xref: /linux/kernel/fork.c (revision 4603f53a1dc3c76dfba841d123db9fa6204934f5)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/seccomp.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/rmap.h>
54 #include <linux/ksm.h>
55 #include <linux/acct.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/freezer.h>
59 #include <linux/delayacct.h>
60 #include <linux/taskstats_kern.h>
61 #include <linux/random.h>
62 #include <linux/tty.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71 #include <linux/signalfd.h>
72 #include <linux/uprobes.h>
73 #include <linux/aio.h>
74 
75 #include <asm/pgtable.h>
76 #include <asm/pgalloc.h>
77 #include <asm/uaccess.h>
78 #include <asm/mmu_context.h>
79 #include <asm/cacheflush.h>
80 #include <asm/tlbflush.h>
81 
82 #include <trace/events/sched.h>
83 
84 #define CREATE_TRACE_POINTS
85 #include <trace/events/task.h>
86 
87 /*
88  * Protected counters by write_lock_irq(&tasklist_lock)
89  */
90 unsigned long total_forks;	/* Handle normal Linux uptimes. */
91 int nr_threads;			/* The idle threads do not count.. */
92 
93 int max_threads;		/* tunable limit on nr_threads */
94 
95 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
96 
97 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
98 
99 #ifdef CONFIG_PROVE_RCU
100 int lockdep_tasklist_lock_is_held(void)
101 {
102 	return lockdep_is_held(&tasklist_lock);
103 }
104 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
105 #endif /* #ifdef CONFIG_PROVE_RCU */
106 
107 int nr_processes(void)
108 {
109 	int cpu;
110 	int total = 0;
111 
112 	for_each_possible_cpu(cpu)
113 		total += per_cpu(process_counts, cpu);
114 
115 	return total;
116 }
117 
118 void __weak arch_release_task_struct(struct task_struct *tsk)
119 {
120 }
121 
122 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
123 static struct kmem_cache *task_struct_cachep;
124 
125 static inline struct task_struct *alloc_task_struct_node(int node)
126 {
127 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
128 }
129 
130 static inline void free_task_struct(struct task_struct *tsk)
131 {
132 	kmem_cache_free(task_struct_cachep, tsk);
133 }
134 #endif
135 
136 void __weak arch_release_thread_info(struct thread_info *ti)
137 {
138 }
139 
140 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
141 
142 /*
143  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
144  * kmemcache based allocator.
145  */
146 # if THREAD_SIZE >= PAGE_SIZE
147 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
148 						  int node)
149 {
150 	struct page *page = alloc_pages_node(node, THREADINFO_GFP_ACCOUNTED,
151 					     THREAD_SIZE_ORDER);
152 
153 	return page ? page_address(page) : NULL;
154 }
155 
156 static inline void free_thread_info(struct thread_info *ti)
157 {
158 	free_memcg_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
159 }
160 # else
161 static struct kmem_cache *thread_info_cache;
162 
163 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
164 						  int node)
165 {
166 	return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
167 }
168 
169 static void free_thread_info(struct thread_info *ti)
170 {
171 	kmem_cache_free(thread_info_cache, ti);
172 }
173 
174 void thread_info_cache_init(void)
175 {
176 	thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
177 					      THREAD_SIZE, 0, NULL);
178 	BUG_ON(thread_info_cache == NULL);
179 }
180 # endif
181 #endif
182 
183 /* SLAB cache for signal_struct structures (tsk->signal) */
184 static struct kmem_cache *signal_cachep;
185 
186 /* SLAB cache for sighand_struct structures (tsk->sighand) */
187 struct kmem_cache *sighand_cachep;
188 
189 /* SLAB cache for files_struct structures (tsk->files) */
190 struct kmem_cache *files_cachep;
191 
192 /* SLAB cache for fs_struct structures (tsk->fs) */
193 struct kmem_cache *fs_cachep;
194 
195 /* SLAB cache for vm_area_struct structures */
196 struct kmem_cache *vm_area_cachep;
197 
198 /* SLAB cache for mm_struct structures (tsk->mm) */
199 static struct kmem_cache *mm_cachep;
200 
201 static void account_kernel_stack(struct thread_info *ti, int account)
202 {
203 	struct zone *zone = page_zone(virt_to_page(ti));
204 
205 	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
206 }
207 
208 void free_task(struct task_struct *tsk)
209 {
210 	account_kernel_stack(tsk->stack, -1);
211 	arch_release_thread_info(tsk->stack);
212 	free_thread_info(tsk->stack);
213 	rt_mutex_debug_task_free(tsk);
214 	ftrace_graph_exit_task(tsk);
215 	put_seccomp_filter(tsk);
216 	arch_release_task_struct(tsk);
217 	free_task_struct(tsk);
218 }
219 EXPORT_SYMBOL(free_task);
220 
221 static inline void free_signal_struct(struct signal_struct *sig)
222 {
223 	taskstats_tgid_free(sig);
224 	sched_autogroup_exit(sig);
225 	kmem_cache_free(signal_cachep, sig);
226 }
227 
228 static inline void put_signal_struct(struct signal_struct *sig)
229 {
230 	if (atomic_dec_and_test(&sig->sigcnt))
231 		free_signal_struct(sig);
232 }
233 
234 void __put_task_struct(struct task_struct *tsk)
235 {
236 	WARN_ON(!tsk->exit_state);
237 	WARN_ON(atomic_read(&tsk->usage));
238 	WARN_ON(tsk == current);
239 
240 	security_task_free(tsk);
241 	exit_creds(tsk);
242 	delayacct_tsk_free(tsk);
243 	put_signal_struct(tsk->signal);
244 
245 	if (!profile_handoff_task(tsk))
246 		free_task(tsk);
247 }
248 EXPORT_SYMBOL_GPL(__put_task_struct);
249 
250 void __init __weak arch_task_cache_init(void) { }
251 
252 void __init fork_init(unsigned long mempages)
253 {
254 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
255 #ifndef ARCH_MIN_TASKALIGN
256 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
257 #endif
258 	/* create a slab on which task_structs can be allocated */
259 	task_struct_cachep =
260 		kmem_cache_create("task_struct", sizeof(struct task_struct),
261 			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
262 #endif
263 
264 	/* do the arch specific task caches init */
265 	arch_task_cache_init();
266 
267 	/*
268 	 * The default maximum number of threads is set to a safe
269 	 * value: the thread structures can take up at most half
270 	 * of memory.
271 	 */
272 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
273 
274 	/*
275 	 * we need to allow at least 20 threads to boot a system
276 	 */
277 	if (max_threads < 20)
278 		max_threads = 20;
279 
280 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
281 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
282 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
283 		init_task.signal->rlim[RLIMIT_NPROC];
284 }
285 
286 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
287 					       struct task_struct *src)
288 {
289 	*dst = *src;
290 	return 0;
291 }
292 
293 static struct task_struct *dup_task_struct(struct task_struct *orig)
294 {
295 	struct task_struct *tsk;
296 	struct thread_info *ti;
297 	unsigned long *stackend;
298 	int node = tsk_fork_get_node(orig);
299 	int err;
300 
301 	tsk = alloc_task_struct_node(node);
302 	if (!tsk)
303 		return NULL;
304 
305 	ti = alloc_thread_info_node(tsk, node);
306 	if (!ti)
307 		goto free_tsk;
308 
309 	err = arch_dup_task_struct(tsk, orig);
310 	if (err)
311 		goto free_ti;
312 
313 	tsk->stack = ti;
314 
315 	setup_thread_stack(tsk, orig);
316 	clear_user_return_notifier(tsk);
317 	clear_tsk_need_resched(tsk);
318 	stackend = end_of_stack(tsk);
319 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
320 
321 #ifdef CONFIG_CC_STACKPROTECTOR
322 	tsk->stack_canary = get_random_int();
323 #endif
324 
325 	/*
326 	 * One for us, one for whoever does the "release_task()" (usually
327 	 * parent)
328 	 */
329 	atomic_set(&tsk->usage, 2);
330 #ifdef CONFIG_BLK_DEV_IO_TRACE
331 	tsk->btrace_seq = 0;
332 #endif
333 	tsk->splice_pipe = NULL;
334 	tsk->task_frag.page = NULL;
335 
336 	account_kernel_stack(ti, 1);
337 
338 	return tsk;
339 
340 free_ti:
341 	free_thread_info(ti);
342 free_tsk:
343 	free_task_struct(tsk);
344 	return NULL;
345 }
346 
347 #ifdef CONFIG_MMU
348 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
349 {
350 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
351 	struct rb_node **rb_link, *rb_parent;
352 	int retval;
353 	unsigned long charge;
354 	struct mempolicy *pol;
355 
356 	uprobe_start_dup_mmap();
357 	down_write(&oldmm->mmap_sem);
358 	flush_cache_dup_mm(oldmm);
359 	uprobe_dup_mmap(oldmm, mm);
360 	/*
361 	 * Not linked in yet - no deadlock potential:
362 	 */
363 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
364 
365 	mm->locked_vm = 0;
366 	mm->mmap = NULL;
367 	mm->mmap_cache = NULL;
368 	mm->map_count = 0;
369 	cpumask_clear(mm_cpumask(mm));
370 	mm->mm_rb = RB_ROOT;
371 	rb_link = &mm->mm_rb.rb_node;
372 	rb_parent = NULL;
373 	pprev = &mm->mmap;
374 	retval = ksm_fork(mm, oldmm);
375 	if (retval)
376 		goto out;
377 	retval = khugepaged_fork(mm, oldmm);
378 	if (retval)
379 		goto out;
380 
381 	prev = NULL;
382 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
383 		struct file *file;
384 
385 		if (mpnt->vm_flags & VM_DONTCOPY) {
386 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
387 							-vma_pages(mpnt));
388 			continue;
389 		}
390 		charge = 0;
391 		if (mpnt->vm_flags & VM_ACCOUNT) {
392 			unsigned long len = vma_pages(mpnt);
393 
394 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
395 				goto fail_nomem;
396 			charge = len;
397 		}
398 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
399 		if (!tmp)
400 			goto fail_nomem;
401 		*tmp = *mpnt;
402 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
403 		pol = mpol_dup(vma_policy(mpnt));
404 		retval = PTR_ERR(pol);
405 		if (IS_ERR(pol))
406 			goto fail_nomem_policy;
407 		vma_set_policy(tmp, pol);
408 		tmp->vm_mm = mm;
409 		if (anon_vma_fork(tmp, mpnt))
410 			goto fail_nomem_anon_vma_fork;
411 		tmp->vm_flags &= ~VM_LOCKED;
412 		tmp->vm_next = tmp->vm_prev = NULL;
413 		file = tmp->vm_file;
414 		if (file) {
415 			struct inode *inode = file_inode(file);
416 			struct address_space *mapping = file->f_mapping;
417 
418 			get_file(file);
419 			if (tmp->vm_flags & VM_DENYWRITE)
420 				atomic_dec(&inode->i_writecount);
421 			mutex_lock(&mapping->i_mmap_mutex);
422 			if (tmp->vm_flags & VM_SHARED)
423 				mapping->i_mmap_writable++;
424 			flush_dcache_mmap_lock(mapping);
425 			/* insert tmp into the share list, just after mpnt */
426 			if (unlikely(tmp->vm_flags & VM_NONLINEAR))
427 				vma_nonlinear_insert(tmp,
428 						&mapping->i_mmap_nonlinear);
429 			else
430 				vma_interval_tree_insert_after(tmp, mpnt,
431 							&mapping->i_mmap);
432 			flush_dcache_mmap_unlock(mapping);
433 			mutex_unlock(&mapping->i_mmap_mutex);
434 		}
435 
436 		/*
437 		 * Clear hugetlb-related page reserves for children. This only
438 		 * affects MAP_PRIVATE mappings. Faults generated by the child
439 		 * are not guaranteed to succeed, even if read-only
440 		 */
441 		if (is_vm_hugetlb_page(tmp))
442 			reset_vma_resv_huge_pages(tmp);
443 
444 		/*
445 		 * Link in the new vma and copy the page table entries.
446 		 */
447 		*pprev = tmp;
448 		pprev = &tmp->vm_next;
449 		tmp->vm_prev = prev;
450 		prev = tmp;
451 
452 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
453 		rb_link = &tmp->vm_rb.rb_right;
454 		rb_parent = &tmp->vm_rb;
455 
456 		mm->map_count++;
457 		retval = copy_page_range(mm, oldmm, mpnt);
458 
459 		if (tmp->vm_ops && tmp->vm_ops->open)
460 			tmp->vm_ops->open(tmp);
461 
462 		if (retval)
463 			goto out;
464 	}
465 	/* a new mm has just been created */
466 	arch_dup_mmap(oldmm, mm);
467 	retval = 0;
468 out:
469 	up_write(&mm->mmap_sem);
470 	flush_tlb_mm(oldmm);
471 	up_write(&oldmm->mmap_sem);
472 	uprobe_end_dup_mmap();
473 	return retval;
474 fail_nomem_anon_vma_fork:
475 	mpol_put(pol);
476 fail_nomem_policy:
477 	kmem_cache_free(vm_area_cachep, tmp);
478 fail_nomem:
479 	retval = -ENOMEM;
480 	vm_unacct_memory(charge);
481 	goto out;
482 }
483 
484 static inline int mm_alloc_pgd(struct mm_struct *mm)
485 {
486 	mm->pgd = pgd_alloc(mm);
487 	if (unlikely(!mm->pgd))
488 		return -ENOMEM;
489 	return 0;
490 }
491 
492 static inline void mm_free_pgd(struct mm_struct *mm)
493 {
494 	pgd_free(mm, mm->pgd);
495 }
496 #else
497 #define dup_mmap(mm, oldmm)	(0)
498 #define mm_alloc_pgd(mm)	(0)
499 #define mm_free_pgd(mm)
500 #endif /* CONFIG_MMU */
501 
502 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
503 
504 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
505 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
506 
507 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
508 
509 static int __init coredump_filter_setup(char *s)
510 {
511 	default_dump_filter =
512 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
513 		MMF_DUMP_FILTER_MASK;
514 	return 1;
515 }
516 
517 __setup("coredump_filter=", coredump_filter_setup);
518 
519 #include <linux/init_task.h>
520 
521 static void mm_init_aio(struct mm_struct *mm)
522 {
523 #ifdef CONFIG_AIO
524 	spin_lock_init(&mm->ioctx_lock);
525 	INIT_HLIST_HEAD(&mm->ioctx_list);
526 #endif
527 }
528 
529 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
530 {
531 	atomic_set(&mm->mm_users, 1);
532 	atomic_set(&mm->mm_count, 1);
533 	init_rwsem(&mm->mmap_sem);
534 	INIT_LIST_HEAD(&mm->mmlist);
535 	mm->flags = (current->mm) ?
536 		(current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
537 	mm->core_state = NULL;
538 	mm->nr_ptes = 0;
539 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
540 	spin_lock_init(&mm->page_table_lock);
541 	mm_init_aio(mm);
542 	mm_init_owner(mm, p);
543 
544 	if (likely(!mm_alloc_pgd(mm))) {
545 		mm->def_flags = 0;
546 		mmu_notifier_mm_init(mm);
547 		return mm;
548 	}
549 
550 	free_mm(mm);
551 	return NULL;
552 }
553 
554 static void check_mm(struct mm_struct *mm)
555 {
556 	int i;
557 
558 	for (i = 0; i < NR_MM_COUNTERS; i++) {
559 		long x = atomic_long_read(&mm->rss_stat.count[i]);
560 
561 		if (unlikely(x))
562 			printk(KERN_ALERT "BUG: Bad rss-counter state "
563 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
564 	}
565 
566 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
567 	VM_BUG_ON(mm->pmd_huge_pte);
568 #endif
569 }
570 
571 /*
572  * Allocate and initialize an mm_struct.
573  */
574 struct mm_struct *mm_alloc(void)
575 {
576 	struct mm_struct *mm;
577 
578 	mm = allocate_mm();
579 	if (!mm)
580 		return NULL;
581 
582 	memset(mm, 0, sizeof(*mm));
583 	mm_init_cpumask(mm);
584 	return mm_init(mm, current);
585 }
586 
587 /*
588  * Called when the last reference to the mm
589  * is dropped: either by a lazy thread or by
590  * mmput. Free the page directory and the mm.
591  */
592 void __mmdrop(struct mm_struct *mm)
593 {
594 	BUG_ON(mm == &init_mm);
595 	mm_free_pgd(mm);
596 	destroy_context(mm);
597 	mmu_notifier_mm_destroy(mm);
598 	check_mm(mm);
599 	free_mm(mm);
600 }
601 EXPORT_SYMBOL_GPL(__mmdrop);
602 
603 /*
604  * Decrement the use count and release all resources for an mm.
605  */
606 void mmput(struct mm_struct *mm)
607 {
608 	might_sleep();
609 
610 	if (atomic_dec_and_test(&mm->mm_users)) {
611 		uprobe_clear_state(mm);
612 		exit_aio(mm);
613 		ksm_exit(mm);
614 		khugepaged_exit(mm); /* must run before exit_mmap */
615 		exit_mmap(mm);
616 		set_mm_exe_file(mm, NULL);
617 		if (!list_empty(&mm->mmlist)) {
618 			spin_lock(&mmlist_lock);
619 			list_del(&mm->mmlist);
620 			spin_unlock(&mmlist_lock);
621 		}
622 		if (mm->binfmt)
623 			module_put(mm->binfmt->module);
624 		mmdrop(mm);
625 	}
626 }
627 EXPORT_SYMBOL_GPL(mmput);
628 
629 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
630 {
631 	if (new_exe_file)
632 		get_file(new_exe_file);
633 	if (mm->exe_file)
634 		fput(mm->exe_file);
635 	mm->exe_file = new_exe_file;
636 }
637 
638 struct file *get_mm_exe_file(struct mm_struct *mm)
639 {
640 	struct file *exe_file;
641 
642 	/* We need mmap_sem to protect against races with removal of exe_file */
643 	down_read(&mm->mmap_sem);
644 	exe_file = mm->exe_file;
645 	if (exe_file)
646 		get_file(exe_file);
647 	up_read(&mm->mmap_sem);
648 	return exe_file;
649 }
650 
651 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
652 {
653 	/* It's safe to write the exe_file pointer without exe_file_lock because
654 	 * this is called during fork when the task is not yet in /proc */
655 	newmm->exe_file = get_mm_exe_file(oldmm);
656 }
657 
658 /**
659  * get_task_mm - acquire a reference to the task's mm
660  *
661  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
662  * this kernel workthread has transiently adopted a user mm with use_mm,
663  * to do its AIO) is not set and if so returns a reference to it, after
664  * bumping up the use count.  User must release the mm via mmput()
665  * after use.  Typically used by /proc and ptrace.
666  */
667 struct mm_struct *get_task_mm(struct task_struct *task)
668 {
669 	struct mm_struct *mm;
670 
671 	task_lock(task);
672 	mm = task->mm;
673 	if (mm) {
674 		if (task->flags & PF_KTHREAD)
675 			mm = NULL;
676 		else
677 			atomic_inc(&mm->mm_users);
678 	}
679 	task_unlock(task);
680 	return mm;
681 }
682 EXPORT_SYMBOL_GPL(get_task_mm);
683 
684 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
685 {
686 	struct mm_struct *mm;
687 	int err;
688 
689 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
690 	if (err)
691 		return ERR_PTR(err);
692 
693 	mm = get_task_mm(task);
694 	if (mm && mm != current->mm &&
695 			!ptrace_may_access(task, mode)) {
696 		mmput(mm);
697 		mm = ERR_PTR(-EACCES);
698 	}
699 	mutex_unlock(&task->signal->cred_guard_mutex);
700 
701 	return mm;
702 }
703 
704 static void complete_vfork_done(struct task_struct *tsk)
705 {
706 	struct completion *vfork;
707 
708 	task_lock(tsk);
709 	vfork = tsk->vfork_done;
710 	if (likely(vfork)) {
711 		tsk->vfork_done = NULL;
712 		complete(vfork);
713 	}
714 	task_unlock(tsk);
715 }
716 
717 static int wait_for_vfork_done(struct task_struct *child,
718 				struct completion *vfork)
719 {
720 	int killed;
721 
722 	freezer_do_not_count();
723 	killed = wait_for_completion_killable(vfork);
724 	freezer_count();
725 
726 	if (killed) {
727 		task_lock(child);
728 		child->vfork_done = NULL;
729 		task_unlock(child);
730 	}
731 
732 	put_task_struct(child);
733 	return killed;
734 }
735 
736 /* Please note the differences between mmput and mm_release.
737  * mmput is called whenever we stop holding onto a mm_struct,
738  * error success whatever.
739  *
740  * mm_release is called after a mm_struct has been removed
741  * from the current process.
742  *
743  * This difference is important for error handling, when we
744  * only half set up a mm_struct for a new process and need to restore
745  * the old one.  Because we mmput the new mm_struct before
746  * restoring the old one. . .
747  * Eric Biederman 10 January 1998
748  */
749 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
750 {
751 	/* Get rid of any futexes when releasing the mm */
752 #ifdef CONFIG_FUTEX
753 	if (unlikely(tsk->robust_list)) {
754 		exit_robust_list(tsk);
755 		tsk->robust_list = NULL;
756 	}
757 #ifdef CONFIG_COMPAT
758 	if (unlikely(tsk->compat_robust_list)) {
759 		compat_exit_robust_list(tsk);
760 		tsk->compat_robust_list = NULL;
761 	}
762 #endif
763 	if (unlikely(!list_empty(&tsk->pi_state_list)))
764 		exit_pi_state_list(tsk);
765 #endif
766 
767 	uprobe_free_utask(tsk);
768 
769 	/* Get rid of any cached register state */
770 	deactivate_mm(tsk, mm);
771 
772 	/*
773 	 * If we're exiting normally, clear a user-space tid field if
774 	 * requested.  We leave this alone when dying by signal, to leave
775 	 * the value intact in a core dump, and to save the unnecessary
776 	 * trouble, say, a killed vfork parent shouldn't touch this mm.
777 	 * Userland only wants this done for a sys_exit.
778 	 */
779 	if (tsk->clear_child_tid) {
780 		if (!(tsk->flags & PF_SIGNALED) &&
781 		    atomic_read(&mm->mm_users) > 1) {
782 			/*
783 			 * We don't check the error code - if userspace has
784 			 * not set up a proper pointer then tough luck.
785 			 */
786 			put_user(0, tsk->clear_child_tid);
787 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
788 					1, NULL, NULL, 0);
789 		}
790 		tsk->clear_child_tid = NULL;
791 	}
792 
793 	/*
794 	 * All done, finally we can wake up parent and return this mm to him.
795 	 * Also kthread_stop() uses this completion for synchronization.
796 	 */
797 	if (tsk->vfork_done)
798 		complete_vfork_done(tsk);
799 }
800 
801 /*
802  * Allocate a new mm structure and copy contents from the
803  * mm structure of the passed in task structure.
804  */
805 struct mm_struct *dup_mm(struct task_struct *tsk)
806 {
807 	struct mm_struct *mm, *oldmm = current->mm;
808 	int err;
809 
810 	if (!oldmm)
811 		return NULL;
812 
813 	mm = allocate_mm();
814 	if (!mm)
815 		goto fail_nomem;
816 
817 	memcpy(mm, oldmm, sizeof(*mm));
818 	mm_init_cpumask(mm);
819 
820 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
821 	mm->pmd_huge_pte = NULL;
822 #endif
823 #ifdef CONFIG_NUMA_BALANCING
824 	mm->first_nid = NUMA_PTE_SCAN_INIT;
825 #endif
826 	if (!mm_init(mm, tsk))
827 		goto fail_nomem;
828 
829 	if (init_new_context(tsk, mm))
830 		goto fail_nocontext;
831 
832 	dup_mm_exe_file(oldmm, mm);
833 
834 	err = dup_mmap(mm, oldmm);
835 	if (err)
836 		goto free_pt;
837 
838 	mm->hiwater_rss = get_mm_rss(mm);
839 	mm->hiwater_vm = mm->total_vm;
840 
841 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
842 		goto free_pt;
843 
844 	return mm;
845 
846 free_pt:
847 	/* don't put binfmt in mmput, we haven't got module yet */
848 	mm->binfmt = NULL;
849 	mmput(mm);
850 
851 fail_nomem:
852 	return NULL;
853 
854 fail_nocontext:
855 	/*
856 	 * If init_new_context() failed, we cannot use mmput() to free the mm
857 	 * because it calls destroy_context()
858 	 */
859 	mm_free_pgd(mm);
860 	free_mm(mm);
861 	return NULL;
862 }
863 
864 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
865 {
866 	struct mm_struct *mm, *oldmm;
867 	int retval;
868 
869 	tsk->min_flt = tsk->maj_flt = 0;
870 	tsk->nvcsw = tsk->nivcsw = 0;
871 #ifdef CONFIG_DETECT_HUNG_TASK
872 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
873 #endif
874 
875 	tsk->mm = NULL;
876 	tsk->active_mm = NULL;
877 
878 	/*
879 	 * Are we cloning a kernel thread?
880 	 *
881 	 * We need to steal a active VM for that..
882 	 */
883 	oldmm = current->mm;
884 	if (!oldmm)
885 		return 0;
886 
887 	if (clone_flags & CLONE_VM) {
888 		atomic_inc(&oldmm->mm_users);
889 		mm = oldmm;
890 		goto good_mm;
891 	}
892 
893 	retval = -ENOMEM;
894 	mm = dup_mm(tsk);
895 	if (!mm)
896 		goto fail_nomem;
897 
898 good_mm:
899 	tsk->mm = mm;
900 	tsk->active_mm = mm;
901 	return 0;
902 
903 fail_nomem:
904 	return retval;
905 }
906 
907 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
908 {
909 	struct fs_struct *fs = current->fs;
910 	if (clone_flags & CLONE_FS) {
911 		/* tsk->fs is already what we want */
912 		spin_lock(&fs->lock);
913 		if (fs->in_exec) {
914 			spin_unlock(&fs->lock);
915 			return -EAGAIN;
916 		}
917 		fs->users++;
918 		spin_unlock(&fs->lock);
919 		return 0;
920 	}
921 	tsk->fs = copy_fs_struct(fs);
922 	if (!tsk->fs)
923 		return -ENOMEM;
924 	return 0;
925 }
926 
927 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
928 {
929 	struct files_struct *oldf, *newf;
930 	int error = 0;
931 
932 	/*
933 	 * A background process may not have any files ...
934 	 */
935 	oldf = current->files;
936 	if (!oldf)
937 		goto out;
938 
939 	if (clone_flags & CLONE_FILES) {
940 		atomic_inc(&oldf->count);
941 		goto out;
942 	}
943 
944 	newf = dup_fd(oldf, &error);
945 	if (!newf)
946 		goto out;
947 
948 	tsk->files = newf;
949 	error = 0;
950 out:
951 	return error;
952 }
953 
954 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
955 {
956 #ifdef CONFIG_BLOCK
957 	struct io_context *ioc = current->io_context;
958 	struct io_context *new_ioc;
959 
960 	if (!ioc)
961 		return 0;
962 	/*
963 	 * Share io context with parent, if CLONE_IO is set
964 	 */
965 	if (clone_flags & CLONE_IO) {
966 		ioc_task_link(ioc);
967 		tsk->io_context = ioc;
968 	} else if (ioprio_valid(ioc->ioprio)) {
969 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
970 		if (unlikely(!new_ioc))
971 			return -ENOMEM;
972 
973 		new_ioc->ioprio = ioc->ioprio;
974 		put_io_context(new_ioc);
975 	}
976 #endif
977 	return 0;
978 }
979 
980 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
981 {
982 	struct sighand_struct *sig;
983 
984 	if (clone_flags & CLONE_SIGHAND) {
985 		atomic_inc(&current->sighand->count);
986 		return 0;
987 	}
988 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
989 	rcu_assign_pointer(tsk->sighand, sig);
990 	if (!sig)
991 		return -ENOMEM;
992 	atomic_set(&sig->count, 1);
993 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
994 	return 0;
995 }
996 
997 void __cleanup_sighand(struct sighand_struct *sighand)
998 {
999 	if (atomic_dec_and_test(&sighand->count)) {
1000 		signalfd_cleanup(sighand);
1001 		kmem_cache_free(sighand_cachep, sighand);
1002 	}
1003 }
1004 
1005 
1006 /*
1007  * Initialize POSIX timer handling for a thread group.
1008  */
1009 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1010 {
1011 	unsigned long cpu_limit;
1012 
1013 	/* Thread group counters. */
1014 	thread_group_cputime_init(sig);
1015 
1016 	cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1017 	if (cpu_limit != RLIM_INFINITY) {
1018 		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1019 		sig->cputimer.running = 1;
1020 	}
1021 
1022 	/* The timer lists. */
1023 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1024 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1025 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1026 }
1027 
1028 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1029 {
1030 	struct signal_struct *sig;
1031 
1032 	if (clone_flags & CLONE_THREAD)
1033 		return 0;
1034 
1035 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1036 	tsk->signal = sig;
1037 	if (!sig)
1038 		return -ENOMEM;
1039 
1040 	sig->nr_threads = 1;
1041 	atomic_set(&sig->live, 1);
1042 	atomic_set(&sig->sigcnt, 1);
1043 	init_waitqueue_head(&sig->wait_chldexit);
1044 	sig->curr_target = tsk;
1045 	init_sigpending(&sig->shared_pending);
1046 	INIT_LIST_HEAD(&sig->posix_timers);
1047 
1048 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1049 	sig->real_timer.function = it_real_fn;
1050 
1051 	task_lock(current->group_leader);
1052 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1053 	task_unlock(current->group_leader);
1054 
1055 	posix_cpu_timers_init_group(sig);
1056 
1057 	tty_audit_fork(sig);
1058 	sched_autogroup_fork(sig);
1059 
1060 #ifdef CONFIG_CGROUPS
1061 	init_rwsem(&sig->group_rwsem);
1062 #endif
1063 
1064 	sig->oom_score_adj = current->signal->oom_score_adj;
1065 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1066 
1067 	sig->has_child_subreaper = current->signal->has_child_subreaper ||
1068 				   current->signal->is_child_subreaper;
1069 
1070 	mutex_init(&sig->cred_guard_mutex);
1071 
1072 	return 0;
1073 }
1074 
1075 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1076 {
1077 	unsigned long new_flags = p->flags;
1078 
1079 	new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1080 	new_flags |= PF_FORKNOEXEC;
1081 	p->flags = new_flags;
1082 }
1083 
1084 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1085 {
1086 	current->clear_child_tid = tidptr;
1087 
1088 	return task_pid_vnr(current);
1089 }
1090 
1091 static void rt_mutex_init_task(struct task_struct *p)
1092 {
1093 	raw_spin_lock_init(&p->pi_lock);
1094 #ifdef CONFIG_RT_MUTEXES
1095 	plist_head_init(&p->pi_waiters);
1096 	p->pi_blocked_on = NULL;
1097 #endif
1098 }
1099 
1100 #ifdef CONFIG_MM_OWNER
1101 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1102 {
1103 	mm->owner = p;
1104 }
1105 #endif /* CONFIG_MM_OWNER */
1106 
1107 /*
1108  * Initialize POSIX timer handling for a single task.
1109  */
1110 static void posix_cpu_timers_init(struct task_struct *tsk)
1111 {
1112 	tsk->cputime_expires.prof_exp = 0;
1113 	tsk->cputime_expires.virt_exp = 0;
1114 	tsk->cputime_expires.sched_exp = 0;
1115 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1116 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1117 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1118 }
1119 
1120 static inline void
1121 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1122 {
1123 	 task->pids[type].pid = pid;
1124 }
1125 
1126 /*
1127  * This creates a new process as a copy of the old one,
1128  * but does not actually start it yet.
1129  *
1130  * It copies the registers, and all the appropriate
1131  * parts of the process environment (as per the clone
1132  * flags). The actual kick-off is left to the caller.
1133  */
1134 static struct task_struct *copy_process(unsigned long clone_flags,
1135 					unsigned long stack_start,
1136 					unsigned long stack_size,
1137 					int __user *child_tidptr,
1138 					struct pid *pid,
1139 					int trace)
1140 {
1141 	int retval;
1142 	struct task_struct *p;
1143 
1144 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1145 		return ERR_PTR(-EINVAL);
1146 
1147 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1148 		return ERR_PTR(-EINVAL);
1149 
1150 	/*
1151 	 * Thread groups must share signals as well, and detached threads
1152 	 * can only be started up within the thread group.
1153 	 */
1154 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1155 		return ERR_PTR(-EINVAL);
1156 
1157 	/*
1158 	 * Shared signal handlers imply shared VM. By way of the above,
1159 	 * thread groups also imply shared VM. Blocking this case allows
1160 	 * for various simplifications in other code.
1161 	 */
1162 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1163 		return ERR_PTR(-EINVAL);
1164 
1165 	/*
1166 	 * Siblings of global init remain as zombies on exit since they are
1167 	 * not reaped by their parent (swapper). To solve this and to avoid
1168 	 * multi-rooted process trees, prevent global and container-inits
1169 	 * from creating siblings.
1170 	 */
1171 	if ((clone_flags & CLONE_PARENT) &&
1172 				current->signal->flags & SIGNAL_UNKILLABLE)
1173 		return ERR_PTR(-EINVAL);
1174 
1175 	/*
1176 	 * If the new process will be in a different pid namespace
1177 	 * don't allow the creation of threads.
1178 	 */
1179 	if ((clone_flags & (CLONE_VM|CLONE_NEWPID)) &&
1180 	    (task_active_pid_ns(current) != current->nsproxy->pid_ns))
1181 		return ERR_PTR(-EINVAL);
1182 
1183 	retval = security_task_create(clone_flags);
1184 	if (retval)
1185 		goto fork_out;
1186 
1187 	retval = -ENOMEM;
1188 	p = dup_task_struct(current);
1189 	if (!p)
1190 		goto fork_out;
1191 
1192 	ftrace_graph_init_task(p);
1193 	get_seccomp_filter(p);
1194 
1195 	rt_mutex_init_task(p);
1196 
1197 #ifdef CONFIG_PROVE_LOCKING
1198 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1199 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1200 #endif
1201 	retval = -EAGAIN;
1202 	if (atomic_read(&p->real_cred->user->processes) >=
1203 			task_rlimit(p, RLIMIT_NPROC)) {
1204 		if (p->real_cred->user != INIT_USER &&
1205 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1206 			goto bad_fork_free;
1207 	}
1208 	current->flags &= ~PF_NPROC_EXCEEDED;
1209 
1210 	retval = copy_creds(p, clone_flags);
1211 	if (retval < 0)
1212 		goto bad_fork_free;
1213 
1214 	/*
1215 	 * If multiple threads are within copy_process(), then this check
1216 	 * triggers too late. This doesn't hurt, the check is only there
1217 	 * to stop root fork bombs.
1218 	 */
1219 	retval = -EAGAIN;
1220 	if (nr_threads >= max_threads)
1221 		goto bad_fork_cleanup_count;
1222 
1223 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1224 		goto bad_fork_cleanup_count;
1225 
1226 	p->did_exec = 0;
1227 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1228 	copy_flags(clone_flags, p);
1229 	INIT_LIST_HEAD(&p->children);
1230 	INIT_LIST_HEAD(&p->sibling);
1231 	rcu_copy_process(p);
1232 	p->vfork_done = NULL;
1233 	spin_lock_init(&p->alloc_lock);
1234 
1235 	init_sigpending(&p->pending);
1236 
1237 	p->utime = p->stime = p->gtime = 0;
1238 	p->utimescaled = p->stimescaled = 0;
1239 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1240 	p->prev_cputime.utime = p->prev_cputime.stime = 0;
1241 #endif
1242 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1243 	seqlock_init(&p->vtime_seqlock);
1244 	p->vtime_snap = 0;
1245 	p->vtime_snap_whence = VTIME_SLEEPING;
1246 #endif
1247 
1248 #if defined(SPLIT_RSS_COUNTING)
1249 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1250 #endif
1251 
1252 	p->default_timer_slack_ns = current->timer_slack_ns;
1253 
1254 	task_io_accounting_init(&p->ioac);
1255 	acct_clear_integrals(p);
1256 
1257 	posix_cpu_timers_init(p);
1258 
1259 	do_posix_clock_monotonic_gettime(&p->start_time);
1260 	p->real_start_time = p->start_time;
1261 	monotonic_to_bootbased(&p->real_start_time);
1262 	p->io_context = NULL;
1263 	p->audit_context = NULL;
1264 	if (clone_flags & CLONE_THREAD)
1265 		threadgroup_change_begin(current);
1266 	cgroup_fork(p);
1267 #ifdef CONFIG_NUMA
1268 	p->mempolicy = mpol_dup(p->mempolicy);
1269 	if (IS_ERR(p->mempolicy)) {
1270 		retval = PTR_ERR(p->mempolicy);
1271 		p->mempolicy = NULL;
1272 		goto bad_fork_cleanup_cgroup;
1273 	}
1274 	mpol_fix_fork_child_flag(p);
1275 #endif
1276 #ifdef CONFIG_CPUSETS
1277 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1278 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1279 	seqcount_init(&p->mems_allowed_seq);
1280 #endif
1281 #ifdef CONFIG_TRACE_IRQFLAGS
1282 	p->irq_events = 0;
1283 	p->hardirqs_enabled = 0;
1284 	p->hardirq_enable_ip = 0;
1285 	p->hardirq_enable_event = 0;
1286 	p->hardirq_disable_ip = _THIS_IP_;
1287 	p->hardirq_disable_event = 0;
1288 	p->softirqs_enabled = 1;
1289 	p->softirq_enable_ip = _THIS_IP_;
1290 	p->softirq_enable_event = 0;
1291 	p->softirq_disable_ip = 0;
1292 	p->softirq_disable_event = 0;
1293 	p->hardirq_context = 0;
1294 	p->softirq_context = 0;
1295 #endif
1296 #ifdef CONFIG_LOCKDEP
1297 	p->lockdep_depth = 0; /* no locks held yet */
1298 	p->curr_chain_key = 0;
1299 	p->lockdep_recursion = 0;
1300 #endif
1301 
1302 #ifdef CONFIG_DEBUG_MUTEXES
1303 	p->blocked_on = NULL; /* not blocked yet */
1304 #endif
1305 #ifdef CONFIG_MEMCG
1306 	p->memcg_batch.do_batch = 0;
1307 	p->memcg_batch.memcg = NULL;
1308 #endif
1309 #ifdef CONFIG_BCACHE
1310 	p->sequential_io	= 0;
1311 	p->sequential_io_avg	= 0;
1312 #endif
1313 
1314 	/* Perform scheduler related setup. Assign this task to a CPU. */
1315 	sched_fork(p);
1316 
1317 	retval = perf_event_init_task(p);
1318 	if (retval)
1319 		goto bad_fork_cleanup_policy;
1320 	retval = audit_alloc(p);
1321 	if (retval)
1322 		goto bad_fork_cleanup_policy;
1323 	/* copy all the process information */
1324 	retval = copy_semundo(clone_flags, p);
1325 	if (retval)
1326 		goto bad_fork_cleanup_audit;
1327 	retval = copy_files(clone_flags, p);
1328 	if (retval)
1329 		goto bad_fork_cleanup_semundo;
1330 	retval = copy_fs(clone_flags, p);
1331 	if (retval)
1332 		goto bad_fork_cleanup_files;
1333 	retval = copy_sighand(clone_flags, p);
1334 	if (retval)
1335 		goto bad_fork_cleanup_fs;
1336 	retval = copy_signal(clone_flags, p);
1337 	if (retval)
1338 		goto bad_fork_cleanup_sighand;
1339 	retval = copy_mm(clone_flags, p);
1340 	if (retval)
1341 		goto bad_fork_cleanup_signal;
1342 	retval = copy_namespaces(clone_flags, p);
1343 	if (retval)
1344 		goto bad_fork_cleanup_mm;
1345 	retval = copy_io(clone_flags, p);
1346 	if (retval)
1347 		goto bad_fork_cleanup_namespaces;
1348 	retval = copy_thread(clone_flags, stack_start, stack_size, p);
1349 	if (retval)
1350 		goto bad_fork_cleanup_io;
1351 
1352 	if (pid != &init_struct_pid) {
1353 		retval = -ENOMEM;
1354 		pid = alloc_pid(p->nsproxy->pid_ns);
1355 		if (!pid)
1356 			goto bad_fork_cleanup_io;
1357 	}
1358 
1359 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1360 	/*
1361 	 * Clear TID on mm_release()?
1362 	 */
1363 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1364 #ifdef CONFIG_BLOCK
1365 	p->plug = NULL;
1366 #endif
1367 #ifdef CONFIG_FUTEX
1368 	p->robust_list = NULL;
1369 #ifdef CONFIG_COMPAT
1370 	p->compat_robust_list = NULL;
1371 #endif
1372 	INIT_LIST_HEAD(&p->pi_state_list);
1373 	p->pi_state_cache = NULL;
1374 #endif
1375 	uprobe_copy_process(p);
1376 	/*
1377 	 * sigaltstack should be cleared when sharing the same VM
1378 	 */
1379 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1380 		p->sas_ss_sp = p->sas_ss_size = 0;
1381 
1382 	/*
1383 	 * Syscall tracing and stepping should be turned off in the
1384 	 * child regardless of CLONE_PTRACE.
1385 	 */
1386 	user_disable_single_step(p);
1387 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1388 #ifdef TIF_SYSCALL_EMU
1389 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1390 #endif
1391 	clear_all_latency_tracing(p);
1392 
1393 	/* ok, now we should be set up.. */
1394 	p->pid = pid_nr(pid);
1395 	if (clone_flags & CLONE_THREAD) {
1396 		p->exit_signal = -1;
1397 		p->group_leader = current->group_leader;
1398 		p->tgid = current->tgid;
1399 	} else {
1400 		if (clone_flags & CLONE_PARENT)
1401 			p->exit_signal = current->group_leader->exit_signal;
1402 		else
1403 			p->exit_signal = (clone_flags & CSIGNAL);
1404 		p->group_leader = p;
1405 		p->tgid = p->pid;
1406 	}
1407 
1408 	p->pdeath_signal = 0;
1409 	p->exit_state = 0;
1410 
1411 	p->nr_dirtied = 0;
1412 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1413 	p->dirty_paused_when = 0;
1414 
1415 	INIT_LIST_HEAD(&p->thread_group);
1416 	p->task_works = NULL;
1417 
1418 	/*
1419 	 * Make it visible to the rest of the system, but dont wake it up yet.
1420 	 * Need tasklist lock for parent etc handling!
1421 	 */
1422 	write_lock_irq(&tasklist_lock);
1423 
1424 	/* CLONE_PARENT re-uses the old parent */
1425 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1426 		p->real_parent = current->real_parent;
1427 		p->parent_exec_id = current->parent_exec_id;
1428 	} else {
1429 		p->real_parent = current;
1430 		p->parent_exec_id = current->self_exec_id;
1431 	}
1432 
1433 	spin_lock(&current->sighand->siglock);
1434 
1435 	/*
1436 	 * Process group and session signals need to be delivered to just the
1437 	 * parent before the fork or both the parent and the child after the
1438 	 * fork. Restart if a signal comes in before we add the new process to
1439 	 * it's process group.
1440 	 * A fatal signal pending means that current will exit, so the new
1441 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1442 	*/
1443 	recalc_sigpending();
1444 	if (signal_pending(current)) {
1445 		spin_unlock(&current->sighand->siglock);
1446 		write_unlock_irq(&tasklist_lock);
1447 		retval = -ERESTARTNOINTR;
1448 		goto bad_fork_free_pid;
1449 	}
1450 
1451 	if (likely(p->pid)) {
1452 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1453 
1454 		init_task_pid(p, PIDTYPE_PID, pid);
1455 		if (thread_group_leader(p)) {
1456 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1457 			init_task_pid(p, PIDTYPE_SID, task_session(current));
1458 
1459 			if (is_child_reaper(pid)) {
1460 				ns_of_pid(pid)->child_reaper = p;
1461 				p->signal->flags |= SIGNAL_UNKILLABLE;
1462 			}
1463 
1464 			p->signal->leader_pid = pid;
1465 			p->signal->tty = tty_kref_get(current->signal->tty);
1466 			list_add_tail(&p->sibling, &p->real_parent->children);
1467 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1468 			attach_pid(p, PIDTYPE_PGID);
1469 			attach_pid(p, PIDTYPE_SID);
1470 			__this_cpu_inc(process_counts);
1471 		} else {
1472 			current->signal->nr_threads++;
1473 			atomic_inc(&current->signal->live);
1474 			atomic_inc(&current->signal->sigcnt);
1475 			list_add_tail_rcu(&p->thread_group,
1476 					  &p->group_leader->thread_group);
1477 		}
1478 		attach_pid(p, PIDTYPE_PID);
1479 		nr_threads++;
1480 	}
1481 
1482 	total_forks++;
1483 	spin_unlock(&current->sighand->siglock);
1484 	write_unlock_irq(&tasklist_lock);
1485 	proc_fork_connector(p);
1486 	cgroup_post_fork(p);
1487 	if (clone_flags & CLONE_THREAD)
1488 		threadgroup_change_end(current);
1489 	perf_event_fork(p);
1490 
1491 	trace_task_newtask(p, clone_flags);
1492 
1493 	return p;
1494 
1495 bad_fork_free_pid:
1496 	if (pid != &init_struct_pid)
1497 		free_pid(pid);
1498 bad_fork_cleanup_io:
1499 	if (p->io_context)
1500 		exit_io_context(p);
1501 bad_fork_cleanup_namespaces:
1502 	exit_task_namespaces(p);
1503 bad_fork_cleanup_mm:
1504 	if (p->mm)
1505 		mmput(p->mm);
1506 bad_fork_cleanup_signal:
1507 	if (!(clone_flags & CLONE_THREAD))
1508 		free_signal_struct(p->signal);
1509 bad_fork_cleanup_sighand:
1510 	__cleanup_sighand(p->sighand);
1511 bad_fork_cleanup_fs:
1512 	exit_fs(p); /* blocking */
1513 bad_fork_cleanup_files:
1514 	exit_files(p); /* blocking */
1515 bad_fork_cleanup_semundo:
1516 	exit_sem(p);
1517 bad_fork_cleanup_audit:
1518 	audit_free(p);
1519 bad_fork_cleanup_policy:
1520 	perf_event_free_task(p);
1521 #ifdef CONFIG_NUMA
1522 	mpol_put(p->mempolicy);
1523 bad_fork_cleanup_cgroup:
1524 #endif
1525 	if (clone_flags & CLONE_THREAD)
1526 		threadgroup_change_end(current);
1527 	cgroup_exit(p, 0);
1528 	delayacct_tsk_free(p);
1529 	module_put(task_thread_info(p)->exec_domain->module);
1530 bad_fork_cleanup_count:
1531 	atomic_dec(&p->cred->user->processes);
1532 	exit_creds(p);
1533 bad_fork_free:
1534 	free_task(p);
1535 fork_out:
1536 	return ERR_PTR(retval);
1537 }
1538 
1539 static inline void init_idle_pids(struct pid_link *links)
1540 {
1541 	enum pid_type type;
1542 
1543 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1544 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1545 		links[type].pid = &init_struct_pid;
1546 	}
1547 }
1548 
1549 struct task_struct * __cpuinit fork_idle(int cpu)
1550 {
1551 	struct task_struct *task;
1552 	task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
1553 	if (!IS_ERR(task)) {
1554 		init_idle_pids(task->pids);
1555 		init_idle(task, cpu);
1556 	}
1557 
1558 	return task;
1559 }
1560 
1561 /*
1562  *  Ok, this is the main fork-routine.
1563  *
1564  * It copies the process, and if successful kick-starts
1565  * it and waits for it to finish using the VM if required.
1566  */
1567 long do_fork(unsigned long clone_flags,
1568 	      unsigned long stack_start,
1569 	      unsigned long stack_size,
1570 	      int __user *parent_tidptr,
1571 	      int __user *child_tidptr)
1572 {
1573 	struct task_struct *p;
1574 	int trace = 0;
1575 	long nr;
1576 
1577 	/*
1578 	 * Do some preliminary argument and permissions checking before we
1579 	 * actually start allocating stuff
1580 	 */
1581 	if (clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) {
1582 		if (clone_flags & (CLONE_THREAD|CLONE_PARENT))
1583 			return -EINVAL;
1584 	}
1585 
1586 	/*
1587 	 * Determine whether and which event to report to ptracer.  When
1588 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
1589 	 * requested, no event is reported; otherwise, report if the event
1590 	 * for the type of forking is enabled.
1591 	 */
1592 	if (!(clone_flags & CLONE_UNTRACED)) {
1593 		if (clone_flags & CLONE_VFORK)
1594 			trace = PTRACE_EVENT_VFORK;
1595 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
1596 			trace = PTRACE_EVENT_CLONE;
1597 		else
1598 			trace = PTRACE_EVENT_FORK;
1599 
1600 		if (likely(!ptrace_event_enabled(current, trace)))
1601 			trace = 0;
1602 	}
1603 
1604 	p = copy_process(clone_flags, stack_start, stack_size,
1605 			 child_tidptr, NULL, trace);
1606 	/*
1607 	 * Do this prior waking up the new thread - the thread pointer
1608 	 * might get invalid after that point, if the thread exits quickly.
1609 	 */
1610 	if (!IS_ERR(p)) {
1611 		struct completion vfork;
1612 
1613 		trace_sched_process_fork(current, p);
1614 
1615 		nr = task_pid_vnr(p);
1616 
1617 		if (clone_flags & CLONE_PARENT_SETTID)
1618 			put_user(nr, parent_tidptr);
1619 
1620 		if (clone_flags & CLONE_VFORK) {
1621 			p->vfork_done = &vfork;
1622 			init_completion(&vfork);
1623 			get_task_struct(p);
1624 		}
1625 
1626 		wake_up_new_task(p);
1627 
1628 		/* forking complete and child started to run, tell ptracer */
1629 		if (unlikely(trace))
1630 			ptrace_event(trace, nr);
1631 
1632 		if (clone_flags & CLONE_VFORK) {
1633 			if (!wait_for_vfork_done(p, &vfork))
1634 				ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1635 		}
1636 	} else {
1637 		nr = PTR_ERR(p);
1638 	}
1639 	return nr;
1640 }
1641 
1642 /*
1643  * Create a kernel thread.
1644  */
1645 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1646 {
1647 	return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1648 		(unsigned long)arg, NULL, NULL);
1649 }
1650 
1651 #ifdef __ARCH_WANT_SYS_FORK
1652 SYSCALL_DEFINE0(fork)
1653 {
1654 #ifdef CONFIG_MMU
1655 	return do_fork(SIGCHLD, 0, 0, NULL, NULL);
1656 #else
1657 	/* can not support in nommu mode */
1658 	return(-EINVAL);
1659 #endif
1660 }
1661 #endif
1662 
1663 #ifdef __ARCH_WANT_SYS_VFORK
1664 SYSCALL_DEFINE0(vfork)
1665 {
1666 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1667 			0, NULL, NULL);
1668 }
1669 #endif
1670 
1671 #ifdef __ARCH_WANT_SYS_CLONE
1672 #ifdef CONFIG_CLONE_BACKWARDS
1673 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1674 		 int __user *, parent_tidptr,
1675 		 int, tls_val,
1676 		 int __user *, child_tidptr)
1677 #elif defined(CONFIG_CLONE_BACKWARDS2)
1678 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1679 		 int __user *, parent_tidptr,
1680 		 int __user *, child_tidptr,
1681 		 int, tls_val)
1682 #else
1683 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1684 		 int __user *, parent_tidptr,
1685 		 int __user *, child_tidptr,
1686 		 int, tls_val)
1687 #endif
1688 {
1689 	return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
1690 }
1691 #endif
1692 
1693 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1694 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1695 #endif
1696 
1697 static void sighand_ctor(void *data)
1698 {
1699 	struct sighand_struct *sighand = data;
1700 
1701 	spin_lock_init(&sighand->siglock);
1702 	init_waitqueue_head(&sighand->signalfd_wqh);
1703 }
1704 
1705 void __init proc_caches_init(void)
1706 {
1707 	sighand_cachep = kmem_cache_create("sighand_cache",
1708 			sizeof(struct sighand_struct), 0,
1709 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1710 			SLAB_NOTRACK, sighand_ctor);
1711 	signal_cachep = kmem_cache_create("signal_cache",
1712 			sizeof(struct signal_struct), 0,
1713 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1714 	files_cachep = kmem_cache_create("files_cache",
1715 			sizeof(struct files_struct), 0,
1716 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1717 	fs_cachep = kmem_cache_create("fs_cache",
1718 			sizeof(struct fs_struct), 0,
1719 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1720 	/*
1721 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1722 	 * whole struct cpumask for the OFFSTACK case. We could change
1723 	 * this to *only* allocate as much of it as required by the
1724 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
1725 	 * is at the end of the structure, exactly for that reason.
1726 	 */
1727 	mm_cachep = kmem_cache_create("mm_struct",
1728 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1729 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1730 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1731 	mmap_init();
1732 	nsproxy_cache_init();
1733 }
1734 
1735 /*
1736  * Check constraints on flags passed to the unshare system call.
1737  */
1738 static int check_unshare_flags(unsigned long unshare_flags)
1739 {
1740 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1741 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1742 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1743 				CLONE_NEWUSER|CLONE_NEWPID))
1744 		return -EINVAL;
1745 	/*
1746 	 * Not implemented, but pretend it works if there is nothing to
1747 	 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1748 	 * needs to unshare vm.
1749 	 */
1750 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1751 		/* FIXME: get_task_mm() increments ->mm_users */
1752 		if (atomic_read(&current->mm->mm_users) > 1)
1753 			return -EINVAL;
1754 	}
1755 
1756 	return 0;
1757 }
1758 
1759 /*
1760  * Unshare the filesystem structure if it is being shared
1761  */
1762 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1763 {
1764 	struct fs_struct *fs = current->fs;
1765 
1766 	if (!(unshare_flags & CLONE_FS) || !fs)
1767 		return 0;
1768 
1769 	/* don't need lock here; in the worst case we'll do useless copy */
1770 	if (fs->users == 1)
1771 		return 0;
1772 
1773 	*new_fsp = copy_fs_struct(fs);
1774 	if (!*new_fsp)
1775 		return -ENOMEM;
1776 
1777 	return 0;
1778 }
1779 
1780 /*
1781  * Unshare file descriptor table if it is being shared
1782  */
1783 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1784 {
1785 	struct files_struct *fd = current->files;
1786 	int error = 0;
1787 
1788 	if ((unshare_flags & CLONE_FILES) &&
1789 	    (fd && atomic_read(&fd->count) > 1)) {
1790 		*new_fdp = dup_fd(fd, &error);
1791 		if (!*new_fdp)
1792 			return error;
1793 	}
1794 
1795 	return 0;
1796 }
1797 
1798 /*
1799  * unshare allows a process to 'unshare' part of the process
1800  * context which was originally shared using clone.  copy_*
1801  * functions used by do_fork() cannot be used here directly
1802  * because they modify an inactive task_struct that is being
1803  * constructed. Here we are modifying the current, active,
1804  * task_struct.
1805  */
1806 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1807 {
1808 	struct fs_struct *fs, *new_fs = NULL;
1809 	struct files_struct *fd, *new_fd = NULL;
1810 	struct cred *new_cred = NULL;
1811 	struct nsproxy *new_nsproxy = NULL;
1812 	int do_sysvsem = 0;
1813 	int err;
1814 
1815 	/*
1816 	 * If unsharing a user namespace must also unshare the thread.
1817 	 */
1818 	if (unshare_flags & CLONE_NEWUSER)
1819 		unshare_flags |= CLONE_THREAD | CLONE_FS;
1820 	/*
1821 	 * If unsharing a pid namespace must also unshare the thread.
1822 	 */
1823 	if (unshare_flags & CLONE_NEWPID)
1824 		unshare_flags |= CLONE_THREAD;
1825 	/*
1826 	 * If unsharing a thread from a thread group, must also unshare vm.
1827 	 */
1828 	if (unshare_flags & CLONE_THREAD)
1829 		unshare_flags |= CLONE_VM;
1830 	/*
1831 	 * If unsharing vm, must also unshare signal handlers.
1832 	 */
1833 	if (unshare_flags & CLONE_VM)
1834 		unshare_flags |= CLONE_SIGHAND;
1835 	/*
1836 	 * If unsharing namespace, must also unshare filesystem information.
1837 	 */
1838 	if (unshare_flags & CLONE_NEWNS)
1839 		unshare_flags |= CLONE_FS;
1840 
1841 	err = check_unshare_flags(unshare_flags);
1842 	if (err)
1843 		goto bad_unshare_out;
1844 	/*
1845 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1846 	 * to a new ipc namespace, the semaphore arrays from the old
1847 	 * namespace are unreachable.
1848 	 */
1849 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1850 		do_sysvsem = 1;
1851 	err = unshare_fs(unshare_flags, &new_fs);
1852 	if (err)
1853 		goto bad_unshare_out;
1854 	err = unshare_fd(unshare_flags, &new_fd);
1855 	if (err)
1856 		goto bad_unshare_cleanup_fs;
1857 	err = unshare_userns(unshare_flags, &new_cred);
1858 	if (err)
1859 		goto bad_unshare_cleanup_fd;
1860 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1861 					 new_cred, new_fs);
1862 	if (err)
1863 		goto bad_unshare_cleanup_cred;
1864 
1865 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
1866 		if (do_sysvsem) {
1867 			/*
1868 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1869 			 */
1870 			exit_sem(current);
1871 		}
1872 
1873 		if (new_nsproxy)
1874 			switch_task_namespaces(current, new_nsproxy);
1875 
1876 		task_lock(current);
1877 
1878 		if (new_fs) {
1879 			fs = current->fs;
1880 			spin_lock(&fs->lock);
1881 			current->fs = new_fs;
1882 			if (--fs->users)
1883 				new_fs = NULL;
1884 			else
1885 				new_fs = fs;
1886 			spin_unlock(&fs->lock);
1887 		}
1888 
1889 		if (new_fd) {
1890 			fd = current->files;
1891 			current->files = new_fd;
1892 			new_fd = fd;
1893 		}
1894 
1895 		task_unlock(current);
1896 
1897 		if (new_cred) {
1898 			/* Install the new user namespace */
1899 			commit_creds(new_cred);
1900 			new_cred = NULL;
1901 		}
1902 	}
1903 
1904 bad_unshare_cleanup_cred:
1905 	if (new_cred)
1906 		put_cred(new_cred);
1907 bad_unshare_cleanup_fd:
1908 	if (new_fd)
1909 		put_files_struct(new_fd);
1910 
1911 bad_unshare_cleanup_fs:
1912 	if (new_fs)
1913 		free_fs_struct(new_fs);
1914 
1915 bad_unshare_out:
1916 	return err;
1917 }
1918 
1919 /*
1920  *	Helper to unshare the files of the current task.
1921  *	We don't want to expose copy_files internals to
1922  *	the exec layer of the kernel.
1923  */
1924 
1925 int unshare_files(struct files_struct **displaced)
1926 {
1927 	struct task_struct *task = current;
1928 	struct files_struct *copy = NULL;
1929 	int error;
1930 
1931 	error = unshare_fd(CLONE_FILES, &copy);
1932 	if (error || !copy) {
1933 		*displaced = NULL;
1934 		return error;
1935 	}
1936 	*displaced = task->files;
1937 	task_lock(task);
1938 	task->files = copy;
1939 	task_unlock(task);
1940 	return 0;
1941 }
1942