1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/user.h> 20 #include <linux/sched/numa_balancing.h> 21 #include <linux/sched/stat.h> 22 #include <linux/sched/task.h> 23 #include <linux/sched/task_stack.h> 24 #include <linux/sched/cputime.h> 25 #include <linux/sched/ext.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/kmsan.h> 41 #include <linux/binfmts.h> 42 #include <linux/mman.h> 43 #include <linux/mmu_notifier.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/mm_inline.h> 47 #include <linux/memblock.h> 48 #include <linux/nsproxy.h> 49 #include <linux/capability.h> 50 #include <linux/cpu.h> 51 #include <linux/cgroup.h> 52 #include <linux/security.h> 53 #include <linux/hugetlb.h> 54 #include <linux/seccomp.h> 55 #include <linux/swap.h> 56 #include <linux/syscalls.h> 57 #include <linux/syscall_user_dispatch.h> 58 #include <linux/jiffies.h> 59 #include <linux/futex.h> 60 #include <linux/compat.h> 61 #include <linux/kthread.h> 62 #include <linux/task_io_accounting_ops.h> 63 #include <linux/rcupdate.h> 64 #include <linux/ptrace.h> 65 #include <linux/mount.h> 66 #include <linux/audit.h> 67 #include <linux/memcontrol.h> 68 #include <linux/ftrace.h> 69 #include <linux/proc_fs.h> 70 #include <linux/profile.h> 71 #include <linux/rmap.h> 72 #include <linux/ksm.h> 73 #include <linux/acct.h> 74 #include <linux/userfaultfd_k.h> 75 #include <linux/tsacct_kern.h> 76 #include <linux/cn_proc.h> 77 #include <linux/freezer.h> 78 #include <linux/delayacct.h> 79 #include <linux/taskstats_kern.h> 80 #include <linux/tty.h> 81 #include <linux/fs_struct.h> 82 #include <linux/magic.h> 83 #include <linux/perf_event.h> 84 #include <linux/posix-timers.h> 85 #include <linux/user-return-notifier.h> 86 #include <linux/oom.h> 87 #include <linux/khugepaged.h> 88 #include <linux/signalfd.h> 89 #include <linux/uprobes.h> 90 #include <linux/aio.h> 91 #include <linux/compiler.h> 92 #include <linux/sysctl.h> 93 #include <linux/kcov.h> 94 #include <linux/livepatch.h> 95 #include <linux/thread_info.h> 96 #include <linux/stackleak.h> 97 #include <linux/kasan.h> 98 #include <linux/scs.h> 99 #include <linux/io_uring.h> 100 #include <linux/bpf.h> 101 #include <linux/stackprotector.h> 102 #include <linux/user_events.h> 103 #include <linux/iommu.h> 104 #include <linux/rseq.h> 105 #include <uapi/linux/pidfd.h> 106 #include <linux/pidfs.h> 107 #include <linux/tick.h> 108 109 #include <asm/pgalloc.h> 110 #include <linux/uaccess.h> 111 #include <asm/mmu_context.h> 112 #include <asm/cacheflush.h> 113 #include <asm/tlbflush.h> 114 115 #include <trace/events/sched.h> 116 117 #define CREATE_TRACE_POINTS 118 #include <trace/events/task.h> 119 120 #include <kunit/visibility.h> 121 122 /* 123 * Minimum number of threads to boot the kernel 124 */ 125 #define MIN_THREADS 20 126 127 /* 128 * Maximum number of threads 129 */ 130 #define MAX_THREADS FUTEX_TID_MASK 131 132 /* 133 * Protected counters by write_lock_irq(&tasklist_lock) 134 */ 135 unsigned long total_forks; /* Handle normal Linux uptimes. */ 136 int nr_threads; /* The idle threads do not count.. */ 137 138 static int max_threads; /* tunable limit on nr_threads */ 139 140 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 141 142 static const char * const resident_page_types[] = { 143 NAMED_ARRAY_INDEX(MM_FILEPAGES), 144 NAMED_ARRAY_INDEX(MM_ANONPAGES), 145 NAMED_ARRAY_INDEX(MM_SWAPENTS), 146 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 147 }; 148 149 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 150 151 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 152 153 #ifdef CONFIG_PROVE_RCU 154 int lockdep_tasklist_lock_is_held(void) 155 { 156 return lockdep_is_held(&tasklist_lock); 157 } 158 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 159 #endif /* #ifdef CONFIG_PROVE_RCU */ 160 161 int nr_processes(void) 162 { 163 int cpu; 164 int total = 0; 165 166 for_each_possible_cpu(cpu) 167 total += per_cpu(process_counts, cpu); 168 169 return total; 170 } 171 172 void __weak arch_release_task_struct(struct task_struct *tsk) 173 { 174 } 175 176 static struct kmem_cache *task_struct_cachep; 177 178 static inline struct task_struct *alloc_task_struct_node(int node) 179 { 180 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 181 } 182 183 static inline void free_task_struct(struct task_struct *tsk) 184 { 185 kmem_cache_free(task_struct_cachep, tsk); 186 } 187 188 /* 189 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 190 * kmemcache based allocator. 191 */ 192 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 193 194 # ifdef CONFIG_VMAP_STACK 195 /* 196 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 197 * flush. Try to minimize the number of calls by caching stacks. 198 */ 199 #define NR_CACHED_STACKS 2 200 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 201 202 struct vm_stack { 203 struct rcu_head rcu; 204 struct vm_struct *stack_vm_area; 205 }; 206 207 static bool try_release_thread_stack_to_cache(struct vm_struct *vm) 208 { 209 unsigned int i; 210 211 for (i = 0; i < NR_CACHED_STACKS; i++) { 212 struct vm_struct *tmp = NULL; 213 214 if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm)) 215 return true; 216 } 217 return false; 218 } 219 220 static void thread_stack_free_rcu(struct rcu_head *rh) 221 { 222 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 223 224 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 225 return; 226 227 vfree(vm_stack); 228 } 229 230 static void thread_stack_delayed_free(struct task_struct *tsk) 231 { 232 struct vm_stack *vm_stack = tsk->stack; 233 234 vm_stack->stack_vm_area = tsk->stack_vm_area; 235 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 236 } 237 238 static int free_vm_stack_cache(unsigned int cpu) 239 { 240 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 241 int i; 242 243 for (i = 0; i < NR_CACHED_STACKS; i++) { 244 struct vm_struct *vm_stack = cached_vm_stacks[i]; 245 246 if (!vm_stack) 247 continue; 248 249 vfree(vm_stack->addr); 250 cached_vm_stacks[i] = NULL; 251 } 252 253 return 0; 254 } 255 256 static int memcg_charge_kernel_stack(struct vm_struct *vm) 257 { 258 int i; 259 int ret; 260 int nr_charged = 0; 261 262 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 263 264 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 265 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0); 266 if (ret) 267 goto err; 268 nr_charged++; 269 } 270 return 0; 271 err: 272 for (i = 0; i < nr_charged; i++) 273 memcg_kmem_uncharge_page(vm->pages[i], 0); 274 return ret; 275 } 276 277 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 278 { 279 struct vm_struct *vm; 280 void *stack; 281 int i; 282 283 for (i = 0; i < NR_CACHED_STACKS; i++) { 284 struct vm_struct *s; 285 286 s = this_cpu_xchg(cached_stacks[i], NULL); 287 288 if (!s) 289 continue; 290 291 /* Reset stack metadata. */ 292 kasan_unpoison_range(s->addr, THREAD_SIZE); 293 294 stack = kasan_reset_tag(s->addr); 295 296 /* Clear stale pointers from reused stack. */ 297 memset(stack, 0, THREAD_SIZE); 298 299 if (memcg_charge_kernel_stack(s)) { 300 vfree(s->addr); 301 return -ENOMEM; 302 } 303 304 tsk->stack_vm_area = s; 305 tsk->stack = stack; 306 return 0; 307 } 308 309 /* 310 * Allocated stacks are cached and later reused by new threads, 311 * so memcg accounting is performed manually on assigning/releasing 312 * stacks to tasks. Drop __GFP_ACCOUNT. 313 */ 314 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 315 VMALLOC_START, VMALLOC_END, 316 THREADINFO_GFP & ~__GFP_ACCOUNT, 317 PAGE_KERNEL, 318 0, node, __builtin_return_address(0)); 319 if (!stack) 320 return -ENOMEM; 321 322 vm = find_vm_area(stack); 323 if (memcg_charge_kernel_stack(vm)) { 324 vfree(stack); 325 return -ENOMEM; 326 } 327 /* 328 * We can't call find_vm_area() in interrupt context, and 329 * free_thread_stack() can be called in interrupt context, 330 * so cache the vm_struct. 331 */ 332 tsk->stack_vm_area = vm; 333 stack = kasan_reset_tag(stack); 334 tsk->stack = stack; 335 return 0; 336 } 337 338 static void free_thread_stack(struct task_struct *tsk) 339 { 340 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 341 thread_stack_delayed_free(tsk); 342 343 tsk->stack = NULL; 344 tsk->stack_vm_area = NULL; 345 } 346 347 # else /* !CONFIG_VMAP_STACK */ 348 349 static void thread_stack_free_rcu(struct rcu_head *rh) 350 { 351 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 352 } 353 354 static void thread_stack_delayed_free(struct task_struct *tsk) 355 { 356 struct rcu_head *rh = tsk->stack; 357 358 call_rcu(rh, thread_stack_free_rcu); 359 } 360 361 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 362 { 363 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 364 THREAD_SIZE_ORDER); 365 366 if (likely(page)) { 367 tsk->stack = kasan_reset_tag(page_address(page)); 368 return 0; 369 } 370 return -ENOMEM; 371 } 372 373 static void free_thread_stack(struct task_struct *tsk) 374 { 375 thread_stack_delayed_free(tsk); 376 tsk->stack = NULL; 377 } 378 379 # endif /* CONFIG_VMAP_STACK */ 380 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */ 381 382 static struct kmem_cache *thread_stack_cache; 383 384 static void thread_stack_free_rcu(struct rcu_head *rh) 385 { 386 kmem_cache_free(thread_stack_cache, rh); 387 } 388 389 static void thread_stack_delayed_free(struct task_struct *tsk) 390 { 391 struct rcu_head *rh = tsk->stack; 392 393 call_rcu(rh, thread_stack_free_rcu); 394 } 395 396 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 397 { 398 unsigned long *stack; 399 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 400 stack = kasan_reset_tag(stack); 401 tsk->stack = stack; 402 return stack ? 0 : -ENOMEM; 403 } 404 405 static void free_thread_stack(struct task_struct *tsk) 406 { 407 thread_stack_delayed_free(tsk); 408 tsk->stack = NULL; 409 } 410 411 void thread_stack_cache_init(void) 412 { 413 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 414 THREAD_SIZE, THREAD_SIZE, 0, 0, 415 THREAD_SIZE, NULL); 416 BUG_ON(thread_stack_cache == NULL); 417 } 418 419 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */ 420 421 /* SLAB cache for signal_struct structures (tsk->signal) */ 422 static struct kmem_cache *signal_cachep; 423 424 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 425 struct kmem_cache *sighand_cachep; 426 427 /* SLAB cache for files_struct structures (tsk->files) */ 428 struct kmem_cache *files_cachep; 429 430 /* SLAB cache for fs_struct structures (tsk->fs) */ 431 struct kmem_cache *fs_cachep; 432 433 /* SLAB cache for vm_area_struct structures */ 434 static struct kmem_cache *vm_area_cachep; 435 436 /* SLAB cache for mm_struct structures (tsk->mm) */ 437 static struct kmem_cache *mm_cachep; 438 439 #ifdef CONFIG_PER_VMA_LOCK 440 441 /* SLAB cache for vm_area_struct.lock */ 442 static struct kmem_cache *vma_lock_cachep; 443 444 static bool vma_lock_alloc(struct vm_area_struct *vma) 445 { 446 vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL); 447 if (!vma->vm_lock) 448 return false; 449 450 init_rwsem(&vma->vm_lock->lock); 451 vma->vm_lock_seq = -1; 452 453 return true; 454 } 455 456 static inline void vma_lock_free(struct vm_area_struct *vma) 457 { 458 kmem_cache_free(vma_lock_cachep, vma->vm_lock); 459 } 460 461 #else /* CONFIG_PER_VMA_LOCK */ 462 463 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; } 464 static inline void vma_lock_free(struct vm_area_struct *vma) {} 465 466 #endif /* CONFIG_PER_VMA_LOCK */ 467 468 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 469 { 470 struct vm_area_struct *vma; 471 472 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 473 if (!vma) 474 return NULL; 475 476 vma_init(vma, mm); 477 if (!vma_lock_alloc(vma)) { 478 kmem_cache_free(vm_area_cachep, vma); 479 return NULL; 480 } 481 482 return vma; 483 } 484 485 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 486 { 487 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 488 489 if (!new) 490 return NULL; 491 492 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 493 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 494 /* 495 * orig->shared.rb may be modified concurrently, but the clone 496 * will be reinitialized. 497 */ 498 data_race(memcpy(new, orig, sizeof(*new))); 499 if (!vma_lock_alloc(new)) { 500 kmem_cache_free(vm_area_cachep, new); 501 return NULL; 502 } 503 INIT_LIST_HEAD(&new->anon_vma_chain); 504 vma_numab_state_init(new); 505 dup_anon_vma_name(orig, new); 506 507 return new; 508 } 509 510 void __vm_area_free(struct vm_area_struct *vma) 511 { 512 vma_numab_state_free(vma); 513 free_anon_vma_name(vma); 514 vma_lock_free(vma); 515 kmem_cache_free(vm_area_cachep, vma); 516 } 517 518 #ifdef CONFIG_PER_VMA_LOCK 519 static void vm_area_free_rcu_cb(struct rcu_head *head) 520 { 521 struct vm_area_struct *vma = container_of(head, struct vm_area_struct, 522 vm_rcu); 523 524 /* The vma should not be locked while being destroyed. */ 525 VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma); 526 __vm_area_free(vma); 527 } 528 #endif 529 530 void vm_area_free(struct vm_area_struct *vma) 531 { 532 #ifdef CONFIG_PER_VMA_LOCK 533 call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb); 534 #else 535 __vm_area_free(vma); 536 #endif 537 } 538 539 static void account_kernel_stack(struct task_struct *tsk, int account) 540 { 541 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 542 struct vm_struct *vm = task_stack_vm_area(tsk); 543 int i; 544 545 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 546 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 547 account * (PAGE_SIZE / 1024)); 548 } else { 549 void *stack = task_stack_page(tsk); 550 551 /* All stack pages are in the same node. */ 552 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 553 account * (THREAD_SIZE / 1024)); 554 } 555 } 556 557 void exit_task_stack_account(struct task_struct *tsk) 558 { 559 account_kernel_stack(tsk, -1); 560 561 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 562 struct vm_struct *vm; 563 int i; 564 565 vm = task_stack_vm_area(tsk); 566 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 567 memcg_kmem_uncharge_page(vm->pages[i], 0); 568 } 569 } 570 571 static void release_task_stack(struct task_struct *tsk) 572 { 573 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 574 return; /* Better to leak the stack than to free prematurely */ 575 576 free_thread_stack(tsk); 577 } 578 579 #ifdef CONFIG_THREAD_INFO_IN_TASK 580 void put_task_stack(struct task_struct *tsk) 581 { 582 if (refcount_dec_and_test(&tsk->stack_refcount)) 583 release_task_stack(tsk); 584 } 585 #endif 586 587 void free_task(struct task_struct *tsk) 588 { 589 #ifdef CONFIG_SECCOMP 590 WARN_ON_ONCE(tsk->seccomp.filter); 591 #endif 592 release_user_cpus_ptr(tsk); 593 scs_release(tsk); 594 595 #ifndef CONFIG_THREAD_INFO_IN_TASK 596 /* 597 * The task is finally done with both the stack and thread_info, 598 * so free both. 599 */ 600 release_task_stack(tsk); 601 #else 602 /* 603 * If the task had a separate stack allocation, it should be gone 604 * by now. 605 */ 606 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 607 #endif 608 rt_mutex_debug_task_free(tsk); 609 ftrace_graph_exit_task(tsk); 610 arch_release_task_struct(tsk); 611 if (tsk->flags & PF_KTHREAD) 612 free_kthread_struct(tsk); 613 bpf_task_storage_free(tsk); 614 free_task_struct(tsk); 615 } 616 EXPORT_SYMBOL(free_task); 617 618 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 619 { 620 struct file *exe_file; 621 622 exe_file = get_mm_exe_file(oldmm); 623 RCU_INIT_POINTER(mm->exe_file, exe_file); 624 } 625 626 #ifdef CONFIG_MMU 627 static __latent_entropy int dup_mmap(struct mm_struct *mm, 628 struct mm_struct *oldmm) 629 { 630 struct vm_area_struct *mpnt, *tmp; 631 int retval; 632 unsigned long charge = 0; 633 LIST_HEAD(uf); 634 VMA_ITERATOR(vmi, mm, 0); 635 636 uprobe_start_dup_mmap(); 637 if (mmap_write_lock_killable(oldmm)) { 638 retval = -EINTR; 639 goto fail_uprobe_end; 640 } 641 flush_cache_dup_mm(oldmm); 642 uprobe_dup_mmap(oldmm, mm); 643 /* 644 * Not linked in yet - no deadlock potential: 645 */ 646 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 647 648 /* No ordering required: file already has been exposed. */ 649 dup_mm_exe_file(mm, oldmm); 650 651 mm->total_vm = oldmm->total_vm; 652 mm->data_vm = oldmm->data_vm; 653 mm->exec_vm = oldmm->exec_vm; 654 mm->stack_vm = oldmm->stack_vm; 655 656 /* Use __mt_dup() to efficiently build an identical maple tree. */ 657 retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL); 658 if (unlikely(retval)) 659 goto out; 660 661 mt_clear_in_rcu(vmi.mas.tree); 662 for_each_vma(vmi, mpnt) { 663 struct file *file; 664 665 vma_start_write(mpnt); 666 if (mpnt->vm_flags & VM_DONTCOPY) { 667 retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start, 668 mpnt->vm_end, GFP_KERNEL); 669 if (retval) 670 goto loop_out; 671 672 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 673 continue; 674 } 675 charge = 0; 676 /* 677 * Don't duplicate many vmas if we've been oom-killed (for 678 * example) 679 */ 680 if (fatal_signal_pending(current)) { 681 retval = -EINTR; 682 goto loop_out; 683 } 684 if (mpnt->vm_flags & VM_ACCOUNT) { 685 unsigned long len = vma_pages(mpnt); 686 687 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 688 goto fail_nomem; 689 charge = len; 690 } 691 tmp = vm_area_dup(mpnt); 692 if (!tmp) 693 goto fail_nomem; 694 retval = vma_dup_policy(mpnt, tmp); 695 if (retval) 696 goto fail_nomem_policy; 697 tmp->vm_mm = mm; 698 retval = dup_userfaultfd(tmp, &uf); 699 if (retval) 700 goto fail_nomem_anon_vma_fork; 701 if (tmp->vm_flags & VM_WIPEONFORK) { 702 /* 703 * VM_WIPEONFORK gets a clean slate in the child. 704 * Don't prepare anon_vma until fault since we don't 705 * copy page for current vma. 706 */ 707 tmp->anon_vma = NULL; 708 } else if (anon_vma_fork(tmp, mpnt)) 709 goto fail_nomem_anon_vma_fork; 710 vm_flags_clear(tmp, VM_LOCKED_MASK); 711 /* 712 * Copy/update hugetlb private vma information. 713 */ 714 if (is_vm_hugetlb_page(tmp)) 715 hugetlb_dup_vma_private(tmp); 716 717 /* 718 * Link the vma into the MT. After using __mt_dup(), memory 719 * allocation is not necessary here, so it cannot fail. 720 */ 721 vma_iter_bulk_store(&vmi, tmp); 722 723 mm->map_count++; 724 725 if (tmp->vm_ops && tmp->vm_ops->open) 726 tmp->vm_ops->open(tmp); 727 728 file = tmp->vm_file; 729 if (file) { 730 struct address_space *mapping = file->f_mapping; 731 732 get_file(file); 733 i_mmap_lock_write(mapping); 734 if (vma_is_shared_maywrite(tmp)) 735 mapping_allow_writable(mapping); 736 flush_dcache_mmap_lock(mapping); 737 /* insert tmp into the share list, just after mpnt */ 738 vma_interval_tree_insert_after(tmp, mpnt, 739 &mapping->i_mmap); 740 flush_dcache_mmap_unlock(mapping); 741 i_mmap_unlock_write(mapping); 742 } 743 744 if (!(tmp->vm_flags & VM_WIPEONFORK)) 745 retval = copy_page_range(tmp, mpnt); 746 747 if (retval) { 748 mpnt = vma_next(&vmi); 749 goto loop_out; 750 } 751 } 752 /* a new mm has just been created */ 753 retval = arch_dup_mmap(oldmm, mm); 754 loop_out: 755 vma_iter_free(&vmi); 756 if (!retval) { 757 mt_set_in_rcu(vmi.mas.tree); 758 ksm_fork(mm, oldmm); 759 khugepaged_fork(mm, oldmm); 760 } else if (mpnt) { 761 /* 762 * The entire maple tree has already been duplicated. If the 763 * mmap duplication fails, mark the failure point with 764 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered, 765 * stop releasing VMAs that have not been duplicated after this 766 * point. 767 */ 768 mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1); 769 mas_store(&vmi.mas, XA_ZERO_ENTRY); 770 } 771 out: 772 mmap_write_unlock(mm); 773 flush_tlb_mm(oldmm); 774 mmap_write_unlock(oldmm); 775 if (!retval) 776 dup_userfaultfd_complete(&uf); 777 else 778 dup_userfaultfd_fail(&uf); 779 fail_uprobe_end: 780 uprobe_end_dup_mmap(); 781 return retval; 782 783 fail_nomem_anon_vma_fork: 784 mpol_put(vma_policy(tmp)); 785 fail_nomem_policy: 786 vm_area_free(tmp); 787 fail_nomem: 788 retval = -ENOMEM; 789 vm_unacct_memory(charge); 790 goto loop_out; 791 } 792 793 static inline int mm_alloc_pgd(struct mm_struct *mm) 794 { 795 mm->pgd = pgd_alloc(mm); 796 if (unlikely(!mm->pgd)) 797 return -ENOMEM; 798 return 0; 799 } 800 801 static inline void mm_free_pgd(struct mm_struct *mm) 802 { 803 pgd_free(mm, mm->pgd); 804 } 805 #else 806 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 807 { 808 mmap_write_lock(oldmm); 809 dup_mm_exe_file(mm, oldmm); 810 mmap_write_unlock(oldmm); 811 return 0; 812 } 813 #define mm_alloc_pgd(mm) (0) 814 #define mm_free_pgd(mm) 815 #endif /* CONFIG_MMU */ 816 817 static void check_mm(struct mm_struct *mm) 818 { 819 int i; 820 821 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 822 "Please make sure 'struct resident_page_types[]' is updated as well"); 823 824 for (i = 0; i < NR_MM_COUNTERS; i++) { 825 long x = percpu_counter_sum(&mm->rss_stat[i]); 826 827 if (unlikely(x)) 828 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 829 mm, resident_page_types[i], x); 830 } 831 832 if (mm_pgtables_bytes(mm)) 833 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 834 mm_pgtables_bytes(mm)); 835 836 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS) 837 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 838 #endif 839 } 840 841 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 842 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 843 844 static void do_check_lazy_tlb(void *arg) 845 { 846 struct mm_struct *mm = arg; 847 848 WARN_ON_ONCE(current->active_mm == mm); 849 } 850 851 static void do_shoot_lazy_tlb(void *arg) 852 { 853 struct mm_struct *mm = arg; 854 855 if (current->active_mm == mm) { 856 WARN_ON_ONCE(current->mm); 857 current->active_mm = &init_mm; 858 switch_mm(mm, &init_mm, current); 859 } 860 } 861 862 static void cleanup_lazy_tlbs(struct mm_struct *mm) 863 { 864 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) { 865 /* 866 * In this case, lazy tlb mms are refounted and would not reach 867 * __mmdrop until all CPUs have switched away and mmdrop()ed. 868 */ 869 return; 870 } 871 872 /* 873 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it 874 * requires lazy mm users to switch to another mm when the refcount 875 * drops to zero, before the mm is freed. This requires IPIs here to 876 * switch kernel threads to init_mm. 877 * 878 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm 879 * switch with the final userspace teardown TLB flush which leaves the 880 * mm lazy on this CPU but no others, reducing the need for additional 881 * IPIs here. There are cases where a final IPI is still required here, 882 * such as the final mmdrop being performed on a different CPU than the 883 * one exiting, or kernel threads using the mm when userspace exits. 884 * 885 * IPI overheads have not found to be expensive, but they could be 886 * reduced in a number of possible ways, for example (roughly 887 * increasing order of complexity): 888 * - The last lazy reference created by exit_mm() could instead switch 889 * to init_mm, however it's probable this will run on the same CPU 890 * immediately afterwards, so this may not reduce IPIs much. 891 * - A batch of mms requiring IPIs could be gathered and freed at once. 892 * - CPUs store active_mm where it can be remotely checked without a 893 * lock, to filter out false-positives in the cpumask. 894 * - After mm_users or mm_count reaches zero, switching away from the 895 * mm could clear mm_cpumask to reduce some IPIs, perhaps together 896 * with some batching or delaying of the final IPIs. 897 * - A delayed freeing and RCU-like quiescing sequence based on mm 898 * switching to avoid IPIs completely. 899 */ 900 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1); 901 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES)) 902 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1); 903 } 904 905 /* 906 * Called when the last reference to the mm 907 * is dropped: either by a lazy thread or by 908 * mmput. Free the page directory and the mm. 909 */ 910 void __mmdrop(struct mm_struct *mm) 911 { 912 BUG_ON(mm == &init_mm); 913 WARN_ON_ONCE(mm == current->mm); 914 915 /* Ensure no CPUs are using this as their lazy tlb mm */ 916 cleanup_lazy_tlbs(mm); 917 918 WARN_ON_ONCE(mm == current->active_mm); 919 mm_free_pgd(mm); 920 destroy_context(mm); 921 mmu_notifier_subscriptions_destroy(mm); 922 check_mm(mm); 923 put_user_ns(mm->user_ns); 924 mm_pasid_drop(mm); 925 mm_destroy_cid(mm); 926 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS); 927 928 free_mm(mm); 929 } 930 EXPORT_SYMBOL_GPL(__mmdrop); 931 932 static void mmdrop_async_fn(struct work_struct *work) 933 { 934 struct mm_struct *mm; 935 936 mm = container_of(work, struct mm_struct, async_put_work); 937 __mmdrop(mm); 938 } 939 940 static void mmdrop_async(struct mm_struct *mm) 941 { 942 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 943 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 944 schedule_work(&mm->async_put_work); 945 } 946 } 947 948 static inline void free_signal_struct(struct signal_struct *sig) 949 { 950 taskstats_tgid_free(sig); 951 sched_autogroup_exit(sig); 952 /* 953 * __mmdrop is not safe to call from softirq context on x86 due to 954 * pgd_dtor so postpone it to the async context 955 */ 956 if (sig->oom_mm) 957 mmdrop_async(sig->oom_mm); 958 kmem_cache_free(signal_cachep, sig); 959 } 960 961 static inline void put_signal_struct(struct signal_struct *sig) 962 { 963 if (refcount_dec_and_test(&sig->sigcnt)) 964 free_signal_struct(sig); 965 } 966 967 void __put_task_struct(struct task_struct *tsk) 968 { 969 WARN_ON(!tsk->exit_state); 970 WARN_ON(refcount_read(&tsk->usage)); 971 WARN_ON(tsk == current); 972 973 sched_ext_free(tsk); 974 io_uring_free(tsk); 975 cgroup_free(tsk); 976 task_numa_free(tsk, true); 977 security_task_free(tsk); 978 exit_creds(tsk); 979 delayacct_tsk_free(tsk); 980 put_signal_struct(tsk->signal); 981 sched_core_free(tsk); 982 free_task(tsk); 983 } 984 EXPORT_SYMBOL_GPL(__put_task_struct); 985 986 void __put_task_struct_rcu_cb(struct rcu_head *rhp) 987 { 988 struct task_struct *task = container_of(rhp, struct task_struct, rcu); 989 990 __put_task_struct(task); 991 } 992 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb); 993 994 void __init __weak arch_task_cache_init(void) { } 995 996 /* 997 * set_max_threads 998 */ 999 static void __init set_max_threads(unsigned int max_threads_suggested) 1000 { 1001 u64 threads; 1002 unsigned long nr_pages = memblock_estimated_nr_free_pages(); 1003 1004 /* 1005 * The number of threads shall be limited such that the thread 1006 * structures may only consume a small part of the available memory. 1007 */ 1008 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 1009 threads = MAX_THREADS; 1010 else 1011 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 1012 (u64) THREAD_SIZE * 8UL); 1013 1014 if (threads > max_threads_suggested) 1015 threads = max_threads_suggested; 1016 1017 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 1018 } 1019 1020 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 1021 /* Initialized by the architecture: */ 1022 int arch_task_struct_size __read_mostly; 1023 #endif 1024 1025 static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size) 1026 { 1027 /* Fetch thread_struct whitelist for the architecture. */ 1028 arch_thread_struct_whitelist(offset, size); 1029 1030 /* 1031 * Handle zero-sized whitelist or empty thread_struct, otherwise 1032 * adjust offset to position of thread_struct in task_struct. 1033 */ 1034 if (unlikely(*size == 0)) 1035 *offset = 0; 1036 else 1037 *offset += offsetof(struct task_struct, thread); 1038 } 1039 1040 void __init fork_init(void) 1041 { 1042 int i; 1043 #ifndef ARCH_MIN_TASKALIGN 1044 #define ARCH_MIN_TASKALIGN 0 1045 #endif 1046 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 1047 unsigned long useroffset, usersize; 1048 1049 /* create a slab on which task_structs can be allocated */ 1050 task_struct_whitelist(&useroffset, &usersize); 1051 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 1052 arch_task_struct_size, align, 1053 SLAB_PANIC|SLAB_ACCOUNT, 1054 useroffset, usersize, NULL); 1055 1056 /* do the arch specific task caches init */ 1057 arch_task_cache_init(); 1058 1059 set_max_threads(MAX_THREADS); 1060 1061 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 1062 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 1063 init_task.signal->rlim[RLIMIT_SIGPENDING] = 1064 init_task.signal->rlim[RLIMIT_NPROC]; 1065 1066 for (i = 0; i < UCOUNT_COUNTS; i++) 1067 init_user_ns.ucount_max[i] = max_threads/2; 1068 1069 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 1070 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 1071 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 1072 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 1073 1074 #ifdef CONFIG_VMAP_STACK 1075 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 1076 NULL, free_vm_stack_cache); 1077 #endif 1078 1079 scs_init(); 1080 1081 lockdep_init_task(&init_task); 1082 uprobes_init(); 1083 } 1084 1085 int __weak arch_dup_task_struct(struct task_struct *dst, 1086 struct task_struct *src) 1087 { 1088 *dst = *src; 1089 return 0; 1090 } 1091 1092 void set_task_stack_end_magic(struct task_struct *tsk) 1093 { 1094 unsigned long *stackend; 1095 1096 stackend = end_of_stack(tsk); 1097 *stackend = STACK_END_MAGIC; /* for overflow detection */ 1098 } 1099 1100 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 1101 { 1102 struct task_struct *tsk; 1103 int err; 1104 1105 if (node == NUMA_NO_NODE) 1106 node = tsk_fork_get_node(orig); 1107 tsk = alloc_task_struct_node(node); 1108 if (!tsk) 1109 return NULL; 1110 1111 err = arch_dup_task_struct(tsk, orig); 1112 if (err) 1113 goto free_tsk; 1114 1115 err = alloc_thread_stack_node(tsk, node); 1116 if (err) 1117 goto free_tsk; 1118 1119 #ifdef CONFIG_THREAD_INFO_IN_TASK 1120 refcount_set(&tsk->stack_refcount, 1); 1121 #endif 1122 account_kernel_stack(tsk, 1); 1123 1124 err = scs_prepare(tsk, node); 1125 if (err) 1126 goto free_stack; 1127 1128 #ifdef CONFIG_SECCOMP 1129 /* 1130 * We must handle setting up seccomp filters once we're under 1131 * the sighand lock in case orig has changed between now and 1132 * then. Until then, filter must be NULL to avoid messing up 1133 * the usage counts on the error path calling free_task. 1134 */ 1135 tsk->seccomp.filter = NULL; 1136 #endif 1137 1138 setup_thread_stack(tsk, orig); 1139 clear_user_return_notifier(tsk); 1140 clear_tsk_need_resched(tsk); 1141 set_task_stack_end_magic(tsk); 1142 clear_syscall_work_syscall_user_dispatch(tsk); 1143 1144 #ifdef CONFIG_STACKPROTECTOR 1145 tsk->stack_canary = get_random_canary(); 1146 #endif 1147 if (orig->cpus_ptr == &orig->cpus_mask) 1148 tsk->cpus_ptr = &tsk->cpus_mask; 1149 dup_user_cpus_ptr(tsk, orig, node); 1150 1151 /* 1152 * One for the user space visible state that goes away when reaped. 1153 * One for the scheduler. 1154 */ 1155 refcount_set(&tsk->rcu_users, 2); 1156 /* One for the rcu users */ 1157 refcount_set(&tsk->usage, 1); 1158 #ifdef CONFIG_BLK_DEV_IO_TRACE 1159 tsk->btrace_seq = 0; 1160 #endif 1161 tsk->splice_pipe = NULL; 1162 tsk->task_frag.page = NULL; 1163 tsk->wake_q.next = NULL; 1164 tsk->worker_private = NULL; 1165 1166 kcov_task_init(tsk); 1167 kmsan_task_create(tsk); 1168 kmap_local_fork(tsk); 1169 1170 #ifdef CONFIG_FAULT_INJECTION 1171 tsk->fail_nth = 0; 1172 #endif 1173 1174 #ifdef CONFIG_BLK_CGROUP 1175 tsk->throttle_disk = NULL; 1176 tsk->use_memdelay = 0; 1177 #endif 1178 1179 #ifdef CONFIG_ARCH_HAS_CPU_PASID 1180 tsk->pasid_activated = 0; 1181 #endif 1182 1183 #ifdef CONFIG_MEMCG 1184 tsk->active_memcg = NULL; 1185 #endif 1186 1187 #ifdef CONFIG_CPU_SUP_INTEL 1188 tsk->reported_split_lock = 0; 1189 #endif 1190 1191 #ifdef CONFIG_SCHED_MM_CID 1192 tsk->mm_cid = -1; 1193 tsk->last_mm_cid = -1; 1194 tsk->mm_cid_active = 0; 1195 tsk->migrate_from_cpu = -1; 1196 #endif 1197 return tsk; 1198 1199 free_stack: 1200 exit_task_stack_account(tsk); 1201 free_thread_stack(tsk); 1202 free_tsk: 1203 free_task_struct(tsk); 1204 return NULL; 1205 } 1206 1207 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 1208 1209 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 1210 1211 static int __init coredump_filter_setup(char *s) 1212 { 1213 default_dump_filter = 1214 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 1215 MMF_DUMP_FILTER_MASK; 1216 return 1; 1217 } 1218 1219 __setup("coredump_filter=", coredump_filter_setup); 1220 1221 #include <linux/init_task.h> 1222 1223 static void mm_init_aio(struct mm_struct *mm) 1224 { 1225 #ifdef CONFIG_AIO 1226 spin_lock_init(&mm->ioctx_lock); 1227 mm->ioctx_table = NULL; 1228 #endif 1229 } 1230 1231 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1232 struct task_struct *p) 1233 { 1234 #ifdef CONFIG_MEMCG 1235 if (mm->owner == p) 1236 WRITE_ONCE(mm->owner, NULL); 1237 #endif 1238 } 1239 1240 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1241 { 1242 #ifdef CONFIG_MEMCG 1243 mm->owner = p; 1244 #endif 1245 } 1246 1247 static void mm_init_uprobes_state(struct mm_struct *mm) 1248 { 1249 #ifdef CONFIG_UPROBES 1250 mm->uprobes_state.xol_area = NULL; 1251 #endif 1252 } 1253 1254 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1255 struct user_namespace *user_ns) 1256 { 1257 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); 1258 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); 1259 atomic_set(&mm->mm_users, 1); 1260 atomic_set(&mm->mm_count, 1); 1261 seqcount_init(&mm->write_protect_seq); 1262 mmap_init_lock(mm); 1263 INIT_LIST_HEAD(&mm->mmlist); 1264 #ifdef CONFIG_PER_VMA_LOCK 1265 mm->mm_lock_seq = 0; 1266 #endif 1267 mm_pgtables_bytes_init(mm); 1268 mm->map_count = 0; 1269 mm->locked_vm = 0; 1270 atomic64_set(&mm->pinned_vm, 0); 1271 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1272 spin_lock_init(&mm->page_table_lock); 1273 spin_lock_init(&mm->arg_lock); 1274 mm_init_cpumask(mm); 1275 mm_init_aio(mm); 1276 mm_init_owner(mm, p); 1277 mm_pasid_init(mm); 1278 RCU_INIT_POINTER(mm->exe_file, NULL); 1279 mmu_notifier_subscriptions_init(mm); 1280 init_tlb_flush_pending(mm); 1281 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS) 1282 mm->pmd_huge_pte = NULL; 1283 #endif 1284 mm_init_uprobes_state(mm); 1285 hugetlb_count_init(mm); 1286 1287 if (current->mm) { 1288 mm->flags = mmf_init_flags(current->mm->flags); 1289 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1290 } else { 1291 mm->flags = default_dump_filter; 1292 mm->def_flags = 0; 1293 } 1294 1295 if (mm_alloc_pgd(mm)) 1296 goto fail_nopgd; 1297 1298 if (init_new_context(p, mm)) 1299 goto fail_nocontext; 1300 1301 if (mm_alloc_cid(mm)) 1302 goto fail_cid; 1303 1304 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT, 1305 NR_MM_COUNTERS)) 1306 goto fail_pcpu; 1307 1308 mm->user_ns = get_user_ns(user_ns); 1309 lru_gen_init_mm(mm); 1310 return mm; 1311 1312 fail_pcpu: 1313 mm_destroy_cid(mm); 1314 fail_cid: 1315 destroy_context(mm); 1316 fail_nocontext: 1317 mm_free_pgd(mm); 1318 fail_nopgd: 1319 free_mm(mm); 1320 return NULL; 1321 } 1322 1323 /* 1324 * Allocate and initialize an mm_struct. 1325 */ 1326 struct mm_struct *mm_alloc(void) 1327 { 1328 struct mm_struct *mm; 1329 1330 mm = allocate_mm(); 1331 if (!mm) 1332 return NULL; 1333 1334 memset(mm, 0, sizeof(*mm)); 1335 return mm_init(mm, current, current_user_ns()); 1336 } 1337 EXPORT_SYMBOL_IF_KUNIT(mm_alloc); 1338 1339 static inline void __mmput(struct mm_struct *mm) 1340 { 1341 VM_BUG_ON(atomic_read(&mm->mm_users)); 1342 1343 uprobe_clear_state(mm); 1344 exit_aio(mm); 1345 ksm_exit(mm); 1346 khugepaged_exit(mm); /* must run before exit_mmap */ 1347 exit_mmap(mm); 1348 mm_put_huge_zero_folio(mm); 1349 set_mm_exe_file(mm, NULL); 1350 if (!list_empty(&mm->mmlist)) { 1351 spin_lock(&mmlist_lock); 1352 list_del(&mm->mmlist); 1353 spin_unlock(&mmlist_lock); 1354 } 1355 if (mm->binfmt) 1356 module_put(mm->binfmt->module); 1357 lru_gen_del_mm(mm); 1358 mmdrop(mm); 1359 } 1360 1361 /* 1362 * Decrement the use count and release all resources for an mm. 1363 */ 1364 void mmput(struct mm_struct *mm) 1365 { 1366 might_sleep(); 1367 1368 if (atomic_dec_and_test(&mm->mm_users)) 1369 __mmput(mm); 1370 } 1371 EXPORT_SYMBOL_GPL(mmput); 1372 1373 #ifdef CONFIG_MMU 1374 static void mmput_async_fn(struct work_struct *work) 1375 { 1376 struct mm_struct *mm = container_of(work, struct mm_struct, 1377 async_put_work); 1378 1379 __mmput(mm); 1380 } 1381 1382 void mmput_async(struct mm_struct *mm) 1383 { 1384 if (atomic_dec_and_test(&mm->mm_users)) { 1385 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1386 schedule_work(&mm->async_put_work); 1387 } 1388 } 1389 EXPORT_SYMBOL_GPL(mmput_async); 1390 #endif 1391 1392 /** 1393 * set_mm_exe_file - change a reference to the mm's executable file 1394 * @mm: The mm to change. 1395 * @new_exe_file: The new file to use. 1396 * 1397 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1398 * 1399 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1400 * invocations: in mmput() nobody alive left, in execve it happens before 1401 * the new mm is made visible to anyone. 1402 * 1403 * Can only fail if new_exe_file != NULL. 1404 */ 1405 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1406 { 1407 struct file *old_exe_file; 1408 1409 /* 1410 * It is safe to dereference the exe_file without RCU as 1411 * this function is only called if nobody else can access 1412 * this mm -- see comment above for justification. 1413 */ 1414 old_exe_file = rcu_dereference_raw(mm->exe_file); 1415 1416 if (new_exe_file) 1417 get_file(new_exe_file); 1418 rcu_assign_pointer(mm->exe_file, new_exe_file); 1419 if (old_exe_file) 1420 fput(old_exe_file); 1421 return 0; 1422 } 1423 1424 /** 1425 * replace_mm_exe_file - replace a reference to the mm's executable file 1426 * @mm: The mm to change. 1427 * @new_exe_file: The new file to use. 1428 * 1429 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1430 * 1431 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1432 */ 1433 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1434 { 1435 struct vm_area_struct *vma; 1436 struct file *old_exe_file; 1437 int ret = 0; 1438 1439 /* Forbid mm->exe_file change if old file still mapped. */ 1440 old_exe_file = get_mm_exe_file(mm); 1441 if (old_exe_file) { 1442 VMA_ITERATOR(vmi, mm, 0); 1443 mmap_read_lock(mm); 1444 for_each_vma(vmi, vma) { 1445 if (!vma->vm_file) 1446 continue; 1447 if (path_equal(&vma->vm_file->f_path, 1448 &old_exe_file->f_path)) { 1449 ret = -EBUSY; 1450 break; 1451 } 1452 } 1453 mmap_read_unlock(mm); 1454 fput(old_exe_file); 1455 if (ret) 1456 return ret; 1457 } 1458 1459 get_file(new_exe_file); 1460 1461 /* set the new file */ 1462 mmap_write_lock(mm); 1463 old_exe_file = rcu_dereference_raw(mm->exe_file); 1464 rcu_assign_pointer(mm->exe_file, new_exe_file); 1465 mmap_write_unlock(mm); 1466 1467 if (old_exe_file) 1468 fput(old_exe_file); 1469 return 0; 1470 } 1471 1472 /** 1473 * get_mm_exe_file - acquire a reference to the mm's executable file 1474 * @mm: The mm of interest. 1475 * 1476 * Returns %NULL if mm has no associated executable file. 1477 * User must release file via fput(). 1478 */ 1479 struct file *get_mm_exe_file(struct mm_struct *mm) 1480 { 1481 struct file *exe_file; 1482 1483 rcu_read_lock(); 1484 exe_file = get_file_rcu(&mm->exe_file); 1485 rcu_read_unlock(); 1486 return exe_file; 1487 } 1488 1489 /** 1490 * get_task_exe_file - acquire a reference to the task's executable file 1491 * @task: The task. 1492 * 1493 * Returns %NULL if task's mm (if any) has no associated executable file or 1494 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1495 * User must release file via fput(). 1496 */ 1497 struct file *get_task_exe_file(struct task_struct *task) 1498 { 1499 struct file *exe_file = NULL; 1500 struct mm_struct *mm; 1501 1502 task_lock(task); 1503 mm = task->mm; 1504 if (mm) { 1505 if (!(task->flags & PF_KTHREAD)) 1506 exe_file = get_mm_exe_file(mm); 1507 } 1508 task_unlock(task); 1509 return exe_file; 1510 } 1511 1512 /** 1513 * get_task_mm - acquire a reference to the task's mm 1514 * @task: The task. 1515 * 1516 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1517 * this kernel workthread has transiently adopted a user mm with use_mm, 1518 * to do its AIO) is not set and if so returns a reference to it, after 1519 * bumping up the use count. User must release the mm via mmput() 1520 * after use. Typically used by /proc and ptrace. 1521 */ 1522 struct mm_struct *get_task_mm(struct task_struct *task) 1523 { 1524 struct mm_struct *mm; 1525 1526 if (task->flags & PF_KTHREAD) 1527 return NULL; 1528 1529 task_lock(task); 1530 mm = task->mm; 1531 if (mm) 1532 mmget(mm); 1533 task_unlock(task); 1534 return mm; 1535 } 1536 EXPORT_SYMBOL_GPL(get_task_mm); 1537 1538 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1539 { 1540 struct mm_struct *mm; 1541 int err; 1542 1543 err = down_read_killable(&task->signal->exec_update_lock); 1544 if (err) 1545 return ERR_PTR(err); 1546 1547 mm = get_task_mm(task); 1548 if (!mm) { 1549 mm = ERR_PTR(-ESRCH); 1550 } else if (mm != current->mm && !ptrace_may_access(task, mode)) { 1551 mmput(mm); 1552 mm = ERR_PTR(-EACCES); 1553 } 1554 up_read(&task->signal->exec_update_lock); 1555 1556 return mm; 1557 } 1558 1559 static void complete_vfork_done(struct task_struct *tsk) 1560 { 1561 struct completion *vfork; 1562 1563 task_lock(tsk); 1564 vfork = tsk->vfork_done; 1565 if (likely(vfork)) { 1566 tsk->vfork_done = NULL; 1567 complete(vfork); 1568 } 1569 task_unlock(tsk); 1570 } 1571 1572 static int wait_for_vfork_done(struct task_struct *child, 1573 struct completion *vfork) 1574 { 1575 unsigned int state = TASK_KILLABLE|TASK_FREEZABLE; 1576 int killed; 1577 1578 cgroup_enter_frozen(); 1579 killed = wait_for_completion_state(vfork, state); 1580 cgroup_leave_frozen(false); 1581 1582 if (killed) { 1583 task_lock(child); 1584 child->vfork_done = NULL; 1585 task_unlock(child); 1586 } 1587 1588 put_task_struct(child); 1589 return killed; 1590 } 1591 1592 /* Please note the differences between mmput and mm_release. 1593 * mmput is called whenever we stop holding onto a mm_struct, 1594 * error success whatever. 1595 * 1596 * mm_release is called after a mm_struct has been removed 1597 * from the current process. 1598 * 1599 * This difference is important for error handling, when we 1600 * only half set up a mm_struct for a new process and need to restore 1601 * the old one. Because we mmput the new mm_struct before 1602 * restoring the old one. . . 1603 * Eric Biederman 10 January 1998 1604 */ 1605 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1606 { 1607 uprobe_free_utask(tsk); 1608 1609 /* Get rid of any cached register state */ 1610 deactivate_mm(tsk, mm); 1611 1612 /* 1613 * Signal userspace if we're not exiting with a core dump 1614 * because we want to leave the value intact for debugging 1615 * purposes. 1616 */ 1617 if (tsk->clear_child_tid) { 1618 if (atomic_read(&mm->mm_users) > 1) { 1619 /* 1620 * We don't check the error code - if userspace has 1621 * not set up a proper pointer then tough luck. 1622 */ 1623 put_user(0, tsk->clear_child_tid); 1624 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1625 1, NULL, NULL, 0, 0); 1626 } 1627 tsk->clear_child_tid = NULL; 1628 } 1629 1630 /* 1631 * All done, finally we can wake up parent and return this mm to him. 1632 * Also kthread_stop() uses this completion for synchronization. 1633 */ 1634 if (tsk->vfork_done) 1635 complete_vfork_done(tsk); 1636 } 1637 1638 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1639 { 1640 futex_exit_release(tsk); 1641 mm_release(tsk, mm); 1642 } 1643 1644 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1645 { 1646 futex_exec_release(tsk); 1647 mm_release(tsk, mm); 1648 } 1649 1650 /** 1651 * dup_mm() - duplicates an existing mm structure 1652 * @tsk: the task_struct with which the new mm will be associated. 1653 * @oldmm: the mm to duplicate. 1654 * 1655 * Allocates a new mm structure and duplicates the provided @oldmm structure 1656 * content into it. 1657 * 1658 * Return: the duplicated mm or NULL on failure. 1659 */ 1660 static struct mm_struct *dup_mm(struct task_struct *tsk, 1661 struct mm_struct *oldmm) 1662 { 1663 struct mm_struct *mm; 1664 int err; 1665 1666 mm = allocate_mm(); 1667 if (!mm) 1668 goto fail_nomem; 1669 1670 memcpy(mm, oldmm, sizeof(*mm)); 1671 1672 if (!mm_init(mm, tsk, mm->user_ns)) 1673 goto fail_nomem; 1674 1675 err = dup_mmap(mm, oldmm); 1676 if (err) 1677 goto free_pt; 1678 1679 mm->hiwater_rss = get_mm_rss(mm); 1680 mm->hiwater_vm = mm->total_vm; 1681 1682 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1683 goto free_pt; 1684 1685 return mm; 1686 1687 free_pt: 1688 /* don't put binfmt in mmput, we haven't got module yet */ 1689 mm->binfmt = NULL; 1690 mm_init_owner(mm, NULL); 1691 mmput(mm); 1692 1693 fail_nomem: 1694 return NULL; 1695 } 1696 1697 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1698 { 1699 struct mm_struct *mm, *oldmm; 1700 1701 tsk->min_flt = tsk->maj_flt = 0; 1702 tsk->nvcsw = tsk->nivcsw = 0; 1703 #ifdef CONFIG_DETECT_HUNG_TASK 1704 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1705 tsk->last_switch_time = 0; 1706 #endif 1707 1708 tsk->mm = NULL; 1709 tsk->active_mm = NULL; 1710 1711 /* 1712 * Are we cloning a kernel thread? 1713 * 1714 * We need to steal a active VM for that.. 1715 */ 1716 oldmm = current->mm; 1717 if (!oldmm) 1718 return 0; 1719 1720 if (clone_flags & CLONE_VM) { 1721 mmget(oldmm); 1722 mm = oldmm; 1723 } else { 1724 mm = dup_mm(tsk, current->mm); 1725 if (!mm) 1726 return -ENOMEM; 1727 } 1728 1729 tsk->mm = mm; 1730 tsk->active_mm = mm; 1731 sched_mm_cid_fork(tsk); 1732 return 0; 1733 } 1734 1735 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1736 { 1737 struct fs_struct *fs = current->fs; 1738 if (clone_flags & CLONE_FS) { 1739 /* tsk->fs is already what we want */ 1740 spin_lock(&fs->lock); 1741 /* "users" and "in_exec" locked for check_unsafe_exec() */ 1742 if (fs->in_exec) { 1743 spin_unlock(&fs->lock); 1744 return -EAGAIN; 1745 } 1746 fs->users++; 1747 spin_unlock(&fs->lock); 1748 return 0; 1749 } 1750 tsk->fs = copy_fs_struct(fs); 1751 if (!tsk->fs) 1752 return -ENOMEM; 1753 return 0; 1754 } 1755 1756 static int copy_files(unsigned long clone_flags, struct task_struct *tsk, 1757 int no_files) 1758 { 1759 struct files_struct *oldf, *newf; 1760 1761 /* 1762 * A background process may not have any files ... 1763 */ 1764 oldf = current->files; 1765 if (!oldf) 1766 return 0; 1767 1768 if (no_files) { 1769 tsk->files = NULL; 1770 return 0; 1771 } 1772 1773 if (clone_flags & CLONE_FILES) { 1774 atomic_inc(&oldf->count); 1775 return 0; 1776 } 1777 1778 newf = dup_fd(oldf, NULL); 1779 if (IS_ERR(newf)) 1780 return PTR_ERR(newf); 1781 1782 tsk->files = newf; 1783 return 0; 1784 } 1785 1786 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1787 { 1788 struct sighand_struct *sig; 1789 1790 if (clone_flags & CLONE_SIGHAND) { 1791 refcount_inc(¤t->sighand->count); 1792 return 0; 1793 } 1794 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1795 RCU_INIT_POINTER(tsk->sighand, sig); 1796 if (!sig) 1797 return -ENOMEM; 1798 1799 refcount_set(&sig->count, 1); 1800 spin_lock_irq(¤t->sighand->siglock); 1801 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1802 spin_unlock_irq(¤t->sighand->siglock); 1803 1804 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1805 if (clone_flags & CLONE_CLEAR_SIGHAND) 1806 flush_signal_handlers(tsk, 0); 1807 1808 return 0; 1809 } 1810 1811 void __cleanup_sighand(struct sighand_struct *sighand) 1812 { 1813 if (refcount_dec_and_test(&sighand->count)) { 1814 signalfd_cleanup(sighand); 1815 /* 1816 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1817 * without an RCU grace period, see __lock_task_sighand(). 1818 */ 1819 kmem_cache_free(sighand_cachep, sighand); 1820 } 1821 } 1822 1823 /* 1824 * Initialize POSIX timer handling for a thread group. 1825 */ 1826 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1827 { 1828 struct posix_cputimers *pct = &sig->posix_cputimers; 1829 unsigned long cpu_limit; 1830 1831 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1832 posix_cputimers_group_init(pct, cpu_limit); 1833 } 1834 1835 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1836 { 1837 struct signal_struct *sig; 1838 1839 if (clone_flags & CLONE_THREAD) 1840 return 0; 1841 1842 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1843 tsk->signal = sig; 1844 if (!sig) 1845 return -ENOMEM; 1846 1847 sig->nr_threads = 1; 1848 sig->quick_threads = 1; 1849 atomic_set(&sig->live, 1); 1850 refcount_set(&sig->sigcnt, 1); 1851 1852 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1853 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1854 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1855 1856 init_waitqueue_head(&sig->wait_chldexit); 1857 sig->curr_target = tsk; 1858 init_sigpending(&sig->shared_pending); 1859 INIT_HLIST_HEAD(&sig->multiprocess); 1860 seqlock_init(&sig->stats_lock); 1861 prev_cputime_init(&sig->prev_cputime); 1862 1863 #ifdef CONFIG_POSIX_TIMERS 1864 INIT_HLIST_HEAD(&sig->posix_timers); 1865 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1866 sig->real_timer.function = it_real_fn; 1867 #endif 1868 1869 task_lock(current->group_leader); 1870 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1871 task_unlock(current->group_leader); 1872 1873 posix_cpu_timers_init_group(sig); 1874 1875 tty_audit_fork(sig); 1876 sched_autogroup_fork(sig); 1877 1878 sig->oom_score_adj = current->signal->oom_score_adj; 1879 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1880 1881 mutex_init(&sig->cred_guard_mutex); 1882 init_rwsem(&sig->exec_update_lock); 1883 1884 return 0; 1885 } 1886 1887 static void copy_seccomp(struct task_struct *p) 1888 { 1889 #ifdef CONFIG_SECCOMP 1890 /* 1891 * Must be called with sighand->lock held, which is common to 1892 * all threads in the group. Holding cred_guard_mutex is not 1893 * needed because this new task is not yet running and cannot 1894 * be racing exec. 1895 */ 1896 assert_spin_locked(¤t->sighand->siglock); 1897 1898 /* Ref-count the new filter user, and assign it. */ 1899 get_seccomp_filter(current); 1900 p->seccomp = current->seccomp; 1901 1902 /* 1903 * Explicitly enable no_new_privs here in case it got set 1904 * between the task_struct being duplicated and holding the 1905 * sighand lock. The seccomp state and nnp must be in sync. 1906 */ 1907 if (task_no_new_privs(current)) 1908 task_set_no_new_privs(p); 1909 1910 /* 1911 * If the parent gained a seccomp mode after copying thread 1912 * flags and between before we held the sighand lock, we have 1913 * to manually enable the seccomp thread flag here. 1914 */ 1915 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1916 set_task_syscall_work(p, SECCOMP); 1917 #endif 1918 } 1919 1920 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1921 { 1922 current->clear_child_tid = tidptr; 1923 1924 return task_pid_vnr(current); 1925 } 1926 1927 static void rt_mutex_init_task(struct task_struct *p) 1928 { 1929 raw_spin_lock_init(&p->pi_lock); 1930 #ifdef CONFIG_RT_MUTEXES 1931 p->pi_waiters = RB_ROOT_CACHED; 1932 p->pi_top_task = NULL; 1933 p->pi_blocked_on = NULL; 1934 #endif 1935 } 1936 1937 static inline void init_task_pid_links(struct task_struct *task) 1938 { 1939 enum pid_type type; 1940 1941 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1942 INIT_HLIST_NODE(&task->pid_links[type]); 1943 } 1944 1945 static inline void 1946 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1947 { 1948 if (type == PIDTYPE_PID) 1949 task->thread_pid = pid; 1950 else 1951 task->signal->pids[type] = pid; 1952 } 1953 1954 static inline void rcu_copy_process(struct task_struct *p) 1955 { 1956 #ifdef CONFIG_PREEMPT_RCU 1957 p->rcu_read_lock_nesting = 0; 1958 p->rcu_read_unlock_special.s = 0; 1959 p->rcu_blocked_node = NULL; 1960 INIT_LIST_HEAD(&p->rcu_node_entry); 1961 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1962 #ifdef CONFIG_TASKS_RCU 1963 p->rcu_tasks_holdout = false; 1964 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1965 p->rcu_tasks_idle_cpu = -1; 1966 INIT_LIST_HEAD(&p->rcu_tasks_exit_list); 1967 #endif /* #ifdef CONFIG_TASKS_RCU */ 1968 #ifdef CONFIG_TASKS_TRACE_RCU 1969 p->trc_reader_nesting = 0; 1970 p->trc_reader_special.s = 0; 1971 INIT_LIST_HEAD(&p->trc_holdout_list); 1972 INIT_LIST_HEAD(&p->trc_blkd_node); 1973 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1974 } 1975 1976 /** 1977 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 1978 * @pid: the struct pid for which to create a pidfd 1979 * @flags: flags of the new @pidfd 1980 * @ret: Where to return the file for the pidfd. 1981 * 1982 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 1983 * caller's file descriptor table. The pidfd is reserved but not installed yet. 1984 * 1985 * The helper doesn't perform checks on @pid which makes it useful for pidfds 1986 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and 1987 * pidfd file are prepared. 1988 * 1989 * If this function returns successfully the caller is responsible to either 1990 * call fd_install() passing the returned pidfd and pidfd file as arguments in 1991 * order to install the pidfd into its file descriptor table or they must use 1992 * put_unused_fd() and fput() on the returned pidfd and pidfd file 1993 * respectively. 1994 * 1995 * This function is useful when a pidfd must already be reserved but there 1996 * might still be points of failure afterwards and the caller wants to ensure 1997 * that no pidfd is leaked into its file descriptor table. 1998 * 1999 * Return: On success, a reserved pidfd is returned from the function and a new 2000 * pidfd file is returned in the last argument to the function. On 2001 * error, a negative error code is returned from the function and the 2002 * last argument remains unchanged. 2003 */ 2004 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2005 { 2006 int pidfd; 2007 struct file *pidfd_file; 2008 2009 pidfd = get_unused_fd_flags(O_CLOEXEC); 2010 if (pidfd < 0) 2011 return pidfd; 2012 2013 pidfd_file = pidfs_alloc_file(pid, flags | O_RDWR); 2014 if (IS_ERR(pidfd_file)) { 2015 put_unused_fd(pidfd); 2016 return PTR_ERR(pidfd_file); 2017 } 2018 /* 2019 * anon_inode_getfile() ignores everything outside of the 2020 * O_ACCMODE | O_NONBLOCK mask, set PIDFD_THREAD manually. 2021 */ 2022 pidfd_file->f_flags |= (flags & PIDFD_THREAD); 2023 *ret = pidfd_file; 2024 return pidfd; 2025 } 2026 2027 /** 2028 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 2029 * @pid: the struct pid for which to create a pidfd 2030 * @flags: flags of the new @pidfd 2031 * @ret: Where to return the pidfd. 2032 * 2033 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2034 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2035 * 2036 * The helper verifies that @pid is still in use, without PIDFD_THREAD the 2037 * task identified by @pid must be a thread-group leader. 2038 * 2039 * If this function returns successfully the caller is responsible to either 2040 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2041 * order to install the pidfd into its file descriptor table or they must use 2042 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2043 * respectively. 2044 * 2045 * This function is useful when a pidfd must already be reserved but there 2046 * might still be points of failure afterwards and the caller wants to ensure 2047 * that no pidfd is leaked into its file descriptor table. 2048 * 2049 * Return: On success, a reserved pidfd is returned from the function and a new 2050 * pidfd file is returned in the last argument to the function. On 2051 * error, a negative error code is returned from the function and the 2052 * last argument remains unchanged. 2053 */ 2054 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2055 { 2056 bool thread = flags & PIDFD_THREAD; 2057 2058 if (!pid || !pid_has_task(pid, thread ? PIDTYPE_PID : PIDTYPE_TGID)) 2059 return -EINVAL; 2060 2061 return __pidfd_prepare(pid, flags, ret); 2062 } 2063 2064 static void __delayed_free_task(struct rcu_head *rhp) 2065 { 2066 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 2067 2068 free_task(tsk); 2069 } 2070 2071 static __always_inline void delayed_free_task(struct task_struct *tsk) 2072 { 2073 if (IS_ENABLED(CONFIG_MEMCG)) 2074 call_rcu(&tsk->rcu, __delayed_free_task); 2075 else 2076 free_task(tsk); 2077 } 2078 2079 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 2080 { 2081 /* Skip if kernel thread */ 2082 if (!tsk->mm) 2083 return; 2084 2085 /* Skip if spawning a thread or using vfork */ 2086 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 2087 return; 2088 2089 /* We need to synchronize with __set_oom_adj */ 2090 mutex_lock(&oom_adj_mutex); 2091 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 2092 /* Update the values in case they were changed after copy_signal */ 2093 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 2094 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 2095 mutex_unlock(&oom_adj_mutex); 2096 } 2097 2098 #ifdef CONFIG_RV 2099 static void rv_task_fork(struct task_struct *p) 2100 { 2101 int i; 2102 2103 for (i = 0; i < RV_PER_TASK_MONITORS; i++) 2104 p->rv[i].da_mon.monitoring = false; 2105 } 2106 #else 2107 #define rv_task_fork(p) do {} while (0) 2108 #endif 2109 2110 /* 2111 * This creates a new process as a copy of the old one, 2112 * but does not actually start it yet. 2113 * 2114 * It copies the registers, and all the appropriate 2115 * parts of the process environment (as per the clone 2116 * flags). The actual kick-off is left to the caller. 2117 */ 2118 __latent_entropy struct task_struct *copy_process( 2119 struct pid *pid, 2120 int trace, 2121 int node, 2122 struct kernel_clone_args *args) 2123 { 2124 int pidfd = -1, retval; 2125 struct task_struct *p; 2126 struct multiprocess_signals delayed; 2127 struct file *pidfile = NULL; 2128 const u64 clone_flags = args->flags; 2129 struct nsproxy *nsp = current->nsproxy; 2130 2131 /* 2132 * Don't allow sharing the root directory with processes in a different 2133 * namespace 2134 */ 2135 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 2136 return ERR_PTR(-EINVAL); 2137 2138 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 2139 return ERR_PTR(-EINVAL); 2140 2141 /* 2142 * Thread groups must share signals as well, and detached threads 2143 * can only be started up within the thread group. 2144 */ 2145 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 2146 return ERR_PTR(-EINVAL); 2147 2148 /* 2149 * Shared signal handlers imply shared VM. By way of the above, 2150 * thread groups also imply shared VM. Blocking this case allows 2151 * for various simplifications in other code. 2152 */ 2153 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 2154 return ERR_PTR(-EINVAL); 2155 2156 /* 2157 * Siblings of global init remain as zombies on exit since they are 2158 * not reaped by their parent (swapper). To solve this and to avoid 2159 * multi-rooted process trees, prevent global and container-inits 2160 * from creating siblings. 2161 */ 2162 if ((clone_flags & CLONE_PARENT) && 2163 current->signal->flags & SIGNAL_UNKILLABLE) 2164 return ERR_PTR(-EINVAL); 2165 2166 /* 2167 * If the new process will be in a different pid or user namespace 2168 * do not allow it to share a thread group with the forking task. 2169 */ 2170 if (clone_flags & CLONE_THREAD) { 2171 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 2172 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 2173 return ERR_PTR(-EINVAL); 2174 } 2175 2176 if (clone_flags & CLONE_PIDFD) { 2177 /* 2178 * - CLONE_DETACHED is blocked so that we can potentially 2179 * reuse it later for CLONE_PIDFD. 2180 */ 2181 if (clone_flags & CLONE_DETACHED) 2182 return ERR_PTR(-EINVAL); 2183 } 2184 2185 /* 2186 * Force any signals received before this point to be delivered 2187 * before the fork happens. Collect up signals sent to multiple 2188 * processes that happen during the fork and delay them so that 2189 * they appear to happen after the fork. 2190 */ 2191 sigemptyset(&delayed.signal); 2192 INIT_HLIST_NODE(&delayed.node); 2193 2194 spin_lock_irq(¤t->sighand->siglock); 2195 if (!(clone_flags & CLONE_THREAD)) 2196 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2197 recalc_sigpending(); 2198 spin_unlock_irq(¤t->sighand->siglock); 2199 retval = -ERESTARTNOINTR; 2200 if (task_sigpending(current)) 2201 goto fork_out; 2202 2203 retval = -ENOMEM; 2204 p = dup_task_struct(current, node); 2205 if (!p) 2206 goto fork_out; 2207 p->flags &= ~PF_KTHREAD; 2208 if (args->kthread) 2209 p->flags |= PF_KTHREAD; 2210 if (args->user_worker) { 2211 /* 2212 * Mark us a user worker, and block any signal that isn't 2213 * fatal or STOP 2214 */ 2215 p->flags |= PF_USER_WORKER; 2216 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2217 } 2218 if (args->io_thread) 2219 p->flags |= PF_IO_WORKER; 2220 2221 if (args->name) 2222 strscpy_pad(p->comm, args->name, sizeof(p->comm)); 2223 2224 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2225 /* 2226 * Clear TID on mm_release()? 2227 */ 2228 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2229 2230 ftrace_graph_init_task(p); 2231 2232 rt_mutex_init_task(p); 2233 2234 lockdep_assert_irqs_enabled(); 2235 #ifdef CONFIG_PROVE_LOCKING 2236 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2237 #endif 2238 retval = copy_creds(p, clone_flags); 2239 if (retval < 0) 2240 goto bad_fork_free; 2241 2242 retval = -EAGAIN; 2243 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2244 if (p->real_cred->user != INIT_USER && 2245 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2246 goto bad_fork_cleanup_count; 2247 } 2248 current->flags &= ~PF_NPROC_EXCEEDED; 2249 2250 /* 2251 * If multiple threads are within copy_process(), then this check 2252 * triggers too late. This doesn't hurt, the check is only there 2253 * to stop root fork bombs. 2254 */ 2255 retval = -EAGAIN; 2256 if (data_race(nr_threads >= max_threads)) 2257 goto bad_fork_cleanup_count; 2258 2259 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2260 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2261 p->flags |= PF_FORKNOEXEC; 2262 INIT_LIST_HEAD(&p->children); 2263 INIT_LIST_HEAD(&p->sibling); 2264 rcu_copy_process(p); 2265 p->vfork_done = NULL; 2266 spin_lock_init(&p->alloc_lock); 2267 2268 init_sigpending(&p->pending); 2269 2270 p->utime = p->stime = p->gtime = 0; 2271 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2272 p->utimescaled = p->stimescaled = 0; 2273 #endif 2274 prev_cputime_init(&p->prev_cputime); 2275 2276 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2277 seqcount_init(&p->vtime.seqcount); 2278 p->vtime.starttime = 0; 2279 p->vtime.state = VTIME_INACTIVE; 2280 #endif 2281 2282 #ifdef CONFIG_IO_URING 2283 p->io_uring = NULL; 2284 #endif 2285 2286 p->default_timer_slack_ns = current->timer_slack_ns; 2287 2288 #ifdef CONFIG_PSI 2289 p->psi_flags = 0; 2290 #endif 2291 2292 task_io_accounting_init(&p->ioac); 2293 acct_clear_integrals(p); 2294 2295 posix_cputimers_init(&p->posix_cputimers); 2296 tick_dep_init_task(p); 2297 2298 p->io_context = NULL; 2299 audit_set_context(p, NULL); 2300 cgroup_fork(p); 2301 if (args->kthread) { 2302 if (!set_kthread_struct(p)) 2303 goto bad_fork_cleanup_delayacct; 2304 } 2305 #ifdef CONFIG_NUMA 2306 p->mempolicy = mpol_dup(p->mempolicy); 2307 if (IS_ERR(p->mempolicy)) { 2308 retval = PTR_ERR(p->mempolicy); 2309 p->mempolicy = NULL; 2310 goto bad_fork_cleanup_delayacct; 2311 } 2312 #endif 2313 #ifdef CONFIG_CPUSETS 2314 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2315 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2316 #endif 2317 #ifdef CONFIG_TRACE_IRQFLAGS 2318 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2319 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2320 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2321 p->softirqs_enabled = 1; 2322 p->softirq_context = 0; 2323 #endif 2324 2325 p->pagefault_disabled = 0; 2326 2327 #ifdef CONFIG_LOCKDEP 2328 lockdep_init_task(p); 2329 #endif 2330 2331 #ifdef CONFIG_DEBUG_MUTEXES 2332 p->blocked_on = NULL; /* not blocked yet */ 2333 #endif 2334 #ifdef CONFIG_BCACHE 2335 p->sequential_io = 0; 2336 p->sequential_io_avg = 0; 2337 #endif 2338 #ifdef CONFIG_BPF_SYSCALL 2339 RCU_INIT_POINTER(p->bpf_storage, NULL); 2340 p->bpf_ctx = NULL; 2341 #endif 2342 2343 /* Perform scheduler related setup. Assign this task to a CPU. */ 2344 retval = sched_fork(clone_flags, p); 2345 if (retval) 2346 goto bad_fork_cleanup_policy; 2347 2348 retval = perf_event_init_task(p, clone_flags); 2349 if (retval) 2350 goto bad_fork_sched_cancel_fork; 2351 retval = audit_alloc(p); 2352 if (retval) 2353 goto bad_fork_cleanup_perf; 2354 /* copy all the process information */ 2355 shm_init_task(p); 2356 retval = security_task_alloc(p, clone_flags); 2357 if (retval) 2358 goto bad_fork_cleanup_audit; 2359 retval = copy_semundo(clone_flags, p); 2360 if (retval) 2361 goto bad_fork_cleanup_security; 2362 retval = copy_files(clone_flags, p, args->no_files); 2363 if (retval) 2364 goto bad_fork_cleanup_semundo; 2365 retval = copy_fs(clone_flags, p); 2366 if (retval) 2367 goto bad_fork_cleanup_files; 2368 retval = copy_sighand(clone_flags, p); 2369 if (retval) 2370 goto bad_fork_cleanup_fs; 2371 retval = copy_signal(clone_flags, p); 2372 if (retval) 2373 goto bad_fork_cleanup_sighand; 2374 retval = copy_mm(clone_flags, p); 2375 if (retval) 2376 goto bad_fork_cleanup_signal; 2377 retval = copy_namespaces(clone_flags, p); 2378 if (retval) 2379 goto bad_fork_cleanup_mm; 2380 retval = copy_io(clone_flags, p); 2381 if (retval) 2382 goto bad_fork_cleanup_namespaces; 2383 retval = copy_thread(p, args); 2384 if (retval) 2385 goto bad_fork_cleanup_io; 2386 2387 stackleak_task_init(p); 2388 2389 if (pid != &init_struct_pid) { 2390 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2391 args->set_tid_size); 2392 if (IS_ERR(pid)) { 2393 retval = PTR_ERR(pid); 2394 goto bad_fork_cleanup_thread; 2395 } 2396 } 2397 2398 /* 2399 * This has to happen after we've potentially unshared the file 2400 * descriptor table (so that the pidfd doesn't leak into the child 2401 * if the fd table isn't shared). 2402 */ 2403 if (clone_flags & CLONE_PIDFD) { 2404 int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0; 2405 2406 /* Note that no task has been attached to @pid yet. */ 2407 retval = __pidfd_prepare(pid, flags, &pidfile); 2408 if (retval < 0) 2409 goto bad_fork_free_pid; 2410 pidfd = retval; 2411 2412 retval = put_user(pidfd, args->pidfd); 2413 if (retval) 2414 goto bad_fork_put_pidfd; 2415 } 2416 2417 #ifdef CONFIG_BLOCK 2418 p->plug = NULL; 2419 #endif 2420 futex_init_task(p); 2421 2422 /* 2423 * sigaltstack should be cleared when sharing the same VM 2424 */ 2425 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2426 sas_ss_reset(p); 2427 2428 /* 2429 * Syscall tracing and stepping should be turned off in the 2430 * child regardless of CLONE_PTRACE. 2431 */ 2432 user_disable_single_step(p); 2433 clear_task_syscall_work(p, SYSCALL_TRACE); 2434 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2435 clear_task_syscall_work(p, SYSCALL_EMU); 2436 #endif 2437 clear_tsk_latency_tracing(p); 2438 2439 /* ok, now we should be set up.. */ 2440 p->pid = pid_nr(pid); 2441 if (clone_flags & CLONE_THREAD) { 2442 p->group_leader = current->group_leader; 2443 p->tgid = current->tgid; 2444 } else { 2445 p->group_leader = p; 2446 p->tgid = p->pid; 2447 } 2448 2449 p->nr_dirtied = 0; 2450 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2451 p->dirty_paused_when = 0; 2452 2453 p->pdeath_signal = 0; 2454 p->task_works = NULL; 2455 clear_posix_cputimers_work(p); 2456 2457 #ifdef CONFIG_KRETPROBES 2458 p->kretprobe_instances.first = NULL; 2459 #endif 2460 #ifdef CONFIG_RETHOOK 2461 p->rethooks.first = NULL; 2462 #endif 2463 2464 /* 2465 * Ensure that the cgroup subsystem policies allow the new process to be 2466 * forked. It should be noted that the new process's css_set can be changed 2467 * between here and cgroup_post_fork() if an organisation operation is in 2468 * progress. 2469 */ 2470 retval = cgroup_can_fork(p, args); 2471 if (retval) 2472 goto bad_fork_put_pidfd; 2473 2474 /* 2475 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2476 * the new task on the correct runqueue. All this *before* the task 2477 * becomes visible. 2478 * 2479 * This isn't part of ->can_fork() because while the re-cloning is 2480 * cgroup specific, it unconditionally needs to place the task on a 2481 * runqueue. 2482 */ 2483 retval = sched_cgroup_fork(p, args); 2484 if (retval) 2485 goto bad_fork_cancel_cgroup; 2486 2487 /* 2488 * From this point on we must avoid any synchronous user-space 2489 * communication until we take the tasklist-lock. In particular, we do 2490 * not want user-space to be able to predict the process start-time by 2491 * stalling fork(2) after we recorded the start_time but before it is 2492 * visible to the system. 2493 */ 2494 2495 p->start_time = ktime_get_ns(); 2496 p->start_boottime = ktime_get_boottime_ns(); 2497 2498 /* 2499 * Make it visible to the rest of the system, but dont wake it up yet. 2500 * Need tasklist lock for parent etc handling! 2501 */ 2502 write_lock_irq(&tasklist_lock); 2503 2504 /* CLONE_PARENT re-uses the old parent */ 2505 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2506 p->real_parent = current->real_parent; 2507 p->parent_exec_id = current->parent_exec_id; 2508 if (clone_flags & CLONE_THREAD) 2509 p->exit_signal = -1; 2510 else 2511 p->exit_signal = current->group_leader->exit_signal; 2512 } else { 2513 p->real_parent = current; 2514 p->parent_exec_id = current->self_exec_id; 2515 p->exit_signal = args->exit_signal; 2516 } 2517 2518 klp_copy_process(p); 2519 2520 sched_core_fork(p); 2521 2522 spin_lock(¤t->sighand->siglock); 2523 2524 rv_task_fork(p); 2525 2526 rseq_fork(p, clone_flags); 2527 2528 /* Don't start children in a dying pid namespace */ 2529 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2530 retval = -ENOMEM; 2531 goto bad_fork_core_free; 2532 } 2533 2534 /* Let kill terminate clone/fork in the middle */ 2535 if (fatal_signal_pending(current)) { 2536 retval = -EINTR; 2537 goto bad_fork_core_free; 2538 } 2539 2540 /* No more failure paths after this point. */ 2541 2542 /* 2543 * Copy seccomp details explicitly here, in case they were changed 2544 * before holding sighand lock. 2545 */ 2546 copy_seccomp(p); 2547 2548 init_task_pid_links(p); 2549 if (likely(p->pid)) { 2550 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2551 2552 init_task_pid(p, PIDTYPE_PID, pid); 2553 if (thread_group_leader(p)) { 2554 init_task_pid(p, PIDTYPE_TGID, pid); 2555 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2556 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2557 2558 if (is_child_reaper(pid)) { 2559 ns_of_pid(pid)->child_reaper = p; 2560 p->signal->flags |= SIGNAL_UNKILLABLE; 2561 } 2562 p->signal->shared_pending.signal = delayed.signal; 2563 p->signal->tty = tty_kref_get(current->signal->tty); 2564 /* 2565 * Inherit has_child_subreaper flag under the same 2566 * tasklist_lock with adding child to the process tree 2567 * for propagate_has_child_subreaper optimization. 2568 */ 2569 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2570 p->real_parent->signal->is_child_subreaper; 2571 list_add_tail(&p->sibling, &p->real_parent->children); 2572 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2573 attach_pid(p, PIDTYPE_TGID); 2574 attach_pid(p, PIDTYPE_PGID); 2575 attach_pid(p, PIDTYPE_SID); 2576 __this_cpu_inc(process_counts); 2577 } else { 2578 current->signal->nr_threads++; 2579 current->signal->quick_threads++; 2580 atomic_inc(¤t->signal->live); 2581 refcount_inc(¤t->signal->sigcnt); 2582 task_join_group_stop(p); 2583 list_add_tail_rcu(&p->thread_node, 2584 &p->signal->thread_head); 2585 } 2586 attach_pid(p, PIDTYPE_PID); 2587 nr_threads++; 2588 } 2589 total_forks++; 2590 hlist_del_init(&delayed.node); 2591 spin_unlock(¤t->sighand->siglock); 2592 syscall_tracepoint_update(p); 2593 write_unlock_irq(&tasklist_lock); 2594 2595 if (pidfile) 2596 fd_install(pidfd, pidfile); 2597 2598 proc_fork_connector(p); 2599 sched_post_fork(p); 2600 cgroup_post_fork(p, args); 2601 perf_event_fork(p); 2602 2603 trace_task_newtask(p, clone_flags); 2604 uprobe_copy_process(p, clone_flags); 2605 user_events_fork(p, clone_flags); 2606 2607 copy_oom_score_adj(clone_flags, p); 2608 2609 return p; 2610 2611 bad_fork_core_free: 2612 sched_core_free(p); 2613 spin_unlock(¤t->sighand->siglock); 2614 write_unlock_irq(&tasklist_lock); 2615 bad_fork_cancel_cgroup: 2616 cgroup_cancel_fork(p, args); 2617 bad_fork_put_pidfd: 2618 if (clone_flags & CLONE_PIDFD) { 2619 fput(pidfile); 2620 put_unused_fd(pidfd); 2621 } 2622 bad_fork_free_pid: 2623 if (pid != &init_struct_pid) 2624 free_pid(pid); 2625 bad_fork_cleanup_thread: 2626 exit_thread(p); 2627 bad_fork_cleanup_io: 2628 if (p->io_context) 2629 exit_io_context(p); 2630 bad_fork_cleanup_namespaces: 2631 exit_task_namespaces(p); 2632 bad_fork_cleanup_mm: 2633 if (p->mm) { 2634 mm_clear_owner(p->mm, p); 2635 mmput(p->mm); 2636 } 2637 bad_fork_cleanup_signal: 2638 if (!(clone_flags & CLONE_THREAD)) 2639 free_signal_struct(p->signal); 2640 bad_fork_cleanup_sighand: 2641 __cleanup_sighand(p->sighand); 2642 bad_fork_cleanup_fs: 2643 exit_fs(p); /* blocking */ 2644 bad_fork_cleanup_files: 2645 exit_files(p); /* blocking */ 2646 bad_fork_cleanup_semundo: 2647 exit_sem(p); 2648 bad_fork_cleanup_security: 2649 security_task_free(p); 2650 bad_fork_cleanup_audit: 2651 audit_free(p); 2652 bad_fork_cleanup_perf: 2653 perf_event_free_task(p); 2654 bad_fork_sched_cancel_fork: 2655 sched_cancel_fork(p); 2656 bad_fork_cleanup_policy: 2657 lockdep_free_task(p); 2658 #ifdef CONFIG_NUMA 2659 mpol_put(p->mempolicy); 2660 #endif 2661 bad_fork_cleanup_delayacct: 2662 delayacct_tsk_free(p); 2663 bad_fork_cleanup_count: 2664 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2665 exit_creds(p); 2666 bad_fork_free: 2667 WRITE_ONCE(p->__state, TASK_DEAD); 2668 exit_task_stack_account(p); 2669 put_task_stack(p); 2670 delayed_free_task(p); 2671 fork_out: 2672 spin_lock_irq(¤t->sighand->siglock); 2673 hlist_del_init(&delayed.node); 2674 spin_unlock_irq(¤t->sighand->siglock); 2675 return ERR_PTR(retval); 2676 } 2677 2678 static inline void init_idle_pids(struct task_struct *idle) 2679 { 2680 enum pid_type type; 2681 2682 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2683 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2684 init_task_pid(idle, type, &init_struct_pid); 2685 } 2686 } 2687 2688 static int idle_dummy(void *dummy) 2689 { 2690 /* This function is never called */ 2691 return 0; 2692 } 2693 2694 struct task_struct * __init fork_idle(int cpu) 2695 { 2696 struct task_struct *task; 2697 struct kernel_clone_args args = { 2698 .flags = CLONE_VM, 2699 .fn = &idle_dummy, 2700 .fn_arg = NULL, 2701 .kthread = 1, 2702 .idle = 1, 2703 }; 2704 2705 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2706 if (!IS_ERR(task)) { 2707 init_idle_pids(task); 2708 init_idle(task, cpu); 2709 } 2710 2711 return task; 2712 } 2713 2714 /* 2715 * This is like kernel_clone(), but shaved down and tailored to just 2716 * creating io_uring workers. It returns a created task, or an error pointer. 2717 * The returned task is inactive, and the caller must fire it up through 2718 * wake_up_new_task(p). All signals are blocked in the created task. 2719 */ 2720 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2721 { 2722 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2723 CLONE_IO; 2724 struct kernel_clone_args args = { 2725 .flags = ((lower_32_bits(flags) | CLONE_VM | 2726 CLONE_UNTRACED) & ~CSIGNAL), 2727 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2728 .fn = fn, 2729 .fn_arg = arg, 2730 .io_thread = 1, 2731 .user_worker = 1, 2732 }; 2733 2734 return copy_process(NULL, 0, node, &args); 2735 } 2736 2737 /* 2738 * Ok, this is the main fork-routine. 2739 * 2740 * It copies the process, and if successful kick-starts 2741 * it and waits for it to finish using the VM if required. 2742 * 2743 * args->exit_signal is expected to be checked for sanity by the caller. 2744 */ 2745 pid_t kernel_clone(struct kernel_clone_args *args) 2746 { 2747 u64 clone_flags = args->flags; 2748 struct completion vfork; 2749 struct pid *pid; 2750 struct task_struct *p; 2751 int trace = 0; 2752 pid_t nr; 2753 2754 /* 2755 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2756 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2757 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2758 * field in struct clone_args and it still doesn't make sense to have 2759 * them both point at the same memory location. Performing this check 2760 * here has the advantage that we don't need to have a separate helper 2761 * to check for legacy clone(). 2762 */ 2763 if ((clone_flags & CLONE_PIDFD) && 2764 (clone_flags & CLONE_PARENT_SETTID) && 2765 (args->pidfd == args->parent_tid)) 2766 return -EINVAL; 2767 2768 /* 2769 * Determine whether and which event to report to ptracer. When 2770 * called from kernel_thread or CLONE_UNTRACED is explicitly 2771 * requested, no event is reported; otherwise, report if the event 2772 * for the type of forking is enabled. 2773 */ 2774 if (!(clone_flags & CLONE_UNTRACED)) { 2775 if (clone_flags & CLONE_VFORK) 2776 trace = PTRACE_EVENT_VFORK; 2777 else if (args->exit_signal != SIGCHLD) 2778 trace = PTRACE_EVENT_CLONE; 2779 else 2780 trace = PTRACE_EVENT_FORK; 2781 2782 if (likely(!ptrace_event_enabled(current, trace))) 2783 trace = 0; 2784 } 2785 2786 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2787 add_latent_entropy(); 2788 2789 if (IS_ERR(p)) 2790 return PTR_ERR(p); 2791 2792 /* 2793 * Do this prior waking up the new thread - the thread pointer 2794 * might get invalid after that point, if the thread exits quickly. 2795 */ 2796 trace_sched_process_fork(current, p); 2797 2798 pid = get_task_pid(p, PIDTYPE_PID); 2799 nr = pid_vnr(pid); 2800 2801 if (clone_flags & CLONE_PARENT_SETTID) 2802 put_user(nr, args->parent_tid); 2803 2804 if (clone_flags & CLONE_VFORK) { 2805 p->vfork_done = &vfork; 2806 init_completion(&vfork); 2807 get_task_struct(p); 2808 } 2809 2810 if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) { 2811 /* lock the task to synchronize with memcg migration */ 2812 task_lock(p); 2813 lru_gen_add_mm(p->mm); 2814 task_unlock(p); 2815 } 2816 2817 wake_up_new_task(p); 2818 2819 /* forking complete and child started to run, tell ptracer */ 2820 if (unlikely(trace)) 2821 ptrace_event_pid(trace, pid); 2822 2823 if (clone_flags & CLONE_VFORK) { 2824 if (!wait_for_vfork_done(p, &vfork)) 2825 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2826 } 2827 2828 put_pid(pid); 2829 return nr; 2830 } 2831 2832 /* 2833 * Create a kernel thread. 2834 */ 2835 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name, 2836 unsigned long flags) 2837 { 2838 struct kernel_clone_args args = { 2839 .flags = ((lower_32_bits(flags) | CLONE_VM | 2840 CLONE_UNTRACED) & ~CSIGNAL), 2841 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2842 .fn = fn, 2843 .fn_arg = arg, 2844 .name = name, 2845 .kthread = 1, 2846 }; 2847 2848 return kernel_clone(&args); 2849 } 2850 2851 /* 2852 * Create a user mode thread. 2853 */ 2854 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) 2855 { 2856 struct kernel_clone_args args = { 2857 .flags = ((lower_32_bits(flags) | CLONE_VM | 2858 CLONE_UNTRACED) & ~CSIGNAL), 2859 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2860 .fn = fn, 2861 .fn_arg = arg, 2862 }; 2863 2864 return kernel_clone(&args); 2865 } 2866 2867 #ifdef __ARCH_WANT_SYS_FORK 2868 SYSCALL_DEFINE0(fork) 2869 { 2870 #ifdef CONFIG_MMU 2871 struct kernel_clone_args args = { 2872 .exit_signal = SIGCHLD, 2873 }; 2874 2875 return kernel_clone(&args); 2876 #else 2877 /* can not support in nommu mode */ 2878 return -EINVAL; 2879 #endif 2880 } 2881 #endif 2882 2883 #ifdef __ARCH_WANT_SYS_VFORK 2884 SYSCALL_DEFINE0(vfork) 2885 { 2886 struct kernel_clone_args args = { 2887 .flags = CLONE_VFORK | CLONE_VM, 2888 .exit_signal = SIGCHLD, 2889 }; 2890 2891 return kernel_clone(&args); 2892 } 2893 #endif 2894 2895 #ifdef __ARCH_WANT_SYS_CLONE 2896 #ifdef CONFIG_CLONE_BACKWARDS 2897 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2898 int __user *, parent_tidptr, 2899 unsigned long, tls, 2900 int __user *, child_tidptr) 2901 #elif defined(CONFIG_CLONE_BACKWARDS2) 2902 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2903 int __user *, parent_tidptr, 2904 int __user *, child_tidptr, 2905 unsigned long, tls) 2906 #elif defined(CONFIG_CLONE_BACKWARDS3) 2907 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2908 int, stack_size, 2909 int __user *, parent_tidptr, 2910 int __user *, child_tidptr, 2911 unsigned long, tls) 2912 #else 2913 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2914 int __user *, parent_tidptr, 2915 int __user *, child_tidptr, 2916 unsigned long, tls) 2917 #endif 2918 { 2919 struct kernel_clone_args args = { 2920 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2921 .pidfd = parent_tidptr, 2922 .child_tid = child_tidptr, 2923 .parent_tid = parent_tidptr, 2924 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2925 .stack = newsp, 2926 .tls = tls, 2927 }; 2928 2929 return kernel_clone(&args); 2930 } 2931 #endif 2932 2933 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2934 struct clone_args __user *uargs, 2935 size_t usize) 2936 { 2937 int err; 2938 struct clone_args args; 2939 pid_t *kset_tid = kargs->set_tid; 2940 2941 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2942 CLONE_ARGS_SIZE_VER0); 2943 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2944 CLONE_ARGS_SIZE_VER1); 2945 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2946 CLONE_ARGS_SIZE_VER2); 2947 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2948 2949 if (unlikely(usize > PAGE_SIZE)) 2950 return -E2BIG; 2951 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2952 return -EINVAL; 2953 2954 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2955 if (err) 2956 return err; 2957 2958 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2959 return -EINVAL; 2960 2961 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2962 return -EINVAL; 2963 2964 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2965 return -EINVAL; 2966 2967 /* 2968 * Verify that higher 32bits of exit_signal are unset and that 2969 * it is a valid signal 2970 */ 2971 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2972 !valid_signal(args.exit_signal))) 2973 return -EINVAL; 2974 2975 if ((args.flags & CLONE_INTO_CGROUP) && 2976 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2977 return -EINVAL; 2978 2979 *kargs = (struct kernel_clone_args){ 2980 .flags = args.flags, 2981 .pidfd = u64_to_user_ptr(args.pidfd), 2982 .child_tid = u64_to_user_ptr(args.child_tid), 2983 .parent_tid = u64_to_user_ptr(args.parent_tid), 2984 .exit_signal = args.exit_signal, 2985 .stack = args.stack, 2986 .stack_size = args.stack_size, 2987 .tls = args.tls, 2988 .set_tid_size = args.set_tid_size, 2989 .cgroup = args.cgroup, 2990 }; 2991 2992 if (args.set_tid && 2993 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2994 (kargs->set_tid_size * sizeof(pid_t)))) 2995 return -EFAULT; 2996 2997 kargs->set_tid = kset_tid; 2998 2999 return 0; 3000 } 3001 3002 /** 3003 * clone3_stack_valid - check and prepare stack 3004 * @kargs: kernel clone args 3005 * 3006 * Verify that the stack arguments userspace gave us are sane. 3007 * In addition, set the stack direction for userspace since it's easy for us to 3008 * determine. 3009 */ 3010 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 3011 { 3012 if (kargs->stack == 0) { 3013 if (kargs->stack_size > 0) 3014 return false; 3015 } else { 3016 if (kargs->stack_size == 0) 3017 return false; 3018 3019 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 3020 return false; 3021 3022 #if !defined(CONFIG_STACK_GROWSUP) 3023 kargs->stack += kargs->stack_size; 3024 #endif 3025 } 3026 3027 return true; 3028 } 3029 3030 static bool clone3_args_valid(struct kernel_clone_args *kargs) 3031 { 3032 /* Verify that no unknown flags are passed along. */ 3033 if (kargs->flags & 3034 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 3035 return false; 3036 3037 /* 3038 * - make the CLONE_DETACHED bit reusable for clone3 3039 * - make the CSIGNAL bits reusable for clone3 3040 */ 3041 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME)))) 3042 return false; 3043 3044 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 3045 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 3046 return false; 3047 3048 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 3049 kargs->exit_signal) 3050 return false; 3051 3052 if (!clone3_stack_valid(kargs)) 3053 return false; 3054 3055 return true; 3056 } 3057 3058 /** 3059 * sys_clone3 - create a new process with specific properties 3060 * @uargs: argument structure 3061 * @size: size of @uargs 3062 * 3063 * clone3() is the extensible successor to clone()/clone2(). 3064 * It takes a struct as argument that is versioned by its size. 3065 * 3066 * Return: On success, a positive PID for the child process. 3067 * On error, a negative errno number. 3068 */ 3069 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 3070 { 3071 int err; 3072 3073 struct kernel_clone_args kargs; 3074 pid_t set_tid[MAX_PID_NS_LEVEL]; 3075 3076 #ifdef __ARCH_BROKEN_SYS_CLONE3 3077 #warning clone3() entry point is missing, please fix 3078 return -ENOSYS; 3079 #endif 3080 3081 kargs.set_tid = set_tid; 3082 3083 err = copy_clone_args_from_user(&kargs, uargs, size); 3084 if (err) 3085 return err; 3086 3087 if (!clone3_args_valid(&kargs)) 3088 return -EINVAL; 3089 3090 return kernel_clone(&kargs); 3091 } 3092 3093 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 3094 { 3095 struct task_struct *leader, *parent, *child; 3096 int res; 3097 3098 read_lock(&tasklist_lock); 3099 leader = top = top->group_leader; 3100 down: 3101 for_each_thread(leader, parent) { 3102 list_for_each_entry(child, &parent->children, sibling) { 3103 res = visitor(child, data); 3104 if (res) { 3105 if (res < 0) 3106 goto out; 3107 leader = child; 3108 goto down; 3109 } 3110 up: 3111 ; 3112 } 3113 } 3114 3115 if (leader != top) { 3116 child = leader; 3117 parent = child->real_parent; 3118 leader = parent->group_leader; 3119 goto up; 3120 } 3121 out: 3122 read_unlock(&tasklist_lock); 3123 } 3124 3125 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 3126 #define ARCH_MIN_MMSTRUCT_ALIGN 0 3127 #endif 3128 3129 static void sighand_ctor(void *data) 3130 { 3131 struct sighand_struct *sighand = data; 3132 3133 spin_lock_init(&sighand->siglock); 3134 init_waitqueue_head(&sighand->signalfd_wqh); 3135 } 3136 3137 void __init mm_cache_init(void) 3138 { 3139 unsigned int mm_size; 3140 3141 /* 3142 * The mm_cpumask is located at the end of mm_struct, and is 3143 * dynamically sized based on the maximum CPU number this system 3144 * can have, taking hotplug into account (nr_cpu_ids). 3145 */ 3146 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size(); 3147 3148 mm_cachep = kmem_cache_create_usercopy("mm_struct", 3149 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 3150 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3151 offsetof(struct mm_struct, saved_auxv), 3152 sizeof_field(struct mm_struct, saved_auxv), 3153 NULL); 3154 } 3155 3156 void __init proc_caches_init(void) 3157 { 3158 sighand_cachep = kmem_cache_create("sighand_cache", 3159 sizeof(struct sighand_struct), 0, 3160 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 3161 SLAB_ACCOUNT, sighand_ctor); 3162 signal_cachep = kmem_cache_create("signal_cache", 3163 sizeof(struct signal_struct), 0, 3164 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3165 NULL); 3166 files_cachep = kmem_cache_create("files_cache", 3167 sizeof(struct files_struct), 0, 3168 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3169 NULL); 3170 fs_cachep = kmem_cache_create("fs_cache", 3171 sizeof(struct fs_struct), 0, 3172 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3173 NULL); 3174 3175 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 3176 #ifdef CONFIG_PER_VMA_LOCK 3177 vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT); 3178 #endif 3179 mmap_init(); 3180 nsproxy_cache_init(); 3181 } 3182 3183 /* 3184 * Check constraints on flags passed to the unshare system call. 3185 */ 3186 static int check_unshare_flags(unsigned long unshare_flags) 3187 { 3188 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 3189 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 3190 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 3191 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 3192 CLONE_NEWTIME)) 3193 return -EINVAL; 3194 /* 3195 * Not implemented, but pretend it works if there is nothing 3196 * to unshare. Note that unsharing the address space or the 3197 * signal handlers also need to unshare the signal queues (aka 3198 * CLONE_THREAD). 3199 */ 3200 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3201 if (!thread_group_empty(current)) 3202 return -EINVAL; 3203 } 3204 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3205 if (refcount_read(¤t->sighand->count) > 1) 3206 return -EINVAL; 3207 } 3208 if (unshare_flags & CLONE_VM) { 3209 if (!current_is_single_threaded()) 3210 return -EINVAL; 3211 } 3212 3213 return 0; 3214 } 3215 3216 /* 3217 * Unshare the filesystem structure if it is being shared 3218 */ 3219 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3220 { 3221 struct fs_struct *fs = current->fs; 3222 3223 if (!(unshare_flags & CLONE_FS) || !fs) 3224 return 0; 3225 3226 /* don't need lock here; in the worst case we'll do useless copy */ 3227 if (fs->users == 1) 3228 return 0; 3229 3230 *new_fsp = copy_fs_struct(fs); 3231 if (!*new_fsp) 3232 return -ENOMEM; 3233 3234 return 0; 3235 } 3236 3237 /* 3238 * Unshare file descriptor table if it is being shared 3239 */ 3240 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 3241 { 3242 struct files_struct *fd = current->files; 3243 3244 if ((unshare_flags & CLONE_FILES) && 3245 (fd && atomic_read(&fd->count) > 1)) { 3246 fd = dup_fd(fd, NULL); 3247 if (IS_ERR(fd)) 3248 return PTR_ERR(fd); 3249 *new_fdp = fd; 3250 } 3251 3252 return 0; 3253 } 3254 3255 /* 3256 * unshare allows a process to 'unshare' part of the process 3257 * context which was originally shared using clone. copy_* 3258 * functions used by kernel_clone() cannot be used here directly 3259 * because they modify an inactive task_struct that is being 3260 * constructed. Here we are modifying the current, active, 3261 * task_struct. 3262 */ 3263 int ksys_unshare(unsigned long unshare_flags) 3264 { 3265 struct fs_struct *fs, *new_fs = NULL; 3266 struct files_struct *new_fd = NULL; 3267 struct cred *new_cred = NULL; 3268 struct nsproxy *new_nsproxy = NULL; 3269 int do_sysvsem = 0; 3270 int err; 3271 3272 /* 3273 * If unsharing a user namespace must also unshare the thread group 3274 * and unshare the filesystem root and working directories. 3275 */ 3276 if (unshare_flags & CLONE_NEWUSER) 3277 unshare_flags |= CLONE_THREAD | CLONE_FS; 3278 /* 3279 * If unsharing vm, must also unshare signal handlers. 3280 */ 3281 if (unshare_flags & CLONE_VM) 3282 unshare_flags |= CLONE_SIGHAND; 3283 /* 3284 * If unsharing a signal handlers, must also unshare the signal queues. 3285 */ 3286 if (unshare_flags & CLONE_SIGHAND) 3287 unshare_flags |= CLONE_THREAD; 3288 /* 3289 * If unsharing namespace, must also unshare filesystem information. 3290 */ 3291 if (unshare_flags & CLONE_NEWNS) 3292 unshare_flags |= CLONE_FS; 3293 3294 err = check_unshare_flags(unshare_flags); 3295 if (err) 3296 goto bad_unshare_out; 3297 /* 3298 * CLONE_NEWIPC must also detach from the undolist: after switching 3299 * to a new ipc namespace, the semaphore arrays from the old 3300 * namespace are unreachable. 3301 */ 3302 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3303 do_sysvsem = 1; 3304 err = unshare_fs(unshare_flags, &new_fs); 3305 if (err) 3306 goto bad_unshare_out; 3307 err = unshare_fd(unshare_flags, &new_fd); 3308 if (err) 3309 goto bad_unshare_cleanup_fs; 3310 err = unshare_userns(unshare_flags, &new_cred); 3311 if (err) 3312 goto bad_unshare_cleanup_fd; 3313 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3314 new_cred, new_fs); 3315 if (err) 3316 goto bad_unshare_cleanup_cred; 3317 3318 if (new_cred) { 3319 err = set_cred_ucounts(new_cred); 3320 if (err) 3321 goto bad_unshare_cleanup_cred; 3322 } 3323 3324 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3325 if (do_sysvsem) { 3326 /* 3327 * CLONE_SYSVSEM is equivalent to sys_exit(). 3328 */ 3329 exit_sem(current); 3330 } 3331 if (unshare_flags & CLONE_NEWIPC) { 3332 /* Orphan segments in old ns (see sem above). */ 3333 exit_shm(current); 3334 shm_init_task(current); 3335 } 3336 3337 if (new_nsproxy) 3338 switch_task_namespaces(current, new_nsproxy); 3339 3340 task_lock(current); 3341 3342 if (new_fs) { 3343 fs = current->fs; 3344 spin_lock(&fs->lock); 3345 current->fs = new_fs; 3346 if (--fs->users) 3347 new_fs = NULL; 3348 else 3349 new_fs = fs; 3350 spin_unlock(&fs->lock); 3351 } 3352 3353 if (new_fd) 3354 swap(current->files, new_fd); 3355 3356 task_unlock(current); 3357 3358 if (new_cred) { 3359 /* Install the new user namespace */ 3360 commit_creds(new_cred); 3361 new_cred = NULL; 3362 } 3363 } 3364 3365 perf_event_namespaces(current); 3366 3367 bad_unshare_cleanup_cred: 3368 if (new_cred) 3369 put_cred(new_cred); 3370 bad_unshare_cleanup_fd: 3371 if (new_fd) 3372 put_files_struct(new_fd); 3373 3374 bad_unshare_cleanup_fs: 3375 if (new_fs) 3376 free_fs_struct(new_fs); 3377 3378 bad_unshare_out: 3379 return err; 3380 } 3381 3382 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3383 { 3384 return ksys_unshare(unshare_flags); 3385 } 3386 3387 /* 3388 * Helper to unshare the files of the current task. 3389 * We don't want to expose copy_files internals to 3390 * the exec layer of the kernel. 3391 */ 3392 3393 int unshare_files(void) 3394 { 3395 struct task_struct *task = current; 3396 struct files_struct *old, *copy = NULL; 3397 int error; 3398 3399 error = unshare_fd(CLONE_FILES, ©); 3400 if (error || !copy) 3401 return error; 3402 3403 old = task->files; 3404 task_lock(task); 3405 task->files = copy; 3406 task_unlock(task); 3407 put_files_struct(old); 3408 return 0; 3409 } 3410 3411 int sysctl_max_threads(const struct ctl_table *table, int write, 3412 void *buffer, size_t *lenp, loff_t *ppos) 3413 { 3414 struct ctl_table t; 3415 int ret; 3416 int threads = max_threads; 3417 int min = 1; 3418 int max = MAX_THREADS; 3419 3420 t = *table; 3421 t.data = &threads; 3422 t.extra1 = &min; 3423 t.extra2 = &max; 3424 3425 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3426 if (ret || !write) 3427 return ret; 3428 3429 max_threads = threads; 3430 3431 return 0; 3432 } 3433