xref: /linux/kernel/fork.c (revision 363737d66427c18edb321a06933ac999d9ce5d7f)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/seccomp.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/rmap.h>
54 #include <linux/ksm.h>
55 #include <linux/acct.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/freezer.h>
59 #include <linux/delayacct.h>
60 #include <linux/taskstats_kern.h>
61 #include <linux/random.h>
62 #include <linux/tty.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71 #include <linux/signalfd.h>
72 #include <linux/uprobes.h>
73 
74 #include <asm/pgtable.h>
75 #include <asm/pgalloc.h>
76 #include <asm/uaccess.h>
77 #include <asm/mmu_context.h>
78 #include <asm/cacheflush.h>
79 #include <asm/tlbflush.h>
80 
81 #include <trace/events/sched.h>
82 
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/task.h>
85 
86 /*
87  * Protected counters by write_lock_irq(&tasklist_lock)
88  */
89 unsigned long total_forks;	/* Handle normal Linux uptimes. */
90 int nr_threads;			/* The idle threads do not count.. */
91 
92 int max_threads;		/* tunable limit on nr_threads */
93 
94 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
95 
96 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
97 
98 #ifdef CONFIG_PROVE_RCU
99 int lockdep_tasklist_lock_is_held(void)
100 {
101 	return lockdep_is_held(&tasklist_lock);
102 }
103 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
104 #endif /* #ifdef CONFIG_PROVE_RCU */
105 
106 int nr_processes(void)
107 {
108 	int cpu;
109 	int total = 0;
110 
111 	for_each_possible_cpu(cpu)
112 		total += per_cpu(process_counts, cpu);
113 
114 	return total;
115 }
116 
117 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
118 static struct kmem_cache *task_struct_cachep;
119 
120 static inline struct task_struct *alloc_task_struct_node(int node)
121 {
122 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
123 }
124 
125 void __weak arch_release_task_struct(struct task_struct *tsk) { }
126 
127 static inline void free_task_struct(struct task_struct *tsk)
128 {
129 	arch_release_task_struct(tsk);
130 	kmem_cache_free(task_struct_cachep, tsk);
131 }
132 #endif
133 
134 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
135 void __weak arch_release_thread_info(struct thread_info *ti) { }
136 
137 /*
138  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
139  * kmemcache based allocator.
140  */
141 # if THREAD_SIZE >= PAGE_SIZE
142 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
143 						  int node)
144 {
145 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
146 					     THREAD_SIZE_ORDER);
147 
148 	return page ? page_address(page) : NULL;
149 }
150 
151 static inline void free_thread_info(struct thread_info *ti)
152 {
153 	arch_release_thread_info(ti);
154 	free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
155 }
156 # else
157 static struct kmem_cache *thread_info_cache;
158 
159 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
160 						  int node)
161 {
162 	return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
163 }
164 
165 static void free_thread_info(struct thread_info *ti)
166 {
167 	arch_release_thread_info(ti);
168 	kmem_cache_free(thread_info_cache, ti);
169 }
170 
171 void thread_info_cache_init(void)
172 {
173 	thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
174 					      THREAD_SIZE, 0, NULL);
175 	BUG_ON(thread_info_cache == NULL);
176 }
177 # endif
178 #endif
179 
180 /* SLAB cache for signal_struct structures (tsk->signal) */
181 static struct kmem_cache *signal_cachep;
182 
183 /* SLAB cache for sighand_struct structures (tsk->sighand) */
184 struct kmem_cache *sighand_cachep;
185 
186 /* SLAB cache for files_struct structures (tsk->files) */
187 struct kmem_cache *files_cachep;
188 
189 /* SLAB cache for fs_struct structures (tsk->fs) */
190 struct kmem_cache *fs_cachep;
191 
192 /* SLAB cache for vm_area_struct structures */
193 struct kmem_cache *vm_area_cachep;
194 
195 /* SLAB cache for mm_struct structures (tsk->mm) */
196 static struct kmem_cache *mm_cachep;
197 
198 static void account_kernel_stack(struct thread_info *ti, int account)
199 {
200 	struct zone *zone = page_zone(virt_to_page(ti));
201 
202 	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
203 }
204 
205 void free_task(struct task_struct *tsk)
206 {
207 	account_kernel_stack(tsk->stack, -1);
208 	free_thread_info(tsk->stack);
209 	rt_mutex_debug_task_free(tsk);
210 	ftrace_graph_exit_task(tsk);
211 	put_seccomp_filter(tsk);
212 	free_task_struct(tsk);
213 }
214 EXPORT_SYMBOL(free_task);
215 
216 static inline void free_signal_struct(struct signal_struct *sig)
217 {
218 	taskstats_tgid_free(sig);
219 	sched_autogroup_exit(sig);
220 	kmem_cache_free(signal_cachep, sig);
221 }
222 
223 static inline void put_signal_struct(struct signal_struct *sig)
224 {
225 	if (atomic_dec_and_test(&sig->sigcnt))
226 		free_signal_struct(sig);
227 }
228 
229 void __put_task_struct(struct task_struct *tsk)
230 {
231 	WARN_ON(!tsk->exit_state);
232 	WARN_ON(atomic_read(&tsk->usage));
233 	WARN_ON(tsk == current);
234 
235 	security_task_free(tsk);
236 	exit_creds(tsk);
237 	delayacct_tsk_free(tsk);
238 	put_signal_struct(tsk->signal);
239 
240 	if (!profile_handoff_task(tsk))
241 		free_task(tsk);
242 }
243 EXPORT_SYMBOL_GPL(__put_task_struct);
244 
245 void __init __weak arch_task_cache_init(void) { }
246 
247 void __init fork_init(unsigned long mempages)
248 {
249 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
250 #ifndef ARCH_MIN_TASKALIGN
251 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
252 #endif
253 	/* create a slab on which task_structs can be allocated */
254 	task_struct_cachep =
255 		kmem_cache_create("task_struct", sizeof(struct task_struct),
256 			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
257 #endif
258 
259 	/* do the arch specific task caches init */
260 	arch_task_cache_init();
261 
262 	/*
263 	 * The default maximum number of threads is set to a safe
264 	 * value: the thread structures can take up at most half
265 	 * of memory.
266 	 */
267 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
268 
269 	/*
270 	 * we need to allow at least 20 threads to boot a system
271 	 */
272 	if (max_threads < 20)
273 		max_threads = 20;
274 
275 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
276 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
277 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
278 		init_task.signal->rlim[RLIMIT_NPROC];
279 }
280 
281 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
282 					       struct task_struct *src)
283 {
284 	*dst = *src;
285 	return 0;
286 }
287 
288 static struct task_struct *dup_task_struct(struct task_struct *orig)
289 {
290 	struct task_struct *tsk;
291 	struct thread_info *ti;
292 	unsigned long *stackend;
293 	int node = tsk_fork_get_node(orig);
294 	int err;
295 
296 	tsk = alloc_task_struct_node(node);
297 	if (!tsk)
298 		return NULL;
299 
300 	ti = alloc_thread_info_node(tsk, node);
301 	if (!ti) {
302 		free_task_struct(tsk);
303 		return NULL;
304 	}
305 
306 	err = arch_dup_task_struct(tsk, orig);
307 	if (err)
308 		goto out;
309 
310 	tsk->stack = ti;
311 
312 	setup_thread_stack(tsk, orig);
313 	clear_user_return_notifier(tsk);
314 	clear_tsk_need_resched(tsk);
315 	stackend = end_of_stack(tsk);
316 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
317 
318 #ifdef CONFIG_CC_STACKPROTECTOR
319 	tsk->stack_canary = get_random_int();
320 #endif
321 
322 	/*
323 	 * One for us, one for whoever does the "release_task()" (usually
324 	 * parent)
325 	 */
326 	atomic_set(&tsk->usage, 2);
327 #ifdef CONFIG_BLK_DEV_IO_TRACE
328 	tsk->btrace_seq = 0;
329 #endif
330 	tsk->splice_pipe = NULL;
331 
332 	account_kernel_stack(ti, 1);
333 
334 	return tsk;
335 
336 out:
337 	free_thread_info(ti);
338 	free_task_struct(tsk);
339 	return NULL;
340 }
341 
342 #ifdef CONFIG_MMU
343 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
344 {
345 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
346 	struct rb_node **rb_link, *rb_parent;
347 	int retval;
348 	unsigned long charge;
349 	struct mempolicy *pol;
350 
351 	down_write(&oldmm->mmap_sem);
352 	flush_cache_dup_mm(oldmm);
353 	/*
354 	 * Not linked in yet - no deadlock potential:
355 	 */
356 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
357 
358 	mm->locked_vm = 0;
359 	mm->mmap = NULL;
360 	mm->mmap_cache = NULL;
361 	mm->free_area_cache = oldmm->mmap_base;
362 	mm->cached_hole_size = ~0UL;
363 	mm->map_count = 0;
364 	cpumask_clear(mm_cpumask(mm));
365 	mm->mm_rb = RB_ROOT;
366 	rb_link = &mm->mm_rb.rb_node;
367 	rb_parent = NULL;
368 	pprev = &mm->mmap;
369 	retval = ksm_fork(mm, oldmm);
370 	if (retval)
371 		goto out;
372 	retval = khugepaged_fork(mm, oldmm);
373 	if (retval)
374 		goto out;
375 
376 	prev = NULL;
377 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
378 		struct file *file;
379 
380 		if (mpnt->vm_flags & VM_DONTCOPY) {
381 			long pages = vma_pages(mpnt);
382 			mm->total_vm -= pages;
383 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
384 								-pages);
385 			continue;
386 		}
387 		charge = 0;
388 		if (mpnt->vm_flags & VM_ACCOUNT) {
389 			unsigned long len;
390 			len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
391 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
392 				goto fail_nomem;
393 			charge = len;
394 		}
395 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
396 		if (!tmp)
397 			goto fail_nomem;
398 		*tmp = *mpnt;
399 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
400 		pol = mpol_dup(vma_policy(mpnt));
401 		retval = PTR_ERR(pol);
402 		if (IS_ERR(pol))
403 			goto fail_nomem_policy;
404 		vma_set_policy(tmp, pol);
405 		tmp->vm_mm = mm;
406 		if (anon_vma_fork(tmp, mpnt))
407 			goto fail_nomem_anon_vma_fork;
408 		tmp->vm_flags &= ~VM_LOCKED;
409 		tmp->vm_next = tmp->vm_prev = NULL;
410 		file = tmp->vm_file;
411 		if (file) {
412 			struct inode *inode = file->f_path.dentry->d_inode;
413 			struct address_space *mapping = file->f_mapping;
414 
415 			get_file(file);
416 			if (tmp->vm_flags & VM_DENYWRITE)
417 				atomic_dec(&inode->i_writecount);
418 			mutex_lock(&mapping->i_mmap_mutex);
419 			if (tmp->vm_flags & VM_SHARED)
420 				mapping->i_mmap_writable++;
421 			flush_dcache_mmap_lock(mapping);
422 			/* insert tmp into the share list, just after mpnt */
423 			vma_prio_tree_add(tmp, mpnt);
424 			flush_dcache_mmap_unlock(mapping);
425 			mutex_unlock(&mapping->i_mmap_mutex);
426 		}
427 
428 		/*
429 		 * Clear hugetlb-related page reserves for children. This only
430 		 * affects MAP_PRIVATE mappings. Faults generated by the child
431 		 * are not guaranteed to succeed, even if read-only
432 		 */
433 		if (is_vm_hugetlb_page(tmp))
434 			reset_vma_resv_huge_pages(tmp);
435 
436 		/*
437 		 * Link in the new vma and copy the page table entries.
438 		 */
439 		*pprev = tmp;
440 		pprev = &tmp->vm_next;
441 		tmp->vm_prev = prev;
442 		prev = tmp;
443 
444 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
445 		rb_link = &tmp->vm_rb.rb_right;
446 		rb_parent = &tmp->vm_rb;
447 
448 		mm->map_count++;
449 		retval = copy_page_range(mm, oldmm, mpnt);
450 
451 		if (tmp->vm_ops && tmp->vm_ops->open)
452 			tmp->vm_ops->open(tmp);
453 
454 		if (retval)
455 			goto out;
456 
457 		if (file && uprobe_mmap(tmp))
458 			goto out;
459 	}
460 	/* a new mm has just been created */
461 	arch_dup_mmap(oldmm, mm);
462 	retval = 0;
463 out:
464 	up_write(&mm->mmap_sem);
465 	flush_tlb_mm(oldmm);
466 	up_write(&oldmm->mmap_sem);
467 	return retval;
468 fail_nomem_anon_vma_fork:
469 	mpol_put(pol);
470 fail_nomem_policy:
471 	kmem_cache_free(vm_area_cachep, tmp);
472 fail_nomem:
473 	retval = -ENOMEM;
474 	vm_unacct_memory(charge);
475 	goto out;
476 }
477 
478 static inline int mm_alloc_pgd(struct mm_struct *mm)
479 {
480 	mm->pgd = pgd_alloc(mm);
481 	if (unlikely(!mm->pgd))
482 		return -ENOMEM;
483 	return 0;
484 }
485 
486 static inline void mm_free_pgd(struct mm_struct *mm)
487 {
488 	pgd_free(mm, mm->pgd);
489 }
490 #else
491 #define dup_mmap(mm, oldmm)	(0)
492 #define mm_alloc_pgd(mm)	(0)
493 #define mm_free_pgd(mm)
494 #endif /* CONFIG_MMU */
495 
496 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
497 
498 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
499 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
500 
501 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
502 
503 static int __init coredump_filter_setup(char *s)
504 {
505 	default_dump_filter =
506 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
507 		MMF_DUMP_FILTER_MASK;
508 	return 1;
509 }
510 
511 __setup("coredump_filter=", coredump_filter_setup);
512 
513 #include <linux/init_task.h>
514 
515 static void mm_init_aio(struct mm_struct *mm)
516 {
517 #ifdef CONFIG_AIO
518 	spin_lock_init(&mm->ioctx_lock);
519 	INIT_HLIST_HEAD(&mm->ioctx_list);
520 #endif
521 }
522 
523 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
524 {
525 	atomic_set(&mm->mm_users, 1);
526 	atomic_set(&mm->mm_count, 1);
527 	init_rwsem(&mm->mmap_sem);
528 	INIT_LIST_HEAD(&mm->mmlist);
529 	mm->flags = (current->mm) ?
530 		(current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
531 	mm->core_state = NULL;
532 	mm->nr_ptes = 0;
533 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
534 	spin_lock_init(&mm->page_table_lock);
535 	mm->free_area_cache = TASK_UNMAPPED_BASE;
536 	mm->cached_hole_size = ~0UL;
537 	mm_init_aio(mm);
538 	mm_init_owner(mm, p);
539 
540 	if (likely(!mm_alloc_pgd(mm))) {
541 		mm->def_flags = 0;
542 		mmu_notifier_mm_init(mm);
543 		return mm;
544 	}
545 
546 	free_mm(mm);
547 	return NULL;
548 }
549 
550 static void check_mm(struct mm_struct *mm)
551 {
552 	int i;
553 
554 	for (i = 0; i < NR_MM_COUNTERS; i++) {
555 		long x = atomic_long_read(&mm->rss_stat.count[i]);
556 
557 		if (unlikely(x))
558 			printk(KERN_ALERT "BUG: Bad rss-counter state "
559 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
560 	}
561 
562 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
563 	VM_BUG_ON(mm->pmd_huge_pte);
564 #endif
565 }
566 
567 /*
568  * Allocate and initialize an mm_struct.
569  */
570 struct mm_struct *mm_alloc(void)
571 {
572 	struct mm_struct *mm;
573 
574 	mm = allocate_mm();
575 	if (!mm)
576 		return NULL;
577 
578 	memset(mm, 0, sizeof(*mm));
579 	mm_init_cpumask(mm);
580 	return mm_init(mm, current);
581 }
582 
583 /*
584  * Called when the last reference to the mm
585  * is dropped: either by a lazy thread or by
586  * mmput. Free the page directory and the mm.
587  */
588 void __mmdrop(struct mm_struct *mm)
589 {
590 	BUG_ON(mm == &init_mm);
591 	mm_free_pgd(mm);
592 	destroy_context(mm);
593 	mmu_notifier_mm_destroy(mm);
594 	check_mm(mm);
595 	free_mm(mm);
596 }
597 EXPORT_SYMBOL_GPL(__mmdrop);
598 
599 /*
600  * Decrement the use count and release all resources for an mm.
601  */
602 void mmput(struct mm_struct *mm)
603 {
604 	might_sleep();
605 
606 	if (atomic_dec_and_test(&mm->mm_users)) {
607 		uprobe_clear_state(mm);
608 		exit_aio(mm);
609 		ksm_exit(mm);
610 		khugepaged_exit(mm); /* must run before exit_mmap */
611 		exit_mmap(mm);
612 		set_mm_exe_file(mm, NULL);
613 		if (!list_empty(&mm->mmlist)) {
614 			spin_lock(&mmlist_lock);
615 			list_del(&mm->mmlist);
616 			spin_unlock(&mmlist_lock);
617 		}
618 		if (mm->binfmt)
619 			module_put(mm->binfmt->module);
620 		mmdrop(mm);
621 	}
622 }
623 EXPORT_SYMBOL_GPL(mmput);
624 
625 /*
626  * We added or removed a vma mapping the executable. The vmas are only mapped
627  * during exec and are not mapped with the mmap system call.
628  * Callers must hold down_write() on the mm's mmap_sem for these
629  */
630 void added_exe_file_vma(struct mm_struct *mm)
631 {
632 	mm->num_exe_file_vmas++;
633 }
634 
635 void removed_exe_file_vma(struct mm_struct *mm)
636 {
637 	mm->num_exe_file_vmas--;
638 	if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
639 		fput(mm->exe_file);
640 		mm->exe_file = NULL;
641 	}
642 
643 }
644 
645 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
646 {
647 	if (new_exe_file)
648 		get_file(new_exe_file);
649 	if (mm->exe_file)
650 		fput(mm->exe_file);
651 	mm->exe_file = new_exe_file;
652 	mm->num_exe_file_vmas = 0;
653 }
654 
655 struct file *get_mm_exe_file(struct mm_struct *mm)
656 {
657 	struct file *exe_file;
658 
659 	/* We need mmap_sem to protect against races with removal of
660 	 * VM_EXECUTABLE vmas */
661 	down_read(&mm->mmap_sem);
662 	exe_file = mm->exe_file;
663 	if (exe_file)
664 		get_file(exe_file);
665 	up_read(&mm->mmap_sem);
666 	return exe_file;
667 }
668 
669 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
670 {
671 	/* It's safe to write the exe_file pointer without exe_file_lock because
672 	 * this is called during fork when the task is not yet in /proc */
673 	newmm->exe_file = get_mm_exe_file(oldmm);
674 }
675 
676 /**
677  * get_task_mm - acquire a reference to the task's mm
678  *
679  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
680  * this kernel workthread has transiently adopted a user mm with use_mm,
681  * to do its AIO) is not set and if so returns a reference to it, after
682  * bumping up the use count.  User must release the mm via mmput()
683  * after use.  Typically used by /proc and ptrace.
684  */
685 struct mm_struct *get_task_mm(struct task_struct *task)
686 {
687 	struct mm_struct *mm;
688 
689 	task_lock(task);
690 	mm = task->mm;
691 	if (mm) {
692 		if (task->flags & PF_KTHREAD)
693 			mm = NULL;
694 		else
695 			atomic_inc(&mm->mm_users);
696 	}
697 	task_unlock(task);
698 	return mm;
699 }
700 EXPORT_SYMBOL_GPL(get_task_mm);
701 
702 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
703 {
704 	struct mm_struct *mm;
705 	int err;
706 
707 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
708 	if (err)
709 		return ERR_PTR(err);
710 
711 	mm = get_task_mm(task);
712 	if (mm && mm != current->mm &&
713 			!ptrace_may_access(task, mode)) {
714 		mmput(mm);
715 		mm = ERR_PTR(-EACCES);
716 	}
717 	mutex_unlock(&task->signal->cred_guard_mutex);
718 
719 	return mm;
720 }
721 
722 static void complete_vfork_done(struct task_struct *tsk)
723 {
724 	struct completion *vfork;
725 
726 	task_lock(tsk);
727 	vfork = tsk->vfork_done;
728 	if (likely(vfork)) {
729 		tsk->vfork_done = NULL;
730 		complete(vfork);
731 	}
732 	task_unlock(tsk);
733 }
734 
735 static int wait_for_vfork_done(struct task_struct *child,
736 				struct completion *vfork)
737 {
738 	int killed;
739 
740 	freezer_do_not_count();
741 	killed = wait_for_completion_killable(vfork);
742 	freezer_count();
743 
744 	if (killed) {
745 		task_lock(child);
746 		child->vfork_done = NULL;
747 		task_unlock(child);
748 	}
749 
750 	put_task_struct(child);
751 	return killed;
752 }
753 
754 /* Please note the differences between mmput and mm_release.
755  * mmput is called whenever we stop holding onto a mm_struct,
756  * error success whatever.
757  *
758  * mm_release is called after a mm_struct has been removed
759  * from the current process.
760  *
761  * This difference is important for error handling, when we
762  * only half set up a mm_struct for a new process and need to restore
763  * the old one.  Because we mmput the new mm_struct before
764  * restoring the old one. . .
765  * Eric Biederman 10 January 1998
766  */
767 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
768 {
769 	/* Get rid of any futexes when releasing the mm */
770 #ifdef CONFIG_FUTEX
771 	if (unlikely(tsk->robust_list)) {
772 		exit_robust_list(tsk);
773 		tsk->robust_list = NULL;
774 	}
775 #ifdef CONFIG_COMPAT
776 	if (unlikely(tsk->compat_robust_list)) {
777 		compat_exit_robust_list(tsk);
778 		tsk->compat_robust_list = NULL;
779 	}
780 #endif
781 	if (unlikely(!list_empty(&tsk->pi_state_list)))
782 		exit_pi_state_list(tsk);
783 #endif
784 
785 	uprobe_free_utask(tsk);
786 
787 	/* Get rid of any cached register state */
788 	deactivate_mm(tsk, mm);
789 
790 	/*
791 	 * If we're exiting normally, clear a user-space tid field if
792 	 * requested.  We leave this alone when dying by signal, to leave
793 	 * the value intact in a core dump, and to save the unnecessary
794 	 * trouble, say, a killed vfork parent shouldn't touch this mm.
795 	 * Userland only wants this done for a sys_exit.
796 	 */
797 	if (tsk->clear_child_tid) {
798 		if (!(tsk->flags & PF_SIGNALED) &&
799 		    atomic_read(&mm->mm_users) > 1) {
800 			/*
801 			 * We don't check the error code - if userspace has
802 			 * not set up a proper pointer then tough luck.
803 			 */
804 			put_user(0, tsk->clear_child_tid);
805 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
806 					1, NULL, NULL, 0);
807 		}
808 		tsk->clear_child_tid = NULL;
809 	}
810 
811 	/*
812 	 * All done, finally we can wake up parent and return this mm to him.
813 	 * Also kthread_stop() uses this completion for synchronization.
814 	 */
815 	if (tsk->vfork_done)
816 		complete_vfork_done(tsk);
817 }
818 
819 /*
820  * Allocate a new mm structure and copy contents from the
821  * mm structure of the passed in task structure.
822  */
823 struct mm_struct *dup_mm(struct task_struct *tsk)
824 {
825 	struct mm_struct *mm, *oldmm = current->mm;
826 	int err;
827 
828 	if (!oldmm)
829 		return NULL;
830 
831 	mm = allocate_mm();
832 	if (!mm)
833 		goto fail_nomem;
834 
835 	memcpy(mm, oldmm, sizeof(*mm));
836 	mm_init_cpumask(mm);
837 
838 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
839 	mm->pmd_huge_pte = NULL;
840 #endif
841 	uprobe_reset_state(mm);
842 
843 	if (!mm_init(mm, tsk))
844 		goto fail_nomem;
845 
846 	if (init_new_context(tsk, mm))
847 		goto fail_nocontext;
848 
849 	dup_mm_exe_file(oldmm, mm);
850 
851 	err = dup_mmap(mm, oldmm);
852 	if (err)
853 		goto free_pt;
854 
855 	mm->hiwater_rss = get_mm_rss(mm);
856 	mm->hiwater_vm = mm->total_vm;
857 
858 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
859 		goto free_pt;
860 
861 	return mm;
862 
863 free_pt:
864 	/* don't put binfmt in mmput, we haven't got module yet */
865 	mm->binfmt = NULL;
866 	mmput(mm);
867 
868 fail_nomem:
869 	return NULL;
870 
871 fail_nocontext:
872 	/*
873 	 * If init_new_context() failed, we cannot use mmput() to free the mm
874 	 * because it calls destroy_context()
875 	 */
876 	mm_free_pgd(mm);
877 	free_mm(mm);
878 	return NULL;
879 }
880 
881 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
882 {
883 	struct mm_struct *mm, *oldmm;
884 	int retval;
885 
886 	tsk->min_flt = tsk->maj_flt = 0;
887 	tsk->nvcsw = tsk->nivcsw = 0;
888 #ifdef CONFIG_DETECT_HUNG_TASK
889 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
890 #endif
891 
892 	tsk->mm = NULL;
893 	tsk->active_mm = NULL;
894 
895 	/*
896 	 * Are we cloning a kernel thread?
897 	 *
898 	 * We need to steal a active VM for that..
899 	 */
900 	oldmm = current->mm;
901 	if (!oldmm)
902 		return 0;
903 
904 	if (clone_flags & CLONE_VM) {
905 		atomic_inc(&oldmm->mm_users);
906 		mm = oldmm;
907 		goto good_mm;
908 	}
909 
910 	retval = -ENOMEM;
911 	mm = dup_mm(tsk);
912 	if (!mm)
913 		goto fail_nomem;
914 
915 good_mm:
916 	tsk->mm = mm;
917 	tsk->active_mm = mm;
918 	return 0;
919 
920 fail_nomem:
921 	return retval;
922 }
923 
924 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
925 {
926 	struct fs_struct *fs = current->fs;
927 	if (clone_flags & CLONE_FS) {
928 		/* tsk->fs is already what we want */
929 		spin_lock(&fs->lock);
930 		if (fs->in_exec) {
931 			spin_unlock(&fs->lock);
932 			return -EAGAIN;
933 		}
934 		fs->users++;
935 		spin_unlock(&fs->lock);
936 		return 0;
937 	}
938 	tsk->fs = copy_fs_struct(fs);
939 	if (!tsk->fs)
940 		return -ENOMEM;
941 	return 0;
942 }
943 
944 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
945 {
946 	struct files_struct *oldf, *newf;
947 	int error = 0;
948 
949 	/*
950 	 * A background process may not have any files ...
951 	 */
952 	oldf = current->files;
953 	if (!oldf)
954 		goto out;
955 
956 	if (clone_flags & CLONE_FILES) {
957 		atomic_inc(&oldf->count);
958 		goto out;
959 	}
960 
961 	newf = dup_fd(oldf, &error);
962 	if (!newf)
963 		goto out;
964 
965 	tsk->files = newf;
966 	error = 0;
967 out:
968 	return error;
969 }
970 
971 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
972 {
973 #ifdef CONFIG_BLOCK
974 	struct io_context *ioc = current->io_context;
975 	struct io_context *new_ioc;
976 
977 	if (!ioc)
978 		return 0;
979 	/*
980 	 * Share io context with parent, if CLONE_IO is set
981 	 */
982 	if (clone_flags & CLONE_IO) {
983 		ioc_task_link(ioc);
984 		tsk->io_context = ioc;
985 	} else if (ioprio_valid(ioc->ioprio)) {
986 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
987 		if (unlikely(!new_ioc))
988 			return -ENOMEM;
989 
990 		new_ioc->ioprio = ioc->ioprio;
991 		put_io_context(new_ioc);
992 	}
993 #endif
994 	return 0;
995 }
996 
997 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
998 {
999 	struct sighand_struct *sig;
1000 
1001 	if (clone_flags & CLONE_SIGHAND) {
1002 		atomic_inc(&current->sighand->count);
1003 		return 0;
1004 	}
1005 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1006 	rcu_assign_pointer(tsk->sighand, sig);
1007 	if (!sig)
1008 		return -ENOMEM;
1009 	atomic_set(&sig->count, 1);
1010 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1011 	return 0;
1012 }
1013 
1014 void __cleanup_sighand(struct sighand_struct *sighand)
1015 {
1016 	if (atomic_dec_and_test(&sighand->count)) {
1017 		signalfd_cleanup(sighand);
1018 		kmem_cache_free(sighand_cachep, sighand);
1019 	}
1020 }
1021 
1022 
1023 /*
1024  * Initialize POSIX timer handling for a thread group.
1025  */
1026 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1027 {
1028 	unsigned long cpu_limit;
1029 
1030 	/* Thread group counters. */
1031 	thread_group_cputime_init(sig);
1032 
1033 	cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1034 	if (cpu_limit != RLIM_INFINITY) {
1035 		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1036 		sig->cputimer.running = 1;
1037 	}
1038 
1039 	/* The timer lists. */
1040 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1041 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1042 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1043 }
1044 
1045 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1046 {
1047 	struct signal_struct *sig;
1048 
1049 	if (clone_flags & CLONE_THREAD)
1050 		return 0;
1051 
1052 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1053 	tsk->signal = sig;
1054 	if (!sig)
1055 		return -ENOMEM;
1056 
1057 	sig->nr_threads = 1;
1058 	atomic_set(&sig->live, 1);
1059 	atomic_set(&sig->sigcnt, 1);
1060 	init_waitqueue_head(&sig->wait_chldexit);
1061 	if (clone_flags & CLONE_NEWPID)
1062 		sig->flags |= SIGNAL_UNKILLABLE;
1063 	sig->curr_target = tsk;
1064 	init_sigpending(&sig->shared_pending);
1065 	INIT_LIST_HEAD(&sig->posix_timers);
1066 
1067 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1068 	sig->real_timer.function = it_real_fn;
1069 
1070 	task_lock(current->group_leader);
1071 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1072 	task_unlock(current->group_leader);
1073 
1074 	posix_cpu_timers_init_group(sig);
1075 
1076 	tty_audit_fork(sig);
1077 	sched_autogroup_fork(sig);
1078 
1079 #ifdef CONFIG_CGROUPS
1080 	init_rwsem(&sig->group_rwsem);
1081 #endif
1082 
1083 	sig->oom_adj = current->signal->oom_adj;
1084 	sig->oom_score_adj = current->signal->oom_score_adj;
1085 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1086 
1087 	sig->has_child_subreaper = current->signal->has_child_subreaper ||
1088 				   current->signal->is_child_subreaper;
1089 
1090 	mutex_init(&sig->cred_guard_mutex);
1091 
1092 	return 0;
1093 }
1094 
1095 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1096 {
1097 	unsigned long new_flags = p->flags;
1098 
1099 	new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1100 	new_flags |= PF_FORKNOEXEC;
1101 	p->flags = new_flags;
1102 }
1103 
1104 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1105 {
1106 	current->clear_child_tid = tidptr;
1107 
1108 	return task_pid_vnr(current);
1109 }
1110 
1111 static void rt_mutex_init_task(struct task_struct *p)
1112 {
1113 	raw_spin_lock_init(&p->pi_lock);
1114 #ifdef CONFIG_RT_MUTEXES
1115 	plist_head_init(&p->pi_waiters);
1116 	p->pi_blocked_on = NULL;
1117 #endif
1118 }
1119 
1120 #ifdef CONFIG_MM_OWNER
1121 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1122 {
1123 	mm->owner = p;
1124 }
1125 #endif /* CONFIG_MM_OWNER */
1126 
1127 /*
1128  * Initialize POSIX timer handling for a single task.
1129  */
1130 static void posix_cpu_timers_init(struct task_struct *tsk)
1131 {
1132 	tsk->cputime_expires.prof_exp = 0;
1133 	tsk->cputime_expires.virt_exp = 0;
1134 	tsk->cputime_expires.sched_exp = 0;
1135 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1136 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1137 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1138 }
1139 
1140 /*
1141  * This creates a new process as a copy of the old one,
1142  * but does not actually start it yet.
1143  *
1144  * It copies the registers, and all the appropriate
1145  * parts of the process environment (as per the clone
1146  * flags). The actual kick-off is left to the caller.
1147  */
1148 static struct task_struct *copy_process(unsigned long clone_flags,
1149 					unsigned long stack_start,
1150 					struct pt_regs *regs,
1151 					unsigned long stack_size,
1152 					int __user *child_tidptr,
1153 					struct pid *pid,
1154 					int trace)
1155 {
1156 	int retval;
1157 	struct task_struct *p;
1158 	int cgroup_callbacks_done = 0;
1159 
1160 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1161 		return ERR_PTR(-EINVAL);
1162 
1163 	/*
1164 	 * Thread groups must share signals as well, and detached threads
1165 	 * can only be started up within the thread group.
1166 	 */
1167 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1168 		return ERR_PTR(-EINVAL);
1169 
1170 	/*
1171 	 * Shared signal handlers imply shared VM. By way of the above,
1172 	 * thread groups also imply shared VM. Blocking this case allows
1173 	 * for various simplifications in other code.
1174 	 */
1175 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1176 		return ERR_PTR(-EINVAL);
1177 
1178 	/*
1179 	 * Siblings of global init remain as zombies on exit since they are
1180 	 * not reaped by their parent (swapper). To solve this and to avoid
1181 	 * multi-rooted process trees, prevent global and container-inits
1182 	 * from creating siblings.
1183 	 */
1184 	if ((clone_flags & CLONE_PARENT) &&
1185 				current->signal->flags & SIGNAL_UNKILLABLE)
1186 		return ERR_PTR(-EINVAL);
1187 
1188 	retval = security_task_create(clone_flags);
1189 	if (retval)
1190 		goto fork_out;
1191 
1192 	retval = -ENOMEM;
1193 	p = dup_task_struct(current);
1194 	if (!p)
1195 		goto fork_out;
1196 
1197 	ftrace_graph_init_task(p);
1198 	get_seccomp_filter(p);
1199 
1200 	rt_mutex_init_task(p);
1201 
1202 #ifdef CONFIG_PROVE_LOCKING
1203 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1204 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1205 #endif
1206 	retval = -EAGAIN;
1207 	if (atomic_read(&p->real_cred->user->processes) >=
1208 			task_rlimit(p, RLIMIT_NPROC)) {
1209 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1210 		    p->real_cred->user != INIT_USER)
1211 			goto bad_fork_free;
1212 	}
1213 	current->flags &= ~PF_NPROC_EXCEEDED;
1214 
1215 	retval = copy_creds(p, clone_flags);
1216 	if (retval < 0)
1217 		goto bad_fork_free;
1218 
1219 	/*
1220 	 * If multiple threads are within copy_process(), then this check
1221 	 * triggers too late. This doesn't hurt, the check is only there
1222 	 * to stop root fork bombs.
1223 	 */
1224 	retval = -EAGAIN;
1225 	if (nr_threads >= max_threads)
1226 		goto bad_fork_cleanup_count;
1227 
1228 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1229 		goto bad_fork_cleanup_count;
1230 
1231 	p->did_exec = 0;
1232 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1233 	copy_flags(clone_flags, p);
1234 	INIT_LIST_HEAD(&p->children);
1235 	INIT_LIST_HEAD(&p->sibling);
1236 	rcu_copy_process(p);
1237 	p->vfork_done = NULL;
1238 	spin_lock_init(&p->alloc_lock);
1239 
1240 	init_sigpending(&p->pending);
1241 
1242 	p->utime = p->stime = p->gtime = 0;
1243 	p->utimescaled = p->stimescaled = 0;
1244 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1245 	p->prev_utime = p->prev_stime = 0;
1246 #endif
1247 #if defined(SPLIT_RSS_COUNTING)
1248 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1249 #endif
1250 
1251 	p->default_timer_slack_ns = current->timer_slack_ns;
1252 
1253 	task_io_accounting_init(&p->ioac);
1254 	acct_clear_integrals(p);
1255 
1256 	posix_cpu_timers_init(p);
1257 
1258 	do_posix_clock_monotonic_gettime(&p->start_time);
1259 	p->real_start_time = p->start_time;
1260 	monotonic_to_bootbased(&p->real_start_time);
1261 	p->io_context = NULL;
1262 	p->audit_context = NULL;
1263 	if (clone_flags & CLONE_THREAD)
1264 		threadgroup_change_begin(current);
1265 	cgroup_fork(p);
1266 #ifdef CONFIG_NUMA
1267 	p->mempolicy = mpol_dup(p->mempolicy);
1268 	if (IS_ERR(p->mempolicy)) {
1269 		retval = PTR_ERR(p->mempolicy);
1270 		p->mempolicy = NULL;
1271 		goto bad_fork_cleanup_cgroup;
1272 	}
1273 	mpol_fix_fork_child_flag(p);
1274 #endif
1275 #ifdef CONFIG_CPUSETS
1276 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1277 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1278 	seqcount_init(&p->mems_allowed_seq);
1279 #endif
1280 #ifdef CONFIG_TRACE_IRQFLAGS
1281 	p->irq_events = 0;
1282 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1283 	p->hardirqs_enabled = 1;
1284 #else
1285 	p->hardirqs_enabled = 0;
1286 #endif
1287 	p->hardirq_enable_ip = 0;
1288 	p->hardirq_enable_event = 0;
1289 	p->hardirq_disable_ip = _THIS_IP_;
1290 	p->hardirq_disable_event = 0;
1291 	p->softirqs_enabled = 1;
1292 	p->softirq_enable_ip = _THIS_IP_;
1293 	p->softirq_enable_event = 0;
1294 	p->softirq_disable_ip = 0;
1295 	p->softirq_disable_event = 0;
1296 	p->hardirq_context = 0;
1297 	p->softirq_context = 0;
1298 #endif
1299 #ifdef CONFIG_LOCKDEP
1300 	p->lockdep_depth = 0; /* no locks held yet */
1301 	p->curr_chain_key = 0;
1302 	p->lockdep_recursion = 0;
1303 #endif
1304 
1305 #ifdef CONFIG_DEBUG_MUTEXES
1306 	p->blocked_on = NULL; /* not blocked yet */
1307 #endif
1308 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1309 	p->memcg_batch.do_batch = 0;
1310 	p->memcg_batch.memcg = NULL;
1311 #endif
1312 
1313 	/* Perform scheduler related setup. Assign this task to a CPU. */
1314 	sched_fork(p);
1315 
1316 	retval = perf_event_init_task(p);
1317 	if (retval)
1318 		goto bad_fork_cleanup_policy;
1319 	retval = audit_alloc(p);
1320 	if (retval)
1321 		goto bad_fork_cleanup_policy;
1322 	/* copy all the process information */
1323 	retval = copy_semundo(clone_flags, p);
1324 	if (retval)
1325 		goto bad_fork_cleanup_audit;
1326 	retval = copy_files(clone_flags, p);
1327 	if (retval)
1328 		goto bad_fork_cleanup_semundo;
1329 	retval = copy_fs(clone_flags, p);
1330 	if (retval)
1331 		goto bad_fork_cleanup_files;
1332 	retval = copy_sighand(clone_flags, p);
1333 	if (retval)
1334 		goto bad_fork_cleanup_fs;
1335 	retval = copy_signal(clone_flags, p);
1336 	if (retval)
1337 		goto bad_fork_cleanup_sighand;
1338 	retval = copy_mm(clone_flags, p);
1339 	if (retval)
1340 		goto bad_fork_cleanup_signal;
1341 	retval = copy_namespaces(clone_flags, p);
1342 	if (retval)
1343 		goto bad_fork_cleanup_mm;
1344 	retval = copy_io(clone_flags, p);
1345 	if (retval)
1346 		goto bad_fork_cleanup_namespaces;
1347 	retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1348 	if (retval)
1349 		goto bad_fork_cleanup_io;
1350 
1351 	if (pid != &init_struct_pid) {
1352 		retval = -ENOMEM;
1353 		pid = alloc_pid(p->nsproxy->pid_ns);
1354 		if (!pid)
1355 			goto bad_fork_cleanup_io;
1356 	}
1357 
1358 	p->pid = pid_nr(pid);
1359 	p->tgid = p->pid;
1360 	if (clone_flags & CLONE_THREAD)
1361 		p->tgid = current->tgid;
1362 
1363 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1364 	/*
1365 	 * Clear TID on mm_release()?
1366 	 */
1367 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1368 #ifdef CONFIG_BLOCK
1369 	p->plug = NULL;
1370 #endif
1371 #ifdef CONFIG_FUTEX
1372 	p->robust_list = NULL;
1373 #ifdef CONFIG_COMPAT
1374 	p->compat_robust_list = NULL;
1375 #endif
1376 	INIT_LIST_HEAD(&p->pi_state_list);
1377 	p->pi_state_cache = NULL;
1378 #endif
1379 	uprobe_copy_process(p);
1380 	/*
1381 	 * sigaltstack should be cleared when sharing the same VM
1382 	 */
1383 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1384 		p->sas_ss_sp = p->sas_ss_size = 0;
1385 
1386 	/*
1387 	 * Syscall tracing and stepping should be turned off in the
1388 	 * child regardless of CLONE_PTRACE.
1389 	 */
1390 	user_disable_single_step(p);
1391 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1392 #ifdef TIF_SYSCALL_EMU
1393 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1394 #endif
1395 	clear_all_latency_tracing(p);
1396 
1397 	/* ok, now we should be set up.. */
1398 	if (clone_flags & CLONE_THREAD)
1399 		p->exit_signal = -1;
1400 	else if (clone_flags & CLONE_PARENT)
1401 		p->exit_signal = current->group_leader->exit_signal;
1402 	else
1403 		p->exit_signal = (clone_flags & CSIGNAL);
1404 
1405 	p->pdeath_signal = 0;
1406 	p->exit_state = 0;
1407 
1408 	p->nr_dirtied = 0;
1409 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1410 	p->dirty_paused_when = 0;
1411 
1412 	/*
1413 	 * Ok, make it visible to the rest of the system.
1414 	 * We dont wake it up yet.
1415 	 */
1416 	p->group_leader = p;
1417 	INIT_LIST_HEAD(&p->thread_group);
1418 	INIT_HLIST_HEAD(&p->task_works);
1419 
1420 	/* Now that the task is set up, run cgroup callbacks if
1421 	 * necessary. We need to run them before the task is visible
1422 	 * on the tasklist. */
1423 	cgroup_fork_callbacks(p);
1424 	cgroup_callbacks_done = 1;
1425 
1426 	/* Need tasklist lock for parent etc handling! */
1427 	write_lock_irq(&tasklist_lock);
1428 
1429 	/* CLONE_PARENT re-uses the old parent */
1430 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1431 		p->real_parent = current->real_parent;
1432 		p->parent_exec_id = current->parent_exec_id;
1433 	} else {
1434 		p->real_parent = current;
1435 		p->parent_exec_id = current->self_exec_id;
1436 	}
1437 
1438 	spin_lock(&current->sighand->siglock);
1439 
1440 	/*
1441 	 * Process group and session signals need to be delivered to just the
1442 	 * parent before the fork or both the parent and the child after the
1443 	 * fork. Restart if a signal comes in before we add the new process to
1444 	 * it's process group.
1445 	 * A fatal signal pending means that current will exit, so the new
1446 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1447 	*/
1448 	recalc_sigpending();
1449 	if (signal_pending(current)) {
1450 		spin_unlock(&current->sighand->siglock);
1451 		write_unlock_irq(&tasklist_lock);
1452 		retval = -ERESTARTNOINTR;
1453 		goto bad_fork_free_pid;
1454 	}
1455 
1456 	if (clone_flags & CLONE_THREAD) {
1457 		current->signal->nr_threads++;
1458 		atomic_inc(&current->signal->live);
1459 		atomic_inc(&current->signal->sigcnt);
1460 		p->group_leader = current->group_leader;
1461 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1462 	}
1463 
1464 	if (likely(p->pid)) {
1465 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1466 
1467 		if (thread_group_leader(p)) {
1468 			if (is_child_reaper(pid))
1469 				p->nsproxy->pid_ns->child_reaper = p;
1470 
1471 			p->signal->leader_pid = pid;
1472 			p->signal->tty = tty_kref_get(current->signal->tty);
1473 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1474 			attach_pid(p, PIDTYPE_SID, task_session(current));
1475 			list_add_tail(&p->sibling, &p->real_parent->children);
1476 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1477 			__this_cpu_inc(process_counts);
1478 		}
1479 		attach_pid(p, PIDTYPE_PID, pid);
1480 		nr_threads++;
1481 	}
1482 
1483 	total_forks++;
1484 	spin_unlock(&current->sighand->siglock);
1485 	write_unlock_irq(&tasklist_lock);
1486 	proc_fork_connector(p);
1487 	cgroup_post_fork(p);
1488 	if (clone_flags & CLONE_THREAD)
1489 		threadgroup_change_end(current);
1490 	perf_event_fork(p);
1491 
1492 	trace_task_newtask(p, clone_flags);
1493 
1494 	return p;
1495 
1496 bad_fork_free_pid:
1497 	if (pid != &init_struct_pid)
1498 		free_pid(pid);
1499 bad_fork_cleanup_io:
1500 	if (p->io_context)
1501 		exit_io_context(p);
1502 bad_fork_cleanup_namespaces:
1503 	if (unlikely(clone_flags & CLONE_NEWPID))
1504 		pid_ns_release_proc(p->nsproxy->pid_ns);
1505 	exit_task_namespaces(p);
1506 bad_fork_cleanup_mm:
1507 	if (p->mm)
1508 		mmput(p->mm);
1509 bad_fork_cleanup_signal:
1510 	if (!(clone_flags & CLONE_THREAD))
1511 		free_signal_struct(p->signal);
1512 bad_fork_cleanup_sighand:
1513 	__cleanup_sighand(p->sighand);
1514 bad_fork_cleanup_fs:
1515 	exit_fs(p); /* blocking */
1516 bad_fork_cleanup_files:
1517 	exit_files(p); /* blocking */
1518 bad_fork_cleanup_semundo:
1519 	exit_sem(p);
1520 bad_fork_cleanup_audit:
1521 	audit_free(p);
1522 bad_fork_cleanup_policy:
1523 	perf_event_free_task(p);
1524 #ifdef CONFIG_NUMA
1525 	mpol_put(p->mempolicy);
1526 bad_fork_cleanup_cgroup:
1527 #endif
1528 	if (clone_flags & CLONE_THREAD)
1529 		threadgroup_change_end(current);
1530 	cgroup_exit(p, cgroup_callbacks_done);
1531 	delayacct_tsk_free(p);
1532 	module_put(task_thread_info(p)->exec_domain->module);
1533 bad_fork_cleanup_count:
1534 	atomic_dec(&p->cred->user->processes);
1535 	exit_creds(p);
1536 bad_fork_free:
1537 	free_task(p);
1538 fork_out:
1539 	return ERR_PTR(retval);
1540 }
1541 
1542 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1543 {
1544 	memset(regs, 0, sizeof(struct pt_regs));
1545 	return regs;
1546 }
1547 
1548 static inline void init_idle_pids(struct pid_link *links)
1549 {
1550 	enum pid_type type;
1551 
1552 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1553 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1554 		links[type].pid = &init_struct_pid;
1555 	}
1556 }
1557 
1558 struct task_struct * __cpuinit fork_idle(int cpu)
1559 {
1560 	struct task_struct *task;
1561 	struct pt_regs regs;
1562 
1563 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1564 			    &init_struct_pid, 0);
1565 	if (!IS_ERR(task)) {
1566 		init_idle_pids(task->pids);
1567 		init_idle(task, cpu);
1568 	}
1569 
1570 	return task;
1571 }
1572 
1573 /*
1574  *  Ok, this is the main fork-routine.
1575  *
1576  * It copies the process, and if successful kick-starts
1577  * it and waits for it to finish using the VM if required.
1578  */
1579 long do_fork(unsigned long clone_flags,
1580 	      unsigned long stack_start,
1581 	      struct pt_regs *regs,
1582 	      unsigned long stack_size,
1583 	      int __user *parent_tidptr,
1584 	      int __user *child_tidptr)
1585 {
1586 	struct task_struct *p;
1587 	int trace = 0;
1588 	long nr;
1589 
1590 	/*
1591 	 * Do some preliminary argument and permissions checking before we
1592 	 * actually start allocating stuff
1593 	 */
1594 	if (clone_flags & CLONE_NEWUSER) {
1595 		if (clone_flags & CLONE_THREAD)
1596 			return -EINVAL;
1597 		/* hopefully this check will go away when userns support is
1598 		 * complete
1599 		 */
1600 		if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1601 				!capable(CAP_SETGID))
1602 			return -EPERM;
1603 	}
1604 
1605 	/*
1606 	 * Determine whether and which event to report to ptracer.  When
1607 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
1608 	 * requested, no event is reported; otherwise, report if the event
1609 	 * for the type of forking is enabled.
1610 	 */
1611 	if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
1612 		if (clone_flags & CLONE_VFORK)
1613 			trace = PTRACE_EVENT_VFORK;
1614 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
1615 			trace = PTRACE_EVENT_CLONE;
1616 		else
1617 			trace = PTRACE_EVENT_FORK;
1618 
1619 		if (likely(!ptrace_event_enabled(current, trace)))
1620 			trace = 0;
1621 	}
1622 
1623 	p = copy_process(clone_flags, stack_start, regs, stack_size,
1624 			 child_tidptr, NULL, trace);
1625 	/*
1626 	 * Do this prior waking up the new thread - the thread pointer
1627 	 * might get invalid after that point, if the thread exits quickly.
1628 	 */
1629 	if (!IS_ERR(p)) {
1630 		struct completion vfork;
1631 
1632 		trace_sched_process_fork(current, p);
1633 
1634 		nr = task_pid_vnr(p);
1635 
1636 		if (clone_flags & CLONE_PARENT_SETTID)
1637 			put_user(nr, parent_tidptr);
1638 
1639 		if (clone_flags & CLONE_VFORK) {
1640 			p->vfork_done = &vfork;
1641 			init_completion(&vfork);
1642 			get_task_struct(p);
1643 		}
1644 
1645 		wake_up_new_task(p);
1646 
1647 		/* forking complete and child started to run, tell ptracer */
1648 		if (unlikely(trace))
1649 			ptrace_event(trace, nr);
1650 
1651 		if (clone_flags & CLONE_VFORK) {
1652 			if (!wait_for_vfork_done(p, &vfork))
1653 				ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1654 		}
1655 	} else {
1656 		nr = PTR_ERR(p);
1657 	}
1658 	return nr;
1659 }
1660 
1661 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1662 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1663 #endif
1664 
1665 static void sighand_ctor(void *data)
1666 {
1667 	struct sighand_struct *sighand = data;
1668 
1669 	spin_lock_init(&sighand->siglock);
1670 	init_waitqueue_head(&sighand->signalfd_wqh);
1671 }
1672 
1673 void __init proc_caches_init(void)
1674 {
1675 	sighand_cachep = kmem_cache_create("sighand_cache",
1676 			sizeof(struct sighand_struct), 0,
1677 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1678 			SLAB_NOTRACK, sighand_ctor);
1679 	signal_cachep = kmem_cache_create("signal_cache",
1680 			sizeof(struct signal_struct), 0,
1681 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1682 	files_cachep = kmem_cache_create("files_cache",
1683 			sizeof(struct files_struct), 0,
1684 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1685 	fs_cachep = kmem_cache_create("fs_cache",
1686 			sizeof(struct fs_struct), 0,
1687 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1688 	/*
1689 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1690 	 * whole struct cpumask for the OFFSTACK case. We could change
1691 	 * this to *only* allocate as much of it as required by the
1692 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
1693 	 * is at the end of the structure, exactly for that reason.
1694 	 */
1695 	mm_cachep = kmem_cache_create("mm_struct",
1696 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1697 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1698 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1699 	mmap_init();
1700 	nsproxy_cache_init();
1701 }
1702 
1703 /*
1704  * Check constraints on flags passed to the unshare system call.
1705  */
1706 static int check_unshare_flags(unsigned long unshare_flags)
1707 {
1708 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1709 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1710 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1711 		return -EINVAL;
1712 	/*
1713 	 * Not implemented, but pretend it works if there is nothing to
1714 	 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1715 	 * needs to unshare vm.
1716 	 */
1717 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1718 		/* FIXME: get_task_mm() increments ->mm_users */
1719 		if (atomic_read(&current->mm->mm_users) > 1)
1720 			return -EINVAL;
1721 	}
1722 
1723 	return 0;
1724 }
1725 
1726 /*
1727  * Unshare the filesystem structure if it is being shared
1728  */
1729 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1730 {
1731 	struct fs_struct *fs = current->fs;
1732 
1733 	if (!(unshare_flags & CLONE_FS) || !fs)
1734 		return 0;
1735 
1736 	/* don't need lock here; in the worst case we'll do useless copy */
1737 	if (fs->users == 1)
1738 		return 0;
1739 
1740 	*new_fsp = copy_fs_struct(fs);
1741 	if (!*new_fsp)
1742 		return -ENOMEM;
1743 
1744 	return 0;
1745 }
1746 
1747 /*
1748  * Unshare file descriptor table if it is being shared
1749  */
1750 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1751 {
1752 	struct files_struct *fd = current->files;
1753 	int error = 0;
1754 
1755 	if ((unshare_flags & CLONE_FILES) &&
1756 	    (fd && atomic_read(&fd->count) > 1)) {
1757 		*new_fdp = dup_fd(fd, &error);
1758 		if (!*new_fdp)
1759 			return error;
1760 	}
1761 
1762 	return 0;
1763 }
1764 
1765 /*
1766  * unshare allows a process to 'unshare' part of the process
1767  * context which was originally shared using clone.  copy_*
1768  * functions used by do_fork() cannot be used here directly
1769  * because they modify an inactive task_struct that is being
1770  * constructed. Here we are modifying the current, active,
1771  * task_struct.
1772  */
1773 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1774 {
1775 	struct fs_struct *fs, *new_fs = NULL;
1776 	struct files_struct *fd, *new_fd = NULL;
1777 	struct nsproxy *new_nsproxy = NULL;
1778 	int do_sysvsem = 0;
1779 	int err;
1780 
1781 	err = check_unshare_flags(unshare_flags);
1782 	if (err)
1783 		goto bad_unshare_out;
1784 
1785 	/*
1786 	 * If unsharing namespace, must also unshare filesystem information.
1787 	 */
1788 	if (unshare_flags & CLONE_NEWNS)
1789 		unshare_flags |= CLONE_FS;
1790 	/*
1791 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1792 	 * to a new ipc namespace, the semaphore arrays from the old
1793 	 * namespace are unreachable.
1794 	 */
1795 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1796 		do_sysvsem = 1;
1797 	err = unshare_fs(unshare_flags, &new_fs);
1798 	if (err)
1799 		goto bad_unshare_out;
1800 	err = unshare_fd(unshare_flags, &new_fd);
1801 	if (err)
1802 		goto bad_unshare_cleanup_fs;
1803 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
1804 	if (err)
1805 		goto bad_unshare_cleanup_fd;
1806 
1807 	if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1808 		if (do_sysvsem) {
1809 			/*
1810 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1811 			 */
1812 			exit_sem(current);
1813 		}
1814 
1815 		if (new_nsproxy) {
1816 			switch_task_namespaces(current, new_nsproxy);
1817 			new_nsproxy = NULL;
1818 		}
1819 
1820 		task_lock(current);
1821 
1822 		if (new_fs) {
1823 			fs = current->fs;
1824 			spin_lock(&fs->lock);
1825 			current->fs = new_fs;
1826 			if (--fs->users)
1827 				new_fs = NULL;
1828 			else
1829 				new_fs = fs;
1830 			spin_unlock(&fs->lock);
1831 		}
1832 
1833 		if (new_fd) {
1834 			fd = current->files;
1835 			current->files = new_fd;
1836 			new_fd = fd;
1837 		}
1838 
1839 		task_unlock(current);
1840 	}
1841 
1842 	if (new_nsproxy)
1843 		put_nsproxy(new_nsproxy);
1844 
1845 bad_unshare_cleanup_fd:
1846 	if (new_fd)
1847 		put_files_struct(new_fd);
1848 
1849 bad_unshare_cleanup_fs:
1850 	if (new_fs)
1851 		free_fs_struct(new_fs);
1852 
1853 bad_unshare_out:
1854 	return err;
1855 }
1856 
1857 /*
1858  *	Helper to unshare the files of the current task.
1859  *	We don't want to expose copy_files internals to
1860  *	the exec layer of the kernel.
1861  */
1862 
1863 int unshare_files(struct files_struct **displaced)
1864 {
1865 	struct task_struct *task = current;
1866 	struct files_struct *copy = NULL;
1867 	int error;
1868 
1869 	error = unshare_fd(CLONE_FILES, &copy);
1870 	if (error || !copy) {
1871 		*displaced = NULL;
1872 		return error;
1873 	}
1874 	*displaced = task->files;
1875 	task_lock(task);
1876 	task->files = copy;
1877 	task_unlock(task);
1878 	return 0;
1879 }
1880