1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/binfmts.h> 41 #include <linux/mman.h> 42 #include <linux/mmu_notifier.h> 43 #include <linux/hmm.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/vmacache.h> 47 #include <linux/nsproxy.h> 48 #include <linux/capability.h> 49 #include <linux/cpu.h> 50 #include <linux/cgroup.h> 51 #include <linux/security.h> 52 #include <linux/hugetlb.h> 53 #include <linux/seccomp.h> 54 #include <linux/swap.h> 55 #include <linux/syscalls.h> 56 #include <linux/jiffies.h> 57 #include <linux/futex.h> 58 #include <linux/compat.h> 59 #include <linux/kthread.h> 60 #include <linux/task_io_accounting_ops.h> 61 #include <linux/rcupdate.h> 62 #include <linux/ptrace.h> 63 #include <linux/mount.h> 64 #include <linux/audit.h> 65 #include <linux/memcontrol.h> 66 #include <linux/ftrace.h> 67 #include <linux/proc_fs.h> 68 #include <linux/profile.h> 69 #include <linux/rmap.h> 70 #include <linux/ksm.h> 71 #include <linux/acct.h> 72 #include <linux/userfaultfd_k.h> 73 #include <linux/tsacct_kern.h> 74 #include <linux/cn_proc.h> 75 #include <linux/freezer.h> 76 #include <linux/delayacct.h> 77 #include <linux/taskstats_kern.h> 78 #include <linux/random.h> 79 #include <linux/tty.h> 80 #include <linux/blkdev.h> 81 #include <linux/fs_struct.h> 82 #include <linux/magic.h> 83 #include <linux/perf_event.h> 84 #include <linux/posix-timers.h> 85 #include <linux/user-return-notifier.h> 86 #include <linux/oom.h> 87 #include <linux/khugepaged.h> 88 #include <linux/signalfd.h> 89 #include <linux/uprobes.h> 90 #include <linux/aio.h> 91 #include <linux/compiler.h> 92 #include <linux/sysctl.h> 93 #include <linux/kcov.h> 94 #include <linux/livepatch.h> 95 #include <linux/thread_info.h> 96 #include <linux/stackleak.h> 97 98 #include <asm/pgtable.h> 99 #include <asm/pgalloc.h> 100 #include <linux/uaccess.h> 101 #include <asm/mmu_context.h> 102 #include <asm/cacheflush.h> 103 #include <asm/tlbflush.h> 104 105 #include <trace/events/sched.h> 106 107 #define CREATE_TRACE_POINTS 108 #include <trace/events/task.h> 109 110 /* 111 * Minimum number of threads to boot the kernel 112 */ 113 #define MIN_THREADS 20 114 115 /* 116 * Maximum number of threads 117 */ 118 #define MAX_THREADS FUTEX_TID_MASK 119 120 /* 121 * Protected counters by write_lock_irq(&tasklist_lock) 122 */ 123 unsigned long total_forks; /* Handle normal Linux uptimes. */ 124 int nr_threads; /* The idle threads do not count.. */ 125 126 static int max_threads; /* tunable limit on nr_threads */ 127 128 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 129 130 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 131 132 #ifdef CONFIG_PROVE_RCU 133 int lockdep_tasklist_lock_is_held(void) 134 { 135 return lockdep_is_held(&tasklist_lock); 136 } 137 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 138 #endif /* #ifdef CONFIG_PROVE_RCU */ 139 140 int nr_processes(void) 141 { 142 int cpu; 143 int total = 0; 144 145 for_each_possible_cpu(cpu) 146 total += per_cpu(process_counts, cpu); 147 148 return total; 149 } 150 151 void __weak arch_release_task_struct(struct task_struct *tsk) 152 { 153 } 154 155 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 156 static struct kmem_cache *task_struct_cachep; 157 158 static inline struct task_struct *alloc_task_struct_node(int node) 159 { 160 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 161 } 162 163 static inline void free_task_struct(struct task_struct *tsk) 164 { 165 kmem_cache_free(task_struct_cachep, tsk); 166 } 167 #endif 168 169 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 170 171 /* 172 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 173 * kmemcache based allocator. 174 */ 175 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 176 177 #ifdef CONFIG_VMAP_STACK 178 /* 179 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 180 * flush. Try to minimize the number of calls by caching stacks. 181 */ 182 #define NR_CACHED_STACKS 2 183 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 184 185 static int free_vm_stack_cache(unsigned int cpu) 186 { 187 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 188 int i; 189 190 for (i = 0; i < NR_CACHED_STACKS; i++) { 191 struct vm_struct *vm_stack = cached_vm_stacks[i]; 192 193 if (!vm_stack) 194 continue; 195 196 vfree(vm_stack->addr); 197 cached_vm_stacks[i] = NULL; 198 } 199 200 return 0; 201 } 202 #endif 203 204 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node) 205 { 206 #ifdef CONFIG_VMAP_STACK 207 void *stack; 208 int i; 209 210 for (i = 0; i < NR_CACHED_STACKS; i++) { 211 struct vm_struct *s; 212 213 s = this_cpu_xchg(cached_stacks[i], NULL); 214 215 if (!s) 216 continue; 217 218 /* Clear stale pointers from reused stack. */ 219 memset(s->addr, 0, THREAD_SIZE); 220 221 tsk->stack_vm_area = s; 222 tsk->stack = s->addr; 223 return s->addr; 224 } 225 226 /* 227 * Allocated stacks are cached and later reused by new threads, 228 * so memcg accounting is performed manually on assigning/releasing 229 * stacks to tasks. Drop __GFP_ACCOUNT. 230 */ 231 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 232 VMALLOC_START, VMALLOC_END, 233 THREADINFO_GFP & ~__GFP_ACCOUNT, 234 PAGE_KERNEL, 235 0, node, __builtin_return_address(0)); 236 237 /* 238 * We can't call find_vm_area() in interrupt context, and 239 * free_thread_stack() can be called in interrupt context, 240 * so cache the vm_struct. 241 */ 242 if (stack) { 243 tsk->stack_vm_area = find_vm_area(stack); 244 tsk->stack = stack; 245 } 246 return stack; 247 #else 248 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 249 THREAD_SIZE_ORDER); 250 251 return page ? page_address(page) : NULL; 252 #endif 253 } 254 255 static inline void free_thread_stack(struct task_struct *tsk) 256 { 257 #ifdef CONFIG_VMAP_STACK 258 struct vm_struct *vm = task_stack_vm_area(tsk); 259 260 if (vm) { 261 int i; 262 263 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 264 mod_memcg_page_state(vm->pages[i], 265 MEMCG_KERNEL_STACK_KB, 266 -(int)(PAGE_SIZE / 1024)); 267 268 memcg_kmem_uncharge(vm->pages[i], 0); 269 } 270 271 for (i = 0; i < NR_CACHED_STACKS; i++) { 272 if (this_cpu_cmpxchg(cached_stacks[i], 273 NULL, tsk->stack_vm_area) != NULL) 274 continue; 275 276 return; 277 } 278 279 vfree_atomic(tsk->stack); 280 return; 281 } 282 #endif 283 284 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER); 285 } 286 # else 287 static struct kmem_cache *thread_stack_cache; 288 289 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, 290 int node) 291 { 292 unsigned long *stack; 293 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 294 tsk->stack = stack; 295 return stack; 296 } 297 298 static void free_thread_stack(struct task_struct *tsk) 299 { 300 kmem_cache_free(thread_stack_cache, tsk->stack); 301 } 302 303 void thread_stack_cache_init(void) 304 { 305 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 306 THREAD_SIZE, THREAD_SIZE, 0, 0, 307 THREAD_SIZE, NULL); 308 BUG_ON(thread_stack_cache == NULL); 309 } 310 # endif 311 #endif 312 313 /* SLAB cache for signal_struct structures (tsk->signal) */ 314 static struct kmem_cache *signal_cachep; 315 316 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 317 struct kmem_cache *sighand_cachep; 318 319 /* SLAB cache for files_struct structures (tsk->files) */ 320 struct kmem_cache *files_cachep; 321 322 /* SLAB cache for fs_struct structures (tsk->fs) */ 323 struct kmem_cache *fs_cachep; 324 325 /* SLAB cache for vm_area_struct structures */ 326 static struct kmem_cache *vm_area_cachep; 327 328 /* SLAB cache for mm_struct structures (tsk->mm) */ 329 static struct kmem_cache *mm_cachep; 330 331 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 332 { 333 struct vm_area_struct *vma; 334 335 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 336 if (vma) 337 vma_init(vma, mm); 338 return vma; 339 } 340 341 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 342 { 343 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 344 345 if (new) { 346 *new = *orig; 347 INIT_LIST_HEAD(&new->anon_vma_chain); 348 } 349 return new; 350 } 351 352 void vm_area_free(struct vm_area_struct *vma) 353 { 354 kmem_cache_free(vm_area_cachep, vma); 355 } 356 357 static void account_kernel_stack(struct task_struct *tsk, int account) 358 { 359 void *stack = task_stack_page(tsk); 360 struct vm_struct *vm = task_stack_vm_area(tsk); 361 362 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 363 364 if (vm) { 365 int i; 366 367 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 368 369 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 370 mod_zone_page_state(page_zone(vm->pages[i]), 371 NR_KERNEL_STACK_KB, 372 PAGE_SIZE / 1024 * account); 373 } 374 } else { 375 /* 376 * All stack pages are in the same zone and belong to the 377 * same memcg. 378 */ 379 struct page *first_page = virt_to_page(stack); 380 381 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB, 382 THREAD_SIZE / 1024 * account); 383 384 mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB, 385 account * (THREAD_SIZE / 1024)); 386 } 387 } 388 389 static int memcg_charge_kernel_stack(struct task_struct *tsk) 390 { 391 #ifdef CONFIG_VMAP_STACK 392 struct vm_struct *vm = task_stack_vm_area(tsk); 393 int ret; 394 395 if (vm) { 396 int i; 397 398 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 399 /* 400 * If memcg_kmem_charge() fails, page->mem_cgroup 401 * pointer is NULL, and both memcg_kmem_uncharge() 402 * and mod_memcg_page_state() in free_thread_stack() 403 * will ignore this page. So it's safe. 404 */ 405 ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0); 406 if (ret) 407 return ret; 408 409 mod_memcg_page_state(vm->pages[i], 410 MEMCG_KERNEL_STACK_KB, 411 PAGE_SIZE / 1024); 412 } 413 } 414 #endif 415 return 0; 416 } 417 418 static void release_task_stack(struct task_struct *tsk) 419 { 420 if (WARN_ON(tsk->state != TASK_DEAD)) 421 return; /* Better to leak the stack than to free prematurely */ 422 423 account_kernel_stack(tsk, -1); 424 free_thread_stack(tsk); 425 tsk->stack = NULL; 426 #ifdef CONFIG_VMAP_STACK 427 tsk->stack_vm_area = NULL; 428 #endif 429 } 430 431 #ifdef CONFIG_THREAD_INFO_IN_TASK 432 void put_task_stack(struct task_struct *tsk) 433 { 434 if (refcount_dec_and_test(&tsk->stack_refcount)) 435 release_task_stack(tsk); 436 } 437 #endif 438 439 void free_task(struct task_struct *tsk) 440 { 441 #ifndef CONFIG_THREAD_INFO_IN_TASK 442 /* 443 * The task is finally done with both the stack and thread_info, 444 * so free both. 445 */ 446 release_task_stack(tsk); 447 #else 448 /* 449 * If the task had a separate stack allocation, it should be gone 450 * by now. 451 */ 452 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 453 #endif 454 rt_mutex_debug_task_free(tsk); 455 ftrace_graph_exit_task(tsk); 456 put_seccomp_filter(tsk); 457 arch_release_task_struct(tsk); 458 if (tsk->flags & PF_KTHREAD) 459 free_kthread_struct(tsk); 460 free_task_struct(tsk); 461 } 462 EXPORT_SYMBOL(free_task); 463 464 #ifdef CONFIG_MMU 465 static __latent_entropy int dup_mmap(struct mm_struct *mm, 466 struct mm_struct *oldmm) 467 { 468 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 469 struct rb_node **rb_link, *rb_parent; 470 int retval; 471 unsigned long charge; 472 LIST_HEAD(uf); 473 474 uprobe_start_dup_mmap(); 475 if (down_write_killable(&oldmm->mmap_sem)) { 476 retval = -EINTR; 477 goto fail_uprobe_end; 478 } 479 flush_cache_dup_mm(oldmm); 480 uprobe_dup_mmap(oldmm, mm); 481 /* 482 * Not linked in yet - no deadlock potential: 483 */ 484 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING); 485 486 /* No ordering required: file already has been exposed. */ 487 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 488 489 mm->total_vm = oldmm->total_vm; 490 mm->data_vm = oldmm->data_vm; 491 mm->exec_vm = oldmm->exec_vm; 492 mm->stack_vm = oldmm->stack_vm; 493 494 rb_link = &mm->mm_rb.rb_node; 495 rb_parent = NULL; 496 pprev = &mm->mmap; 497 retval = ksm_fork(mm, oldmm); 498 if (retval) 499 goto out; 500 retval = khugepaged_fork(mm, oldmm); 501 if (retval) 502 goto out; 503 504 prev = NULL; 505 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 506 struct file *file; 507 508 if (mpnt->vm_flags & VM_DONTCOPY) { 509 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 510 continue; 511 } 512 charge = 0; 513 /* 514 * Don't duplicate many vmas if we've been oom-killed (for 515 * example) 516 */ 517 if (fatal_signal_pending(current)) { 518 retval = -EINTR; 519 goto out; 520 } 521 if (mpnt->vm_flags & VM_ACCOUNT) { 522 unsigned long len = vma_pages(mpnt); 523 524 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 525 goto fail_nomem; 526 charge = len; 527 } 528 tmp = vm_area_dup(mpnt); 529 if (!tmp) 530 goto fail_nomem; 531 retval = vma_dup_policy(mpnt, tmp); 532 if (retval) 533 goto fail_nomem_policy; 534 tmp->vm_mm = mm; 535 retval = dup_userfaultfd(tmp, &uf); 536 if (retval) 537 goto fail_nomem_anon_vma_fork; 538 if (tmp->vm_flags & VM_WIPEONFORK) { 539 /* VM_WIPEONFORK gets a clean slate in the child. */ 540 tmp->anon_vma = NULL; 541 if (anon_vma_prepare(tmp)) 542 goto fail_nomem_anon_vma_fork; 543 } else if (anon_vma_fork(tmp, mpnt)) 544 goto fail_nomem_anon_vma_fork; 545 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT); 546 tmp->vm_next = tmp->vm_prev = NULL; 547 file = tmp->vm_file; 548 if (file) { 549 struct inode *inode = file_inode(file); 550 struct address_space *mapping = file->f_mapping; 551 552 get_file(file); 553 if (tmp->vm_flags & VM_DENYWRITE) 554 atomic_dec(&inode->i_writecount); 555 i_mmap_lock_write(mapping); 556 if (tmp->vm_flags & VM_SHARED) 557 atomic_inc(&mapping->i_mmap_writable); 558 flush_dcache_mmap_lock(mapping); 559 /* insert tmp into the share list, just after mpnt */ 560 vma_interval_tree_insert_after(tmp, mpnt, 561 &mapping->i_mmap); 562 flush_dcache_mmap_unlock(mapping); 563 i_mmap_unlock_write(mapping); 564 } 565 566 /* 567 * Clear hugetlb-related page reserves for children. This only 568 * affects MAP_PRIVATE mappings. Faults generated by the child 569 * are not guaranteed to succeed, even if read-only 570 */ 571 if (is_vm_hugetlb_page(tmp)) 572 reset_vma_resv_huge_pages(tmp); 573 574 /* 575 * Link in the new vma and copy the page table entries. 576 */ 577 *pprev = tmp; 578 pprev = &tmp->vm_next; 579 tmp->vm_prev = prev; 580 prev = tmp; 581 582 __vma_link_rb(mm, tmp, rb_link, rb_parent); 583 rb_link = &tmp->vm_rb.rb_right; 584 rb_parent = &tmp->vm_rb; 585 586 mm->map_count++; 587 if (!(tmp->vm_flags & VM_WIPEONFORK)) 588 retval = copy_page_range(mm, oldmm, mpnt); 589 590 if (tmp->vm_ops && tmp->vm_ops->open) 591 tmp->vm_ops->open(tmp); 592 593 if (retval) 594 goto out; 595 } 596 /* a new mm has just been created */ 597 retval = arch_dup_mmap(oldmm, mm); 598 out: 599 up_write(&mm->mmap_sem); 600 flush_tlb_mm(oldmm); 601 up_write(&oldmm->mmap_sem); 602 dup_userfaultfd_complete(&uf); 603 fail_uprobe_end: 604 uprobe_end_dup_mmap(); 605 return retval; 606 fail_nomem_anon_vma_fork: 607 mpol_put(vma_policy(tmp)); 608 fail_nomem_policy: 609 vm_area_free(tmp); 610 fail_nomem: 611 retval = -ENOMEM; 612 vm_unacct_memory(charge); 613 goto out; 614 } 615 616 static inline int mm_alloc_pgd(struct mm_struct *mm) 617 { 618 mm->pgd = pgd_alloc(mm); 619 if (unlikely(!mm->pgd)) 620 return -ENOMEM; 621 return 0; 622 } 623 624 static inline void mm_free_pgd(struct mm_struct *mm) 625 { 626 pgd_free(mm, mm->pgd); 627 } 628 #else 629 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 630 { 631 down_write(&oldmm->mmap_sem); 632 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 633 up_write(&oldmm->mmap_sem); 634 return 0; 635 } 636 #define mm_alloc_pgd(mm) (0) 637 #define mm_free_pgd(mm) 638 #endif /* CONFIG_MMU */ 639 640 static void check_mm(struct mm_struct *mm) 641 { 642 int i; 643 644 for (i = 0; i < NR_MM_COUNTERS; i++) { 645 long x = atomic_long_read(&mm->rss_stat.count[i]); 646 647 if (unlikely(x)) 648 printk(KERN_ALERT "BUG: Bad rss-counter state " 649 "mm:%p idx:%d val:%ld\n", mm, i, x); 650 } 651 652 if (mm_pgtables_bytes(mm)) 653 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 654 mm_pgtables_bytes(mm)); 655 656 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 657 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 658 #endif 659 } 660 661 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 662 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 663 664 /* 665 * Called when the last reference to the mm 666 * is dropped: either by a lazy thread or by 667 * mmput. Free the page directory and the mm. 668 */ 669 void __mmdrop(struct mm_struct *mm) 670 { 671 BUG_ON(mm == &init_mm); 672 WARN_ON_ONCE(mm == current->mm); 673 WARN_ON_ONCE(mm == current->active_mm); 674 mm_free_pgd(mm); 675 destroy_context(mm); 676 hmm_mm_destroy(mm); 677 mmu_notifier_mm_destroy(mm); 678 check_mm(mm); 679 put_user_ns(mm->user_ns); 680 free_mm(mm); 681 } 682 EXPORT_SYMBOL_GPL(__mmdrop); 683 684 static void mmdrop_async_fn(struct work_struct *work) 685 { 686 struct mm_struct *mm; 687 688 mm = container_of(work, struct mm_struct, async_put_work); 689 __mmdrop(mm); 690 } 691 692 static void mmdrop_async(struct mm_struct *mm) 693 { 694 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 695 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 696 schedule_work(&mm->async_put_work); 697 } 698 } 699 700 static inline void free_signal_struct(struct signal_struct *sig) 701 { 702 taskstats_tgid_free(sig); 703 sched_autogroup_exit(sig); 704 /* 705 * __mmdrop is not safe to call from softirq context on x86 due to 706 * pgd_dtor so postpone it to the async context 707 */ 708 if (sig->oom_mm) 709 mmdrop_async(sig->oom_mm); 710 kmem_cache_free(signal_cachep, sig); 711 } 712 713 static inline void put_signal_struct(struct signal_struct *sig) 714 { 715 if (refcount_dec_and_test(&sig->sigcnt)) 716 free_signal_struct(sig); 717 } 718 719 void __put_task_struct(struct task_struct *tsk) 720 { 721 WARN_ON(!tsk->exit_state); 722 WARN_ON(refcount_read(&tsk->usage)); 723 WARN_ON(tsk == current); 724 725 cgroup_free(tsk); 726 task_numa_free(tsk); 727 security_task_free(tsk); 728 exit_creds(tsk); 729 delayacct_tsk_free(tsk); 730 put_signal_struct(tsk->signal); 731 732 if (!profile_handoff_task(tsk)) 733 free_task(tsk); 734 } 735 EXPORT_SYMBOL_GPL(__put_task_struct); 736 737 void __init __weak arch_task_cache_init(void) { } 738 739 /* 740 * set_max_threads 741 */ 742 static void set_max_threads(unsigned int max_threads_suggested) 743 { 744 u64 threads; 745 unsigned long nr_pages = totalram_pages(); 746 747 /* 748 * The number of threads shall be limited such that the thread 749 * structures may only consume a small part of the available memory. 750 */ 751 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 752 threads = MAX_THREADS; 753 else 754 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 755 (u64) THREAD_SIZE * 8UL); 756 757 if (threads > max_threads_suggested) 758 threads = max_threads_suggested; 759 760 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 761 } 762 763 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 764 /* Initialized by the architecture: */ 765 int arch_task_struct_size __read_mostly; 766 #endif 767 768 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 769 { 770 /* Fetch thread_struct whitelist for the architecture. */ 771 arch_thread_struct_whitelist(offset, size); 772 773 /* 774 * Handle zero-sized whitelist or empty thread_struct, otherwise 775 * adjust offset to position of thread_struct in task_struct. 776 */ 777 if (unlikely(*size == 0)) 778 *offset = 0; 779 else 780 *offset += offsetof(struct task_struct, thread); 781 } 782 783 void __init fork_init(void) 784 { 785 int i; 786 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 787 #ifndef ARCH_MIN_TASKALIGN 788 #define ARCH_MIN_TASKALIGN 0 789 #endif 790 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 791 unsigned long useroffset, usersize; 792 793 /* create a slab on which task_structs can be allocated */ 794 task_struct_whitelist(&useroffset, &usersize); 795 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 796 arch_task_struct_size, align, 797 SLAB_PANIC|SLAB_ACCOUNT, 798 useroffset, usersize, NULL); 799 #endif 800 801 /* do the arch specific task caches init */ 802 arch_task_cache_init(); 803 804 set_max_threads(MAX_THREADS); 805 806 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 807 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 808 init_task.signal->rlim[RLIMIT_SIGPENDING] = 809 init_task.signal->rlim[RLIMIT_NPROC]; 810 811 for (i = 0; i < UCOUNT_COUNTS; i++) { 812 init_user_ns.ucount_max[i] = max_threads/2; 813 } 814 815 #ifdef CONFIG_VMAP_STACK 816 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 817 NULL, free_vm_stack_cache); 818 #endif 819 820 lockdep_init_task(&init_task); 821 uprobes_init(); 822 } 823 824 int __weak arch_dup_task_struct(struct task_struct *dst, 825 struct task_struct *src) 826 { 827 *dst = *src; 828 return 0; 829 } 830 831 void set_task_stack_end_magic(struct task_struct *tsk) 832 { 833 unsigned long *stackend; 834 835 stackend = end_of_stack(tsk); 836 *stackend = STACK_END_MAGIC; /* for overflow detection */ 837 } 838 839 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 840 { 841 struct task_struct *tsk; 842 unsigned long *stack; 843 struct vm_struct *stack_vm_area __maybe_unused; 844 int err; 845 846 if (node == NUMA_NO_NODE) 847 node = tsk_fork_get_node(orig); 848 tsk = alloc_task_struct_node(node); 849 if (!tsk) 850 return NULL; 851 852 stack = alloc_thread_stack_node(tsk, node); 853 if (!stack) 854 goto free_tsk; 855 856 if (memcg_charge_kernel_stack(tsk)) 857 goto free_stack; 858 859 stack_vm_area = task_stack_vm_area(tsk); 860 861 err = arch_dup_task_struct(tsk, orig); 862 863 /* 864 * arch_dup_task_struct() clobbers the stack-related fields. Make 865 * sure they're properly initialized before using any stack-related 866 * functions again. 867 */ 868 tsk->stack = stack; 869 #ifdef CONFIG_VMAP_STACK 870 tsk->stack_vm_area = stack_vm_area; 871 #endif 872 #ifdef CONFIG_THREAD_INFO_IN_TASK 873 refcount_set(&tsk->stack_refcount, 1); 874 #endif 875 876 if (err) 877 goto free_stack; 878 879 #ifdef CONFIG_SECCOMP 880 /* 881 * We must handle setting up seccomp filters once we're under 882 * the sighand lock in case orig has changed between now and 883 * then. Until then, filter must be NULL to avoid messing up 884 * the usage counts on the error path calling free_task. 885 */ 886 tsk->seccomp.filter = NULL; 887 #endif 888 889 setup_thread_stack(tsk, orig); 890 clear_user_return_notifier(tsk); 891 clear_tsk_need_resched(tsk); 892 set_task_stack_end_magic(tsk); 893 894 #ifdef CONFIG_STACKPROTECTOR 895 tsk->stack_canary = get_random_canary(); 896 #endif 897 if (orig->cpus_ptr == &orig->cpus_mask) 898 tsk->cpus_ptr = &tsk->cpus_mask; 899 900 /* 901 * One for us, one for whoever does the "release_task()" (usually 902 * parent) 903 */ 904 refcount_set(&tsk->usage, 2); 905 #ifdef CONFIG_BLK_DEV_IO_TRACE 906 tsk->btrace_seq = 0; 907 #endif 908 tsk->splice_pipe = NULL; 909 tsk->task_frag.page = NULL; 910 tsk->wake_q.next = NULL; 911 912 account_kernel_stack(tsk, 1); 913 914 kcov_task_init(tsk); 915 916 #ifdef CONFIG_FAULT_INJECTION 917 tsk->fail_nth = 0; 918 #endif 919 920 #ifdef CONFIG_BLK_CGROUP 921 tsk->throttle_queue = NULL; 922 tsk->use_memdelay = 0; 923 #endif 924 925 #ifdef CONFIG_MEMCG 926 tsk->active_memcg = NULL; 927 #endif 928 return tsk; 929 930 free_stack: 931 free_thread_stack(tsk); 932 free_tsk: 933 free_task_struct(tsk); 934 return NULL; 935 } 936 937 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 938 939 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 940 941 static int __init coredump_filter_setup(char *s) 942 { 943 default_dump_filter = 944 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 945 MMF_DUMP_FILTER_MASK; 946 return 1; 947 } 948 949 __setup("coredump_filter=", coredump_filter_setup); 950 951 #include <linux/init_task.h> 952 953 static void mm_init_aio(struct mm_struct *mm) 954 { 955 #ifdef CONFIG_AIO 956 spin_lock_init(&mm->ioctx_lock); 957 mm->ioctx_table = NULL; 958 #endif 959 } 960 961 static __always_inline void mm_clear_owner(struct mm_struct *mm, 962 struct task_struct *p) 963 { 964 #ifdef CONFIG_MEMCG 965 if (mm->owner == p) 966 WRITE_ONCE(mm->owner, NULL); 967 #endif 968 } 969 970 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 971 { 972 #ifdef CONFIG_MEMCG 973 mm->owner = p; 974 #endif 975 } 976 977 static void mm_init_uprobes_state(struct mm_struct *mm) 978 { 979 #ifdef CONFIG_UPROBES 980 mm->uprobes_state.xol_area = NULL; 981 #endif 982 } 983 984 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 985 struct user_namespace *user_ns) 986 { 987 mm->mmap = NULL; 988 mm->mm_rb = RB_ROOT; 989 mm->vmacache_seqnum = 0; 990 atomic_set(&mm->mm_users, 1); 991 atomic_set(&mm->mm_count, 1); 992 init_rwsem(&mm->mmap_sem); 993 INIT_LIST_HEAD(&mm->mmlist); 994 mm->core_state = NULL; 995 mm_pgtables_bytes_init(mm); 996 mm->map_count = 0; 997 mm->locked_vm = 0; 998 atomic64_set(&mm->pinned_vm, 0); 999 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1000 spin_lock_init(&mm->page_table_lock); 1001 spin_lock_init(&mm->arg_lock); 1002 mm_init_cpumask(mm); 1003 mm_init_aio(mm); 1004 mm_init_owner(mm, p); 1005 RCU_INIT_POINTER(mm->exe_file, NULL); 1006 mmu_notifier_mm_init(mm); 1007 hmm_mm_init(mm); 1008 init_tlb_flush_pending(mm); 1009 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1010 mm->pmd_huge_pte = NULL; 1011 #endif 1012 mm_init_uprobes_state(mm); 1013 1014 if (current->mm) { 1015 mm->flags = current->mm->flags & MMF_INIT_MASK; 1016 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1017 } else { 1018 mm->flags = default_dump_filter; 1019 mm->def_flags = 0; 1020 } 1021 1022 if (mm_alloc_pgd(mm)) 1023 goto fail_nopgd; 1024 1025 if (init_new_context(p, mm)) 1026 goto fail_nocontext; 1027 1028 mm->user_ns = get_user_ns(user_ns); 1029 return mm; 1030 1031 fail_nocontext: 1032 mm_free_pgd(mm); 1033 fail_nopgd: 1034 free_mm(mm); 1035 return NULL; 1036 } 1037 1038 /* 1039 * Allocate and initialize an mm_struct. 1040 */ 1041 struct mm_struct *mm_alloc(void) 1042 { 1043 struct mm_struct *mm; 1044 1045 mm = allocate_mm(); 1046 if (!mm) 1047 return NULL; 1048 1049 memset(mm, 0, sizeof(*mm)); 1050 return mm_init(mm, current, current_user_ns()); 1051 } 1052 1053 static inline void __mmput(struct mm_struct *mm) 1054 { 1055 VM_BUG_ON(atomic_read(&mm->mm_users)); 1056 1057 uprobe_clear_state(mm); 1058 exit_aio(mm); 1059 ksm_exit(mm); 1060 khugepaged_exit(mm); /* must run before exit_mmap */ 1061 exit_mmap(mm); 1062 mm_put_huge_zero_page(mm); 1063 set_mm_exe_file(mm, NULL); 1064 if (!list_empty(&mm->mmlist)) { 1065 spin_lock(&mmlist_lock); 1066 list_del(&mm->mmlist); 1067 spin_unlock(&mmlist_lock); 1068 } 1069 if (mm->binfmt) 1070 module_put(mm->binfmt->module); 1071 mmdrop(mm); 1072 } 1073 1074 /* 1075 * Decrement the use count and release all resources for an mm. 1076 */ 1077 void mmput(struct mm_struct *mm) 1078 { 1079 might_sleep(); 1080 1081 if (atomic_dec_and_test(&mm->mm_users)) 1082 __mmput(mm); 1083 } 1084 EXPORT_SYMBOL_GPL(mmput); 1085 1086 #ifdef CONFIG_MMU 1087 static void mmput_async_fn(struct work_struct *work) 1088 { 1089 struct mm_struct *mm = container_of(work, struct mm_struct, 1090 async_put_work); 1091 1092 __mmput(mm); 1093 } 1094 1095 void mmput_async(struct mm_struct *mm) 1096 { 1097 if (atomic_dec_and_test(&mm->mm_users)) { 1098 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1099 schedule_work(&mm->async_put_work); 1100 } 1101 } 1102 #endif 1103 1104 /** 1105 * set_mm_exe_file - change a reference to the mm's executable file 1106 * 1107 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1108 * 1109 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1110 * invocations: in mmput() nobody alive left, in execve task is single 1111 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the 1112 * mm->exe_file, but does so without using set_mm_exe_file() in order 1113 * to do avoid the need for any locks. 1114 */ 1115 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1116 { 1117 struct file *old_exe_file; 1118 1119 /* 1120 * It is safe to dereference the exe_file without RCU as 1121 * this function is only called if nobody else can access 1122 * this mm -- see comment above for justification. 1123 */ 1124 old_exe_file = rcu_dereference_raw(mm->exe_file); 1125 1126 if (new_exe_file) 1127 get_file(new_exe_file); 1128 rcu_assign_pointer(mm->exe_file, new_exe_file); 1129 if (old_exe_file) 1130 fput(old_exe_file); 1131 } 1132 1133 /** 1134 * get_mm_exe_file - acquire a reference to the mm's executable file 1135 * 1136 * Returns %NULL if mm has no associated executable file. 1137 * User must release file via fput(). 1138 */ 1139 struct file *get_mm_exe_file(struct mm_struct *mm) 1140 { 1141 struct file *exe_file; 1142 1143 rcu_read_lock(); 1144 exe_file = rcu_dereference(mm->exe_file); 1145 if (exe_file && !get_file_rcu(exe_file)) 1146 exe_file = NULL; 1147 rcu_read_unlock(); 1148 return exe_file; 1149 } 1150 EXPORT_SYMBOL(get_mm_exe_file); 1151 1152 /** 1153 * get_task_exe_file - acquire a reference to the task's executable file 1154 * 1155 * Returns %NULL if task's mm (if any) has no associated executable file or 1156 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1157 * User must release file via fput(). 1158 */ 1159 struct file *get_task_exe_file(struct task_struct *task) 1160 { 1161 struct file *exe_file = NULL; 1162 struct mm_struct *mm; 1163 1164 task_lock(task); 1165 mm = task->mm; 1166 if (mm) { 1167 if (!(task->flags & PF_KTHREAD)) 1168 exe_file = get_mm_exe_file(mm); 1169 } 1170 task_unlock(task); 1171 return exe_file; 1172 } 1173 EXPORT_SYMBOL(get_task_exe_file); 1174 1175 /** 1176 * get_task_mm - acquire a reference to the task's mm 1177 * 1178 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1179 * this kernel workthread has transiently adopted a user mm with use_mm, 1180 * to do its AIO) is not set and if so returns a reference to it, after 1181 * bumping up the use count. User must release the mm via mmput() 1182 * after use. Typically used by /proc and ptrace. 1183 */ 1184 struct mm_struct *get_task_mm(struct task_struct *task) 1185 { 1186 struct mm_struct *mm; 1187 1188 task_lock(task); 1189 mm = task->mm; 1190 if (mm) { 1191 if (task->flags & PF_KTHREAD) 1192 mm = NULL; 1193 else 1194 mmget(mm); 1195 } 1196 task_unlock(task); 1197 return mm; 1198 } 1199 EXPORT_SYMBOL_GPL(get_task_mm); 1200 1201 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1202 { 1203 struct mm_struct *mm; 1204 int err; 1205 1206 err = mutex_lock_killable(&task->signal->cred_guard_mutex); 1207 if (err) 1208 return ERR_PTR(err); 1209 1210 mm = get_task_mm(task); 1211 if (mm && mm != current->mm && 1212 !ptrace_may_access(task, mode)) { 1213 mmput(mm); 1214 mm = ERR_PTR(-EACCES); 1215 } 1216 mutex_unlock(&task->signal->cred_guard_mutex); 1217 1218 return mm; 1219 } 1220 1221 static void complete_vfork_done(struct task_struct *tsk) 1222 { 1223 struct completion *vfork; 1224 1225 task_lock(tsk); 1226 vfork = tsk->vfork_done; 1227 if (likely(vfork)) { 1228 tsk->vfork_done = NULL; 1229 complete(vfork); 1230 } 1231 task_unlock(tsk); 1232 } 1233 1234 static int wait_for_vfork_done(struct task_struct *child, 1235 struct completion *vfork) 1236 { 1237 int killed; 1238 1239 freezer_do_not_count(); 1240 cgroup_enter_frozen(); 1241 killed = wait_for_completion_killable(vfork); 1242 cgroup_leave_frozen(false); 1243 freezer_count(); 1244 1245 if (killed) { 1246 task_lock(child); 1247 child->vfork_done = NULL; 1248 task_unlock(child); 1249 } 1250 1251 put_task_struct(child); 1252 return killed; 1253 } 1254 1255 /* Please note the differences between mmput and mm_release. 1256 * mmput is called whenever we stop holding onto a mm_struct, 1257 * error success whatever. 1258 * 1259 * mm_release is called after a mm_struct has been removed 1260 * from the current process. 1261 * 1262 * This difference is important for error handling, when we 1263 * only half set up a mm_struct for a new process and need to restore 1264 * the old one. Because we mmput the new mm_struct before 1265 * restoring the old one. . . 1266 * Eric Biederman 10 January 1998 1267 */ 1268 void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1269 { 1270 /* Get rid of any futexes when releasing the mm */ 1271 #ifdef CONFIG_FUTEX 1272 if (unlikely(tsk->robust_list)) { 1273 exit_robust_list(tsk); 1274 tsk->robust_list = NULL; 1275 } 1276 #ifdef CONFIG_COMPAT 1277 if (unlikely(tsk->compat_robust_list)) { 1278 compat_exit_robust_list(tsk); 1279 tsk->compat_robust_list = NULL; 1280 } 1281 #endif 1282 if (unlikely(!list_empty(&tsk->pi_state_list))) 1283 exit_pi_state_list(tsk); 1284 #endif 1285 1286 uprobe_free_utask(tsk); 1287 1288 /* Get rid of any cached register state */ 1289 deactivate_mm(tsk, mm); 1290 1291 /* 1292 * Signal userspace if we're not exiting with a core dump 1293 * because we want to leave the value intact for debugging 1294 * purposes. 1295 */ 1296 if (tsk->clear_child_tid) { 1297 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) && 1298 atomic_read(&mm->mm_users) > 1) { 1299 /* 1300 * We don't check the error code - if userspace has 1301 * not set up a proper pointer then tough luck. 1302 */ 1303 put_user(0, tsk->clear_child_tid); 1304 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1305 1, NULL, NULL, 0, 0); 1306 } 1307 tsk->clear_child_tid = NULL; 1308 } 1309 1310 /* 1311 * All done, finally we can wake up parent and return this mm to him. 1312 * Also kthread_stop() uses this completion for synchronization. 1313 */ 1314 if (tsk->vfork_done) 1315 complete_vfork_done(tsk); 1316 } 1317 1318 /** 1319 * dup_mm() - duplicates an existing mm structure 1320 * @tsk: the task_struct with which the new mm will be associated. 1321 * @oldmm: the mm to duplicate. 1322 * 1323 * Allocates a new mm structure and duplicates the provided @oldmm structure 1324 * content into it. 1325 * 1326 * Return: the duplicated mm or NULL on failure. 1327 */ 1328 static struct mm_struct *dup_mm(struct task_struct *tsk, 1329 struct mm_struct *oldmm) 1330 { 1331 struct mm_struct *mm; 1332 int err; 1333 1334 mm = allocate_mm(); 1335 if (!mm) 1336 goto fail_nomem; 1337 1338 memcpy(mm, oldmm, sizeof(*mm)); 1339 1340 if (!mm_init(mm, tsk, mm->user_ns)) 1341 goto fail_nomem; 1342 1343 err = dup_mmap(mm, oldmm); 1344 if (err) 1345 goto free_pt; 1346 1347 mm->hiwater_rss = get_mm_rss(mm); 1348 mm->hiwater_vm = mm->total_vm; 1349 1350 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1351 goto free_pt; 1352 1353 return mm; 1354 1355 free_pt: 1356 /* don't put binfmt in mmput, we haven't got module yet */ 1357 mm->binfmt = NULL; 1358 mm_init_owner(mm, NULL); 1359 mmput(mm); 1360 1361 fail_nomem: 1362 return NULL; 1363 } 1364 1365 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1366 { 1367 struct mm_struct *mm, *oldmm; 1368 int retval; 1369 1370 tsk->min_flt = tsk->maj_flt = 0; 1371 tsk->nvcsw = tsk->nivcsw = 0; 1372 #ifdef CONFIG_DETECT_HUNG_TASK 1373 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1374 tsk->last_switch_time = 0; 1375 #endif 1376 1377 tsk->mm = NULL; 1378 tsk->active_mm = NULL; 1379 1380 /* 1381 * Are we cloning a kernel thread? 1382 * 1383 * We need to steal a active VM for that.. 1384 */ 1385 oldmm = current->mm; 1386 if (!oldmm) 1387 return 0; 1388 1389 /* initialize the new vmacache entries */ 1390 vmacache_flush(tsk); 1391 1392 if (clone_flags & CLONE_VM) { 1393 mmget(oldmm); 1394 mm = oldmm; 1395 goto good_mm; 1396 } 1397 1398 retval = -ENOMEM; 1399 mm = dup_mm(tsk, current->mm); 1400 if (!mm) 1401 goto fail_nomem; 1402 1403 good_mm: 1404 tsk->mm = mm; 1405 tsk->active_mm = mm; 1406 return 0; 1407 1408 fail_nomem: 1409 return retval; 1410 } 1411 1412 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1413 { 1414 struct fs_struct *fs = current->fs; 1415 if (clone_flags & CLONE_FS) { 1416 /* tsk->fs is already what we want */ 1417 spin_lock(&fs->lock); 1418 if (fs->in_exec) { 1419 spin_unlock(&fs->lock); 1420 return -EAGAIN; 1421 } 1422 fs->users++; 1423 spin_unlock(&fs->lock); 1424 return 0; 1425 } 1426 tsk->fs = copy_fs_struct(fs); 1427 if (!tsk->fs) 1428 return -ENOMEM; 1429 return 0; 1430 } 1431 1432 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1433 { 1434 struct files_struct *oldf, *newf; 1435 int error = 0; 1436 1437 /* 1438 * A background process may not have any files ... 1439 */ 1440 oldf = current->files; 1441 if (!oldf) 1442 goto out; 1443 1444 if (clone_flags & CLONE_FILES) { 1445 atomic_inc(&oldf->count); 1446 goto out; 1447 } 1448 1449 newf = dup_fd(oldf, &error); 1450 if (!newf) 1451 goto out; 1452 1453 tsk->files = newf; 1454 error = 0; 1455 out: 1456 return error; 1457 } 1458 1459 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 1460 { 1461 #ifdef CONFIG_BLOCK 1462 struct io_context *ioc = current->io_context; 1463 struct io_context *new_ioc; 1464 1465 if (!ioc) 1466 return 0; 1467 /* 1468 * Share io context with parent, if CLONE_IO is set 1469 */ 1470 if (clone_flags & CLONE_IO) { 1471 ioc_task_link(ioc); 1472 tsk->io_context = ioc; 1473 } else if (ioprio_valid(ioc->ioprio)) { 1474 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); 1475 if (unlikely(!new_ioc)) 1476 return -ENOMEM; 1477 1478 new_ioc->ioprio = ioc->ioprio; 1479 put_io_context(new_ioc); 1480 } 1481 #endif 1482 return 0; 1483 } 1484 1485 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1486 { 1487 struct sighand_struct *sig; 1488 1489 if (clone_flags & CLONE_SIGHAND) { 1490 refcount_inc(¤t->sighand->count); 1491 return 0; 1492 } 1493 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1494 rcu_assign_pointer(tsk->sighand, sig); 1495 if (!sig) 1496 return -ENOMEM; 1497 1498 refcount_set(&sig->count, 1); 1499 spin_lock_irq(¤t->sighand->siglock); 1500 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1501 spin_unlock_irq(¤t->sighand->siglock); 1502 return 0; 1503 } 1504 1505 void __cleanup_sighand(struct sighand_struct *sighand) 1506 { 1507 if (refcount_dec_and_test(&sighand->count)) { 1508 signalfd_cleanup(sighand); 1509 /* 1510 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1511 * without an RCU grace period, see __lock_task_sighand(). 1512 */ 1513 kmem_cache_free(sighand_cachep, sighand); 1514 } 1515 } 1516 1517 #ifdef CONFIG_POSIX_TIMERS 1518 /* 1519 * Initialize POSIX timer handling for a thread group. 1520 */ 1521 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1522 { 1523 unsigned long cpu_limit; 1524 1525 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1526 if (cpu_limit != RLIM_INFINITY) { 1527 sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC; 1528 sig->cputimer.running = true; 1529 } 1530 1531 /* The timer lists. */ 1532 INIT_LIST_HEAD(&sig->cpu_timers[0]); 1533 INIT_LIST_HEAD(&sig->cpu_timers[1]); 1534 INIT_LIST_HEAD(&sig->cpu_timers[2]); 1535 } 1536 #else 1537 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { } 1538 #endif 1539 1540 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1541 { 1542 struct signal_struct *sig; 1543 1544 if (clone_flags & CLONE_THREAD) 1545 return 0; 1546 1547 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1548 tsk->signal = sig; 1549 if (!sig) 1550 return -ENOMEM; 1551 1552 sig->nr_threads = 1; 1553 atomic_set(&sig->live, 1); 1554 refcount_set(&sig->sigcnt, 1); 1555 1556 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1557 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1558 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1559 1560 init_waitqueue_head(&sig->wait_chldexit); 1561 sig->curr_target = tsk; 1562 init_sigpending(&sig->shared_pending); 1563 INIT_HLIST_HEAD(&sig->multiprocess); 1564 seqlock_init(&sig->stats_lock); 1565 prev_cputime_init(&sig->prev_cputime); 1566 1567 #ifdef CONFIG_POSIX_TIMERS 1568 INIT_LIST_HEAD(&sig->posix_timers); 1569 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1570 sig->real_timer.function = it_real_fn; 1571 #endif 1572 1573 task_lock(current->group_leader); 1574 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1575 task_unlock(current->group_leader); 1576 1577 posix_cpu_timers_init_group(sig); 1578 1579 tty_audit_fork(sig); 1580 sched_autogroup_fork(sig); 1581 1582 sig->oom_score_adj = current->signal->oom_score_adj; 1583 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1584 1585 mutex_init(&sig->cred_guard_mutex); 1586 1587 return 0; 1588 } 1589 1590 static void copy_seccomp(struct task_struct *p) 1591 { 1592 #ifdef CONFIG_SECCOMP 1593 /* 1594 * Must be called with sighand->lock held, which is common to 1595 * all threads in the group. Holding cred_guard_mutex is not 1596 * needed because this new task is not yet running and cannot 1597 * be racing exec. 1598 */ 1599 assert_spin_locked(¤t->sighand->siglock); 1600 1601 /* Ref-count the new filter user, and assign it. */ 1602 get_seccomp_filter(current); 1603 p->seccomp = current->seccomp; 1604 1605 /* 1606 * Explicitly enable no_new_privs here in case it got set 1607 * between the task_struct being duplicated and holding the 1608 * sighand lock. The seccomp state and nnp must be in sync. 1609 */ 1610 if (task_no_new_privs(current)) 1611 task_set_no_new_privs(p); 1612 1613 /* 1614 * If the parent gained a seccomp mode after copying thread 1615 * flags and between before we held the sighand lock, we have 1616 * to manually enable the seccomp thread flag here. 1617 */ 1618 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1619 set_tsk_thread_flag(p, TIF_SECCOMP); 1620 #endif 1621 } 1622 1623 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1624 { 1625 current->clear_child_tid = tidptr; 1626 1627 return task_pid_vnr(current); 1628 } 1629 1630 static void rt_mutex_init_task(struct task_struct *p) 1631 { 1632 raw_spin_lock_init(&p->pi_lock); 1633 #ifdef CONFIG_RT_MUTEXES 1634 p->pi_waiters = RB_ROOT_CACHED; 1635 p->pi_top_task = NULL; 1636 p->pi_blocked_on = NULL; 1637 #endif 1638 } 1639 1640 #ifdef CONFIG_POSIX_TIMERS 1641 /* 1642 * Initialize POSIX timer handling for a single task. 1643 */ 1644 static void posix_cpu_timers_init(struct task_struct *tsk) 1645 { 1646 tsk->cputime_expires.prof_exp = 0; 1647 tsk->cputime_expires.virt_exp = 0; 1648 tsk->cputime_expires.sched_exp = 0; 1649 INIT_LIST_HEAD(&tsk->cpu_timers[0]); 1650 INIT_LIST_HEAD(&tsk->cpu_timers[1]); 1651 INIT_LIST_HEAD(&tsk->cpu_timers[2]); 1652 } 1653 #else 1654 static inline void posix_cpu_timers_init(struct task_struct *tsk) { } 1655 #endif 1656 1657 static inline void init_task_pid_links(struct task_struct *task) 1658 { 1659 enum pid_type type; 1660 1661 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 1662 INIT_HLIST_NODE(&task->pid_links[type]); 1663 } 1664 } 1665 1666 static inline void 1667 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1668 { 1669 if (type == PIDTYPE_PID) 1670 task->thread_pid = pid; 1671 else 1672 task->signal->pids[type] = pid; 1673 } 1674 1675 static inline void rcu_copy_process(struct task_struct *p) 1676 { 1677 #ifdef CONFIG_PREEMPT_RCU 1678 p->rcu_read_lock_nesting = 0; 1679 p->rcu_read_unlock_special.s = 0; 1680 p->rcu_blocked_node = NULL; 1681 INIT_LIST_HEAD(&p->rcu_node_entry); 1682 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1683 #ifdef CONFIG_TASKS_RCU 1684 p->rcu_tasks_holdout = false; 1685 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1686 p->rcu_tasks_idle_cpu = -1; 1687 #endif /* #ifdef CONFIG_TASKS_RCU */ 1688 } 1689 1690 static int pidfd_release(struct inode *inode, struct file *file) 1691 { 1692 struct pid *pid = file->private_data; 1693 1694 file->private_data = NULL; 1695 put_pid(pid); 1696 return 0; 1697 } 1698 1699 #ifdef CONFIG_PROC_FS 1700 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 1701 { 1702 struct pid_namespace *ns = proc_pid_ns(file_inode(m->file)); 1703 struct pid *pid = f->private_data; 1704 1705 seq_put_decimal_ull(m, "Pid:\t", pid_nr_ns(pid, ns)); 1706 seq_putc(m, '\n'); 1707 } 1708 #endif 1709 1710 const struct file_operations pidfd_fops = { 1711 .release = pidfd_release, 1712 #ifdef CONFIG_PROC_FS 1713 .show_fdinfo = pidfd_show_fdinfo, 1714 #endif 1715 }; 1716 1717 /** 1718 * pidfd_create() - Create a new pid file descriptor. 1719 * 1720 * @pid: struct pid that the pidfd will reference 1721 * 1722 * This creates a new pid file descriptor with the O_CLOEXEC flag set. 1723 * 1724 * Note, that this function can only be called after the fd table has 1725 * been unshared to avoid leaking the pidfd to the new process. 1726 * 1727 * Return: On success, a cloexec pidfd is returned. 1728 * On error, a negative errno number will be returned. 1729 */ 1730 static int pidfd_create(struct pid *pid) 1731 { 1732 int fd; 1733 1734 fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid), 1735 O_RDWR | O_CLOEXEC); 1736 if (fd < 0) 1737 put_pid(pid); 1738 1739 return fd; 1740 } 1741 1742 static void __delayed_free_task(struct rcu_head *rhp) 1743 { 1744 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1745 1746 free_task(tsk); 1747 } 1748 1749 static __always_inline void delayed_free_task(struct task_struct *tsk) 1750 { 1751 if (IS_ENABLED(CONFIG_MEMCG)) 1752 call_rcu(&tsk->rcu, __delayed_free_task); 1753 else 1754 free_task(tsk); 1755 } 1756 1757 /* 1758 * This creates a new process as a copy of the old one, 1759 * but does not actually start it yet. 1760 * 1761 * It copies the registers, and all the appropriate 1762 * parts of the process environment (as per the clone 1763 * flags). The actual kick-off is left to the caller. 1764 */ 1765 static __latent_entropy struct task_struct *copy_process( 1766 unsigned long clone_flags, 1767 unsigned long stack_start, 1768 unsigned long stack_size, 1769 int __user *parent_tidptr, 1770 int __user *child_tidptr, 1771 struct pid *pid, 1772 int trace, 1773 unsigned long tls, 1774 int node) 1775 { 1776 int pidfd = -1, retval; 1777 struct task_struct *p; 1778 struct multiprocess_signals delayed; 1779 1780 /* 1781 * Don't allow sharing the root directory with processes in a different 1782 * namespace 1783 */ 1784 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1785 return ERR_PTR(-EINVAL); 1786 1787 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1788 return ERR_PTR(-EINVAL); 1789 1790 /* 1791 * Thread groups must share signals as well, and detached threads 1792 * can only be started up within the thread group. 1793 */ 1794 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1795 return ERR_PTR(-EINVAL); 1796 1797 /* 1798 * Shared signal handlers imply shared VM. By way of the above, 1799 * thread groups also imply shared VM. Blocking this case allows 1800 * for various simplifications in other code. 1801 */ 1802 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1803 return ERR_PTR(-EINVAL); 1804 1805 /* 1806 * Siblings of global init remain as zombies on exit since they are 1807 * not reaped by their parent (swapper). To solve this and to avoid 1808 * multi-rooted process trees, prevent global and container-inits 1809 * from creating siblings. 1810 */ 1811 if ((clone_flags & CLONE_PARENT) && 1812 current->signal->flags & SIGNAL_UNKILLABLE) 1813 return ERR_PTR(-EINVAL); 1814 1815 /* 1816 * If the new process will be in a different pid or user namespace 1817 * do not allow it to share a thread group with the forking task. 1818 */ 1819 if (clone_flags & CLONE_THREAD) { 1820 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 1821 (task_active_pid_ns(current) != 1822 current->nsproxy->pid_ns_for_children)) 1823 return ERR_PTR(-EINVAL); 1824 } 1825 1826 if (clone_flags & CLONE_PIDFD) { 1827 int reserved; 1828 1829 /* 1830 * - CLONE_PARENT_SETTID is useless for pidfds and also 1831 * parent_tidptr is used to return pidfds. 1832 * - CLONE_DETACHED is blocked so that we can potentially 1833 * reuse it later for CLONE_PIDFD. 1834 * - CLONE_THREAD is blocked until someone really needs it. 1835 */ 1836 if (clone_flags & 1837 (CLONE_DETACHED | CLONE_PARENT_SETTID | CLONE_THREAD)) 1838 return ERR_PTR(-EINVAL); 1839 1840 /* 1841 * Verify that parent_tidptr is sane so we can potentially 1842 * reuse it later. 1843 */ 1844 if (get_user(reserved, parent_tidptr)) 1845 return ERR_PTR(-EFAULT); 1846 1847 if (reserved != 0) 1848 return ERR_PTR(-EINVAL); 1849 } 1850 1851 /* 1852 * Force any signals received before this point to be delivered 1853 * before the fork happens. Collect up signals sent to multiple 1854 * processes that happen during the fork and delay them so that 1855 * they appear to happen after the fork. 1856 */ 1857 sigemptyset(&delayed.signal); 1858 INIT_HLIST_NODE(&delayed.node); 1859 1860 spin_lock_irq(¤t->sighand->siglock); 1861 if (!(clone_flags & CLONE_THREAD)) 1862 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 1863 recalc_sigpending(); 1864 spin_unlock_irq(¤t->sighand->siglock); 1865 retval = -ERESTARTNOINTR; 1866 if (signal_pending(current)) 1867 goto fork_out; 1868 1869 retval = -ENOMEM; 1870 p = dup_task_struct(current, node); 1871 if (!p) 1872 goto fork_out; 1873 1874 /* 1875 * This _must_ happen before we call free_task(), i.e. before we jump 1876 * to any of the bad_fork_* labels. This is to avoid freeing 1877 * p->set_child_tid which is (ab)used as a kthread's data pointer for 1878 * kernel threads (PF_KTHREAD). 1879 */ 1880 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL; 1881 /* 1882 * Clear TID on mm_release()? 1883 */ 1884 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL; 1885 1886 ftrace_graph_init_task(p); 1887 1888 rt_mutex_init_task(p); 1889 1890 #ifdef CONFIG_PROVE_LOCKING 1891 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled); 1892 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 1893 #endif 1894 retval = -EAGAIN; 1895 if (atomic_read(&p->real_cred->user->processes) >= 1896 task_rlimit(p, RLIMIT_NPROC)) { 1897 if (p->real_cred->user != INIT_USER && 1898 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 1899 goto bad_fork_free; 1900 } 1901 current->flags &= ~PF_NPROC_EXCEEDED; 1902 1903 retval = copy_creds(p, clone_flags); 1904 if (retval < 0) 1905 goto bad_fork_free; 1906 1907 /* 1908 * If multiple threads are within copy_process(), then this check 1909 * triggers too late. This doesn't hurt, the check is only there 1910 * to stop root fork bombs. 1911 */ 1912 retval = -EAGAIN; 1913 if (nr_threads >= max_threads) 1914 goto bad_fork_cleanup_count; 1915 1916 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 1917 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE); 1918 p->flags |= PF_FORKNOEXEC; 1919 INIT_LIST_HEAD(&p->children); 1920 INIT_LIST_HEAD(&p->sibling); 1921 rcu_copy_process(p); 1922 p->vfork_done = NULL; 1923 spin_lock_init(&p->alloc_lock); 1924 1925 init_sigpending(&p->pending); 1926 1927 p->utime = p->stime = p->gtime = 0; 1928 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 1929 p->utimescaled = p->stimescaled = 0; 1930 #endif 1931 prev_cputime_init(&p->prev_cputime); 1932 1933 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1934 seqcount_init(&p->vtime.seqcount); 1935 p->vtime.starttime = 0; 1936 p->vtime.state = VTIME_INACTIVE; 1937 #endif 1938 1939 #if defined(SPLIT_RSS_COUNTING) 1940 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 1941 #endif 1942 1943 p->default_timer_slack_ns = current->timer_slack_ns; 1944 1945 #ifdef CONFIG_PSI 1946 p->psi_flags = 0; 1947 #endif 1948 1949 task_io_accounting_init(&p->ioac); 1950 acct_clear_integrals(p); 1951 1952 posix_cpu_timers_init(p); 1953 1954 p->io_context = NULL; 1955 audit_set_context(p, NULL); 1956 cgroup_fork(p); 1957 #ifdef CONFIG_NUMA 1958 p->mempolicy = mpol_dup(p->mempolicy); 1959 if (IS_ERR(p->mempolicy)) { 1960 retval = PTR_ERR(p->mempolicy); 1961 p->mempolicy = NULL; 1962 goto bad_fork_cleanup_threadgroup_lock; 1963 } 1964 #endif 1965 #ifdef CONFIG_CPUSETS 1966 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 1967 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 1968 seqcount_init(&p->mems_allowed_seq); 1969 #endif 1970 #ifdef CONFIG_TRACE_IRQFLAGS 1971 p->irq_events = 0; 1972 p->hardirqs_enabled = 0; 1973 p->hardirq_enable_ip = 0; 1974 p->hardirq_enable_event = 0; 1975 p->hardirq_disable_ip = _THIS_IP_; 1976 p->hardirq_disable_event = 0; 1977 p->softirqs_enabled = 1; 1978 p->softirq_enable_ip = _THIS_IP_; 1979 p->softirq_enable_event = 0; 1980 p->softirq_disable_ip = 0; 1981 p->softirq_disable_event = 0; 1982 p->hardirq_context = 0; 1983 p->softirq_context = 0; 1984 #endif 1985 1986 p->pagefault_disabled = 0; 1987 1988 #ifdef CONFIG_LOCKDEP 1989 p->lockdep_depth = 0; /* no locks held yet */ 1990 p->curr_chain_key = 0; 1991 p->lockdep_recursion = 0; 1992 lockdep_init_task(p); 1993 #endif 1994 1995 #ifdef CONFIG_DEBUG_MUTEXES 1996 p->blocked_on = NULL; /* not blocked yet */ 1997 #endif 1998 #ifdef CONFIG_BCACHE 1999 p->sequential_io = 0; 2000 p->sequential_io_avg = 0; 2001 #endif 2002 2003 /* Perform scheduler related setup. Assign this task to a CPU. */ 2004 retval = sched_fork(clone_flags, p); 2005 if (retval) 2006 goto bad_fork_cleanup_policy; 2007 2008 retval = perf_event_init_task(p); 2009 if (retval) 2010 goto bad_fork_cleanup_policy; 2011 retval = audit_alloc(p); 2012 if (retval) 2013 goto bad_fork_cleanup_perf; 2014 /* copy all the process information */ 2015 shm_init_task(p); 2016 retval = security_task_alloc(p, clone_flags); 2017 if (retval) 2018 goto bad_fork_cleanup_audit; 2019 retval = copy_semundo(clone_flags, p); 2020 if (retval) 2021 goto bad_fork_cleanup_security; 2022 retval = copy_files(clone_flags, p); 2023 if (retval) 2024 goto bad_fork_cleanup_semundo; 2025 retval = copy_fs(clone_flags, p); 2026 if (retval) 2027 goto bad_fork_cleanup_files; 2028 retval = copy_sighand(clone_flags, p); 2029 if (retval) 2030 goto bad_fork_cleanup_fs; 2031 retval = copy_signal(clone_flags, p); 2032 if (retval) 2033 goto bad_fork_cleanup_sighand; 2034 retval = copy_mm(clone_flags, p); 2035 if (retval) 2036 goto bad_fork_cleanup_signal; 2037 retval = copy_namespaces(clone_flags, p); 2038 if (retval) 2039 goto bad_fork_cleanup_mm; 2040 retval = copy_io(clone_flags, p); 2041 if (retval) 2042 goto bad_fork_cleanup_namespaces; 2043 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls); 2044 if (retval) 2045 goto bad_fork_cleanup_io; 2046 2047 stackleak_task_init(p); 2048 2049 if (pid != &init_struct_pid) { 2050 pid = alloc_pid(p->nsproxy->pid_ns_for_children); 2051 if (IS_ERR(pid)) { 2052 retval = PTR_ERR(pid); 2053 goto bad_fork_cleanup_thread; 2054 } 2055 } 2056 2057 /* 2058 * This has to happen after we've potentially unshared the file 2059 * descriptor table (so that the pidfd doesn't leak into the child 2060 * if the fd table isn't shared). 2061 */ 2062 if (clone_flags & CLONE_PIDFD) { 2063 retval = pidfd_create(pid); 2064 if (retval < 0) 2065 goto bad_fork_free_pid; 2066 2067 pidfd = retval; 2068 retval = put_user(pidfd, parent_tidptr); 2069 if (retval) 2070 goto bad_fork_put_pidfd; 2071 } 2072 2073 #ifdef CONFIG_BLOCK 2074 p->plug = NULL; 2075 #endif 2076 #ifdef CONFIG_FUTEX 2077 p->robust_list = NULL; 2078 #ifdef CONFIG_COMPAT 2079 p->compat_robust_list = NULL; 2080 #endif 2081 INIT_LIST_HEAD(&p->pi_state_list); 2082 p->pi_state_cache = NULL; 2083 #endif 2084 /* 2085 * sigaltstack should be cleared when sharing the same VM 2086 */ 2087 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2088 sas_ss_reset(p); 2089 2090 /* 2091 * Syscall tracing and stepping should be turned off in the 2092 * child regardless of CLONE_PTRACE. 2093 */ 2094 user_disable_single_step(p); 2095 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); 2096 #ifdef TIF_SYSCALL_EMU 2097 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); 2098 #endif 2099 clear_tsk_latency_tracing(p); 2100 2101 /* ok, now we should be set up.. */ 2102 p->pid = pid_nr(pid); 2103 if (clone_flags & CLONE_THREAD) { 2104 p->exit_signal = -1; 2105 p->group_leader = current->group_leader; 2106 p->tgid = current->tgid; 2107 } else { 2108 if (clone_flags & CLONE_PARENT) 2109 p->exit_signal = current->group_leader->exit_signal; 2110 else 2111 p->exit_signal = (clone_flags & CSIGNAL); 2112 p->group_leader = p; 2113 p->tgid = p->pid; 2114 } 2115 2116 p->nr_dirtied = 0; 2117 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2118 p->dirty_paused_when = 0; 2119 2120 p->pdeath_signal = 0; 2121 INIT_LIST_HEAD(&p->thread_group); 2122 p->task_works = NULL; 2123 2124 cgroup_threadgroup_change_begin(current); 2125 /* 2126 * Ensure that the cgroup subsystem policies allow the new process to be 2127 * forked. It should be noted the the new process's css_set can be changed 2128 * between here and cgroup_post_fork() if an organisation operation is in 2129 * progress. 2130 */ 2131 retval = cgroup_can_fork(p); 2132 if (retval) 2133 goto bad_fork_cgroup_threadgroup_change_end; 2134 2135 /* 2136 * From this point on we must avoid any synchronous user-space 2137 * communication until we take the tasklist-lock. In particular, we do 2138 * not want user-space to be able to predict the process start-time by 2139 * stalling fork(2) after we recorded the start_time but before it is 2140 * visible to the system. 2141 */ 2142 2143 p->start_time = ktime_get_ns(); 2144 p->real_start_time = ktime_get_boot_ns(); 2145 2146 /* 2147 * Make it visible to the rest of the system, but dont wake it up yet. 2148 * Need tasklist lock for parent etc handling! 2149 */ 2150 write_lock_irq(&tasklist_lock); 2151 2152 /* CLONE_PARENT re-uses the old parent */ 2153 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2154 p->real_parent = current->real_parent; 2155 p->parent_exec_id = current->parent_exec_id; 2156 } else { 2157 p->real_parent = current; 2158 p->parent_exec_id = current->self_exec_id; 2159 } 2160 2161 klp_copy_process(p); 2162 2163 spin_lock(¤t->sighand->siglock); 2164 2165 /* 2166 * Copy seccomp details explicitly here, in case they were changed 2167 * before holding sighand lock. 2168 */ 2169 copy_seccomp(p); 2170 2171 rseq_fork(p, clone_flags); 2172 2173 /* Don't start children in a dying pid namespace */ 2174 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2175 retval = -ENOMEM; 2176 goto bad_fork_cancel_cgroup; 2177 } 2178 2179 /* Let kill terminate clone/fork in the middle */ 2180 if (fatal_signal_pending(current)) { 2181 retval = -EINTR; 2182 goto bad_fork_cancel_cgroup; 2183 } 2184 2185 2186 init_task_pid_links(p); 2187 if (likely(p->pid)) { 2188 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2189 2190 init_task_pid(p, PIDTYPE_PID, pid); 2191 if (thread_group_leader(p)) { 2192 init_task_pid(p, PIDTYPE_TGID, pid); 2193 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2194 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2195 2196 if (is_child_reaper(pid)) { 2197 ns_of_pid(pid)->child_reaper = p; 2198 p->signal->flags |= SIGNAL_UNKILLABLE; 2199 } 2200 p->signal->shared_pending.signal = delayed.signal; 2201 p->signal->tty = tty_kref_get(current->signal->tty); 2202 /* 2203 * Inherit has_child_subreaper flag under the same 2204 * tasklist_lock with adding child to the process tree 2205 * for propagate_has_child_subreaper optimization. 2206 */ 2207 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2208 p->real_parent->signal->is_child_subreaper; 2209 list_add_tail(&p->sibling, &p->real_parent->children); 2210 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2211 attach_pid(p, PIDTYPE_TGID); 2212 attach_pid(p, PIDTYPE_PGID); 2213 attach_pid(p, PIDTYPE_SID); 2214 __this_cpu_inc(process_counts); 2215 } else { 2216 current->signal->nr_threads++; 2217 atomic_inc(¤t->signal->live); 2218 refcount_inc(¤t->signal->sigcnt); 2219 task_join_group_stop(p); 2220 list_add_tail_rcu(&p->thread_group, 2221 &p->group_leader->thread_group); 2222 list_add_tail_rcu(&p->thread_node, 2223 &p->signal->thread_head); 2224 } 2225 attach_pid(p, PIDTYPE_PID); 2226 nr_threads++; 2227 } 2228 total_forks++; 2229 hlist_del_init(&delayed.node); 2230 spin_unlock(¤t->sighand->siglock); 2231 syscall_tracepoint_update(p); 2232 write_unlock_irq(&tasklist_lock); 2233 2234 proc_fork_connector(p); 2235 cgroup_post_fork(p); 2236 cgroup_threadgroup_change_end(current); 2237 perf_event_fork(p); 2238 2239 trace_task_newtask(p, clone_flags); 2240 uprobe_copy_process(p, clone_flags); 2241 2242 return p; 2243 2244 bad_fork_cancel_cgroup: 2245 spin_unlock(¤t->sighand->siglock); 2246 write_unlock_irq(&tasklist_lock); 2247 cgroup_cancel_fork(p); 2248 bad_fork_cgroup_threadgroup_change_end: 2249 cgroup_threadgroup_change_end(current); 2250 bad_fork_put_pidfd: 2251 if (clone_flags & CLONE_PIDFD) 2252 ksys_close(pidfd); 2253 bad_fork_free_pid: 2254 if (pid != &init_struct_pid) 2255 free_pid(pid); 2256 bad_fork_cleanup_thread: 2257 exit_thread(p); 2258 bad_fork_cleanup_io: 2259 if (p->io_context) 2260 exit_io_context(p); 2261 bad_fork_cleanup_namespaces: 2262 exit_task_namespaces(p); 2263 bad_fork_cleanup_mm: 2264 if (p->mm) { 2265 mm_clear_owner(p->mm, p); 2266 mmput(p->mm); 2267 } 2268 bad_fork_cleanup_signal: 2269 if (!(clone_flags & CLONE_THREAD)) 2270 free_signal_struct(p->signal); 2271 bad_fork_cleanup_sighand: 2272 __cleanup_sighand(p->sighand); 2273 bad_fork_cleanup_fs: 2274 exit_fs(p); /* blocking */ 2275 bad_fork_cleanup_files: 2276 exit_files(p); /* blocking */ 2277 bad_fork_cleanup_semundo: 2278 exit_sem(p); 2279 bad_fork_cleanup_security: 2280 security_task_free(p); 2281 bad_fork_cleanup_audit: 2282 audit_free(p); 2283 bad_fork_cleanup_perf: 2284 perf_event_free_task(p); 2285 bad_fork_cleanup_policy: 2286 lockdep_free_task(p); 2287 #ifdef CONFIG_NUMA 2288 mpol_put(p->mempolicy); 2289 bad_fork_cleanup_threadgroup_lock: 2290 #endif 2291 delayacct_tsk_free(p); 2292 bad_fork_cleanup_count: 2293 atomic_dec(&p->cred->user->processes); 2294 exit_creds(p); 2295 bad_fork_free: 2296 p->state = TASK_DEAD; 2297 put_task_stack(p); 2298 delayed_free_task(p); 2299 fork_out: 2300 spin_lock_irq(¤t->sighand->siglock); 2301 hlist_del_init(&delayed.node); 2302 spin_unlock_irq(¤t->sighand->siglock); 2303 return ERR_PTR(retval); 2304 } 2305 2306 static inline void init_idle_pids(struct task_struct *idle) 2307 { 2308 enum pid_type type; 2309 2310 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2311 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2312 init_task_pid(idle, type, &init_struct_pid); 2313 } 2314 } 2315 2316 struct task_struct *fork_idle(int cpu) 2317 { 2318 struct task_struct *task; 2319 task = copy_process(CLONE_VM, 0, 0, NULL, NULL, &init_struct_pid, 0, 0, 2320 cpu_to_node(cpu)); 2321 if (!IS_ERR(task)) { 2322 init_idle_pids(task); 2323 init_idle(task, cpu); 2324 } 2325 2326 return task; 2327 } 2328 2329 struct mm_struct *copy_init_mm(void) 2330 { 2331 return dup_mm(NULL, &init_mm); 2332 } 2333 2334 /* 2335 * Ok, this is the main fork-routine. 2336 * 2337 * It copies the process, and if successful kick-starts 2338 * it and waits for it to finish using the VM if required. 2339 */ 2340 long _do_fork(unsigned long clone_flags, 2341 unsigned long stack_start, 2342 unsigned long stack_size, 2343 int __user *parent_tidptr, 2344 int __user *child_tidptr, 2345 unsigned long tls) 2346 { 2347 struct completion vfork; 2348 struct pid *pid; 2349 struct task_struct *p; 2350 int trace = 0; 2351 long nr; 2352 2353 /* 2354 * Determine whether and which event to report to ptracer. When 2355 * called from kernel_thread or CLONE_UNTRACED is explicitly 2356 * requested, no event is reported; otherwise, report if the event 2357 * for the type of forking is enabled. 2358 */ 2359 if (!(clone_flags & CLONE_UNTRACED)) { 2360 if (clone_flags & CLONE_VFORK) 2361 trace = PTRACE_EVENT_VFORK; 2362 else if ((clone_flags & CSIGNAL) != SIGCHLD) 2363 trace = PTRACE_EVENT_CLONE; 2364 else 2365 trace = PTRACE_EVENT_FORK; 2366 2367 if (likely(!ptrace_event_enabled(current, trace))) 2368 trace = 0; 2369 } 2370 2371 p = copy_process(clone_flags, stack_start, stack_size, parent_tidptr, 2372 child_tidptr, NULL, trace, tls, NUMA_NO_NODE); 2373 add_latent_entropy(); 2374 2375 if (IS_ERR(p)) 2376 return PTR_ERR(p); 2377 2378 /* 2379 * Do this prior waking up the new thread - the thread pointer 2380 * might get invalid after that point, if the thread exits quickly. 2381 */ 2382 trace_sched_process_fork(current, p); 2383 2384 pid = get_task_pid(p, PIDTYPE_PID); 2385 nr = pid_vnr(pid); 2386 2387 if (clone_flags & CLONE_PARENT_SETTID) 2388 put_user(nr, parent_tidptr); 2389 2390 if (clone_flags & CLONE_VFORK) { 2391 p->vfork_done = &vfork; 2392 init_completion(&vfork); 2393 get_task_struct(p); 2394 } 2395 2396 wake_up_new_task(p); 2397 2398 /* forking complete and child started to run, tell ptracer */ 2399 if (unlikely(trace)) 2400 ptrace_event_pid(trace, pid); 2401 2402 if (clone_flags & CLONE_VFORK) { 2403 if (!wait_for_vfork_done(p, &vfork)) 2404 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2405 } 2406 2407 put_pid(pid); 2408 return nr; 2409 } 2410 2411 #ifndef CONFIG_HAVE_COPY_THREAD_TLS 2412 /* For compatibility with architectures that call do_fork directly rather than 2413 * using the syscall entry points below. */ 2414 long do_fork(unsigned long clone_flags, 2415 unsigned long stack_start, 2416 unsigned long stack_size, 2417 int __user *parent_tidptr, 2418 int __user *child_tidptr) 2419 { 2420 return _do_fork(clone_flags, stack_start, stack_size, 2421 parent_tidptr, child_tidptr, 0); 2422 } 2423 #endif 2424 2425 /* 2426 * Create a kernel thread. 2427 */ 2428 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 2429 { 2430 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn, 2431 (unsigned long)arg, NULL, NULL, 0); 2432 } 2433 2434 #ifdef __ARCH_WANT_SYS_FORK 2435 SYSCALL_DEFINE0(fork) 2436 { 2437 #ifdef CONFIG_MMU 2438 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0); 2439 #else 2440 /* can not support in nommu mode */ 2441 return -EINVAL; 2442 #endif 2443 } 2444 #endif 2445 2446 #ifdef __ARCH_WANT_SYS_VFORK 2447 SYSCALL_DEFINE0(vfork) 2448 { 2449 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0, 2450 0, NULL, NULL, 0); 2451 } 2452 #endif 2453 2454 #ifdef __ARCH_WANT_SYS_CLONE 2455 #ifdef CONFIG_CLONE_BACKWARDS 2456 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2457 int __user *, parent_tidptr, 2458 unsigned long, tls, 2459 int __user *, child_tidptr) 2460 #elif defined(CONFIG_CLONE_BACKWARDS2) 2461 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2462 int __user *, parent_tidptr, 2463 int __user *, child_tidptr, 2464 unsigned long, tls) 2465 #elif defined(CONFIG_CLONE_BACKWARDS3) 2466 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2467 int, stack_size, 2468 int __user *, parent_tidptr, 2469 int __user *, child_tidptr, 2470 unsigned long, tls) 2471 #else 2472 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2473 int __user *, parent_tidptr, 2474 int __user *, child_tidptr, 2475 unsigned long, tls) 2476 #endif 2477 { 2478 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls); 2479 } 2480 #endif 2481 2482 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2483 { 2484 struct task_struct *leader, *parent, *child; 2485 int res; 2486 2487 read_lock(&tasklist_lock); 2488 leader = top = top->group_leader; 2489 down: 2490 for_each_thread(leader, parent) { 2491 list_for_each_entry(child, &parent->children, sibling) { 2492 res = visitor(child, data); 2493 if (res) { 2494 if (res < 0) 2495 goto out; 2496 leader = child; 2497 goto down; 2498 } 2499 up: 2500 ; 2501 } 2502 } 2503 2504 if (leader != top) { 2505 child = leader; 2506 parent = child->real_parent; 2507 leader = parent->group_leader; 2508 goto up; 2509 } 2510 out: 2511 read_unlock(&tasklist_lock); 2512 } 2513 2514 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 2515 #define ARCH_MIN_MMSTRUCT_ALIGN 0 2516 #endif 2517 2518 static void sighand_ctor(void *data) 2519 { 2520 struct sighand_struct *sighand = data; 2521 2522 spin_lock_init(&sighand->siglock); 2523 init_waitqueue_head(&sighand->signalfd_wqh); 2524 } 2525 2526 void __init proc_caches_init(void) 2527 { 2528 unsigned int mm_size; 2529 2530 sighand_cachep = kmem_cache_create("sighand_cache", 2531 sizeof(struct sighand_struct), 0, 2532 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 2533 SLAB_ACCOUNT, sighand_ctor); 2534 signal_cachep = kmem_cache_create("signal_cache", 2535 sizeof(struct signal_struct), 0, 2536 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2537 NULL); 2538 files_cachep = kmem_cache_create("files_cache", 2539 sizeof(struct files_struct), 0, 2540 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2541 NULL); 2542 fs_cachep = kmem_cache_create("fs_cache", 2543 sizeof(struct fs_struct), 0, 2544 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2545 NULL); 2546 2547 /* 2548 * The mm_cpumask is located at the end of mm_struct, and is 2549 * dynamically sized based on the maximum CPU number this system 2550 * can have, taking hotplug into account (nr_cpu_ids). 2551 */ 2552 mm_size = sizeof(struct mm_struct) + cpumask_size(); 2553 2554 mm_cachep = kmem_cache_create_usercopy("mm_struct", 2555 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 2556 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2557 offsetof(struct mm_struct, saved_auxv), 2558 sizeof_field(struct mm_struct, saved_auxv), 2559 NULL); 2560 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 2561 mmap_init(); 2562 nsproxy_cache_init(); 2563 } 2564 2565 /* 2566 * Check constraints on flags passed to the unshare system call. 2567 */ 2568 static int check_unshare_flags(unsigned long unshare_flags) 2569 { 2570 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 2571 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 2572 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 2573 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP)) 2574 return -EINVAL; 2575 /* 2576 * Not implemented, but pretend it works if there is nothing 2577 * to unshare. Note that unsharing the address space or the 2578 * signal handlers also need to unshare the signal queues (aka 2579 * CLONE_THREAD). 2580 */ 2581 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 2582 if (!thread_group_empty(current)) 2583 return -EINVAL; 2584 } 2585 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 2586 if (refcount_read(¤t->sighand->count) > 1) 2587 return -EINVAL; 2588 } 2589 if (unshare_flags & CLONE_VM) { 2590 if (!current_is_single_threaded()) 2591 return -EINVAL; 2592 } 2593 2594 return 0; 2595 } 2596 2597 /* 2598 * Unshare the filesystem structure if it is being shared 2599 */ 2600 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 2601 { 2602 struct fs_struct *fs = current->fs; 2603 2604 if (!(unshare_flags & CLONE_FS) || !fs) 2605 return 0; 2606 2607 /* don't need lock here; in the worst case we'll do useless copy */ 2608 if (fs->users == 1) 2609 return 0; 2610 2611 *new_fsp = copy_fs_struct(fs); 2612 if (!*new_fsp) 2613 return -ENOMEM; 2614 2615 return 0; 2616 } 2617 2618 /* 2619 * Unshare file descriptor table if it is being shared 2620 */ 2621 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 2622 { 2623 struct files_struct *fd = current->files; 2624 int error = 0; 2625 2626 if ((unshare_flags & CLONE_FILES) && 2627 (fd && atomic_read(&fd->count) > 1)) { 2628 *new_fdp = dup_fd(fd, &error); 2629 if (!*new_fdp) 2630 return error; 2631 } 2632 2633 return 0; 2634 } 2635 2636 /* 2637 * unshare allows a process to 'unshare' part of the process 2638 * context which was originally shared using clone. copy_* 2639 * functions used by do_fork() cannot be used here directly 2640 * because they modify an inactive task_struct that is being 2641 * constructed. Here we are modifying the current, active, 2642 * task_struct. 2643 */ 2644 int ksys_unshare(unsigned long unshare_flags) 2645 { 2646 struct fs_struct *fs, *new_fs = NULL; 2647 struct files_struct *fd, *new_fd = NULL; 2648 struct cred *new_cred = NULL; 2649 struct nsproxy *new_nsproxy = NULL; 2650 int do_sysvsem = 0; 2651 int err; 2652 2653 /* 2654 * If unsharing a user namespace must also unshare the thread group 2655 * and unshare the filesystem root and working directories. 2656 */ 2657 if (unshare_flags & CLONE_NEWUSER) 2658 unshare_flags |= CLONE_THREAD | CLONE_FS; 2659 /* 2660 * If unsharing vm, must also unshare signal handlers. 2661 */ 2662 if (unshare_flags & CLONE_VM) 2663 unshare_flags |= CLONE_SIGHAND; 2664 /* 2665 * If unsharing a signal handlers, must also unshare the signal queues. 2666 */ 2667 if (unshare_flags & CLONE_SIGHAND) 2668 unshare_flags |= CLONE_THREAD; 2669 /* 2670 * If unsharing namespace, must also unshare filesystem information. 2671 */ 2672 if (unshare_flags & CLONE_NEWNS) 2673 unshare_flags |= CLONE_FS; 2674 2675 err = check_unshare_flags(unshare_flags); 2676 if (err) 2677 goto bad_unshare_out; 2678 /* 2679 * CLONE_NEWIPC must also detach from the undolist: after switching 2680 * to a new ipc namespace, the semaphore arrays from the old 2681 * namespace are unreachable. 2682 */ 2683 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 2684 do_sysvsem = 1; 2685 err = unshare_fs(unshare_flags, &new_fs); 2686 if (err) 2687 goto bad_unshare_out; 2688 err = unshare_fd(unshare_flags, &new_fd); 2689 if (err) 2690 goto bad_unshare_cleanup_fs; 2691 err = unshare_userns(unshare_flags, &new_cred); 2692 if (err) 2693 goto bad_unshare_cleanup_fd; 2694 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 2695 new_cred, new_fs); 2696 if (err) 2697 goto bad_unshare_cleanup_cred; 2698 2699 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 2700 if (do_sysvsem) { 2701 /* 2702 * CLONE_SYSVSEM is equivalent to sys_exit(). 2703 */ 2704 exit_sem(current); 2705 } 2706 if (unshare_flags & CLONE_NEWIPC) { 2707 /* Orphan segments in old ns (see sem above). */ 2708 exit_shm(current); 2709 shm_init_task(current); 2710 } 2711 2712 if (new_nsproxy) 2713 switch_task_namespaces(current, new_nsproxy); 2714 2715 task_lock(current); 2716 2717 if (new_fs) { 2718 fs = current->fs; 2719 spin_lock(&fs->lock); 2720 current->fs = new_fs; 2721 if (--fs->users) 2722 new_fs = NULL; 2723 else 2724 new_fs = fs; 2725 spin_unlock(&fs->lock); 2726 } 2727 2728 if (new_fd) { 2729 fd = current->files; 2730 current->files = new_fd; 2731 new_fd = fd; 2732 } 2733 2734 task_unlock(current); 2735 2736 if (new_cred) { 2737 /* Install the new user namespace */ 2738 commit_creds(new_cred); 2739 new_cred = NULL; 2740 } 2741 } 2742 2743 perf_event_namespaces(current); 2744 2745 bad_unshare_cleanup_cred: 2746 if (new_cred) 2747 put_cred(new_cred); 2748 bad_unshare_cleanup_fd: 2749 if (new_fd) 2750 put_files_struct(new_fd); 2751 2752 bad_unshare_cleanup_fs: 2753 if (new_fs) 2754 free_fs_struct(new_fs); 2755 2756 bad_unshare_out: 2757 return err; 2758 } 2759 2760 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 2761 { 2762 return ksys_unshare(unshare_flags); 2763 } 2764 2765 /* 2766 * Helper to unshare the files of the current task. 2767 * We don't want to expose copy_files internals to 2768 * the exec layer of the kernel. 2769 */ 2770 2771 int unshare_files(struct files_struct **displaced) 2772 { 2773 struct task_struct *task = current; 2774 struct files_struct *copy = NULL; 2775 int error; 2776 2777 error = unshare_fd(CLONE_FILES, ©); 2778 if (error || !copy) { 2779 *displaced = NULL; 2780 return error; 2781 } 2782 *displaced = task->files; 2783 task_lock(task); 2784 task->files = copy; 2785 task_unlock(task); 2786 return 0; 2787 } 2788 2789 int sysctl_max_threads(struct ctl_table *table, int write, 2790 void __user *buffer, size_t *lenp, loff_t *ppos) 2791 { 2792 struct ctl_table t; 2793 int ret; 2794 int threads = max_threads; 2795 int min = MIN_THREADS; 2796 int max = MAX_THREADS; 2797 2798 t = *table; 2799 t.data = &threads; 2800 t.extra1 = &min; 2801 t.extra2 = &max; 2802 2803 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2804 if (ret || !write) 2805 return ret; 2806 2807 set_max_threads(threads); 2808 2809 return 0; 2810 } 2811