xref: /linux/kernel/fork.c (revision 4413e16d9d21673bb5048a2e542f1aaa00015c2e)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/seccomp.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/rmap.h>
54 #include <linux/ksm.h>
55 #include <linux/acct.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/freezer.h>
59 #include <linux/delayacct.h>
60 #include <linux/taskstats_kern.h>
61 #include <linux/random.h>
62 #include <linux/tty.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71 #include <linux/signalfd.h>
72 #include <linux/uprobes.h>
73 
74 #include <asm/pgtable.h>
75 #include <asm/pgalloc.h>
76 #include <asm/uaccess.h>
77 #include <asm/mmu_context.h>
78 #include <asm/cacheflush.h>
79 #include <asm/tlbflush.h>
80 
81 #include <trace/events/sched.h>
82 
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/task.h>
85 
86 /*
87  * Protected counters by write_lock_irq(&tasklist_lock)
88  */
89 unsigned long total_forks;	/* Handle normal Linux uptimes. */
90 int nr_threads;			/* The idle threads do not count.. */
91 
92 int max_threads;		/* tunable limit on nr_threads */
93 
94 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
95 
96 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
97 
98 #ifdef CONFIG_PROVE_RCU
99 int lockdep_tasklist_lock_is_held(void)
100 {
101 	return lockdep_is_held(&tasklist_lock);
102 }
103 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
104 #endif /* #ifdef CONFIG_PROVE_RCU */
105 
106 int nr_processes(void)
107 {
108 	int cpu;
109 	int total = 0;
110 
111 	for_each_possible_cpu(cpu)
112 		total += per_cpu(process_counts, cpu);
113 
114 	return total;
115 }
116 
117 void __weak arch_release_task_struct(struct task_struct *tsk)
118 {
119 }
120 
121 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
122 static struct kmem_cache *task_struct_cachep;
123 
124 static inline struct task_struct *alloc_task_struct_node(int node)
125 {
126 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
127 }
128 
129 static inline void free_task_struct(struct task_struct *tsk)
130 {
131 	kmem_cache_free(task_struct_cachep, tsk);
132 }
133 #endif
134 
135 void __weak arch_release_thread_info(struct thread_info *ti)
136 {
137 }
138 
139 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
140 
141 /*
142  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
143  * kmemcache based allocator.
144  */
145 # if THREAD_SIZE >= PAGE_SIZE
146 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
147 						  int node)
148 {
149 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
150 					     THREAD_SIZE_ORDER);
151 
152 	return page ? page_address(page) : NULL;
153 }
154 
155 static inline void free_thread_info(struct thread_info *ti)
156 {
157 	free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
158 }
159 # else
160 static struct kmem_cache *thread_info_cache;
161 
162 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
163 						  int node)
164 {
165 	return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
166 }
167 
168 static void free_thread_info(struct thread_info *ti)
169 {
170 	kmem_cache_free(thread_info_cache, ti);
171 }
172 
173 void thread_info_cache_init(void)
174 {
175 	thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
176 					      THREAD_SIZE, 0, NULL);
177 	BUG_ON(thread_info_cache == NULL);
178 }
179 # endif
180 #endif
181 
182 /* SLAB cache for signal_struct structures (tsk->signal) */
183 static struct kmem_cache *signal_cachep;
184 
185 /* SLAB cache for sighand_struct structures (tsk->sighand) */
186 struct kmem_cache *sighand_cachep;
187 
188 /* SLAB cache for files_struct structures (tsk->files) */
189 struct kmem_cache *files_cachep;
190 
191 /* SLAB cache for fs_struct structures (tsk->fs) */
192 struct kmem_cache *fs_cachep;
193 
194 /* SLAB cache for vm_area_struct structures */
195 struct kmem_cache *vm_area_cachep;
196 
197 /* SLAB cache for mm_struct structures (tsk->mm) */
198 static struct kmem_cache *mm_cachep;
199 
200 static void account_kernel_stack(struct thread_info *ti, int account)
201 {
202 	struct zone *zone = page_zone(virt_to_page(ti));
203 
204 	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
205 }
206 
207 void free_task(struct task_struct *tsk)
208 {
209 	account_kernel_stack(tsk->stack, -1);
210 	arch_release_thread_info(tsk->stack);
211 	free_thread_info(tsk->stack);
212 	rt_mutex_debug_task_free(tsk);
213 	ftrace_graph_exit_task(tsk);
214 	put_seccomp_filter(tsk);
215 	arch_release_task_struct(tsk);
216 	free_task_struct(tsk);
217 }
218 EXPORT_SYMBOL(free_task);
219 
220 static inline void free_signal_struct(struct signal_struct *sig)
221 {
222 	taskstats_tgid_free(sig);
223 	sched_autogroup_exit(sig);
224 	kmem_cache_free(signal_cachep, sig);
225 }
226 
227 static inline void put_signal_struct(struct signal_struct *sig)
228 {
229 	if (atomic_dec_and_test(&sig->sigcnt))
230 		free_signal_struct(sig);
231 }
232 
233 void __put_task_struct(struct task_struct *tsk)
234 {
235 	WARN_ON(!tsk->exit_state);
236 	WARN_ON(atomic_read(&tsk->usage));
237 	WARN_ON(tsk == current);
238 
239 	security_task_free(tsk);
240 	exit_creds(tsk);
241 	delayacct_tsk_free(tsk);
242 	put_signal_struct(tsk->signal);
243 
244 	if (!profile_handoff_task(tsk))
245 		free_task(tsk);
246 }
247 EXPORT_SYMBOL_GPL(__put_task_struct);
248 
249 void __init __weak arch_task_cache_init(void) { }
250 
251 void __init fork_init(unsigned long mempages)
252 {
253 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
254 #ifndef ARCH_MIN_TASKALIGN
255 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
256 #endif
257 	/* create a slab on which task_structs can be allocated */
258 	task_struct_cachep =
259 		kmem_cache_create("task_struct", sizeof(struct task_struct),
260 			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
261 #endif
262 
263 	/* do the arch specific task caches init */
264 	arch_task_cache_init();
265 
266 	/*
267 	 * The default maximum number of threads is set to a safe
268 	 * value: the thread structures can take up at most half
269 	 * of memory.
270 	 */
271 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
272 
273 	/*
274 	 * we need to allow at least 20 threads to boot a system
275 	 */
276 	if (max_threads < 20)
277 		max_threads = 20;
278 
279 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
280 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
281 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
282 		init_task.signal->rlim[RLIMIT_NPROC];
283 }
284 
285 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
286 					       struct task_struct *src)
287 {
288 	*dst = *src;
289 	return 0;
290 }
291 
292 static struct task_struct *dup_task_struct(struct task_struct *orig)
293 {
294 	struct task_struct *tsk;
295 	struct thread_info *ti;
296 	unsigned long *stackend;
297 	int node = tsk_fork_get_node(orig);
298 	int err;
299 
300 	tsk = alloc_task_struct_node(node);
301 	if (!tsk)
302 		return NULL;
303 
304 	ti = alloc_thread_info_node(tsk, node);
305 	if (!ti)
306 		goto free_tsk;
307 
308 	err = arch_dup_task_struct(tsk, orig);
309 	if (err)
310 		goto free_ti;
311 
312 	tsk->stack = ti;
313 
314 	setup_thread_stack(tsk, orig);
315 	clear_user_return_notifier(tsk);
316 	clear_tsk_need_resched(tsk);
317 	stackend = end_of_stack(tsk);
318 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
319 
320 #ifdef CONFIG_CC_STACKPROTECTOR
321 	tsk->stack_canary = get_random_int();
322 #endif
323 
324 	/*
325 	 * One for us, one for whoever does the "release_task()" (usually
326 	 * parent)
327 	 */
328 	atomic_set(&tsk->usage, 2);
329 #ifdef CONFIG_BLK_DEV_IO_TRACE
330 	tsk->btrace_seq = 0;
331 #endif
332 	tsk->splice_pipe = NULL;
333 
334 	account_kernel_stack(ti, 1);
335 
336 	return tsk;
337 
338 free_ti:
339 	free_thread_info(ti);
340 free_tsk:
341 	free_task_struct(tsk);
342 	return NULL;
343 }
344 
345 #ifdef CONFIG_MMU
346 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
347 {
348 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
349 	struct rb_node **rb_link, *rb_parent;
350 	int retval;
351 	unsigned long charge;
352 	struct mempolicy *pol;
353 
354 	down_write(&oldmm->mmap_sem);
355 	flush_cache_dup_mm(oldmm);
356 	uprobe_dup_mmap(oldmm, mm);
357 	/*
358 	 * Not linked in yet - no deadlock potential:
359 	 */
360 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
361 
362 	mm->locked_vm = 0;
363 	mm->mmap = NULL;
364 	mm->mmap_cache = NULL;
365 	mm->free_area_cache = oldmm->mmap_base;
366 	mm->cached_hole_size = ~0UL;
367 	mm->map_count = 0;
368 	cpumask_clear(mm_cpumask(mm));
369 	mm->mm_rb = RB_ROOT;
370 	rb_link = &mm->mm_rb.rb_node;
371 	rb_parent = NULL;
372 	pprev = &mm->mmap;
373 	retval = ksm_fork(mm, oldmm);
374 	if (retval)
375 		goto out;
376 	retval = khugepaged_fork(mm, oldmm);
377 	if (retval)
378 		goto out;
379 
380 	prev = NULL;
381 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
382 		struct file *file;
383 
384 		if (mpnt->vm_flags & VM_DONTCOPY) {
385 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
386 							-vma_pages(mpnt));
387 			continue;
388 		}
389 		charge = 0;
390 		if (mpnt->vm_flags & VM_ACCOUNT) {
391 			unsigned long len = vma_pages(mpnt);
392 
393 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
394 				goto fail_nomem;
395 			charge = len;
396 		}
397 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
398 		if (!tmp)
399 			goto fail_nomem;
400 		*tmp = *mpnt;
401 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
402 		pol = mpol_dup(vma_policy(mpnt));
403 		retval = PTR_ERR(pol);
404 		if (IS_ERR(pol))
405 			goto fail_nomem_policy;
406 		vma_set_policy(tmp, pol);
407 		tmp->vm_mm = mm;
408 		if (anon_vma_fork(tmp, mpnt))
409 			goto fail_nomem_anon_vma_fork;
410 		tmp->vm_flags &= ~VM_LOCKED;
411 		tmp->vm_next = tmp->vm_prev = NULL;
412 		file = tmp->vm_file;
413 		if (file) {
414 			struct inode *inode = file->f_path.dentry->d_inode;
415 			struct address_space *mapping = file->f_mapping;
416 
417 			get_file(file);
418 			if (tmp->vm_flags & VM_DENYWRITE)
419 				atomic_dec(&inode->i_writecount);
420 			mutex_lock(&mapping->i_mmap_mutex);
421 			if (tmp->vm_flags & VM_SHARED)
422 				mapping->i_mmap_writable++;
423 			flush_dcache_mmap_lock(mapping);
424 			/* insert tmp into the share list, just after mpnt */
425 			vma_prio_tree_add(tmp, mpnt);
426 			flush_dcache_mmap_unlock(mapping);
427 			mutex_unlock(&mapping->i_mmap_mutex);
428 		}
429 
430 		/*
431 		 * Clear hugetlb-related page reserves for children. This only
432 		 * affects MAP_PRIVATE mappings. Faults generated by the child
433 		 * are not guaranteed to succeed, even if read-only
434 		 */
435 		if (is_vm_hugetlb_page(tmp))
436 			reset_vma_resv_huge_pages(tmp);
437 
438 		/*
439 		 * Link in the new vma and copy the page table entries.
440 		 */
441 		*pprev = tmp;
442 		pprev = &tmp->vm_next;
443 		tmp->vm_prev = prev;
444 		prev = tmp;
445 
446 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
447 		rb_link = &tmp->vm_rb.rb_right;
448 		rb_parent = &tmp->vm_rb;
449 
450 		mm->map_count++;
451 		retval = copy_page_range(mm, oldmm, mpnt);
452 
453 		if (tmp->vm_ops && tmp->vm_ops->open)
454 			tmp->vm_ops->open(tmp);
455 
456 		if (retval)
457 			goto out;
458 	}
459 	/* a new mm has just been created */
460 	arch_dup_mmap(oldmm, mm);
461 	retval = 0;
462 out:
463 	up_write(&mm->mmap_sem);
464 	flush_tlb_mm(oldmm);
465 	up_write(&oldmm->mmap_sem);
466 	return retval;
467 fail_nomem_anon_vma_fork:
468 	mpol_put(pol);
469 fail_nomem_policy:
470 	kmem_cache_free(vm_area_cachep, tmp);
471 fail_nomem:
472 	retval = -ENOMEM;
473 	vm_unacct_memory(charge);
474 	goto out;
475 }
476 
477 static inline int mm_alloc_pgd(struct mm_struct *mm)
478 {
479 	mm->pgd = pgd_alloc(mm);
480 	if (unlikely(!mm->pgd))
481 		return -ENOMEM;
482 	return 0;
483 }
484 
485 static inline void mm_free_pgd(struct mm_struct *mm)
486 {
487 	pgd_free(mm, mm->pgd);
488 }
489 #else
490 #define dup_mmap(mm, oldmm)	(0)
491 #define mm_alloc_pgd(mm)	(0)
492 #define mm_free_pgd(mm)
493 #endif /* CONFIG_MMU */
494 
495 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
496 
497 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
498 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
499 
500 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
501 
502 static int __init coredump_filter_setup(char *s)
503 {
504 	default_dump_filter =
505 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
506 		MMF_DUMP_FILTER_MASK;
507 	return 1;
508 }
509 
510 __setup("coredump_filter=", coredump_filter_setup);
511 
512 #include <linux/init_task.h>
513 
514 static void mm_init_aio(struct mm_struct *mm)
515 {
516 #ifdef CONFIG_AIO
517 	spin_lock_init(&mm->ioctx_lock);
518 	INIT_HLIST_HEAD(&mm->ioctx_list);
519 #endif
520 }
521 
522 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
523 {
524 	atomic_set(&mm->mm_users, 1);
525 	atomic_set(&mm->mm_count, 1);
526 	init_rwsem(&mm->mmap_sem);
527 	INIT_LIST_HEAD(&mm->mmlist);
528 	mm->flags = (current->mm) ?
529 		(current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
530 	mm->core_state = NULL;
531 	mm->nr_ptes = 0;
532 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
533 	spin_lock_init(&mm->page_table_lock);
534 	mm->free_area_cache = TASK_UNMAPPED_BASE;
535 	mm->cached_hole_size = ~0UL;
536 	mm_init_aio(mm);
537 	mm_init_owner(mm, p);
538 
539 	if (likely(!mm_alloc_pgd(mm))) {
540 		mm->def_flags = 0;
541 		mmu_notifier_mm_init(mm);
542 		return mm;
543 	}
544 
545 	free_mm(mm);
546 	return NULL;
547 }
548 
549 static void check_mm(struct mm_struct *mm)
550 {
551 	int i;
552 
553 	for (i = 0; i < NR_MM_COUNTERS; i++) {
554 		long x = atomic_long_read(&mm->rss_stat.count[i]);
555 
556 		if (unlikely(x))
557 			printk(KERN_ALERT "BUG: Bad rss-counter state "
558 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
559 	}
560 
561 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
562 	VM_BUG_ON(mm->pmd_huge_pte);
563 #endif
564 }
565 
566 /*
567  * Allocate and initialize an mm_struct.
568  */
569 struct mm_struct *mm_alloc(void)
570 {
571 	struct mm_struct *mm;
572 
573 	mm = allocate_mm();
574 	if (!mm)
575 		return NULL;
576 
577 	memset(mm, 0, sizeof(*mm));
578 	mm_init_cpumask(mm);
579 	return mm_init(mm, current);
580 }
581 
582 /*
583  * Called when the last reference to the mm
584  * is dropped: either by a lazy thread or by
585  * mmput. Free the page directory and the mm.
586  */
587 void __mmdrop(struct mm_struct *mm)
588 {
589 	BUG_ON(mm == &init_mm);
590 	mm_free_pgd(mm);
591 	destroy_context(mm);
592 	mmu_notifier_mm_destroy(mm);
593 	check_mm(mm);
594 	free_mm(mm);
595 }
596 EXPORT_SYMBOL_GPL(__mmdrop);
597 
598 /*
599  * Decrement the use count and release all resources for an mm.
600  */
601 void mmput(struct mm_struct *mm)
602 {
603 	might_sleep();
604 
605 	if (atomic_dec_and_test(&mm->mm_users)) {
606 		uprobe_clear_state(mm);
607 		exit_aio(mm);
608 		ksm_exit(mm);
609 		khugepaged_exit(mm); /* must run before exit_mmap */
610 		exit_mmap(mm);
611 		set_mm_exe_file(mm, NULL);
612 		if (!list_empty(&mm->mmlist)) {
613 			spin_lock(&mmlist_lock);
614 			list_del(&mm->mmlist);
615 			spin_unlock(&mmlist_lock);
616 		}
617 		if (mm->binfmt)
618 			module_put(mm->binfmt->module);
619 		mmdrop(mm);
620 	}
621 }
622 EXPORT_SYMBOL_GPL(mmput);
623 
624 /*
625  * We added or removed a vma mapping the executable. The vmas are only mapped
626  * during exec and are not mapped with the mmap system call.
627  * Callers must hold down_write() on the mm's mmap_sem for these
628  */
629 void added_exe_file_vma(struct mm_struct *mm)
630 {
631 	mm->num_exe_file_vmas++;
632 }
633 
634 void removed_exe_file_vma(struct mm_struct *mm)
635 {
636 	mm->num_exe_file_vmas--;
637 	if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
638 		fput(mm->exe_file);
639 		mm->exe_file = NULL;
640 	}
641 
642 }
643 
644 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
645 {
646 	if (new_exe_file)
647 		get_file(new_exe_file);
648 	if (mm->exe_file)
649 		fput(mm->exe_file);
650 	mm->exe_file = new_exe_file;
651 	mm->num_exe_file_vmas = 0;
652 }
653 
654 struct file *get_mm_exe_file(struct mm_struct *mm)
655 {
656 	struct file *exe_file;
657 
658 	/* We need mmap_sem to protect against races with removal of
659 	 * VM_EXECUTABLE vmas */
660 	down_read(&mm->mmap_sem);
661 	exe_file = mm->exe_file;
662 	if (exe_file)
663 		get_file(exe_file);
664 	up_read(&mm->mmap_sem);
665 	return exe_file;
666 }
667 
668 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
669 {
670 	/* It's safe to write the exe_file pointer without exe_file_lock because
671 	 * this is called during fork when the task is not yet in /proc */
672 	newmm->exe_file = get_mm_exe_file(oldmm);
673 }
674 
675 /**
676  * get_task_mm - acquire a reference to the task's mm
677  *
678  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
679  * this kernel workthread has transiently adopted a user mm with use_mm,
680  * to do its AIO) is not set and if so returns a reference to it, after
681  * bumping up the use count.  User must release the mm via mmput()
682  * after use.  Typically used by /proc and ptrace.
683  */
684 struct mm_struct *get_task_mm(struct task_struct *task)
685 {
686 	struct mm_struct *mm;
687 
688 	task_lock(task);
689 	mm = task->mm;
690 	if (mm) {
691 		if (task->flags & PF_KTHREAD)
692 			mm = NULL;
693 		else
694 			atomic_inc(&mm->mm_users);
695 	}
696 	task_unlock(task);
697 	return mm;
698 }
699 EXPORT_SYMBOL_GPL(get_task_mm);
700 
701 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
702 {
703 	struct mm_struct *mm;
704 	int err;
705 
706 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
707 	if (err)
708 		return ERR_PTR(err);
709 
710 	mm = get_task_mm(task);
711 	if (mm && mm != current->mm &&
712 			!ptrace_may_access(task, mode)) {
713 		mmput(mm);
714 		mm = ERR_PTR(-EACCES);
715 	}
716 	mutex_unlock(&task->signal->cred_guard_mutex);
717 
718 	return mm;
719 }
720 
721 static void complete_vfork_done(struct task_struct *tsk)
722 {
723 	struct completion *vfork;
724 
725 	task_lock(tsk);
726 	vfork = tsk->vfork_done;
727 	if (likely(vfork)) {
728 		tsk->vfork_done = NULL;
729 		complete(vfork);
730 	}
731 	task_unlock(tsk);
732 }
733 
734 static int wait_for_vfork_done(struct task_struct *child,
735 				struct completion *vfork)
736 {
737 	int killed;
738 
739 	freezer_do_not_count();
740 	killed = wait_for_completion_killable(vfork);
741 	freezer_count();
742 
743 	if (killed) {
744 		task_lock(child);
745 		child->vfork_done = NULL;
746 		task_unlock(child);
747 	}
748 
749 	put_task_struct(child);
750 	return killed;
751 }
752 
753 /* Please note the differences between mmput and mm_release.
754  * mmput is called whenever we stop holding onto a mm_struct,
755  * error success whatever.
756  *
757  * mm_release is called after a mm_struct has been removed
758  * from the current process.
759  *
760  * This difference is important for error handling, when we
761  * only half set up a mm_struct for a new process and need to restore
762  * the old one.  Because we mmput the new mm_struct before
763  * restoring the old one. . .
764  * Eric Biederman 10 January 1998
765  */
766 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
767 {
768 	/* Get rid of any futexes when releasing the mm */
769 #ifdef CONFIG_FUTEX
770 	if (unlikely(tsk->robust_list)) {
771 		exit_robust_list(tsk);
772 		tsk->robust_list = NULL;
773 	}
774 #ifdef CONFIG_COMPAT
775 	if (unlikely(tsk->compat_robust_list)) {
776 		compat_exit_robust_list(tsk);
777 		tsk->compat_robust_list = NULL;
778 	}
779 #endif
780 	if (unlikely(!list_empty(&tsk->pi_state_list)))
781 		exit_pi_state_list(tsk);
782 #endif
783 
784 	uprobe_free_utask(tsk);
785 
786 	/* Get rid of any cached register state */
787 	deactivate_mm(tsk, mm);
788 
789 	/*
790 	 * If we're exiting normally, clear a user-space tid field if
791 	 * requested.  We leave this alone when dying by signal, to leave
792 	 * the value intact in a core dump, and to save the unnecessary
793 	 * trouble, say, a killed vfork parent shouldn't touch this mm.
794 	 * Userland only wants this done for a sys_exit.
795 	 */
796 	if (tsk->clear_child_tid) {
797 		if (!(tsk->flags & PF_SIGNALED) &&
798 		    atomic_read(&mm->mm_users) > 1) {
799 			/*
800 			 * We don't check the error code - if userspace has
801 			 * not set up a proper pointer then tough luck.
802 			 */
803 			put_user(0, tsk->clear_child_tid);
804 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
805 					1, NULL, NULL, 0);
806 		}
807 		tsk->clear_child_tid = NULL;
808 	}
809 
810 	/*
811 	 * All done, finally we can wake up parent and return this mm to him.
812 	 * Also kthread_stop() uses this completion for synchronization.
813 	 */
814 	if (tsk->vfork_done)
815 		complete_vfork_done(tsk);
816 }
817 
818 /*
819  * Allocate a new mm structure and copy contents from the
820  * mm structure of the passed in task structure.
821  */
822 struct mm_struct *dup_mm(struct task_struct *tsk)
823 {
824 	struct mm_struct *mm, *oldmm = current->mm;
825 	int err;
826 
827 	if (!oldmm)
828 		return NULL;
829 
830 	mm = allocate_mm();
831 	if (!mm)
832 		goto fail_nomem;
833 
834 	memcpy(mm, oldmm, sizeof(*mm));
835 	mm_init_cpumask(mm);
836 
837 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
838 	mm->pmd_huge_pte = NULL;
839 #endif
840 	if (!mm_init(mm, tsk))
841 		goto fail_nomem;
842 
843 	if (init_new_context(tsk, mm))
844 		goto fail_nocontext;
845 
846 	dup_mm_exe_file(oldmm, mm);
847 
848 	err = dup_mmap(mm, oldmm);
849 	if (err)
850 		goto free_pt;
851 
852 	mm->hiwater_rss = get_mm_rss(mm);
853 	mm->hiwater_vm = mm->total_vm;
854 
855 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
856 		goto free_pt;
857 
858 	return mm;
859 
860 free_pt:
861 	/* don't put binfmt in mmput, we haven't got module yet */
862 	mm->binfmt = NULL;
863 	mmput(mm);
864 
865 fail_nomem:
866 	return NULL;
867 
868 fail_nocontext:
869 	/*
870 	 * If init_new_context() failed, we cannot use mmput() to free the mm
871 	 * because it calls destroy_context()
872 	 */
873 	mm_free_pgd(mm);
874 	free_mm(mm);
875 	return NULL;
876 }
877 
878 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
879 {
880 	struct mm_struct *mm, *oldmm;
881 	int retval;
882 
883 	tsk->min_flt = tsk->maj_flt = 0;
884 	tsk->nvcsw = tsk->nivcsw = 0;
885 #ifdef CONFIG_DETECT_HUNG_TASK
886 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
887 #endif
888 
889 	tsk->mm = NULL;
890 	tsk->active_mm = NULL;
891 
892 	/*
893 	 * Are we cloning a kernel thread?
894 	 *
895 	 * We need to steal a active VM for that..
896 	 */
897 	oldmm = current->mm;
898 	if (!oldmm)
899 		return 0;
900 
901 	if (clone_flags & CLONE_VM) {
902 		atomic_inc(&oldmm->mm_users);
903 		mm = oldmm;
904 		goto good_mm;
905 	}
906 
907 	retval = -ENOMEM;
908 	mm = dup_mm(tsk);
909 	if (!mm)
910 		goto fail_nomem;
911 
912 good_mm:
913 	tsk->mm = mm;
914 	tsk->active_mm = mm;
915 	return 0;
916 
917 fail_nomem:
918 	return retval;
919 }
920 
921 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
922 {
923 	struct fs_struct *fs = current->fs;
924 	if (clone_flags & CLONE_FS) {
925 		/* tsk->fs is already what we want */
926 		spin_lock(&fs->lock);
927 		if (fs->in_exec) {
928 			spin_unlock(&fs->lock);
929 			return -EAGAIN;
930 		}
931 		fs->users++;
932 		spin_unlock(&fs->lock);
933 		return 0;
934 	}
935 	tsk->fs = copy_fs_struct(fs);
936 	if (!tsk->fs)
937 		return -ENOMEM;
938 	return 0;
939 }
940 
941 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
942 {
943 	struct files_struct *oldf, *newf;
944 	int error = 0;
945 
946 	/*
947 	 * A background process may not have any files ...
948 	 */
949 	oldf = current->files;
950 	if (!oldf)
951 		goto out;
952 
953 	if (clone_flags & CLONE_FILES) {
954 		atomic_inc(&oldf->count);
955 		goto out;
956 	}
957 
958 	newf = dup_fd(oldf, &error);
959 	if (!newf)
960 		goto out;
961 
962 	tsk->files = newf;
963 	error = 0;
964 out:
965 	return error;
966 }
967 
968 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
969 {
970 #ifdef CONFIG_BLOCK
971 	struct io_context *ioc = current->io_context;
972 	struct io_context *new_ioc;
973 
974 	if (!ioc)
975 		return 0;
976 	/*
977 	 * Share io context with parent, if CLONE_IO is set
978 	 */
979 	if (clone_flags & CLONE_IO) {
980 		ioc_task_link(ioc);
981 		tsk->io_context = ioc;
982 	} else if (ioprio_valid(ioc->ioprio)) {
983 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
984 		if (unlikely(!new_ioc))
985 			return -ENOMEM;
986 
987 		new_ioc->ioprio = ioc->ioprio;
988 		put_io_context(new_ioc);
989 	}
990 #endif
991 	return 0;
992 }
993 
994 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
995 {
996 	struct sighand_struct *sig;
997 
998 	if (clone_flags & CLONE_SIGHAND) {
999 		atomic_inc(&current->sighand->count);
1000 		return 0;
1001 	}
1002 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1003 	rcu_assign_pointer(tsk->sighand, sig);
1004 	if (!sig)
1005 		return -ENOMEM;
1006 	atomic_set(&sig->count, 1);
1007 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1008 	return 0;
1009 }
1010 
1011 void __cleanup_sighand(struct sighand_struct *sighand)
1012 {
1013 	if (atomic_dec_and_test(&sighand->count)) {
1014 		signalfd_cleanup(sighand);
1015 		kmem_cache_free(sighand_cachep, sighand);
1016 	}
1017 }
1018 
1019 
1020 /*
1021  * Initialize POSIX timer handling for a thread group.
1022  */
1023 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1024 {
1025 	unsigned long cpu_limit;
1026 
1027 	/* Thread group counters. */
1028 	thread_group_cputime_init(sig);
1029 
1030 	cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1031 	if (cpu_limit != RLIM_INFINITY) {
1032 		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1033 		sig->cputimer.running = 1;
1034 	}
1035 
1036 	/* The timer lists. */
1037 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1038 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1039 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1040 }
1041 
1042 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1043 {
1044 	struct signal_struct *sig;
1045 
1046 	if (clone_flags & CLONE_THREAD)
1047 		return 0;
1048 
1049 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1050 	tsk->signal = sig;
1051 	if (!sig)
1052 		return -ENOMEM;
1053 
1054 	sig->nr_threads = 1;
1055 	atomic_set(&sig->live, 1);
1056 	atomic_set(&sig->sigcnt, 1);
1057 	init_waitqueue_head(&sig->wait_chldexit);
1058 	if (clone_flags & CLONE_NEWPID)
1059 		sig->flags |= SIGNAL_UNKILLABLE;
1060 	sig->curr_target = tsk;
1061 	init_sigpending(&sig->shared_pending);
1062 	INIT_LIST_HEAD(&sig->posix_timers);
1063 
1064 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1065 	sig->real_timer.function = it_real_fn;
1066 
1067 	task_lock(current->group_leader);
1068 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1069 	task_unlock(current->group_leader);
1070 
1071 	posix_cpu_timers_init_group(sig);
1072 
1073 	tty_audit_fork(sig);
1074 	sched_autogroup_fork(sig);
1075 
1076 #ifdef CONFIG_CGROUPS
1077 	init_rwsem(&sig->group_rwsem);
1078 #endif
1079 
1080 	sig->oom_adj = current->signal->oom_adj;
1081 	sig->oom_score_adj = current->signal->oom_score_adj;
1082 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1083 
1084 	sig->has_child_subreaper = current->signal->has_child_subreaper ||
1085 				   current->signal->is_child_subreaper;
1086 
1087 	mutex_init(&sig->cred_guard_mutex);
1088 
1089 	return 0;
1090 }
1091 
1092 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1093 {
1094 	unsigned long new_flags = p->flags;
1095 
1096 	new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1097 	new_flags |= PF_FORKNOEXEC;
1098 	p->flags = new_flags;
1099 }
1100 
1101 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1102 {
1103 	current->clear_child_tid = tidptr;
1104 
1105 	return task_pid_vnr(current);
1106 }
1107 
1108 static void rt_mutex_init_task(struct task_struct *p)
1109 {
1110 	raw_spin_lock_init(&p->pi_lock);
1111 #ifdef CONFIG_RT_MUTEXES
1112 	plist_head_init(&p->pi_waiters);
1113 	p->pi_blocked_on = NULL;
1114 #endif
1115 }
1116 
1117 #ifdef CONFIG_MM_OWNER
1118 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1119 {
1120 	mm->owner = p;
1121 }
1122 #endif /* CONFIG_MM_OWNER */
1123 
1124 /*
1125  * Initialize POSIX timer handling for a single task.
1126  */
1127 static void posix_cpu_timers_init(struct task_struct *tsk)
1128 {
1129 	tsk->cputime_expires.prof_exp = 0;
1130 	tsk->cputime_expires.virt_exp = 0;
1131 	tsk->cputime_expires.sched_exp = 0;
1132 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1133 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1134 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1135 }
1136 
1137 /*
1138  * This creates a new process as a copy of the old one,
1139  * but does not actually start it yet.
1140  *
1141  * It copies the registers, and all the appropriate
1142  * parts of the process environment (as per the clone
1143  * flags). The actual kick-off is left to the caller.
1144  */
1145 static struct task_struct *copy_process(unsigned long clone_flags,
1146 					unsigned long stack_start,
1147 					struct pt_regs *regs,
1148 					unsigned long stack_size,
1149 					int __user *child_tidptr,
1150 					struct pid *pid,
1151 					int trace)
1152 {
1153 	int retval;
1154 	struct task_struct *p;
1155 	int cgroup_callbacks_done = 0;
1156 
1157 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1158 		return ERR_PTR(-EINVAL);
1159 
1160 	/*
1161 	 * Thread groups must share signals as well, and detached threads
1162 	 * can only be started up within the thread group.
1163 	 */
1164 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1165 		return ERR_PTR(-EINVAL);
1166 
1167 	/*
1168 	 * Shared signal handlers imply shared VM. By way of the above,
1169 	 * thread groups also imply shared VM. Blocking this case allows
1170 	 * for various simplifications in other code.
1171 	 */
1172 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1173 		return ERR_PTR(-EINVAL);
1174 
1175 	/*
1176 	 * Siblings of global init remain as zombies on exit since they are
1177 	 * not reaped by their parent (swapper). To solve this and to avoid
1178 	 * multi-rooted process trees, prevent global and container-inits
1179 	 * from creating siblings.
1180 	 */
1181 	if ((clone_flags & CLONE_PARENT) &&
1182 				current->signal->flags & SIGNAL_UNKILLABLE)
1183 		return ERR_PTR(-EINVAL);
1184 
1185 	retval = security_task_create(clone_flags);
1186 	if (retval)
1187 		goto fork_out;
1188 
1189 	retval = -ENOMEM;
1190 	p = dup_task_struct(current);
1191 	if (!p)
1192 		goto fork_out;
1193 
1194 	ftrace_graph_init_task(p);
1195 	get_seccomp_filter(p);
1196 
1197 	rt_mutex_init_task(p);
1198 
1199 #ifdef CONFIG_PROVE_LOCKING
1200 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1201 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1202 #endif
1203 	retval = -EAGAIN;
1204 	if (atomic_read(&p->real_cred->user->processes) >=
1205 			task_rlimit(p, RLIMIT_NPROC)) {
1206 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1207 		    p->real_cred->user != INIT_USER)
1208 			goto bad_fork_free;
1209 	}
1210 	current->flags &= ~PF_NPROC_EXCEEDED;
1211 
1212 	retval = copy_creds(p, clone_flags);
1213 	if (retval < 0)
1214 		goto bad_fork_free;
1215 
1216 	/*
1217 	 * If multiple threads are within copy_process(), then this check
1218 	 * triggers too late. This doesn't hurt, the check is only there
1219 	 * to stop root fork bombs.
1220 	 */
1221 	retval = -EAGAIN;
1222 	if (nr_threads >= max_threads)
1223 		goto bad_fork_cleanup_count;
1224 
1225 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1226 		goto bad_fork_cleanup_count;
1227 
1228 	p->did_exec = 0;
1229 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1230 	copy_flags(clone_flags, p);
1231 	INIT_LIST_HEAD(&p->children);
1232 	INIT_LIST_HEAD(&p->sibling);
1233 	rcu_copy_process(p);
1234 	p->vfork_done = NULL;
1235 	spin_lock_init(&p->alloc_lock);
1236 
1237 	init_sigpending(&p->pending);
1238 
1239 	p->utime = p->stime = p->gtime = 0;
1240 	p->utimescaled = p->stimescaled = 0;
1241 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1242 	p->prev_utime = p->prev_stime = 0;
1243 #endif
1244 #if defined(SPLIT_RSS_COUNTING)
1245 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1246 #endif
1247 
1248 	p->default_timer_slack_ns = current->timer_slack_ns;
1249 
1250 	task_io_accounting_init(&p->ioac);
1251 	acct_clear_integrals(p);
1252 
1253 	posix_cpu_timers_init(p);
1254 
1255 	do_posix_clock_monotonic_gettime(&p->start_time);
1256 	p->real_start_time = p->start_time;
1257 	monotonic_to_bootbased(&p->real_start_time);
1258 	p->io_context = NULL;
1259 	p->audit_context = NULL;
1260 	if (clone_flags & CLONE_THREAD)
1261 		threadgroup_change_begin(current);
1262 	cgroup_fork(p);
1263 #ifdef CONFIG_NUMA
1264 	p->mempolicy = mpol_dup(p->mempolicy);
1265 	if (IS_ERR(p->mempolicy)) {
1266 		retval = PTR_ERR(p->mempolicy);
1267 		p->mempolicy = NULL;
1268 		goto bad_fork_cleanup_cgroup;
1269 	}
1270 	mpol_fix_fork_child_flag(p);
1271 #endif
1272 #ifdef CONFIG_CPUSETS
1273 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1274 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1275 	seqcount_init(&p->mems_allowed_seq);
1276 #endif
1277 #ifdef CONFIG_TRACE_IRQFLAGS
1278 	p->irq_events = 0;
1279 	p->hardirqs_enabled = 0;
1280 	p->hardirq_enable_ip = 0;
1281 	p->hardirq_enable_event = 0;
1282 	p->hardirq_disable_ip = _THIS_IP_;
1283 	p->hardirq_disable_event = 0;
1284 	p->softirqs_enabled = 1;
1285 	p->softirq_enable_ip = _THIS_IP_;
1286 	p->softirq_enable_event = 0;
1287 	p->softirq_disable_ip = 0;
1288 	p->softirq_disable_event = 0;
1289 	p->hardirq_context = 0;
1290 	p->softirq_context = 0;
1291 #endif
1292 #ifdef CONFIG_LOCKDEP
1293 	p->lockdep_depth = 0; /* no locks held yet */
1294 	p->curr_chain_key = 0;
1295 	p->lockdep_recursion = 0;
1296 #endif
1297 
1298 #ifdef CONFIG_DEBUG_MUTEXES
1299 	p->blocked_on = NULL; /* not blocked yet */
1300 #endif
1301 #ifdef CONFIG_MEMCG
1302 	p->memcg_batch.do_batch = 0;
1303 	p->memcg_batch.memcg = NULL;
1304 #endif
1305 
1306 	/* Perform scheduler related setup. Assign this task to a CPU. */
1307 	sched_fork(p);
1308 
1309 	retval = perf_event_init_task(p);
1310 	if (retval)
1311 		goto bad_fork_cleanup_policy;
1312 	retval = audit_alloc(p);
1313 	if (retval)
1314 		goto bad_fork_cleanup_policy;
1315 	/* copy all the process information */
1316 	retval = copy_semundo(clone_flags, p);
1317 	if (retval)
1318 		goto bad_fork_cleanup_audit;
1319 	retval = copy_files(clone_flags, p);
1320 	if (retval)
1321 		goto bad_fork_cleanup_semundo;
1322 	retval = copy_fs(clone_flags, p);
1323 	if (retval)
1324 		goto bad_fork_cleanup_files;
1325 	retval = copy_sighand(clone_flags, p);
1326 	if (retval)
1327 		goto bad_fork_cleanup_fs;
1328 	retval = copy_signal(clone_flags, p);
1329 	if (retval)
1330 		goto bad_fork_cleanup_sighand;
1331 	retval = copy_mm(clone_flags, p);
1332 	if (retval)
1333 		goto bad_fork_cleanup_signal;
1334 	retval = copy_namespaces(clone_flags, p);
1335 	if (retval)
1336 		goto bad_fork_cleanup_mm;
1337 	retval = copy_io(clone_flags, p);
1338 	if (retval)
1339 		goto bad_fork_cleanup_namespaces;
1340 	retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1341 	if (retval)
1342 		goto bad_fork_cleanup_io;
1343 
1344 	if (pid != &init_struct_pid) {
1345 		retval = -ENOMEM;
1346 		pid = alloc_pid(p->nsproxy->pid_ns);
1347 		if (!pid)
1348 			goto bad_fork_cleanup_io;
1349 	}
1350 
1351 	p->pid = pid_nr(pid);
1352 	p->tgid = p->pid;
1353 	if (clone_flags & CLONE_THREAD)
1354 		p->tgid = current->tgid;
1355 
1356 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1357 	/*
1358 	 * Clear TID on mm_release()?
1359 	 */
1360 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1361 #ifdef CONFIG_BLOCK
1362 	p->plug = NULL;
1363 #endif
1364 #ifdef CONFIG_FUTEX
1365 	p->robust_list = NULL;
1366 #ifdef CONFIG_COMPAT
1367 	p->compat_robust_list = NULL;
1368 #endif
1369 	INIT_LIST_HEAD(&p->pi_state_list);
1370 	p->pi_state_cache = NULL;
1371 #endif
1372 	uprobe_copy_process(p);
1373 	/*
1374 	 * sigaltstack should be cleared when sharing the same VM
1375 	 */
1376 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1377 		p->sas_ss_sp = p->sas_ss_size = 0;
1378 
1379 	/*
1380 	 * Syscall tracing and stepping should be turned off in the
1381 	 * child regardless of CLONE_PTRACE.
1382 	 */
1383 	user_disable_single_step(p);
1384 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1385 #ifdef TIF_SYSCALL_EMU
1386 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1387 #endif
1388 	clear_all_latency_tracing(p);
1389 
1390 	/* ok, now we should be set up.. */
1391 	if (clone_flags & CLONE_THREAD)
1392 		p->exit_signal = -1;
1393 	else if (clone_flags & CLONE_PARENT)
1394 		p->exit_signal = current->group_leader->exit_signal;
1395 	else
1396 		p->exit_signal = (clone_flags & CSIGNAL);
1397 
1398 	p->pdeath_signal = 0;
1399 	p->exit_state = 0;
1400 
1401 	p->nr_dirtied = 0;
1402 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1403 	p->dirty_paused_when = 0;
1404 
1405 	/*
1406 	 * Ok, make it visible to the rest of the system.
1407 	 * We dont wake it up yet.
1408 	 */
1409 	p->group_leader = p;
1410 	INIT_LIST_HEAD(&p->thread_group);
1411 	p->task_works = NULL;
1412 
1413 	/* Now that the task is set up, run cgroup callbacks if
1414 	 * necessary. We need to run them before the task is visible
1415 	 * on the tasklist. */
1416 	cgroup_fork_callbacks(p);
1417 	cgroup_callbacks_done = 1;
1418 
1419 	/* Need tasklist lock for parent etc handling! */
1420 	write_lock_irq(&tasklist_lock);
1421 
1422 	/* CLONE_PARENT re-uses the old parent */
1423 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1424 		p->real_parent = current->real_parent;
1425 		p->parent_exec_id = current->parent_exec_id;
1426 	} else {
1427 		p->real_parent = current;
1428 		p->parent_exec_id = current->self_exec_id;
1429 	}
1430 
1431 	spin_lock(&current->sighand->siglock);
1432 
1433 	/*
1434 	 * Process group and session signals need to be delivered to just the
1435 	 * parent before the fork or both the parent and the child after the
1436 	 * fork. Restart if a signal comes in before we add the new process to
1437 	 * it's process group.
1438 	 * A fatal signal pending means that current will exit, so the new
1439 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1440 	*/
1441 	recalc_sigpending();
1442 	if (signal_pending(current)) {
1443 		spin_unlock(&current->sighand->siglock);
1444 		write_unlock_irq(&tasklist_lock);
1445 		retval = -ERESTARTNOINTR;
1446 		goto bad_fork_free_pid;
1447 	}
1448 
1449 	if (clone_flags & CLONE_THREAD) {
1450 		current->signal->nr_threads++;
1451 		atomic_inc(&current->signal->live);
1452 		atomic_inc(&current->signal->sigcnt);
1453 		p->group_leader = current->group_leader;
1454 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1455 	}
1456 
1457 	if (likely(p->pid)) {
1458 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1459 
1460 		if (thread_group_leader(p)) {
1461 			if (is_child_reaper(pid))
1462 				p->nsproxy->pid_ns->child_reaper = p;
1463 
1464 			p->signal->leader_pid = pid;
1465 			p->signal->tty = tty_kref_get(current->signal->tty);
1466 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1467 			attach_pid(p, PIDTYPE_SID, task_session(current));
1468 			list_add_tail(&p->sibling, &p->real_parent->children);
1469 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1470 			__this_cpu_inc(process_counts);
1471 		}
1472 		attach_pid(p, PIDTYPE_PID, pid);
1473 		nr_threads++;
1474 	}
1475 
1476 	total_forks++;
1477 	spin_unlock(&current->sighand->siglock);
1478 	write_unlock_irq(&tasklist_lock);
1479 	proc_fork_connector(p);
1480 	cgroup_post_fork(p);
1481 	if (clone_flags & CLONE_THREAD)
1482 		threadgroup_change_end(current);
1483 	perf_event_fork(p);
1484 
1485 	trace_task_newtask(p, clone_flags);
1486 
1487 	return p;
1488 
1489 bad_fork_free_pid:
1490 	if (pid != &init_struct_pid)
1491 		free_pid(pid);
1492 bad_fork_cleanup_io:
1493 	if (p->io_context)
1494 		exit_io_context(p);
1495 bad_fork_cleanup_namespaces:
1496 	if (unlikely(clone_flags & CLONE_NEWPID))
1497 		pid_ns_release_proc(p->nsproxy->pid_ns);
1498 	exit_task_namespaces(p);
1499 bad_fork_cleanup_mm:
1500 	if (p->mm)
1501 		mmput(p->mm);
1502 bad_fork_cleanup_signal:
1503 	if (!(clone_flags & CLONE_THREAD))
1504 		free_signal_struct(p->signal);
1505 bad_fork_cleanup_sighand:
1506 	__cleanup_sighand(p->sighand);
1507 bad_fork_cleanup_fs:
1508 	exit_fs(p); /* blocking */
1509 bad_fork_cleanup_files:
1510 	exit_files(p); /* blocking */
1511 bad_fork_cleanup_semundo:
1512 	exit_sem(p);
1513 bad_fork_cleanup_audit:
1514 	audit_free(p);
1515 bad_fork_cleanup_policy:
1516 	perf_event_free_task(p);
1517 #ifdef CONFIG_NUMA
1518 	mpol_put(p->mempolicy);
1519 bad_fork_cleanup_cgroup:
1520 #endif
1521 	if (clone_flags & CLONE_THREAD)
1522 		threadgroup_change_end(current);
1523 	cgroup_exit(p, cgroup_callbacks_done);
1524 	delayacct_tsk_free(p);
1525 	module_put(task_thread_info(p)->exec_domain->module);
1526 bad_fork_cleanup_count:
1527 	atomic_dec(&p->cred->user->processes);
1528 	exit_creds(p);
1529 bad_fork_free:
1530 	free_task(p);
1531 fork_out:
1532 	return ERR_PTR(retval);
1533 }
1534 
1535 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1536 {
1537 	memset(regs, 0, sizeof(struct pt_regs));
1538 	return regs;
1539 }
1540 
1541 static inline void init_idle_pids(struct pid_link *links)
1542 {
1543 	enum pid_type type;
1544 
1545 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1546 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1547 		links[type].pid = &init_struct_pid;
1548 	}
1549 }
1550 
1551 struct task_struct * __cpuinit fork_idle(int cpu)
1552 {
1553 	struct task_struct *task;
1554 	struct pt_regs regs;
1555 
1556 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1557 			    &init_struct_pid, 0);
1558 	if (!IS_ERR(task)) {
1559 		init_idle_pids(task->pids);
1560 		init_idle(task, cpu);
1561 	}
1562 
1563 	return task;
1564 }
1565 
1566 /*
1567  *  Ok, this is the main fork-routine.
1568  *
1569  * It copies the process, and if successful kick-starts
1570  * it and waits for it to finish using the VM if required.
1571  */
1572 long do_fork(unsigned long clone_flags,
1573 	      unsigned long stack_start,
1574 	      struct pt_regs *regs,
1575 	      unsigned long stack_size,
1576 	      int __user *parent_tidptr,
1577 	      int __user *child_tidptr)
1578 {
1579 	struct task_struct *p;
1580 	int trace = 0;
1581 	long nr;
1582 
1583 	/*
1584 	 * Do some preliminary argument and permissions checking before we
1585 	 * actually start allocating stuff
1586 	 */
1587 	if (clone_flags & CLONE_NEWUSER) {
1588 		if (clone_flags & CLONE_THREAD)
1589 			return -EINVAL;
1590 		/* hopefully this check will go away when userns support is
1591 		 * complete
1592 		 */
1593 		if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1594 				!capable(CAP_SETGID))
1595 			return -EPERM;
1596 	}
1597 
1598 	/*
1599 	 * Determine whether and which event to report to ptracer.  When
1600 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
1601 	 * requested, no event is reported; otherwise, report if the event
1602 	 * for the type of forking is enabled.
1603 	 */
1604 	if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
1605 		if (clone_flags & CLONE_VFORK)
1606 			trace = PTRACE_EVENT_VFORK;
1607 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
1608 			trace = PTRACE_EVENT_CLONE;
1609 		else
1610 			trace = PTRACE_EVENT_FORK;
1611 
1612 		if (likely(!ptrace_event_enabled(current, trace)))
1613 			trace = 0;
1614 	}
1615 
1616 	p = copy_process(clone_flags, stack_start, regs, stack_size,
1617 			 child_tidptr, NULL, trace);
1618 	/*
1619 	 * Do this prior waking up the new thread - the thread pointer
1620 	 * might get invalid after that point, if the thread exits quickly.
1621 	 */
1622 	if (!IS_ERR(p)) {
1623 		struct completion vfork;
1624 
1625 		trace_sched_process_fork(current, p);
1626 
1627 		nr = task_pid_vnr(p);
1628 
1629 		if (clone_flags & CLONE_PARENT_SETTID)
1630 			put_user(nr, parent_tidptr);
1631 
1632 		if (clone_flags & CLONE_VFORK) {
1633 			p->vfork_done = &vfork;
1634 			init_completion(&vfork);
1635 			get_task_struct(p);
1636 		}
1637 
1638 		wake_up_new_task(p);
1639 
1640 		/* forking complete and child started to run, tell ptracer */
1641 		if (unlikely(trace))
1642 			ptrace_event(trace, nr);
1643 
1644 		if (clone_flags & CLONE_VFORK) {
1645 			if (!wait_for_vfork_done(p, &vfork))
1646 				ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1647 		}
1648 	} else {
1649 		nr = PTR_ERR(p);
1650 	}
1651 	return nr;
1652 }
1653 
1654 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1655 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1656 #endif
1657 
1658 static void sighand_ctor(void *data)
1659 {
1660 	struct sighand_struct *sighand = data;
1661 
1662 	spin_lock_init(&sighand->siglock);
1663 	init_waitqueue_head(&sighand->signalfd_wqh);
1664 }
1665 
1666 void __init proc_caches_init(void)
1667 {
1668 	sighand_cachep = kmem_cache_create("sighand_cache",
1669 			sizeof(struct sighand_struct), 0,
1670 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1671 			SLAB_NOTRACK, sighand_ctor);
1672 	signal_cachep = kmem_cache_create("signal_cache",
1673 			sizeof(struct signal_struct), 0,
1674 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1675 	files_cachep = kmem_cache_create("files_cache",
1676 			sizeof(struct files_struct), 0,
1677 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1678 	fs_cachep = kmem_cache_create("fs_cache",
1679 			sizeof(struct fs_struct), 0,
1680 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1681 	/*
1682 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1683 	 * whole struct cpumask for the OFFSTACK case. We could change
1684 	 * this to *only* allocate as much of it as required by the
1685 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
1686 	 * is at the end of the structure, exactly for that reason.
1687 	 */
1688 	mm_cachep = kmem_cache_create("mm_struct",
1689 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1690 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1691 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1692 	mmap_init();
1693 	nsproxy_cache_init();
1694 }
1695 
1696 /*
1697  * Check constraints on flags passed to the unshare system call.
1698  */
1699 static int check_unshare_flags(unsigned long unshare_flags)
1700 {
1701 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1702 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1703 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1704 		return -EINVAL;
1705 	/*
1706 	 * Not implemented, but pretend it works if there is nothing to
1707 	 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1708 	 * needs to unshare vm.
1709 	 */
1710 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1711 		/* FIXME: get_task_mm() increments ->mm_users */
1712 		if (atomic_read(&current->mm->mm_users) > 1)
1713 			return -EINVAL;
1714 	}
1715 
1716 	return 0;
1717 }
1718 
1719 /*
1720  * Unshare the filesystem structure if it is being shared
1721  */
1722 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1723 {
1724 	struct fs_struct *fs = current->fs;
1725 
1726 	if (!(unshare_flags & CLONE_FS) || !fs)
1727 		return 0;
1728 
1729 	/* don't need lock here; in the worst case we'll do useless copy */
1730 	if (fs->users == 1)
1731 		return 0;
1732 
1733 	*new_fsp = copy_fs_struct(fs);
1734 	if (!*new_fsp)
1735 		return -ENOMEM;
1736 
1737 	return 0;
1738 }
1739 
1740 /*
1741  * Unshare file descriptor table if it is being shared
1742  */
1743 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1744 {
1745 	struct files_struct *fd = current->files;
1746 	int error = 0;
1747 
1748 	if ((unshare_flags & CLONE_FILES) &&
1749 	    (fd && atomic_read(&fd->count) > 1)) {
1750 		*new_fdp = dup_fd(fd, &error);
1751 		if (!*new_fdp)
1752 			return error;
1753 	}
1754 
1755 	return 0;
1756 }
1757 
1758 /*
1759  * unshare allows a process to 'unshare' part of the process
1760  * context which was originally shared using clone.  copy_*
1761  * functions used by do_fork() cannot be used here directly
1762  * because they modify an inactive task_struct that is being
1763  * constructed. Here we are modifying the current, active,
1764  * task_struct.
1765  */
1766 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1767 {
1768 	struct fs_struct *fs, *new_fs = NULL;
1769 	struct files_struct *fd, *new_fd = NULL;
1770 	struct nsproxy *new_nsproxy = NULL;
1771 	int do_sysvsem = 0;
1772 	int err;
1773 
1774 	err = check_unshare_flags(unshare_flags);
1775 	if (err)
1776 		goto bad_unshare_out;
1777 
1778 	/*
1779 	 * If unsharing namespace, must also unshare filesystem information.
1780 	 */
1781 	if (unshare_flags & CLONE_NEWNS)
1782 		unshare_flags |= CLONE_FS;
1783 	/*
1784 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1785 	 * to a new ipc namespace, the semaphore arrays from the old
1786 	 * namespace are unreachable.
1787 	 */
1788 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1789 		do_sysvsem = 1;
1790 	err = unshare_fs(unshare_flags, &new_fs);
1791 	if (err)
1792 		goto bad_unshare_out;
1793 	err = unshare_fd(unshare_flags, &new_fd);
1794 	if (err)
1795 		goto bad_unshare_cleanup_fs;
1796 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
1797 	if (err)
1798 		goto bad_unshare_cleanup_fd;
1799 
1800 	if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1801 		if (do_sysvsem) {
1802 			/*
1803 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1804 			 */
1805 			exit_sem(current);
1806 		}
1807 
1808 		if (new_nsproxy) {
1809 			switch_task_namespaces(current, new_nsproxy);
1810 			new_nsproxy = NULL;
1811 		}
1812 
1813 		task_lock(current);
1814 
1815 		if (new_fs) {
1816 			fs = current->fs;
1817 			spin_lock(&fs->lock);
1818 			current->fs = new_fs;
1819 			if (--fs->users)
1820 				new_fs = NULL;
1821 			else
1822 				new_fs = fs;
1823 			spin_unlock(&fs->lock);
1824 		}
1825 
1826 		if (new_fd) {
1827 			fd = current->files;
1828 			current->files = new_fd;
1829 			new_fd = fd;
1830 		}
1831 
1832 		task_unlock(current);
1833 	}
1834 
1835 	if (new_nsproxy)
1836 		put_nsproxy(new_nsproxy);
1837 
1838 bad_unshare_cleanup_fd:
1839 	if (new_fd)
1840 		put_files_struct(new_fd);
1841 
1842 bad_unshare_cleanup_fs:
1843 	if (new_fs)
1844 		free_fs_struct(new_fs);
1845 
1846 bad_unshare_out:
1847 	return err;
1848 }
1849 
1850 /*
1851  *	Helper to unshare the files of the current task.
1852  *	We don't want to expose copy_files internals to
1853  *	the exec layer of the kernel.
1854  */
1855 
1856 int unshare_files(struct files_struct **displaced)
1857 {
1858 	struct task_struct *task = current;
1859 	struct files_struct *copy = NULL;
1860 	int error;
1861 
1862 	error = unshare_fd(CLONE_FILES, &copy);
1863 	if (error || !copy) {
1864 		*displaced = NULL;
1865 		return error;
1866 	}
1867 	*displaced = task->files;
1868 	task_lock(task);
1869 	task->files = copy;
1870 	task_unlock(task);
1871 	return 0;
1872 }
1873