xref: /linux/kernel/fork.c (revision 2f2419502f6957b110dbc7d4b75e764e5f370ec2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/syscall_user_dispatch.h>
57 #include <linux/jiffies.h>
58 #include <linux/futex.h>
59 #include <linux/compat.h>
60 #include <linux/kthread.h>
61 #include <linux/task_io_accounting_ops.h>
62 #include <linux/rcupdate.h>
63 #include <linux/ptrace.h>
64 #include <linux/mount.h>
65 #include <linux/audit.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/proc_fs.h>
69 #include <linux/profile.h>
70 #include <linux/rmap.h>
71 #include <linux/ksm.h>
72 #include <linux/acct.h>
73 #include <linux/userfaultfd_k.h>
74 #include <linux/tsacct_kern.h>
75 #include <linux/cn_proc.h>
76 #include <linux/freezer.h>
77 #include <linux/delayacct.h>
78 #include <linux/taskstats_kern.h>
79 #include <linux/tty.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 #include <linux/scs.h>
98 #include <linux/io_uring.h>
99 #include <linux/bpf.h>
100 #include <linux/stackprotector.h>
101 #include <linux/user_events.h>
102 #include <linux/iommu.h>
103 #include <linux/rseq.h>
104 #include <uapi/linux/pidfd.h>
105 #include <linux/pidfs.h>
106 
107 #include <asm/pgalloc.h>
108 #include <linux/uaccess.h>
109 #include <asm/mmu_context.h>
110 #include <asm/cacheflush.h>
111 #include <asm/tlbflush.h>
112 
113 #include <trace/events/sched.h>
114 
115 #define CREATE_TRACE_POINTS
116 #include <trace/events/task.h>
117 
118 /*
119  * Minimum number of threads to boot the kernel
120  */
121 #define MIN_THREADS 20
122 
123 /*
124  * Maximum number of threads
125  */
126 #define MAX_THREADS FUTEX_TID_MASK
127 
128 /*
129  * Protected counters by write_lock_irq(&tasklist_lock)
130  */
131 unsigned long total_forks;	/* Handle normal Linux uptimes. */
132 int nr_threads;			/* The idle threads do not count.. */
133 
134 static int max_threads;		/* tunable limit on nr_threads */
135 
136 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
137 
138 static const char * const resident_page_types[] = {
139 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
140 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
141 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
142 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
143 };
144 
145 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
146 
147 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
148 
149 #ifdef CONFIG_PROVE_RCU
150 int lockdep_tasklist_lock_is_held(void)
151 {
152 	return lockdep_is_held(&tasklist_lock);
153 }
154 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
155 #endif /* #ifdef CONFIG_PROVE_RCU */
156 
157 int nr_processes(void)
158 {
159 	int cpu;
160 	int total = 0;
161 
162 	for_each_possible_cpu(cpu)
163 		total += per_cpu(process_counts, cpu);
164 
165 	return total;
166 }
167 
168 void __weak arch_release_task_struct(struct task_struct *tsk)
169 {
170 }
171 
172 static struct kmem_cache *task_struct_cachep;
173 
174 static inline struct task_struct *alloc_task_struct_node(int node)
175 {
176 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
177 }
178 
179 static inline void free_task_struct(struct task_struct *tsk)
180 {
181 	kmem_cache_free(task_struct_cachep, tsk);
182 }
183 
184 /*
185  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
186  * kmemcache based allocator.
187  */
188 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
189 
190 #  ifdef CONFIG_VMAP_STACK
191 /*
192  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
193  * flush.  Try to minimize the number of calls by caching stacks.
194  */
195 #define NR_CACHED_STACKS 2
196 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
197 
198 struct vm_stack {
199 	struct rcu_head rcu;
200 	struct vm_struct *stack_vm_area;
201 };
202 
203 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
204 {
205 	unsigned int i;
206 
207 	for (i = 0; i < NR_CACHED_STACKS; i++) {
208 		if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
209 			continue;
210 		return true;
211 	}
212 	return false;
213 }
214 
215 static void thread_stack_free_rcu(struct rcu_head *rh)
216 {
217 	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
218 
219 	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
220 		return;
221 
222 	vfree(vm_stack);
223 }
224 
225 static void thread_stack_delayed_free(struct task_struct *tsk)
226 {
227 	struct vm_stack *vm_stack = tsk->stack;
228 
229 	vm_stack->stack_vm_area = tsk->stack_vm_area;
230 	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
231 }
232 
233 static int free_vm_stack_cache(unsigned int cpu)
234 {
235 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
236 	int i;
237 
238 	for (i = 0; i < NR_CACHED_STACKS; i++) {
239 		struct vm_struct *vm_stack = cached_vm_stacks[i];
240 
241 		if (!vm_stack)
242 			continue;
243 
244 		vfree(vm_stack->addr);
245 		cached_vm_stacks[i] = NULL;
246 	}
247 
248 	return 0;
249 }
250 
251 static int memcg_charge_kernel_stack(struct vm_struct *vm)
252 {
253 	int i;
254 	int ret;
255 	int nr_charged = 0;
256 
257 	BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
258 
259 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
260 		ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
261 		if (ret)
262 			goto err;
263 		nr_charged++;
264 	}
265 	return 0;
266 err:
267 	for (i = 0; i < nr_charged; i++)
268 		memcg_kmem_uncharge_page(vm->pages[i], 0);
269 	return ret;
270 }
271 
272 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
273 {
274 	struct vm_struct *vm;
275 	void *stack;
276 	int i;
277 
278 	for (i = 0; i < NR_CACHED_STACKS; i++) {
279 		struct vm_struct *s;
280 
281 		s = this_cpu_xchg(cached_stacks[i], NULL);
282 
283 		if (!s)
284 			continue;
285 
286 		/* Reset stack metadata. */
287 		kasan_unpoison_range(s->addr, THREAD_SIZE);
288 
289 		stack = kasan_reset_tag(s->addr);
290 
291 		/* Clear stale pointers from reused stack. */
292 		memset(stack, 0, THREAD_SIZE);
293 
294 		if (memcg_charge_kernel_stack(s)) {
295 			vfree(s->addr);
296 			return -ENOMEM;
297 		}
298 
299 		tsk->stack_vm_area = s;
300 		tsk->stack = stack;
301 		return 0;
302 	}
303 
304 	/*
305 	 * Allocated stacks are cached and later reused by new threads,
306 	 * so memcg accounting is performed manually on assigning/releasing
307 	 * stacks to tasks. Drop __GFP_ACCOUNT.
308 	 */
309 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
310 				     VMALLOC_START, VMALLOC_END,
311 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
312 				     PAGE_KERNEL,
313 				     0, node, __builtin_return_address(0));
314 	if (!stack)
315 		return -ENOMEM;
316 
317 	vm = find_vm_area(stack);
318 	if (memcg_charge_kernel_stack(vm)) {
319 		vfree(stack);
320 		return -ENOMEM;
321 	}
322 	/*
323 	 * We can't call find_vm_area() in interrupt context, and
324 	 * free_thread_stack() can be called in interrupt context,
325 	 * so cache the vm_struct.
326 	 */
327 	tsk->stack_vm_area = vm;
328 	stack = kasan_reset_tag(stack);
329 	tsk->stack = stack;
330 	return 0;
331 }
332 
333 static void free_thread_stack(struct task_struct *tsk)
334 {
335 	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
336 		thread_stack_delayed_free(tsk);
337 
338 	tsk->stack = NULL;
339 	tsk->stack_vm_area = NULL;
340 }
341 
342 #  else /* !CONFIG_VMAP_STACK */
343 
344 static void thread_stack_free_rcu(struct rcu_head *rh)
345 {
346 	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
347 }
348 
349 static void thread_stack_delayed_free(struct task_struct *tsk)
350 {
351 	struct rcu_head *rh = tsk->stack;
352 
353 	call_rcu(rh, thread_stack_free_rcu);
354 }
355 
356 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
357 {
358 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
359 					     THREAD_SIZE_ORDER);
360 
361 	if (likely(page)) {
362 		tsk->stack = kasan_reset_tag(page_address(page));
363 		return 0;
364 	}
365 	return -ENOMEM;
366 }
367 
368 static void free_thread_stack(struct task_struct *tsk)
369 {
370 	thread_stack_delayed_free(tsk);
371 	tsk->stack = NULL;
372 }
373 
374 #  endif /* CONFIG_VMAP_STACK */
375 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
376 
377 static struct kmem_cache *thread_stack_cache;
378 
379 static void thread_stack_free_rcu(struct rcu_head *rh)
380 {
381 	kmem_cache_free(thread_stack_cache, rh);
382 }
383 
384 static void thread_stack_delayed_free(struct task_struct *tsk)
385 {
386 	struct rcu_head *rh = tsk->stack;
387 
388 	call_rcu(rh, thread_stack_free_rcu);
389 }
390 
391 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
392 {
393 	unsigned long *stack;
394 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
395 	stack = kasan_reset_tag(stack);
396 	tsk->stack = stack;
397 	return stack ? 0 : -ENOMEM;
398 }
399 
400 static void free_thread_stack(struct task_struct *tsk)
401 {
402 	thread_stack_delayed_free(tsk);
403 	tsk->stack = NULL;
404 }
405 
406 void thread_stack_cache_init(void)
407 {
408 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
409 					THREAD_SIZE, THREAD_SIZE, 0, 0,
410 					THREAD_SIZE, NULL);
411 	BUG_ON(thread_stack_cache == NULL);
412 }
413 
414 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
415 
416 /* SLAB cache for signal_struct structures (tsk->signal) */
417 static struct kmem_cache *signal_cachep;
418 
419 /* SLAB cache for sighand_struct structures (tsk->sighand) */
420 struct kmem_cache *sighand_cachep;
421 
422 /* SLAB cache for files_struct structures (tsk->files) */
423 struct kmem_cache *files_cachep;
424 
425 /* SLAB cache for fs_struct structures (tsk->fs) */
426 struct kmem_cache *fs_cachep;
427 
428 /* SLAB cache for vm_area_struct structures */
429 static struct kmem_cache *vm_area_cachep;
430 
431 /* SLAB cache for mm_struct structures (tsk->mm) */
432 static struct kmem_cache *mm_cachep;
433 
434 #ifdef CONFIG_PER_VMA_LOCK
435 
436 /* SLAB cache for vm_area_struct.lock */
437 static struct kmem_cache *vma_lock_cachep;
438 
439 static bool vma_lock_alloc(struct vm_area_struct *vma)
440 {
441 	vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
442 	if (!vma->vm_lock)
443 		return false;
444 
445 	init_rwsem(&vma->vm_lock->lock);
446 	vma->vm_lock_seq = -1;
447 
448 	return true;
449 }
450 
451 static inline void vma_lock_free(struct vm_area_struct *vma)
452 {
453 	kmem_cache_free(vma_lock_cachep, vma->vm_lock);
454 }
455 
456 #else /* CONFIG_PER_VMA_LOCK */
457 
458 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
459 static inline void vma_lock_free(struct vm_area_struct *vma) {}
460 
461 #endif /* CONFIG_PER_VMA_LOCK */
462 
463 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
464 {
465 	struct vm_area_struct *vma;
466 
467 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
468 	if (!vma)
469 		return NULL;
470 
471 	vma_init(vma, mm);
472 	if (!vma_lock_alloc(vma)) {
473 		kmem_cache_free(vm_area_cachep, vma);
474 		return NULL;
475 	}
476 
477 	return vma;
478 }
479 
480 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
481 {
482 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
483 
484 	if (!new)
485 		return NULL;
486 
487 	ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
488 	ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
489 	/*
490 	 * orig->shared.rb may be modified concurrently, but the clone
491 	 * will be reinitialized.
492 	 */
493 	data_race(memcpy(new, orig, sizeof(*new)));
494 	if (!vma_lock_alloc(new)) {
495 		kmem_cache_free(vm_area_cachep, new);
496 		return NULL;
497 	}
498 	INIT_LIST_HEAD(&new->anon_vma_chain);
499 	vma_numab_state_init(new);
500 	dup_anon_vma_name(orig, new);
501 
502 	return new;
503 }
504 
505 void __vm_area_free(struct vm_area_struct *vma)
506 {
507 	vma_numab_state_free(vma);
508 	free_anon_vma_name(vma);
509 	vma_lock_free(vma);
510 	kmem_cache_free(vm_area_cachep, vma);
511 }
512 
513 #ifdef CONFIG_PER_VMA_LOCK
514 static void vm_area_free_rcu_cb(struct rcu_head *head)
515 {
516 	struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
517 						  vm_rcu);
518 
519 	/* The vma should not be locked while being destroyed. */
520 	VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
521 	__vm_area_free(vma);
522 }
523 #endif
524 
525 void vm_area_free(struct vm_area_struct *vma)
526 {
527 #ifdef CONFIG_PER_VMA_LOCK
528 	call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
529 #else
530 	__vm_area_free(vma);
531 #endif
532 }
533 
534 static void account_kernel_stack(struct task_struct *tsk, int account)
535 {
536 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
537 		struct vm_struct *vm = task_stack_vm_area(tsk);
538 		int i;
539 
540 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
541 			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
542 					      account * (PAGE_SIZE / 1024));
543 	} else {
544 		void *stack = task_stack_page(tsk);
545 
546 		/* All stack pages are in the same node. */
547 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
548 				      account * (THREAD_SIZE / 1024));
549 	}
550 }
551 
552 void exit_task_stack_account(struct task_struct *tsk)
553 {
554 	account_kernel_stack(tsk, -1);
555 
556 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
557 		struct vm_struct *vm;
558 		int i;
559 
560 		vm = task_stack_vm_area(tsk);
561 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
562 			memcg_kmem_uncharge_page(vm->pages[i], 0);
563 	}
564 }
565 
566 static void release_task_stack(struct task_struct *tsk)
567 {
568 	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
569 		return;  /* Better to leak the stack than to free prematurely */
570 
571 	free_thread_stack(tsk);
572 }
573 
574 #ifdef CONFIG_THREAD_INFO_IN_TASK
575 void put_task_stack(struct task_struct *tsk)
576 {
577 	if (refcount_dec_and_test(&tsk->stack_refcount))
578 		release_task_stack(tsk);
579 }
580 #endif
581 
582 void free_task(struct task_struct *tsk)
583 {
584 #ifdef CONFIG_SECCOMP
585 	WARN_ON_ONCE(tsk->seccomp.filter);
586 #endif
587 	release_user_cpus_ptr(tsk);
588 	scs_release(tsk);
589 
590 #ifndef CONFIG_THREAD_INFO_IN_TASK
591 	/*
592 	 * The task is finally done with both the stack and thread_info,
593 	 * so free both.
594 	 */
595 	release_task_stack(tsk);
596 #else
597 	/*
598 	 * If the task had a separate stack allocation, it should be gone
599 	 * by now.
600 	 */
601 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
602 #endif
603 	rt_mutex_debug_task_free(tsk);
604 	ftrace_graph_exit_task(tsk);
605 	arch_release_task_struct(tsk);
606 	if (tsk->flags & PF_KTHREAD)
607 		free_kthread_struct(tsk);
608 	bpf_task_storage_free(tsk);
609 	free_task_struct(tsk);
610 }
611 EXPORT_SYMBOL(free_task);
612 
613 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
614 {
615 	struct file *exe_file;
616 
617 	exe_file = get_mm_exe_file(oldmm);
618 	RCU_INIT_POINTER(mm->exe_file, exe_file);
619 	/*
620 	 * We depend on the oldmm having properly denied write access to the
621 	 * exe_file already.
622 	 */
623 	if (exe_file && deny_write_access(exe_file))
624 		pr_warn_once("deny_write_access() failed in %s\n", __func__);
625 }
626 
627 #ifdef CONFIG_MMU
628 static __latent_entropy int dup_mmap(struct mm_struct *mm,
629 					struct mm_struct *oldmm)
630 {
631 	struct vm_area_struct *mpnt, *tmp;
632 	int retval;
633 	unsigned long charge = 0;
634 	LIST_HEAD(uf);
635 	VMA_ITERATOR(vmi, mm, 0);
636 
637 	uprobe_start_dup_mmap();
638 	if (mmap_write_lock_killable(oldmm)) {
639 		retval = -EINTR;
640 		goto fail_uprobe_end;
641 	}
642 	flush_cache_dup_mm(oldmm);
643 	uprobe_dup_mmap(oldmm, mm);
644 	/*
645 	 * Not linked in yet - no deadlock potential:
646 	 */
647 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
648 
649 	/* No ordering required: file already has been exposed. */
650 	dup_mm_exe_file(mm, oldmm);
651 
652 	mm->total_vm = oldmm->total_vm;
653 	mm->data_vm = oldmm->data_vm;
654 	mm->exec_vm = oldmm->exec_vm;
655 	mm->stack_vm = oldmm->stack_vm;
656 
657 	retval = ksm_fork(mm, oldmm);
658 	if (retval)
659 		goto out;
660 	khugepaged_fork(mm, oldmm);
661 
662 	/* Use __mt_dup() to efficiently build an identical maple tree. */
663 	retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL);
664 	if (unlikely(retval))
665 		goto out;
666 
667 	mt_clear_in_rcu(vmi.mas.tree);
668 	for_each_vma(vmi, mpnt) {
669 		struct file *file;
670 
671 		vma_start_write(mpnt);
672 		if (mpnt->vm_flags & VM_DONTCOPY) {
673 			retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start,
674 						    mpnt->vm_end, GFP_KERNEL);
675 			if (retval)
676 				goto loop_out;
677 
678 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
679 			continue;
680 		}
681 		charge = 0;
682 		/*
683 		 * Don't duplicate many vmas if we've been oom-killed (for
684 		 * example)
685 		 */
686 		if (fatal_signal_pending(current)) {
687 			retval = -EINTR;
688 			goto loop_out;
689 		}
690 		if (mpnt->vm_flags & VM_ACCOUNT) {
691 			unsigned long len = vma_pages(mpnt);
692 
693 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
694 				goto fail_nomem;
695 			charge = len;
696 		}
697 		tmp = vm_area_dup(mpnt);
698 		if (!tmp)
699 			goto fail_nomem;
700 		retval = vma_dup_policy(mpnt, tmp);
701 		if (retval)
702 			goto fail_nomem_policy;
703 		tmp->vm_mm = mm;
704 		retval = dup_userfaultfd(tmp, &uf);
705 		if (retval)
706 			goto fail_nomem_anon_vma_fork;
707 		if (tmp->vm_flags & VM_WIPEONFORK) {
708 			/*
709 			 * VM_WIPEONFORK gets a clean slate in the child.
710 			 * Don't prepare anon_vma until fault since we don't
711 			 * copy page for current vma.
712 			 */
713 			tmp->anon_vma = NULL;
714 		} else if (anon_vma_fork(tmp, mpnt))
715 			goto fail_nomem_anon_vma_fork;
716 		vm_flags_clear(tmp, VM_LOCKED_MASK);
717 		file = tmp->vm_file;
718 		if (file) {
719 			struct address_space *mapping = file->f_mapping;
720 
721 			get_file(file);
722 			i_mmap_lock_write(mapping);
723 			if (vma_is_shared_maywrite(tmp))
724 				mapping_allow_writable(mapping);
725 			flush_dcache_mmap_lock(mapping);
726 			/* insert tmp into the share list, just after mpnt */
727 			vma_interval_tree_insert_after(tmp, mpnt,
728 					&mapping->i_mmap);
729 			flush_dcache_mmap_unlock(mapping);
730 			i_mmap_unlock_write(mapping);
731 		}
732 
733 		/*
734 		 * Copy/update hugetlb private vma information.
735 		 */
736 		if (is_vm_hugetlb_page(tmp))
737 			hugetlb_dup_vma_private(tmp);
738 
739 		/*
740 		 * Link the vma into the MT. After using __mt_dup(), memory
741 		 * allocation is not necessary here, so it cannot fail.
742 		 */
743 		vma_iter_bulk_store(&vmi, tmp);
744 
745 		mm->map_count++;
746 		if (!(tmp->vm_flags & VM_WIPEONFORK))
747 			retval = copy_page_range(tmp, mpnt);
748 
749 		if (tmp->vm_ops && tmp->vm_ops->open)
750 			tmp->vm_ops->open(tmp);
751 
752 		if (retval) {
753 			mpnt = vma_next(&vmi);
754 			goto loop_out;
755 		}
756 	}
757 	/* a new mm has just been created */
758 	retval = arch_dup_mmap(oldmm, mm);
759 loop_out:
760 	vma_iter_free(&vmi);
761 	if (!retval) {
762 		mt_set_in_rcu(vmi.mas.tree);
763 	} else if (mpnt) {
764 		/*
765 		 * The entire maple tree has already been duplicated. If the
766 		 * mmap duplication fails, mark the failure point with
767 		 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered,
768 		 * stop releasing VMAs that have not been duplicated after this
769 		 * point.
770 		 */
771 		mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1);
772 		mas_store(&vmi.mas, XA_ZERO_ENTRY);
773 	}
774 out:
775 	mmap_write_unlock(mm);
776 	flush_tlb_mm(oldmm);
777 	mmap_write_unlock(oldmm);
778 	dup_userfaultfd_complete(&uf);
779 fail_uprobe_end:
780 	uprobe_end_dup_mmap();
781 	return retval;
782 
783 fail_nomem_anon_vma_fork:
784 	mpol_put(vma_policy(tmp));
785 fail_nomem_policy:
786 	vm_area_free(tmp);
787 fail_nomem:
788 	retval = -ENOMEM;
789 	vm_unacct_memory(charge);
790 	goto loop_out;
791 }
792 
793 static inline int mm_alloc_pgd(struct mm_struct *mm)
794 {
795 	mm->pgd = pgd_alloc(mm);
796 	if (unlikely(!mm->pgd))
797 		return -ENOMEM;
798 	return 0;
799 }
800 
801 static inline void mm_free_pgd(struct mm_struct *mm)
802 {
803 	pgd_free(mm, mm->pgd);
804 }
805 #else
806 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
807 {
808 	mmap_write_lock(oldmm);
809 	dup_mm_exe_file(mm, oldmm);
810 	mmap_write_unlock(oldmm);
811 	return 0;
812 }
813 #define mm_alloc_pgd(mm)	(0)
814 #define mm_free_pgd(mm)
815 #endif /* CONFIG_MMU */
816 
817 static void check_mm(struct mm_struct *mm)
818 {
819 	int i;
820 
821 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
822 			 "Please make sure 'struct resident_page_types[]' is updated as well");
823 
824 	for (i = 0; i < NR_MM_COUNTERS; i++) {
825 		long x = percpu_counter_sum(&mm->rss_stat[i]);
826 
827 		if (unlikely(x))
828 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
829 				 mm, resident_page_types[i], x);
830 	}
831 
832 	if (mm_pgtables_bytes(mm))
833 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
834 				mm_pgtables_bytes(mm));
835 
836 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
837 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
838 #endif
839 }
840 
841 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
842 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
843 
844 static void do_check_lazy_tlb(void *arg)
845 {
846 	struct mm_struct *mm = arg;
847 
848 	WARN_ON_ONCE(current->active_mm == mm);
849 }
850 
851 static void do_shoot_lazy_tlb(void *arg)
852 {
853 	struct mm_struct *mm = arg;
854 
855 	if (current->active_mm == mm) {
856 		WARN_ON_ONCE(current->mm);
857 		current->active_mm = &init_mm;
858 		switch_mm(mm, &init_mm, current);
859 	}
860 }
861 
862 static void cleanup_lazy_tlbs(struct mm_struct *mm)
863 {
864 	if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
865 		/*
866 		 * In this case, lazy tlb mms are refounted and would not reach
867 		 * __mmdrop until all CPUs have switched away and mmdrop()ed.
868 		 */
869 		return;
870 	}
871 
872 	/*
873 	 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
874 	 * requires lazy mm users to switch to another mm when the refcount
875 	 * drops to zero, before the mm is freed. This requires IPIs here to
876 	 * switch kernel threads to init_mm.
877 	 *
878 	 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
879 	 * switch with the final userspace teardown TLB flush which leaves the
880 	 * mm lazy on this CPU but no others, reducing the need for additional
881 	 * IPIs here. There are cases where a final IPI is still required here,
882 	 * such as the final mmdrop being performed on a different CPU than the
883 	 * one exiting, or kernel threads using the mm when userspace exits.
884 	 *
885 	 * IPI overheads have not found to be expensive, but they could be
886 	 * reduced in a number of possible ways, for example (roughly
887 	 * increasing order of complexity):
888 	 * - The last lazy reference created by exit_mm() could instead switch
889 	 *   to init_mm, however it's probable this will run on the same CPU
890 	 *   immediately afterwards, so this may not reduce IPIs much.
891 	 * - A batch of mms requiring IPIs could be gathered and freed at once.
892 	 * - CPUs store active_mm where it can be remotely checked without a
893 	 *   lock, to filter out false-positives in the cpumask.
894 	 * - After mm_users or mm_count reaches zero, switching away from the
895 	 *   mm could clear mm_cpumask to reduce some IPIs, perhaps together
896 	 *   with some batching or delaying of the final IPIs.
897 	 * - A delayed freeing and RCU-like quiescing sequence based on mm
898 	 *   switching to avoid IPIs completely.
899 	 */
900 	on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
901 	if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
902 		on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
903 }
904 
905 /*
906  * Called when the last reference to the mm
907  * is dropped: either by a lazy thread or by
908  * mmput. Free the page directory and the mm.
909  */
910 void __mmdrop(struct mm_struct *mm)
911 {
912 	BUG_ON(mm == &init_mm);
913 	WARN_ON_ONCE(mm == current->mm);
914 
915 	/* Ensure no CPUs are using this as their lazy tlb mm */
916 	cleanup_lazy_tlbs(mm);
917 
918 	WARN_ON_ONCE(mm == current->active_mm);
919 	mm_free_pgd(mm);
920 	destroy_context(mm);
921 	mmu_notifier_subscriptions_destroy(mm);
922 	check_mm(mm);
923 	put_user_ns(mm->user_ns);
924 	mm_pasid_drop(mm);
925 	mm_destroy_cid(mm);
926 	percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
927 
928 	free_mm(mm);
929 }
930 EXPORT_SYMBOL_GPL(__mmdrop);
931 
932 static void mmdrop_async_fn(struct work_struct *work)
933 {
934 	struct mm_struct *mm;
935 
936 	mm = container_of(work, struct mm_struct, async_put_work);
937 	__mmdrop(mm);
938 }
939 
940 static void mmdrop_async(struct mm_struct *mm)
941 {
942 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
943 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
944 		schedule_work(&mm->async_put_work);
945 	}
946 }
947 
948 static inline void free_signal_struct(struct signal_struct *sig)
949 {
950 	taskstats_tgid_free(sig);
951 	sched_autogroup_exit(sig);
952 	/*
953 	 * __mmdrop is not safe to call from softirq context on x86 due to
954 	 * pgd_dtor so postpone it to the async context
955 	 */
956 	if (sig->oom_mm)
957 		mmdrop_async(sig->oom_mm);
958 	kmem_cache_free(signal_cachep, sig);
959 }
960 
961 static inline void put_signal_struct(struct signal_struct *sig)
962 {
963 	if (refcount_dec_and_test(&sig->sigcnt))
964 		free_signal_struct(sig);
965 }
966 
967 void __put_task_struct(struct task_struct *tsk)
968 {
969 	WARN_ON(!tsk->exit_state);
970 	WARN_ON(refcount_read(&tsk->usage));
971 	WARN_ON(tsk == current);
972 
973 	io_uring_free(tsk);
974 	cgroup_free(tsk);
975 	task_numa_free(tsk, true);
976 	security_task_free(tsk);
977 	exit_creds(tsk);
978 	delayacct_tsk_free(tsk);
979 	put_signal_struct(tsk->signal);
980 	sched_core_free(tsk);
981 	free_task(tsk);
982 }
983 EXPORT_SYMBOL_GPL(__put_task_struct);
984 
985 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
986 {
987 	struct task_struct *task = container_of(rhp, struct task_struct, rcu);
988 
989 	__put_task_struct(task);
990 }
991 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
992 
993 void __init __weak arch_task_cache_init(void) { }
994 
995 /*
996  * set_max_threads
997  */
998 static void set_max_threads(unsigned int max_threads_suggested)
999 {
1000 	u64 threads;
1001 	unsigned long nr_pages = totalram_pages();
1002 
1003 	/*
1004 	 * The number of threads shall be limited such that the thread
1005 	 * structures may only consume a small part of the available memory.
1006 	 */
1007 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
1008 		threads = MAX_THREADS;
1009 	else
1010 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
1011 				    (u64) THREAD_SIZE * 8UL);
1012 
1013 	if (threads > max_threads_suggested)
1014 		threads = max_threads_suggested;
1015 
1016 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
1017 }
1018 
1019 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1020 /* Initialized by the architecture: */
1021 int arch_task_struct_size __read_mostly;
1022 #endif
1023 
1024 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
1025 {
1026 	/* Fetch thread_struct whitelist for the architecture. */
1027 	arch_thread_struct_whitelist(offset, size);
1028 
1029 	/*
1030 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
1031 	 * adjust offset to position of thread_struct in task_struct.
1032 	 */
1033 	if (unlikely(*size == 0))
1034 		*offset = 0;
1035 	else
1036 		*offset += offsetof(struct task_struct, thread);
1037 }
1038 
1039 void __init fork_init(void)
1040 {
1041 	int i;
1042 #ifndef ARCH_MIN_TASKALIGN
1043 #define ARCH_MIN_TASKALIGN	0
1044 #endif
1045 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1046 	unsigned long useroffset, usersize;
1047 
1048 	/* create a slab on which task_structs can be allocated */
1049 	task_struct_whitelist(&useroffset, &usersize);
1050 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1051 			arch_task_struct_size, align,
1052 			SLAB_PANIC|SLAB_ACCOUNT,
1053 			useroffset, usersize, NULL);
1054 
1055 	/* do the arch specific task caches init */
1056 	arch_task_cache_init();
1057 
1058 	set_max_threads(MAX_THREADS);
1059 
1060 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1061 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1062 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
1063 		init_task.signal->rlim[RLIMIT_NPROC];
1064 
1065 	for (i = 0; i < UCOUNT_COUNTS; i++)
1066 		init_user_ns.ucount_max[i] = max_threads/2;
1067 
1068 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
1069 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
1070 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1071 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
1072 
1073 #ifdef CONFIG_VMAP_STACK
1074 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1075 			  NULL, free_vm_stack_cache);
1076 #endif
1077 
1078 	scs_init();
1079 
1080 	lockdep_init_task(&init_task);
1081 	uprobes_init();
1082 }
1083 
1084 int __weak arch_dup_task_struct(struct task_struct *dst,
1085 					       struct task_struct *src)
1086 {
1087 	*dst = *src;
1088 	return 0;
1089 }
1090 
1091 void set_task_stack_end_magic(struct task_struct *tsk)
1092 {
1093 	unsigned long *stackend;
1094 
1095 	stackend = end_of_stack(tsk);
1096 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
1097 }
1098 
1099 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1100 {
1101 	struct task_struct *tsk;
1102 	int err;
1103 
1104 	if (node == NUMA_NO_NODE)
1105 		node = tsk_fork_get_node(orig);
1106 	tsk = alloc_task_struct_node(node);
1107 	if (!tsk)
1108 		return NULL;
1109 
1110 	err = arch_dup_task_struct(tsk, orig);
1111 	if (err)
1112 		goto free_tsk;
1113 
1114 	err = alloc_thread_stack_node(tsk, node);
1115 	if (err)
1116 		goto free_tsk;
1117 
1118 #ifdef CONFIG_THREAD_INFO_IN_TASK
1119 	refcount_set(&tsk->stack_refcount, 1);
1120 #endif
1121 	account_kernel_stack(tsk, 1);
1122 
1123 	err = scs_prepare(tsk, node);
1124 	if (err)
1125 		goto free_stack;
1126 
1127 #ifdef CONFIG_SECCOMP
1128 	/*
1129 	 * We must handle setting up seccomp filters once we're under
1130 	 * the sighand lock in case orig has changed between now and
1131 	 * then. Until then, filter must be NULL to avoid messing up
1132 	 * the usage counts on the error path calling free_task.
1133 	 */
1134 	tsk->seccomp.filter = NULL;
1135 #endif
1136 
1137 	setup_thread_stack(tsk, orig);
1138 	clear_user_return_notifier(tsk);
1139 	clear_tsk_need_resched(tsk);
1140 	set_task_stack_end_magic(tsk);
1141 	clear_syscall_work_syscall_user_dispatch(tsk);
1142 
1143 #ifdef CONFIG_STACKPROTECTOR
1144 	tsk->stack_canary = get_random_canary();
1145 #endif
1146 	if (orig->cpus_ptr == &orig->cpus_mask)
1147 		tsk->cpus_ptr = &tsk->cpus_mask;
1148 	dup_user_cpus_ptr(tsk, orig, node);
1149 
1150 	/*
1151 	 * One for the user space visible state that goes away when reaped.
1152 	 * One for the scheduler.
1153 	 */
1154 	refcount_set(&tsk->rcu_users, 2);
1155 	/* One for the rcu users */
1156 	refcount_set(&tsk->usage, 1);
1157 #ifdef CONFIG_BLK_DEV_IO_TRACE
1158 	tsk->btrace_seq = 0;
1159 #endif
1160 	tsk->splice_pipe = NULL;
1161 	tsk->task_frag.page = NULL;
1162 	tsk->wake_q.next = NULL;
1163 	tsk->worker_private = NULL;
1164 
1165 	kcov_task_init(tsk);
1166 	kmsan_task_create(tsk);
1167 	kmap_local_fork(tsk);
1168 
1169 #ifdef CONFIG_FAULT_INJECTION
1170 	tsk->fail_nth = 0;
1171 #endif
1172 
1173 #ifdef CONFIG_BLK_CGROUP
1174 	tsk->throttle_disk = NULL;
1175 	tsk->use_memdelay = 0;
1176 #endif
1177 
1178 #ifdef CONFIG_ARCH_HAS_CPU_PASID
1179 	tsk->pasid_activated = 0;
1180 #endif
1181 
1182 #ifdef CONFIG_MEMCG
1183 	tsk->active_memcg = NULL;
1184 #endif
1185 
1186 #ifdef CONFIG_CPU_SUP_INTEL
1187 	tsk->reported_split_lock = 0;
1188 #endif
1189 
1190 #ifdef CONFIG_SCHED_MM_CID
1191 	tsk->mm_cid = -1;
1192 	tsk->last_mm_cid = -1;
1193 	tsk->mm_cid_active = 0;
1194 	tsk->migrate_from_cpu = -1;
1195 #endif
1196 	return tsk;
1197 
1198 free_stack:
1199 	exit_task_stack_account(tsk);
1200 	free_thread_stack(tsk);
1201 free_tsk:
1202 	free_task_struct(tsk);
1203 	return NULL;
1204 }
1205 
1206 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1207 
1208 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1209 
1210 static int __init coredump_filter_setup(char *s)
1211 {
1212 	default_dump_filter =
1213 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1214 		MMF_DUMP_FILTER_MASK;
1215 	return 1;
1216 }
1217 
1218 __setup("coredump_filter=", coredump_filter_setup);
1219 
1220 #include <linux/init_task.h>
1221 
1222 static void mm_init_aio(struct mm_struct *mm)
1223 {
1224 #ifdef CONFIG_AIO
1225 	spin_lock_init(&mm->ioctx_lock);
1226 	mm->ioctx_table = NULL;
1227 #endif
1228 }
1229 
1230 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1231 					   struct task_struct *p)
1232 {
1233 #ifdef CONFIG_MEMCG
1234 	if (mm->owner == p)
1235 		WRITE_ONCE(mm->owner, NULL);
1236 #endif
1237 }
1238 
1239 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1240 {
1241 #ifdef CONFIG_MEMCG
1242 	mm->owner = p;
1243 #endif
1244 }
1245 
1246 static void mm_init_uprobes_state(struct mm_struct *mm)
1247 {
1248 #ifdef CONFIG_UPROBES
1249 	mm->uprobes_state.xol_area = NULL;
1250 #endif
1251 }
1252 
1253 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1254 	struct user_namespace *user_ns)
1255 {
1256 	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1257 	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1258 	atomic_set(&mm->mm_users, 1);
1259 	atomic_set(&mm->mm_count, 1);
1260 	seqcount_init(&mm->write_protect_seq);
1261 	mmap_init_lock(mm);
1262 	INIT_LIST_HEAD(&mm->mmlist);
1263 #ifdef CONFIG_PER_VMA_LOCK
1264 	mm->mm_lock_seq = 0;
1265 #endif
1266 	mm_pgtables_bytes_init(mm);
1267 	mm->map_count = 0;
1268 	mm->locked_vm = 0;
1269 	atomic64_set(&mm->pinned_vm, 0);
1270 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1271 	spin_lock_init(&mm->page_table_lock);
1272 	spin_lock_init(&mm->arg_lock);
1273 	mm_init_cpumask(mm);
1274 	mm_init_aio(mm);
1275 	mm_init_owner(mm, p);
1276 	mm_pasid_init(mm);
1277 	RCU_INIT_POINTER(mm->exe_file, NULL);
1278 	mmu_notifier_subscriptions_init(mm);
1279 	init_tlb_flush_pending(mm);
1280 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1281 	mm->pmd_huge_pte = NULL;
1282 #endif
1283 	mm_init_uprobes_state(mm);
1284 	hugetlb_count_init(mm);
1285 
1286 	if (current->mm) {
1287 		mm->flags = mmf_init_flags(current->mm->flags);
1288 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1289 	} else {
1290 		mm->flags = default_dump_filter;
1291 		mm->def_flags = 0;
1292 	}
1293 
1294 	if (mm_alloc_pgd(mm))
1295 		goto fail_nopgd;
1296 
1297 	if (init_new_context(p, mm))
1298 		goto fail_nocontext;
1299 
1300 	if (mm_alloc_cid(mm))
1301 		goto fail_cid;
1302 
1303 	if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1304 				     NR_MM_COUNTERS))
1305 		goto fail_pcpu;
1306 
1307 	mm->user_ns = get_user_ns(user_ns);
1308 	lru_gen_init_mm(mm);
1309 	return mm;
1310 
1311 fail_pcpu:
1312 	mm_destroy_cid(mm);
1313 fail_cid:
1314 	destroy_context(mm);
1315 fail_nocontext:
1316 	mm_free_pgd(mm);
1317 fail_nopgd:
1318 	free_mm(mm);
1319 	return NULL;
1320 }
1321 
1322 /*
1323  * Allocate and initialize an mm_struct.
1324  */
1325 struct mm_struct *mm_alloc(void)
1326 {
1327 	struct mm_struct *mm;
1328 
1329 	mm = allocate_mm();
1330 	if (!mm)
1331 		return NULL;
1332 
1333 	memset(mm, 0, sizeof(*mm));
1334 	return mm_init(mm, current, current_user_ns());
1335 }
1336 
1337 static inline void __mmput(struct mm_struct *mm)
1338 {
1339 	VM_BUG_ON(atomic_read(&mm->mm_users));
1340 
1341 	uprobe_clear_state(mm);
1342 	exit_aio(mm);
1343 	ksm_exit(mm);
1344 	khugepaged_exit(mm); /* must run before exit_mmap */
1345 	exit_mmap(mm);
1346 	mm_put_huge_zero_page(mm);
1347 	set_mm_exe_file(mm, NULL);
1348 	if (!list_empty(&mm->mmlist)) {
1349 		spin_lock(&mmlist_lock);
1350 		list_del(&mm->mmlist);
1351 		spin_unlock(&mmlist_lock);
1352 	}
1353 	if (mm->binfmt)
1354 		module_put(mm->binfmt->module);
1355 	lru_gen_del_mm(mm);
1356 	mmdrop(mm);
1357 }
1358 
1359 /*
1360  * Decrement the use count and release all resources for an mm.
1361  */
1362 void mmput(struct mm_struct *mm)
1363 {
1364 	might_sleep();
1365 
1366 	if (atomic_dec_and_test(&mm->mm_users))
1367 		__mmput(mm);
1368 }
1369 EXPORT_SYMBOL_GPL(mmput);
1370 
1371 #ifdef CONFIG_MMU
1372 static void mmput_async_fn(struct work_struct *work)
1373 {
1374 	struct mm_struct *mm = container_of(work, struct mm_struct,
1375 					    async_put_work);
1376 
1377 	__mmput(mm);
1378 }
1379 
1380 void mmput_async(struct mm_struct *mm)
1381 {
1382 	if (atomic_dec_and_test(&mm->mm_users)) {
1383 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1384 		schedule_work(&mm->async_put_work);
1385 	}
1386 }
1387 EXPORT_SYMBOL_GPL(mmput_async);
1388 #endif
1389 
1390 /**
1391  * set_mm_exe_file - change a reference to the mm's executable file
1392  * @mm: The mm to change.
1393  * @new_exe_file: The new file to use.
1394  *
1395  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1396  *
1397  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1398  * invocations: in mmput() nobody alive left, in execve it happens before
1399  * the new mm is made visible to anyone.
1400  *
1401  * Can only fail if new_exe_file != NULL.
1402  */
1403 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1404 {
1405 	struct file *old_exe_file;
1406 
1407 	/*
1408 	 * It is safe to dereference the exe_file without RCU as
1409 	 * this function is only called if nobody else can access
1410 	 * this mm -- see comment above for justification.
1411 	 */
1412 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1413 
1414 	if (new_exe_file) {
1415 		/*
1416 		 * We expect the caller (i.e., sys_execve) to already denied
1417 		 * write access, so this is unlikely to fail.
1418 		 */
1419 		if (unlikely(deny_write_access(new_exe_file)))
1420 			return -EACCES;
1421 		get_file(new_exe_file);
1422 	}
1423 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1424 	if (old_exe_file) {
1425 		allow_write_access(old_exe_file);
1426 		fput(old_exe_file);
1427 	}
1428 	return 0;
1429 }
1430 
1431 /**
1432  * replace_mm_exe_file - replace a reference to the mm's executable file
1433  * @mm: The mm to change.
1434  * @new_exe_file: The new file to use.
1435  *
1436  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1437  *
1438  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1439  */
1440 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1441 {
1442 	struct vm_area_struct *vma;
1443 	struct file *old_exe_file;
1444 	int ret = 0;
1445 
1446 	/* Forbid mm->exe_file change if old file still mapped. */
1447 	old_exe_file = get_mm_exe_file(mm);
1448 	if (old_exe_file) {
1449 		VMA_ITERATOR(vmi, mm, 0);
1450 		mmap_read_lock(mm);
1451 		for_each_vma(vmi, vma) {
1452 			if (!vma->vm_file)
1453 				continue;
1454 			if (path_equal(&vma->vm_file->f_path,
1455 				       &old_exe_file->f_path)) {
1456 				ret = -EBUSY;
1457 				break;
1458 			}
1459 		}
1460 		mmap_read_unlock(mm);
1461 		fput(old_exe_file);
1462 		if (ret)
1463 			return ret;
1464 	}
1465 
1466 	ret = deny_write_access(new_exe_file);
1467 	if (ret)
1468 		return -EACCES;
1469 	get_file(new_exe_file);
1470 
1471 	/* set the new file */
1472 	mmap_write_lock(mm);
1473 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1474 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1475 	mmap_write_unlock(mm);
1476 
1477 	if (old_exe_file) {
1478 		allow_write_access(old_exe_file);
1479 		fput(old_exe_file);
1480 	}
1481 	return 0;
1482 }
1483 
1484 /**
1485  * get_mm_exe_file - acquire a reference to the mm's executable file
1486  * @mm: The mm of interest.
1487  *
1488  * Returns %NULL if mm has no associated executable file.
1489  * User must release file via fput().
1490  */
1491 struct file *get_mm_exe_file(struct mm_struct *mm)
1492 {
1493 	struct file *exe_file;
1494 
1495 	rcu_read_lock();
1496 	exe_file = get_file_rcu(&mm->exe_file);
1497 	rcu_read_unlock();
1498 	return exe_file;
1499 }
1500 
1501 /**
1502  * get_task_exe_file - acquire a reference to the task's executable file
1503  * @task: The task.
1504  *
1505  * Returns %NULL if task's mm (if any) has no associated executable file or
1506  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1507  * User must release file via fput().
1508  */
1509 struct file *get_task_exe_file(struct task_struct *task)
1510 {
1511 	struct file *exe_file = NULL;
1512 	struct mm_struct *mm;
1513 
1514 	task_lock(task);
1515 	mm = task->mm;
1516 	if (mm) {
1517 		if (!(task->flags & PF_KTHREAD))
1518 			exe_file = get_mm_exe_file(mm);
1519 	}
1520 	task_unlock(task);
1521 	return exe_file;
1522 }
1523 
1524 /**
1525  * get_task_mm - acquire a reference to the task's mm
1526  * @task: The task.
1527  *
1528  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1529  * this kernel workthread has transiently adopted a user mm with use_mm,
1530  * to do its AIO) is not set and if so returns a reference to it, after
1531  * bumping up the use count.  User must release the mm via mmput()
1532  * after use.  Typically used by /proc and ptrace.
1533  */
1534 struct mm_struct *get_task_mm(struct task_struct *task)
1535 {
1536 	struct mm_struct *mm;
1537 
1538 	task_lock(task);
1539 	mm = task->mm;
1540 	if (mm) {
1541 		if (task->flags & PF_KTHREAD)
1542 			mm = NULL;
1543 		else
1544 			mmget(mm);
1545 	}
1546 	task_unlock(task);
1547 	return mm;
1548 }
1549 EXPORT_SYMBOL_GPL(get_task_mm);
1550 
1551 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1552 {
1553 	struct mm_struct *mm;
1554 	int err;
1555 
1556 	err =  down_read_killable(&task->signal->exec_update_lock);
1557 	if (err)
1558 		return ERR_PTR(err);
1559 
1560 	mm = get_task_mm(task);
1561 	if (mm && mm != current->mm &&
1562 			!ptrace_may_access(task, mode)) {
1563 		mmput(mm);
1564 		mm = ERR_PTR(-EACCES);
1565 	}
1566 	up_read(&task->signal->exec_update_lock);
1567 
1568 	return mm;
1569 }
1570 
1571 static void complete_vfork_done(struct task_struct *tsk)
1572 {
1573 	struct completion *vfork;
1574 
1575 	task_lock(tsk);
1576 	vfork = tsk->vfork_done;
1577 	if (likely(vfork)) {
1578 		tsk->vfork_done = NULL;
1579 		complete(vfork);
1580 	}
1581 	task_unlock(tsk);
1582 }
1583 
1584 static int wait_for_vfork_done(struct task_struct *child,
1585 				struct completion *vfork)
1586 {
1587 	unsigned int state = TASK_KILLABLE|TASK_FREEZABLE;
1588 	int killed;
1589 
1590 	cgroup_enter_frozen();
1591 	killed = wait_for_completion_state(vfork, state);
1592 	cgroup_leave_frozen(false);
1593 
1594 	if (killed) {
1595 		task_lock(child);
1596 		child->vfork_done = NULL;
1597 		task_unlock(child);
1598 	}
1599 
1600 	put_task_struct(child);
1601 	return killed;
1602 }
1603 
1604 /* Please note the differences between mmput and mm_release.
1605  * mmput is called whenever we stop holding onto a mm_struct,
1606  * error success whatever.
1607  *
1608  * mm_release is called after a mm_struct has been removed
1609  * from the current process.
1610  *
1611  * This difference is important for error handling, when we
1612  * only half set up a mm_struct for a new process and need to restore
1613  * the old one.  Because we mmput the new mm_struct before
1614  * restoring the old one. . .
1615  * Eric Biederman 10 January 1998
1616  */
1617 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1618 {
1619 	uprobe_free_utask(tsk);
1620 
1621 	/* Get rid of any cached register state */
1622 	deactivate_mm(tsk, mm);
1623 
1624 	/*
1625 	 * Signal userspace if we're not exiting with a core dump
1626 	 * because we want to leave the value intact for debugging
1627 	 * purposes.
1628 	 */
1629 	if (tsk->clear_child_tid) {
1630 		if (atomic_read(&mm->mm_users) > 1) {
1631 			/*
1632 			 * We don't check the error code - if userspace has
1633 			 * not set up a proper pointer then tough luck.
1634 			 */
1635 			put_user(0, tsk->clear_child_tid);
1636 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1637 					1, NULL, NULL, 0, 0);
1638 		}
1639 		tsk->clear_child_tid = NULL;
1640 	}
1641 
1642 	/*
1643 	 * All done, finally we can wake up parent and return this mm to him.
1644 	 * Also kthread_stop() uses this completion for synchronization.
1645 	 */
1646 	if (tsk->vfork_done)
1647 		complete_vfork_done(tsk);
1648 }
1649 
1650 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1651 {
1652 	futex_exit_release(tsk);
1653 	mm_release(tsk, mm);
1654 }
1655 
1656 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1657 {
1658 	futex_exec_release(tsk);
1659 	mm_release(tsk, mm);
1660 }
1661 
1662 /**
1663  * dup_mm() - duplicates an existing mm structure
1664  * @tsk: the task_struct with which the new mm will be associated.
1665  * @oldmm: the mm to duplicate.
1666  *
1667  * Allocates a new mm structure and duplicates the provided @oldmm structure
1668  * content into it.
1669  *
1670  * Return: the duplicated mm or NULL on failure.
1671  */
1672 static struct mm_struct *dup_mm(struct task_struct *tsk,
1673 				struct mm_struct *oldmm)
1674 {
1675 	struct mm_struct *mm;
1676 	int err;
1677 
1678 	mm = allocate_mm();
1679 	if (!mm)
1680 		goto fail_nomem;
1681 
1682 	memcpy(mm, oldmm, sizeof(*mm));
1683 
1684 	if (!mm_init(mm, tsk, mm->user_ns))
1685 		goto fail_nomem;
1686 
1687 	err = dup_mmap(mm, oldmm);
1688 	if (err)
1689 		goto free_pt;
1690 
1691 	mm->hiwater_rss = get_mm_rss(mm);
1692 	mm->hiwater_vm = mm->total_vm;
1693 
1694 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1695 		goto free_pt;
1696 
1697 	return mm;
1698 
1699 free_pt:
1700 	/* don't put binfmt in mmput, we haven't got module yet */
1701 	mm->binfmt = NULL;
1702 	mm_init_owner(mm, NULL);
1703 	mmput(mm);
1704 
1705 fail_nomem:
1706 	return NULL;
1707 }
1708 
1709 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1710 {
1711 	struct mm_struct *mm, *oldmm;
1712 
1713 	tsk->min_flt = tsk->maj_flt = 0;
1714 	tsk->nvcsw = tsk->nivcsw = 0;
1715 #ifdef CONFIG_DETECT_HUNG_TASK
1716 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1717 	tsk->last_switch_time = 0;
1718 #endif
1719 
1720 	tsk->mm = NULL;
1721 	tsk->active_mm = NULL;
1722 
1723 	/*
1724 	 * Are we cloning a kernel thread?
1725 	 *
1726 	 * We need to steal a active VM for that..
1727 	 */
1728 	oldmm = current->mm;
1729 	if (!oldmm)
1730 		return 0;
1731 
1732 	if (clone_flags & CLONE_VM) {
1733 		mmget(oldmm);
1734 		mm = oldmm;
1735 	} else {
1736 		mm = dup_mm(tsk, current->mm);
1737 		if (!mm)
1738 			return -ENOMEM;
1739 	}
1740 
1741 	tsk->mm = mm;
1742 	tsk->active_mm = mm;
1743 	sched_mm_cid_fork(tsk);
1744 	return 0;
1745 }
1746 
1747 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1748 {
1749 	struct fs_struct *fs = current->fs;
1750 	if (clone_flags & CLONE_FS) {
1751 		/* tsk->fs is already what we want */
1752 		spin_lock(&fs->lock);
1753 		/* "users" and "in_exec" locked for check_unsafe_exec() */
1754 		if (fs->in_exec) {
1755 			spin_unlock(&fs->lock);
1756 			return -EAGAIN;
1757 		}
1758 		fs->users++;
1759 		spin_unlock(&fs->lock);
1760 		return 0;
1761 	}
1762 	tsk->fs = copy_fs_struct(fs);
1763 	if (!tsk->fs)
1764 		return -ENOMEM;
1765 	return 0;
1766 }
1767 
1768 static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1769 		      int no_files)
1770 {
1771 	struct files_struct *oldf, *newf;
1772 	int error = 0;
1773 
1774 	/*
1775 	 * A background process may not have any files ...
1776 	 */
1777 	oldf = current->files;
1778 	if (!oldf)
1779 		goto out;
1780 
1781 	if (no_files) {
1782 		tsk->files = NULL;
1783 		goto out;
1784 	}
1785 
1786 	if (clone_flags & CLONE_FILES) {
1787 		atomic_inc(&oldf->count);
1788 		goto out;
1789 	}
1790 
1791 	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1792 	if (!newf)
1793 		goto out;
1794 
1795 	tsk->files = newf;
1796 	error = 0;
1797 out:
1798 	return error;
1799 }
1800 
1801 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1802 {
1803 	struct sighand_struct *sig;
1804 
1805 	if (clone_flags & CLONE_SIGHAND) {
1806 		refcount_inc(&current->sighand->count);
1807 		return 0;
1808 	}
1809 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1810 	RCU_INIT_POINTER(tsk->sighand, sig);
1811 	if (!sig)
1812 		return -ENOMEM;
1813 
1814 	refcount_set(&sig->count, 1);
1815 	spin_lock_irq(&current->sighand->siglock);
1816 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1817 	spin_unlock_irq(&current->sighand->siglock);
1818 
1819 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1820 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1821 		flush_signal_handlers(tsk, 0);
1822 
1823 	return 0;
1824 }
1825 
1826 void __cleanup_sighand(struct sighand_struct *sighand)
1827 {
1828 	if (refcount_dec_and_test(&sighand->count)) {
1829 		signalfd_cleanup(sighand);
1830 		/*
1831 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1832 		 * without an RCU grace period, see __lock_task_sighand().
1833 		 */
1834 		kmem_cache_free(sighand_cachep, sighand);
1835 	}
1836 }
1837 
1838 /*
1839  * Initialize POSIX timer handling for a thread group.
1840  */
1841 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1842 {
1843 	struct posix_cputimers *pct = &sig->posix_cputimers;
1844 	unsigned long cpu_limit;
1845 
1846 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1847 	posix_cputimers_group_init(pct, cpu_limit);
1848 }
1849 
1850 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1851 {
1852 	struct signal_struct *sig;
1853 
1854 	if (clone_flags & CLONE_THREAD)
1855 		return 0;
1856 
1857 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1858 	tsk->signal = sig;
1859 	if (!sig)
1860 		return -ENOMEM;
1861 
1862 	sig->nr_threads = 1;
1863 	sig->quick_threads = 1;
1864 	atomic_set(&sig->live, 1);
1865 	refcount_set(&sig->sigcnt, 1);
1866 
1867 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1868 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1869 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1870 
1871 	init_waitqueue_head(&sig->wait_chldexit);
1872 	sig->curr_target = tsk;
1873 	init_sigpending(&sig->shared_pending);
1874 	INIT_HLIST_HEAD(&sig->multiprocess);
1875 	seqlock_init(&sig->stats_lock);
1876 	prev_cputime_init(&sig->prev_cputime);
1877 
1878 #ifdef CONFIG_POSIX_TIMERS
1879 	INIT_LIST_HEAD(&sig->posix_timers);
1880 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1881 	sig->real_timer.function = it_real_fn;
1882 #endif
1883 
1884 	task_lock(current->group_leader);
1885 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1886 	task_unlock(current->group_leader);
1887 
1888 	posix_cpu_timers_init_group(sig);
1889 
1890 	tty_audit_fork(sig);
1891 	sched_autogroup_fork(sig);
1892 
1893 	sig->oom_score_adj = current->signal->oom_score_adj;
1894 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1895 
1896 	mutex_init(&sig->cred_guard_mutex);
1897 	init_rwsem(&sig->exec_update_lock);
1898 
1899 	return 0;
1900 }
1901 
1902 static void copy_seccomp(struct task_struct *p)
1903 {
1904 #ifdef CONFIG_SECCOMP
1905 	/*
1906 	 * Must be called with sighand->lock held, which is common to
1907 	 * all threads in the group. Holding cred_guard_mutex is not
1908 	 * needed because this new task is not yet running and cannot
1909 	 * be racing exec.
1910 	 */
1911 	assert_spin_locked(&current->sighand->siglock);
1912 
1913 	/* Ref-count the new filter user, and assign it. */
1914 	get_seccomp_filter(current);
1915 	p->seccomp = current->seccomp;
1916 
1917 	/*
1918 	 * Explicitly enable no_new_privs here in case it got set
1919 	 * between the task_struct being duplicated and holding the
1920 	 * sighand lock. The seccomp state and nnp must be in sync.
1921 	 */
1922 	if (task_no_new_privs(current))
1923 		task_set_no_new_privs(p);
1924 
1925 	/*
1926 	 * If the parent gained a seccomp mode after copying thread
1927 	 * flags and between before we held the sighand lock, we have
1928 	 * to manually enable the seccomp thread flag here.
1929 	 */
1930 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1931 		set_task_syscall_work(p, SECCOMP);
1932 #endif
1933 }
1934 
1935 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1936 {
1937 	current->clear_child_tid = tidptr;
1938 
1939 	return task_pid_vnr(current);
1940 }
1941 
1942 static void rt_mutex_init_task(struct task_struct *p)
1943 {
1944 	raw_spin_lock_init(&p->pi_lock);
1945 #ifdef CONFIG_RT_MUTEXES
1946 	p->pi_waiters = RB_ROOT_CACHED;
1947 	p->pi_top_task = NULL;
1948 	p->pi_blocked_on = NULL;
1949 #endif
1950 }
1951 
1952 static inline void init_task_pid_links(struct task_struct *task)
1953 {
1954 	enum pid_type type;
1955 
1956 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1957 		INIT_HLIST_NODE(&task->pid_links[type]);
1958 }
1959 
1960 static inline void
1961 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1962 {
1963 	if (type == PIDTYPE_PID)
1964 		task->thread_pid = pid;
1965 	else
1966 		task->signal->pids[type] = pid;
1967 }
1968 
1969 static inline void rcu_copy_process(struct task_struct *p)
1970 {
1971 #ifdef CONFIG_PREEMPT_RCU
1972 	p->rcu_read_lock_nesting = 0;
1973 	p->rcu_read_unlock_special.s = 0;
1974 	p->rcu_blocked_node = NULL;
1975 	INIT_LIST_HEAD(&p->rcu_node_entry);
1976 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1977 #ifdef CONFIG_TASKS_RCU
1978 	p->rcu_tasks_holdout = false;
1979 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1980 	p->rcu_tasks_idle_cpu = -1;
1981 	INIT_LIST_HEAD(&p->rcu_tasks_exit_list);
1982 #endif /* #ifdef CONFIG_TASKS_RCU */
1983 #ifdef CONFIG_TASKS_TRACE_RCU
1984 	p->trc_reader_nesting = 0;
1985 	p->trc_reader_special.s = 0;
1986 	INIT_LIST_HEAD(&p->trc_holdout_list);
1987 	INIT_LIST_HEAD(&p->trc_blkd_node);
1988 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1989 }
1990 
1991 /**
1992  * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
1993  * @pid:   the struct pid for which to create a pidfd
1994  * @flags: flags of the new @pidfd
1995  * @ret: Where to return the file for the pidfd.
1996  *
1997  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
1998  * caller's file descriptor table. The pidfd is reserved but not installed yet.
1999  *
2000  * The helper doesn't perform checks on @pid which makes it useful for pidfds
2001  * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
2002  * pidfd file are prepared.
2003  *
2004  * If this function returns successfully the caller is responsible to either
2005  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2006  * order to install the pidfd into its file descriptor table or they must use
2007  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2008  * respectively.
2009  *
2010  * This function is useful when a pidfd must already be reserved but there
2011  * might still be points of failure afterwards and the caller wants to ensure
2012  * that no pidfd is leaked into its file descriptor table.
2013  *
2014  * Return: On success, a reserved pidfd is returned from the function and a new
2015  *         pidfd file is returned in the last argument to the function. On
2016  *         error, a negative error code is returned from the function and the
2017  *         last argument remains unchanged.
2018  */
2019 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2020 {
2021 	int pidfd;
2022 	struct file *pidfd_file;
2023 
2024 	pidfd = get_unused_fd_flags(O_CLOEXEC);
2025 	if (pidfd < 0)
2026 		return pidfd;
2027 
2028 	pidfd_file = pidfs_alloc_file(pid, flags | O_RDWR);
2029 	if (IS_ERR(pidfd_file)) {
2030 		put_unused_fd(pidfd);
2031 		return PTR_ERR(pidfd_file);
2032 	}
2033 	/*
2034 	 * anon_inode_getfile() ignores everything outside of the
2035 	 * O_ACCMODE | O_NONBLOCK mask, set PIDFD_THREAD manually.
2036 	 */
2037 	pidfd_file->f_flags |= (flags & PIDFD_THREAD);
2038 	*ret = pidfd_file;
2039 	return pidfd;
2040 }
2041 
2042 /**
2043  * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2044  * @pid:   the struct pid for which to create a pidfd
2045  * @flags: flags of the new @pidfd
2046  * @ret: Where to return the pidfd.
2047  *
2048  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2049  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2050  *
2051  * The helper verifies that @pid is still in use, without PIDFD_THREAD the
2052  * task identified by @pid must be a thread-group leader.
2053  *
2054  * If this function returns successfully the caller is responsible to either
2055  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2056  * order to install the pidfd into its file descriptor table or they must use
2057  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2058  * respectively.
2059  *
2060  * This function is useful when a pidfd must already be reserved but there
2061  * might still be points of failure afterwards and the caller wants to ensure
2062  * that no pidfd is leaked into its file descriptor table.
2063  *
2064  * Return: On success, a reserved pidfd is returned from the function and a new
2065  *         pidfd file is returned in the last argument to the function. On
2066  *         error, a negative error code is returned from the function and the
2067  *         last argument remains unchanged.
2068  */
2069 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2070 {
2071 	bool thread = flags & PIDFD_THREAD;
2072 
2073 	if (!pid || !pid_has_task(pid, thread ? PIDTYPE_PID : PIDTYPE_TGID))
2074 		return -EINVAL;
2075 
2076 	return __pidfd_prepare(pid, flags, ret);
2077 }
2078 
2079 static void __delayed_free_task(struct rcu_head *rhp)
2080 {
2081 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2082 
2083 	free_task(tsk);
2084 }
2085 
2086 static __always_inline void delayed_free_task(struct task_struct *tsk)
2087 {
2088 	if (IS_ENABLED(CONFIG_MEMCG))
2089 		call_rcu(&tsk->rcu, __delayed_free_task);
2090 	else
2091 		free_task(tsk);
2092 }
2093 
2094 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2095 {
2096 	/* Skip if kernel thread */
2097 	if (!tsk->mm)
2098 		return;
2099 
2100 	/* Skip if spawning a thread or using vfork */
2101 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2102 		return;
2103 
2104 	/* We need to synchronize with __set_oom_adj */
2105 	mutex_lock(&oom_adj_mutex);
2106 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2107 	/* Update the values in case they were changed after copy_signal */
2108 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2109 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2110 	mutex_unlock(&oom_adj_mutex);
2111 }
2112 
2113 #ifdef CONFIG_RV
2114 static void rv_task_fork(struct task_struct *p)
2115 {
2116 	int i;
2117 
2118 	for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2119 		p->rv[i].da_mon.monitoring = false;
2120 }
2121 #else
2122 #define rv_task_fork(p) do {} while (0)
2123 #endif
2124 
2125 /*
2126  * This creates a new process as a copy of the old one,
2127  * but does not actually start it yet.
2128  *
2129  * It copies the registers, and all the appropriate
2130  * parts of the process environment (as per the clone
2131  * flags). The actual kick-off is left to the caller.
2132  */
2133 __latent_entropy struct task_struct *copy_process(
2134 					struct pid *pid,
2135 					int trace,
2136 					int node,
2137 					struct kernel_clone_args *args)
2138 {
2139 	int pidfd = -1, retval;
2140 	struct task_struct *p;
2141 	struct multiprocess_signals delayed;
2142 	struct file *pidfile = NULL;
2143 	const u64 clone_flags = args->flags;
2144 	struct nsproxy *nsp = current->nsproxy;
2145 
2146 	/*
2147 	 * Don't allow sharing the root directory with processes in a different
2148 	 * namespace
2149 	 */
2150 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2151 		return ERR_PTR(-EINVAL);
2152 
2153 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2154 		return ERR_PTR(-EINVAL);
2155 
2156 	/*
2157 	 * Thread groups must share signals as well, and detached threads
2158 	 * can only be started up within the thread group.
2159 	 */
2160 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2161 		return ERR_PTR(-EINVAL);
2162 
2163 	/*
2164 	 * Shared signal handlers imply shared VM. By way of the above,
2165 	 * thread groups also imply shared VM. Blocking this case allows
2166 	 * for various simplifications in other code.
2167 	 */
2168 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2169 		return ERR_PTR(-EINVAL);
2170 
2171 	/*
2172 	 * Siblings of global init remain as zombies on exit since they are
2173 	 * not reaped by their parent (swapper). To solve this and to avoid
2174 	 * multi-rooted process trees, prevent global and container-inits
2175 	 * from creating siblings.
2176 	 */
2177 	if ((clone_flags & CLONE_PARENT) &&
2178 				current->signal->flags & SIGNAL_UNKILLABLE)
2179 		return ERR_PTR(-EINVAL);
2180 
2181 	/*
2182 	 * If the new process will be in a different pid or user namespace
2183 	 * do not allow it to share a thread group with the forking task.
2184 	 */
2185 	if (clone_flags & CLONE_THREAD) {
2186 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2187 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2188 			return ERR_PTR(-EINVAL);
2189 	}
2190 
2191 	if (clone_flags & CLONE_PIDFD) {
2192 		/*
2193 		 * - CLONE_DETACHED is blocked so that we can potentially
2194 		 *   reuse it later for CLONE_PIDFD.
2195 		 */
2196 		if (clone_flags & CLONE_DETACHED)
2197 			return ERR_PTR(-EINVAL);
2198 	}
2199 
2200 	/*
2201 	 * Force any signals received before this point to be delivered
2202 	 * before the fork happens.  Collect up signals sent to multiple
2203 	 * processes that happen during the fork and delay them so that
2204 	 * they appear to happen after the fork.
2205 	 */
2206 	sigemptyset(&delayed.signal);
2207 	INIT_HLIST_NODE(&delayed.node);
2208 
2209 	spin_lock_irq(&current->sighand->siglock);
2210 	if (!(clone_flags & CLONE_THREAD))
2211 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2212 	recalc_sigpending();
2213 	spin_unlock_irq(&current->sighand->siglock);
2214 	retval = -ERESTARTNOINTR;
2215 	if (task_sigpending(current))
2216 		goto fork_out;
2217 
2218 	retval = -ENOMEM;
2219 	p = dup_task_struct(current, node);
2220 	if (!p)
2221 		goto fork_out;
2222 	p->flags &= ~PF_KTHREAD;
2223 	if (args->kthread)
2224 		p->flags |= PF_KTHREAD;
2225 	if (args->user_worker) {
2226 		/*
2227 		 * Mark us a user worker, and block any signal that isn't
2228 		 * fatal or STOP
2229 		 */
2230 		p->flags |= PF_USER_WORKER;
2231 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2232 	}
2233 	if (args->io_thread)
2234 		p->flags |= PF_IO_WORKER;
2235 
2236 	if (args->name)
2237 		strscpy_pad(p->comm, args->name, sizeof(p->comm));
2238 
2239 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2240 	/*
2241 	 * Clear TID on mm_release()?
2242 	 */
2243 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2244 
2245 	ftrace_graph_init_task(p);
2246 
2247 	rt_mutex_init_task(p);
2248 
2249 	lockdep_assert_irqs_enabled();
2250 #ifdef CONFIG_PROVE_LOCKING
2251 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2252 #endif
2253 	retval = copy_creds(p, clone_flags);
2254 	if (retval < 0)
2255 		goto bad_fork_free;
2256 
2257 	retval = -EAGAIN;
2258 	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2259 		if (p->real_cred->user != INIT_USER &&
2260 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2261 			goto bad_fork_cleanup_count;
2262 	}
2263 	current->flags &= ~PF_NPROC_EXCEEDED;
2264 
2265 	/*
2266 	 * If multiple threads are within copy_process(), then this check
2267 	 * triggers too late. This doesn't hurt, the check is only there
2268 	 * to stop root fork bombs.
2269 	 */
2270 	retval = -EAGAIN;
2271 	if (data_race(nr_threads >= max_threads))
2272 		goto bad_fork_cleanup_count;
2273 
2274 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2275 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2276 	p->flags |= PF_FORKNOEXEC;
2277 	INIT_LIST_HEAD(&p->children);
2278 	INIT_LIST_HEAD(&p->sibling);
2279 	rcu_copy_process(p);
2280 	p->vfork_done = NULL;
2281 	spin_lock_init(&p->alloc_lock);
2282 
2283 	init_sigpending(&p->pending);
2284 
2285 	p->utime = p->stime = p->gtime = 0;
2286 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2287 	p->utimescaled = p->stimescaled = 0;
2288 #endif
2289 	prev_cputime_init(&p->prev_cputime);
2290 
2291 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2292 	seqcount_init(&p->vtime.seqcount);
2293 	p->vtime.starttime = 0;
2294 	p->vtime.state = VTIME_INACTIVE;
2295 #endif
2296 
2297 #ifdef CONFIG_IO_URING
2298 	p->io_uring = NULL;
2299 #endif
2300 
2301 	p->default_timer_slack_ns = current->timer_slack_ns;
2302 
2303 #ifdef CONFIG_PSI
2304 	p->psi_flags = 0;
2305 #endif
2306 
2307 	task_io_accounting_init(&p->ioac);
2308 	acct_clear_integrals(p);
2309 
2310 	posix_cputimers_init(&p->posix_cputimers);
2311 
2312 	p->io_context = NULL;
2313 	audit_set_context(p, NULL);
2314 	cgroup_fork(p);
2315 	if (args->kthread) {
2316 		if (!set_kthread_struct(p))
2317 			goto bad_fork_cleanup_delayacct;
2318 	}
2319 #ifdef CONFIG_NUMA
2320 	p->mempolicy = mpol_dup(p->mempolicy);
2321 	if (IS_ERR(p->mempolicy)) {
2322 		retval = PTR_ERR(p->mempolicy);
2323 		p->mempolicy = NULL;
2324 		goto bad_fork_cleanup_delayacct;
2325 	}
2326 #endif
2327 #ifdef CONFIG_CPUSETS
2328 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2329 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2330 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2331 #endif
2332 #ifdef CONFIG_TRACE_IRQFLAGS
2333 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2334 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2335 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2336 	p->softirqs_enabled		= 1;
2337 	p->softirq_context		= 0;
2338 #endif
2339 
2340 	p->pagefault_disabled = 0;
2341 
2342 #ifdef CONFIG_LOCKDEP
2343 	lockdep_init_task(p);
2344 #endif
2345 
2346 #ifdef CONFIG_DEBUG_MUTEXES
2347 	p->blocked_on = NULL; /* not blocked yet */
2348 #endif
2349 #ifdef CONFIG_BCACHE
2350 	p->sequential_io	= 0;
2351 	p->sequential_io_avg	= 0;
2352 #endif
2353 #ifdef CONFIG_BPF_SYSCALL
2354 	RCU_INIT_POINTER(p->bpf_storage, NULL);
2355 	p->bpf_ctx = NULL;
2356 #endif
2357 
2358 	/* Perform scheduler related setup. Assign this task to a CPU. */
2359 	retval = sched_fork(clone_flags, p);
2360 	if (retval)
2361 		goto bad_fork_cleanup_policy;
2362 
2363 	retval = perf_event_init_task(p, clone_flags);
2364 	if (retval)
2365 		goto bad_fork_cleanup_policy;
2366 	retval = audit_alloc(p);
2367 	if (retval)
2368 		goto bad_fork_cleanup_perf;
2369 	/* copy all the process information */
2370 	shm_init_task(p);
2371 	retval = security_task_alloc(p, clone_flags);
2372 	if (retval)
2373 		goto bad_fork_cleanup_audit;
2374 	retval = copy_semundo(clone_flags, p);
2375 	if (retval)
2376 		goto bad_fork_cleanup_security;
2377 	retval = copy_files(clone_flags, p, args->no_files);
2378 	if (retval)
2379 		goto bad_fork_cleanup_semundo;
2380 	retval = copy_fs(clone_flags, p);
2381 	if (retval)
2382 		goto bad_fork_cleanup_files;
2383 	retval = copy_sighand(clone_flags, p);
2384 	if (retval)
2385 		goto bad_fork_cleanup_fs;
2386 	retval = copy_signal(clone_flags, p);
2387 	if (retval)
2388 		goto bad_fork_cleanup_sighand;
2389 	retval = copy_mm(clone_flags, p);
2390 	if (retval)
2391 		goto bad_fork_cleanup_signal;
2392 	retval = copy_namespaces(clone_flags, p);
2393 	if (retval)
2394 		goto bad_fork_cleanup_mm;
2395 	retval = copy_io(clone_flags, p);
2396 	if (retval)
2397 		goto bad_fork_cleanup_namespaces;
2398 	retval = copy_thread(p, args);
2399 	if (retval)
2400 		goto bad_fork_cleanup_io;
2401 
2402 	stackleak_task_init(p);
2403 
2404 	if (pid != &init_struct_pid) {
2405 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2406 				args->set_tid_size);
2407 		if (IS_ERR(pid)) {
2408 			retval = PTR_ERR(pid);
2409 			goto bad_fork_cleanup_thread;
2410 		}
2411 	}
2412 
2413 	/*
2414 	 * This has to happen after we've potentially unshared the file
2415 	 * descriptor table (so that the pidfd doesn't leak into the child
2416 	 * if the fd table isn't shared).
2417 	 */
2418 	if (clone_flags & CLONE_PIDFD) {
2419 		int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0;
2420 
2421 		/* Note that no task has been attached to @pid yet. */
2422 		retval = __pidfd_prepare(pid, flags, &pidfile);
2423 		if (retval < 0)
2424 			goto bad_fork_free_pid;
2425 		pidfd = retval;
2426 
2427 		retval = put_user(pidfd, args->pidfd);
2428 		if (retval)
2429 			goto bad_fork_put_pidfd;
2430 	}
2431 
2432 #ifdef CONFIG_BLOCK
2433 	p->plug = NULL;
2434 #endif
2435 	futex_init_task(p);
2436 
2437 	/*
2438 	 * sigaltstack should be cleared when sharing the same VM
2439 	 */
2440 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2441 		sas_ss_reset(p);
2442 
2443 	/*
2444 	 * Syscall tracing and stepping should be turned off in the
2445 	 * child regardless of CLONE_PTRACE.
2446 	 */
2447 	user_disable_single_step(p);
2448 	clear_task_syscall_work(p, SYSCALL_TRACE);
2449 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2450 	clear_task_syscall_work(p, SYSCALL_EMU);
2451 #endif
2452 	clear_tsk_latency_tracing(p);
2453 
2454 	/* ok, now we should be set up.. */
2455 	p->pid = pid_nr(pid);
2456 	if (clone_flags & CLONE_THREAD) {
2457 		p->group_leader = current->group_leader;
2458 		p->tgid = current->tgid;
2459 	} else {
2460 		p->group_leader = p;
2461 		p->tgid = p->pid;
2462 	}
2463 
2464 	p->nr_dirtied = 0;
2465 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2466 	p->dirty_paused_when = 0;
2467 
2468 	p->pdeath_signal = 0;
2469 	p->task_works = NULL;
2470 	clear_posix_cputimers_work(p);
2471 
2472 #ifdef CONFIG_KRETPROBES
2473 	p->kretprobe_instances.first = NULL;
2474 #endif
2475 #ifdef CONFIG_RETHOOK
2476 	p->rethooks.first = NULL;
2477 #endif
2478 
2479 	/*
2480 	 * Ensure that the cgroup subsystem policies allow the new process to be
2481 	 * forked. It should be noted that the new process's css_set can be changed
2482 	 * between here and cgroup_post_fork() if an organisation operation is in
2483 	 * progress.
2484 	 */
2485 	retval = cgroup_can_fork(p, args);
2486 	if (retval)
2487 		goto bad_fork_put_pidfd;
2488 
2489 	/*
2490 	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2491 	 * the new task on the correct runqueue. All this *before* the task
2492 	 * becomes visible.
2493 	 *
2494 	 * This isn't part of ->can_fork() because while the re-cloning is
2495 	 * cgroup specific, it unconditionally needs to place the task on a
2496 	 * runqueue.
2497 	 */
2498 	sched_cgroup_fork(p, args);
2499 
2500 	/*
2501 	 * From this point on we must avoid any synchronous user-space
2502 	 * communication until we take the tasklist-lock. In particular, we do
2503 	 * not want user-space to be able to predict the process start-time by
2504 	 * stalling fork(2) after we recorded the start_time but before it is
2505 	 * visible to the system.
2506 	 */
2507 
2508 	p->start_time = ktime_get_ns();
2509 	p->start_boottime = ktime_get_boottime_ns();
2510 
2511 	/*
2512 	 * Make it visible to the rest of the system, but dont wake it up yet.
2513 	 * Need tasklist lock for parent etc handling!
2514 	 */
2515 	write_lock_irq(&tasklist_lock);
2516 
2517 	/* CLONE_PARENT re-uses the old parent */
2518 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2519 		p->real_parent = current->real_parent;
2520 		p->parent_exec_id = current->parent_exec_id;
2521 		if (clone_flags & CLONE_THREAD)
2522 			p->exit_signal = -1;
2523 		else
2524 			p->exit_signal = current->group_leader->exit_signal;
2525 	} else {
2526 		p->real_parent = current;
2527 		p->parent_exec_id = current->self_exec_id;
2528 		p->exit_signal = args->exit_signal;
2529 	}
2530 
2531 	klp_copy_process(p);
2532 
2533 	sched_core_fork(p);
2534 
2535 	spin_lock(&current->sighand->siglock);
2536 
2537 	rv_task_fork(p);
2538 
2539 	rseq_fork(p, clone_flags);
2540 
2541 	/* Don't start children in a dying pid namespace */
2542 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2543 		retval = -ENOMEM;
2544 		goto bad_fork_cancel_cgroup;
2545 	}
2546 
2547 	/* Let kill terminate clone/fork in the middle */
2548 	if (fatal_signal_pending(current)) {
2549 		retval = -EINTR;
2550 		goto bad_fork_cancel_cgroup;
2551 	}
2552 
2553 	/* No more failure paths after this point. */
2554 
2555 	/*
2556 	 * Copy seccomp details explicitly here, in case they were changed
2557 	 * before holding sighand lock.
2558 	 */
2559 	copy_seccomp(p);
2560 
2561 	init_task_pid_links(p);
2562 	if (likely(p->pid)) {
2563 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2564 
2565 		init_task_pid(p, PIDTYPE_PID, pid);
2566 		if (thread_group_leader(p)) {
2567 			init_task_pid(p, PIDTYPE_TGID, pid);
2568 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2569 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2570 
2571 			if (is_child_reaper(pid)) {
2572 				ns_of_pid(pid)->child_reaper = p;
2573 				p->signal->flags |= SIGNAL_UNKILLABLE;
2574 			}
2575 			p->signal->shared_pending.signal = delayed.signal;
2576 			p->signal->tty = tty_kref_get(current->signal->tty);
2577 			/*
2578 			 * Inherit has_child_subreaper flag under the same
2579 			 * tasklist_lock with adding child to the process tree
2580 			 * for propagate_has_child_subreaper optimization.
2581 			 */
2582 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2583 							 p->real_parent->signal->is_child_subreaper;
2584 			list_add_tail(&p->sibling, &p->real_parent->children);
2585 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2586 			attach_pid(p, PIDTYPE_TGID);
2587 			attach_pid(p, PIDTYPE_PGID);
2588 			attach_pid(p, PIDTYPE_SID);
2589 			__this_cpu_inc(process_counts);
2590 		} else {
2591 			current->signal->nr_threads++;
2592 			current->signal->quick_threads++;
2593 			atomic_inc(&current->signal->live);
2594 			refcount_inc(&current->signal->sigcnt);
2595 			task_join_group_stop(p);
2596 			list_add_tail_rcu(&p->thread_node,
2597 					  &p->signal->thread_head);
2598 		}
2599 		attach_pid(p, PIDTYPE_PID);
2600 		nr_threads++;
2601 	}
2602 	total_forks++;
2603 	hlist_del_init(&delayed.node);
2604 	spin_unlock(&current->sighand->siglock);
2605 	syscall_tracepoint_update(p);
2606 	write_unlock_irq(&tasklist_lock);
2607 
2608 	if (pidfile)
2609 		fd_install(pidfd, pidfile);
2610 
2611 	proc_fork_connector(p);
2612 	sched_post_fork(p);
2613 	cgroup_post_fork(p, args);
2614 	perf_event_fork(p);
2615 
2616 	trace_task_newtask(p, clone_flags);
2617 	uprobe_copy_process(p, clone_flags);
2618 	user_events_fork(p, clone_flags);
2619 
2620 	copy_oom_score_adj(clone_flags, p);
2621 
2622 	return p;
2623 
2624 bad_fork_cancel_cgroup:
2625 	sched_core_free(p);
2626 	spin_unlock(&current->sighand->siglock);
2627 	write_unlock_irq(&tasklist_lock);
2628 	cgroup_cancel_fork(p, args);
2629 bad_fork_put_pidfd:
2630 	if (clone_flags & CLONE_PIDFD) {
2631 		fput(pidfile);
2632 		put_unused_fd(pidfd);
2633 	}
2634 bad_fork_free_pid:
2635 	if (pid != &init_struct_pid)
2636 		free_pid(pid);
2637 bad_fork_cleanup_thread:
2638 	exit_thread(p);
2639 bad_fork_cleanup_io:
2640 	if (p->io_context)
2641 		exit_io_context(p);
2642 bad_fork_cleanup_namespaces:
2643 	exit_task_namespaces(p);
2644 bad_fork_cleanup_mm:
2645 	if (p->mm) {
2646 		mm_clear_owner(p->mm, p);
2647 		mmput(p->mm);
2648 	}
2649 bad_fork_cleanup_signal:
2650 	if (!(clone_flags & CLONE_THREAD))
2651 		free_signal_struct(p->signal);
2652 bad_fork_cleanup_sighand:
2653 	__cleanup_sighand(p->sighand);
2654 bad_fork_cleanup_fs:
2655 	exit_fs(p); /* blocking */
2656 bad_fork_cleanup_files:
2657 	exit_files(p); /* blocking */
2658 bad_fork_cleanup_semundo:
2659 	exit_sem(p);
2660 bad_fork_cleanup_security:
2661 	security_task_free(p);
2662 bad_fork_cleanup_audit:
2663 	audit_free(p);
2664 bad_fork_cleanup_perf:
2665 	perf_event_free_task(p);
2666 bad_fork_cleanup_policy:
2667 	lockdep_free_task(p);
2668 #ifdef CONFIG_NUMA
2669 	mpol_put(p->mempolicy);
2670 #endif
2671 bad_fork_cleanup_delayacct:
2672 	delayacct_tsk_free(p);
2673 bad_fork_cleanup_count:
2674 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2675 	exit_creds(p);
2676 bad_fork_free:
2677 	WRITE_ONCE(p->__state, TASK_DEAD);
2678 	exit_task_stack_account(p);
2679 	put_task_stack(p);
2680 	delayed_free_task(p);
2681 fork_out:
2682 	spin_lock_irq(&current->sighand->siglock);
2683 	hlist_del_init(&delayed.node);
2684 	spin_unlock_irq(&current->sighand->siglock);
2685 	return ERR_PTR(retval);
2686 }
2687 
2688 static inline void init_idle_pids(struct task_struct *idle)
2689 {
2690 	enum pid_type type;
2691 
2692 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2693 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2694 		init_task_pid(idle, type, &init_struct_pid);
2695 	}
2696 }
2697 
2698 static int idle_dummy(void *dummy)
2699 {
2700 	/* This function is never called */
2701 	return 0;
2702 }
2703 
2704 struct task_struct * __init fork_idle(int cpu)
2705 {
2706 	struct task_struct *task;
2707 	struct kernel_clone_args args = {
2708 		.flags		= CLONE_VM,
2709 		.fn		= &idle_dummy,
2710 		.fn_arg		= NULL,
2711 		.kthread	= 1,
2712 		.idle		= 1,
2713 	};
2714 
2715 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2716 	if (!IS_ERR(task)) {
2717 		init_idle_pids(task);
2718 		init_idle(task, cpu);
2719 	}
2720 
2721 	return task;
2722 }
2723 
2724 /*
2725  * This is like kernel_clone(), but shaved down and tailored to just
2726  * creating io_uring workers. It returns a created task, or an error pointer.
2727  * The returned task is inactive, and the caller must fire it up through
2728  * wake_up_new_task(p). All signals are blocked in the created task.
2729  */
2730 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2731 {
2732 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2733 				CLONE_IO;
2734 	struct kernel_clone_args args = {
2735 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2736 				    CLONE_UNTRACED) & ~CSIGNAL),
2737 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2738 		.fn		= fn,
2739 		.fn_arg		= arg,
2740 		.io_thread	= 1,
2741 		.user_worker	= 1,
2742 	};
2743 
2744 	return copy_process(NULL, 0, node, &args);
2745 }
2746 
2747 /*
2748  *  Ok, this is the main fork-routine.
2749  *
2750  * It copies the process, and if successful kick-starts
2751  * it and waits for it to finish using the VM if required.
2752  *
2753  * args->exit_signal is expected to be checked for sanity by the caller.
2754  */
2755 pid_t kernel_clone(struct kernel_clone_args *args)
2756 {
2757 	u64 clone_flags = args->flags;
2758 	struct completion vfork;
2759 	struct pid *pid;
2760 	struct task_struct *p;
2761 	int trace = 0;
2762 	pid_t nr;
2763 
2764 	/*
2765 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2766 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2767 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2768 	 * field in struct clone_args and it still doesn't make sense to have
2769 	 * them both point at the same memory location. Performing this check
2770 	 * here has the advantage that we don't need to have a separate helper
2771 	 * to check for legacy clone().
2772 	 */
2773 	if ((clone_flags & CLONE_PIDFD) &&
2774 	    (clone_flags & CLONE_PARENT_SETTID) &&
2775 	    (args->pidfd == args->parent_tid))
2776 		return -EINVAL;
2777 
2778 	/*
2779 	 * Determine whether and which event to report to ptracer.  When
2780 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2781 	 * requested, no event is reported; otherwise, report if the event
2782 	 * for the type of forking is enabled.
2783 	 */
2784 	if (!(clone_flags & CLONE_UNTRACED)) {
2785 		if (clone_flags & CLONE_VFORK)
2786 			trace = PTRACE_EVENT_VFORK;
2787 		else if (args->exit_signal != SIGCHLD)
2788 			trace = PTRACE_EVENT_CLONE;
2789 		else
2790 			trace = PTRACE_EVENT_FORK;
2791 
2792 		if (likely(!ptrace_event_enabled(current, trace)))
2793 			trace = 0;
2794 	}
2795 
2796 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2797 	add_latent_entropy();
2798 
2799 	if (IS_ERR(p))
2800 		return PTR_ERR(p);
2801 
2802 	/*
2803 	 * Do this prior waking up the new thread - the thread pointer
2804 	 * might get invalid after that point, if the thread exits quickly.
2805 	 */
2806 	trace_sched_process_fork(current, p);
2807 
2808 	pid = get_task_pid(p, PIDTYPE_PID);
2809 	nr = pid_vnr(pid);
2810 
2811 	if (clone_flags & CLONE_PARENT_SETTID)
2812 		put_user(nr, args->parent_tid);
2813 
2814 	if (clone_flags & CLONE_VFORK) {
2815 		p->vfork_done = &vfork;
2816 		init_completion(&vfork);
2817 		get_task_struct(p);
2818 	}
2819 
2820 	if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) {
2821 		/* lock the task to synchronize with memcg migration */
2822 		task_lock(p);
2823 		lru_gen_add_mm(p->mm);
2824 		task_unlock(p);
2825 	}
2826 
2827 	wake_up_new_task(p);
2828 
2829 	/* forking complete and child started to run, tell ptracer */
2830 	if (unlikely(trace))
2831 		ptrace_event_pid(trace, pid);
2832 
2833 	if (clone_flags & CLONE_VFORK) {
2834 		if (!wait_for_vfork_done(p, &vfork))
2835 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2836 	}
2837 
2838 	put_pid(pid);
2839 	return nr;
2840 }
2841 
2842 /*
2843  * Create a kernel thread.
2844  */
2845 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2846 		    unsigned long flags)
2847 {
2848 	struct kernel_clone_args args = {
2849 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2850 				    CLONE_UNTRACED) & ~CSIGNAL),
2851 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2852 		.fn		= fn,
2853 		.fn_arg		= arg,
2854 		.name		= name,
2855 		.kthread	= 1,
2856 	};
2857 
2858 	return kernel_clone(&args);
2859 }
2860 
2861 /*
2862  * Create a user mode thread.
2863  */
2864 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2865 {
2866 	struct kernel_clone_args args = {
2867 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2868 				    CLONE_UNTRACED) & ~CSIGNAL),
2869 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2870 		.fn		= fn,
2871 		.fn_arg		= arg,
2872 	};
2873 
2874 	return kernel_clone(&args);
2875 }
2876 
2877 #ifdef __ARCH_WANT_SYS_FORK
2878 SYSCALL_DEFINE0(fork)
2879 {
2880 #ifdef CONFIG_MMU
2881 	struct kernel_clone_args args = {
2882 		.exit_signal = SIGCHLD,
2883 	};
2884 
2885 	return kernel_clone(&args);
2886 #else
2887 	/* can not support in nommu mode */
2888 	return -EINVAL;
2889 #endif
2890 }
2891 #endif
2892 
2893 #ifdef __ARCH_WANT_SYS_VFORK
2894 SYSCALL_DEFINE0(vfork)
2895 {
2896 	struct kernel_clone_args args = {
2897 		.flags		= CLONE_VFORK | CLONE_VM,
2898 		.exit_signal	= SIGCHLD,
2899 	};
2900 
2901 	return kernel_clone(&args);
2902 }
2903 #endif
2904 
2905 #ifdef __ARCH_WANT_SYS_CLONE
2906 #ifdef CONFIG_CLONE_BACKWARDS
2907 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2908 		 int __user *, parent_tidptr,
2909 		 unsigned long, tls,
2910 		 int __user *, child_tidptr)
2911 #elif defined(CONFIG_CLONE_BACKWARDS2)
2912 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2913 		 int __user *, parent_tidptr,
2914 		 int __user *, child_tidptr,
2915 		 unsigned long, tls)
2916 #elif defined(CONFIG_CLONE_BACKWARDS3)
2917 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2918 		int, stack_size,
2919 		int __user *, parent_tidptr,
2920 		int __user *, child_tidptr,
2921 		unsigned long, tls)
2922 #else
2923 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2924 		 int __user *, parent_tidptr,
2925 		 int __user *, child_tidptr,
2926 		 unsigned long, tls)
2927 #endif
2928 {
2929 	struct kernel_clone_args args = {
2930 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2931 		.pidfd		= parent_tidptr,
2932 		.child_tid	= child_tidptr,
2933 		.parent_tid	= parent_tidptr,
2934 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2935 		.stack		= newsp,
2936 		.tls		= tls,
2937 	};
2938 
2939 	return kernel_clone(&args);
2940 }
2941 #endif
2942 
2943 #ifdef __ARCH_WANT_SYS_CLONE3
2944 
2945 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2946 					      struct clone_args __user *uargs,
2947 					      size_t usize)
2948 {
2949 	int err;
2950 	struct clone_args args;
2951 	pid_t *kset_tid = kargs->set_tid;
2952 
2953 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2954 		     CLONE_ARGS_SIZE_VER0);
2955 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2956 		     CLONE_ARGS_SIZE_VER1);
2957 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2958 		     CLONE_ARGS_SIZE_VER2);
2959 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2960 
2961 	if (unlikely(usize > PAGE_SIZE))
2962 		return -E2BIG;
2963 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2964 		return -EINVAL;
2965 
2966 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2967 	if (err)
2968 		return err;
2969 
2970 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2971 		return -EINVAL;
2972 
2973 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2974 		return -EINVAL;
2975 
2976 	if (unlikely(args.set_tid && args.set_tid_size == 0))
2977 		return -EINVAL;
2978 
2979 	/*
2980 	 * Verify that higher 32bits of exit_signal are unset and that
2981 	 * it is a valid signal
2982 	 */
2983 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2984 		     !valid_signal(args.exit_signal)))
2985 		return -EINVAL;
2986 
2987 	if ((args.flags & CLONE_INTO_CGROUP) &&
2988 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2989 		return -EINVAL;
2990 
2991 	*kargs = (struct kernel_clone_args){
2992 		.flags		= args.flags,
2993 		.pidfd		= u64_to_user_ptr(args.pidfd),
2994 		.child_tid	= u64_to_user_ptr(args.child_tid),
2995 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2996 		.exit_signal	= args.exit_signal,
2997 		.stack		= args.stack,
2998 		.stack_size	= args.stack_size,
2999 		.tls		= args.tls,
3000 		.set_tid_size	= args.set_tid_size,
3001 		.cgroup		= args.cgroup,
3002 	};
3003 
3004 	if (args.set_tid &&
3005 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
3006 			(kargs->set_tid_size * sizeof(pid_t))))
3007 		return -EFAULT;
3008 
3009 	kargs->set_tid = kset_tid;
3010 
3011 	return 0;
3012 }
3013 
3014 /**
3015  * clone3_stack_valid - check and prepare stack
3016  * @kargs: kernel clone args
3017  *
3018  * Verify that the stack arguments userspace gave us are sane.
3019  * In addition, set the stack direction for userspace since it's easy for us to
3020  * determine.
3021  */
3022 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3023 {
3024 	if (kargs->stack == 0) {
3025 		if (kargs->stack_size > 0)
3026 			return false;
3027 	} else {
3028 		if (kargs->stack_size == 0)
3029 			return false;
3030 
3031 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3032 			return false;
3033 
3034 #if !defined(CONFIG_STACK_GROWSUP)
3035 		kargs->stack += kargs->stack_size;
3036 #endif
3037 	}
3038 
3039 	return true;
3040 }
3041 
3042 static bool clone3_args_valid(struct kernel_clone_args *kargs)
3043 {
3044 	/* Verify that no unknown flags are passed along. */
3045 	if (kargs->flags &
3046 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3047 		return false;
3048 
3049 	/*
3050 	 * - make the CLONE_DETACHED bit reusable for clone3
3051 	 * - make the CSIGNAL bits reusable for clone3
3052 	 */
3053 	if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3054 		return false;
3055 
3056 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3057 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3058 		return false;
3059 
3060 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3061 	    kargs->exit_signal)
3062 		return false;
3063 
3064 	if (!clone3_stack_valid(kargs))
3065 		return false;
3066 
3067 	return true;
3068 }
3069 
3070 /**
3071  * sys_clone3 - create a new process with specific properties
3072  * @uargs: argument structure
3073  * @size:  size of @uargs
3074  *
3075  * clone3() is the extensible successor to clone()/clone2().
3076  * It takes a struct as argument that is versioned by its size.
3077  *
3078  * Return: On success, a positive PID for the child process.
3079  *         On error, a negative errno number.
3080  */
3081 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3082 {
3083 	int err;
3084 
3085 	struct kernel_clone_args kargs;
3086 	pid_t set_tid[MAX_PID_NS_LEVEL];
3087 
3088 	kargs.set_tid = set_tid;
3089 
3090 	err = copy_clone_args_from_user(&kargs, uargs, size);
3091 	if (err)
3092 		return err;
3093 
3094 	if (!clone3_args_valid(&kargs))
3095 		return -EINVAL;
3096 
3097 	return kernel_clone(&kargs);
3098 }
3099 #endif
3100 
3101 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3102 {
3103 	struct task_struct *leader, *parent, *child;
3104 	int res;
3105 
3106 	read_lock(&tasklist_lock);
3107 	leader = top = top->group_leader;
3108 down:
3109 	for_each_thread(leader, parent) {
3110 		list_for_each_entry(child, &parent->children, sibling) {
3111 			res = visitor(child, data);
3112 			if (res) {
3113 				if (res < 0)
3114 					goto out;
3115 				leader = child;
3116 				goto down;
3117 			}
3118 up:
3119 			;
3120 		}
3121 	}
3122 
3123 	if (leader != top) {
3124 		child = leader;
3125 		parent = child->real_parent;
3126 		leader = parent->group_leader;
3127 		goto up;
3128 	}
3129 out:
3130 	read_unlock(&tasklist_lock);
3131 }
3132 
3133 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3134 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3135 #endif
3136 
3137 static void sighand_ctor(void *data)
3138 {
3139 	struct sighand_struct *sighand = data;
3140 
3141 	spin_lock_init(&sighand->siglock);
3142 	init_waitqueue_head(&sighand->signalfd_wqh);
3143 }
3144 
3145 void __init mm_cache_init(void)
3146 {
3147 	unsigned int mm_size;
3148 
3149 	/*
3150 	 * The mm_cpumask is located at the end of mm_struct, and is
3151 	 * dynamically sized based on the maximum CPU number this system
3152 	 * can have, taking hotplug into account (nr_cpu_ids).
3153 	 */
3154 	mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3155 
3156 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
3157 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3158 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3159 			offsetof(struct mm_struct, saved_auxv),
3160 			sizeof_field(struct mm_struct, saved_auxv),
3161 			NULL);
3162 }
3163 
3164 void __init proc_caches_init(void)
3165 {
3166 	sighand_cachep = kmem_cache_create("sighand_cache",
3167 			sizeof(struct sighand_struct), 0,
3168 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3169 			SLAB_ACCOUNT, sighand_ctor);
3170 	signal_cachep = kmem_cache_create("signal_cache",
3171 			sizeof(struct signal_struct), 0,
3172 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3173 			NULL);
3174 	files_cachep = kmem_cache_create("files_cache",
3175 			sizeof(struct files_struct), 0,
3176 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3177 			NULL);
3178 	fs_cachep = kmem_cache_create("fs_cache",
3179 			sizeof(struct fs_struct), 0,
3180 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3181 			NULL);
3182 
3183 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3184 #ifdef CONFIG_PER_VMA_LOCK
3185 	vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3186 #endif
3187 	mmap_init();
3188 	nsproxy_cache_init();
3189 }
3190 
3191 /*
3192  * Check constraints on flags passed to the unshare system call.
3193  */
3194 static int check_unshare_flags(unsigned long unshare_flags)
3195 {
3196 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3197 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3198 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3199 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3200 				CLONE_NEWTIME))
3201 		return -EINVAL;
3202 	/*
3203 	 * Not implemented, but pretend it works if there is nothing
3204 	 * to unshare.  Note that unsharing the address space or the
3205 	 * signal handlers also need to unshare the signal queues (aka
3206 	 * CLONE_THREAD).
3207 	 */
3208 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3209 		if (!thread_group_empty(current))
3210 			return -EINVAL;
3211 	}
3212 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3213 		if (refcount_read(&current->sighand->count) > 1)
3214 			return -EINVAL;
3215 	}
3216 	if (unshare_flags & CLONE_VM) {
3217 		if (!current_is_single_threaded())
3218 			return -EINVAL;
3219 	}
3220 
3221 	return 0;
3222 }
3223 
3224 /*
3225  * Unshare the filesystem structure if it is being shared
3226  */
3227 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3228 {
3229 	struct fs_struct *fs = current->fs;
3230 
3231 	if (!(unshare_flags & CLONE_FS) || !fs)
3232 		return 0;
3233 
3234 	/* don't need lock here; in the worst case we'll do useless copy */
3235 	if (fs->users == 1)
3236 		return 0;
3237 
3238 	*new_fsp = copy_fs_struct(fs);
3239 	if (!*new_fsp)
3240 		return -ENOMEM;
3241 
3242 	return 0;
3243 }
3244 
3245 /*
3246  * Unshare file descriptor table if it is being shared
3247  */
3248 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3249 	       struct files_struct **new_fdp)
3250 {
3251 	struct files_struct *fd = current->files;
3252 	int error = 0;
3253 
3254 	if ((unshare_flags & CLONE_FILES) &&
3255 	    (fd && atomic_read(&fd->count) > 1)) {
3256 		*new_fdp = dup_fd(fd, max_fds, &error);
3257 		if (!*new_fdp)
3258 			return error;
3259 	}
3260 
3261 	return 0;
3262 }
3263 
3264 /*
3265  * unshare allows a process to 'unshare' part of the process
3266  * context which was originally shared using clone.  copy_*
3267  * functions used by kernel_clone() cannot be used here directly
3268  * because they modify an inactive task_struct that is being
3269  * constructed. Here we are modifying the current, active,
3270  * task_struct.
3271  */
3272 int ksys_unshare(unsigned long unshare_flags)
3273 {
3274 	struct fs_struct *fs, *new_fs = NULL;
3275 	struct files_struct *new_fd = NULL;
3276 	struct cred *new_cred = NULL;
3277 	struct nsproxy *new_nsproxy = NULL;
3278 	int do_sysvsem = 0;
3279 	int err;
3280 
3281 	/*
3282 	 * If unsharing a user namespace must also unshare the thread group
3283 	 * and unshare the filesystem root and working directories.
3284 	 */
3285 	if (unshare_flags & CLONE_NEWUSER)
3286 		unshare_flags |= CLONE_THREAD | CLONE_FS;
3287 	/*
3288 	 * If unsharing vm, must also unshare signal handlers.
3289 	 */
3290 	if (unshare_flags & CLONE_VM)
3291 		unshare_flags |= CLONE_SIGHAND;
3292 	/*
3293 	 * If unsharing a signal handlers, must also unshare the signal queues.
3294 	 */
3295 	if (unshare_flags & CLONE_SIGHAND)
3296 		unshare_flags |= CLONE_THREAD;
3297 	/*
3298 	 * If unsharing namespace, must also unshare filesystem information.
3299 	 */
3300 	if (unshare_flags & CLONE_NEWNS)
3301 		unshare_flags |= CLONE_FS;
3302 
3303 	err = check_unshare_flags(unshare_flags);
3304 	if (err)
3305 		goto bad_unshare_out;
3306 	/*
3307 	 * CLONE_NEWIPC must also detach from the undolist: after switching
3308 	 * to a new ipc namespace, the semaphore arrays from the old
3309 	 * namespace are unreachable.
3310 	 */
3311 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3312 		do_sysvsem = 1;
3313 	err = unshare_fs(unshare_flags, &new_fs);
3314 	if (err)
3315 		goto bad_unshare_out;
3316 	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3317 	if (err)
3318 		goto bad_unshare_cleanup_fs;
3319 	err = unshare_userns(unshare_flags, &new_cred);
3320 	if (err)
3321 		goto bad_unshare_cleanup_fd;
3322 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3323 					 new_cred, new_fs);
3324 	if (err)
3325 		goto bad_unshare_cleanup_cred;
3326 
3327 	if (new_cred) {
3328 		err = set_cred_ucounts(new_cred);
3329 		if (err)
3330 			goto bad_unshare_cleanup_cred;
3331 	}
3332 
3333 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3334 		if (do_sysvsem) {
3335 			/*
3336 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3337 			 */
3338 			exit_sem(current);
3339 		}
3340 		if (unshare_flags & CLONE_NEWIPC) {
3341 			/* Orphan segments in old ns (see sem above). */
3342 			exit_shm(current);
3343 			shm_init_task(current);
3344 		}
3345 
3346 		if (new_nsproxy)
3347 			switch_task_namespaces(current, new_nsproxy);
3348 
3349 		task_lock(current);
3350 
3351 		if (new_fs) {
3352 			fs = current->fs;
3353 			spin_lock(&fs->lock);
3354 			current->fs = new_fs;
3355 			if (--fs->users)
3356 				new_fs = NULL;
3357 			else
3358 				new_fs = fs;
3359 			spin_unlock(&fs->lock);
3360 		}
3361 
3362 		if (new_fd)
3363 			swap(current->files, new_fd);
3364 
3365 		task_unlock(current);
3366 
3367 		if (new_cred) {
3368 			/* Install the new user namespace */
3369 			commit_creds(new_cred);
3370 			new_cred = NULL;
3371 		}
3372 	}
3373 
3374 	perf_event_namespaces(current);
3375 
3376 bad_unshare_cleanup_cred:
3377 	if (new_cred)
3378 		put_cred(new_cred);
3379 bad_unshare_cleanup_fd:
3380 	if (new_fd)
3381 		put_files_struct(new_fd);
3382 
3383 bad_unshare_cleanup_fs:
3384 	if (new_fs)
3385 		free_fs_struct(new_fs);
3386 
3387 bad_unshare_out:
3388 	return err;
3389 }
3390 
3391 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3392 {
3393 	return ksys_unshare(unshare_flags);
3394 }
3395 
3396 /*
3397  *	Helper to unshare the files of the current task.
3398  *	We don't want to expose copy_files internals to
3399  *	the exec layer of the kernel.
3400  */
3401 
3402 int unshare_files(void)
3403 {
3404 	struct task_struct *task = current;
3405 	struct files_struct *old, *copy = NULL;
3406 	int error;
3407 
3408 	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3409 	if (error || !copy)
3410 		return error;
3411 
3412 	old = task->files;
3413 	task_lock(task);
3414 	task->files = copy;
3415 	task_unlock(task);
3416 	put_files_struct(old);
3417 	return 0;
3418 }
3419 
3420 int sysctl_max_threads(struct ctl_table *table, int write,
3421 		       void *buffer, size_t *lenp, loff_t *ppos)
3422 {
3423 	struct ctl_table t;
3424 	int ret;
3425 	int threads = max_threads;
3426 	int min = 1;
3427 	int max = MAX_THREADS;
3428 
3429 	t = *table;
3430 	t.data = &threads;
3431 	t.extra1 = &min;
3432 	t.extra2 = &max;
3433 
3434 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3435 	if (ret || !write)
3436 		return ret;
3437 
3438 	max_threads = threads;
3439 
3440 	return 0;
3441 }
3442