xref: /linux/kernel/fork.c (revision 3bd3706251ee8ab67e69d9340ac2abdca217e733)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/hmm.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/vmacache.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/random.h>
79 #include <linux/tty.h>
80 #include <linux/blkdev.h>
81 #include <linux/fs_struct.h>
82 #include <linux/magic.h>
83 #include <linux/perf_event.h>
84 #include <linux/posix-timers.h>
85 #include <linux/user-return-notifier.h>
86 #include <linux/oom.h>
87 #include <linux/khugepaged.h>
88 #include <linux/signalfd.h>
89 #include <linux/uprobes.h>
90 #include <linux/aio.h>
91 #include <linux/compiler.h>
92 #include <linux/sysctl.h>
93 #include <linux/kcov.h>
94 #include <linux/livepatch.h>
95 #include <linux/thread_info.h>
96 #include <linux/stackleak.h>
97 
98 #include <asm/pgtable.h>
99 #include <asm/pgalloc.h>
100 #include <linux/uaccess.h>
101 #include <asm/mmu_context.h>
102 #include <asm/cacheflush.h>
103 #include <asm/tlbflush.h>
104 
105 #include <trace/events/sched.h>
106 
107 #define CREATE_TRACE_POINTS
108 #include <trace/events/task.h>
109 
110 /*
111  * Minimum number of threads to boot the kernel
112  */
113 #define MIN_THREADS 20
114 
115 /*
116  * Maximum number of threads
117  */
118 #define MAX_THREADS FUTEX_TID_MASK
119 
120 /*
121  * Protected counters by write_lock_irq(&tasklist_lock)
122  */
123 unsigned long total_forks;	/* Handle normal Linux uptimes. */
124 int nr_threads;			/* The idle threads do not count.. */
125 
126 static int max_threads;		/* tunable limit on nr_threads */
127 
128 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
129 
130 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
131 
132 #ifdef CONFIG_PROVE_RCU
133 int lockdep_tasklist_lock_is_held(void)
134 {
135 	return lockdep_is_held(&tasklist_lock);
136 }
137 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
138 #endif /* #ifdef CONFIG_PROVE_RCU */
139 
140 int nr_processes(void)
141 {
142 	int cpu;
143 	int total = 0;
144 
145 	for_each_possible_cpu(cpu)
146 		total += per_cpu(process_counts, cpu);
147 
148 	return total;
149 }
150 
151 void __weak arch_release_task_struct(struct task_struct *tsk)
152 {
153 }
154 
155 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
156 static struct kmem_cache *task_struct_cachep;
157 
158 static inline struct task_struct *alloc_task_struct_node(int node)
159 {
160 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
161 }
162 
163 static inline void free_task_struct(struct task_struct *tsk)
164 {
165 	kmem_cache_free(task_struct_cachep, tsk);
166 }
167 #endif
168 
169 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
170 
171 /*
172  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
173  * kmemcache based allocator.
174  */
175 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
176 
177 #ifdef CONFIG_VMAP_STACK
178 /*
179  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
180  * flush.  Try to minimize the number of calls by caching stacks.
181  */
182 #define NR_CACHED_STACKS 2
183 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
184 
185 static int free_vm_stack_cache(unsigned int cpu)
186 {
187 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
188 	int i;
189 
190 	for (i = 0; i < NR_CACHED_STACKS; i++) {
191 		struct vm_struct *vm_stack = cached_vm_stacks[i];
192 
193 		if (!vm_stack)
194 			continue;
195 
196 		vfree(vm_stack->addr);
197 		cached_vm_stacks[i] = NULL;
198 	}
199 
200 	return 0;
201 }
202 #endif
203 
204 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
205 {
206 #ifdef CONFIG_VMAP_STACK
207 	void *stack;
208 	int i;
209 
210 	for (i = 0; i < NR_CACHED_STACKS; i++) {
211 		struct vm_struct *s;
212 
213 		s = this_cpu_xchg(cached_stacks[i], NULL);
214 
215 		if (!s)
216 			continue;
217 
218 		/* Clear stale pointers from reused stack. */
219 		memset(s->addr, 0, THREAD_SIZE);
220 
221 		tsk->stack_vm_area = s;
222 		tsk->stack = s->addr;
223 		return s->addr;
224 	}
225 
226 	/*
227 	 * Allocated stacks are cached and later reused by new threads,
228 	 * so memcg accounting is performed manually on assigning/releasing
229 	 * stacks to tasks. Drop __GFP_ACCOUNT.
230 	 */
231 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
232 				     VMALLOC_START, VMALLOC_END,
233 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
234 				     PAGE_KERNEL,
235 				     0, node, __builtin_return_address(0));
236 
237 	/*
238 	 * We can't call find_vm_area() in interrupt context, and
239 	 * free_thread_stack() can be called in interrupt context,
240 	 * so cache the vm_struct.
241 	 */
242 	if (stack) {
243 		tsk->stack_vm_area = find_vm_area(stack);
244 		tsk->stack = stack;
245 	}
246 	return stack;
247 #else
248 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
249 					     THREAD_SIZE_ORDER);
250 
251 	return page ? page_address(page) : NULL;
252 #endif
253 }
254 
255 static inline void free_thread_stack(struct task_struct *tsk)
256 {
257 #ifdef CONFIG_VMAP_STACK
258 	struct vm_struct *vm = task_stack_vm_area(tsk);
259 
260 	if (vm) {
261 		int i;
262 
263 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
264 			mod_memcg_page_state(vm->pages[i],
265 					     MEMCG_KERNEL_STACK_KB,
266 					     -(int)(PAGE_SIZE / 1024));
267 
268 			memcg_kmem_uncharge(vm->pages[i], 0);
269 		}
270 
271 		for (i = 0; i < NR_CACHED_STACKS; i++) {
272 			if (this_cpu_cmpxchg(cached_stacks[i],
273 					NULL, tsk->stack_vm_area) != NULL)
274 				continue;
275 
276 			return;
277 		}
278 
279 		vfree_atomic(tsk->stack);
280 		return;
281 	}
282 #endif
283 
284 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
285 }
286 # else
287 static struct kmem_cache *thread_stack_cache;
288 
289 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
290 						  int node)
291 {
292 	unsigned long *stack;
293 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
294 	tsk->stack = stack;
295 	return stack;
296 }
297 
298 static void free_thread_stack(struct task_struct *tsk)
299 {
300 	kmem_cache_free(thread_stack_cache, tsk->stack);
301 }
302 
303 void thread_stack_cache_init(void)
304 {
305 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
306 					THREAD_SIZE, THREAD_SIZE, 0, 0,
307 					THREAD_SIZE, NULL);
308 	BUG_ON(thread_stack_cache == NULL);
309 }
310 # endif
311 #endif
312 
313 /* SLAB cache for signal_struct structures (tsk->signal) */
314 static struct kmem_cache *signal_cachep;
315 
316 /* SLAB cache for sighand_struct structures (tsk->sighand) */
317 struct kmem_cache *sighand_cachep;
318 
319 /* SLAB cache for files_struct structures (tsk->files) */
320 struct kmem_cache *files_cachep;
321 
322 /* SLAB cache for fs_struct structures (tsk->fs) */
323 struct kmem_cache *fs_cachep;
324 
325 /* SLAB cache for vm_area_struct structures */
326 static struct kmem_cache *vm_area_cachep;
327 
328 /* SLAB cache for mm_struct structures (tsk->mm) */
329 static struct kmem_cache *mm_cachep;
330 
331 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
332 {
333 	struct vm_area_struct *vma;
334 
335 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
336 	if (vma)
337 		vma_init(vma, mm);
338 	return vma;
339 }
340 
341 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
342 {
343 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
344 
345 	if (new) {
346 		*new = *orig;
347 		INIT_LIST_HEAD(&new->anon_vma_chain);
348 	}
349 	return new;
350 }
351 
352 void vm_area_free(struct vm_area_struct *vma)
353 {
354 	kmem_cache_free(vm_area_cachep, vma);
355 }
356 
357 static void account_kernel_stack(struct task_struct *tsk, int account)
358 {
359 	void *stack = task_stack_page(tsk);
360 	struct vm_struct *vm = task_stack_vm_area(tsk);
361 
362 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
363 
364 	if (vm) {
365 		int i;
366 
367 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
368 
369 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
370 			mod_zone_page_state(page_zone(vm->pages[i]),
371 					    NR_KERNEL_STACK_KB,
372 					    PAGE_SIZE / 1024 * account);
373 		}
374 	} else {
375 		/*
376 		 * All stack pages are in the same zone and belong to the
377 		 * same memcg.
378 		 */
379 		struct page *first_page = virt_to_page(stack);
380 
381 		mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
382 				    THREAD_SIZE / 1024 * account);
383 
384 		mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
385 				     account * (THREAD_SIZE / 1024));
386 	}
387 }
388 
389 static int memcg_charge_kernel_stack(struct task_struct *tsk)
390 {
391 #ifdef CONFIG_VMAP_STACK
392 	struct vm_struct *vm = task_stack_vm_area(tsk);
393 	int ret;
394 
395 	if (vm) {
396 		int i;
397 
398 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
399 			/*
400 			 * If memcg_kmem_charge() fails, page->mem_cgroup
401 			 * pointer is NULL, and both memcg_kmem_uncharge()
402 			 * and mod_memcg_page_state() in free_thread_stack()
403 			 * will ignore this page. So it's safe.
404 			 */
405 			ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0);
406 			if (ret)
407 				return ret;
408 
409 			mod_memcg_page_state(vm->pages[i],
410 					     MEMCG_KERNEL_STACK_KB,
411 					     PAGE_SIZE / 1024);
412 		}
413 	}
414 #endif
415 	return 0;
416 }
417 
418 static void release_task_stack(struct task_struct *tsk)
419 {
420 	if (WARN_ON(tsk->state != TASK_DEAD))
421 		return;  /* Better to leak the stack than to free prematurely */
422 
423 	account_kernel_stack(tsk, -1);
424 	free_thread_stack(tsk);
425 	tsk->stack = NULL;
426 #ifdef CONFIG_VMAP_STACK
427 	tsk->stack_vm_area = NULL;
428 #endif
429 }
430 
431 #ifdef CONFIG_THREAD_INFO_IN_TASK
432 void put_task_stack(struct task_struct *tsk)
433 {
434 	if (refcount_dec_and_test(&tsk->stack_refcount))
435 		release_task_stack(tsk);
436 }
437 #endif
438 
439 void free_task(struct task_struct *tsk)
440 {
441 #ifndef CONFIG_THREAD_INFO_IN_TASK
442 	/*
443 	 * The task is finally done with both the stack and thread_info,
444 	 * so free both.
445 	 */
446 	release_task_stack(tsk);
447 #else
448 	/*
449 	 * If the task had a separate stack allocation, it should be gone
450 	 * by now.
451 	 */
452 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
453 #endif
454 	rt_mutex_debug_task_free(tsk);
455 	ftrace_graph_exit_task(tsk);
456 	put_seccomp_filter(tsk);
457 	arch_release_task_struct(tsk);
458 	if (tsk->flags & PF_KTHREAD)
459 		free_kthread_struct(tsk);
460 	free_task_struct(tsk);
461 }
462 EXPORT_SYMBOL(free_task);
463 
464 #ifdef CONFIG_MMU
465 static __latent_entropy int dup_mmap(struct mm_struct *mm,
466 					struct mm_struct *oldmm)
467 {
468 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
469 	struct rb_node **rb_link, *rb_parent;
470 	int retval;
471 	unsigned long charge;
472 	LIST_HEAD(uf);
473 
474 	uprobe_start_dup_mmap();
475 	if (down_write_killable(&oldmm->mmap_sem)) {
476 		retval = -EINTR;
477 		goto fail_uprobe_end;
478 	}
479 	flush_cache_dup_mm(oldmm);
480 	uprobe_dup_mmap(oldmm, mm);
481 	/*
482 	 * Not linked in yet - no deadlock potential:
483 	 */
484 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
485 
486 	/* No ordering required: file already has been exposed. */
487 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
488 
489 	mm->total_vm = oldmm->total_vm;
490 	mm->data_vm = oldmm->data_vm;
491 	mm->exec_vm = oldmm->exec_vm;
492 	mm->stack_vm = oldmm->stack_vm;
493 
494 	rb_link = &mm->mm_rb.rb_node;
495 	rb_parent = NULL;
496 	pprev = &mm->mmap;
497 	retval = ksm_fork(mm, oldmm);
498 	if (retval)
499 		goto out;
500 	retval = khugepaged_fork(mm, oldmm);
501 	if (retval)
502 		goto out;
503 
504 	prev = NULL;
505 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
506 		struct file *file;
507 
508 		if (mpnt->vm_flags & VM_DONTCOPY) {
509 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
510 			continue;
511 		}
512 		charge = 0;
513 		/*
514 		 * Don't duplicate many vmas if we've been oom-killed (for
515 		 * example)
516 		 */
517 		if (fatal_signal_pending(current)) {
518 			retval = -EINTR;
519 			goto out;
520 		}
521 		if (mpnt->vm_flags & VM_ACCOUNT) {
522 			unsigned long len = vma_pages(mpnt);
523 
524 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
525 				goto fail_nomem;
526 			charge = len;
527 		}
528 		tmp = vm_area_dup(mpnt);
529 		if (!tmp)
530 			goto fail_nomem;
531 		retval = vma_dup_policy(mpnt, tmp);
532 		if (retval)
533 			goto fail_nomem_policy;
534 		tmp->vm_mm = mm;
535 		retval = dup_userfaultfd(tmp, &uf);
536 		if (retval)
537 			goto fail_nomem_anon_vma_fork;
538 		if (tmp->vm_flags & VM_WIPEONFORK) {
539 			/* VM_WIPEONFORK gets a clean slate in the child. */
540 			tmp->anon_vma = NULL;
541 			if (anon_vma_prepare(tmp))
542 				goto fail_nomem_anon_vma_fork;
543 		} else if (anon_vma_fork(tmp, mpnt))
544 			goto fail_nomem_anon_vma_fork;
545 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
546 		tmp->vm_next = tmp->vm_prev = NULL;
547 		file = tmp->vm_file;
548 		if (file) {
549 			struct inode *inode = file_inode(file);
550 			struct address_space *mapping = file->f_mapping;
551 
552 			get_file(file);
553 			if (tmp->vm_flags & VM_DENYWRITE)
554 				atomic_dec(&inode->i_writecount);
555 			i_mmap_lock_write(mapping);
556 			if (tmp->vm_flags & VM_SHARED)
557 				atomic_inc(&mapping->i_mmap_writable);
558 			flush_dcache_mmap_lock(mapping);
559 			/* insert tmp into the share list, just after mpnt */
560 			vma_interval_tree_insert_after(tmp, mpnt,
561 					&mapping->i_mmap);
562 			flush_dcache_mmap_unlock(mapping);
563 			i_mmap_unlock_write(mapping);
564 		}
565 
566 		/*
567 		 * Clear hugetlb-related page reserves for children. This only
568 		 * affects MAP_PRIVATE mappings. Faults generated by the child
569 		 * are not guaranteed to succeed, even if read-only
570 		 */
571 		if (is_vm_hugetlb_page(tmp))
572 			reset_vma_resv_huge_pages(tmp);
573 
574 		/*
575 		 * Link in the new vma and copy the page table entries.
576 		 */
577 		*pprev = tmp;
578 		pprev = &tmp->vm_next;
579 		tmp->vm_prev = prev;
580 		prev = tmp;
581 
582 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
583 		rb_link = &tmp->vm_rb.rb_right;
584 		rb_parent = &tmp->vm_rb;
585 
586 		mm->map_count++;
587 		if (!(tmp->vm_flags & VM_WIPEONFORK))
588 			retval = copy_page_range(mm, oldmm, mpnt);
589 
590 		if (tmp->vm_ops && tmp->vm_ops->open)
591 			tmp->vm_ops->open(tmp);
592 
593 		if (retval)
594 			goto out;
595 	}
596 	/* a new mm has just been created */
597 	retval = arch_dup_mmap(oldmm, mm);
598 out:
599 	up_write(&mm->mmap_sem);
600 	flush_tlb_mm(oldmm);
601 	up_write(&oldmm->mmap_sem);
602 	dup_userfaultfd_complete(&uf);
603 fail_uprobe_end:
604 	uprobe_end_dup_mmap();
605 	return retval;
606 fail_nomem_anon_vma_fork:
607 	mpol_put(vma_policy(tmp));
608 fail_nomem_policy:
609 	vm_area_free(tmp);
610 fail_nomem:
611 	retval = -ENOMEM;
612 	vm_unacct_memory(charge);
613 	goto out;
614 }
615 
616 static inline int mm_alloc_pgd(struct mm_struct *mm)
617 {
618 	mm->pgd = pgd_alloc(mm);
619 	if (unlikely(!mm->pgd))
620 		return -ENOMEM;
621 	return 0;
622 }
623 
624 static inline void mm_free_pgd(struct mm_struct *mm)
625 {
626 	pgd_free(mm, mm->pgd);
627 }
628 #else
629 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
630 {
631 	down_write(&oldmm->mmap_sem);
632 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
633 	up_write(&oldmm->mmap_sem);
634 	return 0;
635 }
636 #define mm_alloc_pgd(mm)	(0)
637 #define mm_free_pgd(mm)
638 #endif /* CONFIG_MMU */
639 
640 static void check_mm(struct mm_struct *mm)
641 {
642 	int i;
643 
644 	for (i = 0; i < NR_MM_COUNTERS; i++) {
645 		long x = atomic_long_read(&mm->rss_stat.count[i]);
646 
647 		if (unlikely(x))
648 			printk(KERN_ALERT "BUG: Bad rss-counter state "
649 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
650 	}
651 
652 	if (mm_pgtables_bytes(mm))
653 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
654 				mm_pgtables_bytes(mm));
655 
656 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
657 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
658 #endif
659 }
660 
661 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
662 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
663 
664 /*
665  * Called when the last reference to the mm
666  * is dropped: either by a lazy thread or by
667  * mmput. Free the page directory and the mm.
668  */
669 void __mmdrop(struct mm_struct *mm)
670 {
671 	BUG_ON(mm == &init_mm);
672 	WARN_ON_ONCE(mm == current->mm);
673 	WARN_ON_ONCE(mm == current->active_mm);
674 	mm_free_pgd(mm);
675 	destroy_context(mm);
676 	hmm_mm_destroy(mm);
677 	mmu_notifier_mm_destroy(mm);
678 	check_mm(mm);
679 	put_user_ns(mm->user_ns);
680 	free_mm(mm);
681 }
682 EXPORT_SYMBOL_GPL(__mmdrop);
683 
684 static void mmdrop_async_fn(struct work_struct *work)
685 {
686 	struct mm_struct *mm;
687 
688 	mm = container_of(work, struct mm_struct, async_put_work);
689 	__mmdrop(mm);
690 }
691 
692 static void mmdrop_async(struct mm_struct *mm)
693 {
694 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
695 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
696 		schedule_work(&mm->async_put_work);
697 	}
698 }
699 
700 static inline void free_signal_struct(struct signal_struct *sig)
701 {
702 	taskstats_tgid_free(sig);
703 	sched_autogroup_exit(sig);
704 	/*
705 	 * __mmdrop is not safe to call from softirq context on x86 due to
706 	 * pgd_dtor so postpone it to the async context
707 	 */
708 	if (sig->oom_mm)
709 		mmdrop_async(sig->oom_mm);
710 	kmem_cache_free(signal_cachep, sig);
711 }
712 
713 static inline void put_signal_struct(struct signal_struct *sig)
714 {
715 	if (refcount_dec_and_test(&sig->sigcnt))
716 		free_signal_struct(sig);
717 }
718 
719 void __put_task_struct(struct task_struct *tsk)
720 {
721 	WARN_ON(!tsk->exit_state);
722 	WARN_ON(refcount_read(&tsk->usage));
723 	WARN_ON(tsk == current);
724 
725 	cgroup_free(tsk);
726 	task_numa_free(tsk);
727 	security_task_free(tsk);
728 	exit_creds(tsk);
729 	delayacct_tsk_free(tsk);
730 	put_signal_struct(tsk->signal);
731 
732 	if (!profile_handoff_task(tsk))
733 		free_task(tsk);
734 }
735 EXPORT_SYMBOL_GPL(__put_task_struct);
736 
737 void __init __weak arch_task_cache_init(void) { }
738 
739 /*
740  * set_max_threads
741  */
742 static void set_max_threads(unsigned int max_threads_suggested)
743 {
744 	u64 threads;
745 	unsigned long nr_pages = totalram_pages();
746 
747 	/*
748 	 * The number of threads shall be limited such that the thread
749 	 * structures may only consume a small part of the available memory.
750 	 */
751 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
752 		threads = MAX_THREADS;
753 	else
754 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
755 				    (u64) THREAD_SIZE * 8UL);
756 
757 	if (threads > max_threads_suggested)
758 		threads = max_threads_suggested;
759 
760 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
761 }
762 
763 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
764 /* Initialized by the architecture: */
765 int arch_task_struct_size __read_mostly;
766 #endif
767 
768 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
769 {
770 	/* Fetch thread_struct whitelist for the architecture. */
771 	arch_thread_struct_whitelist(offset, size);
772 
773 	/*
774 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
775 	 * adjust offset to position of thread_struct in task_struct.
776 	 */
777 	if (unlikely(*size == 0))
778 		*offset = 0;
779 	else
780 		*offset += offsetof(struct task_struct, thread);
781 }
782 
783 void __init fork_init(void)
784 {
785 	int i;
786 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
787 #ifndef ARCH_MIN_TASKALIGN
788 #define ARCH_MIN_TASKALIGN	0
789 #endif
790 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
791 	unsigned long useroffset, usersize;
792 
793 	/* create a slab on which task_structs can be allocated */
794 	task_struct_whitelist(&useroffset, &usersize);
795 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
796 			arch_task_struct_size, align,
797 			SLAB_PANIC|SLAB_ACCOUNT,
798 			useroffset, usersize, NULL);
799 #endif
800 
801 	/* do the arch specific task caches init */
802 	arch_task_cache_init();
803 
804 	set_max_threads(MAX_THREADS);
805 
806 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
807 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
808 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
809 		init_task.signal->rlim[RLIMIT_NPROC];
810 
811 	for (i = 0; i < UCOUNT_COUNTS; i++) {
812 		init_user_ns.ucount_max[i] = max_threads/2;
813 	}
814 
815 #ifdef CONFIG_VMAP_STACK
816 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
817 			  NULL, free_vm_stack_cache);
818 #endif
819 
820 	lockdep_init_task(&init_task);
821 	uprobes_init();
822 }
823 
824 int __weak arch_dup_task_struct(struct task_struct *dst,
825 					       struct task_struct *src)
826 {
827 	*dst = *src;
828 	return 0;
829 }
830 
831 void set_task_stack_end_magic(struct task_struct *tsk)
832 {
833 	unsigned long *stackend;
834 
835 	stackend = end_of_stack(tsk);
836 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
837 }
838 
839 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
840 {
841 	struct task_struct *tsk;
842 	unsigned long *stack;
843 	struct vm_struct *stack_vm_area __maybe_unused;
844 	int err;
845 
846 	if (node == NUMA_NO_NODE)
847 		node = tsk_fork_get_node(orig);
848 	tsk = alloc_task_struct_node(node);
849 	if (!tsk)
850 		return NULL;
851 
852 	stack = alloc_thread_stack_node(tsk, node);
853 	if (!stack)
854 		goto free_tsk;
855 
856 	if (memcg_charge_kernel_stack(tsk))
857 		goto free_stack;
858 
859 	stack_vm_area = task_stack_vm_area(tsk);
860 
861 	err = arch_dup_task_struct(tsk, orig);
862 
863 	/*
864 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
865 	 * sure they're properly initialized before using any stack-related
866 	 * functions again.
867 	 */
868 	tsk->stack = stack;
869 #ifdef CONFIG_VMAP_STACK
870 	tsk->stack_vm_area = stack_vm_area;
871 #endif
872 #ifdef CONFIG_THREAD_INFO_IN_TASK
873 	refcount_set(&tsk->stack_refcount, 1);
874 #endif
875 
876 	if (err)
877 		goto free_stack;
878 
879 #ifdef CONFIG_SECCOMP
880 	/*
881 	 * We must handle setting up seccomp filters once we're under
882 	 * the sighand lock in case orig has changed between now and
883 	 * then. Until then, filter must be NULL to avoid messing up
884 	 * the usage counts on the error path calling free_task.
885 	 */
886 	tsk->seccomp.filter = NULL;
887 #endif
888 
889 	setup_thread_stack(tsk, orig);
890 	clear_user_return_notifier(tsk);
891 	clear_tsk_need_resched(tsk);
892 	set_task_stack_end_magic(tsk);
893 
894 #ifdef CONFIG_STACKPROTECTOR
895 	tsk->stack_canary = get_random_canary();
896 #endif
897 	if (orig->cpus_ptr == &orig->cpus_mask)
898 		tsk->cpus_ptr = &tsk->cpus_mask;
899 
900 	/*
901 	 * One for us, one for whoever does the "release_task()" (usually
902 	 * parent)
903 	 */
904 	refcount_set(&tsk->usage, 2);
905 #ifdef CONFIG_BLK_DEV_IO_TRACE
906 	tsk->btrace_seq = 0;
907 #endif
908 	tsk->splice_pipe = NULL;
909 	tsk->task_frag.page = NULL;
910 	tsk->wake_q.next = NULL;
911 
912 	account_kernel_stack(tsk, 1);
913 
914 	kcov_task_init(tsk);
915 
916 #ifdef CONFIG_FAULT_INJECTION
917 	tsk->fail_nth = 0;
918 #endif
919 
920 #ifdef CONFIG_BLK_CGROUP
921 	tsk->throttle_queue = NULL;
922 	tsk->use_memdelay = 0;
923 #endif
924 
925 #ifdef CONFIG_MEMCG
926 	tsk->active_memcg = NULL;
927 #endif
928 	return tsk;
929 
930 free_stack:
931 	free_thread_stack(tsk);
932 free_tsk:
933 	free_task_struct(tsk);
934 	return NULL;
935 }
936 
937 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
938 
939 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
940 
941 static int __init coredump_filter_setup(char *s)
942 {
943 	default_dump_filter =
944 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
945 		MMF_DUMP_FILTER_MASK;
946 	return 1;
947 }
948 
949 __setup("coredump_filter=", coredump_filter_setup);
950 
951 #include <linux/init_task.h>
952 
953 static void mm_init_aio(struct mm_struct *mm)
954 {
955 #ifdef CONFIG_AIO
956 	spin_lock_init(&mm->ioctx_lock);
957 	mm->ioctx_table = NULL;
958 #endif
959 }
960 
961 static __always_inline void mm_clear_owner(struct mm_struct *mm,
962 					   struct task_struct *p)
963 {
964 #ifdef CONFIG_MEMCG
965 	if (mm->owner == p)
966 		WRITE_ONCE(mm->owner, NULL);
967 #endif
968 }
969 
970 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
971 {
972 #ifdef CONFIG_MEMCG
973 	mm->owner = p;
974 #endif
975 }
976 
977 static void mm_init_uprobes_state(struct mm_struct *mm)
978 {
979 #ifdef CONFIG_UPROBES
980 	mm->uprobes_state.xol_area = NULL;
981 #endif
982 }
983 
984 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
985 	struct user_namespace *user_ns)
986 {
987 	mm->mmap = NULL;
988 	mm->mm_rb = RB_ROOT;
989 	mm->vmacache_seqnum = 0;
990 	atomic_set(&mm->mm_users, 1);
991 	atomic_set(&mm->mm_count, 1);
992 	init_rwsem(&mm->mmap_sem);
993 	INIT_LIST_HEAD(&mm->mmlist);
994 	mm->core_state = NULL;
995 	mm_pgtables_bytes_init(mm);
996 	mm->map_count = 0;
997 	mm->locked_vm = 0;
998 	atomic64_set(&mm->pinned_vm, 0);
999 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1000 	spin_lock_init(&mm->page_table_lock);
1001 	spin_lock_init(&mm->arg_lock);
1002 	mm_init_cpumask(mm);
1003 	mm_init_aio(mm);
1004 	mm_init_owner(mm, p);
1005 	RCU_INIT_POINTER(mm->exe_file, NULL);
1006 	mmu_notifier_mm_init(mm);
1007 	hmm_mm_init(mm);
1008 	init_tlb_flush_pending(mm);
1009 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1010 	mm->pmd_huge_pte = NULL;
1011 #endif
1012 	mm_init_uprobes_state(mm);
1013 
1014 	if (current->mm) {
1015 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1016 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1017 	} else {
1018 		mm->flags = default_dump_filter;
1019 		mm->def_flags = 0;
1020 	}
1021 
1022 	if (mm_alloc_pgd(mm))
1023 		goto fail_nopgd;
1024 
1025 	if (init_new_context(p, mm))
1026 		goto fail_nocontext;
1027 
1028 	mm->user_ns = get_user_ns(user_ns);
1029 	return mm;
1030 
1031 fail_nocontext:
1032 	mm_free_pgd(mm);
1033 fail_nopgd:
1034 	free_mm(mm);
1035 	return NULL;
1036 }
1037 
1038 /*
1039  * Allocate and initialize an mm_struct.
1040  */
1041 struct mm_struct *mm_alloc(void)
1042 {
1043 	struct mm_struct *mm;
1044 
1045 	mm = allocate_mm();
1046 	if (!mm)
1047 		return NULL;
1048 
1049 	memset(mm, 0, sizeof(*mm));
1050 	return mm_init(mm, current, current_user_ns());
1051 }
1052 
1053 static inline void __mmput(struct mm_struct *mm)
1054 {
1055 	VM_BUG_ON(atomic_read(&mm->mm_users));
1056 
1057 	uprobe_clear_state(mm);
1058 	exit_aio(mm);
1059 	ksm_exit(mm);
1060 	khugepaged_exit(mm); /* must run before exit_mmap */
1061 	exit_mmap(mm);
1062 	mm_put_huge_zero_page(mm);
1063 	set_mm_exe_file(mm, NULL);
1064 	if (!list_empty(&mm->mmlist)) {
1065 		spin_lock(&mmlist_lock);
1066 		list_del(&mm->mmlist);
1067 		spin_unlock(&mmlist_lock);
1068 	}
1069 	if (mm->binfmt)
1070 		module_put(mm->binfmt->module);
1071 	mmdrop(mm);
1072 }
1073 
1074 /*
1075  * Decrement the use count and release all resources for an mm.
1076  */
1077 void mmput(struct mm_struct *mm)
1078 {
1079 	might_sleep();
1080 
1081 	if (atomic_dec_and_test(&mm->mm_users))
1082 		__mmput(mm);
1083 }
1084 EXPORT_SYMBOL_GPL(mmput);
1085 
1086 #ifdef CONFIG_MMU
1087 static void mmput_async_fn(struct work_struct *work)
1088 {
1089 	struct mm_struct *mm = container_of(work, struct mm_struct,
1090 					    async_put_work);
1091 
1092 	__mmput(mm);
1093 }
1094 
1095 void mmput_async(struct mm_struct *mm)
1096 {
1097 	if (atomic_dec_and_test(&mm->mm_users)) {
1098 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1099 		schedule_work(&mm->async_put_work);
1100 	}
1101 }
1102 #endif
1103 
1104 /**
1105  * set_mm_exe_file - change a reference to the mm's executable file
1106  *
1107  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1108  *
1109  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1110  * invocations: in mmput() nobody alive left, in execve task is single
1111  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1112  * mm->exe_file, but does so without using set_mm_exe_file() in order
1113  * to do avoid the need for any locks.
1114  */
1115 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1116 {
1117 	struct file *old_exe_file;
1118 
1119 	/*
1120 	 * It is safe to dereference the exe_file without RCU as
1121 	 * this function is only called if nobody else can access
1122 	 * this mm -- see comment above for justification.
1123 	 */
1124 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1125 
1126 	if (new_exe_file)
1127 		get_file(new_exe_file);
1128 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1129 	if (old_exe_file)
1130 		fput(old_exe_file);
1131 }
1132 
1133 /**
1134  * get_mm_exe_file - acquire a reference to the mm's executable file
1135  *
1136  * Returns %NULL if mm has no associated executable file.
1137  * User must release file via fput().
1138  */
1139 struct file *get_mm_exe_file(struct mm_struct *mm)
1140 {
1141 	struct file *exe_file;
1142 
1143 	rcu_read_lock();
1144 	exe_file = rcu_dereference(mm->exe_file);
1145 	if (exe_file && !get_file_rcu(exe_file))
1146 		exe_file = NULL;
1147 	rcu_read_unlock();
1148 	return exe_file;
1149 }
1150 EXPORT_SYMBOL(get_mm_exe_file);
1151 
1152 /**
1153  * get_task_exe_file - acquire a reference to the task's executable file
1154  *
1155  * Returns %NULL if task's mm (if any) has no associated executable file or
1156  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1157  * User must release file via fput().
1158  */
1159 struct file *get_task_exe_file(struct task_struct *task)
1160 {
1161 	struct file *exe_file = NULL;
1162 	struct mm_struct *mm;
1163 
1164 	task_lock(task);
1165 	mm = task->mm;
1166 	if (mm) {
1167 		if (!(task->flags & PF_KTHREAD))
1168 			exe_file = get_mm_exe_file(mm);
1169 	}
1170 	task_unlock(task);
1171 	return exe_file;
1172 }
1173 EXPORT_SYMBOL(get_task_exe_file);
1174 
1175 /**
1176  * get_task_mm - acquire a reference to the task's mm
1177  *
1178  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1179  * this kernel workthread has transiently adopted a user mm with use_mm,
1180  * to do its AIO) is not set and if so returns a reference to it, after
1181  * bumping up the use count.  User must release the mm via mmput()
1182  * after use.  Typically used by /proc and ptrace.
1183  */
1184 struct mm_struct *get_task_mm(struct task_struct *task)
1185 {
1186 	struct mm_struct *mm;
1187 
1188 	task_lock(task);
1189 	mm = task->mm;
1190 	if (mm) {
1191 		if (task->flags & PF_KTHREAD)
1192 			mm = NULL;
1193 		else
1194 			mmget(mm);
1195 	}
1196 	task_unlock(task);
1197 	return mm;
1198 }
1199 EXPORT_SYMBOL_GPL(get_task_mm);
1200 
1201 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1202 {
1203 	struct mm_struct *mm;
1204 	int err;
1205 
1206 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1207 	if (err)
1208 		return ERR_PTR(err);
1209 
1210 	mm = get_task_mm(task);
1211 	if (mm && mm != current->mm &&
1212 			!ptrace_may_access(task, mode)) {
1213 		mmput(mm);
1214 		mm = ERR_PTR(-EACCES);
1215 	}
1216 	mutex_unlock(&task->signal->cred_guard_mutex);
1217 
1218 	return mm;
1219 }
1220 
1221 static void complete_vfork_done(struct task_struct *tsk)
1222 {
1223 	struct completion *vfork;
1224 
1225 	task_lock(tsk);
1226 	vfork = tsk->vfork_done;
1227 	if (likely(vfork)) {
1228 		tsk->vfork_done = NULL;
1229 		complete(vfork);
1230 	}
1231 	task_unlock(tsk);
1232 }
1233 
1234 static int wait_for_vfork_done(struct task_struct *child,
1235 				struct completion *vfork)
1236 {
1237 	int killed;
1238 
1239 	freezer_do_not_count();
1240 	cgroup_enter_frozen();
1241 	killed = wait_for_completion_killable(vfork);
1242 	cgroup_leave_frozen(false);
1243 	freezer_count();
1244 
1245 	if (killed) {
1246 		task_lock(child);
1247 		child->vfork_done = NULL;
1248 		task_unlock(child);
1249 	}
1250 
1251 	put_task_struct(child);
1252 	return killed;
1253 }
1254 
1255 /* Please note the differences between mmput and mm_release.
1256  * mmput is called whenever we stop holding onto a mm_struct,
1257  * error success whatever.
1258  *
1259  * mm_release is called after a mm_struct has been removed
1260  * from the current process.
1261  *
1262  * This difference is important for error handling, when we
1263  * only half set up a mm_struct for a new process and need to restore
1264  * the old one.  Because we mmput the new mm_struct before
1265  * restoring the old one. . .
1266  * Eric Biederman 10 January 1998
1267  */
1268 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1269 {
1270 	/* Get rid of any futexes when releasing the mm */
1271 #ifdef CONFIG_FUTEX
1272 	if (unlikely(tsk->robust_list)) {
1273 		exit_robust_list(tsk);
1274 		tsk->robust_list = NULL;
1275 	}
1276 #ifdef CONFIG_COMPAT
1277 	if (unlikely(tsk->compat_robust_list)) {
1278 		compat_exit_robust_list(tsk);
1279 		tsk->compat_robust_list = NULL;
1280 	}
1281 #endif
1282 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1283 		exit_pi_state_list(tsk);
1284 #endif
1285 
1286 	uprobe_free_utask(tsk);
1287 
1288 	/* Get rid of any cached register state */
1289 	deactivate_mm(tsk, mm);
1290 
1291 	/*
1292 	 * Signal userspace if we're not exiting with a core dump
1293 	 * because we want to leave the value intact for debugging
1294 	 * purposes.
1295 	 */
1296 	if (tsk->clear_child_tid) {
1297 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1298 		    atomic_read(&mm->mm_users) > 1) {
1299 			/*
1300 			 * We don't check the error code - if userspace has
1301 			 * not set up a proper pointer then tough luck.
1302 			 */
1303 			put_user(0, tsk->clear_child_tid);
1304 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1305 					1, NULL, NULL, 0, 0);
1306 		}
1307 		tsk->clear_child_tid = NULL;
1308 	}
1309 
1310 	/*
1311 	 * All done, finally we can wake up parent and return this mm to him.
1312 	 * Also kthread_stop() uses this completion for synchronization.
1313 	 */
1314 	if (tsk->vfork_done)
1315 		complete_vfork_done(tsk);
1316 }
1317 
1318 /**
1319  * dup_mm() - duplicates an existing mm structure
1320  * @tsk: the task_struct with which the new mm will be associated.
1321  * @oldmm: the mm to duplicate.
1322  *
1323  * Allocates a new mm structure and duplicates the provided @oldmm structure
1324  * content into it.
1325  *
1326  * Return: the duplicated mm or NULL on failure.
1327  */
1328 static struct mm_struct *dup_mm(struct task_struct *tsk,
1329 				struct mm_struct *oldmm)
1330 {
1331 	struct mm_struct *mm;
1332 	int err;
1333 
1334 	mm = allocate_mm();
1335 	if (!mm)
1336 		goto fail_nomem;
1337 
1338 	memcpy(mm, oldmm, sizeof(*mm));
1339 
1340 	if (!mm_init(mm, tsk, mm->user_ns))
1341 		goto fail_nomem;
1342 
1343 	err = dup_mmap(mm, oldmm);
1344 	if (err)
1345 		goto free_pt;
1346 
1347 	mm->hiwater_rss = get_mm_rss(mm);
1348 	mm->hiwater_vm = mm->total_vm;
1349 
1350 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1351 		goto free_pt;
1352 
1353 	return mm;
1354 
1355 free_pt:
1356 	/* don't put binfmt in mmput, we haven't got module yet */
1357 	mm->binfmt = NULL;
1358 	mm_init_owner(mm, NULL);
1359 	mmput(mm);
1360 
1361 fail_nomem:
1362 	return NULL;
1363 }
1364 
1365 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1366 {
1367 	struct mm_struct *mm, *oldmm;
1368 	int retval;
1369 
1370 	tsk->min_flt = tsk->maj_flt = 0;
1371 	tsk->nvcsw = tsk->nivcsw = 0;
1372 #ifdef CONFIG_DETECT_HUNG_TASK
1373 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1374 	tsk->last_switch_time = 0;
1375 #endif
1376 
1377 	tsk->mm = NULL;
1378 	tsk->active_mm = NULL;
1379 
1380 	/*
1381 	 * Are we cloning a kernel thread?
1382 	 *
1383 	 * We need to steal a active VM for that..
1384 	 */
1385 	oldmm = current->mm;
1386 	if (!oldmm)
1387 		return 0;
1388 
1389 	/* initialize the new vmacache entries */
1390 	vmacache_flush(tsk);
1391 
1392 	if (clone_flags & CLONE_VM) {
1393 		mmget(oldmm);
1394 		mm = oldmm;
1395 		goto good_mm;
1396 	}
1397 
1398 	retval = -ENOMEM;
1399 	mm = dup_mm(tsk, current->mm);
1400 	if (!mm)
1401 		goto fail_nomem;
1402 
1403 good_mm:
1404 	tsk->mm = mm;
1405 	tsk->active_mm = mm;
1406 	return 0;
1407 
1408 fail_nomem:
1409 	return retval;
1410 }
1411 
1412 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1413 {
1414 	struct fs_struct *fs = current->fs;
1415 	if (clone_flags & CLONE_FS) {
1416 		/* tsk->fs is already what we want */
1417 		spin_lock(&fs->lock);
1418 		if (fs->in_exec) {
1419 			spin_unlock(&fs->lock);
1420 			return -EAGAIN;
1421 		}
1422 		fs->users++;
1423 		spin_unlock(&fs->lock);
1424 		return 0;
1425 	}
1426 	tsk->fs = copy_fs_struct(fs);
1427 	if (!tsk->fs)
1428 		return -ENOMEM;
1429 	return 0;
1430 }
1431 
1432 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1433 {
1434 	struct files_struct *oldf, *newf;
1435 	int error = 0;
1436 
1437 	/*
1438 	 * A background process may not have any files ...
1439 	 */
1440 	oldf = current->files;
1441 	if (!oldf)
1442 		goto out;
1443 
1444 	if (clone_flags & CLONE_FILES) {
1445 		atomic_inc(&oldf->count);
1446 		goto out;
1447 	}
1448 
1449 	newf = dup_fd(oldf, &error);
1450 	if (!newf)
1451 		goto out;
1452 
1453 	tsk->files = newf;
1454 	error = 0;
1455 out:
1456 	return error;
1457 }
1458 
1459 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1460 {
1461 #ifdef CONFIG_BLOCK
1462 	struct io_context *ioc = current->io_context;
1463 	struct io_context *new_ioc;
1464 
1465 	if (!ioc)
1466 		return 0;
1467 	/*
1468 	 * Share io context with parent, if CLONE_IO is set
1469 	 */
1470 	if (clone_flags & CLONE_IO) {
1471 		ioc_task_link(ioc);
1472 		tsk->io_context = ioc;
1473 	} else if (ioprio_valid(ioc->ioprio)) {
1474 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1475 		if (unlikely(!new_ioc))
1476 			return -ENOMEM;
1477 
1478 		new_ioc->ioprio = ioc->ioprio;
1479 		put_io_context(new_ioc);
1480 	}
1481 #endif
1482 	return 0;
1483 }
1484 
1485 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1486 {
1487 	struct sighand_struct *sig;
1488 
1489 	if (clone_flags & CLONE_SIGHAND) {
1490 		refcount_inc(&current->sighand->count);
1491 		return 0;
1492 	}
1493 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1494 	rcu_assign_pointer(tsk->sighand, sig);
1495 	if (!sig)
1496 		return -ENOMEM;
1497 
1498 	refcount_set(&sig->count, 1);
1499 	spin_lock_irq(&current->sighand->siglock);
1500 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1501 	spin_unlock_irq(&current->sighand->siglock);
1502 	return 0;
1503 }
1504 
1505 void __cleanup_sighand(struct sighand_struct *sighand)
1506 {
1507 	if (refcount_dec_and_test(&sighand->count)) {
1508 		signalfd_cleanup(sighand);
1509 		/*
1510 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1511 		 * without an RCU grace period, see __lock_task_sighand().
1512 		 */
1513 		kmem_cache_free(sighand_cachep, sighand);
1514 	}
1515 }
1516 
1517 #ifdef CONFIG_POSIX_TIMERS
1518 /*
1519  * Initialize POSIX timer handling for a thread group.
1520  */
1521 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1522 {
1523 	unsigned long cpu_limit;
1524 
1525 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1526 	if (cpu_limit != RLIM_INFINITY) {
1527 		sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1528 		sig->cputimer.running = true;
1529 	}
1530 
1531 	/* The timer lists. */
1532 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1533 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1534 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1535 }
1536 #else
1537 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1538 #endif
1539 
1540 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1541 {
1542 	struct signal_struct *sig;
1543 
1544 	if (clone_flags & CLONE_THREAD)
1545 		return 0;
1546 
1547 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1548 	tsk->signal = sig;
1549 	if (!sig)
1550 		return -ENOMEM;
1551 
1552 	sig->nr_threads = 1;
1553 	atomic_set(&sig->live, 1);
1554 	refcount_set(&sig->sigcnt, 1);
1555 
1556 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1557 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1558 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1559 
1560 	init_waitqueue_head(&sig->wait_chldexit);
1561 	sig->curr_target = tsk;
1562 	init_sigpending(&sig->shared_pending);
1563 	INIT_HLIST_HEAD(&sig->multiprocess);
1564 	seqlock_init(&sig->stats_lock);
1565 	prev_cputime_init(&sig->prev_cputime);
1566 
1567 #ifdef CONFIG_POSIX_TIMERS
1568 	INIT_LIST_HEAD(&sig->posix_timers);
1569 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1570 	sig->real_timer.function = it_real_fn;
1571 #endif
1572 
1573 	task_lock(current->group_leader);
1574 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1575 	task_unlock(current->group_leader);
1576 
1577 	posix_cpu_timers_init_group(sig);
1578 
1579 	tty_audit_fork(sig);
1580 	sched_autogroup_fork(sig);
1581 
1582 	sig->oom_score_adj = current->signal->oom_score_adj;
1583 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1584 
1585 	mutex_init(&sig->cred_guard_mutex);
1586 
1587 	return 0;
1588 }
1589 
1590 static void copy_seccomp(struct task_struct *p)
1591 {
1592 #ifdef CONFIG_SECCOMP
1593 	/*
1594 	 * Must be called with sighand->lock held, which is common to
1595 	 * all threads in the group. Holding cred_guard_mutex is not
1596 	 * needed because this new task is not yet running and cannot
1597 	 * be racing exec.
1598 	 */
1599 	assert_spin_locked(&current->sighand->siglock);
1600 
1601 	/* Ref-count the new filter user, and assign it. */
1602 	get_seccomp_filter(current);
1603 	p->seccomp = current->seccomp;
1604 
1605 	/*
1606 	 * Explicitly enable no_new_privs here in case it got set
1607 	 * between the task_struct being duplicated and holding the
1608 	 * sighand lock. The seccomp state and nnp must be in sync.
1609 	 */
1610 	if (task_no_new_privs(current))
1611 		task_set_no_new_privs(p);
1612 
1613 	/*
1614 	 * If the parent gained a seccomp mode after copying thread
1615 	 * flags and between before we held the sighand lock, we have
1616 	 * to manually enable the seccomp thread flag here.
1617 	 */
1618 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1619 		set_tsk_thread_flag(p, TIF_SECCOMP);
1620 #endif
1621 }
1622 
1623 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1624 {
1625 	current->clear_child_tid = tidptr;
1626 
1627 	return task_pid_vnr(current);
1628 }
1629 
1630 static void rt_mutex_init_task(struct task_struct *p)
1631 {
1632 	raw_spin_lock_init(&p->pi_lock);
1633 #ifdef CONFIG_RT_MUTEXES
1634 	p->pi_waiters = RB_ROOT_CACHED;
1635 	p->pi_top_task = NULL;
1636 	p->pi_blocked_on = NULL;
1637 #endif
1638 }
1639 
1640 #ifdef CONFIG_POSIX_TIMERS
1641 /*
1642  * Initialize POSIX timer handling for a single task.
1643  */
1644 static void posix_cpu_timers_init(struct task_struct *tsk)
1645 {
1646 	tsk->cputime_expires.prof_exp = 0;
1647 	tsk->cputime_expires.virt_exp = 0;
1648 	tsk->cputime_expires.sched_exp = 0;
1649 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1650 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1651 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1652 }
1653 #else
1654 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1655 #endif
1656 
1657 static inline void init_task_pid_links(struct task_struct *task)
1658 {
1659 	enum pid_type type;
1660 
1661 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1662 		INIT_HLIST_NODE(&task->pid_links[type]);
1663 	}
1664 }
1665 
1666 static inline void
1667 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1668 {
1669 	if (type == PIDTYPE_PID)
1670 		task->thread_pid = pid;
1671 	else
1672 		task->signal->pids[type] = pid;
1673 }
1674 
1675 static inline void rcu_copy_process(struct task_struct *p)
1676 {
1677 #ifdef CONFIG_PREEMPT_RCU
1678 	p->rcu_read_lock_nesting = 0;
1679 	p->rcu_read_unlock_special.s = 0;
1680 	p->rcu_blocked_node = NULL;
1681 	INIT_LIST_HEAD(&p->rcu_node_entry);
1682 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1683 #ifdef CONFIG_TASKS_RCU
1684 	p->rcu_tasks_holdout = false;
1685 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1686 	p->rcu_tasks_idle_cpu = -1;
1687 #endif /* #ifdef CONFIG_TASKS_RCU */
1688 }
1689 
1690 static int pidfd_release(struct inode *inode, struct file *file)
1691 {
1692 	struct pid *pid = file->private_data;
1693 
1694 	file->private_data = NULL;
1695 	put_pid(pid);
1696 	return 0;
1697 }
1698 
1699 #ifdef CONFIG_PROC_FS
1700 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1701 {
1702 	struct pid_namespace *ns = proc_pid_ns(file_inode(m->file));
1703 	struct pid *pid = f->private_data;
1704 
1705 	seq_put_decimal_ull(m, "Pid:\t", pid_nr_ns(pid, ns));
1706 	seq_putc(m, '\n');
1707 }
1708 #endif
1709 
1710 const struct file_operations pidfd_fops = {
1711 	.release = pidfd_release,
1712 #ifdef CONFIG_PROC_FS
1713 	.show_fdinfo = pidfd_show_fdinfo,
1714 #endif
1715 };
1716 
1717 /**
1718  * pidfd_create() - Create a new pid file descriptor.
1719  *
1720  * @pid:  struct pid that the pidfd will reference
1721  *
1722  * This creates a new pid file descriptor with the O_CLOEXEC flag set.
1723  *
1724  * Note, that this function can only be called after the fd table has
1725  * been unshared to avoid leaking the pidfd to the new process.
1726  *
1727  * Return: On success, a cloexec pidfd is returned.
1728  *         On error, a negative errno number will be returned.
1729  */
1730 static int pidfd_create(struct pid *pid)
1731 {
1732 	int fd;
1733 
1734 	fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid),
1735 			      O_RDWR | O_CLOEXEC);
1736 	if (fd < 0)
1737 		put_pid(pid);
1738 
1739 	return fd;
1740 }
1741 
1742 static void __delayed_free_task(struct rcu_head *rhp)
1743 {
1744 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1745 
1746 	free_task(tsk);
1747 }
1748 
1749 static __always_inline void delayed_free_task(struct task_struct *tsk)
1750 {
1751 	if (IS_ENABLED(CONFIG_MEMCG))
1752 		call_rcu(&tsk->rcu, __delayed_free_task);
1753 	else
1754 		free_task(tsk);
1755 }
1756 
1757 /*
1758  * This creates a new process as a copy of the old one,
1759  * but does not actually start it yet.
1760  *
1761  * It copies the registers, and all the appropriate
1762  * parts of the process environment (as per the clone
1763  * flags). The actual kick-off is left to the caller.
1764  */
1765 static __latent_entropy struct task_struct *copy_process(
1766 					unsigned long clone_flags,
1767 					unsigned long stack_start,
1768 					unsigned long stack_size,
1769 					int __user *parent_tidptr,
1770 					int __user *child_tidptr,
1771 					struct pid *pid,
1772 					int trace,
1773 					unsigned long tls,
1774 					int node)
1775 {
1776 	int pidfd = -1, retval;
1777 	struct task_struct *p;
1778 	struct multiprocess_signals delayed;
1779 
1780 	/*
1781 	 * Don't allow sharing the root directory with processes in a different
1782 	 * namespace
1783 	 */
1784 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1785 		return ERR_PTR(-EINVAL);
1786 
1787 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1788 		return ERR_PTR(-EINVAL);
1789 
1790 	/*
1791 	 * Thread groups must share signals as well, and detached threads
1792 	 * can only be started up within the thread group.
1793 	 */
1794 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1795 		return ERR_PTR(-EINVAL);
1796 
1797 	/*
1798 	 * Shared signal handlers imply shared VM. By way of the above,
1799 	 * thread groups also imply shared VM. Blocking this case allows
1800 	 * for various simplifications in other code.
1801 	 */
1802 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1803 		return ERR_PTR(-EINVAL);
1804 
1805 	/*
1806 	 * Siblings of global init remain as zombies on exit since they are
1807 	 * not reaped by their parent (swapper). To solve this and to avoid
1808 	 * multi-rooted process trees, prevent global and container-inits
1809 	 * from creating siblings.
1810 	 */
1811 	if ((clone_flags & CLONE_PARENT) &&
1812 				current->signal->flags & SIGNAL_UNKILLABLE)
1813 		return ERR_PTR(-EINVAL);
1814 
1815 	/*
1816 	 * If the new process will be in a different pid or user namespace
1817 	 * do not allow it to share a thread group with the forking task.
1818 	 */
1819 	if (clone_flags & CLONE_THREAD) {
1820 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1821 		    (task_active_pid_ns(current) !=
1822 				current->nsproxy->pid_ns_for_children))
1823 			return ERR_PTR(-EINVAL);
1824 	}
1825 
1826 	if (clone_flags & CLONE_PIDFD) {
1827 		int reserved;
1828 
1829 		/*
1830 		 * - CLONE_PARENT_SETTID is useless for pidfds and also
1831 		 *   parent_tidptr is used to return pidfds.
1832 		 * - CLONE_DETACHED is blocked so that we can potentially
1833 		 *   reuse it later for CLONE_PIDFD.
1834 		 * - CLONE_THREAD is blocked until someone really needs it.
1835 		 */
1836 		if (clone_flags &
1837 		    (CLONE_DETACHED | CLONE_PARENT_SETTID | CLONE_THREAD))
1838 			return ERR_PTR(-EINVAL);
1839 
1840 		/*
1841 		 * Verify that parent_tidptr is sane so we can potentially
1842 		 * reuse it later.
1843 		 */
1844 		if (get_user(reserved, parent_tidptr))
1845 			return ERR_PTR(-EFAULT);
1846 
1847 		if (reserved != 0)
1848 			return ERR_PTR(-EINVAL);
1849 	}
1850 
1851 	/*
1852 	 * Force any signals received before this point to be delivered
1853 	 * before the fork happens.  Collect up signals sent to multiple
1854 	 * processes that happen during the fork and delay them so that
1855 	 * they appear to happen after the fork.
1856 	 */
1857 	sigemptyset(&delayed.signal);
1858 	INIT_HLIST_NODE(&delayed.node);
1859 
1860 	spin_lock_irq(&current->sighand->siglock);
1861 	if (!(clone_flags & CLONE_THREAD))
1862 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
1863 	recalc_sigpending();
1864 	spin_unlock_irq(&current->sighand->siglock);
1865 	retval = -ERESTARTNOINTR;
1866 	if (signal_pending(current))
1867 		goto fork_out;
1868 
1869 	retval = -ENOMEM;
1870 	p = dup_task_struct(current, node);
1871 	if (!p)
1872 		goto fork_out;
1873 
1874 	/*
1875 	 * This _must_ happen before we call free_task(), i.e. before we jump
1876 	 * to any of the bad_fork_* labels. This is to avoid freeing
1877 	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1878 	 * kernel threads (PF_KTHREAD).
1879 	 */
1880 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1881 	/*
1882 	 * Clear TID on mm_release()?
1883 	 */
1884 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1885 
1886 	ftrace_graph_init_task(p);
1887 
1888 	rt_mutex_init_task(p);
1889 
1890 #ifdef CONFIG_PROVE_LOCKING
1891 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1892 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1893 #endif
1894 	retval = -EAGAIN;
1895 	if (atomic_read(&p->real_cred->user->processes) >=
1896 			task_rlimit(p, RLIMIT_NPROC)) {
1897 		if (p->real_cred->user != INIT_USER &&
1898 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1899 			goto bad_fork_free;
1900 	}
1901 	current->flags &= ~PF_NPROC_EXCEEDED;
1902 
1903 	retval = copy_creds(p, clone_flags);
1904 	if (retval < 0)
1905 		goto bad_fork_free;
1906 
1907 	/*
1908 	 * If multiple threads are within copy_process(), then this check
1909 	 * triggers too late. This doesn't hurt, the check is only there
1910 	 * to stop root fork bombs.
1911 	 */
1912 	retval = -EAGAIN;
1913 	if (nr_threads >= max_threads)
1914 		goto bad_fork_cleanup_count;
1915 
1916 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1917 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1918 	p->flags |= PF_FORKNOEXEC;
1919 	INIT_LIST_HEAD(&p->children);
1920 	INIT_LIST_HEAD(&p->sibling);
1921 	rcu_copy_process(p);
1922 	p->vfork_done = NULL;
1923 	spin_lock_init(&p->alloc_lock);
1924 
1925 	init_sigpending(&p->pending);
1926 
1927 	p->utime = p->stime = p->gtime = 0;
1928 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1929 	p->utimescaled = p->stimescaled = 0;
1930 #endif
1931 	prev_cputime_init(&p->prev_cputime);
1932 
1933 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1934 	seqcount_init(&p->vtime.seqcount);
1935 	p->vtime.starttime = 0;
1936 	p->vtime.state = VTIME_INACTIVE;
1937 #endif
1938 
1939 #if defined(SPLIT_RSS_COUNTING)
1940 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1941 #endif
1942 
1943 	p->default_timer_slack_ns = current->timer_slack_ns;
1944 
1945 #ifdef CONFIG_PSI
1946 	p->psi_flags = 0;
1947 #endif
1948 
1949 	task_io_accounting_init(&p->ioac);
1950 	acct_clear_integrals(p);
1951 
1952 	posix_cpu_timers_init(p);
1953 
1954 	p->io_context = NULL;
1955 	audit_set_context(p, NULL);
1956 	cgroup_fork(p);
1957 #ifdef CONFIG_NUMA
1958 	p->mempolicy = mpol_dup(p->mempolicy);
1959 	if (IS_ERR(p->mempolicy)) {
1960 		retval = PTR_ERR(p->mempolicy);
1961 		p->mempolicy = NULL;
1962 		goto bad_fork_cleanup_threadgroup_lock;
1963 	}
1964 #endif
1965 #ifdef CONFIG_CPUSETS
1966 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1967 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1968 	seqcount_init(&p->mems_allowed_seq);
1969 #endif
1970 #ifdef CONFIG_TRACE_IRQFLAGS
1971 	p->irq_events = 0;
1972 	p->hardirqs_enabled = 0;
1973 	p->hardirq_enable_ip = 0;
1974 	p->hardirq_enable_event = 0;
1975 	p->hardirq_disable_ip = _THIS_IP_;
1976 	p->hardirq_disable_event = 0;
1977 	p->softirqs_enabled = 1;
1978 	p->softirq_enable_ip = _THIS_IP_;
1979 	p->softirq_enable_event = 0;
1980 	p->softirq_disable_ip = 0;
1981 	p->softirq_disable_event = 0;
1982 	p->hardirq_context = 0;
1983 	p->softirq_context = 0;
1984 #endif
1985 
1986 	p->pagefault_disabled = 0;
1987 
1988 #ifdef CONFIG_LOCKDEP
1989 	p->lockdep_depth = 0; /* no locks held yet */
1990 	p->curr_chain_key = 0;
1991 	p->lockdep_recursion = 0;
1992 	lockdep_init_task(p);
1993 #endif
1994 
1995 #ifdef CONFIG_DEBUG_MUTEXES
1996 	p->blocked_on = NULL; /* not blocked yet */
1997 #endif
1998 #ifdef CONFIG_BCACHE
1999 	p->sequential_io	= 0;
2000 	p->sequential_io_avg	= 0;
2001 #endif
2002 
2003 	/* Perform scheduler related setup. Assign this task to a CPU. */
2004 	retval = sched_fork(clone_flags, p);
2005 	if (retval)
2006 		goto bad_fork_cleanup_policy;
2007 
2008 	retval = perf_event_init_task(p);
2009 	if (retval)
2010 		goto bad_fork_cleanup_policy;
2011 	retval = audit_alloc(p);
2012 	if (retval)
2013 		goto bad_fork_cleanup_perf;
2014 	/* copy all the process information */
2015 	shm_init_task(p);
2016 	retval = security_task_alloc(p, clone_flags);
2017 	if (retval)
2018 		goto bad_fork_cleanup_audit;
2019 	retval = copy_semundo(clone_flags, p);
2020 	if (retval)
2021 		goto bad_fork_cleanup_security;
2022 	retval = copy_files(clone_flags, p);
2023 	if (retval)
2024 		goto bad_fork_cleanup_semundo;
2025 	retval = copy_fs(clone_flags, p);
2026 	if (retval)
2027 		goto bad_fork_cleanup_files;
2028 	retval = copy_sighand(clone_flags, p);
2029 	if (retval)
2030 		goto bad_fork_cleanup_fs;
2031 	retval = copy_signal(clone_flags, p);
2032 	if (retval)
2033 		goto bad_fork_cleanup_sighand;
2034 	retval = copy_mm(clone_flags, p);
2035 	if (retval)
2036 		goto bad_fork_cleanup_signal;
2037 	retval = copy_namespaces(clone_flags, p);
2038 	if (retval)
2039 		goto bad_fork_cleanup_mm;
2040 	retval = copy_io(clone_flags, p);
2041 	if (retval)
2042 		goto bad_fork_cleanup_namespaces;
2043 	retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
2044 	if (retval)
2045 		goto bad_fork_cleanup_io;
2046 
2047 	stackleak_task_init(p);
2048 
2049 	if (pid != &init_struct_pid) {
2050 		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
2051 		if (IS_ERR(pid)) {
2052 			retval = PTR_ERR(pid);
2053 			goto bad_fork_cleanup_thread;
2054 		}
2055 	}
2056 
2057 	/*
2058 	 * This has to happen after we've potentially unshared the file
2059 	 * descriptor table (so that the pidfd doesn't leak into the child
2060 	 * if the fd table isn't shared).
2061 	 */
2062 	if (clone_flags & CLONE_PIDFD) {
2063 		retval = pidfd_create(pid);
2064 		if (retval < 0)
2065 			goto bad_fork_free_pid;
2066 
2067 		pidfd = retval;
2068 		retval = put_user(pidfd, parent_tidptr);
2069 		if (retval)
2070 			goto bad_fork_put_pidfd;
2071 	}
2072 
2073 #ifdef CONFIG_BLOCK
2074 	p->plug = NULL;
2075 #endif
2076 #ifdef CONFIG_FUTEX
2077 	p->robust_list = NULL;
2078 #ifdef CONFIG_COMPAT
2079 	p->compat_robust_list = NULL;
2080 #endif
2081 	INIT_LIST_HEAD(&p->pi_state_list);
2082 	p->pi_state_cache = NULL;
2083 #endif
2084 	/*
2085 	 * sigaltstack should be cleared when sharing the same VM
2086 	 */
2087 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2088 		sas_ss_reset(p);
2089 
2090 	/*
2091 	 * Syscall tracing and stepping should be turned off in the
2092 	 * child regardless of CLONE_PTRACE.
2093 	 */
2094 	user_disable_single_step(p);
2095 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2096 #ifdef TIF_SYSCALL_EMU
2097 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2098 #endif
2099 	clear_tsk_latency_tracing(p);
2100 
2101 	/* ok, now we should be set up.. */
2102 	p->pid = pid_nr(pid);
2103 	if (clone_flags & CLONE_THREAD) {
2104 		p->exit_signal = -1;
2105 		p->group_leader = current->group_leader;
2106 		p->tgid = current->tgid;
2107 	} else {
2108 		if (clone_flags & CLONE_PARENT)
2109 			p->exit_signal = current->group_leader->exit_signal;
2110 		else
2111 			p->exit_signal = (clone_flags & CSIGNAL);
2112 		p->group_leader = p;
2113 		p->tgid = p->pid;
2114 	}
2115 
2116 	p->nr_dirtied = 0;
2117 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2118 	p->dirty_paused_when = 0;
2119 
2120 	p->pdeath_signal = 0;
2121 	INIT_LIST_HEAD(&p->thread_group);
2122 	p->task_works = NULL;
2123 
2124 	cgroup_threadgroup_change_begin(current);
2125 	/*
2126 	 * Ensure that the cgroup subsystem policies allow the new process to be
2127 	 * forked. It should be noted the the new process's css_set can be changed
2128 	 * between here and cgroup_post_fork() if an organisation operation is in
2129 	 * progress.
2130 	 */
2131 	retval = cgroup_can_fork(p);
2132 	if (retval)
2133 		goto bad_fork_cgroup_threadgroup_change_end;
2134 
2135 	/*
2136 	 * From this point on we must avoid any synchronous user-space
2137 	 * communication until we take the tasklist-lock. In particular, we do
2138 	 * not want user-space to be able to predict the process start-time by
2139 	 * stalling fork(2) after we recorded the start_time but before it is
2140 	 * visible to the system.
2141 	 */
2142 
2143 	p->start_time = ktime_get_ns();
2144 	p->real_start_time = ktime_get_boot_ns();
2145 
2146 	/*
2147 	 * Make it visible to the rest of the system, but dont wake it up yet.
2148 	 * Need tasklist lock for parent etc handling!
2149 	 */
2150 	write_lock_irq(&tasklist_lock);
2151 
2152 	/* CLONE_PARENT re-uses the old parent */
2153 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2154 		p->real_parent = current->real_parent;
2155 		p->parent_exec_id = current->parent_exec_id;
2156 	} else {
2157 		p->real_parent = current;
2158 		p->parent_exec_id = current->self_exec_id;
2159 	}
2160 
2161 	klp_copy_process(p);
2162 
2163 	spin_lock(&current->sighand->siglock);
2164 
2165 	/*
2166 	 * Copy seccomp details explicitly here, in case they were changed
2167 	 * before holding sighand lock.
2168 	 */
2169 	copy_seccomp(p);
2170 
2171 	rseq_fork(p, clone_flags);
2172 
2173 	/* Don't start children in a dying pid namespace */
2174 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2175 		retval = -ENOMEM;
2176 		goto bad_fork_cancel_cgroup;
2177 	}
2178 
2179 	/* Let kill terminate clone/fork in the middle */
2180 	if (fatal_signal_pending(current)) {
2181 		retval = -EINTR;
2182 		goto bad_fork_cancel_cgroup;
2183 	}
2184 
2185 
2186 	init_task_pid_links(p);
2187 	if (likely(p->pid)) {
2188 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2189 
2190 		init_task_pid(p, PIDTYPE_PID, pid);
2191 		if (thread_group_leader(p)) {
2192 			init_task_pid(p, PIDTYPE_TGID, pid);
2193 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2194 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2195 
2196 			if (is_child_reaper(pid)) {
2197 				ns_of_pid(pid)->child_reaper = p;
2198 				p->signal->flags |= SIGNAL_UNKILLABLE;
2199 			}
2200 			p->signal->shared_pending.signal = delayed.signal;
2201 			p->signal->tty = tty_kref_get(current->signal->tty);
2202 			/*
2203 			 * Inherit has_child_subreaper flag under the same
2204 			 * tasklist_lock with adding child to the process tree
2205 			 * for propagate_has_child_subreaper optimization.
2206 			 */
2207 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2208 							 p->real_parent->signal->is_child_subreaper;
2209 			list_add_tail(&p->sibling, &p->real_parent->children);
2210 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2211 			attach_pid(p, PIDTYPE_TGID);
2212 			attach_pid(p, PIDTYPE_PGID);
2213 			attach_pid(p, PIDTYPE_SID);
2214 			__this_cpu_inc(process_counts);
2215 		} else {
2216 			current->signal->nr_threads++;
2217 			atomic_inc(&current->signal->live);
2218 			refcount_inc(&current->signal->sigcnt);
2219 			task_join_group_stop(p);
2220 			list_add_tail_rcu(&p->thread_group,
2221 					  &p->group_leader->thread_group);
2222 			list_add_tail_rcu(&p->thread_node,
2223 					  &p->signal->thread_head);
2224 		}
2225 		attach_pid(p, PIDTYPE_PID);
2226 		nr_threads++;
2227 	}
2228 	total_forks++;
2229 	hlist_del_init(&delayed.node);
2230 	spin_unlock(&current->sighand->siglock);
2231 	syscall_tracepoint_update(p);
2232 	write_unlock_irq(&tasklist_lock);
2233 
2234 	proc_fork_connector(p);
2235 	cgroup_post_fork(p);
2236 	cgroup_threadgroup_change_end(current);
2237 	perf_event_fork(p);
2238 
2239 	trace_task_newtask(p, clone_flags);
2240 	uprobe_copy_process(p, clone_flags);
2241 
2242 	return p;
2243 
2244 bad_fork_cancel_cgroup:
2245 	spin_unlock(&current->sighand->siglock);
2246 	write_unlock_irq(&tasklist_lock);
2247 	cgroup_cancel_fork(p);
2248 bad_fork_cgroup_threadgroup_change_end:
2249 	cgroup_threadgroup_change_end(current);
2250 bad_fork_put_pidfd:
2251 	if (clone_flags & CLONE_PIDFD)
2252 		ksys_close(pidfd);
2253 bad_fork_free_pid:
2254 	if (pid != &init_struct_pid)
2255 		free_pid(pid);
2256 bad_fork_cleanup_thread:
2257 	exit_thread(p);
2258 bad_fork_cleanup_io:
2259 	if (p->io_context)
2260 		exit_io_context(p);
2261 bad_fork_cleanup_namespaces:
2262 	exit_task_namespaces(p);
2263 bad_fork_cleanup_mm:
2264 	if (p->mm) {
2265 		mm_clear_owner(p->mm, p);
2266 		mmput(p->mm);
2267 	}
2268 bad_fork_cleanup_signal:
2269 	if (!(clone_flags & CLONE_THREAD))
2270 		free_signal_struct(p->signal);
2271 bad_fork_cleanup_sighand:
2272 	__cleanup_sighand(p->sighand);
2273 bad_fork_cleanup_fs:
2274 	exit_fs(p); /* blocking */
2275 bad_fork_cleanup_files:
2276 	exit_files(p); /* blocking */
2277 bad_fork_cleanup_semundo:
2278 	exit_sem(p);
2279 bad_fork_cleanup_security:
2280 	security_task_free(p);
2281 bad_fork_cleanup_audit:
2282 	audit_free(p);
2283 bad_fork_cleanup_perf:
2284 	perf_event_free_task(p);
2285 bad_fork_cleanup_policy:
2286 	lockdep_free_task(p);
2287 #ifdef CONFIG_NUMA
2288 	mpol_put(p->mempolicy);
2289 bad_fork_cleanup_threadgroup_lock:
2290 #endif
2291 	delayacct_tsk_free(p);
2292 bad_fork_cleanup_count:
2293 	atomic_dec(&p->cred->user->processes);
2294 	exit_creds(p);
2295 bad_fork_free:
2296 	p->state = TASK_DEAD;
2297 	put_task_stack(p);
2298 	delayed_free_task(p);
2299 fork_out:
2300 	spin_lock_irq(&current->sighand->siglock);
2301 	hlist_del_init(&delayed.node);
2302 	spin_unlock_irq(&current->sighand->siglock);
2303 	return ERR_PTR(retval);
2304 }
2305 
2306 static inline void init_idle_pids(struct task_struct *idle)
2307 {
2308 	enum pid_type type;
2309 
2310 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2311 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2312 		init_task_pid(idle, type, &init_struct_pid);
2313 	}
2314 }
2315 
2316 struct task_struct *fork_idle(int cpu)
2317 {
2318 	struct task_struct *task;
2319 	task = copy_process(CLONE_VM, 0, 0, NULL, NULL, &init_struct_pid, 0, 0,
2320 			    cpu_to_node(cpu));
2321 	if (!IS_ERR(task)) {
2322 		init_idle_pids(task);
2323 		init_idle(task, cpu);
2324 	}
2325 
2326 	return task;
2327 }
2328 
2329 struct mm_struct *copy_init_mm(void)
2330 {
2331 	return dup_mm(NULL, &init_mm);
2332 }
2333 
2334 /*
2335  *  Ok, this is the main fork-routine.
2336  *
2337  * It copies the process, and if successful kick-starts
2338  * it and waits for it to finish using the VM if required.
2339  */
2340 long _do_fork(unsigned long clone_flags,
2341 	      unsigned long stack_start,
2342 	      unsigned long stack_size,
2343 	      int __user *parent_tidptr,
2344 	      int __user *child_tidptr,
2345 	      unsigned long tls)
2346 {
2347 	struct completion vfork;
2348 	struct pid *pid;
2349 	struct task_struct *p;
2350 	int trace = 0;
2351 	long nr;
2352 
2353 	/*
2354 	 * Determine whether and which event to report to ptracer.  When
2355 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2356 	 * requested, no event is reported; otherwise, report if the event
2357 	 * for the type of forking is enabled.
2358 	 */
2359 	if (!(clone_flags & CLONE_UNTRACED)) {
2360 		if (clone_flags & CLONE_VFORK)
2361 			trace = PTRACE_EVENT_VFORK;
2362 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
2363 			trace = PTRACE_EVENT_CLONE;
2364 		else
2365 			trace = PTRACE_EVENT_FORK;
2366 
2367 		if (likely(!ptrace_event_enabled(current, trace)))
2368 			trace = 0;
2369 	}
2370 
2371 	p = copy_process(clone_flags, stack_start, stack_size, parent_tidptr,
2372 			 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2373 	add_latent_entropy();
2374 
2375 	if (IS_ERR(p))
2376 		return PTR_ERR(p);
2377 
2378 	/*
2379 	 * Do this prior waking up the new thread - the thread pointer
2380 	 * might get invalid after that point, if the thread exits quickly.
2381 	 */
2382 	trace_sched_process_fork(current, p);
2383 
2384 	pid = get_task_pid(p, PIDTYPE_PID);
2385 	nr = pid_vnr(pid);
2386 
2387 	if (clone_flags & CLONE_PARENT_SETTID)
2388 		put_user(nr, parent_tidptr);
2389 
2390 	if (clone_flags & CLONE_VFORK) {
2391 		p->vfork_done = &vfork;
2392 		init_completion(&vfork);
2393 		get_task_struct(p);
2394 	}
2395 
2396 	wake_up_new_task(p);
2397 
2398 	/* forking complete and child started to run, tell ptracer */
2399 	if (unlikely(trace))
2400 		ptrace_event_pid(trace, pid);
2401 
2402 	if (clone_flags & CLONE_VFORK) {
2403 		if (!wait_for_vfork_done(p, &vfork))
2404 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2405 	}
2406 
2407 	put_pid(pid);
2408 	return nr;
2409 }
2410 
2411 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2412 /* For compatibility with architectures that call do_fork directly rather than
2413  * using the syscall entry points below. */
2414 long do_fork(unsigned long clone_flags,
2415 	      unsigned long stack_start,
2416 	      unsigned long stack_size,
2417 	      int __user *parent_tidptr,
2418 	      int __user *child_tidptr)
2419 {
2420 	return _do_fork(clone_flags, stack_start, stack_size,
2421 			parent_tidptr, child_tidptr, 0);
2422 }
2423 #endif
2424 
2425 /*
2426  * Create a kernel thread.
2427  */
2428 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2429 {
2430 	return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2431 		(unsigned long)arg, NULL, NULL, 0);
2432 }
2433 
2434 #ifdef __ARCH_WANT_SYS_FORK
2435 SYSCALL_DEFINE0(fork)
2436 {
2437 #ifdef CONFIG_MMU
2438 	return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2439 #else
2440 	/* can not support in nommu mode */
2441 	return -EINVAL;
2442 #endif
2443 }
2444 #endif
2445 
2446 #ifdef __ARCH_WANT_SYS_VFORK
2447 SYSCALL_DEFINE0(vfork)
2448 {
2449 	return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2450 			0, NULL, NULL, 0);
2451 }
2452 #endif
2453 
2454 #ifdef __ARCH_WANT_SYS_CLONE
2455 #ifdef CONFIG_CLONE_BACKWARDS
2456 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2457 		 int __user *, parent_tidptr,
2458 		 unsigned long, tls,
2459 		 int __user *, child_tidptr)
2460 #elif defined(CONFIG_CLONE_BACKWARDS2)
2461 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2462 		 int __user *, parent_tidptr,
2463 		 int __user *, child_tidptr,
2464 		 unsigned long, tls)
2465 #elif defined(CONFIG_CLONE_BACKWARDS3)
2466 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2467 		int, stack_size,
2468 		int __user *, parent_tidptr,
2469 		int __user *, child_tidptr,
2470 		unsigned long, tls)
2471 #else
2472 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2473 		 int __user *, parent_tidptr,
2474 		 int __user *, child_tidptr,
2475 		 unsigned long, tls)
2476 #endif
2477 {
2478 	return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2479 }
2480 #endif
2481 
2482 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2483 {
2484 	struct task_struct *leader, *parent, *child;
2485 	int res;
2486 
2487 	read_lock(&tasklist_lock);
2488 	leader = top = top->group_leader;
2489 down:
2490 	for_each_thread(leader, parent) {
2491 		list_for_each_entry(child, &parent->children, sibling) {
2492 			res = visitor(child, data);
2493 			if (res) {
2494 				if (res < 0)
2495 					goto out;
2496 				leader = child;
2497 				goto down;
2498 			}
2499 up:
2500 			;
2501 		}
2502 	}
2503 
2504 	if (leader != top) {
2505 		child = leader;
2506 		parent = child->real_parent;
2507 		leader = parent->group_leader;
2508 		goto up;
2509 	}
2510 out:
2511 	read_unlock(&tasklist_lock);
2512 }
2513 
2514 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2515 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2516 #endif
2517 
2518 static void sighand_ctor(void *data)
2519 {
2520 	struct sighand_struct *sighand = data;
2521 
2522 	spin_lock_init(&sighand->siglock);
2523 	init_waitqueue_head(&sighand->signalfd_wqh);
2524 }
2525 
2526 void __init proc_caches_init(void)
2527 {
2528 	unsigned int mm_size;
2529 
2530 	sighand_cachep = kmem_cache_create("sighand_cache",
2531 			sizeof(struct sighand_struct), 0,
2532 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2533 			SLAB_ACCOUNT, sighand_ctor);
2534 	signal_cachep = kmem_cache_create("signal_cache",
2535 			sizeof(struct signal_struct), 0,
2536 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2537 			NULL);
2538 	files_cachep = kmem_cache_create("files_cache",
2539 			sizeof(struct files_struct), 0,
2540 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2541 			NULL);
2542 	fs_cachep = kmem_cache_create("fs_cache",
2543 			sizeof(struct fs_struct), 0,
2544 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2545 			NULL);
2546 
2547 	/*
2548 	 * The mm_cpumask is located at the end of mm_struct, and is
2549 	 * dynamically sized based on the maximum CPU number this system
2550 	 * can have, taking hotplug into account (nr_cpu_ids).
2551 	 */
2552 	mm_size = sizeof(struct mm_struct) + cpumask_size();
2553 
2554 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2555 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2556 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2557 			offsetof(struct mm_struct, saved_auxv),
2558 			sizeof_field(struct mm_struct, saved_auxv),
2559 			NULL);
2560 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2561 	mmap_init();
2562 	nsproxy_cache_init();
2563 }
2564 
2565 /*
2566  * Check constraints on flags passed to the unshare system call.
2567  */
2568 static int check_unshare_flags(unsigned long unshare_flags)
2569 {
2570 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2571 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2572 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2573 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2574 		return -EINVAL;
2575 	/*
2576 	 * Not implemented, but pretend it works if there is nothing
2577 	 * to unshare.  Note that unsharing the address space or the
2578 	 * signal handlers also need to unshare the signal queues (aka
2579 	 * CLONE_THREAD).
2580 	 */
2581 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2582 		if (!thread_group_empty(current))
2583 			return -EINVAL;
2584 	}
2585 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2586 		if (refcount_read(&current->sighand->count) > 1)
2587 			return -EINVAL;
2588 	}
2589 	if (unshare_flags & CLONE_VM) {
2590 		if (!current_is_single_threaded())
2591 			return -EINVAL;
2592 	}
2593 
2594 	return 0;
2595 }
2596 
2597 /*
2598  * Unshare the filesystem structure if it is being shared
2599  */
2600 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2601 {
2602 	struct fs_struct *fs = current->fs;
2603 
2604 	if (!(unshare_flags & CLONE_FS) || !fs)
2605 		return 0;
2606 
2607 	/* don't need lock here; in the worst case we'll do useless copy */
2608 	if (fs->users == 1)
2609 		return 0;
2610 
2611 	*new_fsp = copy_fs_struct(fs);
2612 	if (!*new_fsp)
2613 		return -ENOMEM;
2614 
2615 	return 0;
2616 }
2617 
2618 /*
2619  * Unshare file descriptor table if it is being shared
2620  */
2621 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2622 {
2623 	struct files_struct *fd = current->files;
2624 	int error = 0;
2625 
2626 	if ((unshare_flags & CLONE_FILES) &&
2627 	    (fd && atomic_read(&fd->count) > 1)) {
2628 		*new_fdp = dup_fd(fd, &error);
2629 		if (!*new_fdp)
2630 			return error;
2631 	}
2632 
2633 	return 0;
2634 }
2635 
2636 /*
2637  * unshare allows a process to 'unshare' part of the process
2638  * context which was originally shared using clone.  copy_*
2639  * functions used by do_fork() cannot be used here directly
2640  * because they modify an inactive task_struct that is being
2641  * constructed. Here we are modifying the current, active,
2642  * task_struct.
2643  */
2644 int ksys_unshare(unsigned long unshare_flags)
2645 {
2646 	struct fs_struct *fs, *new_fs = NULL;
2647 	struct files_struct *fd, *new_fd = NULL;
2648 	struct cred *new_cred = NULL;
2649 	struct nsproxy *new_nsproxy = NULL;
2650 	int do_sysvsem = 0;
2651 	int err;
2652 
2653 	/*
2654 	 * If unsharing a user namespace must also unshare the thread group
2655 	 * and unshare the filesystem root and working directories.
2656 	 */
2657 	if (unshare_flags & CLONE_NEWUSER)
2658 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2659 	/*
2660 	 * If unsharing vm, must also unshare signal handlers.
2661 	 */
2662 	if (unshare_flags & CLONE_VM)
2663 		unshare_flags |= CLONE_SIGHAND;
2664 	/*
2665 	 * If unsharing a signal handlers, must also unshare the signal queues.
2666 	 */
2667 	if (unshare_flags & CLONE_SIGHAND)
2668 		unshare_flags |= CLONE_THREAD;
2669 	/*
2670 	 * If unsharing namespace, must also unshare filesystem information.
2671 	 */
2672 	if (unshare_flags & CLONE_NEWNS)
2673 		unshare_flags |= CLONE_FS;
2674 
2675 	err = check_unshare_flags(unshare_flags);
2676 	if (err)
2677 		goto bad_unshare_out;
2678 	/*
2679 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2680 	 * to a new ipc namespace, the semaphore arrays from the old
2681 	 * namespace are unreachable.
2682 	 */
2683 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2684 		do_sysvsem = 1;
2685 	err = unshare_fs(unshare_flags, &new_fs);
2686 	if (err)
2687 		goto bad_unshare_out;
2688 	err = unshare_fd(unshare_flags, &new_fd);
2689 	if (err)
2690 		goto bad_unshare_cleanup_fs;
2691 	err = unshare_userns(unshare_flags, &new_cred);
2692 	if (err)
2693 		goto bad_unshare_cleanup_fd;
2694 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2695 					 new_cred, new_fs);
2696 	if (err)
2697 		goto bad_unshare_cleanup_cred;
2698 
2699 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2700 		if (do_sysvsem) {
2701 			/*
2702 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2703 			 */
2704 			exit_sem(current);
2705 		}
2706 		if (unshare_flags & CLONE_NEWIPC) {
2707 			/* Orphan segments in old ns (see sem above). */
2708 			exit_shm(current);
2709 			shm_init_task(current);
2710 		}
2711 
2712 		if (new_nsproxy)
2713 			switch_task_namespaces(current, new_nsproxy);
2714 
2715 		task_lock(current);
2716 
2717 		if (new_fs) {
2718 			fs = current->fs;
2719 			spin_lock(&fs->lock);
2720 			current->fs = new_fs;
2721 			if (--fs->users)
2722 				new_fs = NULL;
2723 			else
2724 				new_fs = fs;
2725 			spin_unlock(&fs->lock);
2726 		}
2727 
2728 		if (new_fd) {
2729 			fd = current->files;
2730 			current->files = new_fd;
2731 			new_fd = fd;
2732 		}
2733 
2734 		task_unlock(current);
2735 
2736 		if (new_cred) {
2737 			/* Install the new user namespace */
2738 			commit_creds(new_cred);
2739 			new_cred = NULL;
2740 		}
2741 	}
2742 
2743 	perf_event_namespaces(current);
2744 
2745 bad_unshare_cleanup_cred:
2746 	if (new_cred)
2747 		put_cred(new_cred);
2748 bad_unshare_cleanup_fd:
2749 	if (new_fd)
2750 		put_files_struct(new_fd);
2751 
2752 bad_unshare_cleanup_fs:
2753 	if (new_fs)
2754 		free_fs_struct(new_fs);
2755 
2756 bad_unshare_out:
2757 	return err;
2758 }
2759 
2760 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2761 {
2762 	return ksys_unshare(unshare_flags);
2763 }
2764 
2765 /*
2766  *	Helper to unshare the files of the current task.
2767  *	We don't want to expose copy_files internals to
2768  *	the exec layer of the kernel.
2769  */
2770 
2771 int unshare_files(struct files_struct **displaced)
2772 {
2773 	struct task_struct *task = current;
2774 	struct files_struct *copy = NULL;
2775 	int error;
2776 
2777 	error = unshare_fd(CLONE_FILES, &copy);
2778 	if (error || !copy) {
2779 		*displaced = NULL;
2780 		return error;
2781 	}
2782 	*displaced = task->files;
2783 	task_lock(task);
2784 	task->files = copy;
2785 	task_unlock(task);
2786 	return 0;
2787 }
2788 
2789 int sysctl_max_threads(struct ctl_table *table, int write,
2790 		       void __user *buffer, size_t *lenp, loff_t *ppos)
2791 {
2792 	struct ctl_table t;
2793 	int ret;
2794 	int threads = max_threads;
2795 	int min = MIN_THREADS;
2796 	int max = MAX_THREADS;
2797 
2798 	t = *table;
2799 	t.data = &threads;
2800 	t.extra1 = &min;
2801 	t.extra2 = &max;
2802 
2803 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2804 	if (ret || !write)
2805 		return ret;
2806 
2807 	set_max_threads(threads);
2808 
2809 	return 0;
2810 }
2811