1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/user.h> 20 #include <linux/sched/numa_balancing.h> 21 #include <linux/sched/stat.h> 22 #include <linux/sched/task.h> 23 #include <linux/sched/task_stack.h> 24 #include <linux/sched/cputime.h> 25 #include <linux/sched/ext.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/kmsan.h> 41 #include <linux/binfmts.h> 42 #include <linux/mman.h> 43 #include <linux/mmu_notifier.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/mm_inline.h> 47 #include <linux/memblock.h> 48 #include <linux/nsproxy.h> 49 #include <linux/capability.h> 50 #include <linux/cpu.h> 51 #include <linux/cgroup.h> 52 #include <linux/security.h> 53 #include <linux/hugetlb.h> 54 #include <linux/seccomp.h> 55 #include <linux/swap.h> 56 #include <linux/syscalls.h> 57 #include <linux/syscall_user_dispatch.h> 58 #include <linux/jiffies.h> 59 #include <linux/futex.h> 60 #include <linux/compat.h> 61 #include <linux/kthread.h> 62 #include <linux/task_io_accounting_ops.h> 63 #include <linux/rcupdate.h> 64 #include <linux/ptrace.h> 65 #include <linux/mount.h> 66 #include <linux/audit.h> 67 #include <linux/memcontrol.h> 68 #include <linux/ftrace.h> 69 #include <linux/proc_fs.h> 70 #include <linux/profile.h> 71 #include <linux/rmap.h> 72 #include <linux/ksm.h> 73 #include <linux/acct.h> 74 #include <linux/userfaultfd_k.h> 75 #include <linux/tsacct_kern.h> 76 #include <linux/cn_proc.h> 77 #include <linux/freezer.h> 78 #include <linux/delayacct.h> 79 #include <linux/taskstats_kern.h> 80 #include <linux/tty.h> 81 #include <linux/fs_struct.h> 82 #include <linux/magic.h> 83 #include <linux/perf_event.h> 84 #include <linux/posix-timers.h> 85 #include <linux/user-return-notifier.h> 86 #include <linux/oom.h> 87 #include <linux/khugepaged.h> 88 #include <linux/signalfd.h> 89 #include <linux/uprobes.h> 90 #include <linux/aio.h> 91 #include <linux/compiler.h> 92 #include <linux/sysctl.h> 93 #include <linux/kcov.h> 94 #include <linux/livepatch.h> 95 #include <linux/thread_info.h> 96 #include <linux/kstack_erase.h> 97 #include <linux/kasan.h> 98 #include <linux/scs.h> 99 #include <linux/io_uring.h> 100 #include <linux/bpf.h> 101 #include <linux/stackprotector.h> 102 #include <linux/user_events.h> 103 #include <linux/iommu.h> 104 #include <linux/rseq.h> 105 #include <uapi/linux/pidfd.h> 106 #include <linux/pidfs.h> 107 #include <linux/tick.h> 108 #include <linux/unwind_deferred.h> 109 110 #include <asm/pgalloc.h> 111 #include <linux/uaccess.h> 112 #include <asm/mmu_context.h> 113 #include <asm/cacheflush.h> 114 #include <asm/tlbflush.h> 115 116 /* For dup_mmap(). */ 117 #include "../mm/internal.h" 118 119 #include <trace/events/sched.h> 120 121 #define CREATE_TRACE_POINTS 122 #include <trace/events/task.h> 123 124 #include <kunit/visibility.h> 125 126 /* 127 * Minimum number of threads to boot the kernel 128 */ 129 #define MIN_THREADS 20 130 131 /* 132 * Maximum number of threads 133 */ 134 #define MAX_THREADS FUTEX_TID_MASK 135 136 /* 137 * Protected counters by write_lock_irq(&tasklist_lock) 138 */ 139 unsigned long total_forks; /* Handle normal Linux uptimes. */ 140 int nr_threads; /* The idle threads do not count.. */ 141 142 static int max_threads; /* tunable limit on nr_threads */ 143 144 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 145 146 static const char * const resident_page_types[] = { 147 NAMED_ARRAY_INDEX(MM_FILEPAGES), 148 NAMED_ARRAY_INDEX(MM_ANONPAGES), 149 NAMED_ARRAY_INDEX(MM_SWAPENTS), 150 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 151 }; 152 153 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 154 155 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 156 157 #ifdef CONFIG_PROVE_RCU 158 int lockdep_tasklist_lock_is_held(void) 159 { 160 return lockdep_is_held(&tasklist_lock); 161 } 162 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 163 #endif /* #ifdef CONFIG_PROVE_RCU */ 164 165 int nr_processes(void) 166 { 167 int cpu; 168 int total = 0; 169 170 for_each_possible_cpu(cpu) 171 total += per_cpu(process_counts, cpu); 172 173 return total; 174 } 175 176 void __weak arch_release_task_struct(struct task_struct *tsk) 177 { 178 } 179 180 static struct kmem_cache *task_struct_cachep; 181 182 static inline struct task_struct *alloc_task_struct_node(int node) 183 { 184 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 185 } 186 187 static inline void free_task_struct(struct task_struct *tsk) 188 { 189 kmem_cache_free(task_struct_cachep, tsk); 190 } 191 192 /* 193 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 194 * kmemcache based allocator. 195 */ 196 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 197 198 # ifdef CONFIG_VMAP_STACK 199 /* 200 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 201 * flush. Try to minimize the number of calls by caching stacks. 202 */ 203 #define NR_CACHED_STACKS 2 204 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 205 206 struct vm_stack { 207 struct rcu_head rcu; 208 struct vm_struct *stack_vm_area; 209 }; 210 211 static bool try_release_thread_stack_to_cache(struct vm_struct *vm) 212 { 213 unsigned int i; 214 215 for (i = 0; i < NR_CACHED_STACKS; i++) { 216 struct vm_struct *tmp = NULL; 217 218 if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm)) 219 return true; 220 } 221 return false; 222 } 223 224 static void thread_stack_free_rcu(struct rcu_head *rh) 225 { 226 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 227 228 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 229 return; 230 231 vfree(vm_stack); 232 } 233 234 static void thread_stack_delayed_free(struct task_struct *tsk) 235 { 236 struct vm_stack *vm_stack = tsk->stack; 237 238 vm_stack->stack_vm_area = tsk->stack_vm_area; 239 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 240 } 241 242 static int free_vm_stack_cache(unsigned int cpu) 243 { 244 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 245 int i; 246 247 for (i = 0; i < NR_CACHED_STACKS; i++) { 248 struct vm_struct *vm_stack = cached_vm_stacks[i]; 249 250 if (!vm_stack) 251 continue; 252 253 vfree(vm_stack->addr); 254 cached_vm_stacks[i] = NULL; 255 } 256 257 return 0; 258 } 259 260 static int memcg_charge_kernel_stack(struct vm_struct *vm) 261 { 262 int i; 263 int ret; 264 int nr_charged = 0; 265 266 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 267 268 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 269 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0); 270 if (ret) 271 goto err; 272 nr_charged++; 273 } 274 return 0; 275 err: 276 for (i = 0; i < nr_charged; i++) 277 memcg_kmem_uncharge_page(vm->pages[i], 0); 278 return ret; 279 } 280 281 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 282 { 283 struct vm_struct *vm; 284 void *stack; 285 int i; 286 287 for (i = 0; i < NR_CACHED_STACKS; i++) { 288 struct vm_struct *s; 289 290 s = this_cpu_xchg(cached_stacks[i], NULL); 291 292 if (!s) 293 continue; 294 295 /* Reset stack metadata. */ 296 kasan_unpoison_range(s->addr, THREAD_SIZE); 297 298 stack = kasan_reset_tag(s->addr); 299 300 /* Clear stale pointers from reused stack. */ 301 memset(stack, 0, THREAD_SIZE); 302 303 if (memcg_charge_kernel_stack(s)) { 304 vfree(s->addr); 305 return -ENOMEM; 306 } 307 308 tsk->stack_vm_area = s; 309 tsk->stack = stack; 310 return 0; 311 } 312 313 /* 314 * Allocated stacks are cached and later reused by new threads, 315 * so memcg accounting is performed manually on assigning/releasing 316 * stacks to tasks. Drop __GFP_ACCOUNT. 317 */ 318 stack = __vmalloc_node(THREAD_SIZE, THREAD_ALIGN, 319 THREADINFO_GFP & ~__GFP_ACCOUNT, 320 node, __builtin_return_address(0)); 321 if (!stack) 322 return -ENOMEM; 323 324 vm = find_vm_area(stack); 325 if (memcg_charge_kernel_stack(vm)) { 326 vfree(stack); 327 return -ENOMEM; 328 } 329 /* 330 * We can't call find_vm_area() in interrupt context, and 331 * free_thread_stack() can be called in interrupt context, 332 * so cache the vm_struct. 333 */ 334 tsk->stack_vm_area = vm; 335 stack = kasan_reset_tag(stack); 336 tsk->stack = stack; 337 return 0; 338 } 339 340 static void free_thread_stack(struct task_struct *tsk) 341 { 342 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 343 thread_stack_delayed_free(tsk); 344 345 tsk->stack = NULL; 346 tsk->stack_vm_area = NULL; 347 } 348 349 # else /* !CONFIG_VMAP_STACK */ 350 351 static void thread_stack_free_rcu(struct rcu_head *rh) 352 { 353 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 354 } 355 356 static void thread_stack_delayed_free(struct task_struct *tsk) 357 { 358 struct rcu_head *rh = tsk->stack; 359 360 call_rcu(rh, thread_stack_free_rcu); 361 } 362 363 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 364 { 365 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 366 THREAD_SIZE_ORDER); 367 368 if (likely(page)) { 369 tsk->stack = kasan_reset_tag(page_address(page)); 370 return 0; 371 } 372 return -ENOMEM; 373 } 374 375 static void free_thread_stack(struct task_struct *tsk) 376 { 377 thread_stack_delayed_free(tsk); 378 tsk->stack = NULL; 379 } 380 381 # endif /* CONFIG_VMAP_STACK */ 382 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */ 383 384 static struct kmem_cache *thread_stack_cache; 385 386 static void thread_stack_free_rcu(struct rcu_head *rh) 387 { 388 kmem_cache_free(thread_stack_cache, rh); 389 } 390 391 static void thread_stack_delayed_free(struct task_struct *tsk) 392 { 393 struct rcu_head *rh = tsk->stack; 394 395 call_rcu(rh, thread_stack_free_rcu); 396 } 397 398 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 399 { 400 unsigned long *stack; 401 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 402 stack = kasan_reset_tag(stack); 403 tsk->stack = stack; 404 return stack ? 0 : -ENOMEM; 405 } 406 407 static void free_thread_stack(struct task_struct *tsk) 408 { 409 thread_stack_delayed_free(tsk); 410 tsk->stack = NULL; 411 } 412 413 void thread_stack_cache_init(void) 414 { 415 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 416 THREAD_SIZE, THREAD_SIZE, 0, 0, 417 THREAD_SIZE, NULL); 418 BUG_ON(thread_stack_cache == NULL); 419 } 420 421 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */ 422 423 /* SLAB cache for signal_struct structures (tsk->signal) */ 424 static struct kmem_cache *signal_cachep; 425 426 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 427 struct kmem_cache *sighand_cachep; 428 429 /* SLAB cache for files_struct structures (tsk->files) */ 430 struct kmem_cache *files_cachep; 431 432 /* SLAB cache for fs_struct structures (tsk->fs) */ 433 struct kmem_cache *fs_cachep; 434 435 /* SLAB cache for mm_struct structures (tsk->mm) */ 436 static struct kmem_cache *mm_cachep; 437 438 static void account_kernel_stack(struct task_struct *tsk, int account) 439 { 440 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 441 struct vm_struct *vm = task_stack_vm_area(tsk); 442 int i; 443 444 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 445 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 446 account * (PAGE_SIZE / 1024)); 447 } else { 448 void *stack = task_stack_page(tsk); 449 450 /* All stack pages are in the same node. */ 451 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 452 account * (THREAD_SIZE / 1024)); 453 } 454 } 455 456 void exit_task_stack_account(struct task_struct *tsk) 457 { 458 account_kernel_stack(tsk, -1); 459 460 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 461 struct vm_struct *vm; 462 int i; 463 464 vm = task_stack_vm_area(tsk); 465 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 466 memcg_kmem_uncharge_page(vm->pages[i], 0); 467 } 468 } 469 470 static void release_task_stack(struct task_struct *tsk) 471 { 472 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 473 return; /* Better to leak the stack than to free prematurely */ 474 475 free_thread_stack(tsk); 476 } 477 478 #ifdef CONFIG_THREAD_INFO_IN_TASK 479 void put_task_stack(struct task_struct *tsk) 480 { 481 if (refcount_dec_and_test(&tsk->stack_refcount)) 482 release_task_stack(tsk); 483 } 484 #endif 485 486 void free_task(struct task_struct *tsk) 487 { 488 #ifdef CONFIG_SECCOMP 489 WARN_ON_ONCE(tsk->seccomp.filter); 490 #endif 491 release_user_cpus_ptr(tsk); 492 scs_release(tsk); 493 494 #ifndef CONFIG_THREAD_INFO_IN_TASK 495 /* 496 * The task is finally done with both the stack and thread_info, 497 * so free both. 498 */ 499 release_task_stack(tsk); 500 #else 501 /* 502 * If the task had a separate stack allocation, it should be gone 503 * by now. 504 */ 505 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 506 #endif 507 rt_mutex_debug_task_free(tsk); 508 ftrace_graph_exit_task(tsk); 509 arch_release_task_struct(tsk); 510 if (tsk->flags & PF_KTHREAD) 511 free_kthread_struct(tsk); 512 bpf_task_storage_free(tsk); 513 free_task_struct(tsk); 514 } 515 EXPORT_SYMBOL(free_task); 516 517 void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 518 { 519 struct file *exe_file; 520 521 exe_file = get_mm_exe_file(oldmm); 522 RCU_INIT_POINTER(mm->exe_file, exe_file); 523 /* 524 * We depend on the oldmm having properly denied write access to the 525 * exe_file already. 526 */ 527 if (exe_file && exe_file_deny_write_access(exe_file)) 528 pr_warn_once("exe_file_deny_write_access() failed in %s\n", __func__); 529 } 530 531 #ifdef CONFIG_MMU 532 static inline int mm_alloc_pgd(struct mm_struct *mm) 533 { 534 mm->pgd = pgd_alloc(mm); 535 if (unlikely(!mm->pgd)) 536 return -ENOMEM; 537 return 0; 538 } 539 540 static inline void mm_free_pgd(struct mm_struct *mm) 541 { 542 pgd_free(mm, mm->pgd); 543 } 544 #else 545 #define mm_alloc_pgd(mm) (0) 546 #define mm_free_pgd(mm) 547 #endif /* CONFIG_MMU */ 548 549 #ifdef CONFIG_MM_ID 550 static DEFINE_IDA(mm_ida); 551 552 static inline int mm_alloc_id(struct mm_struct *mm) 553 { 554 int ret; 555 556 ret = ida_alloc_range(&mm_ida, MM_ID_MIN, MM_ID_MAX, GFP_KERNEL); 557 if (ret < 0) 558 return ret; 559 mm->mm_id = ret; 560 return 0; 561 } 562 563 static inline void mm_free_id(struct mm_struct *mm) 564 { 565 const mm_id_t id = mm->mm_id; 566 567 mm->mm_id = MM_ID_DUMMY; 568 if (id == MM_ID_DUMMY) 569 return; 570 if (WARN_ON_ONCE(id < MM_ID_MIN || id > MM_ID_MAX)) 571 return; 572 ida_free(&mm_ida, id); 573 } 574 #else /* !CONFIG_MM_ID */ 575 static inline int mm_alloc_id(struct mm_struct *mm) { return 0; } 576 static inline void mm_free_id(struct mm_struct *mm) {} 577 #endif /* CONFIG_MM_ID */ 578 579 static void check_mm(struct mm_struct *mm) 580 { 581 int i; 582 583 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 584 "Please make sure 'struct resident_page_types[]' is updated as well"); 585 586 for (i = 0; i < NR_MM_COUNTERS; i++) { 587 long x = percpu_counter_sum(&mm->rss_stat[i]); 588 589 if (unlikely(x)) 590 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 591 mm, resident_page_types[i], x); 592 } 593 594 if (mm_pgtables_bytes(mm)) 595 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 596 mm_pgtables_bytes(mm)); 597 598 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS) 599 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 600 #endif 601 } 602 603 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 604 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 605 606 static void do_check_lazy_tlb(void *arg) 607 { 608 struct mm_struct *mm = arg; 609 610 WARN_ON_ONCE(current->active_mm == mm); 611 } 612 613 static void do_shoot_lazy_tlb(void *arg) 614 { 615 struct mm_struct *mm = arg; 616 617 if (current->active_mm == mm) { 618 WARN_ON_ONCE(current->mm); 619 current->active_mm = &init_mm; 620 switch_mm(mm, &init_mm, current); 621 } 622 } 623 624 static void cleanup_lazy_tlbs(struct mm_struct *mm) 625 { 626 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) { 627 /* 628 * In this case, lazy tlb mms are refounted and would not reach 629 * __mmdrop until all CPUs have switched away and mmdrop()ed. 630 */ 631 return; 632 } 633 634 /* 635 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it 636 * requires lazy mm users to switch to another mm when the refcount 637 * drops to zero, before the mm is freed. This requires IPIs here to 638 * switch kernel threads to init_mm. 639 * 640 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm 641 * switch with the final userspace teardown TLB flush which leaves the 642 * mm lazy on this CPU but no others, reducing the need for additional 643 * IPIs here. There are cases where a final IPI is still required here, 644 * such as the final mmdrop being performed on a different CPU than the 645 * one exiting, or kernel threads using the mm when userspace exits. 646 * 647 * IPI overheads have not found to be expensive, but they could be 648 * reduced in a number of possible ways, for example (roughly 649 * increasing order of complexity): 650 * - The last lazy reference created by exit_mm() could instead switch 651 * to init_mm, however it's probable this will run on the same CPU 652 * immediately afterwards, so this may not reduce IPIs much. 653 * - A batch of mms requiring IPIs could be gathered and freed at once. 654 * - CPUs store active_mm where it can be remotely checked without a 655 * lock, to filter out false-positives in the cpumask. 656 * - After mm_users or mm_count reaches zero, switching away from the 657 * mm could clear mm_cpumask to reduce some IPIs, perhaps together 658 * with some batching or delaying of the final IPIs. 659 * - A delayed freeing and RCU-like quiescing sequence based on mm 660 * switching to avoid IPIs completely. 661 */ 662 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1); 663 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES)) 664 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1); 665 } 666 667 /* 668 * Called when the last reference to the mm 669 * is dropped: either by a lazy thread or by 670 * mmput. Free the page directory and the mm. 671 */ 672 void __mmdrop(struct mm_struct *mm) 673 { 674 BUG_ON(mm == &init_mm); 675 WARN_ON_ONCE(mm == current->mm); 676 677 /* Ensure no CPUs are using this as their lazy tlb mm */ 678 cleanup_lazy_tlbs(mm); 679 680 WARN_ON_ONCE(mm == current->active_mm); 681 mm_free_pgd(mm); 682 mm_free_id(mm); 683 destroy_context(mm); 684 mmu_notifier_subscriptions_destroy(mm); 685 check_mm(mm); 686 put_user_ns(mm->user_ns); 687 mm_pasid_drop(mm); 688 mm_destroy_cid(mm); 689 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS); 690 691 free_mm(mm); 692 } 693 EXPORT_SYMBOL_GPL(__mmdrop); 694 695 static void mmdrop_async_fn(struct work_struct *work) 696 { 697 struct mm_struct *mm; 698 699 mm = container_of(work, struct mm_struct, async_put_work); 700 __mmdrop(mm); 701 } 702 703 static void mmdrop_async(struct mm_struct *mm) 704 { 705 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 706 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 707 schedule_work(&mm->async_put_work); 708 } 709 } 710 711 static inline void free_signal_struct(struct signal_struct *sig) 712 { 713 taskstats_tgid_free(sig); 714 sched_autogroup_exit(sig); 715 /* 716 * __mmdrop is not safe to call from softirq context on x86 due to 717 * pgd_dtor so postpone it to the async context 718 */ 719 if (sig->oom_mm) 720 mmdrop_async(sig->oom_mm); 721 kmem_cache_free(signal_cachep, sig); 722 } 723 724 static inline void put_signal_struct(struct signal_struct *sig) 725 { 726 if (refcount_dec_and_test(&sig->sigcnt)) 727 free_signal_struct(sig); 728 } 729 730 void __put_task_struct(struct task_struct *tsk) 731 { 732 WARN_ON(!tsk->exit_state); 733 WARN_ON(refcount_read(&tsk->usage)); 734 WARN_ON(tsk == current); 735 736 unwind_task_free(tsk); 737 sched_ext_free(tsk); 738 io_uring_free(tsk); 739 cgroup_free(tsk); 740 task_numa_free(tsk, true); 741 security_task_free(tsk); 742 exit_creds(tsk); 743 delayacct_tsk_free(tsk); 744 put_signal_struct(tsk->signal); 745 sched_core_free(tsk); 746 free_task(tsk); 747 } 748 EXPORT_SYMBOL_GPL(__put_task_struct); 749 750 void __put_task_struct_rcu_cb(struct rcu_head *rhp) 751 { 752 struct task_struct *task = container_of(rhp, struct task_struct, rcu); 753 754 __put_task_struct(task); 755 } 756 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb); 757 758 void __init __weak arch_task_cache_init(void) { } 759 760 /* 761 * set_max_threads 762 */ 763 static void __init set_max_threads(unsigned int max_threads_suggested) 764 { 765 u64 threads; 766 unsigned long nr_pages = memblock_estimated_nr_free_pages(); 767 768 /* 769 * The number of threads shall be limited such that the thread 770 * structures may only consume a small part of the available memory. 771 */ 772 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 773 threads = MAX_THREADS; 774 else 775 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 776 (u64) THREAD_SIZE * 8UL); 777 778 if (threads > max_threads_suggested) 779 threads = max_threads_suggested; 780 781 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 782 } 783 784 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 785 /* Initialized by the architecture: */ 786 int arch_task_struct_size __read_mostly; 787 #endif 788 789 static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size) 790 { 791 /* Fetch thread_struct whitelist for the architecture. */ 792 arch_thread_struct_whitelist(offset, size); 793 794 /* 795 * Handle zero-sized whitelist or empty thread_struct, otherwise 796 * adjust offset to position of thread_struct in task_struct. 797 */ 798 if (unlikely(*size == 0)) 799 *offset = 0; 800 else 801 *offset += offsetof(struct task_struct, thread); 802 } 803 804 void __init fork_init(void) 805 { 806 int i; 807 #ifndef ARCH_MIN_TASKALIGN 808 #define ARCH_MIN_TASKALIGN 0 809 #endif 810 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 811 unsigned long useroffset, usersize; 812 813 /* create a slab on which task_structs can be allocated */ 814 task_struct_whitelist(&useroffset, &usersize); 815 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 816 arch_task_struct_size, align, 817 SLAB_PANIC|SLAB_ACCOUNT, 818 useroffset, usersize, NULL); 819 820 /* do the arch specific task caches init */ 821 arch_task_cache_init(); 822 823 set_max_threads(MAX_THREADS); 824 825 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 826 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 827 init_task.signal->rlim[RLIMIT_SIGPENDING] = 828 init_task.signal->rlim[RLIMIT_NPROC]; 829 830 for (i = 0; i < UCOUNT_COUNTS; i++) 831 init_user_ns.ucount_max[i] = max_threads/2; 832 833 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 834 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 835 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 836 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 837 838 #ifdef CONFIG_VMAP_STACK 839 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 840 NULL, free_vm_stack_cache); 841 #endif 842 843 scs_init(); 844 845 lockdep_init_task(&init_task); 846 uprobes_init(); 847 } 848 849 int __weak arch_dup_task_struct(struct task_struct *dst, 850 struct task_struct *src) 851 { 852 *dst = *src; 853 return 0; 854 } 855 856 void set_task_stack_end_magic(struct task_struct *tsk) 857 { 858 unsigned long *stackend; 859 860 stackend = end_of_stack(tsk); 861 *stackend = STACK_END_MAGIC; /* for overflow detection */ 862 } 863 864 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 865 { 866 struct task_struct *tsk; 867 int err; 868 869 if (node == NUMA_NO_NODE) 870 node = tsk_fork_get_node(orig); 871 tsk = alloc_task_struct_node(node); 872 if (!tsk) 873 return NULL; 874 875 err = arch_dup_task_struct(tsk, orig); 876 if (err) 877 goto free_tsk; 878 879 err = alloc_thread_stack_node(tsk, node); 880 if (err) 881 goto free_tsk; 882 883 #ifdef CONFIG_THREAD_INFO_IN_TASK 884 refcount_set(&tsk->stack_refcount, 1); 885 #endif 886 account_kernel_stack(tsk, 1); 887 888 err = scs_prepare(tsk, node); 889 if (err) 890 goto free_stack; 891 892 #ifdef CONFIG_SECCOMP 893 /* 894 * We must handle setting up seccomp filters once we're under 895 * the sighand lock in case orig has changed between now and 896 * then. Until then, filter must be NULL to avoid messing up 897 * the usage counts on the error path calling free_task. 898 */ 899 tsk->seccomp.filter = NULL; 900 #endif 901 902 setup_thread_stack(tsk, orig); 903 clear_user_return_notifier(tsk); 904 clear_tsk_need_resched(tsk); 905 set_task_stack_end_magic(tsk); 906 clear_syscall_work_syscall_user_dispatch(tsk); 907 908 #ifdef CONFIG_STACKPROTECTOR 909 tsk->stack_canary = get_random_canary(); 910 #endif 911 if (orig->cpus_ptr == &orig->cpus_mask) 912 tsk->cpus_ptr = &tsk->cpus_mask; 913 dup_user_cpus_ptr(tsk, orig, node); 914 915 /* 916 * One for the user space visible state that goes away when reaped. 917 * One for the scheduler. 918 */ 919 refcount_set(&tsk->rcu_users, 2); 920 /* One for the rcu users */ 921 refcount_set(&tsk->usage, 1); 922 #ifdef CONFIG_BLK_DEV_IO_TRACE 923 tsk->btrace_seq = 0; 924 #endif 925 tsk->splice_pipe = NULL; 926 tsk->task_frag.page = NULL; 927 tsk->wake_q.next = NULL; 928 tsk->worker_private = NULL; 929 930 kcov_task_init(tsk); 931 kmsan_task_create(tsk); 932 kmap_local_fork(tsk); 933 934 #ifdef CONFIG_FAULT_INJECTION 935 tsk->fail_nth = 0; 936 #endif 937 938 #ifdef CONFIG_BLK_CGROUP 939 tsk->throttle_disk = NULL; 940 tsk->use_memdelay = 0; 941 #endif 942 943 #ifdef CONFIG_ARCH_HAS_CPU_PASID 944 tsk->pasid_activated = 0; 945 #endif 946 947 #ifdef CONFIG_MEMCG 948 tsk->active_memcg = NULL; 949 #endif 950 951 #ifdef CONFIG_X86_BUS_LOCK_DETECT 952 tsk->reported_split_lock = 0; 953 #endif 954 955 #ifdef CONFIG_SCHED_MM_CID 956 tsk->mm_cid = -1; 957 tsk->last_mm_cid = -1; 958 tsk->mm_cid_active = 0; 959 tsk->migrate_from_cpu = -1; 960 #endif 961 return tsk; 962 963 free_stack: 964 exit_task_stack_account(tsk); 965 free_thread_stack(tsk); 966 free_tsk: 967 free_task_struct(tsk); 968 return NULL; 969 } 970 971 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 972 973 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 974 975 static int __init coredump_filter_setup(char *s) 976 { 977 default_dump_filter = 978 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 979 MMF_DUMP_FILTER_MASK; 980 return 1; 981 } 982 983 __setup("coredump_filter=", coredump_filter_setup); 984 985 #include <linux/init_task.h> 986 987 static void mm_init_aio(struct mm_struct *mm) 988 { 989 #ifdef CONFIG_AIO 990 spin_lock_init(&mm->ioctx_lock); 991 mm->ioctx_table = NULL; 992 #endif 993 } 994 995 static __always_inline void mm_clear_owner(struct mm_struct *mm, 996 struct task_struct *p) 997 { 998 #ifdef CONFIG_MEMCG 999 if (mm->owner == p) 1000 WRITE_ONCE(mm->owner, NULL); 1001 #endif 1002 } 1003 1004 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1005 { 1006 #ifdef CONFIG_MEMCG 1007 mm->owner = p; 1008 #endif 1009 } 1010 1011 static void mm_init_uprobes_state(struct mm_struct *mm) 1012 { 1013 #ifdef CONFIG_UPROBES 1014 mm->uprobes_state.xol_area = NULL; 1015 #endif 1016 } 1017 1018 static void mmap_init_lock(struct mm_struct *mm) 1019 { 1020 init_rwsem(&mm->mmap_lock); 1021 mm_lock_seqcount_init(mm); 1022 #ifdef CONFIG_PER_VMA_LOCK 1023 rcuwait_init(&mm->vma_writer_wait); 1024 #endif 1025 } 1026 1027 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1028 struct user_namespace *user_ns) 1029 { 1030 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); 1031 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); 1032 atomic_set(&mm->mm_users, 1); 1033 atomic_set(&mm->mm_count, 1); 1034 seqcount_init(&mm->write_protect_seq); 1035 mmap_init_lock(mm); 1036 INIT_LIST_HEAD(&mm->mmlist); 1037 mm_pgtables_bytes_init(mm); 1038 mm->map_count = 0; 1039 mm->locked_vm = 0; 1040 atomic64_set(&mm->pinned_vm, 0); 1041 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1042 spin_lock_init(&mm->page_table_lock); 1043 spin_lock_init(&mm->arg_lock); 1044 mm_init_cpumask(mm); 1045 mm_init_aio(mm); 1046 mm_init_owner(mm, p); 1047 mm_pasid_init(mm); 1048 RCU_INIT_POINTER(mm->exe_file, NULL); 1049 mmu_notifier_subscriptions_init(mm); 1050 init_tlb_flush_pending(mm); 1051 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS) 1052 mm->pmd_huge_pte = NULL; 1053 #endif 1054 mm_init_uprobes_state(mm); 1055 hugetlb_count_init(mm); 1056 1057 if (current->mm) { 1058 mm->flags = mmf_init_flags(current->mm->flags); 1059 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1060 } else { 1061 mm->flags = default_dump_filter; 1062 mm->def_flags = 0; 1063 } 1064 1065 if (futex_mm_init(mm)) 1066 goto fail_mm_init; 1067 1068 if (mm_alloc_pgd(mm)) 1069 goto fail_nopgd; 1070 1071 if (mm_alloc_id(mm)) 1072 goto fail_noid; 1073 1074 if (init_new_context(p, mm)) 1075 goto fail_nocontext; 1076 1077 if (mm_alloc_cid(mm, p)) 1078 goto fail_cid; 1079 1080 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT, 1081 NR_MM_COUNTERS)) 1082 goto fail_pcpu; 1083 1084 mm->user_ns = get_user_ns(user_ns); 1085 lru_gen_init_mm(mm); 1086 return mm; 1087 1088 fail_pcpu: 1089 mm_destroy_cid(mm); 1090 fail_cid: 1091 destroy_context(mm); 1092 fail_nocontext: 1093 mm_free_id(mm); 1094 fail_noid: 1095 mm_free_pgd(mm); 1096 fail_nopgd: 1097 futex_hash_free(mm); 1098 fail_mm_init: 1099 free_mm(mm); 1100 return NULL; 1101 } 1102 1103 /* 1104 * Allocate and initialize an mm_struct. 1105 */ 1106 struct mm_struct *mm_alloc(void) 1107 { 1108 struct mm_struct *mm; 1109 1110 mm = allocate_mm(); 1111 if (!mm) 1112 return NULL; 1113 1114 memset(mm, 0, sizeof(*mm)); 1115 return mm_init(mm, current, current_user_ns()); 1116 } 1117 EXPORT_SYMBOL_IF_KUNIT(mm_alloc); 1118 1119 static inline void __mmput(struct mm_struct *mm) 1120 { 1121 VM_BUG_ON(atomic_read(&mm->mm_users)); 1122 1123 uprobe_clear_state(mm); 1124 exit_aio(mm); 1125 ksm_exit(mm); 1126 khugepaged_exit(mm); /* must run before exit_mmap */ 1127 exit_mmap(mm); 1128 mm_put_huge_zero_folio(mm); 1129 set_mm_exe_file(mm, NULL); 1130 if (!list_empty(&mm->mmlist)) { 1131 spin_lock(&mmlist_lock); 1132 list_del(&mm->mmlist); 1133 spin_unlock(&mmlist_lock); 1134 } 1135 if (mm->binfmt) 1136 module_put(mm->binfmt->module); 1137 lru_gen_del_mm(mm); 1138 futex_hash_free(mm); 1139 mmdrop(mm); 1140 } 1141 1142 /* 1143 * Decrement the use count and release all resources for an mm. 1144 */ 1145 void mmput(struct mm_struct *mm) 1146 { 1147 might_sleep(); 1148 1149 if (atomic_dec_and_test(&mm->mm_users)) 1150 __mmput(mm); 1151 } 1152 EXPORT_SYMBOL_GPL(mmput); 1153 1154 #if defined(CONFIG_MMU) || defined(CONFIG_FUTEX_PRIVATE_HASH) 1155 static void mmput_async_fn(struct work_struct *work) 1156 { 1157 struct mm_struct *mm = container_of(work, struct mm_struct, 1158 async_put_work); 1159 1160 __mmput(mm); 1161 } 1162 1163 void mmput_async(struct mm_struct *mm) 1164 { 1165 if (atomic_dec_and_test(&mm->mm_users)) { 1166 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1167 schedule_work(&mm->async_put_work); 1168 } 1169 } 1170 EXPORT_SYMBOL_GPL(mmput_async); 1171 #endif 1172 1173 /** 1174 * set_mm_exe_file - change a reference to the mm's executable file 1175 * @mm: The mm to change. 1176 * @new_exe_file: The new file to use. 1177 * 1178 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1179 * 1180 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1181 * invocations: in mmput() nobody alive left, in execve it happens before 1182 * the new mm is made visible to anyone. 1183 * 1184 * Can only fail if new_exe_file != NULL. 1185 */ 1186 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1187 { 1188 struct file *old_exe_file; 1189 1190 /* 1191 * It is safe to dereference the exe_file without RCU as 1192 * this function is only called if nobody else can access 1193 * this mm -- see comment above for justification. 1194 */ 1195 old_exe_file = rcu_dereference_raw(mm->exe_file); 1196 1197 if (new_exe_file) { 1198 /* 1199 * We expect the caller (i.e., sys_execve) to already denied 1200 * write access, so this is unlikely to fail. 1201 */ 1202 if (unlikely(exe_file_deny_write_access(new_exe_file))) 1203 return -EACCES; 1204 get_file(new_exe_file); 1205 } 1206 rcu_assign_pointer(mm->exe_file, new_exe_file); 1207 if (old_exe_file) { 1208 exe_file_allow_write_access(old_exe_file); 1209 fput(old_exe_file); 1210 } 1211 return 0; 1212 } 1213 1214 /** 1215 * replace_mm_exe_file - replace a reference to the mm's executable file 1216 * @mm: The mm to change. 1217 * @new_exe_file: The new file to use. 1218 * 1219 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1220 * 1221 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1222 */ 1223 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1224 { 1225 struct vm_area_struct *vma; 1226 struct file *old_exe_file; 1227 int ret = 0; 1228 1229 /* Forbid mm->exe_file change if old file still mapped. */ 1230 old_exe_file = get_mm_exe_file(mm); 1231 if (old_exe_file) { 1232 VMA_ITERATOR(vmi, mm, 0); 1233 mmap_read_lock(mm); 1234 for_each_vma(vmi, vma) { 1235 if (!vma->vm_file) 1236 continue; 1237 if (path_equal(&vma->vm_file->f_path, 1238 &old_exe_file->f_path)) { 1239 ret = -EBUSY; 1240 break; 1241 } 1242 } 1243 mmap_read_unlock(mm); 1244 fput(old_exe_file); 1245 if (ret) 1246 return ret; 1247 } 1248 1249 ret = exe_file_deny_write_access(new_exe_file); 1250 if (ret) 1251 return -EACCES; 1252 get_file(new_exe_file); 1253 1254 /* set the new file */ 1255 mmap_write_lock(mm); 1256 old_exe_file = rcu_dereference_raw(mm->exe_file); 1257 rcu_assign_pointer(mm->exe_file, new_exe_file); 1258 mmap_write_unlock(mm); 1259 1260 if (old_exe_file) { 1261 exe_file_allow_write_access(old_exe_file); 1262 fput(old_exe_file); 1263 } 1264 return 0; 1265 } 1266 1267 /** 1268 * get_mm_exe_file - acquire a reference to the mm's executable file 1269 * @mm: The mm of interest. 1270 * 1271 * Returns %NULL if mm has no associated executable file. 1272 * User must release file via fput(). 1273 */ 1274 struct file *get_mm_exe_file(struct mm_struct *mm) 1275 { 1276 struct file *exe_file; 1277 1278 rcu_read_lock(); 1279 exe_file = get_file_rcu(&mm->exe_file); 1280 rcu_read_unlock(); 1281 return exe_file; 1282 } 1283 1284 /** 1285 * get_task_exe_file - acquire a reference to the task's executable file 1286 * @task: The task. 1287 * 1288 * Returns %NULL if task's mm (if any) has no associated executable file or 1289 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1290 * User must release file via fput(). 1291 */ 1292 struct file *get_task_exe_file(struct task_struct *task) 1293 { 1294 struct file *exe_file = NULL; 1295 struct mm_struct *mm; 1296 1297 if (task->flags & PF_KTHREAD) 1298 return NULL; 1299 1300 task_lock(task); 1301 mm = task->mm; 1302 if (mm) 1303 exe_file = get_mm_exe_file(mm); 1304 task_unlock(task); 1305 return exe_file; 1306 } 1307 1308 /** 1309 * get_task_mm - acquire a reference to the task's mm 1310 * @task: The task. 1311 * 1312 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1313 * this kernel workthread has transiently adopted a user mm with use_mm, 1314 * to do its AIO) is not set and if so returns a reference to it, after 1315 * bumping up the use count. User must release the mm via mmput() 1316 * after use. Typically used by /proc and ptrace. 1317 */ 1318 struct mm_struct *get_task_mm(struct task_struct *task) 1319 { 1320 struct mm_struct *mm; 1321 1322 if (task->flags & PF_KTHREAD) 1323 return NULL; 1324 1325 task_lock(task); 1326 mm = task->mm; 1327 if (mm) 1328 mmget(mm); 1329 task_unlock(task); 1330 return mm; 1331 } 1332 EXPORT_SYMBOL_GPL(get_task_mm); 1333 1334 static bool may_access_mm(struct mm_struct *mm, struct task_struct *task, unsigned int mode) 1335 { 1336 if (mm == current->mm) 1337 return true; 1338 if (ptrace_may_access(task, mode)) 1339 return true; 1340 if ((mode & PTRACE_MODE_READ) && perfmon_capable()) 1341 return true; 1342 return false; 1343 } 1344 1345 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1346 { 1347 struct mm_struct *mm; 1348 int err; 1349 1350 err = down_read_killable(&task->signal->exec_update_lock); 1351 if (err) 1352 return ERR_PTR(err); 1353 1354 mm = get_task_mm(task); 1355 if (!mm) { 1356 mm = ERR_PTR(-ESRCH); 1357 } else if (!may_access_mm(mm, task, mode)) { 1358 mmput(mm); 1359 mm = ERR_PTR(-EACCES); 1360 } 1361 up_read(&task->signal->exec_update_lock); 1362 1363 return mm; 1364 } 1365 1366 static void complete_vfork_done(struct task_struct *tsk) 1367 { 1368 struct completion *vfork; 1369 1370 task_lock(tsk); 1371 vfork = tsk->vfork_done; 1372 if (likely(vfork)) { 1373 tsk->vfork_done = NULL; 1374 complete(vfork); 1375 } 1376 task_unlock(tsk); 1377 } 1378 1379 static int wait_for_vfork_done(struct task_struct *child, 1380 struct completion *vfork) 1381 { 1382 unsigned int state = TASK_KILLABLE|TASK_FREEZABLE; 1383 int killed; 1384 1385 cgroup_enter_frozen(); 1386 killed = wait_for_completion_state(vfork, state); 1387 cgroup_leave_frozen(false); 1388 1389 if (killed) { 1390 task_lock(child); 1391 child->vfork_done = NULL; 1392 task_unlock(child); 1393 } 1394 1395 put_task_struct(child); 1396 return killed; 1397 } 1398 1399 /* Please note the differences between mmput and mm_release. 1400 * mmput is called whenever we stop holding onto a mm_struct, 1401 * error success whatever. 1402 * 1403 * mm_release is called after a mm_struct has been removed 1404 * from the current process. 1405 * 1406 * This difference is important for error handling, when we 1407 * only half set up a mm_struct for a new process and need to restore 1408 * the old one. Because we mmput the new mm_struct before 1409 * restoring the old one. . . 1410 * Eric Biederman 10 January 1998 1411 */ 1412 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1413 { 1414 uprobe_free_utask(tsk); 1415 1416 /* Get rid of any cached register state */ 1417 deactivate_mm(tsk, mm); 1418 1419 /* 1420 * Signal userspace if we're not exiting with a core dump 1421 * because we want to leave the value intact for debugging 1422 * purposes. 1423 */ 1424 if (tsk->clear_child_tid) { 1425 if (atomic_read(&mm->mm_users) > 1) { 1426 /* 1427 * We don't check the error code - if userspace has 1428 * not set up a proper pointer then tough luck. 1429 */ 1430 put_user(0, tsk->clear_child_tid); 1431 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1432 1, NULL, NULL, 0, 0); 1433 } 1434 tsk->clear_child_tid = NULL; 1435 } 1436 1437 /* 1438 * All done, finally we can wake up parent and return this mm to him. 1439 * Also kthread_stop() uses this completion for synchronization. 1440 */ 1441 if (tsk->vfork_done) 1442 complete_vfork_done(tsk); 1443 } 1444 1445 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1446 { 1447 futex_exit_release(tsk); 1448 mm_release(tsk, mm); 1449 } 1450 1451 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1452 { 1453 futex_exec_release(tsk); 1454 mm_release(tsk, mm); 1455 } 1456 1457 /** 1458 * dup_mm() - duplicates an existing mm structure 1459 * @tsk: the task_struct with which the new mm will be associated. 1460 * @oldmm: the mm to duplicate. 1461 * 1462 * Allocates a new mm structure and duplicates the provided @oldmm structure 1463 * content into it. 1464 * 1465 * Return: the duplicated mm or NULL on failure. 1466 */ 1467 static struct mm_struct *dup_mm(struct task_struct *tsk, 1468 struct mm_struct *oldmm) 1469 { 1470 struct mm_struct *mm; 1471 int err; 1472 1473 mm = allocate_mm(); 1474 if (!mm) 1475 goto fail_nomem; 1476 1477 memcpy(mm, oldmm, sizeof(*mm)); 1478 1479 if (!mm_init(mm, tsk, mm->user_ns)) 1480 goto fail_nomem; 1481 1482 uprobe_start_dup_mmap(); 1483 err = dup_mmap(mm, oldmm); 1484 if (err) 1485 goto free_pt; 1486 uprobe_end_dup_mmap(); 1487 1488 mm->hiwater_rss = get_mm_rss(mm); 1489 mm->hiwater_vm = mm->total_vm; 1490 1491 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1492 goto free_pt; 1493 1494 return mm; 1495 1496 free_pt: 1497 /* don't put binfmt in mmput, we haven't got module yet */ 1498 mm->binfmt = NULL; 1499 mm_init_owner(mm, NULL); 1500 mmput(mm); 1501 if (err) 1502 uprobe_end_dup_mmap(); 1503 1504 fail_nomem: 1505 return NULL; 1506 } 1507 1508 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1509 { 1510 struct mm_struct *mm, *oldmm; 1511 1512 tsk->min_flt = tsk->maj_flt = 0; 1513 tsk->nvcsw = tsk->nivcsw = 0; 1514 #ifdef CONFIG_DETECT_HUNG_TASK 1515 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1516 tsk->last_switch_time = 0; 1517 #endif 1518 1519 tsk->mm = NULL; 1520 tsk->active_mm = NULL; 1521 1522 /* 1523 * Are we cloning a kernel thread? 1524 * 1525 * We need to steal a active VM for that.. 1526 */ 1527 oldmm = current->mm; 1528 if (!oldmm) 1529 return 0; 1530 1531 if (clone_flags & CLONE_VM) { 1532 mmget(oldmm); 1533 mm = oldmm; 1534 } else { 1535 mm = dup_mm(tsk, current->mm); 1536 if (!mm) 1537 return -ENOMEM; 1538 } 1539 1540 tsk->mm = mm; 1541 tsk->active_mm = mm; 1542 sched_mm_cid_fork(tsk); 1543 return 0; 1544 } 1545 1546 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1547 { 1548 struct fs_struct *fs = current->fs; 1549 if (clone_flags & CLONE_FS) { 1550 /* tsk->fs is already what we want */ 1551 read_seqlock_excl(&fs->seq); 1552 /* "users" and "in_exec" locked for check_unsafe_exec() */ 1553 if (fs->in_exec) { 1554 read_sequnlock_excl(&fs->seq); 1555 return -EAGAIN; 1556 } 1557 fs->users++; 1558 read_sequnlock_excl(&fs->seq); 1559 return 0; 1560 } 1561 tsk->fs = copy_fs_struct(fs); 1562 if (!tsk->fs) 1563 return -ENOMEM; 1564 return 0; 1565 } 1566 1567 static int copy_files(unsigned long clone_flags, struct task_struct *tsk, 1568 int no_files) 1569 { 1570 struct files_struct *oldf, *newf; 1571 1572 /* 1573 * A background process may not have any files ... 1574 */ 1575 oldf = current->files; 1576 if (!oldf) 1577 return 0; 1578 1579 if (no_files) { 1580 tsk->files = NULL; 1581 return 0; 1582 } 1583 1584 if (clone_flags & CLONE_FILES) { 1585 atomic_inc(&oldf->count); 1586 return 0; 1587 } 1588 1589 newf = dup_fd(oldf, NULL); 1590 if (IS_ERR(newf)) 1591 return PTR_ERR(newf); 1592 1593 tsk->files = newf; 1594 return 0; 1595 } 1596 1597 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1598 { 1599 struct sighand_struct *sig; 1600 1601 if (clone_flags & CLONE_SIGHAND) { 1602 refcount_inc(¤t->sighand->count); 1603 return 0; 1604 } 1605 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1606 RCU_INIT_POINTER(tsk->sighand, sig); 1607 if (!sig) 1608 return -ENOMEM; 1609 1610 refcount_set(&sig->count, 1); 1611 spin_lock_irq(¤t->sighand->siglock); 1612 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1613 spin_unlock_irq(¤t->sighand->siglock); 1614 1615 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1616 if (clone_flags & CLONE_CLEAR_SIGHAND) 1617 flush_signal_handlers(tsk, 0); 1618 1619 return 0; 1620 } 1621 1622 void __cleanup_sighand(struct sighand_struct *sighand) 1623 { 1624 if (refcount_dec_and_test(&sighand->count)) { 1625 signalfd_cleanup(sighand); 1626 /* 1627 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1628 * without an RCU grace period, see __lock_task_sighand(). 1629 */ 1630 kmem_cache_free(sighand_cachep, sighand); 1631 } 1632 } 1633 1634 /* 1635 * Initialize POSIX timer handling for a thread group. 1636 */ 1637 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1638 { 1639 struct posix_cputimers *pct = &sig->posix_cputimers; 1640 unsigned long cpu_limit; 1641 1642 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1643 posix_cputimers_group_init(pct, cpu_limit); 1644 } 1645 1646 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1647 { 1648 struct signal_struct *sig; 1649 1650 if (clone_flags & CLONE_THREAD) 1651 return 0; 1652 1653 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1654 tsk->signal = sig; 1655 if (!sig) 1656 return -ENOMEM; 1657 1658 sig->nr_threads = 1; 1659 sig->quick_threads = 1; 1660 atomic_set(&sig->live, 1); 1661 refcount_set(&sig->sigcnt, 1); 1662 1663 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1664 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1665 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1666 1667 init_waitqueue_head(&sig->wait_chldexit); 1668 sig->curr_target = tsk; 1669 init_sigpending(&sig->shared_pending); 1670 INIT_HLIST_HEAD(&sig->multiprocess); 1671 seqlock_init(&sig->stats_lock); 1672 prev_cputime_init(&sig->prev_cputime); 1673 1674 #ifdef CONFIG_POSIX_TIMERS 1675 INIT_HLIST_HEAD(&sig->posix_timers); 1676 INIT_HLIST_HEAD(&sig->ignored_posix_timers); 1677 hrtimer_setup(&sig->real_timer, it_real_fn, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1678 #endif 1679 1680 task_lock(current->group_leader); 1681 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1682 task_unlock(current->group_leader); 1683 1684 posix_cpu_timers_init_group(sig); 1685 1686 tty_audit_fork(sig); 1687 sched_autogroup_fork(sig); 1688 1689 sig->oom_score_adj = current->signal->oom_score_adj; 1690 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1691 1692 mutex_init(&sig->cred_guard_mutex); 1693 init_rwsem(&sig->exec_update_lock); 1694 1695 return 0; 1696 } 1697 1698 static void copy_seccomp(struct task_struct *p) 1699 { 1700 #ifdef CONFIG_SECCOMP 1701 /* 1702 * Must be called with sighand->lock held, which is common to 1703 * all threads in the group. Holding cred_guard_mutex is not 1704 * needed because this new task is not yet running and cannot 1705 * be racing exec. 1706 */ 1707 assert_spin_locked(¤t->sighand->siglock); 1708 1709 /* Ref-count the new filter user, and assign it. */ 1710 get_seccomp_filter(current); 1711 p->seccomp = current->seccomp; 1712 1713 /* 1714 * Explicitly enable no_new_privs here in case it got set 1715 * between the task_struct being duplicated and holding the 1716 * sighand lock. The seccomp state and nnp must be in sync. 1717 */ 1718 if (task_no_new_privs(current)) 1719 task_set_no_new_privs(p); 1720 1721 /* 1722 * If the parent gained a seccomp mode after copying thread 1723 * flags and between before we held the sighand lock, we have 1724 * to manually enable the seccomp thread flag here. 1725 */ 1726 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1727 set_task_syscall_work(p, SECCOMP); 1728 #endif 1729 } 1730 1731 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1732 { 1733 current->clear_child_tid = tidptr; 1734 1735 return task_pid_vnr(current); 1736 } 1737 1738 static void rt_mutex_init_task(struct task_struct *p) 1739 { 1740 raw_spin_lock_init(&p->pi_lock); 1741 #ifdef CONFIG_RT_MUTEXES 1742 p->pi_waiters = RB_ROOT_CACHED; 1743 p->pi_top_task = NULL; 1744 p->pi_blocked_on = NULL; 1745 #endif 1746 } 1747 1748 static inline void init_task_pid_links(struct task_struct *task) 1749 { 1750 enum pid_type type; 1751 1752 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1753 INIT_HLIST_NODE(&task->pid_links[type]); 1754 } 1755 1756 static inline void 1757 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1758 { 1759 if (type == PIDTYPE_PID) 1760 task->thread_pid = pid; 1761 else 1762 task->signal->pids[type] = pid; 1763 } 1764 1765 static inline void rcu_copy_process(struct task_struct *p) 1766 { 1767 #ifdef CONFIG_PREEMPT_RCU 1768 p->rcu_read_lock_nesting = 0; 1769 p->rcu_read_unlock_special.s = 0; 1770 p->rcu_blocked_node = NULL; 1771 INIT_LIST_HEAD(&p->rcu_node_entry); 1772 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1773 #ifdef CONFIG_TASKS_RCU 1774 p->rcu_tasks_holdout = false; 1775 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1776 p->rcu_tasks_idle_cpu = -1; 1777 INIT_LIST_HEAD(&p->rcu_tasks_exit_list); 1778 #endif /* #ifdef CONFIG_TASKS_RCU */ 1779 #ifdef CONFIG_TASKS_TRACE_RCU 1780 p->trc_reader_nesting = 0; 1781 p->trc_reader_special.s = 0; 1782 INIT_LIST_HEAD(&p->trc_holdout_list); 1783 INIT_LIST_HEAD(&p->trc_blkd_node); 1784 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1785 } 1786 1787 /** 1788 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 1789 * @pid: the struct pid for which to create a pidfd 1790 * @flags: flags of the new @pidfd 1791 * @ret_file: return the new pidfs file 1792 * 1793 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 1794 * caller's file descriptor table. The pidfd is reserved but not installed yet. 1795 * 1796 * The helper verifies that @pid is still in use, without PIDFD_THREAD the 1797 * task identified by @pid must be a thread-group leader. 1798 * 1799 * If this function returns successfully the caller is responsible to either 1800 * call fd_install() passing the returned pidfd and pidfd file as arguments in 1801 * order to install the pidfd into its file descriptor table or they must use 1802 * put_unused_fd() and fput() on the returned pidfd and pidfd file 1803 * respectively. 1804 * 1805 * This function is useful when a pidfd must already be reserved but there 1806 * might still be points of failure afterwards and the caller wants to ensure 1807 * that no pidfd is leaked into its file descriptor table. 1808 * 1809 * Return: On success, a reserved pidfd is returned from the function and a new 1810 * pidfd file is returned in the last argument to the function. On 1811 * error, a negative error code is returned from the function and the 1812 * last argument remains unchanged. 1813 */ 1814 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret_file) 1815 { 1816 struct file *pidfs_file; 1817 1818 /* 1819 * PIDFD_STALE is only allowed to be passed if the caller knows 1820 * that @pid is already registered in pidfs and thus 1821 * PIDFD_INFO_EXIT information is guaranteed to be available. 1822 */ 1823 if (!(flags & PIDFD_STALE)) { 1824 /* 1825 * While holding the pidfd waitqueue lock removing the 1826 * task linkage for the thread-group leader pid 1827 * (PIDTYPE_TGID) isn't possible. Thus, if there's still 1828 * task linkage for PIDTYPE_PID not having thread-group 1829 * leader linkage for the pid means it wasn't a 1830 * thread-group leader in the first place. 1831 */ 1832 guard(spinlock_irq)(&pid->wait_pidfd.lock); 1833 1834 /* Task has already been reaped. */ 1835 if (!pid_has_task(pid, PIDTYPE_PID)) 1836 return -ESRCH; 1837 /* 1838 * If this struct pid isn't used as a thread-group 1839 * leader but the caller requested to create a 1840 * thread-group leader pidfd then report ENOENT. 1841 */ 1842 if (!(flags & PIDFD_THREAD) && !pid_has_task(pid, PIDTYPE_TGID)) 1843 return -ENOENT; 1844 } 1845 1846 CLASS(get_unused_fd, pidfd)(O_CLOEXEC); 1847 if (pidfd < 0) 1848 return pidfd; 1849 1850 pidfs_file = pidfs_alloc_file(pid, flags | O_RDWR); 1851 if (IS_ERR(pidfs_file)) 1852 return PTR_ERR(pidfs_file); 1853 1854 *ret_file = pidfs_file; 1855 return take_fd(pidfd); 1856 } 1857 1858 static void __delayed_free_task(struct rcu_head *rhp) 1859 { 1860 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1861 1862 free_task(tsk); 1863 } 1864 1865 static __always_inline void delayed_free_task(struct task_struct *tsk) 1866 { 1867 if (IS_ENABLED(CONFIG_MEMCG)) 1868 call_rcu(&tsk->rcu, __delayed_free_task); 1869 else 1870 free_task(tsk); 1871 } 1872 1873 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 1874 { 1875 /* Skip if kernel thread */ 1876 if (!tsk->mm) 1877 return; 1878 1879 /* Skip if spawning a thread or using vfork */ 1880 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 1881 return; 1882 1883 /* We need to synchronize with __set_oom_adj */ 1884 mutex_lock(&oom_adj_mutex); 1885 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 1886 /* Update the values in case they were changed after copy_signal */ 1887 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 1888 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 1889 mutex_unlock(&oom_adj_mutex); 1890 } 1891 1892 #ifdef CONFIG_RV 1893 static void rv_task_fork(struct task_struct *p) 1894 { 1895 memset(&p->rv, 0, sizeof(p->rv)); 1896 } 1897 #else 1898 #define rv_task_fork(p) do {} while (0) 1899 #endif 1900 1901 static bool need_futex_hash_allocate_default(u64 clone_flags) 1902 { 1903 if ((clone_flags & (CLONE_THREAD | CLONE_VM)) != (CLONE_THREAD | CLONE_VM)) 1904 return false; 1905 return true; 1906 } 1907 1908 /* 1909 * This creates a new process as a copy of the old one, 1910 * but does not actually start it yet. 1911 * 1912 * It copies the registers, and all the appropriate 1913 * parts of the process environment (as per the clone 1914 * flags). The actual kick-off is left to the caller. 1915 */ 1916 __latent_entropy struct task_struct *copy_process( 1917 struct pid *pid, 1918 int trace, 1919 int node, 1920 struct kernel_clone_args *args) 1921 { 1922 int pidfd = -1, retval; 1923 struct task_struct *p; 1924 struct multiprocess_signals delayed; 1925 struct file *pidfile = NULL; 1926 const u64 clone_flags = args->flags; 1927 struct nsproxy *nsp = current->nsproxy; 1928 1929 /* 1930 * Don't allow sharing the root directory with processes in a different 1931 * namespace 1932 */ 1933 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1934 return ERR_PTR(-EINVAL); 1935 1936 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1937 return ERR_PTR(-EINVAL); 1938 1939 /* 1940 * Thread groups must share signals as well, and detached threads 1941 * can only be started up within the thread group. 1942 */ 1943 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1944 return ERR_PTR(-EINVAL); 1945 1946 /* 1947 * Shared signal handlers imply shared VM. By way of the above, 1948 * thread groups also imply shared VM. Blocking this case allows 1949 * for various simplifications in other code. 1950 */ 1951 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1952 return ERR_PTR(-EINVAL); 1953 1954 /* 1955 * Siblings of global init remain as zombies on exit since they are 1956 * not reaped by their parent (swapper). To solve this and to avoid 1957 * multi-rooted process trees, prevent global and container-inits 1958 * from creating siblings. 1959 */ 1960 if ((clone_flags & CLONE_PARENT) && 1961 current->signal->flags & SIGNAL_UNKILLABLE) 1962 return ERR_PTR(-EINVAL); 1963 1964 /* 1965 * If the new process will be in a different pid or user namespace 1966 * do not allow it to share a thread group with the forking task. 1967 */ 1968 if (clone_flags & CLONE_THREAD) { 1969 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 1970 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 1971 return ERR_PTR(-EINVAL); 1972 } 1973 1974 if (clone_flags & CLONE_PIDFD) { 1975 /* 1976 * - CLONE_DETACHED is blocked so that we can potentially 1977 * reuse it later for CLONE_PIDFD. 1978 */ 1979 if (clone_flags & CLONE_DETACHED) 1980 return ERR_PTR(-EINVAL); 1981 } 1982 1983 /* 1984 * Force any signals received before this point to be delivered 1985 * before the fork happens. Collect up signals sent to multiple 1986 * processes that happen during the fork and delay them so that 1987 * they appear to happen after the fork. 1988 */ 1989 sigemptyset(&delayed.signal); 1990 INIT_HLIST_NODE(&delayed.node); 1991 1992 spin_lock_irq(¤t->sighand->siglock); 1993 if (!(clone_flags & CLONE_THREAD)) 1994 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 1995 recalc_sigpending(); 1996 spin_unlock_irq(¤t->sighand->siglock); 1997 retval = -ERESTARTNOINTR; 1998 if (task_sigpending(current)) 1999 goto fork_out; 2000 2001 retval = -ENOMEM; 2002 p = dup_task_struct(current, node); 2003 if (!p) 2004 goto fork_out; 2005 p->flags &= ~PF_KTHREAD; 2006 if (args->kthread) 2007 p->flags |= PF_KTHREAD; 2008 if (args->user_worker) { 2009 /* 2010 * Mark us a user worker, and block any signal that isn't 2011 * fatal or STOP 2012 */ 2013 p->flags |= PF_USER_WORKER; 2014 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2015 } 2016 if (args->io_thread) 2017 p->flags |= PF_IO_WORKER; 2018 2019 if (args->name) 2020 strscpy_pad(p->comm, args->name, sizeof(p->comm)); 2021 2022 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2023 /* 2024 * Clear TID on mm_release()? 2025 */ 2026 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2027 2028 ftrace_graph_init_task(p); 2029 2030 rt_mutex_init_task(p); 2031 2032 lockdep_assert_irqs_enabled(); 2033 #ifdef CONFIG_PROVE_LOCKING 2034 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2035 #endif 2036 retval = copy_creds(p, clone_flags); 2037 if (retval < 0) 2038 goto bad_fork_free; 2039 2040 retval = -EAGAIN; 2041 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2042 if (p->real_cred->user != INIT_USER && 2043 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2044 goto bad_fork_cleanup_count; 2045 } 2046 current->flags &= ~PF_NPROC_EXCEEDED; 2047 2048 /* 2049 * If multiple threads are within copy_process(), then this check 2050 * triggers too late. This doesn't hurt, the check is only there 2051 * to stop root fork bombs. 2052 */ 2053 retval = -EAGAIN; 2054 if (data_race(nr_threads >= max_threads)) 2055 goto bad_fork_cleanup_count; 2056 2057 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2058 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2059 p->flags |= PF_FORKNOEXEC; 2060 INIT_LIST_HEAD(&p->children); 2061 INIT_LIST_HEAD(&p->sibling); 2062 rcu_copy_process(p); 2063 p->vfork_done = NULL; 2064 spin_lock_init(&p->alloc_lock); 2065 2066 init_sigpending(&p->pending); 2067 2068 p->utime = p->stime = p->gtime = 0; 2069 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2070 p->utimescaled = p->stimescaled = 0; 2071 #endif 2072 prev_cputime_init(&p->prev_cputime); 2073 2074 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2075 seqcount_init(&p->vtime.seqcount); 2076 p->vtime.starttime = 0; 2077 p->vtime.state = VTIME_INACTIVE; 2078 #endif 2079 2080 #ifdef CONFIG_IO_URING 2081 p->io_uring = NULL; 2082 #endif 2083 2084 p->default_timer_slack_ns = current->timer_slack_ns; 2085 2086 #ifdef CONFIG_PSI 2087 p->psi_flags = 0; 2088 #endif 2089 2090 task_io_accounting_init(&p->ioac); 2091 acct_clear_integrals(p); 2092 2093 posix_cputimers_init(&p->posix_cputimers); 2094 tick_dep_init_task(p); 2095 2096 p->io_context = NULL; 2097 audit_set_context(p, NULL); 2098 cgroup_fork(p); 2099 if (args->kthread) { 2100 if (!set_kthread_struct(p)) 2101 goto bad_fork_cleanup_delayacct; 2102 } 2103 #ifdef CONFIG_NUMA 2104 p->mempolicy = mpol_dup(p->mempolicy); 2105 if (IS_ERR(p->mempolicy)) { 2106 retval = PTR_ERR(p->mempolicy); 2107 p->mempolicy = NULL; 2108 goto bad_fork_cleanup_delayacct; 2109 } 2110 #endif 2111 #ifdef CONFIG_CPUSETS 2112 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2113 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2114 #endif 2115 #ifdef CONFIG_TRACE_IRQFLAGS 2116 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2117 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2118 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2119 p->softirqs_enabled = 1; 2120 p->softirq_context = 0; 2121 #endif 2122 2123 p->pagefault_disabled = 0; 2124 2125 #ifdef CONFIG_LOCKDEP 2126 lockdep_init_task(p); 2127 #endif 2128 2129 p->blocked_on = NULL; /* not blocked yet */ 2130 2131 #ifdef CONFIG_BCACHE 2132 p->sequential_io = 0; 2133 p->sequential_io_avg = 0; 2134 #endif 2135 #ifdef CONFIG_BPF_SYSCALL 2136 RCU_INIT_POINTER(p->bpf_storage, NULL); 2137 p->bpf_ctx = NULL; 2138 #endif 2139 2140 unwind_task_init(p); 2141 2142 /* Perform scheduler related setup. Assign this task to a CPU. */ 2143 retval = sched_fork(clone_flags, p); 2144 if (retval) 2145 goto bad_fork_cleanup_policy; 2146 2147 retval = perf_event_init_task(p, clone_flags); 2148 if (retval) 2149 goto bad_fork_sched_cancel_fork; 2150 retval = audit_alloc(p); 2151 if (retval) 2152 goto bad_fork_cleanup_perf; 2153 /* copy all the process information */ 2154 shm_init_task(p); 2155 retval = security_task_alloc(p, clone_flags); 2156 if (retval) 2157 goto bad_fork_cleanup_audit; 2158 retval = copy_semundo(clone_flags, p); 2159 if (retval) 2160 goto bad_fork_cleanup_security; 2161 retval = copy_files(clone_flags, p, args->no_files); 2162 if (retval) 2163 goto bad_fork_cleanup_semundo; 2164 retval = copy_fs(clone_flags, p); 2165 if (retval) 2166 goto bad_fork_cleanup_files; 2167 retval = copy_sighand(clone_flags, p); 2168 if (retval) 2169 goto bad_fork_cleanup_fs; 2170 retval = copy_signal(clone_flags, p); 2171 if (retval) 2172 goto bad_fork_cleanup_sighand; 2173 retval = copy_mm(clone_flags, p); 2174 if (retval) 2175 goto bad_fork_cleanup_signal; 2176 retval = copy_namespaces(clone_flags, p); 2177 if (retval) 2178 goto bad_fork_cleanup_mm; 2179 retval = copy_io(clone_flags, p); 2180 if (retval) 2181 goto bad_fork_cleanup_namespaces; 2182 retval = copy_thread(p, args); 2183 if (retval) 2184 goto bad_fork_cleanup_io; 2185 2186 stackleak_task_init(p); 2187 2188 if (pid != &init_struct_pid) { 2189 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2190 args->set_tid_size); 2191 if (IS_ERR(pid)) { 2192 retval = PTR_ERR(pid); 2193 goto bad_fork_cleanup_thread; 2194 } 2195 } 2196 2197 /* 2198 * This has to happen after we've potentially unshared the file 2199 * descriptor table (so that the pidfd doesn't leak into the child 2200 * if the fd table isn't shared). 2201 */ 2202 if (clone_flags & CLONE_PIDFD) { 2203 int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0; 2204 2205 /* 2206 * Note that no task has been attached to @pid yet indicate 2207 * that via CLONE_PIDFD. 2208 */ 2209 retval = pidfd_prepare(pid, flags | PIDFD_STALE, &pidfile); 2210 if (retval < 0) 2211 goto bad_fork_free_pid; 2212 pidfd = retval; 2213 2214 retval = put_user(pidfd, args->pidfd); 2215 if (retval) 2216 goto bad_fork_put_pidfd; 2217 } 2218 2219 #ifdef CONFIG_BLOCK 2220 p->plug = NULL; 2221 #endif 2222 futex_init_task(p); 2223 2224 /* 2225 * sigaltstack should be cleared when sharing the same VM 2226 */ 2227 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2228 sas_ss_reset(p); 2229 2230 /* 2231 * Syscall tracing and stepping should be turned off in the 2232 * child regardless of CLONE_PTRACE. 2233 */ 2234 user_disable_single_step(p); 2235 clear_task_syscall_work(p, SYSCALL_TRACE); 2236 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2237 clear_task_syscall_work(p, SYSCALL_EMU); 2238 #endif 2239 clear_tsk_latency_tracing(p); 2240 2241 /* ok, now we should be set up.. */ 2242 p->pid = pid_nr(pid); 2243 if (clone_flags & CLONE_THREAD) { 2244 p->group_leader = current->group_leader; 2245 p->tgid = current->tgid; 2246 } else { 2247 p->group_leader = p; 2248 p->tgid = p->pid; 2249 } 2250 2251 p->nr_dirtied = 0; 2252 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2253 p->dirty_paused_when = 0; 2254 2255 p->pdeath_signal = 0; 2256 p->task_works = NULL; 2257 clear_posix_cputimers_work(p); 2258 2259 #ifdef CONFIG_KRETPROBES 2260 p->kretprobe_instances.first = NULL; 2261 #endif 2262 #ifdef CONFIG_RETHOOK 2263 p->rethooks.first = NULL; 2264 #endif 2265 2266 /* 2267 * Ensure that the cgroup subsystem policies allow the new process to be 2268 * forked. It should be noted that the new process's css_set can be changed 2269 * between here and cgroup_post_fork() if an organisation operation is in 2270 * progress. 2271 */ 2272 retval = cgroup_can_fork(p, args); 2273 if (retval) 2274 goto bad_fork_put_pidfd; 2275 2276 /* 2277 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2278 * the new task on the correct runqueue. All this *before* the task 2279 * becomes visible. 2280 * 2281 * This isn't part of ->can_fork() because while the re-cloning is 2282 * cgroup specific, it unconditionally needs to place the task on a 2283 * runqueue. 2284 */ 2285 retval = sched_cgroup_fork(p, args); 2286 if (retval) 2287 goto bad_fork_cancel_cgroup; 2288 2289 /* 2290 * Allocate a default futex hash for the user process once the first 2291 * thread spawns. 2292 */ 2293 if (need_futex_hash_allocate_default(clone_flags)) { 2294 retval = futex_hash_allocate_default(); 2295 if (retval) 2296 goto bad_fork_core_free; 2297 /* 2298 * If we fail beyond this point we don't free the allocated 2299 * futex hash map. We assume that another thread will be created 2300 * and makes use of it. The hash map will be freed once the main 2301 * thread terminates. 2302 */ 2303 } 2304 /* 2305 * From this point on we must avoid any synchronous user-space 2306 * communication until we take the tasklist-lock. In particular, we do 2307 * not want user-space to be able to predict the process start-time by 2308 * stalling fork(2) after we recorded the start_time but before it is 2309 * visible to the system. 2310 */ 2311 2312 p->start_time = ktime_get_ns(); 2313 p->start_boottime = ktime_get_boottime_ns(); 2314 2315 /* 2316 * Make it visible to the rest of the system, but dont wake it up yet. 2317 * Need tasklist lock for parent etc handling! 2318 */ 2319 write_lock_irq(&tasklist_lock); 2320 2321 /* CLONE_PARENT re-uses the old parent */ 2322 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2323 p->real_parent = current->real_parent; 2324 p->parent_exec_id = current->parent_exec_id; 2325 if (clone_flags & CLONE_THREAD) 2326 p->exit_signal = -1; 2327 else 2328 p->exit_signal = current->group_leader->exit_signal; 2329 } else { 2330 p->real_parent = current; 2331 p->parent_exec_id = current->self_exec_id; 2332 p->exit_signal = args->exit_signal; 2333 } 2334 2335 klp_copy_process(p); 2336 2337 sched_core_fork(p); 2338 2339 spin_lock(¤t->sighand->siglock); 2340 2341 rv_task_fork(p); 2342 2343 rseq_fork(p, clone_flags); 2344 2345 /* Don't start children in a dying pid namespace */ 2346 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2347 retval = -ENOMEM; 2348 goto bad_fork_core_free; 2349 } 2350 2351 /* Let kill terminate clone/fork in the middle */ 2352 if (fatal_signal_pending(current)) { 2353 retval = -EINTR; 2354 goto bad_fork_core_free; 2355 } 2356 2357 /* No more failure paths after this point. */ 2358 2359 /* 2360 * Copy seccomp details explicitly here, in case they were changed 2361 * before holding sighand lock. 2362 */ 2363 copy_seccomp(p); 2364 2365 init_task_pid_links(p); 2366 if (likely(p->pid)) { 2367 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2368 2369 init_task_pid(p, PIDTYPE_PID, pid); 2370 if (thread_group_leader(p)) { 2371 init_task_pid(p, PIDTYPE_TGID, pid); 2372 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2373 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2374 2375 if (is_child_reaper(pid)) { 2376 ns_of_pid(pid)->child_reaper = p; 2377 p->signal->flags |= SIGNAL_UNKILLABLE; 2378 } 2379 p->signal->shared_pending.signal = delayed.signal; 2380 p->signal->tty = tty_kref_get(current->signal->tty); 2381 /* 2382 * Inherit has_child_subreaper flag under the same 2383 * tasklist_lock with adding child to the process tree 2384 * for propagate_has_child_subreaper optimization. 2385 */ 2386 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2387 p->real_parent->signal->is_child_subreaper; 2388 list_add_tail(&p->sibling, &p->real_parent->children); 2389 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2390 attach_pid(p, PIDTYPE_TGID); 2391 attach_pid(p, PIDTYPE_PGID); 2392 attach_pid(p, PIDTYPE_SID); 2393 __this_cpu_inc(process_counts); 2394 } else { 2395 current->signal->nr_threads++; 2396 current->signal->quick_threads++; 2397 atomic_inc(¤t->signal->live); 2398 refcount_inc(¤t->signal->sigcnt); 2399 task_join_group_stop(p); 2400 list_add_tail_rcu(&p->thread_node, 2401 &p->signal->thread_head); 2402 } 2403 attach_pid(p, PIDTYPE_PID); 2404 nr_threads++; 2405 } 2406 total_forks++; 2407 hlist_del_init(&delayed.node); 2408 spin_unlock(¤t->sighand->siglock); 2409 syscall_tracepoint_update(p); 2410 write_unlock_irq(&tasklist_lock); 2411 2412 if (pidfile) 2413 fd_install(pidfd, pidfile); 2414 2415 proc_fork_connector(p); 2416 sched_post_fork(p); 2417 cgroup_post_fork(p, args); 2418 perf_event_fork(p); 2419 2420 trace_task_newtask(p, clone_flags); 2421 uprobe_copy_process(p, clone_flags); 2422 user_events_fork(p, clone_flags); 2423 2424 copy_oom_score_adj(clone_flags, p); 2425 2426 return p; 2427 2428 bad_fork_core_free: 2429 sched_core_free(p); 2430 spin_unlock(¤t->sighand->siglock); 2431 write_unlock_irq(&tasklist_lock); 2432 bad_fork_cancel_cgroup: 2433 cgroup_cancel_fork(p, args); 2434 bad_fork_put_pidfd: 2435 if (clone_flags & CLONE_PIDFD) { 2436 fput(pidfile); 2437 put_unused_fd(pidfd); 2438 } 2439 bad_fork_free_pid: 2440 if (pid != &init_struct_pid) 2441 free_pid(pid); 2442 bad_fork_cleanup_thread: 2443 exit_thread(p); 2444 bad_fork_cleanup_io: 2445 if (p->io_context) 2446 exit_io_context(p); 2447 bad_fork_cleanup_namespaces: 2448 exit_task_namespaces(p); 2449 bad_fork_cleanup_mm: 2450 if (p->mm) { 2451 mm_clear_owner(p->mm, p); 2452 mmput(p->mm); 2453 } 2454 bad_fork_cleanup_signal: 2455 if (!(clone_flags & CLONE_THREAD)) 2456 free_signal_struct(p->signal); 2457 bad_fork_cleanup_sighand: 2458 __cleanup_sighand(p->sighand); 2459 bad_fork_cleanup_fs: 2460 exit_fs(p); /* blocking */ 2461 bad_fork_cleanup_files: 2462 exit_files(p); /* blocking */ 2463 bad_fork_cleanup_semundo: 2464 exit_sem(p); 2465 bad_fork_cleanup_security: 2466 security_task_free(p); 2467 bad_fork_cleanup_audit: 2468 audit_free(p); 2469 bad_fork_cleanup_perf: 2470 perf_event_free_task(p); 2471 bad_fork_sched_cancel_fork: 2472 sched_cancel_fork(p); 2473 bad_fork_cleanup_policy: 2474 lockdep_free_task(p); 2475 #ifdef CONFIG_NUMA 2476 mpol_put(p->mempolicy); 2477 #endif 2478 bad_fork_cleanup_delayacct: 2479 delayacct_tsk_free(p); 2480 bad_fork_cleanup_count: 2481 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2482 exit_creds(p); 2483 bad_fork_free: 2484 WRITE_ONCE(p->__state, TASK_DEAD); 2485 exit_task_stack_account(p); 2486 put_task_stack(p); 2487 delayed_free_task(p); 2488 fork_out: 2489 spin_lock_irq(¤t->sighand->siglock); 2490 hlist_del_init(&delayed.node); 2491 spin_unlock_irq(¤t->sighand->siglock); 2492 return ERR_PTR(retval); 2493 } 2494 2495 static inline void init_idle_pids(struct task_struct *idle) 2496 { 2497 enum pid_type type; 2498 2499 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2500 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2501 init_task_pid(idle, type, &init_struct_pid); 2502 } 2503 } 2504 2505 static int idle_dummy(void *dummy) 2506 { 2507 /* This function is never called */ 2508 return 0; 2509 } 2510 2511 struct task_struct * __init fork_idle(int cpu) 2512 { 2513 struct task_struct *task; 2514 struct kernel_clone_args args = { 2515 .flags = CLONE_VM, 2516 .fn = &idle_dummy, 2517 .fn_arg = NULL, 2518 .kthread = 1, 2519 .idle = 1, 2520 }; 2521 2522 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2523 if (!IS_ERR(task)) { 2524 init_idle_pids(task); 2525 init_idle(task, cpu); 2526 } 2527 2528 return task; 2529 } 2530 2531 /* 2532 * This is like kernel_clone(), but shaved down and tailored to just 2533 * creating io_uring workers. It returns a created task, or an error pointer. 2534 * The returned task is inactive, and the caller must fire it up through 2535 * wake_up_new_task(p). All signals are blocked in the created task. 2536 */ 2537 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2538 { 2539 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2540 CLONE_IO; 2541 struct kernel_clone_args args = { 2542 .flags = ((lower_32_bits(flags) | CLONE_VM | 2543 CLONE_UNTRACED) & ~CSIGNAL), 2544 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2545 .fn = fn, 2546 .fn_arg = arg, 2547 .io_thread = 1, 2548 .user_worker = 1, 2549 }; 2550 2551 return copy_process(NULL, 0, node, &args); 2552 } 2553 2554 /* 2555 * Ok, this is the main fork-routine. 2556 * 2557 * It copies the process, and if successful kick-starts 2558 * it and waits for it to finish using the VM if required. 2559 * 2560 * args->exit_signal is expected to be checked for sanity by the caller. 2561 */ 2562 pid_t kernel_clone(struct kernel_clone_args *args) 2563 { 2564 u64 clone_flags = args->flags; 2565 struct completion vfork; 2566 struct pid *pid; 2567 struct task_struct *p; 2568 int trace = 0; 2569 pid_t nr; 2570 2571 /* 2572 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2573 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2574 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2575 * field in struct clone_args and it still doesn't make sense to have 2576 * them both point at the same memory location. Performing this check 2577 * here has the advantage that we don't need to have a separate helper 2578 * to check for legacy clone(). 2579 */ 2580 if ((clone_flags & CLONE_PIDFD) && 2581 (clone_flags & CLONE_PARENT_SETTID) && 2582 (args->pidfd == args->parent_tid)) 2583 return -EINVAL; 2584 2585 /* 2586 * Determine whether and which event to report to ptracer. When 2587 * called from kernel_thread or CLONE_UNTRACED is explicitly 2588 * requested, no event is reported; otherwise, report if the event 2589 * for the type of forking is enabled. 2590 */ 2591 if (!(clone_flags & CLONE_UNTRACED)) { 2592 if (clone_flags & CLONE_VFORK) 2593 trace = PTRACE_EVENT_VFORK; 2594 else if (args->exit_signal != SIGCHLD) 2595 trace = PTRACE_EVENT_CLONE; 2596 else 2597 trace = PTRACE_EVENT_FORK; 2598 2599 if (likely(!ptrace_event_enabled(current, trace))) 2600 trace = 0; 2601 } 2602 2603 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2604 add_latent_entropy(); 2605 2606 if (IS_ERR(p)) 2607 return PTR_ERR(p); 2608 2609 /* 2610 * Do this prior waking up the new thread - the thread pointer 2611 * might get invalid after that point, if the thread exits quickly. 2612 */ 2613 trace_sched_process_fork(current, p); 2614 2615 pid = get_task_pid(p, PIDTYPE_PID); 2616 nr = pid_vnr(pid); 2617 2618 if (clone_flags & CLONE_PARENT_SETTID) 2619 put_user(nr, args->parent_tid); 2620 2621 if (clone_flags & CLONE_VFORK) { 2622 p->vfork_done = &vfork; 2623 init_completion(&vfork); 2624 get_task_struct(p); 2625 } 2626 2627 if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) { 2628 /* lock the task to synchronize with memcg migration */ 2629 task_lock(p); 2630 lru_gen_add_mm(p->mm); 2631 task_unlock(p); 2632 } 2633 2634 wake_up_new_task(p); 2635 2636 /* forking complete and child started to run, tell ptracer */ 2637 if (unlikely(trace)) 2638 ptrace_event_pid(trace, pid); 2639 2640 if (clone_flags & CLONE_VFORK) { 2641 if (!wait_for_vfork_done(p, &vfork)) 2642 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2643 } 2644 2645 put_pid(pid); 2646 return nr; 2647 } 2648 2649 /* 2650 * Create a kernel thread. 2651 */ 2652 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name, 2653 unsigned long flags) 2654 { 2655 struct kernel_clone_args args = { 2656 .flags = ((lower_32_bits(flags) | CLONE_VM | 2657 CLONE_UNTRACED) & ~CSIGNAL), 2658 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2659 .fn = fn, 2660 .fn_arg = arg, 2661 .name = name, 2662 .kthread = 1, 2663 }; 2664 2665 return kernel_clone(&args); 2666 } 2667 2668 /* 2669 * Create a user mode thread. 2670 */ 2671 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) 2672 { 2673 struct kernel_clone_args args = { 2674 .flags = ((lower_32_bits(flags) | CLONE_VM | 2675 CLONE_UNTRACED) & ~CSIGNAL), 2676 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2677 .fn = fn, 2678 .fn_arg = arg, 2679 }; 2680 2681 return kernel_clone(&args); 2682 } 2683 2684 #ifdef __ARCH_WANT_SYS_FORK 2685 SYSCALL_DEFINE0(fork) 2686 { 2687 #ifdef CONFIG_MMU 2688 struct kernel_clone_args args = { 2689 .exit_signal = SIGCHLD, 2690 }; 2691 2692 return kernel_clone(&args); 2693 #else 2694 /* can not support in nommu mode */ 2695 return -EINVAL; 2696 #endif 2697 } 2698 #endif 2699 2700 #ifdef __ARCH_WANT_SYS_VFORK 2701 SYSCALL_DEFINE0(vfork) 2702 { 2703 struct kernel_clone_args args = { 2704 .flags = CLONE_VFORK | CLONE_VM, 2705 .exit_signal = SIGCHLD, 2706 }; 2707 2708 return kernel_clone(&args); 2709 } 2710 #endif 2711 2712 #ifdef __ARCH_WANT_SYS_CLONE 2713 #ifdef CONFIG_CLONE_BACKWARDS 2714 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2715 int __user *, parent_tidptr, 2716 unsigned long, tls, 2717 int __user *, child_tidptr) 2718 #elif defined(CONFIG_CLONE_BACKWARDS2) 2719 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2720 int __user *, parent_tidptr, 2721 int __user *, child_tidptr, 2722 unsigned long, tls) 2723 #elif defined(CONFIG_CLONE_BACKWARDS3) 2724 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2725 int, stack_size, 2726 int __user *, parent_tidptr, 2727 int __user *, child_tidptr, 2728 unsigned long, tls) 2729 #else 2730 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2731 int __user *, parent_tidptr, 2732 int __user *, child_tidptr, 2733 unsigned long, tls) 2734 #endif 2735 { 2736 struct kernel_clone_args args = { 2737 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2738 .pidfd = parent_tidptr, 2739 .child_tid = child_tidptr, 2740 .parent_tid = parent_tidptr, 2741 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2742 .stack = newsp, 2743 .tls = tls, 2744 }; 2745 2746 return kernel_clone(&args); 2747 } 2748 #endif 2749 2750 static noinline int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2751 struct clone_args __user *uargs, 2752 size_t usize) 2753 { 2754 int err; 2755 struct clone_args args; 2756 pid_t *kset_tid = kargs->set_tid; 2757 2758 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2759 CLONE_ARGS_SIZE_VER0); 2760 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2761 CLONE_ARGS_SIZE_VER1); 2762 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2763 CLONE_ARGS_SIZE_VER2); 2764 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2765 2766 if (unlikely(usize > PAGE_SIZE)) 2767 return -E2BIG; 2768 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2769 return -EINVAL; 2770 2771 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2772 if (err) 2773 return err; 2774 2775 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2776 return -EINVAL; 2777 2778 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2779 return -EINVAL; 2780 2781 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2782 return -EINVAL; 2783 2784 /* 2785 * Verify that higher 32bits of exit_signal are unset and that 2786 * it is a valid signal 2787 */ 2788 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2789 !valid_signal(args.exit_signal))) 2790 return -EINVAL; 2791 2792 if ((args.flags & CLONE_INTO_CGROUP) && 2793 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2794 return -EINVAL; 2795 2796 *kargs = (struct kernel_clone_args){ 2797 .flags = args.flags, 2798 .pidfd = u64_to_user_ptr(args.pidfd), 2799 .child_tid = u64_to_user_ptr(args.child_tid), 2800 .parent_tid = u64_to_user_ptr(args.parent_tid), 2801 .exit_signal = args.exit_signal, 2802 .stack = args.stack, 2803 .stack_size = args.stack_size, 2804 .tls = args.tls, 2805 .set_tid_size = args.set_tid_size, 2806 .cgroup = args.cgroup, 2807 }; 2808 2809 if (args.set_tid && 2810 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2811 (kargs->set_tid_size * sizeof(pid_t)))) 2812 return -EFAULT; 2813 2814 kargs->set_tid = kset_tid; 2815 2816 return 0; 2817 } 2818 2819 /** 2820 * clone3_stack_valid - check and prepare stack 2821 * @kargs: kernel clone args 2822 * 2823 * Verify that the stack arguments userspace gave us are sane. 2824 * In addition, set the stack direction for userspace since it's easy for us to 2825 * determine. 2826 */ 2827 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 2828 { 2829 if (kargs->stack == 0) { 2830 if (kargs->stack_size > 0) 2831 return false; 2832 } else { 2833 if (kargs->stack_size == 0) 2834 return false; 2835 2836 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 2837 return false; 2838 2839 #if !defined(CONFIG_STACK_GROWSUP) 2840 kargs->stack += kargs->stack_size; 2841 #endif 2842 } 2843 2844 return true; 2845 } 2846 2847 static bool clone3_args_valid(struct kernel_clone_args *kargs) 2848 { 2849 /* Verify that no unknown flags are passed along. */ 2850 if (kargs->flags & 2851 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 2852 return false; 2853 2854 /* 2855 * - make the CLONE_DETACHED bit reusable for clone3 2856 * - make the CSIGNAL bits reusable for clone3 2857 */ 2858 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME)))) 2859 return false; 2860 2861 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 2862 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 2863 return false; 2864 2865 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 2866 kargs->exit_signal) 2867 return false; 2868 2869 if (!clone3_stack_valid(kargs)) 2870 return false; 2871 2872 return true; 2873 } 2874 2875 /** 2876 * sys_clone3 - create a new process with specific properties 2877 * @uargs: argument structure 2878 * @size: size of @uargs 2879 * 2880 * clone3() is the extensible successor to clone()/clone2(). 2881 * It takes a struct as argument that is versioned by its size. 2882 * 2883 * Return: On success, a positive PID for the child process. 2884 * On error, a negative errno number. 2885 */ 2886 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 2887 { 2888 int err; 2889 2890 struct kernel_clone_args kargs; 2891 pid_t set_tid[MAX_PID_NS_LEVEL]; 2892 2893 #ifdef __ARCH_BROKEN_SYS_CLONE3 2894 #warning clone3() entry point is missing, please fix 2895 return -ENOSYS; 2896 #endif 2897 2898 kargs.set_tid = set_tid; 2899 2900 err = copy_clone_args_from_user(&kargs, uargs, size); 2901 if (err) 2902 return err; 2903 2904 if (!clone3_args_valid(&kargs)) 2905 return -EINVAL; 2906 2907 return kernel_clone(&kargs); 2908 } 2909 2910 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2911 { 2912 struct task_struct *leader, *parent, *child; 2913 int res; 2914 2915 read_lock(&tasklist_lock); 2916 leader = top = top->group_leader; 2917 down: 2918 for_each_thread(leader, parent) { 2919 list_for_each_entry(child, &parent->children, sibling) { 2920 res = visitor(child, data); 2921 if (res) { 2922 if (res < 0) 2923 goto out; 2924 leader = child; 2925 goto down; 2926 } 2927 up: 2928 ; 2929 } 2930 } 2931 2932 if (leader != top) { 2933 child = leader; 2934 parent = child->real_parent; 2935 leader = parent->group_leader; 2936 goto up; 2937 } 2938 out: 2939 read_unlock(&tasklist_lock); 2940 } 2941 2942 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 2943 #define ARCH_MIN_MMSTRUCT_ALIGN 0 2944 #endif 2945 2946 static void sighand_ctor(void *data) 2947 { 2948 struct sighand_struct *sighand = data; 2949 2950 spin_lock_init(&sighand->siglock); 2951 init_waitqueue_head(&sighand->signalfd_wqh); 2952 } 2953 2954 void __init mm_cache_init(void) 2955 { 2956 unsigned int mm_size; 2957 2958 /* 2959 * The mm_cpumask is located at the end of mm_struct, and is 2960 * dynamically sized based on the maximum CPU number this system 2961 * can have, taking hotplug into account (nr_cpu_ids). 2962 */ 2963 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size(); 2964 2965 mm_cachep = kmem_cache_create_usercopy("mm_struct", 2966 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 2967 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2968 offsetof(struct mm_struct, saved_auxv), 2969 sizeof_field(struct mm_struct, saved_auxv), 2970 NULL); 2971 } 2972 2973 void __init proc_caches_init(void) 2974 { 2975 sighand_cachep = kmem_cache_create("sighand_cache", 2976 sizeof(struct sighand_struct), 0, 2977 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 2978 SLAB_ACCOUNT, sighand_ctor); 2979 signal_cachep = kmem_cache_create("signal_cache", 2980 sizeof(struct signal_struct), 0, 2981 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2982 NULL); 2983 files_cachep = kmem_cache_create("files_cache", 2984 sizeof(struct files_struct), 0, 2985 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2986 NULL); 2987 fs_cachep = kmem_cache_create("fs_cache", 2988 sizeof(struct fs_struct), 0, 2989 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2990 NULL); 2991 mmap_init(); 2992 nsproxy_cache_init(); 2993 } 2994 2995 /* 2996 * Check constraints on flags passed to the unshare system call. 2997 */ 2998 static int check_unshare_flags(unsigned long unshare_flags) 2999 { 3000 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 3001 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 3002 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 3003 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 3004 CLONE_NEWTIME)) 3005 return -EINVAL; 3006 /* 3007 * Not implemented, but pretend it works if there is nothing 3008 * to unshare. Note that unsharing the address space or the 3009 * signal handlers also need to unshare the signal queues (aka 3010 * CLONE_THREAD). 3011 */ 3012 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3013 if (!thread_group_empty(current)) 3014 return -EINVAL; 3015 } 3016 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3017 if (refcount_read(¤t->sighand->count) > 1) 3018 return -EINVAL; 3019 } 3020 if (unshare_flags & CLONE_VM) { 3021 if (!current_is_single_threaded()) 3022 return -EINVAL; 3023 } 3024 3025 return 0; 3026 } 3027 3028 /* 3029 * Unshare the filesystem structure if it is being shared 3030 */ 3031 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3032 { 3033 struct fs_struct *fs = current->fs; 3034 3035 if (!(unshare_flags & CLONE_FS) || !fs) 3036 return 0; 3037 3038 /* don't need lock here; in the worst case we'll do useless copy */ 3039 if (fs->users == 1) 3040 return 0; 3041 3042 *new_fsp = copy_fs_struct(fs); 3043 if (!*new_fsp) 3044 return -ENOMEM; 3045 3046 return 0; 3047 } 3048 3049 /* 3050 * Unshare file descriptor table if it is being shared 3051 */ 3052 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 3053 { 3054 struct files_struct *fd = current->files; 3055 3056 if ((unshare_flags & CLONE_FILES) && 3057 (fd && atomic_read(&fd->count) > 1)) { 3058 fd = dup_fd(fd, NULL); 3059 if (IS_ERR(fd)) 3060 return PTR_ERR(fd); 3061 *new_fdp = fd; 3062 } 3063 3064 return 0; 3065 } 3066 3067 /* 3068 * unshare allows a process to 'unshare' part of the process 3069 * context which was originally shared using clone. copy_* 3070 * functions used by kernel_clone() cannot be used here directly 3071 * because they modify an inactive task_struct that is being 3072 * constructed. Here we are modifying the current, active, 3073 * task_struct. 3074 */ 3075 int ksys_unshare(unsigned long unshare_flags) 3076 { 3077 struct fs_struct *fs, *new_fs = NULL; 3078 struct files_struct *new_fd = NULL; 3079 struct cred *new_cred = NULL; 3080 struct nsproxy *new_nsproxy = NULL; 3081 int do_sysvsem = 0; 3082 int err; 3083 3084 /* 3085 * If unsharing a user namespace must also unshare the thread group 3086 * and unshare the filesystem root and working directories. 3087 */ 3088 if (unshare_flags & CLONE_NEWUSER) 3089 unshare_flags |= CLONE_THREAD | CLONE_FS; 3090 /* 3091 * If unsharing vm, must also unshare signal handlers. 3092 */ 3093 if (unshare_flags & CLONE_VM) 3094 unshare_flags |= CLONE_SIGHAND; 3095 /* 3096 * If unsharing a signal handlers, must also unshare the signal queues. 3097 */ 3098 if (unshare_flags & CLONE_SIGHAND) 3099 unshare_flags |= CLONE_THREAD; 3100 /* 3101 * If unsharing namespace, must also unshare filesystem information. 3102 */ 3103 if (unshare_flags & CLONE_NEWNS) 3104 unshare_flags |= CLONE_FS; 3105 3106 err = check_unshare_flags(unshare_flags); 3107 if (err) 3108 goto bad_unshare_out; 3109 /* 3110 * CLONE_NEWIPC must also detach from the undolist: after switching 3111 * to a new ipc namespace, the semaphore arrays from the old 3112 * namespace are unreachable. 3113 */ 3114 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3115 do_sysvsem = 1; 3116 err = unshare_fs(unshare_flags, &new_fs); 3117 if (err) 3118 goto bad_unshare_out; 3119 err = unshare_fd(unshare_flags, &new_fd); 3120 if (err) 3121 goto bad_unshare_cleanup_fs; 3122 err = unshare_userns(unshare_flags, &new_cred); 3123 if (err) 3124 goto bad_unshare_cleanup_fd; 3125 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3126 new_cred, new_fs); 3127 if (err) 3128 goto bad_unshare_cleanup_cred; 3129 3130 if (new_cred) { 3131 err = set_cred_ucounts(new_cred); 3132 if (err) 3133 goto bad_unshare_cleanup_cred; 3134 } 3135 3136 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3137 if (do_sysvsem) { 3138 /* 3139 * CLONE_SYSVSEM is equivalent to sys_exit(). 3140 */ 3141 exit_sem(current); 3142 } 3143 if (unshare_flags & CLONE_NEWIPC) { 3144 /* Orphan segments in old ns (see sem above). */ 3145 exit_shm(current); 3146 shm_init_task(current); 3147 } 3148 3149 if (new_nsproxy) 3150 switch_task_namespaces(current, new_nsproxy); 3151 3152 task_lock(current); 3153 3154 if (new_fs) { 3155 fs = current->fs; 3156 read_seqlock_excl(&fs->seq); 3157 current->fs = new_fs; 3158 if (--fs->users) 3159 new_fs = NULL; 3160 else 3161 new_fs = fs; 3162 read_sequnlock_excl(&fs->seq); 3163 } 3164 3165 if (new_fd) 3166 swap(current->files, new_fd); 3167 3168 task_unlock(current); 3169 3170 if (new_cred) { 3171 /* Install the new user namespace */ 3172 commit_creds(new_cred); 3173 new_cred = NULL; 3174 } 3175 } 3176 3177 perf_event_namespaces(current); 3178 3179 bad_unshare_cleanup_cred: 3180 if (new_cred) 3181 put_cred(new_cred); 3182 bad_unshare_cleanup_fd: 3183 if (new_fd) 3184 put_files_struct(new_fd); 3185 3186 bad_unshare_cleanup_fs: 3187 if (new_fs) 3188 free_fs_struct(new_fs); 3189 3190 bad_unshare_out: 3191 return err; 3192 } 3193 3194 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3195 { 3196 return ksys_unshare(unshare_flags); 3197 } 3198 3199 /* 3200 * Helper to unshare the files of the current task. 3201 * We don't want to expose copy_files internals to 3202 * the exec layer of the kernel. 3203 */ 3204 3205 int unshare_files(void) 3206 { 3207 struct task_struct *task = current; 3208 struct files_struct *old, *copy = NULL; 3209 int error; 3210 3211 error = unshare_fd(CLONE_FILES, ©); 3212 if (error || !copy) 3213 return error; 3214 3215 old = task->files; 3216 task_lock(task); 3217 task->files = copy; 3218 task_unlock(task); 3219 put_files_struct(old); 3220 return 0; 3221 } 3222 3223 static int sysctl_max_threads(const struct ctl_table *table, int write, 3224 void *buffer, size_t *lenp, loff_t *ppos) 3225 { 3226 struct ctl_table t; 3227 int ret; 3228 int threads = max_threads; 3229 int min = 1; 3230 int max = MAX_THREADS; 3231 3232 t = *table; 3233 t.data = &threads; 3234 t.extra1 = &min; 3235 t.extra2 = &max; 3236 3237 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3238 if (ret || !write) 3239 return ret; 3240 3241 max_threads = threads; 3242 3243 return 0; 3244 } 3245 3246 static const struct ctl_table fork_sysctl_table[] = { 3247 { 3248 .procname = "threads-max", 3249 .data = NULL, 3250 .maxlen = sizeof(int), 3251 .mode = 0644, 3252 .proc_handler = sysctl_max_threads, 3253 }, 3254 }; 3255 3256 static int __init init_fork_sysctl(void) 3257 { 3258 register_sysctl_init("kernel", fork_sysctl_table); 3259 return 0; 3260 } 3261 3262 subsys_initcall(init_fork_sysctl); 3263