246 			}
3247 up:
3248 			;
3249 		}
3250 	}
3251 
3252 	if (leader != top) {
3253 		child = leader;
3254 		parent = child->real_parent;
3255 		leader = parent->group_leader;
3256 		goto up;
3257 	}
3258 out:
3259 	read_unlock(&tasklist_lock);
3260 }
3261 
3262 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3263 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3264 #endif
3265 
3266 static void sighand_ctor(void *data)
3267 {
3268 	struct sighand_struct *sighand = data;
3269 
3270 	spin_lock_init(&sighand->siglock);
3271 	init_waitqueue_head(&sighand->signalfd_wqh);
3272 }
3273 
3274 void __init mm_cache_init(void)
3275 {
3276 	unsigned int mm_size;
3277 
3278 	/*
3279 	 * The mm_cpumask is located at the end of mm_struct, and is
3280 	 * dynamically sized based on the maximum CPU number this system
3281 	 * can have, taking hotplug into account (nr_cpu_ids).
3282 	 */
3283 	mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3284 
3285 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
3286 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3287 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3288 			offsetof(struct mm_struct, saved_auxv),
3289 			sizeof_field(struct mm_struct, saved_auxv),
3290 			NULL);
3291 }
3292 
3293 void __init proc_caches_init(void)
3294 {
3295 	sighand_cachep = kmem_cache_create("sighand_cache",
3296 			sizeof(struct sighand_struct), 0,
3297 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3298 			SLAB_ACCOUNT, sighand_ctor);
3299 	signal_cachep = kmem_cache_create("signal_cache",
3300 			sizeof(struct signal_struct), 0,
3301 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3302 			NULL);
3303 	files_cachep = kmem_cache_create("files_cache",
3304 			sizeof(struct files_struct), 0,
3305 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3306 			NULL);
3307 	fs_cachep = kmem_cache_create("fs_cache",
3308 			sizeof(struct fs_struct), 0,
3309 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3310 			NULL);
3311 
3312 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3313 #ifdef CONFIG_PER_VMA_LOCK
3314 	vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3315 #endif
3316 	mmap_init();
3317 	nsproxy_cache_init();
3318 }
3319 
3320 /*
3321  * Check constraints on flags passed to the unshare system call.
3322  */
3323 static int check_unshare_flags(unsigned long unshare_flags)
3324 {
3325 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3326 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3327 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3328 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3329 				CLONE_NEWTIME))
3330 		return -EINVAL;
3331 	/*
3332 	 * Not implemented, but pretend it works if there is nothing
3333 	 * to unshare.  Note that unsharing the address space or the
3334 	 * signal handlers also need to unshare the signal queues (aka
3335 	 * CLONE_THREAD).
3336 	 */
3337 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3338 		if (!thread_group_empty(current))
3339 			return -EINVAL;
3340 	}
3341 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3342 		if (refcount_read(&current->sighand->count) > 1)
3343 			return -EINVAL;
3344 	}
3345 	if (unshare_flags & CLONE_VM) {
3346 		if (!current_is_single_threaded())
3347 			return -EINVAL;
3348 	}
3349 
3350 	return 0;
3351 }
3352 
3353 /*
3354  * Unshare the filesystem structure if it is being shared
3355  */
3356 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3357 {
3358 	struct fs_struct *fs = current->fs;
3359 
3360 	if (!(unshare_flags & CLONE_FS) || !fs)
3361 		return 0;
3362 
3363 	/* don't need lock here; in the worst case we'll do useless copy */
3364 	if (fs->users == 1)
3365 		return 0;
3366 
3367 	*new_fsp = copy_fs_struct(fs);
3368 	if (!*new_fsp)
3369 		return -ENOMEM;
3370 
3371 	return 0;
3372 }
3373 
3374 /*
3375  * Unshare file descriptor table if it is being shared
3376  */
3377 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3378 	       struct files_struct **new_fdp)
3379 {
3380 	struct files_struct *fd = current->files;
3381 	int error = 0;
3382 
3383 	if ((unshare_flags & CLONE_FILES) &&
3384 	    (fd && atomic_read(&fd->count) > 1)) {
3385 		*new_fdp = dup_fd(fd, max_fds, &error);
3386 		if (!*new_fdp)
3387 			return error;
3388 	}
3389 
3390 	return 0;
3391 }
3392 
3393 /*
3394  * unshare allows a process to 'unshare' part of the process
3395  * context which was originally shared using clone.  copy_*
3396  * functions used by kernel_clone() cannot be used here directly
3397  * because they modify an inactive task_struct that is being
3398  * constructed. Here we are modifying the current, active,
3399  * task_struct.
3400  */
3401 int ksys_unshare(unsigned long unshare_flags)
3402 {
3403 	struct fs_struct *fs, *new_fs = NULL;
3404 	struct files_struct *new_fd = NULL;
3405 	struct cred *new_cred = NULL;
3406 	struct nsproxy *new_nsproxy = NULL;
3407 	int do_sysvsem = 0;
3408 	int err;
3409 
3410 	/*
3411 	 * If unsharing a user namespace must also unshare the thread group
3412 	 * and unshare the filesystem root and working directories.
3413 	 */
3414 	if (unshare_flags & CLONE_NEWUSER)
3415 		unshare_flags |= CLONE_THREAD | CLONE_FS;
3416 	/*
3417 	 * If unsharing vm, must also unshare signal handlers.
3418 	 */
3419 	if (unshare_flags & CLONE_VM)
3420 		unshare_flags |= CLONE_SIGHAND;
3421 	/*
3422 	 * If unsharing a signal handlers, must also unshare the signal queues.
3423 	 */
3424 	if (unshare_flags & CLONE_SIGHAND)
3425 		unshare_flags |= CLONE_THREAD;
3426 	/*
3427 	 * If unsharing namespace, must also unshare filesystem information.
3428 	 */
3429 	if (unshare_flags & CLONE_NEWNS)
3430 		unshare_flags |= CLONE_FS;
3431 
3432 	err = check_unshare_flags(unshare_flags);
3433 	if (err)
3434 		goto bad_unshare_out;
3435 	/*
3436 	 * CLONE_NEWIPC must also detach from the undolist: after switching
3437 	 * to a new ipc namespace, the semaphore arrays from the old
3438 	 * namespace are unreachable.
3439 	 */
3440 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3441 		do_sysvsem = 1;
3442 	err = unshare_fs(unshare_flags, &new_fs);
3443 	if (err)
3444 		goto bad_unshare_out;
3445 	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3446 	if (err)
3447 		goto bad_unshare_cleanup_fs;
3448 	err = unshare_userns(unshare_flags, &new_cred);
3449 	if (err)
3450 		goto bad_unshare_cleanup_fd;
3451 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3452 					 new_cred, new_fs);
3453 	if (err)
3454 		goto bad_unshare_cleanup_cred;
3455 
3456 	if (new_cred) {
3457 		err = set_cred_ucounts(new_cred);
3458 		if (err)
3459 			goto bad_unshare_cleanup_cred;
3460 	}
3461 
3462 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3463 		if (do_sysvsem) {
3464 			/*
3465 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3466 			 */
3467 			exit_sem(current);
3468 		}
3469 		if (unshare_flags & CLONE_NEWIPC) {
3470 			/* Orphan segments in old ns (see sem above). */
3471 			exit_shm(current);
3472 			shm_init_task(current);
3473 		}
3474 
3475 		if (new_nsproxy)
3476 			switch_task_namespaces(current, new_nsproxy);
3477 
3478 		task_lock(current);
3479 
3480 		if (new_fs) {
3481 			fs = current->fs;
3482 			spin_lock(&fs->lock);
3483 			current->fs = new_fs;
3484 			if (--fs->users)
3485 				new_fs = NULL;
3486 			else
3487 				new_fs = fs;
3488 			spin_unlock(&fs->lock);
3489 		}
3490 
3491 		if (new_fd)
3492 			swap(current->files, new_fd);
3493 
3494 		task_unlock(current);
3495 
3496 		if (new_cred) {
3497 			/* Install the new user namespace */
3498 			commit_creds(new_cred);
3499 			new_cred = NULL;
3500 		}
3501 	}
3502 
3503 	perf_event_namespaces(current);
3504 
3505 bad_unshare_cleanup_cred:
3506 	if (new_cred)
3507 		put_cred(new_cred);
3508 bad_unshare_cleanup_fd:
3509 	if (new_fd)
3510 		put_files_struct(new_fd);
3511 
3512 bad_unshare_cleanup_fs:
3513 	if (new_fs)
3514 		free_fs_struct(new_fs);
3515 
3516 bad_unshare_out:
3517 	return err;
3518 }
3519 
3520 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3521 {
3522 	return ksys_unshare(unshare_flags);
3523 }
3524 
3525 /*
3526  *	Helper to unshare the files of the current task.
3527  *	We don't want to expose copy_files internals to
3528  *	the exec layer of the kernel.
3529  */
3530 
3531 int unshare_files(void)
3532 {
3533 	struct task_struct *task = current;
3534 	struct files_struct *old, *copy = NULL;
3535 	int error;
3536 
3537 	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3538 	if (error || !copy)
3539 		return error;
3540 
3541 	old = task->files;
3542 	task_lock(task);
3543 	task->files = copy;
3544 	task_unlock(task);
3545 	put_files_struct(old);
3546 	return 0;
3547 }
3548 
3549 int sysctl_max_threads(struct ctl_table *table, int write,
3550 		       void *buffer, size_t *lenp, loff_t *ppos)
3551 {
3552 	struct ctl_table t;
3553 	int ret;
3554 	int threads = max_threads;
3555 	int min = 1;
3556 	int max = MAX_THREADS;
3557 
3558 	t = *table;
3559 	t.data = &threads;
3560 	t.extra1 = &min;
3561 	t.extra2 = &max;
3562 
3563 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3564 	if (ret || !write)
3565 		return ret;
3566 
3567 	max_threads = threads;
3568 
3569 	return 0;
3570 }
3571