xref: /linux/kernel/fork.c (revision 4127e13c9302f6892f73793f133ea4b4fffb2964)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/user.h>
20 #include <linux/sched/numa_balancing.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/sched/cputime.h>
25 #include <linux/sched/ext.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/memblock.h>
48 #include <linux/nsproxy.h>
49 #include <linux/capability.h>
50 #include <linux/cpu.h>
51 #include <linux/cgroup.h>
52 #include <linux/security.h>
53 #include <linux/hugetlb.h>
54 #include <linux/seccomp.h>
55 #include <linux/swap.h>
56 #include <linux/syscalls.h>
57 #include <linux/syscall_user_dispatch.h>
58 #include <linux/jiffies.h>
59 #include <linux/futex.h>
60 #include <linux/compat.h>
61 #include <linux/kthread.h>
62 #include <linux/task_io_accounting_ops.h>
63 #include <linux/rcupdate.h>
64 #include <linux/ptrace.h>
65 #include <linux/mount.h>
66 #include <linux/audit.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/proc_fs.h>
70 #include <linux/profile.h>
71 #include <linux/rmap.h>
72 #include <linux/ksm.h>
73 #include <linux/acct.h>
74 #include <linux/userfaultfd_k.h>
75 #include <linux/tsacct_kern.h>
76 #include <linux/cn_proc.h>
77 #include <linux/freezer.h>
78 #include <linux/delayacct.h>
79 #include <linux/taskstats_kern.h>
80 #include <linux/tty.h>
81 #include <linux/fs_struct.h>
82 #include <linux/magic.h>
83 #include <linux/perf_event.h>
84 #include <linux/posix-timers.h>
85 #include <linux/user-return-notifier.h>
86 #include <linux/oom.h>
87 #include <linux/khugepaged.h>
88 #include <linux/signalfd.h>
89 #include <linux/uprobes.h>
90 #include <linux/aio.h>
91 #include <linux/compiler.h>
92 #include <linux/sysctl.h>
93 #include <linux/kcov.h>
94 #include <linux/livepatch.h>
95 #include <linux/thread_info.h>
96 #include <linux/stackleak.h>
97 #include <linux/kasan.h>
98 #include <linux/scs.h>
99 #include <linux/io_uring.h>
100 #include <linux/bpf.h>
101 #include <linux/stackprotector.h>
102 #include <linux/user_events.h>
103 #include <linux/iommu.h>
104 #include <linux/rseq.h>
105 #include <uapi/linux/pidfd.h>
106 #include <linux/pidfs.h>
107 #include <linux/tick.h>
108 
109 #include <asm/pgalloc.h>
110 #include <linux/uaccess.h>
111 #include <asm/mmu_context.h>
112 #include <asm/cacheflush.h>
113 #include <asm/tlbflush.h>
114 
115 #include <trace/events/sched.h>
116 
117 #define CREATE_TRACE_POINTS
118 #include <trace/events/task.h>
119 
120 #include <kunit/visibility.h>
121 
122 /*
123  * Minimum number of threads to boot the kernel
124  */
125 #define MIN_THREADS 20
126 
127 /*
128  * Maximum number of threads
129  */
130 #define MAX_THREADS FUTEX_TID_MASK
131 
132 /*
133  * Protected counters by write_lock_irq(&tasklist_lock)
134  */
135 unsigned long total_forks;	/* Handle normal Linux uptimes. */
136 int nr_threads;			/* The idle threads do not count.. */
137 
138 static int max_threads;		/* tunable limit on nr_threads */
139 
140 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
141 
142 static const char * const resident_page_types[] = {
143 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
144 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
145 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
146 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
147 };
148 
149 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
150 
151 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
152 
153 #ifdef CONFIG_PROVE_RCU
154 int lockdep_tasklist_lock_is_held(void)
155 {
156 	return lockdep_is_held(&tasklist_lock);
157 }
158 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
159 #endif /* #ifdef CONFIG_PROVE_RCU */
160 
161 int nr_processes(void)
162 {
163 	int cpu;
164 	int total = 0;
165 
166 	for_each_possible_cpu(cpu)
167 		total += per_cpu(process_counts, cpu);
168 
169 	return total;
170 }
171 
172 void __weak arch_release_task_struct(struct task_struct *tsk)
173 {
174 }
175 
176 static struct kmem_cache *task_struct_cachep;
177 
178 static inline struct task_struct *alloc_task_struct_node(int node)
179 {
180 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
181 }
182 
183 static inline void free_task_struct(struct task_struct *tsk)
184 {
185 	kmem_cache_free(task_struct_cachep, tsk);
186 }
187 
188 /*
189  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
190  * kmemcache based allocator.
191  */
192 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
193 
194 #  ifdef CONFIG_VMAP_STACK
195 /*
196  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
197  * flush.  Try to minimize the number of calls by caching stacks.
198  */
199 #define NR_CACHED_STACKS 2
200 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
201 
202 struct vm_stack {
203 	struct rcu_head rcu;
204 	struct vm_struct *stack_vm_area;
205 };
206 
207 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
208 {
209 	unsigned int i;
210 
211 	for (i = 0; i < NR_CACHED_STACKS; i++) {
212 		struct vm_struct *tmp = NULL;
213 
214 		if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm))
215 			return true;
216 	}
217 	return false;
218 }
219 
220 static void thread_stack_free_rcu(struct rcu_head *rh)
221 {
222 	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
223 
224 	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
225 		return;
226 
227 	vfree(vm_stack);
228 }
229 
230 static void thread_stack_delayed_free(struct task_struct *tsk)
231 {
232 	struct vm_stack *vm_stack = tsk->stack;
233 
234 	vm_stack->stack_vm_area = tsk->stack_vm_area;
235 	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
236 }
237 
238 static int free_vm_stack_cache(unsigned int cpu)
239 {
240 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
241 	int i;
242 
243 	for (i = 0; i < NR_CACHED_STACKS; i++) {
244 		struct vm_struct *vm_stack = cached_vm_stacks[i];
245 
246 		if (!vm_stack)
247 			continue;
248 
249 		vfree(vm_stack->addr);
250 		cached_vm_stacks[i] = NULL;
251 	}
252 
253 	return 0;
254 }
255 
256 static int memcg_charge_kernel_stack(struct vm_struct *vm)
257 {
258 	int i;
259 	int ret;
260 	int nr_charged = 0;
261 
262 	BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
263 
264 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
265 		ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
266 		if (ret)
267 			goto err;
268 		nr_charged++;
269 	}
270 	return 0;
271 err:
272 	for (i = 0; i < nr_charged; i++)
273 		memcg_kmem_uncharge_page(vm->pages[i], 0);
274 	return ret;
275 }
276 
277 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
278 {
279 	struct vm_struct *vm;
280 	void *stack;
281 	int i;
282 
283 	for (i = 0; i < NR_CACHED_STACKS; i++) {
284 		struct vm_struct *s;
285 
286 		s = this_cpu_xchg(cached_stacks[i], NULL);
287 
288 		if (!s)
289 			continue;
290 
291 		/* Reset stack metadata. */
292 		kasan_unpoison_range(s->addr, THREAD_SIZE);
293 
294 		stack = kasan_reset_tag(s->addr);
295 
296 		/* Clear stale pointers from reused stack. */
297 		memset(stack, 0, THREAD_SIZE);
298 
299 		if (memcg_charge_kernel_stack(s)) {
300 			vfree(s->addr);
301 			return -ENOMEM;
302 		}
303 
304 		tsk->stack_vm_area = s;
305 		tsk->stack = stack;
306 		return 0;
307 	}
308 
309 	/*
310 	 * Allocated stacks are cached and later reused by new threads,
311 	 * so memcg accounting is performed manually on assigning/releasing
312 	 * stacks to tasks. Drop __GFP_ACCOUNT.
313 	 */
314 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
315 				     VMALLOC_START, VMALLOC_END,
316 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
317 				     PAGE_KERNEL,
318 				     0, node, __builtin_return_address(0));
319 	if (!stack)
320 		return -ENOMEM;
321 
322 	vm = find_vm_area(stack);
323 	if (memcg_charge_kernel_stack(vm)) {
324 		vfree(stack);
325 		return -ENOMEM;
326 	}
327 	/*
328 	 * We can't call find_vm_area() in interrupt context, and
329 	 * free_thread_stack() can be called in interrupt context,
330 	 * so cache the vm_struct.
331 	 */
332 	tsk->stack_vm_area = vm;
333 	stack = kasan_reset_tag(stack);
334 	tsk->stack = stack;
335 	return 0;
336 }
337 
338 static void free_thread_stack(struct task_struct *tsk)
339 {
340 	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
341 		thread_stack_delayed_free(tsk);
342 
343 	tsk->stack = NULL;
344 	tsk->stack_vm_area = NULL;
345 }
346 
347 #  else /* !CONFIG_VMAP_STACK */
348 
349 static void thread_stack_free_rcu(struct rcu_head *rh)
350 {
351 	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
352 }
353 
354 static void thread_stack_delayed_free(struct task_struct *tsk)
355 {
356 	struct rcu_head *rh = tsk->stack;
357 
358 	call_rcu(rh, thread_stack_free_rcu);
359 }
360 
361 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
362 {
363 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
364 					     THREAD_SIZE_ORDER);
365 
366 	if (likely(page)) {
367 		tsk->stack = kasan_reset_tag(page_address(page));
368 		return 0;
369 	}
370 	return -ENOMEM;
371 }
372 
373 static void free_thread_stack(struct task_struct *tsk)
374 {
375 	thread_stack_delayed_free(tsk);
376 	tsk->stack = NULL;
377 }
378 
379 #  endif /* CONFIG_VMAP_STACK */
380 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
381 
382 static struct kmem_cache *thread_stack_cache;
383 
384 static void thread_stack_free_rcu(struct rcu_head *rh)
385 {
386 	kmem_cache_free(thread_stack_cache, rh);
387 }
388 
389 static void thread_stack_delayed_free(struct task_struct *tsk)
390 {
391 	struct rcu_head *rh = tsk->stack;
392 
393 	call_rcu(rh, thread_stack_free_rcu);
394 }
395 
396 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
397 {
398 	unsigned long *stack;
399 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
400 	stack = kasan_reset_tag(stack);
401 	tsk->stack = stack;
402 	return stack ? 0 : -ENOMEM;
403 }
404 
405 static void free_thread_stack(struct task_struct *tsk)
406 {
407 	thread_stack_delayed_free(tsk);
408 	tsk->stack = NULL;
409 }
410 
411 void thread_stack_cache_init(void)
412 {
413 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
414 					THREAD_SIZE, THREAD_SIZE, 0, 0,
415 					THREAD_SIZE, NULL);
416 	BUG_ON(thread_stack_cache == NULL);
417 }
418 
419 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
420 
421 /* SLAB cache for signal_struct structures (tsk->signal) */
422 static struct kmem_cache *signal_cachep;
423 
424 /* SLAB cache for sighand_struct structures (tsk->sighand) */
425 struct kmem_cache *sighand_cachep;
426 
427 /* SLAB cache for files_struct structures (tsk->files) */
428 struct kmem_cache *files_cachep;
429 
430 /* SLAB cache for fs_struct structures (tsk->fs) */
431 struct kmem_cache *fs_cachep;
432 
433 /* SLAB cache for vm_area_struct structures */
434 static struct kmem_cache *vm_area_cachep;
435 
436 /* SLAB cache for mm_struct structures (tsk->mm) */
437 static struct kmem_cache *mm_cachep;
438 
439 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
440 {
441 	struct vm_area_struct *vma;
442 
443 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
444 	if (!vma)
445 		return NULL;
446 
447 	vma_init(vma, mm);
448 
449 	return vma;
450 }
451 
452 static void vm_area_init_from(const struct vm_area_struct *src,
453 			      struct vm_area_struct *dest)
454 {
455 	dest->vm_mm = src->vm_mm;
456 	dest->vm_ops = src->vm_ops;
457 	dest->vm_start = src->vm_start;
458 	dest->vm_end = src->vm_end;
459 	dest->anon_vma = src->anon_vma;
460 	dest->vm_pgoff = src->vm_pgoff;
461 	dest->vm_file = src->vm_file;
462 	dest->vm_private_data = src->vm_private_data;
463 	vm_flags_init(dest, src->vm_flags);
464 	memcpy(&dest->vm_page_prot, &src->vm_page_prot,
465 	       sizeof(dest->vm_page_prot));
466 	/*
467 	 * src->shared.rb may be modified concurrently when called from
468 	 * dup_mmap(), but the clone will reinitialize it.
469 	 */
470 	data_race(memcpy(&dest->shared, &src->shared, sizeof(dest->shared)));
471 	memcpy(&dest->vm_userfaultfd_ctx, &src->vm_userfaultfd_ctx,
472 	       sizeof(dest->vm_userfaultfd_ctx));
473 #ifdef CONFIG_ANON_VMA_NAME
474 	dest->anon_name = src->anon_name;
475 #endif
476 #ifdef CONFIG_SWAP
477 	memcpy(&dest->swap_readahead_info, &src->swap_readahead_info,
478 	       sizeof(dest->swap_readahead_info));
479 #endif
480 #ifndef CONFIG_MMU
481 	dest->vm_region = src->vm_region;
482 #endif
483 #ifdef CONFIG_NUMA
484 	dest->vm_policy = src->vm_policy;
485 #endif
486 }
487 
488 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
489 {
490 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
491 
492 	if (!new)
493 		return NULL;
494 
495 	ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
496 	ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
497 	vm_area_init_from(orig, new);
498 	vma_lock_init(new, true);
499 	INIT_LIST_HEAD(&new->anon_vma_chain);
500 	vma_numab_state_init(new);
501 	dup_anon_vma_name(orig, new);
502 
503 	return new;
504 }
505 
506 void vm_area_free(struct vm_area_struct *vma)
507 {
508 	/* The vma should be detached while being destroyed. */
509 	vma_assert_detached(vma);
510 	vma_numab_state_free(vma);
511 	free_anon_vma_name(vma);
512 	kmem_cache_free(vm_area_cachep, vma);
513 }
514 
515 static void account_kernel_stack(struct task_struct *tsk, int account)
516 {
517 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
518 		struct vm_struct *vm = task_stack_vm_area(tsk);
519 		int i;
520 
521 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
522 			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
523 					      account * (PAGE_SIZE / 1024));
524 	} else {
525 		void *stack = task_stack_page(tsk);
526 
527 		/* All stack pages are in the same node. */
528 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
529 				      account * (THREAD_SIZE / 1024));
530 	}
531 }
532 
533 void exit_task_stack_account(struct task_struct *tsk)
534 {
535 	account_kernel_stack(tsk, -1);
536 
537 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
538 		struct vm_struct *vm;
539 		int i;
540 
541 		vm = task_stack_vm_area(tsk);
542 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
543 			memcg_kmem_uncharge_page(vm->pages[i], 0);
544 	}
545 }
546 
547 static void release_task_stack(struct task_struct *tsk)
548 {
549 	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
550 		return;  /* Better to leak the stack than to free prematurely */
551 
552 	free_thread_stack(tsk);
553 }
554 
555 #ifdef CONFIG_THREAD_INFO_IN_TASK
556 void put_task_stack(struct task_struct *tsk)
557 {
558 	if (refcount_dec_and_test(&tsk->stack_refcount))
559 		release_task_stack(tsk);
560 }
561 #endif
562 
563 void free_task(struct task_struct *tsk)
564 {
565 #ifdef CONFIG_SECCOMP
566 	WARN_ON_ONCE(tsk->seccomp.filter);
567 #endif
568 	release_user_cpus_ptr(tsk);
569 	scs_release(tsk);
570 
571 #ifndef CONFIG_THREAD_INFO_IN_TASK
572 	/*
573 	 * The task is finally done with both the stack and thread_info,
574 	 * so free both.
575 	 */
576 	release_task_stack(tsk);
577 #else
578 	/*
579 	 * If the task had a separate stack allocation, it should be gone
580 	 * by now.
581 	 */
582 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
583 #endif
584 	rt_mutex_debug_task_free(tsk);
585 	ftrace_graph_exit_task(tsk);
586 	arch_release_task_struct(tsk);
587 	if (tsk->flags & PF_KTHREAD)
588 		free_kthread_struct(tsk);
589 	bpf_task_storage_free(tsk);
590 	free_task_struct(tsk);
591 }
592 EXPORT_SYMBOL(free_task);
593 
594 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
595 {
596 	struct file *exe_file;
597 
598 	exe_file = get_mm_exe_file(oldmm);
599 	RCU_INIT_POINTER(mm->exe_file, exe_file);
600 	/*
601 	 * We depend on the oldmm having properly denied write access to the
602 	 * exe_file already.
603 	 */
604 	if (exe_file && exe_file_deny_write_access(exe_file))
605 		pr_warn_once("exe_file_deny_write_access() failed in %s\n", __func__);
606 }
607 
608 #ifdef CONFIG_MMU
609 static __latent_entropy int dup_mmap(struct mm_struct *mm,
610 					struct mm_struct *oldmm)
611 {
612 	struct vm_area_struct *mpnt, *tmp;
613 	int retval;
614 	unsigned long charge = 0;
615 	LIST_HEAD(uf);
616 	VMA_ITERATOR(vmi, mm, 0);
617 
618 	if (mmap_write_lock_killable(oldmm))
619 		return -EINTR;
620 	flush_cache_dup_mm(oldmm);
621 	uprobe_dup_mmap(oldmm, mm);
622 	/*
623 	 * Not linked in yet - no deadlock potential:
624 	 */
625 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
626 
627 	/* No ordering required: file already has been exposed. */
628 	dup_mm_exe_file(mm, oldmm);
629 
630 	mm->total_vm = oldmm->total_vm;
631 	mm->data_vm = oldmm->data_vm;
632 	mm->exec_vm = oldmm->exec_vm;
633 	mm->stack_vm = oldmm->stack_vm;
634 
635 	/* Use __mt_dup() to efficiently build an identical maple tree. */
636 	retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL);
637 	if (unlikely(retval))
638 		goto out;
639 
640 	mt_clear_in_rcu(vmi.mas.tree);
641 	for_each_vma(vmi, mpnt) {
642 		struct file *file;
643 
644 		vma_start_write(mpnt);
645 		if (mpnt->vm_flags & VM_DONTCOPY) {
646 			retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start,
647 						    mpnt->vm_end, GFP_KERNEL);
648 			if (retval)
649 				goto loop_out;
650 
651 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
652 			continue;
653 		}
654 		charge = 0;
655 		/*
656 		 * Don't duplicate many vmas if we've been oom-killed (for
657 		 * example)
658 		 */
659 		if (fatal_signal_pending(current)) {
660 			retval = -EINTR;
661 			goto loop_out;
662 		}
663 		if (mpnt->vm_flags & VM_ACCOUNT) {
664 			unsigned long len = vma_pages(mpnt);
665 
666 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
667 				goto fail_nomem;
668 			charge = len;
669 		}
670 		tmp = vm_area_dup(mpnt);
671 		if (!tmp)
672 			goto fail_nomem;
673 		retval = vma_dup_policy(mpnt, tmp);
674 		if (retval)
675 			goto fail_nomem_policy;
676 		tmp->vm_mm = mm;
677 		retval = dup_userfaultfd(tmp, &uf);
678 		if (retval)
679 			goto fail_nomem_anon_vma_fork;
680 		if (tmp->vm_flags & VM_WIPEONFORK) {
681 			/*
682 			 * VM_WIPEONFORK gets a clean slate in the child.
683 			 * Don't prepare anon_vma until fault since we don't
684 			 * copy page for current vma.
685 			 */
686 			tmp->anon_vma = NULL;
687 		} else if (anon_vma_fork(tmp, mpnt))
688 			goto fail_nomem_anon_vma_fork;
689 		vm_flags_clear(tmp, VM_LOCKED_MASK);
690 		/*
691 		 * Copy/update hugetlb private vma information.
692 		 */
693 		if (is_vm_hugetlb_page(tmp))
694 			hugetlb_dup_vma_private(tmp);
695 
696 		/*
697 		 * Link the vma into the MT. After using __mt_dup(), memory
698 		 * allocation is not necessary here, so it cannot fail.
699 		 */
700 		vma_iter_bulk_store(&vmi, tmp);
701 
702 		mm->map_count++;
703 
704 		if (tmp->vm_ops && tmp->vm_ops->open)
705 			tmp->vm_ops->open(tmp);
706 
707 		file = tmp->vm_file;
708 		if (file) {
709 			struct address_space *mapping = file->f_mapping;
710 
711 			get_file(file);
712 			i_mmap_lock_write(mapping);
713 			if (vma_is_shared_maywrite(tmp))
714 				mapping_allow_writable(mapping);
715 			flush_dcache_mmap_lock(mapping);
716 			/* insert tmp into the share list, just after mpnt */
717 			vma_interval_tree_insert_after(tmp, mpnt,
718 					&mapping->i_mmap);
719 			flush_dcache_mmap_unlock(mapping);
720 			i_mmap_unlock_write(mapping);
721 		}
722 
723 		if (!(tmp->vm_flags & VM_WIPEONFORK))
724 			retval = copy_page_range(tmp, mpnt);
725 
726 		if (retval) {
727 			mpnt = vma_next(&vmi);
728 			goto loop_out;
729 		}
730 	}
731 	/* a new mm has just been created */
732 	retval = arch_dup_mmap(oldmm, mm);
733 loop_out:
734 	vma_iter_free(&vmi);
735 	if (!retval) {
736 		mt_set_in_rcu(vmi.mas.tree);
737 		ksm_fork(mm, oldmm);
738 		khugepaged_fork(mm, oldmm);
739 	} else {
740 
741 		/*
742 		 * The entire maple tree has already been duplicated. If the
743 		 * mmap duplication fails, mark the failure point with
744 		 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered,
745 		 * stop releasing VMAs that have not been duplicated after this
746 		 * point.
747 		 */
748 		if (mpnt) {
749 			mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1);
750 			mas_store(&vmi.mas, XA_ZERO_ENTRY);
751 			/* Avoid OOM iterating a broken tree */
752 			set_bit(MMF_OOM_SKIP, &mm->flags);
753 		}
754 		/*
755 		 * The mm_struct is going to exit, but the locks will be dropped
756 		 * first.  Set the mm_struct as unstable is advisable as it is
757 		 * not fully initialised.
758 		 */
759 		set_bit(MMF_UNSTABLE, &mm->flags);
760 	}
761 out:
762 	mmap_write_unlock(mm);
763 	flush_tlb_mm(oldmm);
764 	mmap_write_unlock(oldmm);
765 	if (!retval)
766 		dup_userfaultfd_complete(&uf);
767 	else
768 		dup_userfaultfd_fail(&uf);
769 	return retval;
770 
771 fail_nomem_anon_vma_fork:
772 	mpol_put(vma_policy(tmp));
773 fail_nomem_policy:
774 	vm_area_free(tmp);
775 fail_nomem:
776 	retval = -ENOMEM;
777 	vm_unacct_memory(charge);
778 	goto loop_out;
779 }
780 
781 static inline int mm_alloc_pgd(struct mm_struct *mm)
782 {
783 	mm->pgd = pgd_alloc(mm);
784 	if (unlikely(!mm->pgd))
785 		return -ENOMEM;
786 	return 0;
787 }
788 
789 static inline void mm_free_pgd(struct mm_struct *mm)
790 {
791 	pgd_free(mm, mm->pgd);
792 }
793 #else
794 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
795 {
796 	mmap_write_lock(oldmm);
797 	dup_mm_exe_file(mm, oldmm);
798 	mmap_write_unlock(oldmm);
799 	return 0;
800 }
801 #define mm_alloc_pgd(mm)	(0)
802 #define mm_free_pgd(mm)
803 #endif /* CONFIG_MMU */
804 
805 static void check_mm(struct mm_struct *mm)
806 {
807 	int i;
808 
809 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
810 			 "Please make sure 'struct resident_page_types[]' is updated as well");
811 
812 	for (i = 0; i < NR_MM_COUNTERS; i++) {
813 		long x = percpu_counter_sum(&mm->rss_stat[i]);
814 
815 		if (unlikely(x))
816 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
817 				 mm, resident_page_types[i], x);
818 	}
819 
820 	if (mm_pgtables_bytes(mm))
821 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
822 				mm_pgtables_bytes(mm));
823 
824 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
825 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
826 #endif
827 }
828 
829 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
830 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
831 
832 static void do_check_lazy_tlb(void *arg)
833 {
834 	struct mm_struct *mm = arg;
835 
836 	WARN_ON_ONCE(current->active_mm == mm);
837 }
838 
839 static void do_shoot_lazy_tlb(void *arg)
840 {
841 	struct mm_struct *mm = arg;
842 
843 	if (current->active_mm == mm) {
844 		WARN_ON_ONCE(current->mm);
845 		current->active_mm = &init_mm;
846 		switch_mm(mm, &init_mm, current);
847 	}
848 }
849 
850 static void cleanup_lazy_tlbs(struct mm_struct *mm)
851 {
852 	if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
853 		/*
854 		 * In this case, lazy tlb mms are refounted and would not reach
855 		 * __mmdrop until all CPUs have switched away and mmdrop()ed.
856 		 */
857 		return;
858 	}
859 
860 	/*
861 	 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
862 	 * requires lazy mm users to switch to another mm when the refcount
863 	 * drops to zero, before the mm is freed. This requires IPIs here to
864 	 * switch kernel threads to init_mm.
865 	 *
866 	 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
867 	 * switch with the final userspace teardown TLB flush which leaves the
868 	 * mm lazy on this CPU but no others, reducing the need for additional
869 	 * IPIs here. There are cases where a final IPI is still required here,
870 	 * such as the final mmdrop being performed on a different CPU than the
871 	 * one exiting, or kernel threads using the mm when userspace exits.
872 	 *
873 	 * IPI overheads have not found to be expensive, but they could be
874 	 * reduced in a number of possible ways, for example (roughly
875 	 * increasing order of complexity):
876 	 * - The last lazy reference created by exit_mm() could instead switch
877 	 *   to init_mm, however it's probable this will run on the same CPU
878 	 *   immediately afterwards, so this may not reduce IPIs much.
879 	 * - A batch of mms requiring IPIs could be gathered and freed at once.
880 	 * - CPUs store active_mm where it can be remotely checked without a
881 	 *   lock, to filter out false-positives in the cpumask.
882 	 * - After mm_users or mm_count reaches zero, switching away from the
883 	 *   mm could clear mm_cpumask to reduce some IPIs, perhaps together
884 	 *   with some batching or delaying of the final IPIs.
885 	 * - A delayed freeing and RCU-like quiescing sequence based on mm
886 	 *   switching to avoid IPIs completely.
887 	 */
888 	on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
889 	if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
890 		on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
891 }
892 
893 /*
894  * Called when the last reference to the mm
895  * is dropped: either by a lazy thread or by
896  * mmput. Free the page directory and the mm.
897  */
898 void __mmdrop(struct mm_struct *mm)
899 {
900 	BUG_ON(mm == &init_mm);
901 	WARN_ON_ONCE(mm == current->mm);
902 
903 	/* Ensure no CPUs are using this as their lazy tlb mm */
904 	cleanup_lazy_tlbs(mm);
905 
906 	WARN_ON_ONCE(mm == current->active_mm);
907 	mm_free_pgd(mm);
908 	destroy_context(mm);
909 	mmu_notifier_subscriptions_destroy(mm);
910 	check_mm(mm);
911 	put_user_ns(mm->user_ns);
912 	mm_pasid_drop(mm);
913 	mm_destroy_cid(mm);
914 	percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
915 
916 	free_mm(mm);
917 }
918 EXPORT_SYMBOL_GPL(__mmdrop);
919 
920 static void mmdrop_async_fn(struct work_struct *work)
921 {
922 	struct mm_struct *mm;
923 
924 	mm = container_of(work, struct mm_struct, async_put_work);
925 	__mmdrop(mm);
926 }
927 
928 static void mmdrop_async(struct mm_struct *mm)
929 {
930 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
931 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
932 		schedule_work(&mm->async_put_work);
933 	}
934 }
935 
936 static inline void free_signal_struct(struct signal_struct *sig)
937 {
938 	taskstats_tgid_free(sig);
939 	sched_autogroup_exit(sig);
940 	/*
941 	 * __mmdrop is not safe to call from softirq context on x86 due to
942 	 * pgd_dtor so postpone it to the async context
943 	 */
944 	if (sig->oom_mm)
945 		mmdrop_async(sig->oom_mm);
946 	kmem_cache_free(signal_cachep, sig);
947 }
948 
949 static inline void put_signal_struct(struct signal_struct *sig)
950 {
951 	if (refcount_dec_and_test(&sig->sigcnt))
952 		free_signal_struct(sig);
953 }
954 
955 void __put_task_struct(struct task_struct *tsk)
956 {
957 	WARN_ON(!tsk->exit_state);
958 	WARN_ON(refcount_read(&tsk->usage));
959 	WARN_ON(tsk == current);
960 
961 	sched_ext_free(tsk);
962 	io_uring_free(tsk);
963 	cgroup_free(tsk);
964 	task_numa_free(tsk, true);
965 	security_task_free(tsk);
966 	exit_creds(tsk);
967 	delayacct_tsk_free(tsk);
968 	put_signal_struct(tsk->signal);
969 	sched_core_free(tsk);
970 	free_task(tsk);
971 }
972 EXPORT_SYMBOL_GPL(__put_task_struct);
973 
974 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
975 {
976 	struct task_struct *task = container_of(rhp, struct task_struct, rcu);
977 
978 	__put_task_struct(task);
979 }
980 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
981 
982 void __init __weak arch_task_cache_init(void) { }
983 
984 /*
985  * set_max_threads
986  */
987 static void __init set_max_threads(unsigned int max_threads_suggested)
988 {
989 	u64 threads;
990 	unsigned long nr_pages = memblock_estimated_nr_free_pages();
991 
992 	/*
993 	 * The number of threads shall be limited such that the thread
994 	 * structures may only consume a small part of the available memory.
995 	 */
996 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
997 		threads = MAX_THREADS;
998 	else
999 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
1000 				    (u64) THREAD_SIZE * 8UL);
1001 
1002 	if (threads > max_threads_suggested)
1003 		threads = max_threads_suggested;
1004 
1005 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
1006 }
1007 
1008 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1009 /* Initialized by the architecture: */
1010 int arch_task_struct_size __read_mostly;
1011 #endif
1012 
1013 static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size)
1014 {
1015 	/* Fetch thread_struct whitelist for the architecture. */
1016 	arch_thread_struct_whitelist(offset, size);
1017 
1018 	/*
1019 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
1020 	 * adjust offset to position of thread_struct in task_struct.
1021 	 */
1022 	if (unlikely(*size == 0))
1023 		*offset = 0;
1024 	else
1025 		*offset += offsetof(struct task_struct, thread);
1026 }
1027 
1028 void __init fork_init(void)
1029 {
1030 	int i;
1031 #ifndef ARCH_MIN_TASKALIGN
1032 #define ARCH_MIN_TASKALIGN	0
1033 #endif
1034 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1035 	unsigned long useroffset, usersize;
1036 
1037 	/* create a slab on which task_structs can be allocated */
1038 	task_struct_whitelist(&useroffset, &usersize);
1039 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1040 			arch_task_struct_size, align,
1041 			SLAB_PANIC|SLAB_ACCOUNT,
1042 			useroffset, usersize, NULL);
1043 
1044 	/* do the arch specific task caches init */
1045 	arch_task_cache_init();
1046 
1047 	set_max_threads(MAX_THREADS);
1048 
1049 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1050 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1051 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
1052 		init_task.signal->rlim[RLIMIT_NPROC];
1053 
1054 	for (i = 0; i < UCOUNT_COUNTS; i++)
1055 		init_user_ns.ucount_max[i] = max_threads/2;
1056 
1057 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
1058 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
1059 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1060 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
1061 
1062 #ifdef CONFIG_VMAP_STACK
1063 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1064 			  NULL, free_vm_stack_cache);
1065 #endif
1066 
1067 	scs_init();
1068 
1069 	lockdep_init_task(&init_task);
1070 	uprobes_init();
1071 }
1072 
1073 int __weak arch_dup_task_struct(struct task_struct *dst,
1074 					       struct task_struct *src)
1075 {
1076 	*dst = *src;
1077 	return 0;
1078 }
1079 
1080 void set_task_stack_end_magic(struct task_struct *tsk)
1081 {
1082 	unsigned long *stackend;
1083 
1084 	stackend = end_of_stack(tsk);
1085 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
1086 }
1087 
1088 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1089 {
1090 	struct task_struct *tsk;
1091 	int err;
1092 
1093 	if (node == NUMA_NO_NODE)
1094 		node = tsk_fork_get_node(orig);
1095 	tsk = alloc_task_struct_node(node);
1096 	if (!tsk)
1097 		return NULL;
1098 
1099 	err = arch_dup_task_struct(tsk, orig);
1100 	if (err)
1101 		goto free_tsk;
1102 
1103 	err = alloc_thread_stack_node(tsk, node);
1104 	if (err)
1105 		goto free_tsk;
1106 
1107 #ifdef CONFIG_THREAD_INFO_IN_TASK
1108 	refcount_set(&tsk->stack_refcount, 1);
1109 #endif
1110 	account_kernel_stack(tsk, 1);
1111 
1112 	err = scs_prepare(tsk, node);
1113 	if (err)
1114 		goto free_stack;
1115 
1116 #ifdef CONFIG_SECCOMP
1117 	/*
1118 	 * We must handle setting up seccomp filters once we're under
1119 	 * the sighand lock in case orig has changed between now and
1120 	 * then. Until then, filter must be NULL to avoid messing up
1121 	 * the usage counts on the error path calling free_task.
1122 	 */
1123 	tsk->seccomp.filter = NULL;
1124 #endif
1125 
1126 	setup_thread_stack(tsk, orig);
1127 	clear_user_return_notifier(tsk);
1128 	clear_tsk_need_resched(tsk);
1129 	set_task_stack_end_magic(tsk);
1130 	clear_syscall_work_syscall_user_dispatch(tsk);
1131 
1132 #ifdef CONFIG_STACKPROTECTOR
1133 	tsk->stack_canary = get_random_canary();
1134 #endif
1135 	if (orig->cpus_ptr == &orig->cpus_mask)
1136 		tsk->cpus_ptr = &tsk->cpus_mask;
1137 	dup_user_cpus_ptr(tsk, orig, node);
1138 
1139 	/*
1140 	 * One for the user space visible state that goes away when reaped.
1141 	 * One for the scheduler.
1142 	 */
1143 	refcount_set(&tsk->rcu_users, 2);
1144 	/* One for the rcu users */
1145 	refcount_set(&tsk->usage, 1);
1146 #ifdef CONFIG_BLK_DEV_IO_TRACE
1147 	tsk->btrace_seq = 0;
1148 #endif
1149 	tsk->splice_pipe = NULL;
1150 	tsk->task_frag.page = NULL;
1151 	tsk->wake_q.next = NULL;
1152 	tsk->worker_private = NULL;
1153 
1154 	kcov_task_init(tsk);
1155 	kmsan_task_create(tsk);
1156 	kmap_local_fork(tsk);
1157 
1158 #ifdef CONFIG_FAULT_INJECTION
1159 	tsk->fail_nth = 0;
1160 #endif
1161 
1162 #ifdef CONFIG_BLK_CGROUP
1163 	tsk->throttle_disk = NULL;
1164 	tsk->use_memdelay = 0;
1165 #endif
1166 
1167 #ifdef CONFIG_ARCH_HAS_CPU_PASID
1168 	tsk->pasid_activated = 0;
1169 #endif
1170 
1171 #ifdef CONFIG_MEMCG
1172 	tsk->active_memcg = NULL;
1173 #endif
1174 
1175 #ifdef CONFIG_X86_BUS_LOCK_DETECT
1176 	tsk->reported_split_lock = 0;
1177 #endif
1178 
1179 #ifdef CONFIG_SCHED_MM_CID
1180 	tsk->mm_cid = -1;
1181 	tsk->last_mm_cid = -1;
1182 	tsk->mm_cid_active = 0;
1183 	tsk->migrate_from_cpu = -1;
1184 #endif
1185 	return tsk;
1186 
1187 free_stack:
1188 	exit_task_stack_account(tsk);
1189 	free_thread_stack(tsk);
1190 free_tsk:
1191 	free_task_struct(tsk);
1192 	return NULL;
1193 }
1194 
1195 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1196 
1197 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1198 
1199 static int __init coredump_filter_setup(char *s)
1200 {
1201 	default_dump_filter =
1202 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1203 		MMF_DUMP_FILTER_MASK;
1204 	return 1;
1205 }
1206 
1207 __setup("coredump_filter=", coredump_filter_setup);
1208 
1209 #include <linux/init_task.h>
1210 
1211 static void mm_init_aio(struct mm_struct *mm)
1212 {
1213 #ifdef CONFIG_AIO
1214 	spin_lock_init(&mm->ioctx_lock);
1215 	mm->ioctx_table = NULL;
1216 #endif
1217 }
1218 
1219 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1220 					   struct task_struct *p)
1221 {
1222 #ifdef CONFIG_MEMCG
1223 	if (mm->owner == p)
1224 		WRITE_ONCE(mm->owner, NULL);
1225 #endif
1226 }
1227 
1228 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1229 {
1230 #ifdef CONFIG_MEMCG
1231 	mm->owner = p;
1232 #endif
1233 }
1234 
1235 static void mm_init_uprobes_state(struct mm_struct *mm)
1236 {
1237 #ifdef CONFIG_UPROBES
1238 	mm->uprobes_state.xol_area = NULL;
1239 #endif
1240 }
1241 
1242 static void mmap_init_lock(struct mm_struct *mm)
1243 {
1244 	init_rwsem(&mm->mmap_lock);
1245 	mm_lock_seqcount_init(mm);
1246 #ifdef CONFIG_PER_VMA_LOCK
1247 	rcuwait_init(&mm->vma_writer_wait);
1248 #endif
1249 }
1250 
1251 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1252 	struct user_namespace *user_ns)
1253 {
1254 	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1255 	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1256 	atomic_set(&mm->mm_users, 1);
1257 	atomic_set(&mm->mm_count, 1);
1258 	seqcount_init(&mm->write_protect_seq);
1259 	mmap_init_lock(mm);
1260 	INIT_LIST_HEAD(&mm->mmlist);
1261 	mm_pgtables_bytes_init(mm);
1262 	mm->map_count = 0;
1263 	mm->locked_vm = 0;
1264 	atomic64_set(&mm->pinned_vm, 0);
1265 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1266 	spin_lock_init(&mm->page_table_lock);
1267 	spin_lock_init(&mm->arg_lock);
1268 	mm_init_cpumask(mm);
1269 	mm_init_aio(mm);
1270 	mm_init_owner(mm, p);
1271 	mm_pasid_init(mm);
1272 	RCU_INIT_POINTER(mm->exe_file, NULL);
1273 	mmu_notifier_subscriptions_init(mm);
1274 	init_tlb_flush_pending(mm);
1275 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
1276 	mm->pmd_huge_pte = NULL;
1277 #endif
1278 	mm_init_uprobes_state(mm);
1279 	hugetlb_count_init(mm);
1280 
1281 	if (current->mm) {
1282 		mm->flags = mmf_init_flags(current->mm->flags);
1283 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1284 	} else {
1285 		mm->flags = default_dump_filter;
1286 		mm->def_flags = 0;
1287 	}
1288 
1289 	if (mm_alloc_pgd(mm))
1290 		goto fail_nopgd;
1291 
1292 	if (init_new_context(p, mm))
1293 		goto fail_nocontext;
1294 
1295 	if (mm_alloc_cid(mm, p))
1296 		goto fail_cid;
1297 
1298 	if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1299 				     NR_MM_COUNTERS))
1300 		goto fail_pcpu;
1301 
1302 	mm->user_ns = get_user_ns(user_ns);
1303 	lru_gen_init_mm(mm);
1304 	return mm;
1305 
1306 fail_pcpu:
1307 	mm_destroy_cid(mm);
1308 fail_cid:
1309 	destroy_context(mm);
1310 fail_nocontext:
1311 	mm_free_pgd(mm);
1312 fail_nopgd:
1313 	free_mm(mm);
1314 	return NULL;
1315 }
1316 
1317 /*
1318  * Allocate and initialize an mm_struct.
1319  */
1320 struct mm_struct *mm_alloc(void)
1321 {
1322 	struct mm_struct *mm;
1323 
1324 	mm = allocate_mm();
1325 	if (!mm)
1326 		return NULL;
1327 
1328 	memset(mm, 0, sizeof(*mm));
1329 	return mm_init(mm, current, current_user_ns());
1330 }
1331 EXPORT_SYMBOL_IF_KUNIT(mm_alloc);
1332 
1333 static inline void __mmput(struct mm_struct *mm)
1334 {
1335 	VM_BUG_ON(atomic_read(&mm->mm_users));
1336 
1337 	uprobe_clear_state(mm);
1338 	exit_aio(mm);
1339 	ksm_exit(mm);
1340 	khugepaged_exit(mm); /* must run before exit_mmap */
1341 	exit_mmap(mm);
1342 	mm_put_huge_zero_folio(mm);
1343 	set_mm_exe_file(mm, NULL);
1344 	if (!list_empty(&mm->mmlist)) {
1345 		spin_lock(&mmlist_lock);
1346 		list_del(&mm->mmlist);
1347 		spin_unlock(&mmlist_lock);
1348 	}
1349 	if (mm->binfmt)
1350 		module_put(mm->binfmt->module);
1351 	lru_gen_del_mm(mm);
1352 	mmdrop(mm);
1353 }
1354 
1355 /*
1356  * Decrement the use count and release all resources for an mm.
1357  */
1358 void mmput(struct mm_struct *mm)
1359 {
1360 	might_sleep();
1361 
1362 	if (atomic_dec_and_test(&mm->mm_users))
1363 		__mmput(mm);
1364 }
1365 EXPORT_SYMBOL_GPL(mmput);
1366 
1367 #ifdef CONFIG_MMU
1368 static void mmput_async_fn(struct work_struct *work)
1369 {
1370 	struct mm_struct *mm = container_of(work, struct mm_struct,
1371 					    async_put_work);
1372 
1373 	__mmput(mm);
1374 }
1375 
1376 void mmput_async(struct mm_struct *mm)
1377 {
1378 	if (atomic_dec_and_test(&mm->mm_users)) {
1379 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1380 		schedule_work(&mm->async_put_work);
1381 	}
1382 }
1383 EXPORT_SYMBOL_GPL(mmput_async);
1384 #endif
1385 
1386 /**
1387  * set_mm_exe_file - change a reference to the mm's executable file
1388  * @mm: The mm to change.
1389  * @new_exe_file: The new file to use.
1390  *
1391  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1392  *
1393  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1394  * invocations: in mmput() nobody alive left, in execve it happens before
1395  * the new mm is made visible to anyone.
1396  *
1397  * Can only fail if new_exe_file != NULL.
1398  */
1399 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1400 {
1401 	struct file *old_exe_file;
1402 
1403 	/*
1404 	 * It is safe to dereference the exe_file without RCU as
1405 	 * this function is only called if nobody else can access
1406 	 * this mm -- see comment above for justification.
1407 	 */
1408 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1409 
1410 	if (new_exe_file) {
1411 		/*
1412 		 * We expect the caller (i.e., sys_execve) to already denied
1413 		 * write access, so this is unlikely to fail.
1414 		 */
1415 		if (unlikely(exe_file_deny_write_access(new_exe_file)))
1416 			return -EACCES;
1417 		get_file(new_exe_file);
1418 	}
1419 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1420 	if (old_exe_file) {
1421 		exe_file_allow_write_access(old_exe_file);
1422 		fput(old_exe_file);
1423 	}
1424 	return 0;
1425 }
1426 
1427 /**
1428  * replace_mm_exe_file - replace a reference to the mm's executable file
1429  * @mm: The mm to change.
1430  * @new_exe_file: The new file to use.
1431  *
1432  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1433  *
1434  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1435  */
1436 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1437 {
1438 	struct vm_area_struct *vma;
1439 	struct file *old_exe_file;
1440 	int ret = 0;
1441 
1442 	/* Forbid mm->exe_file change if old file still mapped. */
1443 	old_exe_file = get_mm_exe_file(mm);
1444 	if (old_exe_file) {
1445 		VMA_ITERATOR(vmi, mm, 0);
1446 		mmap_read_lock(mm);
1447 		for_each_vma(vmi, vma) {
1448 			if (!vma->vm_file)
1449 				continue;
1450 			if (path_equal(&vma->vm_file->f_path,
1451 				       &old_exe_file->f_path)) {
1452 				ret = -EBUSY;
1453 				break;
1454 			}
1455 		}
1456 		mmap_read_unlock(mm);
1457 		fput(old_exe_file);
1458 		if (ret)
1459 			return ret;
1460 	}
1461 
1462 	ret = exe_file_deny_write_access(new_exe_file);
1463 	if (ret)
1464 		return -EACCES;
1465 	get_file(new_exe_file);
1466 
1467 	/* set the new file */
1468 	mmap_write_lock(mm);
1469 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1470 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1471 	mmap_write_unlock(mm);
1472 
1473 	if (old_exe_file) {
1474 		exe_file_allow_write_access(old_exe_file);
1475 		fput(old_exe_file);
1476 	}
1477 	return 0;
1478 }
1479 
1480 /**
1481  * get_mm_exe_file - acquire a reference to the mm's executable file
1482  * @mm: The mm of interest.
1483  *
1484  * Returns %NULL if mm has no associated executable file.
1485  * User must release file via fput().
1486  */
1487 struct file *get_mm_exe_file(struct mm_struct *mm)
1488 {
1489 	struct file *exe_file;
1490 
1491 	rcu_read_lock();
1492 	exe_file = get_file_rcu(&mm->exe_file);
1493 	rcu_read_unlock();
1494 	return exe_file;
1495 }
1496 
1497 /**
1498  * get_task_exe_file - acquire a reference to the task's executable file
1499  * @task: The task.
1500  *
1501  * Returns %NULL if task's mm (if any) has no associated executable file or
1502  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1503  * User must release file via fput().
1504  */
1505 struct file *get_task_exe_file(struct task_struct *task)
1506 {
1507 	struct file *exe_file = NULL;
1508 	struct mm_struct *mm;
1509 
1510 	if (task->flags & PF_KTHREAD)
1511 		return NULL;
1512 
1513 	task_lock(task);
1514 	mm = task->mm;
1515 	if (mm)
1516 		exe_file = get_mm_exe_file(mm);
1517 	task_unlock(task);
1518 	return exe_file;
1519 }
1520 
1521 /**
1522  * get_task_mm - acquire a reference to the task's mm
1523  * @task: The task.
1524  *
1525  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1526  * this kernel workthread has transiently adopted a user mm with use_mm,
1527  * to do its AIO) is not set and if so returns a reference to it, after
1528  * bumping up the use count.  User must release the mm via mmput()
1529  * after use.  Typically used by /proc and ptrace.
1530  */
1531 struct mm_struct *get_task_mm(struct task_struct *task)
1532 {
1533 	struct mm_struct *mm;
1534 
1535 	if (task->flags & PF_KTHREAD)
1536 		return NULL;
1537 
1538 	task_lock(task);
1539 	mm = task->mm;
1540 	if (mm)
1541 		mmget(mm);
1542 	task_unlock(task);
1543 	return mm;
1544 }
1545 EXPORT_SYMBOL_GPL(get_task_mm);
1546 
1547 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1548 {
1549 	struct mm_struct *mm;
1550 	int err;
1551 
1552 	err =  down_read_killable(&task->signal->exec_update_lock);
1553 	if (err)
1554 		return ERR_PTR(err);
1555 
1556 	mm = get_task_mm(task);
1557 	if (!mm) {
1558 		mm = ERR_PTR(-ESRCH);
1559 	} else if (mm != current->mm && !ptrace_may_access(task, mode)) {
1560 		mmput(mm);
1561 		mm = ERR_PTR(-EACCES);
1562 	}
1563 	up_read(&task->signal->exec_update_lock);
1564 
1565 	return mm;
1566 }
1567 
1568 static void complete_vfork_done(struct task_struct *tsk)
1569 {
1570 	struct completion *vfork;
1571 
1572 	task_lock(tsk);
1573 	vfork = tsk->vfork_done;
1574 	if (likely(vfork)) {
1575 		tsk->vfork_done = NULL;
1576 		complete(vfork);
1577 	}
1578 	task_unlock(tsk);
1579 }
1580 
1581 static int wait_for_vfork_done(struct task_struct *child,
1582 				struct completion *vfork)
1583 {
1584 	unsigned int state = TASK_KILLABLE|TASK_FREEZABLE;
1585 	int killed;
1586 
1587 	cgroup_enter_frozen();
1588 	killed = wait_for_completion_state(vfork, state);
1589 	cgroup_leave_frozen(false);
1590 
1591 	if (killed) {
1592 		task_lock(child);
1593 		child->vfork_done = NULL;
1594 		task_unlock(child);
1595 	}
1596 
1597 	put_task_struct(child);
1598 	return killed;
1599 }
1600 
1601 /* Please note the differences between mmput and mm_release.
1602  * mmput is called whenever we stop holding onto a mm_struct,
1603  * error success whatever.
1604  *
1605  * mm_release is called after a mm_struct has been removed
1606  * from the current process.
1607  *
1608  * This difference is important for error handling, when we
1609  * only half set up a mm_struct for a new process and need to restore
1610  * the old one.  Because we mmput the new mm_struct before
1611  * restoring the old one. . .
1612  * Eric Biederman 10 January 1998
1613  */
1614 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1615 {
1616 	uprobe_free_utask(tsk);
1617 
1618 	/* Get rid of any cached register state */
1619 	deactivate_mm(tsk, mm);
1620 
1621 	/*
1622 	 * Signal userspace if we're not exiting with a core dump
1623 	 * because we want to leave the value intact for debugging
1624 	 * purposes.
1625 	 */
1626 	if (tsk->clear_child_tid) {
1627 		if (atomic_read(&mm->mm_users) > 1) {
1628 			/*
1629 			 * We don't check the error code - if userspace has
1630 			 * not set up a proper pointer then tough luck.
1631 			 */
1632 			put_user(0, tsk->clear_child_tid);
1633 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1634 					1, NULL, NULL, 0, 0);
1635 		}
1636 		tsk->clear_child_tid = NULL;
1637 	}
1638 
1639 	/*
1640 	 * All done, finally we can wake up parent and return this mm to him.
1641 	 * Also kthread_stop() uses this completion for synchronization.
1642 	 */
1643 	if (tsk->vfork_done)
1644 		complete_vfork_done(tsk);
1645 }
1646 
1647 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1648 {
1649 	futex_exit_release(tsk);
1650 	mm_release(tsk, mm);
1651 }
1652 
1653 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1654 {
1655 	futex_exec_release(tsk);
1656 	mm_release(tsk, mm);
1657 }
1658 
1659 /**
1660  * dup_mm() - duplicates an existing mm structure
1661  * @tsk: the task_struct with which the new mm will be associated.
1662  * @oldmm: the mm to duplicate.
1663  *
1664  * Allocates a new mm structure and duplicates the provided @oldmm structure
1665  * content into it.
1666  *
1667  * Return: the duplicated mm or NULL on failure.
1668  */
1669 static struct mm_struct *dup_mm(struct task_struct *tsk,
1670 				struct mm_struct *oldmm)
1671 {
1672 	struct mm_struct *mm;
1673 	int err;
1674 
1675 	mm = allocate_mm();
1676 	if (!mm)
1677 		goto fail_nomem;
1678 
1679 	memcpy(mm, oldmm, sizeof(*mm));
1680 
1681 	if (!mm_init(mm, tsk, mm->user_ns))
1682 		goto fail_nomem;
1683 
1684 	uprobe_start_dup_mmap();
1685 	err = dup_mmap(mm, oldmm);
1686 	if (err)
1687 		goto free_pt;
1688 	uprobe_end_dup_mmap();
1689 
1690 	mm->hiwater_rss = get_mm_rss(mm);
1691 	mm->hiwater_vm = mm->total_vm;
1692 
1693 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1694 		goto free_pt;
1695 
1696 	return mm;
1697 
1698 free_pt:
1699 	/* don't put binfmt in mmput, we haven't got module yet */
1700 	mm->binfmt = NULL;
1701 	mm_init_owner(mm, NULL);
1702 	mmput(mm);
1703 	if (err)
1704 		uprobe_end_dup_mmap();
1705 
1706 fail_nomem:
1707 	return NULL;
1708 }
1709 
1710 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1711 {
1712 	struct mm_struct *mm, *oldmm;
1713 
1714 	tsk->min_flt = tsk->maj_flt = 0;
1715 	tsk->nvcsw = tsk->nivcsw = 0;
1716 #ifdef CONFIG_DETECT_HUNG_TASK
1717 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1718 	tsk->last_switch_time = 0;
1719 #endif
1720 
1721 	tsk->mm = NULL;
1722 	tsk->active_mm = NULL;
1723 
1724 	/*
1725 	 * Are we cloning a kernel thread?
1726 	 *
1727 	 * We need to steal a active VM for that..
1728 	 */
1729 	oldmm = current->mm;
1730 	if (!oldmm)
1731 		return 0;
1732 
1733 	if (clone_flags & CLONE_VM) {
1734 		mmget(oldmm);
1735 		mm = oldmm;
1736 	} else {
1737 		mm = dup_mm(tsk, current->mm);
1738 		if (!mm)
1739 			return -ENOMEM;
1740 	}
1741 
1742 	tsk->mm = mm;
1743 	tsk->active_mm = mm;
1744 	sched_mm_cid_fork(tsk);
1745 	return 0;
1746 }
1747 
1748 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1749 {
1750 	struct fs_struct *fs = current->fs;
1751 	if (clone_flags & CLONE_FS) {
1752 		/* tsk->fs is already what we want */
1753 		spin_lock(&fs->lock);
1754 		/* "users" and "in_exec" locked for check_unsafe_exec() */
1755 		if (fs->in_exec) {
1756 			spin_unlock(&fs->lock);
1757 			return -EAGAIN;
1758 		}
1759 		fs->users++;
1760 		spin_unlock(&fs->lock);
1761 		return 0;
1762 	}
1763 	tsk->fs = copy_fs_struct(fs);
1764 	if (!tsk->fs)
1765 		return -ENOMEM;
1766 	return 0;
1767 }
1768 
1769 static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1770 		      int no_files)
1771 {
1772 	struct files_struct *oldf, *newf;
1773 
1774 	/*
1775 	 * A background process may not have any files ...
1776 	 */
1777 	oldf = current->files;
1778 	if (!oldf)
1779 		return 0;
1780 
1781 	if (no_files) {
1782 		tsk->files = NULL;
1783 		return 0;
1784 	}
1785 
1786 	if (clone_flags & CLONE_FILES) {
1787 		atomic_inc(&oldf->count);
1788 		return 0;
1789 	}
1790 
1791 	newf = dup_fd(oldf, NULL);
1792 	if (IS_ERR(newf))
1793 		return PTR_ERR(newf);
1794 
1795 	tsk->files = newf;
1796 	return 0;
1797 }
1798 
1799 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1800 {
1801 	struct sighand_struct *sig;
1802 
1803 	if (clone_flags & CLONE_SIGHAND) {
1804 		refcount_inc(&current->sighand->count);
1805 		return 0;
1806 	}
1807 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1808 	RCU_INIT_POINTER(tsk->sighand, sig);
1809 	if (!sig)
1810 		return -ENOMEM;
1811 
1812 	refcount_set(&sig->count, 1);
1813 	spin_lock_irq(&current->sighand->siglock);
1814 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1815 	spin_unlock_irq(&current->sighand->siglock);
1816 
1817 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1818 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1819 		flush_signal_handlers(tsk, 0);
1820 
1821 	return 0;
1822 }
1823 
1824 void __cleanup_sighand(struct sighand_struct *sighand)
1825 {
1826 	if (refcount_dec_and_test(&sighand->count)) {
1827 		signalfd_cleanup(sighand);
1828 		/*
1829 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1830 		 * without an RCU grace period, see __lock_task_sighand().
1831 		 */
1832 		kmem_cache_free(sighand_cachep, sighand);
1833 	}
1834 }
1835 
1836 /*
1837  * Initialize POSIX timer handling for a thread group.
1838  */
1839 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1840 {
1841 	struct posix_cputimers *pct = &sig->posix_cputimers;
1842 	unsigned long cpu_limit;
1843 
1844 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1845 	posix_cputimers_group_init(pct, cpu_limit);
1846 }
1847 
1848 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1849 {
1850 	struct signal_struct *sig;
1851 
1852 	if (clone_flags & CLONE_THREAD)
1853 		return 0;
1854 
1855 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1856 	tsk->signal = sig;
1857 	if (!sig)
1858 		return -ENOMEM;
1859 
1860 	sig->nr_threads = 1;
1861 	sig->quick_threads = 1;
1862 	atomic_set(&sig->live, 1);
1863 	refcount_set(&sig->sigcnt, 1);
1864 
1865 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1866 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1867 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1868 
1869 	init_waitqueue_head(&sig->wait_chldexit);
1870 	sig->curr_target = tsk;
1871 	init_sigpending(&sig->shared_pending);
1872 	INIT_HLIST_HEAD(&sig->multiprocess);
1873 	seqlock_init(&sig->stats_lock);
1874 	prev_cputime_init(&sig->prev_cputime);
1875 
1876 #ifdef CONFIG_POSIX_TIMERS
1877 	INIT_HLIST_HEAD(&sig->posix_timers);
1878 	INIT_HLIST_HEAD(&sig->ignored_posix_timers);
1879 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1880 	sig->real_timer.function = it_real_fn;
1881 #endif
1882 
1883 	task_lock(current->group_leader);
1884 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1885 	task_unlock(current->group_leader);
1886 
1887 	posix_cpu_timers_init_group(sig);
1888 
1889 	tty_audit_fork(sig);
1890 	sched_autogroup_fork(sig);
1891 
1892 	sig->oom_score_adj = current->signal->oom_score_adj;
1893 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1894 
1895 	mutex_init(&sig->cred_guard_mutex);
1896 	init_rwsem(&sig->exec_update_lock);
1897 
1898 	return 0;
1899 }
1900 
1901 static void copy_seccomp(struct task_struct *p)
1902 {
1903 #ifdef CONFIG_SECCOMP
1904 	/*
1905 	 * Must be called with sighand->lock held, which is common to
1906 	 * all threads in the group. Holding cred_guard_mutex is not
1907 	 * needed because this new task is not yet running and cannot
1908 	 * be racing exec.
1909 	 */
1910 	assert_spin_locked(&current->sighand->siglock);
1911 
1912 	/* Ref-count the new filter user, and assign it. */
1913 	get_seccomp_filter(current);
1914 	p->seccomp = current->seccomp;
1915 
1916 	/*
1917 	 * Explicitly enable no_new_privs here in case it got set
1918 	 * between the task_struct being duplicated and holding the
1919 	 * sighand lock. The seccomp state and nnp must be in sync.
1920 	 */
1921 	if (task_no_new_privs(current))
1922 		task_set_no_new_privs(p);
1923 
1924 	/*
1925 	 * If the parent gained a seccomp mode after copying thread
1926 	 * flags and between before we held the sighand lock, we have
1927 	 * to manually enable the seccomp thread flag here.
1928 	 */
1929 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1930 		set_task_syscall_work(p, SECCOMP);
1931 #endif
1932 }
1933 
1934 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1935 {
1936 	current->clear_child_tid = tidptr;
1937 
1938 	return task_pid_vnr(current);
1939 }
1940 
1941 static void rt_mutex_init_task(struct task_struct *p)
1942 {
1943 	raw_spin_lock_init(&p->pi_lock);
1944 #ifdef CONFIG_RT_MUTEXES
1945 	p->pi_waiters = RB_ROOT_CACHED;
1946 	p->pi_top_task = NULL;
1947 	p->pi_blocked_on = NULL;
1948 #endif
1949 }
1950 
1951 static inline void init_task_pid_links(struct task_struct *task)
1952 {
1953 	enum pid_type type;
1954 
1955 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1956 		INIT_HLIST_NODE(&task->pid_links[type]);
1957 }
1958 
1959 static inline void
1960 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1961 {
1962 	if (type == PIDTYPE_PID)
1963 		task->thread_pid = pid;
1964 	else
1965 		task->signal->pids[type] = pid;
1966 }
1967 
1968 static inline void rcu_copy_process(struct task_struct *p)
1969 {
1970 #ifdef CONFIG_PREEMPT_RCU
1971 	p->rcu_read_lock_nesting = 0;
1972 	p->rcu_read_unlock_special.s = 0;
1973 	p->rcu_blocked_node = NULL;
1974 	INIT_LIST_HEAD(&p->rcu_node_entry);
1975 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1976 #ifdef CONFIG_TASKS_RCU
1977 	p->rcu_tasks_holdout = false;
1978 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1979 	p->rcu_tasks_idle_cpu = -1;
1980 	INIT_LIST_HEAD(&p->rcu_tasks_exit_list);
1981 #endif /* #ifdef CONFIG_TASKS_RCU */
1982 #ifdef CONFIG_TASKS_TRACE_RCU
1983 	p->trc_reader_nesting = 0;
1984 	p->trc_reader_special.s = 0;
1985 	INIT_LIST_HEAD(&p->trc_holdout_list);
1986 	INIT_LIST_HEAD(&p->trc_blkd_node);
1987 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1988 }
1989 
1990 /**
1991  * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
1992  * @pid:   the struct pid for which to create a pidfd
1993  * @flags: flags of the new @pidfd
1994  * @ret: Where to return the file for the pidfd.
1995  *
1996  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
1997  * caller's file descriptor table. The pidfd is reserved but not installed yet.
1998  *
1999  * The helper doesn't perform checks on @pid which makes it useful for pidfds
2000  * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
2001  * pidfd file are prepared.
2002  *
2003  * If this function returns successfully the caller is responsible to either
2004  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2005  * order to install the pidfd into its file descriptor table or they must use
2006  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2007  * respectively.
2008  *
2009  * This function is useful when a pidfd must already be reserved but there
2010  * might still be points of failure afterwards and the caller wants to ensure
2011  * that no pidfd is leaked into its file descriptor table.
2012  *
2013  * Return: On success, a reserved pidfd is returned from the function and a new
2014  *         pidfd file is returned in the last argument to the function. On
2015  *         error, a negative error code is returned from the function and the
2016  *         last argument remains unchanged.
2017  */
2018 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2019 {
2020 	int pidfd;
2021 	struct file *pidfd_file;
2022 
2023 	pidfd = get_unused_fd_flags(O_CLOEXEC);
2024 	if (pidfd < 0)
2025 		return pidfd;
2026 
2027 	pidfd_file = pidfs_alloc_file(pid, flags | O_RDWR);
2028 	if (IS_ERR(pidfd_file)) {
2029 		put_unused_fd(pidfd);
2030 		return PTR_ERR(pidfd_file);
2031 	}
2032 	/*
2033 	 * anon_inode_getfile() ignores everything outside of the
2034 	 * O_ACCMODE | O_NONBLOCK mask, set PIDFD_THREAD manually.
2035 	 */
2036 	pidfd_file->f_flags |= (flags & PIDFD_THREAD);
2037 	*ret = pidfd_file;
2038 	return pidfd;
2039 }
2040 
2041 /**
2042  * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2043  * @pid:   the struct pid for which to create a pidfd
2044  * @flags: flags of the new @pidfd
2045  * @ret: Where to return the pidfd.
2046  *
2047  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2048  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2049  *
2050  * The helper verifies that @pid is still in use, without PIDFD_THREAD the
2051  * task identified by @pid must be a thread-group leader.
2052  *
2053  * If this function returns successfully the caller is responsible to either
2054  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2055  * order to install the pidfd into its file descriptor table or they must use
2056  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2057  * respectively.
2058  *
2059  * This function is useful when a pidfd must already be reserved but there
2060  * might still be points of failure afterwards and the caller wants to ensure
2061  * that no pidfd is leaked into its file descriptor table.
2062  *
2063  * Return: On success, a reserved pidfd is returned from the function and a new
2064  *         pidfd file is returned in the last argument to the function. On
2065  *         error, a negative error code is returned from the function and the
2066  *         last argument remains unchanged.
2067  */
2068 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2069 {
2070 	bool thread = flags & PIDFD_THREAD;
2071 
2072 	if (!pid || !pid_has_task(pid, thread ? PIDTYPE_PID : PIDTYPE_TGID))
2073 		return -EINVAL;
2074 
2075 	return __pidfd_prepare(pid, flags, ret);
2076 }
2077 
2078 static void __delayed_free_task(struct rcu_head *rhp)
2079 {
2080 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2081 
2082 	free_task(tsk);
2083 }
2084 
2085 static __always_inline void delayed_free_task(struct task_struct *tsk)
2086 {
2087 	if (IS_ENABLED(CONFIG_MEMCG))
2088 		call_rcu(&tsk->rcu, __delayed_free_task);
2089 	else
2090 		free_task(tsk);
2091 }
2092 
2093 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2094 {
2095 	/* Skip if kernel thread */
2096 	if (!tsk->mm)
2097 		return;
2098 
2099 	/* Skip if spawning a thread or using vfork */
2100 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2101 		return;
2102 
2103 	/* We need to synchronize with __set_oom_adj */
2104 	mutex_lock(&oom_adj_mutex);
2105 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2106 	/* Update the values in case they were changed after copy_signal */
2107 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2108 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2109 	mutex_unlock(&oom_adj_mutex);
2110 }
2111 
2112 #ifdef CONFIG_RV
2113 static void rv_task_fork(struct task_struct *p)
2114 {
2115 	int i;
2116 
2117 	for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2118 		p->rv[i].da_mon.monitoring = false;
2119 }
2120 #else
2121 #define rv_task_fork(p) do {} while (0)
2122 #endif
2123 
2124 /*
2125  * This creates a new process as a copy of the old one,
2126  * but does not actually start it yet.
2127  *
2128  * It copies the registers, and all the appropriate
2129  * parts of the process environment (as per the clone
2130  * flags). The actual kick-off is left to the caller.
2131  */
2132 __latent_entropy struct task_struct *copy_process(
2133 					struct pid *pid,
2134 					int trace,
2135 					int node,
2136 					struct kernel_clone_args *args)
2137 {
2138 	int pidfd = -1, retval;
2139 	struct task_struct *p;
2140 	struct multiprocess_signals delayed;
2141 	struct file *pidfile = NULL;
2142 	const u64 clone_flags = args->flags;
2143 	struct nsproxy *nsp = current->nsproxy;
2144 
2145 	/*
2146 	 * Don't allow sharing the root directory with processes in a different
2147 	 * namespace
2148 	 */
2149 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2150 		return ERR_PTR(-EINVAL);
2151 
2152 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2153 		return ERR_PTR(-EINVAL);
2154 
2155 	/*
2156 	 * Thread groups must share signals as well, and detached threads
2157 	 * can only be started up within the thread group.
2158 	 */
2159 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2160 		return ERR_PTR(-EINVAL);
2161 
2162 	/*
2163 	 * Shared signal handlers imply shared VM. By way of the above,
2164 	 * thread groups also imply shared VM. Blocking this case allows
2165 	 * for various simplifications in other code.
2166 	 */
2167 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2168 		return ERR_PTR(-EINVAL);
2169 
2170 	/*
2171 	 * Siblings of global init remain as zombies on exit since they are
2172 	 * not reaped by their parent (swapper). To solve this and to avoid
2173 	 * multi-rooted process trees, prevent global and container-inits
2174 	 * from creating siblings.
2175 	 */
2176 	if ((clone_flags & CLONE_PARENT) &&
2177 				current->signal->flags & SIGNAL_UNKILLABLE)
2178 		return ERR_PTR(-EINVAL);
2179 
2180 	/*
2181 	 * If the new process will be in a different pid or user namespace
2182 	 * do not allow it to share a thread group with the forking task.
2183 	 */
2184 	if (clone_flags & CLONE_THREAD) {
2185 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2186 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2187 			return ERR_PTR(-EINVAL);
2188 	}
2189 
2190 	if (clone_flags & CLONE_PIDFD) {
2191 		/*
2192 		 * - CLONE_DETACHED is blocked so that we can potentially
2193 		 *   reuse it later for CLONE_PIDFD.
2194 		 */
2195 		if (clone_flags & CLONE_DETACHED)
2196 			return ERR_PTR(-EINVAL);
2197 	}
2198 
2199 	/*
2200 	 * Force any signals received before this point to be delivered
2201 	 * before the fork happens.  Collect up signals sent to multiple
2202 	 * processes that happen during the fork and delay them so that
2203 	 * they appear to happen after the fork.
2204 	 */
2205 	sigemptyset(&delayed.signal);
2206 	INIT_HLIST_NODE(&delayed.node);
2207 
2208 	spin_lock_irq(&current->sighand->siglock);
2209 	if (!(clone_flags & CLONE_THREAD))
2210 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2211 	recalc_sigpending();
2212 	spin_unlock_irq(&current->sighand->siglock);
2213 	retval = -ERESTARTNOINTR;
2214 	if (task_sigpending(current))
2215 		goto fork_out;
2216 
2217 	retval = -ENOMEM;
2218 	p = dup_task_struct(current, node);
2219 	if (!p)
2220 		goto fork_out;
2221 	p->flags &= ~PF_KTHREAD;
2222 	if (args->kthread)
2223 		p->flags |= PF_KTHREAD;
2224 	if (args->user_worker) {
2225 		/*
2226 		 * Mark us a user worker, and block any signal that isn't
2227 		 * fatal or STOP
2228 		 */
2229 		p->flags |= PF_USER_WORKER;
2230 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2231 	}
2232 	if (args->io_thread)
2233 		p->flags |= PF_IO_WORKER;
2234 
2235 	if (args->name)
2236 		strscpy_pad(p->comm, args->name, sizeof(p->comm));
2237 
2238 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2239 	/*
2240 	 * Clear TID on mm_release()?
2241 	 */
2242 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2243 
2244 	ftrace_graph_init_task(p);
2245 
2246 	rt_mutex_init_task(p);
2247 
2248 	lockdep_assert_irqs_enabled();
2249 #ifdef CONFIG_PROVE_LOCKING
2250 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2251 #endif
2252 	retval = copy_creds(p, clone_flags);
2253 	if (retval < 0)
2254 		goto bad_fork_free;
2255 
2256 	retval = -EAGAIN;
2257 	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2258 		if (p->real_cred->user != INIT_USER &&
2259 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2260 			goto bad_fork_cleanup_count;
2261 	}
2262 	current->flags &= ~PF_NPROC_EXCEEDED;
2263 
2264 	/*
2265 	 * If multiple threads are within copy_process(), then this check
2266 	 * triggers too late. This doesn't hurt, the check is only there
2267 	 * to stop root fork bombs.
2268 	 */
2269 	retval = -EAGAIN;
2270 	if (data_race(nr_threads >= max_threads))
2271 		goto bad_fork_cleanup_count;
2272 
2273 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2274 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2275 	p->flags |= PF_FORKNOEXEC;
2276 	INIT_LIST_HEAD(&p->children);
2277 	INIT_LIST_HEAD(&p->sibling);
2278 	rcu_copy_process(p);
2279 	p->vfork_done = NULL;
2280 	spin_lock_init(&p->alloc_lock);
2281 
2282 	init_sigpending(&p->pending);
2283 
2284 	p->utime = p->stime = p->gtime = 0;
2285 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2286 	p->utimescaled = p->stimescaled = 0;
2287 #endif
2288 	prev_cputime_init(&p->prev_cputime);
2289 
2290 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2291 	seqcount_init(&p->vtime.seqcount);
2292 	p->vtime.starttime = 0;
2293 	p->vtime.state = VTIME_INACTIVE;
2294 #endif
2295 
2296 #ifdef CONFIG_IO_URING
2297 	p->io_uring = NULL;
2298 #endif
2299 
2300 	p->default_timer_slack_ns = current->timer_slack_ns;
2301 
2302 #ifdef CONFIG_PSI
2303 	p->psi_flags = 0;
2304 #endif
2305 
2306 	task_io_accounting_init(&p->ioac);
2307 	acct_clear_integrals(p);
2308 
2309 	posix_cputimers_init(&p->posix_cputimers);
2310 	tick_dep_init_task(p);
2311 
2312 	p->io_context = NULL;
2313 	audit_set_context(p, NULL);
2314 	cgroup_fork(p);
2315 	if (args->kthread) {
2316 		if (!set_kthread_struct(p))
2317 			goto bad_fork_cleanup_delayacct;
2318 	}
2319 #ifdef CONFIG_NUMA
2320 	p->mempolicy = mpol_dup(p->mempolicy);
2321 	if (IS_ERR(p->mempolicy)) {
2322 		retval = PTR_ERR(p->mempolicy);
2323 		p->mempolicy = NULL;
2324 		goto bad_fork_cleanup_delayacct;
2325 	}
2326 #endif
2327 #ifdef CONFIG_CPUSETS
2328 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2329 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2330 #endif
2331 #ifdef CONFIG_TRACE_IRQFLAGS
2332 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2333 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2334 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2335 	p->softirqs_enabled		= 1;
2336 	p->softirq_context		= 0;
2337 #endif
2338 
2339 	p->pagefault_disabled = 0;
2340 
2341 #ifdef CONFIG_LOCKDEP
2342 	lockdep_init_task(p);
2343 #endif
2344 
2345 #ifdef CONFIG_DEBUG_MUTEXES
2346 	p->blocked_on = NULL; /* not blocked yet */
2347 #endif
2348 #ifdef CONFIG_BCACHE
2349 	p->sequential_io	= 0;
2350 	p->sequential_io_avg	= 0;
2351 #endif
2352 #ifdef CONFIG_BPF_SYSCALL
2353 	RCU_INIT_POINTER(p->bpf_storage, NULL);
2354 	p->bpf_ctx = NULL;
2355 #endif
2356 
2357 	/* Perform scheduler related setup. Assign this task to a CPU. */
2358 	retval = sched_fork(clone_flags, p);
2359 	if (retval)
2360 		goto bad_fork_cleanup_policy;
2361 
2362 	retval = perf_event_init_task(p, clone_flags);
2363 	if (retval)
2364 		goto bad_fork_sched_cancel_fork;
2365 	retval = audit_alloc(p);
2366 	if (retval)
2367 		goto bad_fork_cleanup_perf;
2368 	/* copy all the process information */
2369 	shm_init_task(p);
2370 	retval = security_task_alloc(p, clone_flags);
2371 	if (retval)
2372 		goto bad_fork_cleanup_audit;
2373 	retval = copy_semundo(clone_flags, p);
2374 	if (retval)
2375 		goto bad_fork_cleanup_security;
2376 	retval = copy_files(clone_flags, p, args->no_files);
2377 	if (retval)
2378 		goto bad_fork_cleanup_semundo;
2379 	retval = copy_fs(clone_flags, p);
2380 	if (retval)
2381 		goto bad_fork_cleanup_files;
2382 	retval = copy_sighand(clone_flags, p);
2383 	if (retval)
2384 		goto bad_fork_cleanup_fs;
2385 	retval = copy_signal(clone_flags, p);
2386 	if (retval)
2387 		goto bad_fork_cleanup_sighand;
2388 	retval = copy_mm(clone_flags, p);
2389 	if (retval)
2390 		goto bad_fork_cleanup_signal;
2391 	retval = copy_namespaces(clone_flags, p);
2392 	if (retval)
2393 		goto bad_fork_cleanup_mm;
2394 	retval = copy_io(clone_flags, p);
2395 	if (retval)
2396 		goto bad_fork_cleanup_namespaces;
2397 	retval = copy_thread(p, args);
2398 	if (retval)
2399 		goto bad_fork_cleanup_io;
2400 
2401 	stackleak_task_init(p);
2402 
2403 	if (pid != &init_struct_pid) {
2404 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2405 				args->set_tid_size);
2406 		if (IS_ERR(pid)) {
2407 			retval = PTR_ERR(pid);
2408 			goto bad_fork_cleanup_thread;
2409 		}
2410 	}
2411 
2412 	/*
2413 	 * This has to happen after we've potentially unshared the file
2414 	 * descriptor table (so that the pidfd doesn't leak into the child
2415 	 * if the fd table isn't shared).
2416 	 */
2417 	if (clone_flags & CLONE_PIDFD) {
2418 		int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0;
2419 
2420 		/* Note that no task has been attached to @pid yet. */
2421 		retval = __pidfd_prepare(pid, flags, &pidfile);
2422 		if (retval < 0)
2423 			goto bad_fork_free_pid;
2424 		pidfd = retval;
2425 
2426 		retval = put_user(pidfd, args->pidfd);
2427 		if (retval)
2428 			goto bad_fork_put_pidfd;
2429 	}
2430 
2431 #ifdef CONFIG_BLOCK
2432 	p->plug = NULL;
2433 #endif
2434 	futex_init_task(p);
2435 
2436 	/*
2437 	 * sigaltstack should be cleared when sharing the same VM
2438 	 */
2439 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2440 		sas_ss_reset(p);
2441 
2442 	/*
2443 	 * Syscall tracing and stepping should be turned off in the
2444 	 * child regardless of CLONE_PTRACE.
2445 	 */
2446 	user_disable_single_step(p);
2447 	clear_task_syscall_work(p, SYSCALL_TRACE);
2448 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2449 	clear_task_syscall_work(p, SYSCALL_EMU);
2450 #endif
2451 	clear_tsk_latency_tracing(p);
2452 
2453 	/* ok, now we should be set up.. */
2454 	p->pid = pid_nr(pid);
2455 	if (clone_flags & CLONE_THREAD) {
2456 		p->group_leader = current->group_leader;
2457 		p->tgid = current->tgid;
2458 	} else {
2459 		p->group_leader = p;
2460 		p->tgid = p->pid;
2461 	}
2462 
2463 	p->nr_dirtied = 0;
2464 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2465 	p->dirty_paused_when = 0;
2466 
2467 	p->pdeath_signal = 0;
2468 	p->task_works = NULL;
2469 	clear_posix_cputimers_work(p);
2470 
2471 #ifdef CONFIG_KRETPROBES
2472 	p->kretprobe_instances.first = NULL;
2473 #endif
2474 #ifdef CONFIG_RETHOOK
2475 	p->rethooks.first = NULL;
2476 #endif
2477 
2478 	/*
2479 	 * Ensure that the cgroup subsystem policies allow the new process to be
2480 	 * forked. It should be noted that the new process's css_set can be changed
2481 	 * between here and cgroup_post_fork() if an organisation operation is in
2482 	 * progress.
2483 	 */
2484 	retval = cgroup_can_fork(p, args);
2485 	if (retval)
2486 		goto bad_fork_put_pidfd;
2487 
2488 	/*
2489 	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2490 	 * the new task on the correct runqueue. All this *before* the task
2491 	 * becomes visible.
2492 	 *
2493 	 * This isn't part of ->can_fork() because while the re-cloning is
2494 	 * cgroup specific, it unconditionally needs to place the task on a
2495 	 * runqueue.
2496 	 */
2497 	retval = sched_cgroup_fork(p, args);
2498 	if (retval)
2499 		goto bad_fork_cancel_cgroup;
2500 
2501 	/*
2502 	 * From this point on we must avoid any synchronous user-space
2503 	 * communication until we take the tasklist-lock. In particular, we do
2504 	 * not want user-space to be able to predict the process start-time by
2505 	 * stalling fork(2) after we recorded the start_time but before it is
2506 	 * visible to the system.
2507 	 */
2508 
2509 	p->start_time = ktime_get_ns();
2510 	p->start_boottime = ktime_get_boottime_ns();
2511 
2512 	/*
2513 	 * Make it visible to the rest of the system, but dont wake it up yet.
2514 	 * Need tasklist lock for parent etc handling!
2515 	 */
2516 	write_lock_irq(&tasklist_lock);
2517 
2518 	/* CLONE_PARENT re-uses the old parent */
2519 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2520 		p->real_parent = current->real_parent;
2521 		p->parent_exec_id = current->parent_exec_id;
2522 		if (clone_flags & CLONE_THREAD)
2523 			p->exit_signal = -1;
2524 		else
2525 			p->exit_signal = current->group_leader->exit_signal;
2526 	} else {
2527 		p->real_parent = current;
2528 		p->parent_exec_id = current->self_exec_id;
2529 		p->exit_signal = args->exit_signal;
2530 	}
2531 
2532 	klp_copy_process(p);
2533 
2534 	sched_core_fork(p);
2535 
2536 	spin_lock(&current->sighand->siglock);
2537 
2538 	rv_task_fork(p);
2539 
2540 	rseq_fork(p, clone_flags);
2541 
2542 	/* Don't start children in a dying pid namespace */
2543 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2544 		retval = -ENOMEM;
2545 		goto bad_fork_core_free;
2546 	}
2547 
2548 	/* Let kill terminate clone/fork in the middle */
2549 	if (fatal_signal_pending(current)) {
2550 		retval = -EINTR;
2551 		goto bad_fork_core_free;
2552 	}
2553 
2554 	/* No more failure paths after this point. */
2555 
2556 	/*
2557 	 * Copy seccomp details explicitly here, in case they were changed
2558 	 * before holding sighand lock.
2559 	 */
2560 	copy_seccomp(p);
2561 
2562 	init_task_pid_links(p);
2563 	if (likely(p->pid)) {
2564 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2565 
2566 		init_task_pid(p, PIDTYPE_PID, pid);
2567 		if (thread_group_leader(p)) {
2568 			init_task_pid(p, PIDTYPE_TGID, pid);
2569 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2570 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2571 
2572 			if (is_child_reaper(pid)) {
2573 				ns_of_pid(pid)->child_reaper = p;
2574 				p->signal->flags |= SIGNAL_UNKILLABLE;
2575 			}
2576 			p->signal->shared_pending.signal = delayed.signal;
2577 			p->signal->tty = tty_kref_get(current->signal->tty);
2578 			/*
2579 			 * Inherit has_child_subreaper flag under the same
2580 			 * tasklist_lock with adding child to the process tree
2581 			 * for propagate_has_child_subreaper optimization.
2582 			 */
2583 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2584 							 p->real_parent->signal->is_child_subreaper;
2585 			list_add_tail(&p->sibling, &p->real_parent->children);
2586 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2587 			attach_pid(p, PIDTYPE_TGID);
2588 			attach_pid(p, PIDTYPE_PGID);
2589 			attach_pid(p, PIDTYPE_SID);
2590 			__this_cpu_inc(process_counts);
2591 		} else {
2592 			current->signal->nr_threads++;
2593 			current->signal->quick_threads++;
2594 			atomic_inc(&current->signal->live);
2595 			refcount_inc(&current->signal->sigcnt);
2596 			task_join_group_stop(p);
2597 			list_add_tail_rcu(&p->thread_node,
2598 					  &p->signal->thread_head);
2599 		}
2600 		attach_pid(p, PIDTYPE_PID);
2601 		nr_threads++;
2602 	}
2603 	total_forks++;
2604 	hlist_del_init(&delayed.node);
2605 	spin_unlock(&current->sighand->siglock);
2606 	syscall_tracepoint_update(p);
2607 	write_unlock_irq(&tasklist_lock);
2608 
2609 	if (pidfile)
2610 		fd_install(pidfd, pidfile);
2611 
2612 	proc_fork_connector(p);
2613 	sched_post_fork(p);
2614 	cgroup_post_fork(p, args);
2615 	perf_event_fork(p);
2616 
2617 	trace_task_newtask(p, clone_flags);
2618 	uprobe_copy_process(p, clone_flags);
2619 	user_events_fork(p, clone_flags);
2620 
2621 	copy_oom_score_adj(clone_flags, p);
2622 
2623 	return p;
2624 
2625 bad_fork_core_free:
2626 	sched_core_free(p);
2627 	spin_unlock(&current->sighand->siglock);
2628 	write_unlock_irq(&tasklist_lock);
2629 bad_fork_cancel_cgroup:
2630 	cgroup_cancel_fork(p, args);
2631 bad_fork_put_pidfd:
2632 	if (clone_flags & CLONE_PIDFD) {
2633 		fput(pidfile);
2634 		put_unused_fd(pidfd);
2635 	}
2636 bad_fork_free_pid:
2637 	if (pid != &init_struct_pid)
2638 		free_pid(pid);
2639 bad_fork_cleanup_thread:
2640 	exit_thread(p);
2641 bad_fork_cleanup_io:
2642 	if (p->io_context)
2643 		exit_io_context(p);
2644 bad_fork_cleanup_namespaces:
2645 	exit_task_namespaces(p);
2646 bad_fork_cleanup_mm:
2647 	if (p->mm) {
2648 		mm_clear_owner(p->mm, p);
2649 		mmput(p->mm);
2650 	}
2651 bad_fork_cleanup_signal:
2652 	if (!(clone_flags & CLONE_THREAD))
2653 		free_signal_struct(p->signal);
2654 bad_fork_cleanup_sighand:
2655 	__cleanup_sighand(p->sighand);
2656 bad_fork_cleanup_fs:
2657 	exit_fs(p); /* blocking */
2658 bad_fork_cleanup_files:
2659 	exit_files(p); /* blocking */
2660 bad_fork_cleanup_semundo:
2661 	exit_sem(p);
2662 bad_fork_cleanup_security:
2663 	security_task_free(p);
2664 bad_fork_cleanup_audit:
2665 	audit_free(p);
2666 bad_fork_cleanup_perf:
2667 	perf_event_free_task(p);
2668 bad_fork_sched_cancel_fork:
2669 	sched_cancel_fork(p);
2670 bad_fork_cleanup_policy:
2671 	lockdep_free_task(p);
2672 #ifdef CONFIG_NUMA
2673 	mpol_put(p->mempolicy);
2674 #endif
2675 bad_fork_cleanup_delayacct:
2676 	delayacct_tsk_free(p);
2677 bad_fork_cleanup_count:
2678 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2679 	exit_creds(p);
2680 bad_fork_free:
2681 	WRITE_ONCE(p->__state, TASK_DEAD);
2682 	exit_task_stack_account(p);
2683 	put_task_stack(p);
2684 	delayed_free_task(p);
2685 fork_out:
2686 	spin_lock_irq(&current->sighand->siglock);
2687 	hlist_del_init(&delayed.node);
2688 	spin_unlock_irq(&current->sighand->siglock);
2689 	return ERR_PTR(retval);
2690 }
2691 
2692 static inline void init_idle_pids(struct task_struct *idle)
2693 {
2694 	enum pid_type type;
2695 
2696 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2697 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2698 		init_task_pid(idle, type, &init_struct_pid);
2699 	}
2700 }
2701 
2702 static int idle_dummy(void *dummy)
2703 {
2704 	/* This function is never called */
2705 	return 0;
2706 }
2707 
2708 struct task_struct * __init fork_idle(int cpu)
2709 {
2710 	struct task_struct *task;
2711 	struct kernel_clone_args args = {
2712 		.flags		= CLONE_VM,
2713 		.fn		= &idle_dummy,
2714 		.fn_arg		= NULL,
2715 		.kthread	= 1,
2716 		.idle		= 1,
2717 	};
2718 
2719 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2720 	if (!IS_ERR(task)) {
2721 		init_idle_pids(task);
2722 		init_idle(task, cpu);
2723 	}
2724 
2725 	return task;
2726 }
2727 
2728 /*
2729  * This is like kernel_clone(), but shaved down and tailored to just
2730  * creating io_uring workers. It returns a created task, or an error pointer.
2731  * The returned task is inactive, and the caller must fire it up through
2732  * wake_up_new_task(p). All signals are blocked in the created task.
2733  */
2734 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2735 {
2736 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2737 				CLONE_IO;
2738 	struct kernel_clone_args args = {
2739 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2740 				    CLONE_UNTRACED) & ~CSIGNAL),
2741 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2742 		.fn		= fn,
2743 		.fn_arg		= arg,
2744 		.io_thread	= 1,
2745 		.user_worker	= 1,
2746 	};
2747 
2748 	return copy_process(NULL, 0, node, &args);
2749 }
2750 
2751 /*
2752  *  Ok, this is the main fork-routine.
2753  *
2754  * It copies the process, and if successful kick-starts
2755  * it and waits for it to finish using the VM if required.
2756  *
2757  * args->exit_signal is expected to be checked for sanity by the caller.
2758  */
2759 pid_t kernel_clone(struct kernel_clone_args *args)
2760 {
2761 	u64 clone_flags = args->flags;
2762 	struct completion vfork;
2763 	struct pid *pid;
2764 	struct task_struct *p;
2765 	int trace = 0;
2766 	pid_t nr;
2767 
2768 	/*
2769 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2770 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2771 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2772 	 * field in struct clone_args and it still doesn't make sense to have
2773 	 * them both point at the same memory location. Performing this check
2774 	 * here has the advantage that we don't need to have a separate helper
2775 	 * to check for legacy clone().
2776 	 */
2777 	if ((clone_flags & CLONE_PIDFD) &&
2778 	    (clone_flags & CLONE_PARENT_SETTID) &&
2779 	    (args->pidfd == args->parent_tid))
2780 		return -EINVAL;
2781 
2782 	/*
2783 	 * Determine whether and which event to report to ptracer.  When
2784 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2785 	 * requested, no event is reported; otherwise, report if the event
2786 	 * for the type of forking is enabled.
2787 	 */
2788 	if (!(clone_flags & CLONE_UNTRACED)) {
2789 		if (clone_flags & CLONE_VFORK)
2790 			trace = PTRACE_EVENT_VFORK;
2791 		else if (args->exit_signal != SIGCHLD)
2792 			trace = PTRACE_EVENT_CLONE;
2793 		else
2794 			trace = PTRACE_EVENT_FORK;
2795 
2796 		if (likely(!ptrace_event_enabled(current, trace)))
2797 			trace = 0;
2798 	}
2799 
2800 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2801 	add_latent_entropy();
2802 
2803 	if (IS_ERR(p))
2804 		return PTR_ERR(p);
2805 
2806 	/*
2807 	 * Do this prior waking up the new thread - the thread pointer
2808 	 * might get invalid after that point, if the thread exits quickly.
2809 	 */
2810 	trace_sched_process_fork(current, p);
2811 
2812 	pid = get_task_pid(p, PIDTYPE_PID);
2813 	nr = pid_vnr(pid);
2814 
2815 	if (clone_flags & CLONE_PARENT_SETTID)
2816 		put_user(nr, args->parent_tid);
2817 
2818 	if (clone_flags & CLONE_VFORK) {
2819 		p->vfork_done = &vfork;
2820 		init_completion(&vfork);
2821 		get_task_struct(p);
2822 	}
2823 
2824 	if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) {
2825 		/* lock the task to synchronize with memcg migration */
2826 		task_lock(p);
2827 		lru_gen_add_mm(p->mm);
2828 		task_unlock(p);
2829 	}
2830 
2831 	wake_up_new_task(p);
2832 
2833 	/* forking complete and child started to run, tell ptracer */
2834 	if (unlikely(trace))
2835 		ptrace_event_pid(trace, pid);
2836 
2837 	if (clone_flags & CLONE_VFORK) {
2838 		if (!wait_for_vfork_done(p, &vfork))
2839 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2840 	}
2841 
2842 	put_pid(pid);
2843 	return nr;
2844 }
2845 
2846 /*
2847  * Create a kernel thread.
2848  */
2849 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2850 		    unsigned long flags)
2851 {
2852 	struct kernel_clone_args args = {
2853 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2854 				    CLONE_UNTRACED) & ~CSIGNAL),
2855 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2856 		.fn		= fn,
2857 		.fn_arg		= arg,
2858 		.name		= name,
2859 		.kthread	= 1,
2860 	};
2861 
2862 	return kernel_clone(&args);
2863 }
2864 
2865 /*
2866  * Create a user mode thread.
2867  */
2868 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2869 {
2870 	struct kernel_clone_args args = {
2871 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2872 				    CLONE_UNTRACED) & ~CSIGNAL),
2873 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2874 		.fn		= fn,
2875 		.fn_arg		= arg,
2876 	};
2877 
2878 	return kernel_clone(&args);
2879 }
2880 
2881 #ifdef __ARCH_WANT_SYS_FORK
2882 SYSCALL_DEFINE0(fork)
2883 {
2884 #ifdef CONFIG_MMU
2885 	struct kernel_clone_args args = {
2886 		.exit_signal = SIGCHLD,
2887 	};
2888 
2889 	return kernel_clone(&args);
2890 #else
2891 	/* can not support in nommu mode */
2892 	return -EINVAL;
2893 #endif
2894 }
2895 #endif
2896 
2897 #ifdef __ARCH_WANT_SYS_VFORK
2898 SYSCALL_DEFINE0(vfork)
2899 {
2900 	struct kernel_clone_args args = {
2901 		.flags		= CLONE_VFORK | CLONE_VM,
2902 		.exit_signal	= SIGCHLD,
2903 	};
2904 
2905 	return kernel_clone(&args);
2906 }
2907 #endif
2908 
2909 #ifdef __ARCH_WANT_SYS_CLONE
2910 #ifdef CONFIG_CLONE_BACKWARDS
2911 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2912 		 int __user *, parent_tidptr,
2913 		 unsigned long, tls,
2914 		 int __user *, child_tidptr)
2915 #elif defined(CONFIG_CLONE_BACKWARDS2)
2916 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2917 		 int __user *, parent_tidptr,
2918 		 int __user *, child_tidptr,
2919 		 unsigned long, tls)
2920 #elif defined(CONFIG_CLONE_BACKWARDS3)
2921 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2922 		int, stack_size,
2923 		int __user *, parent_tidptr,
2924 		int __user *, child_tidptr,
2925 		unsigned long, tls)
2926 #else
2927 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2928 		 int __user *, parent_tidptr,
2929 		 int __user *, child_tidptr,
2930 		 unsigned long, tls)
2931 #endif
2932 {
2933 	struct kernel_clone_args args = {
2934 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2935 		.pidfd		= parent_tidptr,
2936 		.child_tid	= child_tidptr,
2937 		.parent_tid	= parent_tidptr,
2938 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2939 		.stack		= newsp,
2940 		.tls		= tls,
2941 	};
2942 
2943 	return kernel_clone(&args);
2944 }
2945 #endif
2946 
2947 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2948 					      struct clone_args __user *uargs,
2949 					      size_t usize)
2950 {
2951 	int err;
2952 	struct clone_args args;
2953 	pid_t *kset_tid = kargs->set_tid;
2954 
2955 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2956 		     CLONE_ARGS_SIZE_VER0);
2957 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2958 		     CLONE_ARGS_SIZE_VER1);
2959 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2960 		     CLONE_ARGS_SIZE_VER2);
2961 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2962 
2963 	if (unlikely(usize > PAGE_SIZE))
2964 		return -E2BIG;
2965 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2966 		return -EINVAL;
2967 
2968 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2969 	if (err)
2970 		return err;
2971 
2972 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2973 		return -EINVAL;
2974 
2975 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2976 		return -EINVAL;
2977 
2978 	if (unlikely(args.set_tid && args.set_tid_size == 0))
2979 		return -EINVAL;
2980 
2981 	/*
2982 	 * Verify that higher 32bits of exit_signal are unset and that
2983 	 * it is a valid signal
2984 	 */
2985 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2986 		     !valid_signal(args.exit_signal)))
2987 		return -EINVAL;
2988 
2989 	if ((args.flags & CLONE_INTO_CGROUP) &&
2990 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2991 		return -EINVAL;
2992 
2993 	*kargs = (struct kernel_clone_args){
2994 		.flags		= args.flags,
2995 		.pidfd		= u64_to_user_ptr(args.pidfd),
2996 		.child_tid	= u64_to_user_ptr(args.child_tid),
2997 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2998 		.exit_signal	= args.exit_signal,
2999 		.stack		= args.stack,
3000 		.stack_size	= args.stack_size,
3001 		.tls		= args.tls,
3002 		.set_tid_size	= args.set_tid_size,
3003 		.cgroup		= args.cgroup,
3004 	};
3005 
3006 	if (args.set_tid &&
3007 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
3008 			(kargs->set_tid_size * sizeof(pid_t))))
3009 		return -EFAULT;
3010 
3011 	kargs->set_tid = kset_tid;
3012 
3013 	return 0;
3014 }
3015 
3016 /**
3017  * clone3_stack_valid - check and prepare stack
3018  * @kargs: kernel clone args
3019  *
3020  * Verify that the stack arguments userspace gave us are sane.
3021  * In addition, set the stack direction for userspace since it's easy for us to
3022  * determine.
3023  */
3024 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3025 {
3026 	if (kargs->stack == 0) {
3027 		if (kargs->stack_size > 0)
3028 			return false;
3029 	} else {
3030 		if (kargs->stack_size == 0)
3031 			return false;
3032 
3033 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3034 			return false;
3035 
3036 #if !defined(CONFIG_STACK_GROWSUP)
3037 		kargs->stack += kargs->stack_size;
3038 #endif
3039 	}
3040 
3041 	return true;
3042 }
3043 
3044 static bool clone3_args_valid(struct kernel_clone_args *kargs)
3045 {
3046 	/* Verify that no unknown flags are passed along. */
3047 	if (kargs->flags &
3048 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3049 		return false;
3050 
3051 	/*
3052 	 * - make the CLONE_DETACHED bit reusable for clone3
3053 	 * - make the CSIGNAL bits reusable for clone3
3054 	 */
3055 	if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3056 		return false;
3057 
3058 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3059 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3060 		return false;
3061 
3062 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3063 	    kargs->exit_signal)
3064 		return false;
3065 
3066 	if (!clone3_stack_valid(kargs))
3067 		return false;
3068 
3069 	return true;
3070 }
3071 
3072 /**
3073  * sys_clone3 - create a new process with specific properties
3074  * @uargs: argument structure
3075  * @size:  size of @uargs
3076  *
3077  * clone3() is the extensible successor to clone()/clone2().
3078  * It takes a struct as argument that is versioned by its size.
3079  *
3080  * Return: On success, a positive PID for the child process.
3081  *         On error, a negative errno number.
3082  */
3083 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3084 {
3085 	int err;
3086 
3087 	struct kernel_clone_args kargs;
3088 	pid_t set_tid[MAX_PID_NS_LEVEL];
3089 
3090 #ifdef __ARCH_BROKEN_SYS_CLONE3
3091 #warning clone3() entry point is missing, please fix
3092 	return -ENOSYS;
3093 #endif
3094 
3095 	kargs.set_tid = set_tid;
3096 
3097 	err = copy_clone_args_from_user(&kargs, uargs, size);
3098 	if (err)
3099 		return err;
3100 
3101 	if (!clone3_args_valid(&kargs))
3102 		return -EINVAL;
3103 
3104 	return kernel_clone(&kargs);
3105 }
3106 
3107 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3108 {
3109 	struct task_struct *leader, *parent, *child;
3110 	int res;
3111 
3112 	read_lock(&tasklist_lock);
3113 	leader = top = top->group_leader;
3114 down:
3115 	for_each_thread(leader, parent) {
3116 		list_for_each_entry(child, &parent->children, sibling) {
3117 			res = visitor(child, data);
3118 			if (res) {
3119 				if (res < 0)
3120 					goto out;
3121 				leader = child;
3122 				goto down;
3123 			}
3124 up:
3125 			;
3126 		}
3127 	}
3128 
3129 	if (leader != top) {
3130 		child = leader;
3131 		parent = child->real_parent;
3132 		leader = parent->group_leader;
3133 		goto up;
3134 	}
3135 out:
3136 	read_unlock(&tasklist_lock);
3137 }
3138 
3139 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3140 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3141 #endif
3142 
3143 static void sighand_ctor(void *data)
3144 {
3145 	struct sighand_struct *sighand = data;
3146 
3147 	spin_lock_init(&sighand->siglock);
3148 	init_waitqueue_head(&sighand->signalfd_wqh);
3149 }
3150 
3151 void __init mm_cache_init(void)
3152 {
3153 	unsigned int mm_size;
3154 
3155 	/*
3156 	 * The mm_cpumask is located at the end of mm_struct, and is
3157 	 * dynamically sized based on the maximum CPU number this system
3158 	 * can have, taking hotplug into account (nr_cpu_ids).
3159 	 */
3160 	mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3161 
3162 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
3163 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3164 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3165 			offsetof(struct mm_struct, saved_auxv),
3166 			sizeof_field(struct mm_struct, saved_auxv),
3167 			NULL);
3168 }
3169 
3170 void __init proc_caches_init(void)
3171 {
3172 	struct kmem_cache_args args = {
3173 		.use_freeptr_offset = true,
3174 		.freeptr_offset = offsetof(struct vm_area_struct, vm_freeptr),
3175 	};
3176 
3177 	sighand_cachep = kmem_cache_create("sighand_cache",
3178 			sizeof(struct sighand_struct), 0,
3179 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3180 			SLAB_ACCOUNT, sighand_ctor);
3181 	signal_cachep = kmem_cache_create("signal_cache",
3182 			sizeof(struct signal_struct), 0,
3183 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3184 			NULL);
3185 	files_cachep = kmem_cache_create("files_cache",
3186 			sizeof(struct files_struct), 0,
3187 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3188 			NULL);
3189 	fs_cachep = kmem_cache_create("fs_cache",
3190 			sizeof(struct fs_struct), 0,
3191 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3192 			NULL);
3193 	vm_area_cachep = kmem_cache_create("vm_area_struct",
3194 			sizeof(struct vm_area_struct), &args,
3195 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3196 			SLAB_ACCOUNT);
3197 	mmap_init();
3198 	nsproxy_cache_init();
3199 }
3200 
3201 /*
3202  * Check constraints on flags passed to the unshare system call.
3203  */
3204 static int check_unshare_flags(unsigned long unshare_flags)
3205 {
3206 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3207 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3208 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3209 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3210 				CLONE_NEWTIME))
3211 		return -EINVAL;
3212 	/*
3213 	 * Not implemented, but pretend it works if there is nothing
3214 	 * to unshare.  Note that unsharing the address space or the
3215 	 * signal handlers also need to unshare the signal queues (aka
3216 	 * CLONE_THREAD).
3217 	 */
3218 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3219 		if (!thread_group_empty(current))
3220 			return -EINVAL;
3221 	}
3222 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3223 		if (refcount_read(&current->sighand->count) > 1)
3224 			return -EINVAL;
3225 	}
3226 	if (unshare_flags & CLONE_VM) {
3227 		if (!current_is_single_threaded())
3228 			return -EINVAL;
3229 	}
3230 
3231 	return 0;
3232 }
3233 
3234 /*
3235  * Unshare the filesystem structure if it is being shared
3236  */
3237 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3238 {
3239 	struct fs_struct *fs = current->fs;
3240 
3241 	if (!(unshare_flags & CLONE_FS) || !fs)
3242 		return 0;
3243 
3244 	/* don't need lock here; in the worst case we'll do useless copy */
3245 	if (fs->users == 1)
3246 		return 0;
3247 
3248 	*new_fsp = copy_fs_struct(fs);
3249 	if (!*new_fsp)
3250 		return -ENOMEM;
3251 
3252 	return 0;
3253 }
3254 
3255 /*
3256  * Unshare file descriptor table if it is being shared
3257  */
3258 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
3259 {
3260 	struct files_struct *fd = current->files;
3261 
3262 	if ((unshare_flags & CLONE_FILES) &&
3263 	    (fd && atomic_read(&fd->count) > 1)) {
3264 		fd = dup_fd(fd, NULL);
3265 		if (IS_ERR(fd))
3266 			return PTR_ERR(fd);
3267 		*new_fdp = fd;
3268 	}
3269 
3270 	return 0;
3271 }
3272 
3273 /*
3274  * unshare allows a process to 'unshare' part of the process
3275  * context which was originally shared using clone.  copy_*
3276  * functions used by kernel_clone() cannot be used here directly
3277  * because they modify an inactive task_struct that is being
3278  * constructed. Here we are modifying the current, active,
3279  * task_struct.
3280  */
3281 int ksys_unshare(unsigned long unshare_flags)
3282 {
3283 	struct fs_struct *fs, *new_fs = NULL;
3284 	struct files_struct *new_fd = NULL;
3285 	struct cred *new_cred = NULL;
3286 	struct nsproxy *new_nsproxy = NULL;
3287 	int do_sysvsem = 0;
3288 	int err;
3289 
3290 	/*
3291 	 * If unsharing a user namespace must also unshare the thread group
3292 	 * and unshare the filesystem root and working directories.
3293 	 */
3294 	if (unshare_flags & CLONE_NEWUSER)
3295 		unshare_flags |= CLONE_THREAD | CLONE_FS;
3296 	/*
3297 	 * If unsharing vm, must also unshare signal handlers.
3298 	 */
3299 	if (unshare_flags & CLONE_VM)
3300 		unshare_flags |= CLONE_SIGHAND;
3301 	/*
3302 	 * If unsharing a signal handlers, must also unshare the signal queues.
3303 	 */
3304 	if (unshare_flags & CLONE_SIGHAND)
3305 		unshare_flags |= CLONE_THREAD;
3306 	/*
3307 	 * If unsharing namespace, must also unshare filesystem information.
3308 	 */
3309 	if (unshare_flags & CLONE_NEWNS)
3310 		unshare_flags |= CLONE_FS;
3311 
3312 	err = check_unshare_flags(unshare_flags);
3313 	if (err)
3314 		goto bad_unshare_out;
3315 	/*
3316 	 * CLONE_NEWIPC must also detach from the undolist: after switching
3317 	 * to a new ipc namespace, the semaphore arrays from the old
3318 	 * namespace are unreachable.
3319 	 */
3320 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3321 		do_sysvsem = 1;
3322 	err = unshare_fs(unshare_flags, &new_fs);
3323 	if (err)
3324 		goto bad_unshare_out;
3325 	err = unshare_fd(unshare_flags, &new_fd);
3326 	if (err)
3327 		goto bad_unshare_cleanup_fs;
3328 	err = unshare_userns(unshare_flags, &new_cred);
3329 	if (err)
3330 		goto bad_unshare_cleanup_fd;
3331 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3332 					 new_cred, new_fs);
3333 	if (err)
3334 		goto bad_unshare_cleanup_cred;
3335 
3336 	if (new_cred) {
3337 		err = set_cred_ucounts(new_cred);
3338 		if (err)
3339 			goto bad_unshare_cleanup_cred;
3340 	}
3341 
3342 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3343 		if (do_sysvsem) {
3344 			/*
3345 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3346 			 */
3347 			exit_sem(current);
3348 		}
3349 		if (unshare_flags & CLONE_NEWIPC) {
3350 			/* Orphan segments in old ns (see sem above). */
3351 			exit_shm(current);
3352 			shm_init_task(current);
3353 		}
3354 
3355 		if (new_nsproxy)
3356 			switch_task_namespaces(current, new_nsproxy);
3357 
3358 		task_lock(current);
3359 
3360 		if (new_fs) {
3361 			fs = current->fs;
3362 			spin_lock(&fs->lock);
3363 			current->fs = new_fs;
3364 			if (--fs->users)
3365 				new_fs = NULL;
3366 			else
3367 				new_fs = fs;
3368 			spin_unlock(&fs->lock);
3369 		}
3370 
3371 		if (new_fd)
3372 			swap(current->files, new_fd);
3373 
3374 		task_unlock(current);
3375 
3376 		if (new_cred) {
3377 			/* Install the new user namespace */
3378 			commit_creds(new_cred);
3379 			new_cred = NULL;
3380 		}
3381 	}
3382 
3383 	perf_event_namespaces(current);
3384 
3385 bad_unshare_cleanup_cred:
3386 	if (new_cred)
3387 		put_cred(new_cred);
3388 bad_unshare_cleanup_fd:
3389 	if (new_fd)
3390 		put_files_struct(new_fd);
3391 
3392 bad_unshare_cleanup_fs:
3393 	if (new_fs)
3394 		free_fs_struct(new_fs);
3395 
3396 bad_unshare_out:
3397 	return err;
3398 }
3399 
3400 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3401 {
3402 	return ksys_unshare(unshare_flags);
3403 }
3404 
3405 /*
3406  *	Helper to unshare the files of the current task.
3407  *	We don't want to expose copy_files internals to
3408  *	the exec layer of the kernel.
3409  */
3410 
3411 int unshare_files(void)
3412 {
3413 	struct task_struct *task = current;
3414 	struct files_struct *old, *copy = NULL;
3415 	int error;
3416 
3417 	error = unshare_fd(CLONE_FILES, &copy);
3418 	if (error || !copy)
3419 		return error;
3420 
3421 	old = task->files;
3422 	task_lock(task);
3423 	task->files = copy;
3424 	task_unlock(task);
3425 	put_files_struct(old);
3426 	return 0;
3427 }
3428 
3429 int sysctl_max_threads(const struct ctl_table *table, int write,
3430 		       void *buffer, size_t *lenp, loff_t *ppos)
3431 {
3432 	struct ctl_table t;
3433 	int ret;
3434 	int threads = max_threads;
3435 	int min = 1;
3436 	int max = MAX_THREADS;
3437 
3438 	t = *table;
3439 	t.data = &threads;
3440 	t.extra1 = &min;
3441 	t.extra2 = &max;
3442 
3443 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3444 	if (ret || !write)
3445 		return ret;
3446 
3447 	max_threads = threads;
3448 
3449 	return 0;
3450 }
3451