xref: /linux/kernel/fork.c (revision 3932b9ca55b0be314a36d3e84faff3e823c081f5)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 
78 #include <asm/pgtable.h>
79 #include <asm/pgalloc.h>
80 #include <asm/uaccess.h>
81 #include <asm/mmu_context.h>
82 #include <asm/cacheflush.h>
83 #include <asm/tlbflush.h>
84 
85 #include <trace/events/sched.h>
86 
87 #define CREATE_TRACE_POINTS
88 #include <trace/events/task.h>
89 
90 /*
91  * Protected counters by write_lock_irq(&tasklist_lock)
92  */
93 unsigned long total_forks;	/* Handle normal Linux uptimes. */
94 int nr_threads;			/* The idle threads do not count.. */
95 
96 int max_threads;		/* tunable limit on nr_threads */
97 
98 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
99 
100 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
101 
102 #ifdef CONFIG_PROVE_RCU
103 int lockdep_tasklist_lock_is_held(void)
104 {
105 	return lockdep_is_held(&tasklist_lock);
106 }
107 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
108 #endif /* #ifdef CONFIG_PROVE_RCU */
109 
110 int nr_processes(void)
111 {
112 	int cpu;
113 	int total = 0;
114 
115 	for_each_possible_cpu(cpu)
116 		total += per_cpu(process_counts, cpu);
117 
118 	return total;
119 }
120 
121 void __weak arch_release_task_struct(struct task_struct *tsk)
122 {
123 }
124 
125 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
126 static struct kmem_cache *task_struct_cachep;
127 
128 static inline struct task_struct *alloc_task_struct_node(int node)
129 {
130 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
131 }
132 
133 static inline void free_task_struct(struct task_struct *tsk)
134 {
135 	kmem_cache_free(task_struct_cachep, tsk);
136 }
137 #endif
138 
139 void __weak arch_release_thread_info(struct thread_info *ti)
140 {
141 }
142 
143 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
144 
145 /*
146  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
147  * kmemcache based allocator.
148  */
149 # if THREAD_SIZE >= PAGE_SIZE
150 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
151 						  int node)
152 {
153 	struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
154 						  THREAD_SIZE_ORDER);
155 
156 	return page ? page_address(page) : NULL;
157 }
158 
159 static inline void free_thread_info(struct thread_info *ti)
160 {
161 	free_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
162 }
163 # else
164 static struct kmem_cache *thread_info_cache;
165 
166 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
167 						  int node)
168 {
169 	return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
170 }
171 
172 static void free_thread_info(struct thread_info *ti)
173 {
174 	kmem_cache_free(thread_info_cache, ti);
175 }
176 
177 void thread_info_cache_init(void)
178 {
179 	thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
180 					      THREAD_SIZE, 0, NULL);
181 	BUG_ON(thread_info_cache == NULL);
182 }
183 # endif
184 #endif
185 
186 /* SLAB cache for signal_struct structures (tsk->signal) */
187 static struct kmem_cache *signal_cachep;
188 
189 /* SLAB cache for sighand_struct structures (tsk->sighand) */
190 struct kmem_cache *sighand_cachep;
191 
192 /* SLAB cache for files_struct structures (tsk->files) */
193 struct kmem_cache *files_cachep;
194 
195 /* SLAB cache for fs_struct structures (tsk->fs) */
196 struct kmem_cache *fs_cachep;
197 
198 /* SLAB cache for vm_area_struct structures */
199 struct kmem_cache *vm_area_cachep;
200 
201 /* SLAB cache for mm_struct structures (tsk->mm) */
202 static struct kmem_cache *mm_cachep;
203 
204 static void account_kernel_stack(struct thread_info *ti, int account)
205 {
206 	struct zone *zone = page_zone(virt_to_page(ti));
207 
208 	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
209 }
210 
211 void free_task(struct task_struct *tsk)
212 {
213 	account_kernel_stack(tsk->stack, -1);
214 	arch_release_thread_info(tsk->stack);
215 	free_thread_info(tsk->stack);
216 	rt_mutex_debug_task_free(tsk);
217 	ftrace_graph_exit_task(tsk);
218 	put_seccomp_filter(tsk);
219 	arch_release_task_struct(tsk);
220 	free_task_struct(tsk);
221 }
222 EXPORT_SYMBOL(free_task);
223 
224 static inline void free_signal_struct(struct signal_struct *sig)
225 {
226 	taskstats_tgid_free(sig);
227 	sched_autogroup_exit(sig);
228 	kmem_cache_free(signal_cachep, sig);
229 }
230 
231 static inline void put_signal_struct(struct signal_struct *sig)
232 {
233 	if (atomic_dec_and_test(&sig->sigcnt))
234 		free_signal_struct(sig);
235 }
236 
237 void __put_task_struct(struct task_struct *tsk)
238 {
239 	WARN_ON(!tsk->exit_state);
240 	WARN_ON(atomic_read(&tsk->usage));
241 	WARN_ON(tsk == current);
242 
243 	task_numa_free(tsk);
244 	security_task_free(tsk);
245 	exit_creds(tsk);
246 	delayacct_tsk_free(tsk);
247 	put_signal_struct(tsk->signal);
248 
249 	if (!profile_handoff_task(tsk))
250 		free_task(tsk);
251 }
252 EXPORT_SYMBOL_GPL(__put_task_struct);
253 
254 void __init __weak arch_task_cache_init(void) { }
255 
256 void __init fork_init(unsigned long mempages)
257 {
258 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
259 #ifndef ARCH_MIN_TASKALIGN
260 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
261 #endif
262 	/* create a slab on which task_structs can be allocated */
263 	task_struct_cachep =
264 		kmem_cache_create("task_struct", sizeof(struct task_struct),
265 			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
266 #endif
267 
268 	/* do the arch specific task caches init */
269 	arch_task_cache_init();
270 
271 	/*
272 	 * The default maximum number of threads is set to a safe
273 	 * value: the thread structures can take up at most half
274 	 * of memory.
275 	 */
276 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
277 
278 	/*
279 	 * we need to allow at least 20 threads to boot a system
280 	 */
281 	if (max_threads < 20)
282 		max_threads = 20;
283 
284 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
285 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
286 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
287 		init_task.signal->rlim[RLIMIT_NPROC];
288 }
289 
290 int __weak arch_dup_task_struct(struct task_struct *dst,
291 					       struct task_struct *src)
292 {
293 	*dst = *src;
294 	return 0;
295 }
296 
297 static struct task_struct *dup_task_struct(struct task_struct *orig)
298 {
299 	struct task_struct *tsk;
300 	struct thread_info *ti;
301 	unsigned long *stackend;
302 	int node = tsk_fork_get_node(orig);
303 	int err;
304 
305 	tsk = alloc_task_struct_node(node);
306 	if (!tsk)
307 		return NULL;
308 
309 	ti = alloc_thread_info_node(tsk, node);
310 	if (!ti)
311 		goto free_tsk;
312 
313 	err = arch_dup_task_struct(tsk, orig);
314 	if (err)
315 		goto free_ti;
316 
317 	tsk->stack = ti;
318 #ifdef CONFIG_SECCOMP
319 	/*
320 	 * We must handle setting up seccomp filters once we're under
321 	 * the sighand lock in case orig has changed between now and
322 	 * then. Until then, filter must be NULL to avoid messing up
323 	 * the usage counts on the error path calling free_task.
324 	 */
325 	tsk->seccomp.filter = NULL;
326 #endif
327 
328 	setup_thread_stack(tsk, orig);
329 	clear_user_return_notifier(tsk);
330 	clear_tsk_need_resched(tsk);
331 	stackend = end_of_stack(tsk);
332 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
333 
334 #ifdef CONFIG_CC_STACKPROTECTOR
335 	tsk->stack_canary = get_random_int();
336 #endif
337 
338 	/*
339 	 * One for us, one for whoever does the "release_task()" (usually
340 	 * parent)
341 	 */
342 	atomic_set(&tsk->usage, 2);
343 #ifdef CONFIG_BLK_DEV_IO_TRACE
344 	tsk->btrace_seq = 0;
345 #endif
346 	tsk->splice_pipe = NULL;
347 	tsk->task_frag.page = NULL;
348 
349 	account_kernel_stack(ti, 1);
350 
351 	return tsk;
352 
353 free_ti:
354 	free_thread_info(ti);
355 free_tsk:
356 	free_task_struct(tsk);
357 	return NULL;
358 }
359 
360 #ifdef CONFIG_MMU
361 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
362 {
363 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
364 	struct rb_node **rb_link, *rb_parent;
365 	int retval;
366 	unsigned long charge;
367 
368 	uprobe_start_dup_mmap();
369 	down_write(&oldmm->mmap_sem);
370 	flush_cache_dup_mm(oldmm);
371 	uprobe_dup_mmap(oldmm, mm);
372 	/*
373 	 * Not linked in yet - no deadlock potential:
374 	 */
375 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
376 
377 	mm->total_vm = oldmm->total_vm;
378 	mm->shared_vm = oldmm->shared_vm;
379 	mm->exec_vm = oldmm->exec_vm;
380 	mm->stack_vm = oldmm->stack_vm;
381 
382 	rb_link = &mm->mm_rb.rb_node;
383 	rb_parent = NULL;
384 	pprev = &mm->mmap;
385 	retval = ksm_fork(mm, oldmm);
386 	if (retval)
387 		goto out;
388 	retval = khugepaged_fork(mm, oldmm);
389 	if (retval)
390 		goto out;
391 
392 	prev = NULL;
393 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
394 		struct file *file;
395 
396 		if (mpnt->vm_flags & VM_DONTCOPY) {
397 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
398 							-vma_pages(mpnt));
399 			continue;
400 		}
401 		charge = 0;
402 		if (mpnt->vm_flags & VM_ACCOUNT) {
403 			unsigned long len = vma_pages(mpnt);
404 
405 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
406 				goto fail_nomem;
407 			charge = len;
408 		}
409 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
410 		if (!tmp)
411 			goto fail_nomem;
412 		*tmp = *mpnt;
413 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
414 		retval = vma_dup_policy(mpnt, tmp);
415 		if (retval)
416 			goto fail_nomem_policy;
417 		tmp->vm_mm = mm;
418 		if (anon_vma_fork(tmp, mpnt))
419 			goto fail_nomem_anon_vma_fork;
420 		tmp->vm_flags &= ~VM_LOCKED;
421 		tmp->vm_next = tmp->vm_prev = NULL;
422 		file = tmp->vm_file;
423 		if (file) {
424 			struct inode *inode = file_inode(file);
425 			struct address_space *mapping = file->f_mapping;
426 
427 			get_file(file);
428 			if (tmp->vm_flags & VM_DENYWRITE)
429 				atomic_dec(&inode->i_writecount);
430 			mutex_lock(&mapping->i_mmap_mutex);
431 			if (tmp->vm_flags & VM_SHARED)
432 				atomic_inc(&mapping->i_mmap_writable);
433 			flush_dcache_mmap_lock(mapping);
434 			/* insert tmp into the share list, just after mpnt */
435 			if (unlikely(tmp->vm_flags & VM_NONLINEAR))
436 				vma_nonlinear_insert(tmp,
437 						&mapping->i_mmap_nonlinear);
438 			else
439 				vma_interval_tree_insert_after(tmp, mpnt,
440 							&mapping->i_mmap);
441 			flush_dcache_mmap_unlock(mapping);
442 			mutex_unlock(&mapping->i_mmap_mutex);
443 		}
444 
445 		/*
446 		 * Clear hugetlb-related page reserves for children. This only
447 		 * affects MAP_PRIVATE mappings. Faults generated by the child
448 		 * are not guaranteed to succeed, even if read-only
449 		 */
450 		if (is_vm_hugetlb_page(tmp))
451 			reset_vma_resv_huge_pages(tmp);
452 
453 		/*
454 		 * Link in the new vma and copy the page table entries.
455 		 */
456 		*pprev = tmp;
457 		pprev = &tmp->vm_next;
458 		tmp->vm_prev = prev;
459 		prev = tmp;
460 
461 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
462 		rb_link = &tmp->vm_rb.rb_right;
463 		rb_parent = &tmp->vm_rb;
464 
465 		mm->map_count++;
466 		retval = copy_page_range(mm, oldmm, mpnt);
467 
468 		if (tmp->vm_ops && tmp->vm_ops->open)
469 			tmp->vm_ops->open(tmp);
470 
471 		if (retval)
472 			goto out;
473 	}
474 	/* a new mm has just been created */
475 	arch_dup_mmap(oldmm, mm);
476 	retval = 0;
477 out:
478 	up_write(&mm->mmap_sem);
479 	flush_tlb_mm(oldmm);
480 	up_write(&oldmm->mmap_sem);
481 	uprobe_end_dup_mmap();
482 	return retval;
483 fail_nomem_anon_vma_fork:
484 	mpol_put(vma_policy(tmp));
485 fail_nomem_policy:
486 	kmem_cache_free(vm_area_cachep, tmp);
487 fail_nomem:
488 	retval = -ENOMEM;
489 	vm_unacct_memory(charge);
490 	goto out;
491 }
492 
493 static inline int mm_alloc_pgd(struct mm_struct *mm)
494 {
495 	mm->pgd = pgd_alloc(mm);
496 	if (unlikely(!mm->pgd))
497 		return -ENOMEM;
498 	return 0;
499 }
500 
501 static inline void mm_free_pgd(struct mm_struct *mm)
502 {
503 	pgd_free(mm, mm->pgd);
504 }
505 #else
506 #define dup_mmap(mm, oldmm)	(0)
507 #define mm_alloc_pgd(mm)	(0)
508 #define mm_free_pgd(mm)
509 #endif /* CONFIG_MMU */
510 
511 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
512 
513 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
514 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
515 
516 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
517 
518 static int __init coredump_filter_setup(char *s)
519 {
520 	default_dump_filter =
521 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
522 		MMF_DUMP_FILTER_MASK;
523 	return 1;
524 }
525 
526 __setup("coredump_filter=", coredump_filter_setup);
527 
528 #include <linux/init_task.h>
529 
530 static void mm_init_aio(struct mm_struct *mm)
531 {
532 #ifdef CONFIG_AIO
533 	spin_lock_init(&mm->ioctx_lock);
534 	mm->ioctx_table = NULL;
535 #endif
536 }
537 
538 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
539 {
540 #ifdef CONFIG_MEMCG
541 	mm->owner = p;
542 #endif
543 }
544 
545 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
546 {
547 	mm->mmap = NULL;
548 	mm->mm_rb = RB_ROOT;
549 	mm->vmacache_seqnum = 0;
550 	atomic_set(&mm->mm_users, 1);
551 	atomic_set(&mm->mm_count, 1);
552 	init_rwsem(&mm->mmap_sem);
553 	INIT_LIST_HEAD(&mm->mmlist);
554 	mm->core_state = NULL;
555 	atomic_long_set(&mm->nr_ptes, 0);
556 	mm->map_count = 0;
557 	mm->locked_vm = 0;
558 	mm->pinned_vm = 0;
559 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
560 	spin_lock_init(&mm->page_table_lock);
561 	mm_init_cpumask(mm);
562 	mm_init_aio(mm);
563 	mm_init_owner(mm, p);
564 	mmu_notifier_mm_init(mm);
565 	clear_tlb_flush_pending(mm);
566 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
567 	mm->pmd_huge_pte = NULL;
568 #endif
569 
570 	if (current->mm) {
571 		mm->flags = current->mm->flags & MMF_INIT_MASK;
572 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
573 	} else {
574 		mm->flags = default_dump_filter;
575 		mm->def_flags = 0;
576 	}
577 
578 	if (mm_alloc_pgd(mm))
579 		goto fail_nopgd;
580 
581 	if (init_new_context(p, mm))
582 		goto fail_nocontext;
583 
584 	return mm;
585 
586 fail_nocontext:
587 	mm_free_pgd(mm);
588 fail_nopgd:
589 	free_mm(mm);
590 	return NULL;
591 }
592 
593 static void check_mm(struct mm_struct *mm)
594 {
595 	int i;
596 
597 	for (i = 0; i < NR_MM_COUNTERS; i++) {
598 		long x = atomic_long_read(&mm->rss_stat.count[i]);
599 
600 		if (unlikely(x))
601 			printk(KERN_ALERT "BUG: Bad rss-counter state "
602 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
603 	}
604 
605 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
606 	VM_BUG_ON(mm->pmd_huge_pte);
607 #endif
608 }
609 
610 /*
611  * Allocate and initialize an mm_struct.
612  */
613 struct mm_struct *mm_alloc(void)
614 {
615 	struct mm_struct *mm;
616 
617 	mm = allocate_mm();
618 	if (!mm)
619 		return NULL;
620 
621 	memset(mm, 0, sizeof(*mm));
622 	return mm_init(mm, current);
623 }
624 
625 /*
626  * Called when the last reference to the mm
627  * is dropped: either by a lazy thread or by
628  * mmput. Free the page directory and the mm.
629  */
630 void __mmdrop(struct mm_struct *mm)
631 {
632 	BUG_ON(mm == &init_mm);
633 	mm_free_pgd(mm);
634 	destroy_context(mm);
635 	mmu_notifier_mm_destroy(mm);
636 	check_mm(mm);
637 	free_mm(mm);
638 }
639 EXPORT_SYMBOL_GPL(__mmdrop);
640 
641 /*
642  * Decrement the use count and release all resources for an mm.
643  */
644 void mmput(struct mm_struct *mm)
645 {
646 	might_sleep();
647 
648 	if (atomic_dec_and_test(&mm->mm_users)) {
649 		uprobe_clear_state(mm);
650 		exit_aio(mm);
651 		ksm_exit(mm);
652 		khugepaged_exit(mm); /* must run before exit_mmap */
653 		exit_mmap(mm);
654 		set_mm_exe_file(mm, NULL);
655 		if (!list_empty(&mm->mmlist)) {
656 			spin_lock(&mmlist_lock);
657 			list_del(&mm->mmlist);
658 			spin_unlock(&mmlist_lock);
659 		}
660 		if (mm->binfmt)
661 			module_put(mm->binfmt->module);
662 		mmdrop(mm);
663 	}
664 }
665 EXPORT_SYMBOL_GPL(mmput);
666 
667 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
668 {
669 	if (new_exe_file)
670 		get_file(new_exe_file);
671 	if (mm->exe_file)
672 		fput(mm->exe_file);
673 	mm->exe_file = new_exe_file;
674 }
675 
676 struct file *get_mm_exe_file(struct mm_struct *mm)
677 {
678 	struct file *exe_file;
679 
680 	/* We need mmap_sem to protect against races with removal of exe_file */
681 	down_read(&mm->mmap_sem);
682 	exe_file = mm->exe_file;
683 	if (exe_file)
684 		get_file(exe_file);
685 	up_read(&mm->mmap_sem);
686 	return exe_file;
687 }
688 
689 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
690 {
691 	/* It's safe to write the exe_file pointer without exe_file_lock because
692 	 * this is called during fork when the task is not yet in /proc */
693 	newmm->exe_file = get_mm_exe_file(oldmm);
694 }
695 
696 /**
697  * get_task_mm - acquire a reference to the task's mm
698  *
699  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
700  * this kernel workthread has transiently adopted a user mm with use_mm,
701  * to do its AIO) is not set and if so returns a reference to it, after
702  * bumping up the use count.  User must release the mm via mmput()
703  * after use.  Typically used by /proc and ptrace.
704  */
705 struct mm_struct *get_task_mm(struct task_struct *task)
706 {
707 	struct mm_struct *mm;
708 
709 	task_lock(task);
710 	mm = task->mm;
711 	if (mm) {
712 		if (task->flags & PF_KTHREAD)
713 			mm = NULL;
714 		else
715 			atomic_inc(&mm->mm_users);
716 	}
717 	task_unlock(task);
718 	return mm;
719 }
720 EXPORT_SYMBOL_GPL(get_task_mm);
721 
722 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
723 {
724 	struct mm_struct *mm;
725 	int err;
726 
727 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
728 	if (err)
729 		return ERR_PTR(err);
730 
731 	mm = get_task_mm(task);
732 	if (mm && mm != current->mm &&
733 			!ptrace_may_access(task, mode)) {
734 		mmput(mm);
735 		mm = ERR_PTR(-EACCES);
736 	}
737 	mutex_unlock(&task->signal->cred_guard_mutex);
738 
739 	return mm;
740 }
741 
742 static void complete_vfork_done(struct task_struct *tsk)
743 {
744 	struct completion *vfork;
745 
746 	task_lock(tsk);
747 	vfork = tsk->vfork_done;
748 	if (likely(vfork)) {
749 		tsk->vfork_done = NULL;
750 		complete(vfork);
751 	}
752 	task_unlock(tsk);
753 }
754 
755 static int wait_for_vfork_done(struct task_struct *child,
756 				struct completion *vfork)
757 {
758 	int killed;
759 
760 	freezer_do_not_count();
761 	killed = wait_for_completion_killable(vfork);
762 	freezer_count();
763 
764 	if (killed) {
765 		task_lock(child);
766 		child->vfork_done = NULL;
767 		task_unlock(child);
768 	}
769 
770 	put_task_struct(child);
771 	return killed;
772 }
773 
774 /* Please note the differences between mmput and mm_release.
775  * mmput is called whenever we stop holding onto a mm_struct,
776  * error success whatever.
777  *
778  * mm_release is called after a mm_struct has been removed
779  * from the current process.
780  *
781  * This difference is important for error handling, when we
782  * only half set up a mm_struct for a new process and need to restore
783  * the old one.  Because we mmput the new mm_struct before
784  * restoring the old one. . .
785  * Eric Biederman 10 January 1998
786  */
787 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
788 {
789 	/* Get rid of any futexes when releasing the mm */
790 #ifdef CONFIG_FUTEX
791 	if (unlikely(tsk->robust_list)) {
792 		exit_robust_list(tsk);
793 		tsk->robust_list = NULL;
794 	}
795 #ifdef CONFIG_COMPAT
796 	if (unlikely(tsk->compat_robust_list)) {
797 		compat_exit_robust_list(tsk);
798 		tsk->compat_robust_list = NULL;
799 	}
800 #endif
801 	if (unlikely(!list_empty(&tsk->pi_state_list)))
802 		exit_pi_state_list(tsk);
803 #endif
804 
805 	uprobe_free_utask(tsk);
806 
807 	/* Get rid of any cached register state */
808 	deactivate_mm(tsk, mm);
809 
810 	/*
811 	 * If we're exiting normally, clear a user-space tid field if
812 	 * requested.  We leave this alone when dying by signal, to leave
813 	 * the value intact in a core dump, and to save the unnecessary
814 	 * trouble, say, a killed vfork parent shouldn't touch this mm.
815 	 * Userland only wants this done for a sys_exit.
816 	 */
817 	if (tsk->clear_child_tid) {
818 		if (!(tsk->flags & PF_SIGNALED) &&
819 		    atomic_read(&mm->mm_users) > 1) {
820 			/*
821 			 * We don't check the error code - if userspace has
822 			 * not set up a proper pointer then tough luck.
823 			 */
824 			put_user(0, tsk->clear_child_tid);
825 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
826 					1, NULL, NULL, 0);
827 		}
828 		tsk->clear_child_tid = NULL;
829 	}
830 
831 	/*
832 	 * All done, finally we can wake up parent and return this mm to him.
833 	 * Also kthread_stop() uses this completion for synchronization.
834 	 */
835 	if (tsk->vfork_done)
836 		complete_vfork_done(tsk);
837 }
838 
839 /*
840  * Allocate a new mm structure and copy contents from the
841  * mm structure of the passed in task structure.
842  */
843 static struct mm_struct *dup_mm(struct task_struct *tsk)
844 {
845 	struct mm_struct *mm, *oldmm = current->mm;
846 	int err;
847 
848 	mm = allocate_mm();
849 	if (!mm)
850 		goto fail_nomem;
851 
852 	memcpy(mm, oldmm, sizeof(*mm));
853 
854 	if (!mm_init(mm, tsk))
855 		goto fail_nomem;
856 
857 	dup_mm_exe_file(oldmm, mm);
858 
859 	err = dup_mmap(mm, oldmm);
860 	if (err)
861 		goto free_pt;
862 
863 	mm->hiwater_rss = get_mm_rss(mm);
864 	mm->hiwater_vm = mm->total_vm;
865 
866 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
867 		goto free_pt;
868 
869 	return mm;
870 
871 free_pt:
872 	/* don't put binfmt in mmput, we haven't got module yet */
873 	mm->binfmt = NULL;
874 	mmput(mm);
875 
876 fail_nomem:
877 	return NULL;
878 }
879 
880 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
881 {
882 	struct mm_struct *mm, *oldmm;
883 	int retval;
884 
885 	tsk->min_flt = tsk->maj_flt = 0;
886 	tsk->nvcsw = tsk->nivcsw = 0;
887 #ifdef CONFIG_DETECT_HUNG_TASK
888 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
889 #endif
890 
891 	tsk->mm = NULL;
892 	tsk->active_mm = NULL;
893 
894 	/*
895 	 * Are we cloning a kernel thread?
896 	 *
897 	 * We need to steal a active VM for that..
898 	 */
899 	oldmm = current->mm;
900 	if (!oldmm)
901 		return 0;
902 
903 	/* initialize the new vmacache entries */
904 	vmacache_flush(tsk);
905 
906 	if (clone_flags & CLONE_VM) {
907 		atomic_inc(&oldmm->mm_users);
908 		mm = oldmm;
909 		goto good_mm;
910 	}
911 
912 	retval = -ENOMEM;
913 	mm = dup_mm(tsk);
914 	if (!mm)
915 		goto fail_nomem;
916 
917 good_mm:
918 	tsk->mm = mm;
919 	tsk->active_mm = mm;
920 	return 0;
921 
922 fail_nomem:
923 	return retval;
924 }
925 
926 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
927 {
928 	struct fs_struct *fs = current->fs;
929 	if (clone_flags & CLONE_FS) {
930 		/* tsk->fs is already what we want */
931 		spin_lock(&fs->lock);
932 		if (fs->in_exec) {
933 			spin_unlock(&fs->lock);
934 			return -EAGAIN;
935 		}
936 		fs->users++;
937 		spin_unlock(&fs->lock);
938 		return 0;
939 	}
940 	tsk->fs = copy_fs_struct(fs);
941 	if (!tsk->fs)
942 		return -ENOMEM;
943 	return 0;
944 }
945 
946 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
947 {
948 	struct files_struct *oldf, *newf;
949 	int error = 0;
950 
951 	/*
952 	 * A background process may not have any files ...
953 	 */
954 	oldf = current->files;
955 	if (!oldf)
956 		goto out;
957 
958 	if (clone_flags & CLONE_FILES) {
959 		atomic_inc(&oldf->count);
960 		goto out;
961 	}
962 
963 	newf = dup_fd(oldf, &error);
964 	if (!newf)
965 		goto out;
966 
967 	tsk->files = newf;
968 	error = 0;
969 out:
970 	return error;
971 }
972 
973 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
974 {
975 #ifdef CONFIG_BLOCK
976 	struct io_context *ioc = current->io_context;
977 	struct io_context *new_ioc;
978 
979 	if (!ioc)
980 		return 0;
981 	/*
982 	 * Share io context with parent, if CLONE_IO is set
983 	 */
984 	if (clone_flags & CLONE_IO) {
985 		ioc_task_link(ioc);
986 		tsk->io_context = ioc;
987 	} else if (ioprio_valid(ioc->ioprio)) {
988 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
989 		if (unlikely(!new_ioc))
990 			return -ENOMEM;
991 
992 		new_ioc->ioprio = ioc->ioprio;
993 		put_io_context(new_ioc);
994 	}
995 #endif
996 	return 0;
997 }
998 
999 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1000 {
1001 	struct sighand_struct *sig;
1002 
1003 	if (clone_flags & CLONE_SIGHAND) {
1004 		atomic_inc(&current->sighand->count);
1005 		return 0;
1006 	}
1007 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1008 	rcu_assign_pointer(tsk->sighand, sig);
1009 	if (!sig)
1010 		return -ENOMEM;
1011 	atomic_set(&sig->count, 1);
1012 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1013 	return 0;
1014 }
1015 
1016 void __cleanup_sighand(struct sighand_struct *sighand)
1017 {
1018 	if (atomic_dec_and_test(&sighand->count)) {
1019 		signalfd_cleanup(sighand);
1020 		kmem_cache_free(sighand_cachep, sighand);
1021 	}
1022 }
1023 
1024 
1025 /*
1026  * Initialize POSIX timer handling for a thread group.
1027  */
1028 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1029 {
1030 	unsigned long cpu_limit;
1031 
1032 	/* Thread group counters. */
1033 	thread_group_cputime_init(sig);
1034 
1035 	cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1036 	if (cpu_limit != RLIM_INFINITY) {
1037 		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1038 		sig->cputimer.running = 1;
1039 	}
1040 
1041 	/* The timer lists. */
1042 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1043 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1044 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1045 }
1046 
1047 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1048 {
1049 	struct signal_struct *sig;
1050 
1051 	if (clone_flags & CLONE_THREAD)
1052 		return 0;
1053 
1054 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1055 	tsk->signal = sig;
1056 	if (!sig)
1057 		return -ENOMEM;
1058 
1059 	sig->nr_threads = 1;
1060 	atomic_set(&sig->live, 1);
1061 	atomic_set(&sig->sigcnt, 1);
1062 
1063 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1064 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1065 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1066 
1067 	init_waitqueue_head(&sig->wait_chldexit);
1068 	sig->curr_target = tsk;
1069 	init_sigpending(&sig->shared_pending);
1070 	INIT_LIST_HEAD(&sig->posix_timers);
1071 
1072 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1073 	sig->real_timer.function = it_real_fn;
1074 
1075 	task_lock(current->group_leader);
1076 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1077 	task_unlock(current->group_leader);
1078 
1079 	posix_cpu_timers_init_group(sig);
1080 
1081 	tty_audit_fork(sig);
1082 	sched_autogroup_fork(sig);
1083 
1084 #ifdef CONFIG_CGROUPS
1085 	init_rwsem(&sig->group_rwsem);
1086 #endif
1087 
1088 	sig->oom_score_adj = current->signal->oom_score_adj;
1089 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1090 
1091 	sig->has_child_subreaper = current->signal->has_child_subreaper ||
1092 				   current->signal->is_child_subreaper;
1093 
1094 	mutex_init(&sig->cred_guard_mutex);
1095 
1096 	return 0;
1097 }
1098 
1099 static void copy_seccomp(struct task_struct *p)
1100 {
1101 #ifdef CONFIG_SECCOMP
1102 	/*
1103 	 * Must be called with sighand->lock held, which is common to
1104 	 * all threads in the group. Holding cred_guard_mutex is not
1105 	 * needed because this new task is not yet running and cannot
1106 	 * be racing exec.
1107 	 */
1108 	assert_spin_locked(&current->sighand->siglock);
1109 
1110 	/* Ref-count the new filter user, and assign it. */
1111 	get_seccomp_filter(current);
1112 	p->seccomp = current->seccomp;
1113 
1114 	/*
1115 	 * Explicitly enable no_new_privs here in case it got set
1116 	 * between the task_struct being duplicated and holding the
1117 	 * sighand lock. The seccomp state and nnp must be in sync.
1118 	 */
1119 	if (task_no_new_privs(current))
1120 		task_set_no_new_privs(p);
1121 
1122 	/*
1123 	 * If the parent gained a seccomp mode after copying thread
1124 	 * flags and between before we held the sighand lock, we have
1125 	 * to manually enable the seccomp thread flag here.
1126 	 */
1127 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1128 		set_tsk_thread_flag(p, TIF_SECCOMP);
1129 #endif
1130 }
1131 
1132 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1133 {
1134 	current->clear_child_tid = tidptr;
1135 
1136 	return task_pid_vnr(current);
1137 }
1138 
1139 static void rt_mutex_init_task(struct task_struct *p)
1140 {
1141 	raw_spin_lock_init(&p->pi_lock);
1142 #ifdef CONFIG_RT_MUTEXES
1143 	p->pi_waiters = RB_ROOT;
1144 	p->pi_waiters_leftmost = NULL;
1145 	p->pi_blocked_on = NULL;
1146 #endif
1147 }
1148 
1149 /*
1150  * Initialize POSIX timer handling for a single task.
1151  */
1152 static void posix_cpu_timers_init(struct task_struct *tsk)
1153 {
1154 	tsk->cputime_expires.prof_exp = 0;
1155 	tsk->cputime_expires.virt_exp = 0;
1156 	tsk->cputime_expires.sched_exp = 0;
1157 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1158 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1159 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1160 }
1161 
1162 static inline void
1163 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1164 {
1165 	 task->pids[type].pid = pid;
1166 }
1167 
1168 /*
1169  * This creates a new process as a copy of the old one,
1170  * but does not actually start it yet.
1171  *
1172  * It copies the registers, and all the appropriate
1173  * parts of the process environment (as per the clone
1174  * flags). The actual kick-off is left to the caller.
1175  */
1176 static struct task_struct *copy_process(unsigned long clone_flags,
1177 					unsigned long stack_start,
1178 					unsigned long stack_size,
1179 					int __user *child_tidptr,
1180 					struct pid *pid,
1181 					int trace)
1182 {
1183 	int retval;
1184 	struct task_struct *p;
1185 
1186 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1187 		return ERR_PTR(-EINVAL);
1188 
1189 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1190 		return ERR_PTR(-EINVAL);
1191 
1192 	/*
1193 	 * Thread groups must share signals as well, and detached threads
1194 	 * can only be started up within the thread group.
1195 	 */
1196 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1197 		return ERR_PTR(-EINVAL);
1198 
1199 	/*
1200 	 * Shared signal handlers imply shared VM. By way of the above,
1201 	 * thread groups also imply shared VM. Blocking this case allows
1202 	 * for various simplifications in other code.
1203 	 */
1204 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1205 		return ERR_PTR(-EINVAL);
1206 
1207 	/*
1208 	 * Siblings of global init remain as zombies on exit since they are
1209 	 * not reaped by their parent (swapper). To solve this and to avoid
1210 	 * multi-rooted process trees, prevent global and container-inits
1211 	 * from creating siblings.
1212 	 */
1213 	if ((clone_flags & CLONE_PARENT) &&
1214 				current->signal->flags & SIGNAL_UNKILLABLE)
1215 		return ERR_PTR(-EINVAL);
1216 
1217 	/*
1218 	 * If the new process will be in a different pid or user namespace
1219 	 * do not allow it to share a thread group or signal handlers or
1220 	 * parent with the forking task.
1221 	 */
1222 	if (clone_flags & CLONE_SIGHAND) {
1223 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1224 		    (task_active_pid_ns(current) !=
1225 				current->nsproxy->pid_ns_for_children))
1226 			return ERR_PTR(-EINVAL);
1227 	}
1228 
1229 	retval = security_task_create(clone_flags);
1230 	if (retval)
1231 		goto fork_out;
1232 
1233 	retval = -ENOMEM;
1234 	p = dup_task_struct(current);
1235 	if (!p)
1236 		goto fork_out;
1237 
1238 	ftrace_graph_init_task(p);
1239 
1240 	rt_mutex_init_task(p);
1241 
1242 #ifdef CONFIG_PROVE_LOCKING
1243 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1244 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1245 #endif
1246 	retval = -EAGAIN;
1247 	if (atomic_read(&p->real_cred->user->processes) >=
1248 			task_rlimit(p, RLIMIT_NPROC)) {
1249 		if (p->real_cred->user != INIT_USER &&
1250 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1251 			goto bad_fork_free;
1252 	}
1253 	current->flags &= ~PF_NPROC_EXCEEDED;
1254 
1255 	retval = copy_creds(p, clone_flags);
1256 	if (retval < 0)
1257 		goto bad_fork_free;
1258 
1259 	/*
1260 	 * If multiple threads are within copy_process(), then this check
1261 	 * triggers too late. This doesn't hurt, the check is only there
1262 	 * to stop root fork bombs.
1263 	 */
1264 	retval = -EAGAIN;
1265 	if (nr_threads >= max_threads)
1266 		goto bad_fork_cleanup_count;
1267 
1268 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1269 		goto bad_fork_cleanup_count;
1270 
1271 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1272 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1273 	p->flags |= PF_FORKNOEXEC;
1274 	INIT_LIST_HEAD(&p->children);
1275 	INIT_LIST_HEAD(&p->sibling);
1276 	rcu_copy_process(p);
1277 	p->vfork_done = NULL;
1278 	spin_lock_init(&p->alloc_lock);
1279 
1280 	init_sigpending(&p->pending);
1281 
1282 	p->utime = p->stime = p->gtime = 0;
1283 	p->utimescaled = p->stimescaled = 0;
1284 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1285 	p->prev_cputime.utime = p->prev_cputime.stime = 0;
1286 #endif
1287 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1288 	seqlock_init(&p->vtime_seqlock);
1289 	p->vtime_snap = 0;
1290 	p->vtime_snap_whence = VTIME_SLEEPING;
1291 #endif
1292 
1293 #if defined(SPLIT_RSS_COUNTING)
1294 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1295 #endif
1296 
1297 	p->default_timer_slack_ns = current->timer_slack_ns;
1298 
1299 	task_io_accounting_init(&p->ioac);
1300 	acct_clear_integrals(p);
1301 
1302 	posix_cpu_timers_init(p);
1303 
1304 	p->start_time = ktime_get_ns();
1305 	p->real_start_time = ktime_get_boot_ns();
1306 	p->io_context = NULL;
1307 	p->audit_context = NULL;
1308 	if (clone_flags & CLONE_THREAD)
1309 		threadgroup_change_begin(current);
1310 	cgroup_fork(p);
1311 #ifdef CONFIG_NUMA
1312 	p->mempolicy = mpol_dup(p->mempolicy);
1313 	if (IS_ERR(p->mempolicy)) {
1314 		retval = PTR_ERR(p->mempolicy);
1315 		p->mempolicy = NULL;
1316 		goto bad_fork_cleanup_threadgroup_lock;
1317 	}
1318 #endif
1319 #ifdef CONFIG_CPUSETS
1320 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1321 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1322 	seqcount_init(&p->mems_allowed_seq);
1323 #endif
1324 #ifdef CONFIG_TRACE_IRQFLAGS
1325 	p->irq_events = 0;
1326 	p->hardirqs_enabled = 0;
1327 	p->hardirq_enable_ip = 0;
1328 	p->hardirq_enable_event = 0;
1329 	p->hardirq_disable_ip = _THIS_IP_;
1330 	p->hardirq_disable_event = 0;
1331 	p->softirqs_enabled = 1;
1332 	p->softirq_enable_ip = _THIS_IP_;
1333 	p->softirq_enable_event = 0;
1334 	p->softirq_disable_ip = 0;
1335 	p->softirq_disable_event = 0;
1336 	p->hardirq_context = 0;
1337 	p->softirq_context = 0;
1338 #endif
1339 #ifdef CONFIG_LOCKDEP
1340 	p->lockdep_depth = 0; /* no locks held yet */
1341 	p->curr_chain_key = 0;
1342 	p->lockdep_recursion = 0;
1343 #endif
1344 
1345 #ifdef CONFIG_DEBUG_MUTEXES
1346 	p->blocked_on = NULL; /* not blocked yet */
1347 #endif
1348 #ifdef CONFIG_BCACHE
1349 	p->sequential_io	= 0;
1350 	p->sequential_io_avg	= 0;
1351 #endif
1352 
1353 	/* Perform scheduler related setup. Assign this task to a CPU. */
1354 	retval = sched_fork(clone_flags, p);
1355 	if (retval)
1356 		goto bad_fork_cleanup_policy;
1357 
1358 	retval = perf_event_init_task(p);
1359 	if (retval)
1360 		goto bad_fork_cleanup_policy;
1361 	retval = audit_alloc(p);
1362 	if (retval)
1363 		goto bad_fork_cleanup_perf;
1364 	/* copy all the process information */
1365 	shm_init_task(p);
1366 	retval = copy_semundo(clone_flags, p);
1367 	if (retval)
1368 		goto bad_fork_cleanup_audit;
1369 	retval = copy_files(clone_flags, p);
1370 	if (retval)
1371 		goto bad_fork_cleanup_semundo;
1372 	retval = copy_fs(clone_flags, p);
1373 	if (retval)
1374 		goto bad_fork_cleanup_files;
1375 	retval = copy_sighand(clone_flags, p);
1376 	if (retval)
1377 		goto bad_fork_cleanup_fs;
1378 	retval = copy_signal(clone_flags, p);
1379 	if (retval)
1380 		goto bad_fork_cleanup_sighand;
1381 	retval = copy_mm(clone_flags, p);
1382 	if (retval)
1383 		goto bad_fork_cleanup_signal;
1384 	retval = copy_namespaces(clone_flags, p);
1385 	if (retval)
1386 		goto bad_fork_cleanup_mm;
1387 	retval = copy_io(clone_flags, p);
1388 	if (retval)
1389 		goto bad_fork_cleanup_namespaces;
1390 	retval = copy_thread(clone_flags, stack_start, stack_size, p);
1391 	if (retval)
1392 		goto bad_fork_cleanup_io;
1393 
1394 	if (pid != &init_struct_pid) {
1395 		retval = -ENOMEM;
1396 		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1397 		if (!pid)
1398 			goto bad_fork_cleanup_io;
1399 	}
1400 
1401 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1402 	/*
1403 	 * Clear TID on mm_release()?
1404 	 */
1405 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1406 #ifdef CONFIG_BLOCK
1407 	p->plug = NULL;
1408 #endif
1409 #ifdef CONFIG_FUTEX
1410 	p->robust_list = NULL;
1411 #ifdef CONFIG_COMPAT
1412 	p->compat_robust_list = NULL;
1413 #endif
1414 	INIT_LIST_HEAD(&p->pi_state_list);
1415 	p->pi_state_cache = NULL;
1416 #endif
1417 	/*
1418 	 * sigaltstack should be cleared when sharing the same VM
1419 	 */
1420 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1421 		p->sas_ss_sp = p->sas_ss_size = 0;
1422 
1423 	/*
1424 	 * Syscall tracing and stepping should be turned off in the
1425 	 * child regardless of CLONE_PTRACE.
1426 	 */
1427 	user_disable_single_step(p);
1428 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1429 #ifdef TIF_SYSCALL_EMU
1430 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1431 #endif
1432 	clear_all_latency_tracing(p);
1433 
1434 	/* ok, now we should be set up.. */
1435 	p->pid = pid_nr(pid);
1436 	if (clone_flags & CLONE_THREAD) {
1437 		p->exit_signal = -1;
1438 		p->group_leader = current->group_leader;
1439 		p->tgid = current->tgid;
1440 	} else {
1441 		if (clone_flags & CLONE_PARENT)
1442 			p->exit_signal = current->group_leader->exit_signal;
1443 		else
1444 			p->exit_signal = (clone_flags & CSIGNAL);
1445 		p->group_leader = p;
1446 		p->tgid = p->pid;
1447 	}
1448 
1449 	p->nr_dirtied = 0;
1450 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1451 	p->dirty_paused_when = 0;
1452 
1453 	p->pdeath_signal = 0;
1454 	INIT_LIST_HEAD(&p->thread_group);
1455 	p->task_works = NULL;
1456 
1457 	/*
1458 	 * Make it visible to the rest of the system, but dont wake it up yet.
1459 	 * Need tasklist lock for parent etc handling!
1460 	 */
1461 	write_lock_irq(&tasklist_lock);
1462 
1463 	/* CLONE_PARENT re-uses the old parent */
1464 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1465 		p->real_parent = current->real_parent;
1466 		p->parent_exec_id = current->parent_exec_id;
1467 	} else {
1468 		p->real_parent = current;
1469 		p->parent_exec_id = current->self_exec_id;
1470 	}
1471 
1472 	spin_lock(&current->sighand->siglock);
1473 
1474 	/*
1475 	 * Copy seccomp details explicitly here, in case they were changed
1476 	 * before holding sighand lock.
1477 	 */
1478 	copy_seccomp(p);
1479 
1480 	/*
1481 	 * Process group and session signals need to be delivered to just the
1482 	 * parent before the fork or both the parent and the child after the
1483 	 * fork. Restart if a signal comes in before we add the new process to
1484 	 * it's process group.
1485 	 * A fatal signal pending means that current will exit, so the new
1486 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1487 	*/
1488 	recalc_sigpending();
1489 	if (signal_pending(current)) {
1490 		spin_unlock(&current->sighand->siglock);
1491 		write_unlock_irq(&tasklist_lock);
1492 		retval = -ERESTARTNOINTR;
1493 		goto bad_fork_free_pid;
1494 	}
1495 
1496 	if (likely(p->pid)) {
1497 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1498 
1499 		init_task_pid(p, PIDTYPE_PID, pid);
1500 		if (thread_group_leader(p)) {
1501 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1502 			init_task_pid(p, PIDTYPE_SID, task_session(current));
1503 
1504 			if (is_child_reaper(pid)) {
1505 				ns_of_pid(pid)->child_reaper = p;
1506 				p->signal->flags |= SIGNAL_UNKILLABLE;
1507 			}
1508 
1509 			p->signal->leader_pid = pid;
1510 			p->signal->tty = tty_kref_get(current->signal->tty);
1511 			list_add_tail(&p->sibling, &p->real_parent->children);
1512 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1513 			attach_pid(p, PIDTYPE_PGID);
1514 			attach_pid(p, PIDTYPE_SID);
1515 			__this_cpu_inc(process_counts);
1516 		} else {
1517 			current->signal->nr_threads++;
1518 			atomic_inc(&current->signal->live);
1519 			atomic_inc(&current->signal->sigcnt);
1520 			list_add_tail_rcu(&p->thread_group,
1521 					  &p->group_leader->thread_group);
1522 			list_add_tail_rcu(&p->thread_node,
1523 					  &p->signal->thread_head);
1524 		}
1525 		attach_pid(p, PIDTYPE_PID);
1526 		nr_threads++;
1527 	}
1528 
1529 	total_forks++;
1530 	spin_unlock(&current->sighand->siglock);
1531 	syscall_tracepoint_update(p);
1532 	write_unlock_irq(&tasklist_lock);
1533 
1534 	proc_fork_connector(p);
1535 	cgroup_post_fork(p);
1536 	if (clone_flags & CLONE_THREAD)
1537 		threadgroup_change_end(current);
1538 	perf_event_fork(p);
1539 
1540 	trace_task_newtask(p, clone_flags);
1541 	uprobe_copy_process(p, clone_flags);
1542 
1543 	return p;
1544 
1545 bad_fork_free_pid:
1546 	if (pid != &init_struct_pid)
1547 		free_pid(pid);
1548 bad_fork_cleanup_io:
1549 	if (p->io_context)
1550 		exit_io_context(p);
1551 bad_fork_cleanup_namespaces:
1552 	exit_task_namespaces(p);
1553 bad_fork_cleanup_mm:
1554 	if (p->mm)
1555 		mmput(p->mm);
1556 bad_fork_cleanup_signal:
1557 	if (!(clone_flags & CLONE_THREAD))
1558 		free_signal_struct(p->signal);
1559 bad_fork_cleanup_sighand:
1560 	__cleanup_sighand(p->sighand);
1561 bad_fork_cleanup_fs:
1562 	exit_fs(p); /* blocking */
1563 bad_fork_cleanup_files:
1564 	exit_files(p); /* blocking */
1565 bad_fork_cleanup_semundo:
1566 	exit_sem(p);
1567 bad_fork_cleanup_audit:
1568 	audit_free(p);
1569 bad_fork_cleanup_perf:
1570 	perf_event_free_task(p);
1571 bad_fork_cleanup_policy:
1572 #ifdef CONFIG_NUMA
1573 	mpol_put(p->mempolicy);
1574 bad_fork_cleanup_threadgroup_lock:
1575 #endif
1576 	if (clone_flags & CLONE_THREAD)
1577 		threadgroup_change_end(current);
1578 	delayacct_tsk_free(p);
1579 	module_put(task_thread_info(p)->exec_domain->module);
1580 bad_fork_cleanup_count:
1581 	atomic_dec(&p->cred->user->processes);
1582 	exit_creds(p);
1583 bad_fork_free:
1584 	free_task(p);
1585 fork_out:
1586 	return ERR_PTR(retval);
1587 }
1588 
1589 static inline void init_idle_pids(struct pid_link *links)
1590 {
1591 	enum pid_type type;
1592 
1593 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1594 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1595 		links[type].pid = &init_struct_pid;
1596 	}
1597 }
1598 
1599 struct task_struct *fork_idle(int cpu)
1600 {
1601 	struct task_struct *task;
1602 	task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
1603 	if (!IS_ERR(task)) {
1604 		init_idle_pids(task->pids);
1605 		init_idle(task, cpu);
1606 	}
1607 
1608 	return task;
1609 }
1610 
1611 /*
1612  *  Ok, this is the main fork-routine.
1613  *
1614  * It copies the process, and if successful kick-starts
1615  * it and waits for it to finish using the VM if required.
1616  */
1617 long do_fork(unsigned long clone_flags,
1618 	      unsigned long stack_start,
1619 	      unsigned long stack_size,
1620 	      int __user *parent_tidptr,
1621 	      int __user *child_tidptr)
1622 {
1623 	struct task_struct *p;
1624 	int trace = 0;
1625 	long nr;
1626 
1627 	/*
1628 	 * Determine whether and which event to report to ptracer.  When
1629 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
1630 	 * requested, no event is reported; otherwise, report if the event
1631 	 * for the type of forking is enabled.
1632 	 */
1633 	if (!(clone_flags & CLONE_UNTRACED)) {
1634 		if (clone_flags & CLONE_VFORK)
1635 			trace = PTRACE_EVENT_VFORK;
1636 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
1637 			trace = PTRACE_EVENT_CLONE;
1638 		else
1639 			trace = PTRACE_EVENT_FORK;
1640 
1641 		if (likely(!ptrace_event_enabled(current, trace)))
1642 			trace = 0;
1643 	}
1644 
1645 	p = copy_process(clone_flags, stack_start, stack_size,
1646 			 child_tidptr, NULL, trace);
1647 	/*
1648 	 * Do this prior waking up the new thread - the thread pointer
1649 	 * might get invalid after that point, if the thread exits quickly.
1650 	 */
1651 	if (!IS_ERR(p)) {
1652 		struct completion vfork;
1653 		struct pid *pid;
1654 
1655 		trace_sched_process_fork(current, p);
1656 
1657 		pid = get_task_pid(p, PIDTYPE_PID);
1658 		nr = pid_vnr(pid);
1659 
1660 		if (clone_flags & CLONE_PARENT_SETTID)
1661 			put_user(nr, parent_tidptr);
1662 
1663 		if (clone_flags & CLONE_VFORK) {
1664 			p->vfork_done = &vfork;
1665 			init_completion(&vfork);
1666 			get_task_struct(p);
1667 		}
1668 
1669 		wake_up_new_task(p);
1670 
1671 		/* forking complete and child started to run, tell ptracer */
1672 		if (unlikely(trace))
1673 			ptrace_event_pid(trace, pid);
1674 
1675 		if (clone_flags & CLONE_VFORK) {
1676 			if (!wait_for_vfork_done(p, &vfork))
1677 				ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1678 		}
1679 
1680 		put_pid(pid);
1681 	} else {
1682 		nr = PTR_ERR(p);
1683 	}
1684 	return nr;
1685 }
1686 
1687 /*
1688  * Create a kernel thread.
1689  */
1690 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1691 {
1692 	return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1693 		(unsigned long)arg, NULL, NULL);
1694 }
1695 
1696 #ifdef __ARCH_WANT_SYS_FORK
1697 SYSCALL_DEFINE0(fork)
1698 {
1699 #ifdef CONFIG_MMU
1700 	return do_fork(SIGCHLD, 0, 0, NULL, NULL);
1701 #else
1702 	/* can not support in nommu mode */
1703 	return -EINVAL;
1704 #endif
1705 }
1706 #endif
1707 
1708 #ifdef __ARCH_WANT_SYS_VFORK
1709 SYSCALL_DEFINE0(vfork)
1710 {
1711 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1712 			0, NULL, NULL);
1713 }
1714 #endif
1715 
1716 #ifdef __ARCH_WANT_SYS_CLONE
1717 #ifdef CONFIG_CLONE_BACKWARDS
1718 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1719 		 int __user *, parent_tidptr,
1720 		 int, tls_val,
1721 		 int __user *, child_tidptr)
1722 #elif defined(CONFIG_CLONE_BACKWARDS2)
1723 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1724 		 int __user *, parent_tidptr,
1725 		 int __user *, child_tidptr,
1726 		 int, tls_val)
1727 #elif defined(CONFIG_CLONE_BACKWARDS3)
1728 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1729 		int, stack_size,
1730 		int __user *, parent_tidptr,
1731 		int __user *, child_tidptr,
1732 		int, tls_val)
1733 #else
1734 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1735 		 int __user *, parent_tidptr,
1736 		 int __user *, child_tidptr,
1737 		 int, tls_val)
1738 #endif
1739 {
1740 	return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
1741 }
1742 #endif
1743 
1744 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1745 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1746 #endif
1747 
1748 static void sighand_ctor(void *data)
1749 {
1750 	struct sighand_struct *sighand = data;
1751 
1752 	spin_lock_init(&sighand->siglock);
1753 	init_waitqueue_head(&sighand->signalfd_wqh);
1754 }
1755 
1756 void __init proc_caches_init(void)
1757 {
1758 	sighand_cachep = kmem_cache_create("sighand_cache",
1759 			sizeof(struct sighand_struct), 0,
1760 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1761 			SLAB_NOTRACK, sighand_ctor);
1762 	signal_cachep = kmem_cache_create("signal_cache",
1763 			sizeof(struct signal_struct), 0,
1764 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1765 	files_cachep = kmem_cache_create("files_cache",
1766 			sizeof(struct files_struct), 0,
1767 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1768 	fs_cachep = kmem_cache_create("fs_cache",
1769 			sizeof(struct fs_struct), 0,
1770 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1771 	/*
1772 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1773 	 * whole struct cpumask for the OFFSTACK case. We could change
1774 	 * this to *only* allocate as much of it as required by the
1775 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
1776 	 * is at the end of the structure, exactly for that reason.
1777 	 */
1778 	mm_cachep = kmem_cache_create("mm_struct",
1779 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1780 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1781 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1782 	mmap_init();
1783 	nsproxy_cache_init();
1784 }
1785 
1786 /*
1787  * Check constraints on flags passed to the unshare system call.
1788  */
1789 static int check_unshare_flags(unsigned long unshare_flags)
1790 {
1791 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1792 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1793 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1794 				CLONE_NEWUSER|CLONE_NEWPID))
1795 		return -EINVAL;
1796 	/*
1797 	 * Not implemented, but pretend it works if there is nothing to
1798 	 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1799 	 * needs to unshare vm.
1800 	 */
1801 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1802 		/* FIXME: get_task_mm() increments ->mm_users */
1803 		if (atomic_read(&current->mm->mm_users) > 1)
1804 			return -EINVAL;
1805 	}
1806 
1807 	return 0;
1808 }
1809 
1810 /*
1811  * Unshare the filesystem structure if it is being shared
1812  */
1813 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1814 {
1815 	struct fs_struct *fs = current->fs;
1816 
1817 	if (!(unshare_flags & CLONE_FS) || !fs)
1818 		return 0;
1819 
1820 	/* don't need lock here; in the worst case we'll do useless copy */
1821 	if (fs->users == 1)
1822 		return 0;
1823 
1824 	*new_fsp = copy_fs_struct(fs);
1825 	if (!*new_fsp)
1826 		return -ENOMEM;
1827 
1828 	return 0;
1829 }
1830 
1831 /*
1832  * Unshare file descriptor table if it is being shared
1833  */
1834 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1835 {
1836 	struct files_struct *fd = current->files;
1837 	int error = 0;
1838 
1839 	if ((unshare_flags & CLONE_FILES) &&
1840 	    (fd && atomic_read(&fd->count) > 1)) {
1841 		*new_fdp = dup_fd(fd, &error);
1842 		if (!*new_fdp)
1843 			return error;
1844 	}
1845 
1846 	return 0;
1847 }
1848 
1849 /*
1850  * unshare allows a process to 'unshare' part of the process
1851  * context which was originally shared using clone.  copy_*
1852  * functions used by do_fork() cannot be used here directly
1853  * because they modify an inactive task_struct that is being
1854  * constructed. Here we are modifying the current, active,
1855  * task_struct.
1856  */
1857 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1858 {
1859 	struct fs_struct *fs, *new_fs = NULL;
1860 	struct files_struct *fd, *new_fd = NULL;
1861 	struct cred *new_cred = NULL;
1862 	struct nsproxy *new_nsproxy = NULL;
1863 	int do_sysvsem = 0;
1864 	int err;
1865 
1866 	/*
1867 	 * If unsharing a user namespace must also unshare the thread.
1868 	 */
1869 	if (unshare_flags & CLONE_NEWUSER)
1870 		unshare_flags |= CLONE_THREAD | CLONE_FS;
1871 	/*
1872 	 * If unsharing a thread from a thread group, must also unshare vm.
1873 	 */
1874 	if (unshare_flags & CLONE_THREAD)
1875 		unshare_flags |= CLONE_VM;
1876 	/*
1877 	 * If unsharing vm, must also unshare signal handlers.
1878 	 */
1879 	if (unshare_flags & CLONE_VM)
1880 		unshare_flags |= CLONE_SIGHAND;
1881 	/*
1882 	 * If unsharing namespace, must also unshare filesystem information.
1883 	 */
1884 	if (unshare_flags & CLONE_NEWNS)
1885 		unshare_flags |= CLONE_FS;
1886 
1887 	err = check_unshare_flags(unshare_flags);
1888 	if (err)
1889 		goto bad_unshare_out;
1890 	/*
1891 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1892 	 * to a new ipc namespace, the semaphore arrays from the old
1893 	 * namespace are unreachable.
1894 	 */
1895 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1896 		do_sysvsem = 1;
1897 	err = unshare_fs(unshare_flags, &new_fs);
1898 	if (err)
1899 		goto bad_unshare_out;
1900 	err = unshare_fd(unshare_flags, &new_fd);
1901 	if (err)
1902 		goto bad_unshare_cleanup_fs;
1903 	err = unshare_userns(unshare_flags, &new_cred);
1904 	if (err)
1905 		goto bad_unshare_cleanup_fd;
1906 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1907 					 new_cred, new_fs);
1908 	if (err)
1909 		goto bad_unshare_cleanup_cred;
1910 
1911 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
1912 		if (do_sysvsem) {
1913 			/*
1914 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1915 			 */
1916 			exit_sem(current);
1917 		}
1918 		if (unshare_flags & CLONE_NEWIPC) {
1919 			/* Orphan segments in old ns (see sem above). */
1920 			exit_shm(current);
1921 			shm_init_task(current);
1922 		}
1923 
1924 		if (new_nsproxy)
1925 			switch_task_namespaces(current, new_nsproxy);
1926 
1927 		task_lock(current);
1928 
1929 		if (new_fs) {
1930 			fs = current->fs;
1931 			spin_lock(&fs->lock);
1932 			current->fs = new_fs;
1933 			if (--fs->users)
1934 				new_fs = NULL;
1935 			else
1936 				new_fs = fs;
1937 			spin_unlock(&fs->lock);
1938 		}
1939 
1940 		if (new_fd) {
1941 			fd = current->files;
1942 			current->files = new_fd;
1943 			new_fd = fd;
1944 		}
1945 
1946 		task_unlock(current);
1947 
1948 		if (new_cred) {
1949 			/* Install the new user namespace */
1950 			commit_creds(new_cred);
1951 			new_cred = NULL;
1952 		}
1953 	}
1954 
1955 bad_unshare_cleanup_cred:
1956 	if (new_cred)
1957 		put_cred(new_cred);
1958 bad_unshare_cleanup_fd:
1959 	if (new_fd)
1960 		put_files_struct(new_fd);
1961 
1962 bad_unshare_cleanup_fs:
1963 	if (new_fs)
1964 		free_fs_struct(new_fs);
1965 
1966 bad_unshare_out:
1967 	return err;
1968 }
1969 
1970 /*
1971  *	Helper to unshare the files of the current task.
1972  *	We don't want to expose copy_files internals to
1973  *	the exec layer of the kernel.
1974  */
1975 
1976 int unshare_files(struct files_struct **displaced)
1977 {
1978 	struct task_struct *task = current;
1979 	struct files_struct *copy = NULL;
1980 	int error;
1981 
1982 	error = unshare_fd(CLONE_FILES, &copy);
1983 	if (error || !copy) {
1984 		*displaced = NULL;
1985 		return error;
1986 	}
1987 	*displaced = task->files;
1988 	task_lock(task);
1989 	task->files = copy;
1990 	task_unlock(task);
1991 	return 0;
1992 }
1993