1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/kmsan.h> 41 #include <linux/binfmts.h> 42 #include <linux/mman.h> 43 #include <linux/mmu_notifier.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/mm_inline.h> 47 #include <linux/nsproxy.h> 48 #include <linux/capability.h> 49 #include <linux/cpu.h> 50 #include <linux/cgroup.h> 51 #include <linux/security.h> 52 #include <linux/hugetlb.h> 53 #include <linux/seccomp.h> 54 #include <linux/swap.h> 55 #include <linux/syscalls.h> 56 #include <linux/jiffies.h> 57 #include <linux/futex.h> 58 #include <linux/compat.h> 59 #include <linux/kthread.h> 60 #include <linux/task_io_accounting_ops.h> 61 #include <linux/rcupdate.h> 62 #include <linux/ptrace.h> 63 #include <linux/mount.h> 64 #include <linux/audit.h> 65 #include <linux/memcontrol.h> 66 #include <linux/ftrace.h> 67 #include <linux/proc_fs.h> 68 #include <linux/profile.h> 69 #include <linux/rmap.h> 70 #include <linux/ksm.h> 71 #include <linux/acct.h> 72 #include <linux/userfaultfd_k.h> 73 #include <linux/tsacct_kern.h> 74 #include <linux/cn_proc.h> 75 #include <linux/freezer.h> 76 #include <linux/delayacct.h> 77 #include <linux/taskstats_kern.h> 78 #include <linux/tty.h> 79 #include <linux/fs_struct.h> 80 #include <linux/magic.h> 81 #include <linux/perf_event.h> 82 #include <linux/posix-timers.h> 83 #include <linux/user-return-notifier.h> 84 #include <linux/oom.h> 85 #include <linux/khugepaged.h> 86 #include <linux/signalfd.h> 87 #include <linux/uprobes.h> 88 #include <linux/aio.h> 89 #include <linux/compiler.h> 90 #include <linux/sysctl.h> 91 #include <linux/kcov.h> 92 #include <linux/livepatch.h> 93 #include <linux/thread_info.h> 94 #include <linux/stackleak.h> 95 #include <linux/kasan.h> 96 #include <linux/scs.h> 97 #include <linux/io_uring.h> 98 #include <linux/bpf.h> 99 #include <linux/stackprotector.h> 100 #include <linux/user_events.h> 101 #include <linux/iommu.h> 102 103 #include <asm/pgalloc.h> 104 #include <linux/uaccess.h> 105 #include <asm/mmu_context.h> 106 #include <asm/cacheflush.h> 107 #include <asm/tlbflush.h> 108 109 #include <trace/events/sched.h> 110 111 #define CREATE_TRACE_POINTS 112 #include <trace/events/task.h> 113 114 /* 115 * Minimum number of threads to boot the kernel 116 */ 117 #define MIN_THREADS 20 118 119 /* 120 * Maximum number of threads 121 */ 122 #define MAX_THREADS FUTEX_TID_MASK 123 124 /* 125 * Protected counters by write_lock_irq(&tasklist_lock) 126 */ 127 unsigned long total_forks; /* Handle normal Linux uptimes. */ 128 int nr_threads; /* The idle threads do not count.. */ 129 130 static int max_threads; /* tunable limit on nr_threads */ 131 132 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 133 134 static const char * const resident_page_types[] = { 135 NAMED_ARRAY_INDEX(MM_FILEPAGES), 136 NAMED_ARRAY_INDEX(MM_ANONPAGES), 137 NAMED_ARRAY_INDEX(MM_SWAPENTS), 138 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 139 }; 140 141 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 142 143 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 144 145 #ifdef CONFIG_PROVE_RCU 146 int lockdep_tasklist_lock_is_held(void) 147 { 148 return lockdep_is_held(&tasklist_lock); 149 } 150 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 151 #endif /* #ifdef CONFIG_PROVE_RCU */ 152 153 int nr_processes(void) 154 { 155 int cpu; 156 int total = 0; 157 158 for_each_possible_cpu(cpu) 159 total += per_cpu(process_counts, cpu); 160 161 return total; 162 } 163 164 void __weak arch_release_task_struct(struct task_struct *tsk) 165 { 166 } 167 168 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 169 static struct kmem_cache *task_struct_cachep; 170 171 static inline struct task_struct *alloc_task_struct_node(int node) 172 { 173 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 174 } 175 176 static inline void free_task_struct(struct task_struct *tsk) 177 { 178 kmem_cache_free(task_struct_cachep, tsk); 179 } 180 #endif 181 182 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 183 184 /* 185 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 186 * kmemcache based allocator. 187 */ 188 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 189 190 # ifdef CONFIG_VMAP_STACK 191 /* 192 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 193 * flush. Try to minimize the number of calls by caching stacks. 194 */ 195 #define NR_CACHED_STACKS 2 196 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 197 198 struct vm_stack { 199 struct rcu_head rcu; 200 struct vm_struct *stack_vm_area; 201 }; 202 203 static bool try_release_thread_stack_to_cache(struct vm_struct *vm) 204 { 205 unsigned int i; 206 207 for (i = 0; i < NR_CACHED_STACKS; i++) { 208 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL) 209 continue; 210 return true; 211 } 212 return false; 213 } 214 215 static void thread_stack_free_rcu(struct rcu_head *rh) 216 { 217 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 218 219 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 220 return; 221 222 vfree(vm_stack); 223 } 224 225 static void thread_stack_delayed_free(struct task_struct *tsk) 226 { 227 struct vm_stack *vm_stack = tsk->stack; 228 229 vm_stack->stack_vm_area = tsk->stack_vm_area; 230 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 231 } 232 233 static int free_vm_stack_cache(unsigned int cpu) 234 { 235 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 236 int i; 237 238 for (i = 0; i < NR_CACHED_STACKS; i++) { 239 struct vm_struct *vm_stack = cached_vm_stacks[i]; 240 241 if (!vm_stack) 242 continue; 243 244 vfree(vm_stack->addr); 245 cached_vm_stacks[i] = NULL; 246 } 247 248 return 0; 249 } 250 251 static int memcg_charge_kernel_stack(struct vm_struct *vm) 252 { 253 int i; 254 int ret; 255 int nr_charged = 0; 256 257 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 258 259 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 260 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0); 261 if (ret) 262 goto err; 263 nr_charged++; 264 } 265 return 0; 266 err: 267 for (i = 0; i < nr_charged; i++) 268 memcg_kmem_uncharge_page(vm->pages[i], 0); 269 return ret; 270 } 271 272 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 273 { 274 struct vm_struct *vm; 275 void *stack; 276 int i; 277 278 for (i = 0; i < NR_CACHED_STACKS; i++) { 279 struct vm_struct *s; 280 281 s = this_cpu_xchg(cached_stacks[i], NULL); 282 283 if (!s) 284 continue; 285 286 /* Reset stack metadata. */ 287 kasan_unpoison_range(s->addr, THREAD_SIZE); 288 289 stack = kasan_reset_tag(s->addr); 290 291 /* Clear stale pointers from reused stack. */ 292 memset(stack, 0, THREAD_SIZE); 293 294 if (memcg_charge_kernel_stack(s)) { 295 vfree(s->addr); 296 return -ENOMEM; 297 } 298 299 tsk->stack_vm_area = s; 300 tsk->stack = stack; 301 return 0; 302 } 303 304 /* 305 * Allocated stacks are cached and later reused by new threads, 306 * so memcg accounting is performed manually on assigning/releasing 307 * stacks to tasks. Drop __GFP_ACCOUNT. 308 */ 309 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 310 VMALLOC_START, VMALLOC_END, 311 THREADINFO_GFP & ~__GFP_ACCOUNT, 312 PAGE_KERNEL, 313 0, node, __builtin_return_address(0)); 314 if (!stack) 315 return -ENOMEM; 316 317 vm = find_vm_area(stack); 318 if (memcg_charge_kernel_stack(vm)) { 319 vfree(stack); 320 return -ENOMEM; 321 } 322 /* 323 * We can't call find_vm_area() in interrupt context, and 324 * free_thread_stack() can be called in interrupt context, 325 * so cache the vm_struct. 326 */ 327 tsk->stack_vm_area = vm; 328 stack = kasan_reset_tag(stack); 329 tsk->stack = stack; 330 return 0; 331 } 332 333 static void free_thread_stack(struct task_struct *tsk) 334 { 335 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 336 thread_stack_delayed_free(tsk); 337 338 tsk->stack = NULL; 339 tsk->stack_vm_area = NULL; 340 } 341 342 # else /* !CONFIG_VMAP_STACK */ 343 344 static void thread_stack_free_rcu(struct rcu_head *rh) 345 { 346 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 347 } 348 349 static void thread_stack_delayed_free(struct task_struct *tsk) 350 { 351 struct rcu_head *rh = tsk->stack; 352 353 call_rcu(rh, thread_stack_free_rcu); 354 } 355 356 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 357 { 358 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 359 THREAD_SIZE_ORDER); 360 361 if (likely(page)) { 362 tsk->stack = kasan_reset_tag(page_address(page)); 363 return 0; 364 } 365 return -ENOMEM; 366 } 367 368 static void free_thread_stack(struct task_struct *tsk) 369 { 370 thread_stack_delayed_free(tsk); 371 tsk->stack = NULL; 372 } 373 374 # endif /* CONFIG_VMAP_STACK */ 375 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */ 376 377 static struct kmem_cache *thread_stack_cache; 378 379 static void thread_stack_free_rcu(struct rcu_head *rh) 380 { 381 kmem_cache_free(thread_stack_cache, rh); 382 } 383 384 static void thread_stack_delayed_free(struct task_struct *tsk) 385 { 386 struct rcu_head *rh = tsk->stack; 387 388 call_rcu(rh, thread_stack_free_rcu); 389 } 390 391 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 392 { 393 unsigned long *stack; 394 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 395 stack = kasan_reset_tag(stack); 396 tsk->stack = stack; 397 return stack ? 0 : -ENOMEM; 398 } 399 400 static void free_thread_stack(struct task_struct *tsk) 401 { 402 thread_stack_delayed_free(tsk); 403 tsk->stack = NULL; 404 } 405 406 void thread_stack_cache_init(void) 407 { 408 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 409 THREAD_SIZE, THREAD_SIZE, 0, 0, 410 THREAD_SIZE, NULL); 411 BUG_ON(thread_stack_cache == NULL); 412 } 413 414 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */ 415 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ 416 417 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 418 { 419 unsigned long *stack; 420 421 stack = arch_alloc_thread_stack_node(tsk, node); 422 tsk->stack = stack; 423 return stack ? 0 : -ENOMEM; 424 } 425 426 static void free_thread_stack(struct task_struct *tsk) 427 { 428 arch_free_thread_stack(tsk); 429 tsk->stack = NULL; 430 } 431 432 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ 433 434 /* SLAB cache for signal_struct structures (tsk->signal) */ 435 static struct kmem_cache *signal_cachep; 436 437 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 438 struct kmem_cache *sighand_cachep; 439 440 /* SLAB cache for files_struct structures (tsk->files) */ 441 struct kmem_cache *files_cachep; 442 443 /* SLAB cache for fs_struct structures (tsk->fs) */ 444 struct kmem_cache *fs_cachep; 445 446 /* SLAB cache for vm_area_struct structures */ 447 static struct kmem_cache *vm_area_cachep; 448 449 /* SLAB cache for mm_struct structures (tsk->mm) */ 450 static struct kmem_cache *mm_cachep; 451 452 #ifdef CONFIG_PER_VMA_LOCK 453 454 /* SLAB cache for vm_area_struct.lock */ 455 static struct kmem_cache *vma_lock_cachep; 456 457 static bool vma_lock_alloc(struct vm_area_struct *vma) 458 { 459 vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL); 460 if (!vma->vm_lock) 461 return false; 462 463 init_rwsem(&vma->vm_lock->lock); 464 vma->vm_lock_seq = -1; 465 466 return true; 467 } 468 469 static inline void vma_lock_free(struct vm_area_struct *vma) 470 { 471 kmem_cache_free(vma_lock_cachep, vma->vm_lock); 472 } 473 474 #else /* CONFIG_PER_VMA_LOCK */ 475 476 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; } 477 static inline void vma_lock_free(struct vm_area_struct *vma) {} 478 479 #endif /* CONFIG_PER_VMA_LOCK */ 480 481 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 482 { 483 struct vm_area_struct *vma; 484 485 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 486 if (!vma) 487 return NULL; 488 489 vma_init(vma, mm); 490 if (!vma_lock_alloc(vma)) { 491 kmem_cache_free(vm_area_cachep, vma); 492 return NULL; 493 } 494 495 return vma; 496 } 497 498 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 499 { 500 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 501 502 if (!new) 503 return NULL; 504 505 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 506 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 507 /* 508 * orig->shared.rb may be modified concurrently, but the clone 509 * will be reinitialized. 510 */ 511 data_race(memcpy(new, orig, sizeof(*new))); 512 if (!vma_lock_alloc(new)) { 513 kmem_cache_free(vm_area_cachep, new); 514 return NULL; 515 } 516 INIT_LIST_HEAD(&new->anon_vma_chain); 517 vma_numab_state_init(new); 518 dup_anon_vma_name(orig, new); 519 520 return new; 521 } 522 523 void __vm_area_free(struct vm_area_struct *vma) 524 { 525 vma_numab_state_free(vma); 526 free_anon_vma_name(vma); 527 vma_lock_free(vma); 528 kmem_cache_free(vm_area_cachep, vma); 529 } 530 531 #ifdef CONFIG_PER_VMA_LOCK 532 static void vm_area_free_rcu_cb(struct rcu_head *head) 533 { 534 struct vm_area_struct *vma = container_of(head, struct vm_area_struct, 535 vm_rcu); 536 537 /* The vma should not be locked while being destroyed. */ 538 VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma); 539 __vm_area_free(vma); 540 } 541 #endif 542 543 void vm_area_free(struct vm_area_struct *vma) 544 { 545 #ifdef CONFIG_PER_VMA_LOCK 546 call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb); 547 #else 548 __vm_area_free(vma); 549 #endif 550 } 551 552 static void account_kernel_stack(struct task_struct *tsk, int account) 553 { 554 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 555 struct vm_struct *vm = task_stack_vm_area(tsk); 556 int i; 557 558 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 559 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 560 account * (PAGE_SIZE / 1024)); 561 } else { 562 void *stack = task_stack_page(tsk); 563 564 /* All stack pages are in the same node. */ 565 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 566 account * (THREAD_SIZE / 1024)); 567 } 568 } 569 570 void exit_task_stack_account(struct task_struct *tsk) 571 { 572 account_kernel_stack(tsk, -1); 573 574 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 575 struct vm_struct *vm; 576 int i; 577 578 vm = task_stack_vm_area(tsk); 579 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 580 memcg_kmem_uncharge_page(vm->pages[i], 0); 581 } 582 } 583 584 static void release_task_stack(struct task_struct *tsk) 585 { 586 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 587 return; /* Better to leak the stack than to free prematurely */ 588 589 free_thread_stack(tsk); 590 } 591 592 #ifdef CONFIG_THREAD_INFO_IN_TASK 593 void put_task_stack(struct task_struct *tsk) 594 { 595 if (refcount_dec_and_test(&tsk->stack_refcount)) 596 release_task_stack(tsk); 597 } 598 #endif 599 600 void free_task(struct task_struct *tsk) 601 { 602 #ifdef CONFIG_SECCOMP 603 WARN_ON_ONCE(tsk->seccomp.filter); 604 #endif 605 release_user_cpus_ptr(tsk); 606 scs_release(tsk); 607 608 #ifndef CONFIG_THREAD_INFO_IN_TASK 609 /* 610 * The task is finally done with both the stack and thread_info, 611 * so free both. 612 */ 613 release_task_stack(tsk); 614 #else 615 /* 616 * If the task had a separate stack allocation, it should be gone 617 * by now. 618 */ 619 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 620 #endif 621 rt_mutex_debug_task_free(tsk); 622 ftrace_graph_exit_task(tsk); 623 arch_release_task_struct(tsk); 624 if (tsk->flags & PF_KTHREAD) 625 free_kthread_struct(tsk); 626 bpf_task_storage_free(tsk); 627 free_task_struct(tsk); 628 } 629 EXPORT_SYMBOL(free_task); 630 631 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 632 { 633 struct file *exe_file; 634 635 exe_file = get_mm_exe_file(oldmm); 636 RCU_INIT_POINTER(mm->exe_file, exe_file); 637 /* 638 * We depend on the oldmm having properly denied write access to the 639 * exe_file already. 640 */ 641 if (exe_file && deny_write_access(exe_file)) 642 pr_warn_once("deny_write_access() failed in %s\n", __func__); 643 } 644 645 #ifdef CONFIG_MMU 646 static __latent_entropy int dup_mmap(struct mm_struct *mm, 647 struct mm_struct *oldmm) 648 { 649 struct vm_area_struct *mpnt, *tmp; 650 int retval; 651 unsigned long charge = 0; 652 LIST_HEAD(uf); 653 VMA_ITERATOR(vmi, mm, 0); 654 655 uprobe_start_dup_mmap(); 656 if (mmap_write_lock_killable(oldmm)) { 657 retval = -EINTR; 658 goto fail_uprobe_end; 659 } 660 flush_cache_dup_mm(oldmm); 661 uprobe_dup_mmap(oldmm, mm); 662 /* 663 * Not linked in yet - no deadlock potential: 664 */ 665 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 666 667 /* No ordering required: file already has been exposed. */ 668 dup_mm_exe_file(mm, oldmm); 669 670 mm->total_vm = oldmm->total_vm; 671 mm->data_vm = oldmm->data_vm; 672 mm->exec_vm = oldmm->exec_vm; 673 mm->stack_vm = oldmm->stack_vm; 674 675 retval = ksm_fork(mm, oldmm); 676 if (retval) 677 goto out; 678 khugepaged_fork(mm, oldmm); 679 680 /* Use __mt_dup() to efficiently build an identical maple tree. */ 681 retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL); 682 if (unlikely(retval)) 683 goto out; 684 685 mt_clear_in_rcu(vmi.mas.tree); 686 for_each_vma(vmi, mpnt) { 687 struct file *file; 688 689 vma_start_write(mpnt); 690 if (mpnt->vm_flags & VM_DONTCOPY) { 691 retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start, 692 mpnt->vm_end, GFP_KERNEL); 693 if (retval) 694 goto loop_out; 695 696 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 697 continue; 698 } 699 charge = 0; 700 /* 701 * Don't duplicate many vmas if we've been oom-killed (for 702 * example) 703 */ 704 if (fatal_signal_pending(current)) { 705 retval = -EINTR; 706 goto loop_out; 707 } 708 if (mpnt->vm_flags & VM_ACCOUNT) { 709 unsigned long len = vma_pages(mpnt); 710 711 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 712 goto fail_nomem; 713 charge = len; 714 } 715 tmp = vm_area_dup(mpnt); 716 if (!tmp) 717 goto fail_nomem; 718 retval = vma_dup_policy(mpnt, tmp); 719 if (retval) 720 goto fail_nomem_policy; 721 tmp->vm_mm = mm; 722 retval = dup_userfaultfd(tmp, &uf); 723 if (retval) 724 goto fail_nomem_anon_vma_fork; 725 if (tmp->vm_flags & VM_WIPEONFORK) { 726 /* 727 * VM_WIPEONFORK gets a clean slate in the child. 728 * Don't prepare anon_vma until fault since we don't 729 * copy page for current vma. 730 */ 731 tmp->anon_vma = NULL; 732 } else if (anon_vma_fork(tmp, mpnt)) 733 goto fail_nomem_anon_vma_fork; 734 vm_flags_clear(tmp, VM_LOCKED_MASK); 735 file = tmp->vm_file; 736 if (file) { 737 struct address_space *mapping = file->f_mapping; 738 739 get_file(file); 740 i_mmap_lock_write(mapping); 741 if (vma_is_shared_maywrite(tmp)) 742 mapping_allow_writable(mapping); 743 flush_dcache_mmap_lock(mapping); 744 /* insert tmp into the share list, just after mpnt */ 745 vma_interval_tree_insert_after(tmp, mpnt, 746 &mapping->i_mmap); 747 flush_dcache_mmap_unlock(mapping); 748 i_mmap_unlock_write(mapping); 749 } 750 751 /* 752 * Copy/update hugetlb private vma information. 753 */ 754 if (is_vm_hugetlb_page(tmp)) 755 hugetlb_dup_vma_private(tmp); 756 757 /* 758 * Link the vma into the MT. After using __mt_dup(), memory 759 * allocation is not necessary here, so it cannot fail. 760 */ 761 vma_iter_bulk_store(&vmi, tmp); 762 763 mm->map_count++; 764 if (!(tmp->vm_flags & VM_WIPEONFORK)) 765 retval = copy_page_range(tmp, mpnt); 766 767 if (tmp->vm_ops && tmp->vm_ops->open) 768 tmp->vm_ops->open(tmp); 769 770 if (retval) { 771 mpnt = vma_next(&vmi); 772 goto loop_out; 773 } 774 } 775 /* a new mm has just been created */ 776 retval = arch_dup_mmap(oldmm, mm); 777 loop_out: 778 vma_iter_free(&vmi); 779 if (!retval) { 780 mt_set_in_rcu(vmi.mas.tree); 781 } else if (mpnt) { 782 /* 783 * The entire maple tree has already been duplicated. If the 784 * mmap duplication fails, mark the failure point with 785 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered, 786 * stop releasing VMAs that have not been duplicated after this 787 * point. 788 */ 789 mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1); 790 mas_store(&vmi.mas, XA_ZERO_ENTRY); 791 } 792 out: 793 mmap_write_unlock(mm); 794 flush_tlb_mm(oldmm); 795 mmap_write_unlock(oldmm); 796 dup_userfaultfd_complete(&uf); 797 fail_uprobe_end: 798 uprobe_end_dup_mmap(); 799 return retval; 800 801 fail_nomem_anon_vma_fork: 802 mpol_put(vma_policy(tmp)); 803 fail_nomem_policy: 804 vm_area_free(tmp); 805 fail_nomem: 806 retval = -ENOMEM; 807 vm_unacct_memory(charge); 808 goto loop_out; 809 } 810 811 static inline int mm_alloc_pgd(struct mm_struct *mm) 812 { 813 mm->pgd = pgd_alloc(mm); 814 if (unlikely(!mm->pgd)) 815 return -ENOMEM; 816 return 0; 817 } 818 819 static inline void mm_free_pgd(struct mm_struct *mm) 820 { 821 pgd_free(mm, mm->pgd); 822 } 823 #else 824 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 825 { 826 mmap_write_lock(oldmm); 827 dup_mm_exe_file(mm, oldmm); 828 mmap_write_unlock(oldmm); 829 return 0; 830 } 831 #define mm_alloc_pgd(mm) (0) 832 #define mm_free_pgd(mm) 833 #endif /* CONFIG_MMU */ 834 835 static void check_mm(struct mm_struct *mm) 836 { 837 int i; 838 839 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 840 "Please make sure 'struct resident_page_types[]' is updated as well"); 841 842 for (i = 0; i < NR_MM_COUNTERS; i++) { 843 long x = percpu_counter_sum(&mm->rss_stat[i]); 844 845 if (unlikely(x)) 846 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 847 mm, resident_page_types[i], x); 848 } 849 850 if (mm_pgtables_bytes(mm)) 851 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 852 mm_pgtables_bytes(mm)); 853 854 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 855 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 856 #endif 857 } 858 859 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 860 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 861 862 static void do_check_lazy_tlb(void *arg) 863 { 864 struct mm_struct *mm = arg; 865 866 WARN_ON_ONCE(current->active_mm == mm); 867 } 868 869 static void do_shoot_lazy_tlb(void *arg) 870 { 871 struct mm_struct *mm = arg; 872 873 if (current->active_mm == mm) { 874 WARN_ON_ONCE(current->mm); 875 current->active_mm = &init_mm; 876 switch_mm(mm, &init_mm, current); 877 } 878 } 879 880 static void cleanup_lazy_tlbs(struct mm_struct *mm) 881 { 882 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) { 883 /* 884 * In this case, lazy tlb mms are refounted and would not reach 885 * __mmdrop until all CPUs have switched away and mmdrop()ed. 886 */ 887 return; 888 } 889 890 /* 891 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it 892 * requires lazy mm users to switch to another mm when the refcount 893 * drops to zero, before the mm is freed. This requires IPIs here to 894 * switch kernel threads to init_mm. 895 * 896 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm 897 * switch with the final userspace teardown TLB flush which leaves the 898 * mm lazy on this CPU but no others, reducing the need for additional 899 * IPIs here. There are cases where a final IPI is still required here, 900 * such as the final mmdrop being performed on a different CPU than the 901 * one exiting, or kernel threads using the mm when userspace exits. 902 * 903 * IPI overheads have not found to be expensive, but they could be 904 * reduced in a number of possible ways, for example (roughly 905 * increasing order of complexity): 906 * - The last lazy reference created by exit_mm() could instead switch 907 * to init_mm, however it's probable this will run on the same CPU 908 * immediately afterwards, so this may not reduce IPIs much. 909 * - A batch of mms requiring IPIs could be gathered and freed at once. 910 * - CPUs store active_mm where it can be remotely checked without a 911 * lock, to filter out false-positives in the cpumask. 912 * - After mm_users or mm_count reaches zero, switching away from the 913 * mm could clear mm_cpumask to reduce some IPIs, perhaps together 914 * with some batching or delaying of the final IPIs. 915 * - A delayed freeing and RCU-like quiescing sequence based on mm 916 * switching to avoid IPIs completely. 917 */ 918 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1); 919 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES)) 920 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1); 921 } 922 923 /* 924 * Called when the last reference to the mm 925 * is dropped: either by a lazy thread or by 926 * mmput. Free the page directory and the mm. 927 */ 928 void __mmdrop(struct mm_struct *mm) 929 { 930 BUG_ON(mm == &init_mm); 931 WARN_ON_ONCE(mm == current->mm); 932 933 /* Ensure no CPUs are using this as their lazy tlb mm */ 934 cleanup_lazy_tlbs(mm); 935 936 WARN_ON_ONCE(mm == current->active_mm); 937 mm_free_pgd(mm); 938 destroy_context(mm); 939 mmu_notifier_subscriptions_destroy(mm); 940 check_mm(mm); 941 put_user_ns(mm->user_ns); 942 mm_pasid_drop(mm); 943 mm_destroy_cid(mm); 944 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS); 945 946 free_mm(mm); 947 } 948 EXPORT_SYMBOL_GPL(__mmdrop); 949 950 static void mmdrop_async_fn(struct work_struct *work) 951 { 952 struct mm_struct *mm; 953 954 mm = container_of(work, struct mm_struct, async_put_work); 955 __mmdrop(mm); 956 } 957 958 static void mmdrop_async(struct mm_struct *mm) 959 { 960 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 961 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 962 schedule_work(&mm->async_put_work); 963 } 964 } 965 966 static inline void free_signal_struct(struct signal_struct *sig) 967 { 968 taskstats_tgid_free(sig); 969 sched_autogroup_exit(sig); 970 /* 971 * __mmdrop is not safe to call from softirq context on x86 due to 972 * pgd_dtor so postpone it to the async context 973 */ 974 if (sig->oom_mm) 975 mmdrop_async(sig->oom_mm); 976 kmem_cache_free(signal_cachep, sig); 977 } 978 979 static inline void put_signal_struct(struct signal_struct *sig) 980 { 981 if (refcount_dec_and_test(&sig->sigcnt)) 982 free_signal_struct(sig); 983 } 984 985 void __put_task_struct(struct task_struct *tsk) 986 { 987 WARN_ON(!tsk->exit_state); 988 WARN_ON(refcount_read(&tsk->usage)); 989 WARN_ON(tsk == current); 990 991 io_uring_free(tsk); 992 cgroup_free(tsk); 993 task_numa_free(tsk, true); 994 security_task_free(tsk); 995 exit_creds(tsk); 996 delayacct_tsk_free(tsk); 997 put_signal_struct(tsk->signal); 998 sched_core_free(tsk); 999 free_task(tsk); 1000 } 1001 EXPORT_SYMBOL_GPL(__put_task_struct); 1002 1003 void __put_task_struct_rcu_cb(struct rcu_head *rhp) 1004 { 1005 struct task_struct *task = container_of(rhp, struct task_struct, rcu); 1006 1007 __put_task_struct(task); 1008 } 1009 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb); 1010 1011 void __init __weak arch_task_cache_init(void) { } 1012 1013 /* 1014 * set_max_threads 1015 */ 1016 static void set_max_threads(unsigned int max_threads_suggested) 1017 { 1018 u64 threads; 1019 unsigned long nr_pages = totalram_pages(); 1020 1021 /* 1022 * The number of threads shall be limited such that the thread 1023 * structures may only consume a small part of the available memory. 1024 */ 1025 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 1026 threads = MAX_THREADS; 1027 else 1028 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 1029 (u64) THREAD_SIZE * 8UL); 1030 1031 if (threads > max_threads_suggested) 1032 threads = max_threads_suggested; 1033 1034 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 1035 } 1036 1037 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 1038 /* Initialized by the architecture: */ 1039 int arch_task_struct_size __read_mostly; 1040 #endif 1041 1042 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 1043 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 1044 { 1045 /* Fetch thread_struct whitelist for the architecture. */ 1046 arch_thread_struct_whitelist(offset, size); 1047 1048 /* 1049 * Handle zero-sized whitelist or empty thread_struct, otherwise 1050 * adjust offset to position of thread_struct in task_struct. 1051 */ 1052 if (unlikely(*size == 0)) 1053 *offset = 0; 1054 else 1055 *offset += offsetof(struct task_struct, thread); 1056 } 1057 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 1058 1059 void __init fork_init(void) 1060 { 1061 int i; 1062 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 1063 #ifndef ARCH_MIN_TASKALIGN 1064 #define ARCH_MIN_TASKALIGN 0 1065 #endif 1066 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 1067 unsigned long useroffset, usersize; 1068 1069 /* create a slab on which task_structs can be allocated */ 1070 task_struct_whitelist(&useroffset, &usersize); 1071 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 1072 arch_task_struct_size, align, 1073 SLAB_PANIC|SLAB_ACCOUNT, 1074 useroffset, usersize, NULL); 1075 #endif 1076 1077 /* do the arch specific task caches init */ 1078 arch_task_cache_init(); 1079 1080 set_max_threads(MAX_THREADS); 1081 1082 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 1083 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 1084 init_task.signal->rlim[RLIMIT_SIGPENDING] = 1085 init_task.signal->rlim[RLIMIT_NPROC]; 1086 1087 for (i = 0; i < UCOUNT_COUNTS; i++) 1088 init_user_ns.ucount_max[i] = max_threads/2; 1089 1090 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 1091 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 1092 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 1093 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 1094 1095 #ifdef CONFIG_VMAP_STACK 1096 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 1097 NULL, free_vm_stack_cache); 1098 #endif 1099 1100 scs_init(); 1101 1102 lockdep_init_task(&init_task); 1103 uprobes_init(); 1104 } 1105 1106 int __weak arch_dup_task_struct(struct task_struct *dst, 1107 struct task_struct *src) 1108 { 1109 *dst = *src; 1110 return 0; 1111 } 1112 1113 void set_task_stack_end_magic(struct task_struct *tsk) 1114 { 1115 unsigned long *stackend; 1116 1117 stackend = end_of_stack(tsk); 1118 *stackend = STACK_END_MAGIC; /* for overflow detection */ 1119 } 1120 1121 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 1122 { 1123 struct task_struct *tsk; 1124 int err; 1125 1126 if (node == NUMA_NO_NODE) 1127 node = tsk_fork_get_node(orig); 1128 tsk = alloc_task_struct_node(node); 1129 if (!tsk) 1130 return NULL; 1131 1132 err = arch_dup_task_struct(tsk, orig); 1133 if (err) 1134 goto free_tsk; 1135 1136 err = alloc_thread_stack_node(tsk, node); 1137 if (err) 1138 goto free_tsk; 1139 1140 #ifdef CONFIG_THREAD_INFO_IN_TASK 1141 refcount_set(&tsk->stack_refcount, 1); 1142 #endif 1143 account_kernel_stack(tsk, 1); 1144 1145 err = scs_prepare(tsk, node); 1146 if (err) 1147 goto free_stack; 1148 1149 #ifdef CONFIG_SECCOMP 1150 /* 1151 * We must handle setting up seccomp filters once we're under 1152 * the sighand lock in case orig has changed between now and 1153 * then. Until then, filter must be NULL to avoid messing up 1154 * the usage counts on the error path calling free_task. 1155 */ 1156 tsk->seccomp.filter = NULL; 1157 #endif 1158 1159 setup_thread_stack(tsk, orig); 1160 clear_user_return_notifier(tsk); 1161 clear_tsk_need_resched(tsk); 1162 set_task_stack_end_magic(tsk); 1163 clear_syscall_work_syscall_user_dispatch(tsk); 1164 1165 #ifdef CONFIG_STACKPROTECTOR 1166 tsk->stack_canary = get_random_canary(); 1167 #endif 1168 if (orig->cpus_ptr == &orig->cpus_mask) 1169 tsk->cpus_ptr = &tsk->cpus_mask; 1170 dup_user_cpus_ptr(tsk, orig, node); 1171 1172 /* 1173 * One for the user space visible state that goes away when reaped. 1174 * One for the scheduler. 1175 */ 1176 refcount_set(&tsk->rcu_users, 2); 1177 /* One for the rcu users */ 1178 refcount_set(&tsk->usage, 1); 1179 #ifdef CONFIG_BLK_DEV_IO_TRACE 1180 tsk->btrace_seq = 0; 1181 #endif 1182 tsk->splice_pipe = NULL; 1183 tsk->task_frag.page = NULL; 1184 tsk->wake_q.next = NULL; 1185 tsk->worker_private = NULL; 1186 1187 kcov_task_init(tsk); 1188 kmsan_task_create(tsk); 1189 kmap_local_fork(tsk); 1190 1191 #ifdef CONFIG_FAULT_INJECTION 1192 tsk->fail_nth = 0; 1193 #endif 1194 1195 #ifdef CONFIG_BLK_CGROUP 1196 tsk->throttle_disk = NULL; 1197 tsk->use_memdelay = 0; 1198 #endif 1199 1200 #ifdef CONFIG_IOMMU_SVA 1201 tsk->pasid_activated = 0; 1202 #endif 1203 1204 #ifdef CONFIG_MEMCG 1205 tsk->active_memcg = NULL; 1206 #endif 1207 1208 #ifdef CONFIG_CPU_SUP_INTEL 1209 tsk->reported_split_lock = 0; 1210 #endif 1211 1212 #ifdef CONFIG_SCHED_MM_CID 1213 tsk->mm_cid = -1; 1214 tsk->last_mm_cid = -1; 1215 tsk->mm_cid_active = 0; 1216 tsk->migrate_from_cpu = -1; 1217 #endif 1218 return tsk; 1219 1220 free_stack: 1221 exit_task_stack_account(tsk); 1222 free_thread_stack(tsk); 1223 free_tsk: 1224 free_task_struct(tsk); 1225 return NULL; 1226 } 1227 1228 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 1229 1230 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 1231 1232 static int __init coredump_filter_setup(char *s) 1233 { 1234 default_dump_filter = 1235 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 1236 MMF_DUMP_FILTER_MASK; 1237 return 1; 1238 } 1239 1240 __setup("coredump_filter=", coredump_filter_setup); 1241 1242 #include <linux/init_task.h> 1243 1244 static void mm_init_aio(struct mm_struct *mm) 1245 { 1246 #ifdef CONFIG_AIO 1247 spin_lock_init(&mm->ioctx_lock); 1248 mm->ioctx_table = NULL; 1249 #endif 1250 } 1251 1252 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1253 struct task_struct *p) 1254 { 1255 #ifdef CONFIG_MEMCG 1256 if (mm->owner == p) 1257 WRITE_ONCE(mm->owner, NULL); 1258 #endif 1259 } 1260 1261 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1262 { 1263 #ifdef CONFIG_MEMCG 1264 mm->owner = p; 1265 #endif 1266 } 1267 1268 static void mm_init_uprobes_state(struct mm_struct *mm) 1269 { 1270 #ifdef CONFIG_UPROBES 1271 mm->uprobes_state.xol_area = NULL; 1272 #endif 1273 } 1274 1275 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1276 struct user_namespace *user_ns) 1277 { 1278 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); 1279 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); 1280 atomic_set(&mm->mm_users, 1); 1281 atomic_set(&mm->mm_count, 1); 1282 seqcount_init(&mm->write_protect_seq); 1283 mmap_init_lock(mm); 1284 INIT_LIST_HEAD(&mm->mmlist); 1285 #ifdef CONFIG_PER_VMA_LOCK 1286 mm->mm_lock_seq = 0; 1287 #endif 1288 mm_pgtables_bytes_init(mm); 1289 mm->map_count = 0; 1290 mm->locked_vm = 0; 1291 atomic64_set(&mm->pinned_vm, 0); 1292 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1293 spin_lock_init(&mm->page_table_lock); 1294 spin_lock_init(&mm->arg_lock); 1295 mm_init_cpumask(mm); 1296 mm_init_aio(mm); 1297 mm_init_owner(mm, p); 1298 mm_pasid_init(mm); 1299 RCU_INIT_POINTER(mm->exe_file, NULL); 1300 mmu_notifier_subscriptions_init(mm); 1301 init_tlb_flush_pending(mm); 1302 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1303 mm->pmd_huge_pte = NULL; 1304 #endif 1305 mm_init_uprobes_state(mm); 1306 hugetlb_count_init(mm); 1307 1308 if (current->mm) { 1309 mm->flags = mmf_init_flags(current->mm->flags); 1310 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1311 } else { 1312 mm->flags = default_dump_filter; 1313 mm->def_flags = 0; 1314 } 1315 1316 if (mm_alloc_pgd(mm)) 1317 goto fail_nopgd; 1318 1319 if (init_new_context(p, mm)) 1320 goto fail_nocontext; 1321 1322 if (mm_alloc_cid(mm)) 1323 goto fail_cid; 1324 1325 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT, 1326 NR_MM_COUNTERS)) 1327 goto fail_pcpu; 1328 1329 mm->user_ns = get_user_ns(user_ns); 1330 lru_gen_init_mm(mm); 1331 return mm; 1332 1333 fail_pcpu: 1334 mm_destroy_cid(mm); 1335 fail_cid: 1336 destroy_context(mm); 1337 fail_nocontext: 1338 mm_free_pgd(mm); 1339 fail_nopgd: 1340 free_mm(mm); 1341 return NULL; 1342 } 1343 1344 /* 1345 * Allocate and initialize an mm_struct. 1346 */ 1347 struct mm_struct *mm_alloc(void) 1348 { 1349 struct mm_struct *mm; 1350 1351 mm = allocate_mm(); 1352 if (!mm) 1353 return NULL; 1354 1355 memset(mm, 0, sizeof(*mm)); 1356 return mm_init(mm, current, current_user_ns()); 1357 } 1358 1359 static inline void __mmput(struct mm_struct *mm) 1360 { 1361 VM_BUG_ON(atomic_read(&mm->mm_users)); 1362 1363 uprobe_clear_state(mm); 1364 exit_aio(mm); 1365 ksm_exit(mm); 1366 khugepaged_exit(mm); /* must run before exit_mmap */ 1367 exit_mmap(mm); 1368 mm_put_huge_zero_page(mm); 1369 set_mm_exe_file(mm, NULL); 1370 if (!list_empty(&mm->mmlist)) { 1371 spin_lock(&mmlist_lock); 1372 list_del(&mm->mmlist); 1373 spin_unlock(&mmlist_lock); 1374 } 1375 if (mm->binfmt) 1376 module_put(mm->binfmt->module); 1377 lru_gen_del_mm(mm); 1378 mmdrop(mm); 1379 } 1380 1381 /* 1382 * Decrement the use count and release all resources for an mm. 1383 */ 1384 void mmput(struct mm_struct *mm) 1385 { 1386 might_sleep(); 1387 1388 if (atomic_dec_and_test(&mm->mm_users)) 1389 __mmput(mm); 1390 } 1391 EXPORT_SYMBOL_GPL(mmput); 1392 1393 #ifdef CONFIG_MMU 1394 static void mmput_async_fn(struct work_struct *work) 1395 { 1396 struct mm_struct *mm = container_of(work, struct mm_struct, 1397 async_put_work); 1398 1399 __mmput(mm); 1400 } 1401 1402 void mmput_async(struct mm_struct *mm) 1403 { 1404 if (atomic_dec_and_test(&mm->mm_users)) { 1405 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1406 schedule_work(&mm->async_put_work); 1407 } 1408 } 1409 EXPORT_SYMBOL_GPL(mmput_async); 1410 #endif 1411 1412 /** 1413 * set_mm_exe_file - change a reference to the mm's executable file 1414 * @mm: The mm to change. 1415 * @new_exe_file: The new file to use. 1416 * 1417 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1418 * 1419 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1420 * invocations: in mmput() nobody alive left, in execve it happens before 1421 * the new mm is made visible to anyone. 1422 * 1423 * Can only fail if new_exe_file != NULL. 1424 */ 1425 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1426 { 1427 struct file *old_exe_file; 1428 1429 /* 1430 * It is safe to dereference the exe_file without RCU as 1431 * this function is only called if nobody else can access 1432 * this mm -- see comment above for justification. 1433 */ 1434 old_exe_file = rcu_dereference_raw(mm->exe_file); 1435 1436 if (new_exe_file) { 1437 /* 1438 * We expect the caller (i.e., sys_execve) to already denied 1439 * write access, so this is unlikely to fail. 1440 */ 1441 if (unlikely(deny_write_access(new_exe_file))) 1442 return -EACCES; 1443 get_file(new_exe_file); 1444 } 1445 rcu_assign_pointer(mm->exe_file, new_exe_file); 1446 if (old_exe_file) { 1447 allow_write_access(old_exe_file); 1448 fput(old_exe_file); 1449 } 1450 return 0; 1451 } 1452 1453 /** 1454 * replace_mm_exe_file - replace a reference to the mm's executable file 1455 * @mm: The mm to change. 1456 * @new_exe_file: The new file to use. 1457 * 1458 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1459 * 1460 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1461 */ 1462 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1463 { 1464 struct vm_area_struct *vma; 1465 struct file *old_exe_file; 1466 int ret = 0; 1467 1468 /* Forbid mm->exe_file change if old file still mapped. */ 1469 old_exe_file = get_mm_exe_file(mm); 1470 if (old_exe_file) { 1471 VMA_ITERATOR(vmi, mm, 0); 1472 mmap_read_lock(mm); 1473 for_each_vma(vmi, vma) { 1474 if (!vma->vm_file) 1475 continue; 1476 if (path_equal(&vma->vm_file->f_path, 1477 &old_exe_file->f_path)) { 1478 ret = -EBUSY; 1479 break; 1480 } 1481 } 1482 mmap_read_unlock(mm); 1483 fput(old_exe_file); 1484 if (ret) 1485 return ret; 1486 } 1487 1488 ret = deny_write_access(new_exe_file); 1489 if (ret) 1490 return -EACCES; 1491 get_file(new_exe_file); 1492 1493 /* set the new file */ 1494 mmap_write_lock(mm); 1495 old_exe_file = rcu_dereference_raw(mm->exe_file); 1496 rcu_assign_pointer(mm->exe_file, new_exe_file); 1497 mmap_write_unlock(mm); 1498 1499 if (old_exe_file) { 1500 allow_write_access(old_exe_file); 1501 fput(old_exe_file); 1502 } 1503 return 0; 1504 } 1505 1506 /** 1507 * get_mm_exe_file - acquire a reference to the mm's executable file 1508 * @mm: The mm of interest. 1509 * 1510 * Returns %NULL if mm has no associated executable file. 1511 * User must release file via fput(). 1512 */ 1513 struct file *get_mm_exe_file(struct mm_struct *mm) 1514 { 1515 struct file *exe_file; 1516 1517 rcu_read_lock(); 1518 exe_file = get_file_rcu(&mm->exe_file); 1519 rcu_read_unlock(); 1520 return exe_file; 1521 } 1522 1523 /** 1524 * get_task_exe_file - acquire a reference to the task's executable file 1525 * @task: The task. 1526 * 1527 * Returns %NULL if task's mm (if any) has no associated executable file or 1528 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1529 * User must release file via fput(). 1530 */ 1531 struct file *get_task_exe_file(struct task_struct *task) 1532 { 1533 struct file *exe_file = NULL; 1534 struct mm_struct *mm; 1535 1536 task_lock(task); 1537 mm = task->mm; 1538 if (mm) { 1539 if (!(task->flags & PF_KTHREAD)) 1540 exe_file = get_mm_exe_file(mm); 1541 } 1542 task_unlock(task); 1543 return exe_file; 1544 } 1545 1546 /** 1547 * get_task_mm - acquire a reference to the task's mm 1548 * @task: The task. 1549 * 1550 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1551 * this kernel workthread has transiently adopted a user mm with use_mm, 1552 * to do its AIO) is not set and if so returns a reference to it, after 1553 * bumping up the use count. User must release the mm via mmput() 1554 * after use. Typically used by /proc and ptrace. 1555 */ 1556 struct mm_struct *get_task_mm(struct task_struct *task) 1557 { 1558 struct mm_struct *mm; 1559 1560 task_lock(task); 1561 mm = task->mm; 1562 if (mm) { 1563 if (task->flags & PF_KTHREAD) 1564 mm = NULL; 1565 else 1566 mmget(mm); 1567 } 1568 task_unlock(task); 1569 return mm; 1570 } 1571 EXPORT_SYMBOL_GPL(get_task_mm); 1572 1573 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1574 { 1575 struct mm_struct *mm; 1576 int err; 1577 1578 err = down_read_killable(&task->signal->exec_update_lock); 1579 if (err) 1580 return ERR_PTR(err); 1581 1582 mm = get_task_mm(task); 1583 if (mm && mm != current->mm && 1584 !ptrace_may_access(task, mode)) { 1585 mmput(mm); 1586 mm = ERR_PTR(-EACCES); 1587 } 1588 up_read(&task->signal->exec_update_lock); 1589 1590 return mm; 1591 } 1592 1593 static void complete_vfork_done(struct task_struct *tsk) 1594 { 1595 struct completion *vfork; 1596 1597 task_lock(tsk); 1598 vfork = tsk->vfork_done; 1599 if (likely(vfork)) { 1600 tsk->vfork_done = NULL; 1601 complete(vfork); 1602 } 1603 task_unlock(tsk); 1604 } 1605 1606 static int wait_for_vfork_done(struct task_struct *child, 1607 struct completion *vfork) 1608 { 1609 unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE; 1610 int killed; 1611 1612 cgroup_enter_frozen(); 1613 killed = wait_for_completion_state(vfork, state); 1614 cgroup_leave_frozen(false); 1615 1616 if (killed) { 1617 task_lock(child); 1618 child->vfork_done = NULL; 1619 task_unlock(child); 1620 } 1621 1622 put_task_struct(child); 1623 return killed; 1624 } 1625 1626 /* Please note the differences between mmput and mm_release. 1627 * mmput is called whenever we stop holding onto a mm_struct, 1628 * error success whatever. 1629 * 1630 * mm_release is called after a mm_struct has been removed 1631 * from the current process. 1632 * 1633 * This difference is important for error handling, when we 1634 * only half set up a mm_struct for a new process and need to restore 1635 * the old one. Because we mmput the new mm_struct before 1636 * restoring the old one. . . 1637 * Eric Biederman 10 January 1998 1638 */ 1639 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1640 { 1641 uprobe_free_utask(tsk); 1642 1643 /* Get rid of any cached register state */ 1644 deactivate_mm(tsk, mm); 1645 1646 /* 1647 * Signal userspace if we're not exiting with a core dump 1648 * because we want to leave the value intact for debugging 1649 * purposes. 1650 */ 1651 if (tsk->clear_child_tid) { 1652 if (atomic_read(&mm->mm_users) > 1) { 1653 /* 1654 * We don't check the error code - if userspace has 1655 * not set up a proper pointer then tough luck. 1656 */ 1657 put_user(0, tsk->clear_child_tid); 1658 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1659 1, NULL, NULL, 0, 0); 1660 } 1661 tsk->clear_child_tid = NULL; 1662 } 1663 1664 /* 1665 * All done, finally we can wake up parent and return this mm to him. 1666 * Also kthread_stop() uses this completion for synchronization. 1667 */ 1668 if (tsk->vfork_done) 1669 complete_vfork_done(tsk); 1670 } 1671 1672 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1673 { 1674 futex_exit_release(tsk); 1675 mm_release(tsk, mm); 1676 } 1677 1678 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1679 { 1680 futex_exec_release(tsk); 1681 mm_release(tsk, mm); 1682 } 1683 1684 /** 1685 * dup_mm() - duplicates an existing mm structure 1686 * @tsk: the task_struct with which the new mm will be associated. 1687 * @oldmm: the mm to duplicate. 1688 * 1689 * Allocates a new mm structure and duplicates the provided @oldmm structure 1690 * content into it. 1691 * 1692 * Return: the duplicated mm or NULL on failure. 1693 */ 1694 static struct mm_struct *dup_mm(struct task_struct *tsk, 1695 struct mm_struct *oldmm) 1696 { 1697 struct mm_struct *mm; 1698 int err; 1699 1700 mm = allocate_mm(); 1701 if (!mm) 1702 goto fail_nomem; 1703 1704 memcpy(mm, oldmm, sizeof(*mm)); 1705 1706 if (!mm_init(mm, tsk, mm->user_ns)) 1707 goto fail_nomem; 1708 1709 err = dup_mmap(mm, oldmm); 1710 if (err) 1711 goto free_pt; 1712 1713 mm->hiwater_rss = get_mm_rss(mm); 1714 mm->hiwater_vm = mm->total_vm; 1715 1716 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1717 goto free_pt; 1718 1719 return mm; 1720 1721 free_pt: 1722 /* don't put binfmt in mmput, we haven't got module yet */ 1723 mm->binfmt = NULL; 1724 mm_init_owner(mm, NULL); 1725 mmput(mm); 1726 1727 fail_nomem: 1728 return NULL; 1729 } 1730 1731 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1732 { 1733 struct mm_struct *mm, *oldmm; 1734 1735 tsk->min_flt = tsk->maj_flt = 0; 1736 tsk->nvcsw = tsk->nivcsw = 0; 1737 #ifdef CONFIG_DETECT_HUNG_TASK 1738 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1739 tsk->last_switch_time = 0; 1740 #endif 1741 1742 tsk->mm = NULL; 1743 tsk->active_mm = NULL; 1744 1745 /* 1746 * Are we cloning a kernel thread? 1747 * 1748 * We need to steal a active VM for that.. 1749 */ 1750 oldmm = current->mm; 1751 if (!oldmm) 1752 return 0; 1753 1754 if (clone_flags & CLONE_VM) { 1755 mmget(oldmm); 1756 mm = oldmm; 1757 } else { 1758 mm = dup_mm(tsk, current->mm); 1759 if (!mm) 1760 return -ENOMEM; 1761 } 1762 1763 tsk->mm = mm; 1764 tsk->active_mm = mm; 1765 sched_mm_cid_fork(tsk); 1766 return 0; 1767 } 1768 1769 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1770 { 1771 struct fs_struct *fs = current->fs; 1772 if (clone_flags & CLONE_FS) { 1773 /* tsk->fs is already what we want */ 1774 spin_lock(&fs->lock); 1775 if (fs->in_exec) { 1776 spin_unlock(&fs->lock); 1777 return -EAGAIN; 1778 } 1779 fs->users++; 1780 spin_unlock(&fs->lock); 1781 return 0; 1782 } 1783 tsk->fs = copy_fs_struct(fs); 1784 if (!tsk->fs) 1785 return -ENOMEM; 1786 return 0; 1787 } 1788 1789 static int copy_files(unsigned long clone_flags, struct task_struct *tsk, 1790 int no_files) 1791 { 1792 struct files_struct *oldf, *newf; 1793 int error = 0; 1794 1795 /* 1796 * A background process may not have any files ... 1797 */ 1798 oldf = current->files; 1799 if (!oldf) 1800 goto out; 1801 1802 if (no_files) { 1803 tsk->files = NULL; 1804 goto out; 1805 } 1806 1807 if (clone_flags & CLONE_FILES) { 1808 atomic_inc(&oldf->count); 1809 goto out; 1810 } 1811 1812 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1813 if (!newf) 1814 goto out; 1815 1816 tsk->files = newf; 1817 error = 0; 1818 out: 1819 return error; 1820 } 1821 1822 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1823 { 1824 struct sighand_struct *sig; 1825 1826 if (clone_flags & CLONE_SIGHAND) { 1827 refcount_inc(¤t->sighand->count); 1828 return 0; 1829 } 1830 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1831 RCU_INIT_POINTER(tsk->sighand, sig); 1832 if (!sig) 1833 return -ENOMEM; 1834 1835 refcount_set(&sig->count, 1); 1836 spin_lock_irq(¤t->sighand->siglock); 1837 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1838 spin_unlock_irq(¤t->sighand->siglock); 1839 1840 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1841 if (clone_flags & CLONE_CLEAR_SIGHAND) 1842 flush_signal_handlers(tsk, 0); 1843 1844 return 0; 1845 } 1846 1847 void __cleanup_sighand(struct sighand_struct *sighand) 1848 { 1849 if (refcount_dec_and_test(&sighand->count)) { 1850 signalfd_cleanup(sighand); 1851 /* 1852 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1853 * without an RCU grace period, see __lock_task_sighand(). 1854 */ 1855 kmem_cache_free(sighand_cachep, sighand); 1856 } 1857 } 1858 1859 /* 1860 * Initialize POSIX timer handling for a thread group. 1861 */ 1862 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1863 { 1864 struct posix_cputimers *pct = &sig->posix_cputimers; 1865 unsigned long cpu_limit; 1866 1867 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1868 posix_cputimers_group_init(pct, cpu_limit); 1869 } 1870 1871 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1872 { 1873 struct signal_struct *sig; 1874 1875 if (clone_flags & CLONE_THREAD) 1876 return 0; 1877 1878 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1879 tsk->signal = sig; 1880 if (!sig) 1881 return -ENOMEM; 1882 1883 sig->nr_threads = 1; 1884 sig->quick_threads = 1; 1885 atomic_set(&sig->live, 1); 1886 refcount_set(&sig->sigcnt, 1); 1887 1888 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1889 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1890 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1891 1892 init_waitqueue_head(&sig->wait_chldexit); 1893 sig->curr_target = tsk; 1894 init_sigpending(&sig->shared_pending); 1895 INIT_HLIST_HEAD(&sig->multiprocess); 1896 seqlock_init(&sig->stats_lock); 1897 prev_cputime_init(&sig->prev_cputime); 1898 1899 #ifdef CONFIG_POSIX_TIMERS 1900 INIT_LIST_HEAD(&sig->posix_timers); 1901 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1902 sig->real_timer.function = it_real_fn; 1903 #endif 1904 1905 task_lock(current->group_leader); 1906 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1907 task_unlock(current->group_leader); 1908 1909 posix_cpu_timers_init_group(sig); 1910 1911 tty_audit_fork(sig); 1912 sched_autogroup_fork(sig); 1913 1914 sig->oom_score_adj = current->signal->oom_score_adj; 1915 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1916 1917 mutex_init(&sig->cred_guard_mutex); 1918 init_rwsem(&sig->exec_update_lock); 1919 1920 return 0; 1921 } 1922 1923 static void copy_seccomp(struct task_struct *p) 1924 { 1925 #ifdef CONFIG_SECCOMP 1926 /* 1927 * Must be called with sighand->lock held, which is common to 1928 * all threads in the group. Holding cred_guard_mutex is not 1929 * needed because this new task is not yet running and cannot 1930 * be racing exec. 1931 */ 1932 assert_spin_locked(¤t->sighand->siglock); 1933 1934 /* Ref-count the new filter user, and assign it. */ 1935 get_seccomp_filter(current); 1936 p->seccomp = current->seccomp; 1937 1938 /* 1939 * Explicitly enable no_new_privs here in case it got set 1940 * between the task_struct being duplicated and holding the 1941 * sighand lock. The seccomp state and nnp must be in sync. 1942 */ 1943 if (task_no_new_privs(current)) 1944 task_set_no_new_privs(p); 1945 1946 /* 1947 * If the parent gained a seccomp mode after copying thread 1948 * flags and between before we held the sighand lock, we have 1949 * to manually enable the seccomp thread flag here. 1950 */ 1951 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1952 set_task_syscall_work(p, SECCOMP); 1953 #endif 1954 } 1955 1956 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1957 { 1958 current->clear_child_tid = tidptr; 1959 1960 return task_pid_vnr(current); 1961 } 1962 1963 static void rt_mutex_init_task(struct task_struct *p) 1964 { 1965 raw_spin_lock_init(&p->pi_lock); 1966 #ifdef CONFIG_RT_MUTEXES 1967 p->pi_waiters = RB_ROOT_CACHED; 1968 p->pi_top_task = NULL; 1969 p->pi_blocked_on = NULL; 1970 #endif 1971 } 1972 1973 static inline void init_task_pid_links(struct task_struct *task) 1974 { 1975 enum pid_type type; 1976 1977 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1978 INIT_HLIST_NODE(&task->pid_links[type]); 1979 } 1980 1981 static inline void 1982 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1983 { 1984 if (type == PIDTYPE_PID) 1985 task->thread_pid = pid; 1986 else 1987 task->signal->pids[type] = pid; 1988 } 1989 1990 static inline void rcu_copy_process(struct task_struct *p) 1991 { 1992 #ifdef CONFIG_PREEMPT_RCU 1993 p->rcu_read_lock_nesting = 0; 1994 p->rcu_read_unlock_special.s = 0; 1995 p->rcu_blocked_node = NULL; 1996 INIT_LIST_HEAD(&p->rcu_node_entry); 1997 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1998 #ifdef CONFIG_TASKS_RCU 1999 p->rcu_tasks_holdout = false; 2000 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 2001 p->rcu_tasks_idle_cpu = -1; 2002 #endif /* #ifdef CONFIG_TASKS_RCU */ 2003 #ifdef CONFIG_TASKS_TRACE_RCU 2004 p->trc_reader_nesting = 0; 2005 p->trc_reader_special.s = 0; 2006 INIT_LIST_HEAD(&p->trc_holdout_list); 2007 INIT_LIST_HEAD(&p->trc_blkd_node); 2008 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 2009 } 2010 2011 struct pid *pidfd_pid(const struct file *file) 2012 { 2013 if (file->f_op == &pidfd_fops) 2014 return file->private_data; 2015 2016 return ERR_PTR(-EBADF); 2017 } 2018 2019 static int pidfd_release(struct inode *inode, struct file *file) 2020 { 2021 struct pid *pid = file->private_data; 2022 2023 file->private_data = NULL; 2024 put_pid(pid); 2025 return 0; 2026 } 2027 2028 #ifdef CONFIG_PROC_FS 2029 /** 2030 * pidfd_show_fdinfo - print information about a pidfd 2031 * @m: proc fdinfo file 2032 * @f: file referencing a pidfd 2033 * 2034 * Pid: 2035 * This function will print the pid that a given pidfd refers to in the 2036 * pid namespace of the procfs instance. 2037 * If the pid namespace of the process is not a descendant of the pid 2038 * namespace of the procfs instance 0 will be shown as its pid. This is 2039 * similar to calling getppid() on a process whose parent is outside of 2040 * its pid namespace. 2041 * 2042 * NSpid: 2043 * If pid namespaces are supported then this function will also print 2044 * the pid of a given pidfd refers to for all descendant pid namespaces 2045 * starting from the current pid namespace of the instance, i.e. the 2046 * Pid field and the first entry in the NSpid field will be identical. 2047 * If the pid namespace of the process is not a descendant of the pid 2048 * namespace of the procfs instance 0 will be shown as its first NSpid 2049 * entry and no others will be shown. 2050 * Note that this differs from the Pid and NSpid fields in 2051 * /proc/<pid>/status where Pid and NSpid are always shown relative to 2052 * the pid namespace of the procfs instance. The difference becomes 2053 * obvious when sending around a pidfd between pid namespaces from a 2054 * different branch of the tree, i.e. where no ancestral relation is 2055 * present between the pid namespaces: 2056 * - create two new pid namespaces ns1 and ns2 in the initial pid 2057 * namespace (also take care to create new mount namespaces in the 2058 * new pid namespace and mount procfs) 2059 * - create a process with a pidfd in ns1 2060 * - send pidfd from ns1 to ns2 2061 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 2062 * have exactly one entry, which is 0 2063 */ 2064 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 2065 { 2066 struct pid *pid = f->private_data; 2067 struct pid_namespace *ns; 2068 pid_t nr = -1; 2069 2070 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 2071 ns = proc_pid_ns(file_inode(m->file)->i_sb); 2072 nr = pid_nr_ns(pid, ns); 2073 } 2074 2075 seq_put_decimal_ll(m, "Pid:\t", nr); 2076 2077 #ifdef CONFIG_PID_NS 2078 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 2079 if (nr > 0) { 2080 int i; 2081 2082 /* If nr is non-zero it means that 'pid' is valid and that 2083 * ns, i.e. the pid namespace associated with the procfs 2084 * instance, is in the pid namespace hierarchy of pid. 2085 * Start at one below the already printed level. 2086 */ 2087 for (i = ns->level + 1; i <= pid->level; i++) 2088 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 2089 } 2090 #endif 2091 seq_putc(m, '\n'); 2092 } 2093 #endif 2094 2095 /* 2096 * Poll support for process exit notification. 2097 */ 2098 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 2099 { 2100 struct pid *pid = file->private_data; 2101 __poll_t poll_flags = 0; 2102 2103 poll_wait(file, &pid->wait_pidfd, pts); 2104 2105 /* 2106 * Inform pollers only when the whole thread group exits. 2107 * If the thread group leader exits before all other threads in the 2108 * group, then poll(2) should block, similar to the wait(2) family. 2109 */ 2110 if (thread_group_exited(pid)) 2111 poll_flags = EPOLLIN | EPOLLRDNORM; 2112 2113 return poll_flags; 2114 } 2115 2116 const struct file_operations pidfd_fops = { 2117 .release = pidfd_release, 2118 .poll = pidfd_poll, 2119 #ifdef CONFIG_PROC_FS 2120 .show_fdinfo = pidfd_show_fdinfo, 2121 #endif 2122 }; 2123 2124 /** 2125 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 2126 * @pid: the struct pid for which to create a pidfd 2127 * @flags: flags of the new @pidfd 2128 * @ret: Where to return the file for the pidfd. 2129 * 2130 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2131 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2132 * 2133 * The helper doesn't perform checks on @pid which makes it useful for pidfds 2134 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and 2135 * pidfd file are prepared. 2136 * 2137 * If this function returns successfully the caller is responsible to either 2138 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2139 * order to install the pidfd into its file descriptor table or they must use 2140 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2141 * respectively. 2142 * 2143 * This function is useful when a pidfd must already be reserved but there 2144 * might still be points of failure afterwards and the caller wants to ensure 2145 * that no pidfd is leaked into its file descriptor table. 2146 * 2147 * Return: On success, a reserved pidfd is returned from the function and a new 2148 * pidfd file is returned in the last argument to the function. On 2149 * error, a negative error code is returned from the function and the 2150 * last argument remains unchanged. 2151 */ 2152 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2153 { 2154 int pidfd; 2155 struct file *pidfd_file; 2156 2157 if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC)) 2158 return -EINVAL; 2159 2160 pidfd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2161 if (pidfd < 0) 2162 return pidfd; 2163 2164 pidfd_file = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2165 flags | O_RDWR | O_CLOEXEC); 2166 if (IS_ERR(pidfd_file)) { 2167 put_unused_fd(pidfd); 2168 return PTR_ERR(pidfd_file); 2169 } 2170 get_pid(pid); /* held by pidfd_file now */ 2171 *ret = pidfd_file; 2172 return pidfd; 2173 } 2174 2175 /** 2176 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 2177 * @pid: the struct pid for which to create a pidfd 2178 * @flags: flags of the new @pidfd 2179 * @ret: Where to return the pidfd. 2180 * 2181 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2182 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2183 * 2184 * The helper verifies that @pid is used as a thread group leader. 2185 * 2186 * If this function returns successfully the caller is responsible to either 2187 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2188 * order to install the pidfd into its file descriptor table or they must use 2189 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2190 * respectively. 2191 * 2192 * This function is useful when a pidfd must already be reserved but there 2193 * might still be points of failure afterwards and the caller wants to ensure 2194 * that no pidfd is leaked into its file descriptor table. 2195 * 2196 * Return: On success, a reserved pidfd is returned from the function and a new 2197 * pidfd file is returned in the last argument to the function. On 2198 * error, a negative error code is returned from the function and the 2199 * last argument remains unchanged. 2200 */ 2201 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2202 { 2203 if (!pid || !pid_has_task(pid, PIDTYPE_TGID)) 2204 return -EINVAL; 2205 2206 return __pidfd_prepare(pid, flags, ret); 2207 } 2208 2209 static void __delayed_free_task(struct rcu_head *rhp) 2210 { 2211 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 2212 2213 free_task(tsk); 2214 } 2215 2216 static __always_inline void delayed_free_task(struct task_struct *tsk) 2217 { 2218 if (IS_ENABLED(CONFIG_MEMCG)) 2219 call_rcu(&tsk->rcu, __delayed_free_task); 2220 else 2221 free_task(tsk); 2222 } 2223 2224 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 2225 { 2226 /* Skip if kernel thread */ 2227 if (!tsk->mm) 2228 return; 2229 2230 /* Skip if spawning a thread or using vfork */ 2231 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 2232 return; 2233 2234 /* We need to synchronize with __set_oom_adj */ 2235 mutex_lock(&oom_adj_mutex); 2236 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 2237 /* Update the values in case they were changed after copy_signal */ 2238 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 2239 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 2240 mutex_unlock(&oom_adj_mutex); 2241 } 2242 2243 #ifdef CONFIG_RV 2244 static void rv_task_fork(struct task_struct *p) 2245 { 2246 int i; 2247 2248 for (i = 0; i < RV_PER_TASK_MONITORS; i++) 2249 p->rv[i].da_mon.monitoring = false; 2250 } 2251 #else 2252 #define rv_task_fork(p) do {} while (0) 2253 #endif 2254 2255 /* 2256 * This creates a new process as a copy of the old one, 2257 * but does not actually start it yet. 2258 * 2259 * It copies the registers, and all the appropriate 2260 * parts of the process environment (as per the clone 2261 * flags). The actual kick-off is left to the caller. 2262 */ 2263 __latent_entropy struct task_struct *copy_process( 2264 struct pid *pid, 2265 int trace, 2266 int node, 2267 struct kernel_clone_args *args) 2268 { 2269 int pidfd = -1, retval; 2270 struct task_struct *p; 2271 struct multiprocess_signals delayed; 2272 struct file *pidfile = NULL; 2273 const u64 clone_flags = args->flags; 2274 struct nsproxy *nsp = current->nsproxy; 2275 2276 /* 2277 * Don't allow sharing the root directory with processes in a different 2278 * namespace 2279 */ 2280 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 2281 return ERR_PTR(-EINVAL); 2282 2283 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 2284 return ERR_PTR(-EINVAL); 2285 2286 /* 2287 * Thread groups must share signals as well, and detached threads 2288 * can only be started up within the thread group. 2289 */ 2290 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 2291 return ERR_PTR(-EINVAL); 2292 2293 /* 2294 * Shared signal handlers imply shared VM. By way of the above, 2295 * thread groups also imply shared VM. Blocking this case allows 2296 * for various simplifications in other code. 2297 */ 2298 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 2299 return ERR_PTR(-EINVAL); 2300 2301 /* 2302 * Siblings of global init remain as zombies on exit since they are 2303 * not reaped by their parent (swapper). To solve this and to avoid 2304 * multi-rooted process trees, prevent global and container-inits 2305 * from creating siblings. 2306 */ 2307 if ((clone_flags & CLONE_PARENT) && 2308 current->signal->flags & SIGNAL_UNKILLABLE) 2309 return ERR_PTR(-EINVAL); 2310 2311 /* 2312 * If the new process will be in a different pid or user namespace 2313 * do not allow it to share a thread group with the forking task. 2314 */ 2315 if (clone_flags & CLONE_THREAD) { 2316 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 2317 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 2318 return ERR_PTR(-EINVAL); 2319 } 2320 2321 if (clone_flags & CLONE_PIDFD) { 2322 /* 2323 * - CLONE_DETACHED is blocked so that we can potentially 2324 * reuse it later for CLONE_PIDFD. 2325 * - CLONE_THREAD is blocked until someone really needs it. 2326 */ 2327 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 2328 return ERR_PTR(-EINVAL); 2329 } 2330 2331 /* 2332 * Force any signals received before this point to be delivered 2333 * before the fork happens. Collect up signals sent to multiple 2334 * processes that happen during the fork and delay them so that 2335 * they appear to happen after the fork. 2336 */ 2337 sigemptyset(&delayed.signal); 2338 INIT_HLIST_NODE(&delayed.node); 2339 2340 spin_lock_irq(¤t->sighand->siglock); 2341 if (!(clone_flags & CLONE_THREAD)) 2342 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2343 recalc_sigpending(); 2344 spin_unlock_irq(¤t->sighand->siglock); 2345 retval = -ERESTARTNOINTR; 2346 if (task_sigpending(current)) 2347 goto fork_out; 2348 2349 retval = -ENOMEM; 2350 p = dup_task_struct(current, node); 2351 if (!p) 2352 goto fork_out; 2353 p->flags &= ~PF_KTHREAD; 2354 if (args->kthread) 2355 p->flags |= PF_KTHREAD; 2356 if (args->user_worker) { 2357 /* 2358 * Mark us a user worker, and block any signal that isn't 2359 * fatal or STOP 2360 */ 2361 p->flags |= PF_USER_WORKER; 2362 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2363 } 2364 if (args->io_thread) 2365 p->flags |= PF_IO_WORKER; 2366 2367 if (args->name) 2368 strscpy_pad(p->comm, args->name, sizeof(p->comm)); 2369 2370 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2371 /* 2372 * Clear TID on mm_release()? 2373 */ 2374 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2375 2376 ftrace_graph_init_task(p); 2377 2378 rt_mutex_init_task(p); 2379 2380 lockdep_assert_irqs_enabled(); 2381 #ifdef CONFIG_PROVE_LOCKING 2382 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2383 #endif 2384 retval = copy_creds(p, clone_flags); 2385 if (retval < 0) 2386 goto bad_fork_free; 2387 2388 retval = -EAGAIN; 2389 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2390 if (p->real_cred->user != INIT_USER && 2391 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2392 goto bad_fork_cleanup_count; 2393 } 2394 current->flags &= ~PF_NPROC_EXCEEDED; 2395 2396 /* 2397 * If multiple threads are within copy_process(), then this check 2398 * triggers too late. This doesn't hurt, the check is only there 2399 * to stop root fork bombs. 2400 */ 2401 retval = -EAGAIN; 2402 if (data_race(nr_threads >= max_threads)) 2403 goto bad_fork_cleanup_count; 2404 2405 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2406 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2407 p->flags |= PF_FORKNOEXEC; 2408 INIT_LIST_HEAD(&p->children); 2409 INIT_LIST_HEAD(&p->sibling); 2410 rcu_copy_process(p); 2411 p->vfork_done = NULL; 2412 spin_lock_init(&p->alloc_lock); 2413 2414 init_sigpending(&p->pending); 2415 2416 p->utime = p->stime = p->gtime = 0; 2417 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2418 p->utimescaled = p->stimescaled = 0; 2419 #endif 2420 prev_cputime_init(&p->prev_cputime); 2421 2422 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2423 seqcount_init(&p->vtime.seqcount); 2424 p->vtime.starttime = 0; 2425 p->vtime.state = VTIME_INACTIVE; 2426 #endif 2427 2428 #ifdef CONFIG_IO_URING 2429 p->io_uring = NULL; 2430 #endif 2431 2432 p->default_timer_slack_ns = current->timer_slack_ns; 2433 2434 #ifdef CONFIG_PSI 2435 p->psi_flags = 0; 2436 #endif 2437 2438 task_io_accounting_init(&p->ioac); 2439 acct_clear_integrals(p); 2440 2441 posix_cputimers_init(&p->posix_cputimers); 2442 2443 p->io_context = NULL; 2444 audit_set_context(p, NULL); 2445 cgroup_fork(p); 2446 if (args->kthread) { 2447 if (!set_kthread_struct(p)) 2448 goto bad_fork_cleanup_delayacct; 2449 } 2450 #ifdef CONFIG_NUMA 2451 p->mempolicy = mpol_dup(p->mempolicy); 2452 if (IS_ERR(p->mempolicy)) { 2453 retval = PTR_ERR(p->mempolicy); 2454 p->mempolicy = NULL; 2455 goto bad_fork_cleanup_delayacct; 2456 } 2457 #endif 2458 #ifdef CONFIG_CPUSETS 2459 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2460 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2461 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2462 #endif 2463 #ifdef CONFIG_TRACE_IRQFLAGS 2464 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2465 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2466 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2467 p->softirqs_enabled = 1; 2468 p->softirq_context = 0; 2469 #endif 2470 2471 p->pagefault_disabled = 0; 2472 2473 #ifdef CONFIG_LOCKDEP 2474 lockdep_init_task(p); 2475 #endif 2476 2477 #ifdef CONFIG_DEBUG_MUTEXES 2478 p->blocked_on = NULL; /* not blocked yet */ 2479 #endif 2480 #ifdef CONFIG_BCACHE 2481 p->sequential_io = 0; 2482 p->sequential_io_avg = 0; 2483 #endif 2484 #ifdef CONFIG_BPF_SYSCALL 2485 RCU_INIT_POINTER(p->bpf_storage, NULL); 2486 p->bpf_ctx = NULL; 2487 #endif 2488 2489 /* Perform scheduler related setup. Assign this task to a CPU. */ 2490 retval = sched_fork(clone_flags, p); 2491 if (retval) 2492 goto bad_fork_cleanup_policy; 2493 2494 retval = perf_event_init_task(p, clone_flags); 2495 if (retval) 2496 goto bad_fork_cleanup_policy; 2497 retval = audit_alloc(p); 2498 if (retval) 2499 goto bad_fork_cleanup_perf; 2500 /* copy all the process information */ 2501 shm_init_task(p); 2502 retval = security_task_alloc(p, clone_flags); 2503 if (retval) 2504 goto bad_fork_cleanup_audit; 2505 retval = copy_semundo(clone_flags, p); 2506 if (retval) 2507 goto bad_fork_cleanup_security; 2508 retval = copy_files(clone_flags, p, args->no_files); 2509 if (retval) 2510 goto bad_fork_cleanup_semundo; 2511 retval = copy_fs(clone_flags, p); 2512 if (retval) 2513 goto bad_fork_cleanup_files; 2514 retval = copy_sighand(clone_flags, p); 2515 if (retval) 2516 goto bad_fork_cleanup_fs; 2517 retval = copy_signal(clone_flags, p); 2518 if (retval) 2519 goto bad_fork_cleanup_sighand; 2520 retval = copy_mm(clone_flags, p); 2521 if (retval) 2522 goto bad_fork_cleanup_signal; 2523 retval = copy_namespaces(clone_flags, p); 2524 if (retval) 2525 goto bad_fork_cleanup_mm; 2526 retval = copy_io(clone_flags, p); 2527 if (retval) 2528 goto bad_fork_cleanup_namespaces; 2529 retval = copy_thread(p, args); 2530 if (retval) 2531 goto bad_fork_cleanup_io; 2532 2533 stackleak_task_init(p); 2534 2535 if (pid != &init_struct_pid) { 2536 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2537 args->set_tid_size); 2538 if (IS_ERR(pid)) { 2539 retval = PTR_ERR(pid); 2540 goto bad_fork_cleanup_thread; 2541 } 2542 } 2543 2544 /* 2545 * This has to happen after we've potentially unshared the file 2546 * descriptor table (so that the pidfd doesn't leak into the child 2547 * if the fd table isn't shared). 2548 */ 2549 if (clone_flags & CLONE_PIDFD) { 2550 /* Note that no task has been attached to @pid yet. */ 2551 retval = __pidfd_prepare(pid, O_RDWR | O_CLOEXEC, &pidfile); 2552 if (retval < 0) 2553 goto bad_fork_free_pid; 2554 pidfd = retval; 2555 2556 retval = put_user(pidfd, args->pidfd); 2557 if (retval) 2558 goto bad_fork_put_pidfd; 2559 } 2560 2561 #ifdef CONFIG_BLOCK 2562 p->plug = NULL; 2563 #endif 2564 futex_init_task(p); 2565 2566 /* 2567 * sigaltstack should be cleared when sharing the same VM 2568 */ 2569 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2570 sas_ss_reset(p); 2571 2572 /* 2573 * Syscall tracing and stepping should be turned off in the 2574 * child regardless of CLONE_PTRACE. 2575 */ 2576 user_disable_single_step(p); 2577 clear_task_syscall_work(p, SYSCALL_TRACE); 2578 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2579 clear_task_syscall_work(p, SYSCALL_EMU); 2580 #endif 2581 clear_tsk_latency_tracing(p); 2582 2583 /* ok, now we should be set up.. */ 2584 p->pid = pid_nr(pid); 2585 if (clone_flags & CLONE_THREAD) { 2586 p->group_leader = current->group_leader; 2587 p->tgid = current->tgid; 2588 } else { 2589 p->group_leader = p; 2590 p->tgid = p->pid; 2591 } 2592 2593 p->nr_dirtied = 0; 2594 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2595 p->dirty_paused_when = 0; 2596 2597 p->pdeath_signal = 0; 2598 p->task_works = NULL; 2599 clear_posix_cputimers_work(p); 2600 2601 #ifdef CONFIG_KRETPROBES 2602 p->kretprobe_instances.first = NULL; 2603 #endif 2604 #ifdef CONFIG_RETHOOK 2605 p->rethooks.first = NULL; 2606 #endif 2607 2608 /* 2609 * Ensure that the cgroup subsystem policies allow the new process to be 2610 * forked. It should be noted that the new process's css_set can be changed 2611 * between here and cgroup_post_fork() if an organisation operation is in 2612 * progress. 2613 */ 2614 retval = cgroup_can_fork(p, args); 2615 if (retval) 2616 goto bad_fork_put_pidfd; 2617 2618 /* 2619 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2620 * the new task on the correct runqueue. All this *before* the task 2621 * becomes visible. 2622 * 2623 * This isn't part of ->can_fork() because while the re-cloning is 2624 * cgroup specific, it unconditionally needs to place the task on a 2625 * runqueue. 2626 */ 2627 sched_cgroup_fork(p, args); 2628 2629 /* 2630 * From this point on we must avoid any synchronous user-space 2631 * communication until we take the tasklist-lock. In particular, we do 2632 * not want user-space to be able to predict the process start-time by 2633 * stalling fork(2) after we recorded the start_time but before it is 2634 * visible to the system. 2635 */ 2636 2637 p->start_time = ktime_get_ns(); 2638 p->start_boottime = ktime_get_boottime_ns(); 2639 2640 /* 2641 * Make it visible to the rest of the system, but dont wake it up yet. 2642 * Need tasklist lock for parent etc handling! 2643 */ 2644 write_lock_irq(&tasklist_lock); 2645 2646 /* CLONE_PARENT re-uses the old parent */ 2647 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2648 p->real_parent = current->real_parent; 2649 p->parent_exec_id = current->parent_exec_id; 2650 if (clone_flags & CLONE_THREAD) 2651 p->exit_signal = -1; 2652 else 2653 p->exit_signal = current->group_leader->exit_signal; 2654 } else { 2655 p->real_parent = current; 2656 p->parent_exec_id = current->self_exec_id; 2657 p->exit_signal = args->exit_signal; 2658 } 2659 2660 klp_copy_process(p); 2661 2662 sched_core_fork(p); 2663 2664 spin_lock(¤t->sighand->siglock); 2665 2666 rv_task_fork(p); 2667 2668 rseq_fork(p, clone_flags); 2669 2670 /* Don't start children in a dying pid namespace */ 2671 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2672 retval = -ENOMEM; 2673 goto bad_fork_cancel_cgroup; 2674 } 2675 2676 /* Let kill terminate clone/fork in the middle */ 2677 if (fatal_signal_pending(current)) { 2678 retval = -EINTR; 2679 goto bad_fork_cancel_cgroup; 2680 } 2681 2682 /* No more failure paths after this point. */ 2683 2684 /* 2685 * Copy seccomp details explicitly here, in case they were changed 2686 * before holding sighand lock. 2687 */ 2688 copy_seccomp(p); 2689 2690 init_task_pid_links(p); 2691 if (likely(p->pid)) { 2692 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2693 2694 init_task_pid(p, PIDTYPE_PID, pid); 2695 if (thread_group_leader(p)) { 2696 init_task_pid(p, PIDTYPE_TGID, pid); 2697 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2698 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2699 2700 if (is_child_reaper(pid)) { 2701 ns_of_pid(pid)->child_reaper = p; 2702 p->signal->flags |= SIGNAL_UNKILLABLE; 2703 } 2704 p->signal->shared_pending.signal = delayed.signal; 2705 p->signal->tty = tty_kref_get(current->signal->tty); 2706 /* 2707 * Inherit has_child_subreaper flag under the same 2708 * tasklist_lock with adding child to the process tree 2709 * for propagate_has_child_subreaper optimization. 2710 */ 2711 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2712 p->real_parent->signal->is_child_subreaper; 2713 list_add_tail(&p->sibling, &p->real_parent->children); 2714 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2715 attach_pid(p, PIDTYPE_TGID); 2716 attach_pid(p, PIDTYPE_PGID); 2717 attach_pid(p, PIDTYPE_SID); 2718 __this_cpu_inc(process_counts); 2719 } else { 2720 current->signal->nr_threads++; 2721 current->signal->quick_threads++; 2722 atomic_inc(¤t->signal->live); 2723 refcount_inc(¤t->signal->sigcnt); 2724 task_join_group_stop(p); 2725 list_add_tail_rcu(&p->thread_node, 2726 &p->signal->thread_head); 2727 } 2728 attach_pid(p, PIDTYPE_PID); 2729 nr_threads++; 2730 } 2731 total_forks++; 2732 hlist_del_init(&delayed.node); 2733 spin_unlock(¤t->sighand->siglock); 2734 syscall_tracepoint_update(p); 2735 write_unlock_irq(&tasklist_lock); 2736 2737 if (pidfile) 2738 fd_install(pidfd, pidfile); 2739 2740 proc_fork_connector(p); 2741 sched_post_fork(p); 2742 cgroup_post_fork(p, args); 2743 perf_event_fork(p); 2744 2745 trace_task_newtask(p, clone_flags); 2746 uprobe_copy_process(p, clone_flags); 2747 user_events_fork(p, clone_flags); 2748 2749 copy_oom_score_adj(clone_flags, p); 2750 2751 return p; 2752 2753 bad_fork_cancel_cgroup: 2754 sched_core_free(p); 2755 spin_unlock(¤t->sighand->siglock); 2756 write_unlock_irq(&tasklist_lock); 2757 cgroup_cancel_fork(p, args); 2758 bad_fork_put_pidfd: 2759 if (clone_flags & CLONE_PIDFD) { 2760 fput(pidfile); 2761 put_unused_fd(pidfd); 2762 } 2763 bad_fork_free_pid: 2764 if (pid != &init_struct_pid) 2765 free_pid(pid); 2766 bad_fork_cleanup_thread: 2767 exit_thread(p); 2768 bad_fork_cleanup_io: 2769 if (p->io_context) 2770 exit_io_context(p); 2771 bad_fork_cleanup_namespaces: 2772 exit_task_namespaces(p); 2773 bad_fork_cleanup_mm: 2774 if (p->mm) { 2775 mm_clear_owner(p->mm, p); 2776 mmput(p->mm); 2777 } 2778 bad_fork_cleanup_signal: 2779 if (!(clone_flags & CLONE_THREAD)) 2780 free_signal_struct(p->signal); 2781 bad_fork_cleanup_sighand: 2782 __cleanup_sighand(p->sighand); 2783 bad_fork_cleanup_fs: 2784 exit_fs(p); /* blocking */ 2785 bad_fork_cleanup_files: 2786 exit_files(p); /* blocking */ 2787 bad_fork_cleanup_semundo: 2788 exit_sem(p); 2789 bad_fork_cleanup_security: 2790 security_task_free(p); 2791 bad_fork_cleanup_audit: 2792 audit_free(p); 2793 bad_fork_cleanup_perf: 2794 perf_event_free_task(p); 2795 bad_fork_cleanup_policy: 2796 lockdep_free_task(p); 2797 #ifdef CONFIG_NUMA 2798 mpol_put(p->mempolicy); 2799 #endif 2800 bad_fork_cleanup_delayacct: 2801 delayacct_tsk_free(p); 2802 bad_fork_cleanup_count: 2803 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2804 exit_creds(p); 2805 bad_fork_free: 2806 WRITE_ONCE(p->__state, TASK_DEAD); 2807 exit_task_stack_account(p); 2808 put_task_stack(p); 2809 delayed_free_task(p); 2810 fork_out: 2811 spin_lock_irq(¤t->sighand->siglock); 2812 hlist_del_init(&delayed.node); 2813 spin_unlock_irq(¤t->sighand->siglock); 2814 return ERR_PTR(retval); 2815 } 2816 2817 static inline void init_idle_pids(struct task_struct *idle) 2818 { 2819 enum pid_type type; 2820 2821 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2822 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2823 init_task_pid(idle, type, &init_struct_pid); 2824 } 2825 } 2826 2827 static int idle_dummy(void *dummy) 2828 { 2829 /* This function is never called */ 2830 return 0; 2831 } 2832 2833 struct task_struct * __init fork_idle(int cpu) 2834 { 2835 struct task_struct *task; 2836 struct kernel_clone_args args = { 2837 .flags = CLONE_VM, 2838 .fn = &idle_dummy, 2839 .fn_arg = NULL, 2840 .kthread = 1, 2841 .idle = 1, 2842 }; 2843 2844 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2845 if (!IS_ERR(task)) { 2846 init_idle_pids(task); 2847 init_idle(task, cpu); 2848 } 2849 2850 return task; 2851 } 2852 2853 /* 2854 * This is like kernel_clone(), but shaved down and tailored to just 2855 * creating io_uring workers. It returns a created task, or an error pointer. 2856 * The returned task is inactive, and the caller must fire it up through 2857 * wake_up_new_task(p). All signals are blocked in the created task. 2858 */ 2859 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2860 { 2861 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2862 CLONE_IO; 2863 struct kernel_clone_args args = { 2864 .flags = ((lower_32_bits(flags) | CLONE_VM | 2865 CLONE_UNTRACED) & ~CSIGNAL), 2866 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2867 .fn = fn, 2868 .fn_arg = arg, 2869 .io_thread = 1, 2870 .user_worker = 1, 2871 }; 2872 2873 return copy_process(NULL, 0, node, &args); 2874 } 2875 2876 /* 2877 * Ok, this is the main fork-routine. 2878 * 2879 * It copies the process, and if successful kick-starts 2880 * it and waits for it to finish using the VM if required. 2881 * 2882 * args->exit_signal is expected to be checked for sanity by the caller. 2883 */ 2884 pid_t kernel_clone(struct kernel_clone_args *args) 2885 { 2886 u64 clone_flags = args->flags; 2887 struct completion vfork; 2888 struct pid *pid; 2889 struct task_struct *p; 2890 int trace = 0; 2891 pid_t nr; 2892 2893 /* 2894 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2895 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2896 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2897 * field in struct clone_args and it still doesn't make sense to have 2898 * them both point at the same memory location. Performing this check 2899 * here has the advantage that we don't need to have a separate helper 2900 * to check for legacy clone(). 2901 */ 2902 if ((args->flags & CLONE_PIDFD) && 2903 (args->flags & CLONE_PARENT_SETTID) && 2904 (args->pidfd == args->parent_tid)) 2905 return -EINVAL; 2906 2907 /* 2908 * Determine whether and which event to report to ptracer. When 2909 * called from kernel_thread or CLONE_UNTRACED is explicitly 2910 * requested, no event is reported; otherwise, report if the event 2911 * for the type of forking is enabled. 2912 */ 2913 if (!(clone_flags & CLONE_UNTRACED)) { 2914 if (clone_flags & CLONE_VFORK) 2915 trace = PTRACE_EVENT_VFORK; 2916 else if (args->exit_signal != SIGCHLD) 2917 trace = PTRACE_EVENT_CLONE; 2918 else 2919 trace = PTRACE_EVENT_FORK; 2920 2921 if (likely(!ptrace_event_enabled(current, trace))) 2922 trace = 0; 2923 } 2924 2925 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2926 add_latent_entropy(); 2927 2928 if (IS_ERR(p)) 2929 return PTR_ERR(p); 2930 2931 /* 2932 * Do this prior waking up the new thread - the thread pointer 2933 * might get invalid after that point, if the thread exits quickly. 2934 */ 2935 trace_sched_process_fork(current, p); 2936 2937 pid = get_task_pid(p, PIDTYPE_PID); 2938 nr = pid_vnr(pid); 2939 2940 if (clone_flags & CLONE_PARENT_SETTID) 2941 put_user(nr, args->parent_tid); 2942 2943 if (clone_flags & CLONE_VFORK) { 2944 p->vfork_done = &vfork; 2945 init_completion(&vfork); 2946 get_task_struct(p); 2947 } 2948 2949 if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) { 2950 /* lock the task to synchronize with memcg migration */ 2951 task_lock(p); 2952 lru_gen_add_mm(p->mm); 2953 task_unlock(p); 2954 } 2955 2956 wake_up_new_task(p); 2957 2958 /* forking complete and child started to run, tell ptracer */ 2959 if (unlikely(trace)) 2960 ptrace_event_pid(trace, pid); 2961 2962 if (clone_flags & CLONE_VFORK) { 2963 if (!wait_for_vfork_done(p, &vfork)) 2964 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2965 } 2966 2967 put_pid(pid); 2968 return nr; 2969 } 2970 2971 /* 2972 * Create a kernel thread. 2973 */ 2974 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name, 2975 unsigned long flags) 2976 { 2977 struct kernel_clone_args args = { 2978 .flags = ((lower_32_bits(flags) | CLONE_VM | 2979 CLONE_UNTRACED) & ~CSIGNAL), 2980 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2981 .fn = fn, 2982 .fn_arg = arg, 2983 .name = name, 2984 .kthread = 1, 2985 }; 2986 2987 return kernel_clone(&args); 2988 } 2989 2990 /* 2991 * Create a user mode thread. 2992 */ 2993 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) 2994 { 2995 struct kernel_clone_args args = { 2996 .flags = ((lower_32_bits(flags) | CLONE_VM | 2997 CLONE_UNTRACED) & ~CSIGNAL), 2998 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2999 .fn = fn, 3000 .fn_arg = arg, 3001 }; 3002 3003 return kernel_clone(&args); 3004 } 3005 3006 #ifdef __ARCH_WANT_SYS_FORK 3007 SYSCALL_DEFINE0(fork) 3008 { 3009 #ifdef CONFIG_MMU 3010 struct kernel_clone_args args = { 3011 .exit_signal = SIGCHLD, 3012 }; 3013 3014 return kernel_clone(&args); 3015 #else 3016 /* can not support in nommu mode */ 3017 return -EINVAL; 3018 #endif 3019 } 3020 #endif 3021 3022 #ifdef __ARCH_WANT_SYS_VFORK 3023 SYSCALL_DEFINE0(vfork) 3024 { 3025 struct kernel_clone_args args = { 3026 .flags = CLONE_VFORK | CLONE_VM, 3027 .exit_signal = SIGCHLD, 3028 }; 3029 3030 return kernel_clone(&args); 3031 } 3032 #endif 3033 3034 #ifdef __ARCH_WANT_SYS_CLONE 3035 #ifdef CONFIG_CLONE_BACKWARDS 3036 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 3037 int __user *, parent_tidptr, 3038 unsigned long, tls, 3039 int __user *, child_tidptr) 3040 #elif defined(CONFIG_CLONE_BACKWARDS2) 3041 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 3042 int __user *, parent_tidptr, 3043 int __user *, child_tidptr, 3044 unsigned long, tls) 3045 #elif defined(CONFIG_CLONE_BACKWARDS3) 3046 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 3047 int, stack_size, 3048 int __user *, parent_tidptr, 3049 int __user *, child_tidptr, 3050 unsigned long, tls) 3051 #else 3052 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 3053 int __user *, parent_tidptr, 3054 int __user *, child_tidptr, 3055 unsigned long, tls) 3056 #endif 3057 { 3058 struct kernel_clone_args args = { 3059 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 3060 .pidfd = parent_tidptr, 3061 .child_tid = child_tidptr, 3062 .parent_tid = parent_tidptr, 3063 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 3064 .stack = newsp, 3065 .tls = tls, 3066 }; 3067 3068 return kernel_clone(&args); 3069 } 3070 #endif 3071 3072 #ifdef __ARCH_WANT_SYS_CLONE3 3073 3074 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 3075 struct clone_args __user *uargs, 3076 size_t usize) 3077 { 3078 int err; 3079 struct clone_args args; 3080 pid_t *kset_tid = kargs->set_tid; 3081 3082 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 3083 CLONE_ARGS_SIZE_VER0); 3084 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 3085 CLONE_ARGS_SIZE_VER1); 3086 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 3087 CLONE_ARGS_SIZE_VER2); 3088 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 3089 3090 if (unlikely(usize > PAGE_SIZE)) 3091 return -E2BIG; 3092 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 3093 return -EINVAL; 3094 3095 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 3096 if (err) 3097 return err; 3098 3099 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 3100 return -EINVAL; 3101 3102 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 3103 return -EINVAL; 3104 3105 if (unlikely(args.set_tid && args.set_tid_size == 0)) 3106 return -EINVAL; 3107 3108 /* 3109 * Verify that higher 32bits of exit_signal are unset and that 3110 * it is a valid signal 3111 */ 3112 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 3113 !valid_signal(args.exit_signal))) 3114 return -EINVAL; 3115 3116 if ((args.flags & CLONE_INTO_CGROUP) && 3117 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 3118 return -EINVAL; 3119 3120 *kargs = (struct kernel_clone_args){ 3121 .flags = args.flags, 3122 .pidfd = u64_to_user_ptr(args.pidfd), 3123 .child_tid = u64_to_user_ptr(args.child_tid), 3124 .parent_tid = u64_to_user_ptr(args.parent_tid), 3125 .exit_signal = args.exit_signal, 3126 .stack = args.stack, 3127 .stack_size = args.stack_size, 3128 .tls = args.tls, 3129 .set_tid_size = args.set_tid_size, 3130 .cgroup = args.cgroup, 3131 }; 3132 3133 if (args.set_tid && 3134 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 3135 (kargs->set_tid_size * sizeof(pid_t)))) 3136 return -EFAULT; 3137 3138 kargs->set_tid = kset_tid; 3139 3140 return 0; 3141 } 3142 3143 /** 3144 * clone3_stack_valid - check and prepare stack 3145 * @kargs: kernel clone args 3146 * 3147 * Verify that the stack arguments userspace gave us are sane. 3148 * In addition, set the stack direction for userspace since it's easy for us to 3149 * determine. 3150 */ 3151 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 3152 { 3153 if (kargs->stack == 0) { 3154 if (kargs->stack_size > 0) 3155 return false; 3156 } else { 3157 if (kargs->stack_size == 0) 3158 return false; 3159 3160 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 3161 return false; 3162 3163 #if !defined(CONFIG_STACK_GROWSUP) 3164 kargs->stack += kargs->stack_size; 3165 #endif 3166 } 3167 3168 return true; 3169 } 3170 3171 static bool clone3_args_valid(struct kernel_clone_args *kargs) 3172 { 3173 /* Verify that no unknown flags are passed along. */ 3174 if (kargs->flags & 3175 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 3176 return false; 3177 3178 /* 3179 * - make the CLONE_DETACHED bit reusable for clone3 3180 * - make the CSIGNAL bits reusable for clone3 3181 */ 3182 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME)))) 3183 return false; 3184 3185 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 3186 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 3187 return false; 3188 3189 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 3190 kargs->exit_signal) 3191 return false; 3192 3193 if (!clone3_stack_valid(kargs)) 3194 return false; 3195 3196 return true; 3197 } 3198 3199 /** 3200 * sys_clone3 - create a new process with specific properties 3201 * @uargs: argument structure 3202 * @size: size of @uargs 3203 * 3204 * clone3() is the extensible successor to clone()/clone2(). 3205 * It takes a struct as argument that is versioned by its size. 3206 * 3207 * Return: On success, a positive PID for the child process. 3208 * On error, a negative errno number. 3209 */ 3210 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 3211 { 3212 int err; 3213 3214 struct kernel_clone_args kargs; 3215 pid_t set_tid[MAX_PID_NS_LEVEL]; 3216 3217 kargs.set_tid = set_tid; 3218 3219 err = copy_clone_args_from_user(&kargs, uargs, size); 3220 if (err) 3221 return err; 3222 3223 if (!clone3_args_valid(&kargs)) 3224 return -EINVAL; 3225 3226 return kernel_clone(&kargs); 3227 } 3228 #endif 3229 3230 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 3231 { 3232 struct task_struct *leader, *parent, *child; 3233 int res; 3234 3235 read_lock(&tasklist_lock); 3236 leader = top = top->group_leader; 3237 down: 3238 for_each_thread(leader, parent) { 3239 list_for_each_entry(child, &parent->children, sibling) { 3240 res = visitor(child, data); 3241 if (res) { 3242 if (res < 0) 3243 goto out; 3244 leader = child; 3245 goto down; 3246 } 3247 up: 3248 ; 3249 } 3250 } 3251 3252 if (leader != top) { 3253 child = leader; 3254 parent = child->real_parent; 3255 leader = parent->group_leader; 3256 goto up; 3257 } 3258 out: 3259 read_unlock(&tasklist_lock); 3260 } 3261 3262 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 3263 #define ARCH_MIN_MMSTRUCT_ALIGN 0 3264 #endif 3265 3266 static void sighand_ctor(void *data) 3267 { 3268 struct sighand_struct *sighand = data; 3269 3270 spin_lock_init(&sighand->siglock); 3271 init_waitqueue_head(&sighand->signalfd_wqh); 3272 } 3273 3274 void __init mm_cache_init(void) 3275 { 3276 unsigned int mm_size; 3277 3278 /* 3279 * The mm_cpumask is located at the end of mm_struct, and is 3280 * dynamically sized based on the maximum CPU number this system 3281 * can have, taking hotplug into account (nr_cpu_ids). 3282 */ 3283 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size(); 3284 3285 mm_cachep = kmem_cache_create_usercopy("mm_struct", 3286 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 3287 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3288 offsetof(struct mm_struct, saved_auxv), 3289 sizeof_field(struct mm_struct, saved_auxv), 3290 NULL); 3291 } 3292 3293 void __init proc_caches_init(void) 3294 { 3295 sighand_cachep = kmem_cache_create("sighand_cache", 3296 sizeof(struct sighand_struct), 0, 3297 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 3298 SLAB_ACCOUNT, sighand_ctor); 3299 signal_cachep = kmem_cache_create("signal_cache", 3300 sizeof(struct signal_struct), 0, 3301 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3302 NULL); 3303 files_cachep = kmem_cache_create("files_cache", 3304 sizeof(struct files_struct), 0, 3305 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3306 NULL); 3307 fs_cachep = kmem_cache_create("fs_cache", 3308 sizeof(struct fs_struct), 0, 3309 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3310 NULL); 3311 3312 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 3313 #ifdef CONFIG_PER_VMA_LOCK 3314 vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT); 3315 #endif 3316 mmap_init(); 3317 nsproxy_cache_init(); 3318 } 3319 3320 /* 3321 * Check constraints on flags passed to the unshare system call. 3322 */ 3323 static int check_unshare_flags(unsigned long unshare_flags) 3324 { 3325 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 3326 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 3327 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 3328 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 3329 CLONE_NEWTIME)) 3330 return -EINVAL; 3331 /* 3332 * Not implemented, but pretend it works if there is nothing 3333 * to unshare. Note that unsharing the address space or the 3334 * signal handlers also need to unshare the signal queues (aka 3335 * CLONE_THREAD). 3336 */ 3337 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3338 if (!thread_group_empty(current)) 3339 return -EINVAL; 3340 } 3341 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3342 if (refcount_read(¤t->sighand->count) > 1) 3343 return -EINVAL; 3344 } 3345 if (unshare_flags & CLONE_VM) { 3346 if (!current_is_single_threaded()) 3347 return -EINVAL; 3348 } 3349 3350 return 0; 3351 } 3352 3353 /* 3354 * Unshare the filesystem structure if it is being shared 3355 */ 3356 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3357 { 3358 struct fs_struct *fs = current->fs; 3359 3360 if (!(unshare_flags & CLONE_FS) || !fs) 3361 return 0; 3362 3363 /* don't need lock here; in the worst case we'll do useless copy */ 3364 if (fs->users == 1) 3365 return 0; 3366 3367 *new_fsp = copy_fs_struct(fs); 3368 if (!*new_fsp) 3369 return -ENOMEM; 3370 3371 return 0; 3372 } 3373 3374 /* 3375 * Unshare file descriptor table if it is being shared 3376 */ 3377 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 3378 struct files_struct **new_fdp) 3379 { 3380 struct files_struct *fd = current->files; 3381 int error = 0; 3382 3383 if ((unshare_flags & CLONE_FILES) && 3384 (fd && atomic_read(&fd->count) > 1)) { 3385 *new_fdp = dup_fd(fd, max_fds, &error); 3386 if (!*new_fdp) 3387 return error; 3388 } 3389 3390 return 0; 3391 } 3392 3393 /* 3394 * unshare allows a process to 'unshare' part of the process 3395 * context which was originally shared using clone. copy_* 3396 * functions used by kernel_clone() cannot be used here directly 3397 * because they modify an inactive task_struct that is being 3398 * constructed. Here we are modifying the current, active, 3399 * task_struct. 3400 */ 3401 int ksys_unshare(unsigned long unshare_flags) 3402 { 3403 struct fs_struct *fs, *new_fs = NULL; 3404 struct files_struct *new_fd = NULL; 3405 struct cred *new_cred = NULL; 3406 struct nsproxy *new_nsproxy = NULL; 3407 int do_sysvsem = 0; 3408 int err; 3409 3410 /* 3411 * If unsharing a user namespace must also unshare the thread group 3412 * and unshare the filesystem root and working directories. 3413 */ 3414 if (unshare_flags & CLONE_NEWUSER) 3415 unshare_flags |= CLONE_THREAD | CLONE_FS; 3416 /* 3417 * If unsharing vm, must also unshare signal handlers. 3418 */ 3419 if (unshare_flags & CLONE_VM) 3420 unshare_flags |= CLONE_SIGHAND; 3421 /* 3422 * If unsharing a signal handlers, must also unshare the signal queues. 3423 */ 3424 if (unshare_flags & CLONE_SIGHAND) 3425 unshare_flags |= CLONE_THREAD; 3426 /* 3427 * If unsharing namespace, must also unshare filesystem information. 3428 */ 3429 if (unshare_flags & CLONE_NEWNS) 3430 unshare_flags |= CLONE_FS; 3431 3432 err = check_unshare_flags(unshare_flags); 3433 if (err) 3434 goto bad_unshare_out; 3435 /* 3436 * CLONE_NEWIPC must also detach from the undolist: after switching 3437 * to a new ipc namespace, the semaphore arrays from the old 3438 * namespace are unreachable. 3439 */ 3440 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3441 do_sysvsem = 1; 3442 err = unshare_fs(unshare_flags, &new_fs); 3443 if (err) 3444 goto bad_unshare_out; 3445 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 3446 if (err) 3447 goto bad_unshare_cleanup_fs; 3448 err = unshare_userns(unshare_flags, &new_cred); 3449 if (err) 3450 goto bad_unshare_cleanup_fd; 3451 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3452 new_cred, new_fs); 3453 if (err) 3454 goto bad_unshare_cleanup_cred; 3455 3456 if (new_cred) { 3457 err = set_cred_ucounts(new_cred); 3458 if (err) 3459 goto bad_unshare_cleanup_cred; 3460 } 3461 3462 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3463 if (do_sysvsem) { 3464 /* 3465 * CLONE_SYSVSEM is equivalent to sys_exit(). 3466 */ 3467 exit_sem(current); 3468 } 3469 if (unshare_flags & CLONE_NEWIPC) { 3470 /* Orphan segments in old ns (see sem above). */ 3471 exit_shm(current); 3472 shm_init_task(current); 3473 } 3474 3475 if (new_nsproxy) 3476 switch_task_namespaces(current, new_nsproxy); 3477 3478 task_lock(current); 3479 3480 if (new_fs) { 3481 fs = current->fs; 3482 spin_lock(&fs->lock); 3483 current->fs = new_fs; 3484 if (--fs->users) 3485 new_fs = NULL; 3486 else 3487 new_fs = fs; 3488 spin_unlock(&fs->lock); 3489 } 3490 3491 if (new_fd) 3492 swap(current->files, new_fd); 3493 3494 task_unlock(current); 3495 3496 if (new_cred) { 3497 /* Install the new user namespace */ 3498 commit_creds(new_cred); 3499 new_cred = NULL; 3500 } 3501 } 3502 3503 perf_event_namespaces(current); 3504 3505 bad_unshare_cleanup_cred: 3506 if (new_cred) 3507 put_cred(new_cred); 3508 bad_unshare_cleanup_fd: 3509 if (new_fd) 3510 put_files_struct(new_fd); 3511 3512 bad_unshare_cleanup_fs: 3513 if (new_fs) 3514 free_fs_struct(new_fs); 3515 3516 bad_unshare_out: 3517 return err; 3518 } 3519 3520 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3521 { 3522 return ksys_unshare(unshare_flags); 3523 } 3524 3525 /* 3526 * Helper to unshare the files of the current task. 3527 * We don't want to expose copy_files internals to 3528 * the exec layer of the kernel. 3529 */ 3530 3531 int unshare_files(void) 3532 { 3533 struct task_struct *task = current; 3534 struct files_struct *old, *copy = NULL; 3535 int error; 3536 3537 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3538 if (error || !copy) 3539 return error; 3540 3541 old = task->files; 3542 task_lock(task); 3543 task->files = copy; 3544 task_unlock(task); 3545 put_files_struct(old); 3546 return 0; 3547 } 3548 3549 int sysctl_max_threads(struct ctl_table *table, int write, 3550 void *buffer, size_t *lenp, loff_t *ppos) 3551 { 3552 struct ctl_table t; 3553 int ret; 3554 int threads = max_threads; 3555 int min = 1; 3556 int max = MAX_THREADS; 3557 3558 t = *table; 3559 t.data = &threads; 3560 t.extra1 = &min; 3561 t.extra2 = &max; 3562 3563 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3564 if (ret || !write) 3565 return ret; 3566 3567 max_threads = threads; 3568 3569 return 0; 3570 } 3571