xref: /linux/kernel/fork.c (revision 2dbf708448c836754d25fe6108c5bfe1f5697c95)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/kthread.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/blkdev.h>
62 #include <linux/fs_struct.h>
63 #include <linux/magic.h>
64 #include <linux/perf_event.h>
65 #include <linux/posix-timers.h>
66 #include <linux/user-return-notifier.h>
67 #include <linux/oom.h>
68 #include <linux/khugepaged.h>
69 #include <linux/signalfd.h>
70 
71 #include <asm/pgtable.h>
72 #include <asm/pgalloc.h>
73 #include <asm/uaccess.h>
74 #include <asm/mmu_context.h>
75 #include <asm/cacheflush.h>
76 #include <asm/tlbflush.h>
77 
78 #include <trace/events/sched.h>
79 
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/task.h>
82 
83 /*
84  * Protected counters by write_lock_irq(&tasklist_lock)
85  */
86 unsigned long total_forks;	/* Handle normal Linux uptimes. */
87 int nr_threads;			/* The idle threads do not count.. */
88 
89 int max_threads;		/* tunable limit on nr_threads */
90 
91 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
92 
93 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
94 
95 #ifdef CONFIG_PROVE_RCU
96 int lockdep_tasklist_lock_is_held(void)
97 {
98 	return lockdep_is_held(&tasklist_lock);
99 }
100 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
101 #endif /* #ifdef CONFIG_PROVE_RCU */
102 
103 int nr_processes(void)
104 {
105 	int cpu;
106 	int total = 0;
107 
108 	for_each_possible_cpu(cpu)
109 		total += per_cpu(process_counts, cpu);
110 
111 	return total;
112 }
113 
114 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
115 # define alloc_task_struct_node(node)		\
116 		kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node)
117 # define free_task_struct(tsk)			\
118 		kmem_cache_free(task_struct_cachep, (tsk))
119 static struct kmem_cache *task_struct_cachep;
120 #endif
121 
122 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
123 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
124 						  int node)
125 {
126 #ifdef CONFIG_DEBUG_STACK_USAGE
127 	gfp_t mask = GFP_KERNEL | __GFP_ZERO;
128 #else
129 	gfp_t mask = GFP_KERNEL;
130 #endif
131 	struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER);
132 
133 	return page ? page_address(page) : NULL;
134 }
135 
136 static inline void free_thread_info(struct thread_info *ti)
137 {
138 	free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
139 }
140 #endif
141 
142 /* SLAB cache for signal_struct structures (tsk->signal) */
143 static struct kmem_cache *signal_cachep;
144 
145 /* SLAB cache for sighand_struct structures (tsk->sighand) */
146 struct kmem_cache *sighand_cachep;
147 
148 /* SLAB cache for files_struct structures (tsk->files) */
149 struct kmem_cache *files_cachep;
150 
151 /* SLAB cache for fs_struct structures (tsk->fs) */
152 struct kmem_cache *fs_cachep;
153 
154 /* SLAB cache for vm_area_struct structures */
155 struct kmem_cache *vm_area_cachep;
156 
157 /* SLAB cache for mm_struct structures (tsk->mm) */
158 static struct kmem_cache *mm_cachep;
159 
160 static void account_kernel_stack(struct thread_info *ti, int account)
161 {
162 	struct zone *zone = page_zone(virt_to_page(ti));
163 
164 	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
165 }
166 
167 void free_task(struct task_struct *tsk)
168 {
169 	account_kernel_stack(tsk->stack, -1);
170 	free_thread_info(tsk->stack);
171 	rt_mutex_debug_task_free(tsk);
172 	ftrace_graph_exit_task(tsk);
173 	free_task_struct(tsk);
174 }
175 EXPORT_SYMBOL(free_task);
176 
177 static inline void free_signal_struct(struct signal_struct *sig)
178 {
179 	taskstats_tgid_free(sig);
180 	sched_autogroup_exit(sig);
181 	kmem_cache_free(signal_cachep, sig);
182 }
183 
184 static inline void put_signal_struct(struct signal_struct *sig)
185 {
186 	if (atomic_dec_and_test(&sig->sigcnt))
187 		free_signal_struct(sig);
188 }
189 
190 void __put_task_struct(struct task_struct *tsk)
191 {
192 	WARN_ON(!tsk->exit_state);
193 	WARN_ON(atomic_read(&tsk->usage));
194 	WARN_ON(tsk == current);
195 
196 	security_task_free(tsk);
197 	exit_creds(tsk);
198 	delayacct_tsk_free(tsk);
199 	put_signal_struct(tsk->signal);
200 
201 	if (!profile_handoff_task(tsk))
202 		free_task(tsk);
203 }
204 EXPORT_SYMBOL_GPL(__put_task_struct);
205 
206 /*
207  * macro override instead of weak attribute alias, to workaround
208  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
209  */
210 #ifndef arch_task_cache_init
211 #define arch_task_cache_init()
212 #endif
213 
214 void __init fork_init(unsigned long mempages)
215 {
216 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
217 #ifndef ARCH_MIN_TASKALIGN
218 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
219 #endif
220 	/* create a slab on which task_structs can be allocated */
221 	task_struct_cachep =
222 		kmem_cache_create("task_struct", sizeof(struct task_struct),
223 			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
224 #endif
225 
226 	/* do the arch specific task caches init */
227 	arch_task_cache_init();
228 
229 	/*
230 	 * The default maximum number of threads is set to a safe
231 	 * value: the thread structures can take up at most half
232 	 * of memory.
233 	 */
234 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
235 
236 	/*
237 	 * we need to allow at least 20 threads to boot a system
238 	 */
239 	if (max_threads < 20)
240 		max_threads = 20;
241 
242 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
243 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
244 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
245 		init_task.signal->rlim[RLIMIT_NPROC];
246 }
247 
248 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
249 					       struct task_struct *src)
250 {
251 	*dst = *src;
252 	return 0;
253 }
254 
255 static struct task_struct *dup_task_struct(struct task_struct *orig)
256 {
257 	struct task_struct *tsk;
258 	struct thread_info *ti;
259 	unsigned long *stackend;
260 	int node = tsk_fork_get_node(orig);
261 	int err;
262 
263 	prepare_to_copy(orig);
264 
265 	tsk = alloc_task_struct_node(node);
266 	if (!tsk)
267 		return NULL;
268 
269 	ti = alloc_thread_info_node(tsk, node);
270 	if (!ti) {
271 		free_task_struct(tsk);
272 		return NULL;
273 	}
274 
275 	err = arch_dup_task_struct(tsk, orig);
276 	if (err)
277 		goto out;
278 
279 	tsk->stack = ti;
280 
281 	setup_thread_stack(tsk, orig);
282 	clear_user_return_notifier(tsk);
283 	clear_tsk_need_resched(tsk);
284 	stackend = end_of_stack(tsk);
285 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
286 
287 #ifdef CONFIG_CC_STACKPROTECTOR
288 	tsk->stack_canary = get_random_int();
289 #endif
290 
291 	/*
292 	 * One for us, one for whoever does the "release_task()" (usually
293 	 * parent)
294 	 */
295 	atomic_set(&tsk->usage, 2);
296 #ifdef CONFIG_BLK_DEV_IO_TRACE
297 	tsk->btrace_seq = 0;
298 #endif
299 	tsk->splice_pipe = NULL;
300 
301 	account_kernel_stack(ti, 1);
302 
303 	return tsk;
304 
305 out:
306 	free_thread_info(ti);
307 	free_task_struct(tsk);
308 	return NULL;
309 }
310 
311 #ifdef CONFIG_MMU
312 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
313 {
314 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
315 	struct rb_node **rb_link, *rb_parent;
316 	int retval;
317 	unsigned long charge;
318 	struct mempolicy *pol;
319 
320 	down_write(&oldmm->mmap_sem);
321 	flush_cache_dup_mm(oldmm);
322 	/*
323 	 * Not linked in yet - no deadlock potential:
324 	 */
325 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
326 
327 	mm->locked_vm = 0;
328 	mm->mmap = NULL;
329 	mm->mmap_cache = NULL;
330 	mm->free_area_cache = oldmm->mmap_base;
331 	mm->cached_hole_size = ~0UL;
332 	mm->map_count = 0;
333 	cpumask_clear(mm_cpumask(mm));
334 	mm->mm_rb = RB_ROOT;
335 	rb_link = &mm->mm_rb.rb_node;
336 	rb_parent = NULL;
337 	pprev = &mm->mmap;
338 	retval = ksm_fork(mm, oldmm);
339 	if (retval)
340 		goto out;
341 	retval = khugepaged_fork(mm, oldmm);
342 	if (retval)
343 		goto out;
344 
345 	prev = NULL;
346 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
347 		struct file *file;
348 
349 		if (mpnt->vm_flags & VM_DONTCOPY) {
350 			long pages = vma_pages(mpnt);
351 			mm->total_vm -= pages;
352 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
353 								-pages);
354 			continue;
355 		}
356 		charge = 0;
357 		if (mpnt->vm_flags & VM_ACCOUNT) {
358 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
359 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
360 				goto fail_nomem;
361 			charge = len;
362 		}
363 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
364 		if (!tmp)
365 			goto fail_nomem;
366 		*tmp = *mpnt;
367 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
368 		pol = mpol_dup(vma_policy(mpnt));
369 		retval = PTR_ERR(pol);
370 		if (IS_ERR(pol))
371 			goto fail_nomem_policy;
372 		vma_set_policy(tmp, pol);
373 		tmp->vm_mm = mm;
374 		if (anon_vma_fork(tmp, mpnt))
375 			goto fail_nomem_anon_vma_fork;
376 		tmp->vm_flags &= ~VM_LOCKED;
377 		tmp->vm_next = tmp->vm_prev = NULL;
378 		file = tmp->vm_file;
379 		if (file) {
380 			struct inode *inode = file->f_path.dentry->d_inode;
381 			struct address_space *mapping = file->f_mapping;
382 
383 			get_file(file);
384 			if (tmp->vm_flags & VM_DENYWRITE)
385 				atomic_dec(&inode->i_writecount);
386 			mutex_lock(&mapping->i_mmap_mutex);
387 			if (tmp->vm_flags & VM_SHARED)
388 				mapping->i_mmap_writable++;
389 			flush_dcache_mmap_lock(mapping);
390 			/* insert tmp into the share list, just after mpnt */
391 			vma_prio_tree_add(tmp, mpnt);
392 			flush_dcache_mmap_unlock(mapping);
393 			mutex_unlock(&mapping->i_mmap_mutex);
394 		}
395 
396 		/*
397 		 * Clear hugetlb-related page reserves for children. This only
398 		 * affects MAP_PRIVATE mappings. Faults generated by the child
399 		 * are not guaranteed to succeed, even if read-only
400 		 */
401 		if (is_vm_hugetlb_page(tmp))
402 			reset_vma_resv_huge_pages(tmp);
403 
404 		/*
405 		 * Link in the new vma and copy the page table entries.
406 		 */
407 		*pprev = tmp;
408 		pprev = &tmp->vm_next;
409 		tmp->vm_prev = prev;
410 		prev = tmp;
411 
412 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
413 		rb_link = &tmp->vm_rb.rb_right;
414 		rb_parent = &tmp->vm_rb;
415 
416 		mm->map_count++;
417 		retval = copy_page_range(mm, oldmm, mpnt);
418 
419 		if (tmp->vm_ops && tmp->vm_ops->open)
420 			tmp->vm_ops->open(tmp);
421 
422 		if (retval)
423 			goto out;
424 	}
425 	/* a new mm has just been created */
426 	arch_dup_mmap(oldmm, mm);
427 	retval = 0;
428 out:
429 	up_write(&mm->mmap_sem);
430 	flush_tlb_mm(oldmm);
431 	up_write(&oldmm->mmap_sem);
432 	return retval;
433 fail_nomem_anon_vma_fork:
434 	mpol_put(pol);
435 fail_nomem_policy:
436 	kmem_cache_free(vm_area_cachep, tmp);
437 fail_nomem:
438 	retval = -ENOMEM;
439 	vm_unacct_memory(charge);
440 	goto out;
441 }
442 
443 static inline int mm_alloc_pgd(struct mm_struct *mm)
444 {
445 	mm->pgd = pgd_alloc(mm);
446 	if (unlikely(!mm->pgd))
447 		return -ENOMEM;
448 	return 0;
449 }
450 
451 static inline void mm_free_pgd(struct mm_struct *mm)
452 {
453 	pgd_free(mm, mm->pgd);
454 }
455 #else
456 #define dup_mmap(mm, oldmm)	(0)
457 #define mm_alloc_pgd(mm)	(0)
458 #define mm_free_pgd(mm)
459 #endif /* CONFIG_MMU */
460 
461 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
462 
463 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
464 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
465 
466 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
467 
468 static int __init coredump_filter_setup(char *s)
469 {
470 	default_dump_filter =
471 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
472 		MMF_DUMP_FILTER_MASK;
473 	return 1;
474 }
475 
476 __setup("coredump_filter=", coredump_filter_setup);
477 
478 #include <linux/init_task.h>
479 
480 static void mm_init_aio(struct mm_struct *mm)
481 {
482 #ifdef CONFIG_AIO
483 	spin_lock_init(&mm->ioctx_lock);
484 	INIT_HLIST_HEAD(&mm->ioctx_list);
485 #endif
486 }
487 
488 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
489 {
490 	atomic_set(&mm->mm_users, 1);
491 	atomic_set(&mm->mm_count, 1);
492 	init_rwsem(&mm->mmap_sem);
493 	INIT_LIST_HEAD(&mm->mmlist);
494 	mm->flags = (current->mm) ?
495 		(current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
496 	mm->core_state = NULL;
497 	mm->nr_ptes = 0;
498 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
499 	spin_lock_init(&mm->page_table_lock);
500 	mm->free_area_cache = TASK_UNMAPPED_BASE;
501 	mm->cached_hole_size = ~0UL;
502 	mm_init_aio(mm);
503 	mm_init_owner(mm, p);
504 
505 	if (likely(!mm_alloc_pgd(mm))) {
506 		mm->def_flags = 0;
507 		mmu_notifier_mm_init(mm);
508 		return mm;
509 	}
510 
511 	free_mm(mm);
512 	return NULL;
513 }
514 
515 static void check_mm(struct mm_struct *mm)
516 {
517 	int i;
518 
519 	for (i = 0; i < NR_MM_COUNTERS; i++) {
520 		long x = atomic_long_read(&mm->rss_stat.count[i]);
521 
522 		if (unlikely(x))
523 			printk(KERN_ALERT "BUG: Bad rss-counter state "
524 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
525 	}
526 
527 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
528 	VM_BUG_ON(mm->pmd_huge_pte);
529 #endif
530 }
531 
532 /*
533  * Allocate and initialize an mm_struct.
534  */
535 struct mm_struct *mm_alloc(void)
536 {
537 	struct mm_struct *mm;
538 
539 	mm = allocate_mm();
540 	if (!mm)
541 		return NULL;
542 
543 	memset(mm, 0, sizeof(*mm));
544 	mm_init_cpumask(mm);
545 	return mm_init(mm, current);
546 }
547 
548 /*
549  * Called when the last reference to the mm
550  * is dropped: either by a lazy thread or by
551  * mmput. Free the page directory and the mm.
552  */
553 void __mmdrop(struct mm_struct *mm)
554 {
555 	BUG_ON(mm == &init_mm);
556 	mm_free_pgd(mm);
557 	destroy_context(mm);
558 	mmu_notifier_mm_destroy(mm);
559 	check_mm(mm);
560 	free_mm(mm);
561 }
562 EXPORT_SYMBOL_GPL(__mmdrop);
563 
564 /*
565  * Decrement the use count and release all resources for an mm.
566  */
567 void mmput(struct mm_struct *mm)
568 {
569 	might_sleep();
570 
571 	if (atomic_dec_and_test(&mm->mm_users)) {
572 		exit_aio(mm);
573 		ksm_exit(mm);
574 		khugepaged_exit(mm); /* must run before exit_mmap */
575 		exit_mmap(mm);
576 		set_mm_exe_file(mm, NULL);
577 		if (!list_empty(&mm->mmlist)) {
578 			spin_lock(&mmlist_lock);
579 			list_del(&mm->mmlist);
580 			spin_unlock(&mmlist_lock);
581 		}
582 		put_swap_token(mm);
583 		if (mm->binfmt)
584 			module_put(mm->binfmt->module);
585 		mmdrop(mm);
586 	}
587 }
588 EXPORT_SYMBOL_GPL(mmput);
589 
590 /*
591  * We added or removed a vma mapping the executable. The vmas are only mapped
592  * during exec and are not mapped with the mmap system call.
593  * Callers must hold down_write() on the mm's mmap_sem for these
594  */
595 void added_exe_file_vma(struct mm_struct *mm)
596 {
597 	mm->num_exe_file_vmas++;
598 }
599 
600 void removed_exe_file_vma(struct mm_struct *mm)
601 {
602 	mm->num_exe_file_vmas--;
603 	if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
604 		fput(mm->exe_file);
605 		mm->exe_file = NULL;
606 	}
607 
608 }
609 
610 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
611 {
612 	if (new_exe_file)
613 		get_file(new_exe_file);
614 	if (mm->exe_file)
615 		fput(mm->exe_file);
616 	mm->exe_file = new_exe_file;
617 	mm->num_exe_file_vmas = 0;
618 }
619 
620 struct file *get_mm_exe_file(struct mm_struct *mm)
621 {
622 	struct file *exe_file;
623 
624 	/* We need mmap_sem to protect against races with removal of
625 	 * VM_EXECUTABLE vmas */
626 	down_read(&mm->mmap_sem);
627 	exe_file = mm->exe_file;
628 	if (exe_file)
629 		get_file(exe_file);
630 	up_read(&mm->mmap_sem);
631 	return exe_file;
632 }
633 
634 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
635 {
636 	/* It's safe to write the exe_file pointer without exe_file_lock because
637 	 * this is called during fork when the task is not yet in /proc */
638 	newmm->exe_file = get_mm_exe_file(oldmm);
639 }
640 
641 /**
642  * get_task_mm - acquire a reference to the task's mm
643  *
644  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
645  * this kernel workthread has transiently adopted a user mm with use_mm,
646  * to do its AIO) is not set and if so returns a reference to it, after
647  * bumping up the use count.  User must release the mm via mmput()
648  * after use.  Typically used by /proc and ptrace.
649  */
650 struct mm_struct *get_task_mm(struct task_struct *task)
651 {
652 	struct mm_struct *mm;
653 
654 	task_lock(task);
655 	mm = task->mm;
656 	if (mm) {
657 		if (task->flags & PF_KTHREAD)
658 			mm = NULL;
659 		else
660 			atomic_inc(&mm->mm_users);
661 	}
662 	task_unlock(task);
663 	return mm;
664 }
665 EXPORT_SYMBOL_GPL(get_task_mm);
666 
667 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
668 {
669 	struct mm_struct *mm;
670 	int err;
671 
672 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
673 	if (err)
674 		return ERR_PTR(err);
675 
676 	mm = get_task_mm(task);
677 	if (mm && mm != current->mm &&
678 			!ptrace_may_access(task, mode)) {
679 		mmput(mm);
680 		mm = ERR_PTR(-EACCES);
681 	}
682 	mutex_unlock(&task->signal->cred_guard_mutex);
683 
684 	return mm;
685 }
686 
687 static void complete_vfork_done(struct task_struct *tsk)
688 {
689 	struct completion *vfork;
690 
691 	task_lock(tsk);
692 	vfork = tsk->vfork_done;
693 	if (likely(vfork)) {
694 		tsk->vfork_done = NULL;
695 		complete(vfork);
696 	}
697 	task_unlock(tsk);
698 }
699 
700 static int wait_for_vfork_done(struct task_struct *child,
701 				struct completion *vfork)
702 {
703 	int killed;
704 
705 	freezer_do_not_count();
706 	killed = wait_for_completion_killable(vfork);
707 	freezer_count();
708 
709 	if (killed) {
710 		task_lock(child);
711 		child->vfork_done = NULL;
712 		task_unlock(child);
713 	}
714 
715 	put_task_struct(child);
716 	return killed;
717 }
718 
719 /* Please note the differences between mmput and mm_release.
720  * mmput is called whenever we stop holding onto a mm_struct,
721  * error success whatever.
722  *
723  * mm_release is called after a mm_struct has been removed
724  * from the current process.
725  *
726  * This difference is important for error handling, when we
727  * only half set up a mm_struct for a new process and need to restore
728  * the old one.  Because we mmput the new mm_struct before
729  * restoring the old one. . .
730  * Eric Biederman 10 January 1998
731  */
732 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
733 {
734 	/* Get rid of any futexes when releasing the mm */
735 #ifdef CONFIG_FUTEX
736 	if (unlikely(tsk->robust_list)) {
737 		exit_robust_list(tsk);
738 		tsk->robust_list = NULL;
739 	}
740 #ifdef CONFIG_COMPAT
741 	if (unlikely(tsk->compat_robust_list)) {
742 		compat_exit_robust_list(tsk);
743 		tsk->compat_robust_list = NULL;
744 	}
745 #endif
746 	if (unlikely(!list_empty(&tsk->pi_state_list)))
747 		exit_pi_state_list(tsk);
748 #endif
749 
750 	/* Get rid of any cached register state */
751 	deactivate_mm(tsk, mm);
752 
753 	if (tsk->vfork_done)
754 		complete_vfork_done(tsk);
755 
756 	/*
757 	 * If we're exiting normally, clear a user-space tid field if
758 	 * requested.  We leave this alone when dying by signal, to leave
759 	 * the value intact in a core dump, and to save the unnecessary
760 	 * trouble, say, a killed vfork parent shouldn't touch this mm.
761 	 * Userland only wants this done for a sys_exit.
762 	 */
763 	if (tsk->clear_child_tid) {
764 		if (!(tsk->flags & PF_SIGNALED) &&
765 		    atomic_read(&mm->mm_users) > 1) {
766 			/*
767 			 * We don't check the error code - if userspace has
768 			 * not set up a proper pointer then tough luck.
769 			 */
770 			put_user(0, tsk->clear_child_tid);
771 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
772 					1, NULL, NULL, 0);
773 		}
774 		tsk->clear_child_tid = NULL;
775 	}
776 }
777 
778 /*
779  * Allocate a new mm structure and copy contents from the
780  * mm structure of the passed in task structure.
781  */
782 struct mm_struct *dup_mm(struct task_struct *tsk)
783 {
784 	struct mm_struct *mm, *oldmm = current->mm;
785 	int err;
786 
787 	if (!oldmm)
788 		return NULL;
789 
790 	mm = allocate_mm();
791 	if (!mm)
792 		goto fail_nomem;
793 
794 	memcpy(mm, oldmm, sizeof(*mm));
795 	mm_init_cpumask(mm);
796 
797 	/* Initializing for Swap token stuff */
798 	mm->token_priority = 0;
799 	mm->last_interval = 0;
800 
801 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
802 	mm->pmd_huge_pte = NULL;
803 #endif
804 
805 	if (!mm_init(mm, tsk))
806 		goto fail_nomem;
807 
808 	if (init_new_context(tsk, mm))
809 		goto fail_nocontext;
810 
811 	dup_mm_exe_file(oldmm, mm);
812 
813 	err = dup_mmap(mm, oldmm);
814 	if (err)
815 		goto free_pt;
816 
817 	mm->hiwater_rss = get_mm_rss(mm);
818 	mm->hiwater_vm = mm->total_vm;
819 
820 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
821 		goto free_pt;
822 
823 	return mm;
824 
825 free_pt:
826 	/* don't put binfmt in mmput, we haven't got module yet */
827 	mm->binfmt = NULL;
828 	mmput(mm);
829 
830 fail_nomem:
831 	return NULL;
832 
833 fail_nocontext:
834 	/*
835 	 * If init_new_context() failed, we cannot use mmput() to free the mm
836 	 * because it calls destroy_context()
837 	 */
838 	mm_free_pgd(mm);
839 	free_mm(mm);
840 	return NULL;
841 }
842 
843 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
844 {
845 	struct mm_struct *mm, *oldmm;
846 	int retval;
847 
848 	tsk->min_flt = tsk->maj_flt = 0;
849 	tsk->nvcsw = tsk->nivcsw = 0;
850 #ifdef CONFIG_DETECT_HUNG_TASK
851 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
852 #endif
853 
854 	tsk->mm = NULL;
855 	tsk->active_mm = NULL;
856 
857 	/*
858 	 * Are we cloning a kernel thread?
859 	 *
860 	 * We need to steal a active VM for that..
861 	 */
862 	oldmm = current->mm;
863 	if (!oldmm)
864 		return 0;
865 
866 	if (clone_flags & CLONE_VM) {
867 		atomic_inc(&oldmm->mm_users);
868 		mm = oldmm;
869 		goto good_mm;
870 	}
871 
872 	retval = -ENOMEM;
873 	mm = dup_mm(tsk);
874 	if (!mm)
875 		goto fail_nomem;
876 
877 good_mm:
878 	/* Initializing for Swap token stuff */
879 	mm->token_priority = 0;
880 	mm->last_interval = 0;
881 
882 	tsk->mm = mm;
883 	tsk->active_mm = mm;
884 	return 0;
885 
886 fail_nomem:
887 	return retval;
888 }
889 
890 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
891 {
892 	struct fs_struct *fs = current->fs;
893 	if (clone_flags & CLONE_FS) {
894 		/* tsk->fs is already what we want */
895 		spin_lock(&fs->lock);
896 		if (fs->in_exec) {
897 			spin_unlock(&fs->lock);
898 			return -EAGAIN;
899 		}
900 		fs->users++;
901 		spin_unlock(&fs->lock);
902 		return 0;
903 	}
904 	tsk->fs = copy_fs_struct(fs);
905 	if (!tsk->fs)
906 		return -ENOMEM;
907 	return 0;
908 }
909 
910 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
911 {
912 	struct files_struct *oldf, *newf;
913 	int error = 0;
914 
915 	/*
916 	 * A background process may not have any files ...
917 	 */
918 	oldf = current->files;
919 	if (!oldf)
920 		goto out;
921 
922 	if (clone_flags & CLONE_FILES) {
923 		atomic_inc(&oldf->count);
924 		goto out;
925 	}
926 
927 	newf = dup_fd(oldf, &error);
928 	if (!newf)
929 		goto out;
930 
931 	tsk->files = newf;
932 	error = 0;
933 out:
934 	return error;
935 }
936 
937 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
938 {
939 #ifdef CONFIG_BLOCK
940 	struct io_context *ioc = current->io_context;
941 	struct io_context *new_ioc;
942 
943 	if (!ioc)
944 		return 0;
945 	/*
946 	 * Share io context with parent, if CLONE_IO is set
947 	 */
948 	if (clone_flags & CLONE_IO) {
949 		tsk->io_context = ioc_task_link(ioc);
950 		if (unlikely(!tsk->io_context))
951 			return -ENOMEM;
952 	} else if (ioprio_valid(ioc->ioprio)) {
953 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
954 		if (unlikely(!new_ioc))
955 			return -ENOMEM;
956 
957 		new_ioc->ioprio = ioc->ioprio;
958 		put_io_context(new_ioc);
959 	}
960 #endif
961 	return 0;
962 }
963 
964 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
965 {
966 	struct sighand_struct *sig;
967 
968 	if (clone_flags & CLONE_SIGHAND) {
969 		atomic_inc(&current->sighand->count);
970 		return 0;
971 	}
972 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
973 	rcu_assign_pointer(tsk->sighand, sig);
974 	if (!sig)
975 		return -ENOMEM;
976 	atomic_set(&sig->count, 1);
977 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
978 	return 0;
979 }
980 
981 void __cleanup_sighand(struct sighand_struct *sighand)
982 {
983 	if (atomic_dec_and_test(&sighand->count)) {
984 		signalfd_cleanup(sighand);
985 		kmem_cache_free(sighand_cachep, sighand);
986 	}
987 }
988 
989 
990 /*
991  * Initialize POSIX timer handling for a thread group.
992  */
993 static void posix_cpu_timers_init_group(struct signal_struct *sig)
994 {
995 	unsigned long cpu_limit;
996 
997 	/* Thread group counters. */
998 	thread_group_cputime_init(sig);
999 
1000 	cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1001 	if (cpu_limit != RLIM_INFINITY) {
1002 		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1003 		sig->cputimer.running = 1;
1004 	}
1005 
1006 	/* The timer lists. */
1007 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1008 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1009 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1010 }
1011 
1012 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1013 {
1014 	struct signal_struct *sig;
1015 
1016 	if (clone_flags & CLONE_THREAD)
1017 		return 0;
1018 
1019 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1020 	tsk->signal = sig;
1021 	if (!sig)
1022 		return -ENOMEM;
1023 
1024 	sig->nr_threads = 1;
1025 	atomic_set(&sig->live, 1);
1026 	atomic_set(&sig->sigcnt, 1);
1027 	init_waitqueue_head(&sig->wait_chldexit);
1028 	if (clone_flags & CLONE_NEWPID)
1029 		sig->flags |= SIGNAL_UNKILLABLE;
1030 	sig->curr_target = tsk;
1031 	init_sigpending(&sig->shared_pending);
1032 	INIT_LIST_HEAD(&sig->posix_timers);
1033 
1034 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1035 	sig->real_timer.function = it_real_fn;
1036 
1037 	task_lock(current->group_leader);
1038 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1039 	task_unlock(current->group_leader);
1040 
1041 	posix_cpu_timers_init_group(sig);
1042 
1043 	tty_audit_fork(sig);
1044 	sched_autogroup_fork(sig);
1045 
1046 #ifdef CONFIG_CGROUPS
1047 	init_rwsem(&sig->group_rwsem);
1048 #endif
1049 
1050 	sig->oom_adj = current->signal->oom_adj;
1051 	sig->oom_score_adj = current->signal->oom_score_adj;
1052 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1053 
1054 	sig->has_child_subreaper = current->signal->has_child_subreaper ||
1055 				   current->signal->is_child_subreaper;
1056 
1057 	mutex_init(&sig->cred_guard_mutex);
1058 
1059 	return 0;
1060 }
1061 
1062 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1063 {
1064 	unsigned long new_flags = p->flags;
1065 
1066 	new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1067 	new_flags |= PF_FORKNOEXEC;
1068 	p->flags = new_flags;
1069 }
1070 
1071 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1072 {
1073 	current->clear_child_tid = tidptr;
1074 
1075 	return task_pid_vnr(current);
1076 }
1077 
1078 static void rt_mutex_init_task(struct task_struct *p)
1079 {
1080 	raw_spin_lock_init(&p->pi_lock);
1081 #ifdef CONFIG_RT_MUTEXES
1082 	plist_head_init(&p->pi_waiters);
1083 	p->pi_blocked_on = NULL;
1084 #endif
1085 }
1086 
1087 #ifdef CONFIG_MM_OWNER
1088 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1089 {
1090 	mm->owner = p;
1091 }
1092 #endif /* CONFIG_MM_OWNER */
1093 
1094 /*
1095  * Initialize POSIX timer handling for a single task.
1096  */
1097 static void posix_cpu_timers_init(struct task_struct *tsk)
1098 {
1099 	tsk->cputime_expires.prof_exp = 0;
1100 	tsk->cputime_expires.virt_exp = 0;
1101 	tsk->cputime_expires.sched_exp = 0;
1102 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1103 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1104 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1105 }
1106 
1107 /*
1108  * This creates a new process as a copy of the old one,
1109  * but does not actually start it yet.
1110  *
1111  * It copies the registers, and all the appropriate
1112  * parts of the process environment (as per the clone
1113  * flags). The actual kick-off is left to the caller.
1114  */
1115 static struct task_struct *copy_process(unsigned long clone_flags,
1116 					unsigned long stack_start,
1117 					struct pt_regs *regs,
1118 					unsigned long stack_size,
1119 					int __user *child_tidptr,
1120 					struct pid *pid,
1121 					int trace)
1122 {
1123 	int retval;
1124 	struct task_struct *p;
1125 	int cgroup_callbacks_done = 0;
1126 
1127 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1128 		return ERR_PTR(-EINVAL);
1129 
1130 	/*
1131 	 * Thread groups must share signals as well, and detached threads
1132 	 * can only be started up within the thread group.
1133 	 */
1134 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1135 		return ERR_PTR(-EINVAL);
1136 
1137 	/*
1138 	 * Shared signal handlers imply shared VM. By way of the above,
1139 	 * thread groups also imply shared VM. Blocking this case allows
1140 	 * for various simplifications in other code.
1141 	 */
1142 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1143 		return ERR_PTR(-EINVAL);
1144 
1145 	/*
1146 	 * Siblings of global init remain as zombies on exit since they are
1147 	 * not reaped by their parent (swapper). To solve this and to avoid
1148 	 * multi-rooted process trees, prevent global and container-inits
1149 	 * from creating siblings.
1150 	 */
1151 	if ((clone_flags & CLONE_PARENT) &&
1152 				current->signal->flags & SIGNAL_UNKILLABLE)
1153 		return ERR_PTR(-EINVAL);
1154 
1155 	retval = security_task_create(clone_flags);
1156 	if (retval)
1157 		goto fork_out;
1158 
1159 	retval = -ENOMEM;
1160 	p = dup_task_struct(current);
1161 	if (!p)
1162 		goto fork_out;
1163 
1164 	ftrace_graph_init_task(p);
1165 
1166 	rt_mutex_init_task(p);
1167 
1168 #ifdef CONFIG_PROVE_LOCKING
1169 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1170 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1171 #endif
1172 	retval = -EAGAIN;
1173 	if (atomic_read(&p->real_cred->user->processes) >=
1174 			task_rlimit(p, RLIMIT_NPROC)) {
1175 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1176 		    p->real_cred->user != INIT_USER)
1177 			goto bad_fork_free;
1178 	}
1179 	current->flags &= ~PF_NPROC_EXCEEDED;
1180 
1181 	retval = copy_creds(p, clone_flags);
1182 	if (retval < 0)
1183 		goto bad_fork_free;
1184 
1185 	/*
1186 	 * If multiple threads are within copy_process(), then this check
1187 	 * triggers too late. This doesn't hurt, the check is only there
1188 	 * to stop root fork bombs.
1189 	 */
1190 	retval = -EAGAIN;
1191 	if (nr_threads >= max_threads)
1192 		goto bad_fork_cleanup_count;
1193 
1194 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1195 		goto bad_fork_cleanup_count;
1196 
1197 	p->did_exec = 0;
1198 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1199 	copy_flags(clone_flags, p);
1200 	INIT_LIST_HEAD(&p->children);
1201 	INIT_LIST_HEAD(&p->sibling);
1202 	rcu_copy_process(p);
1203 	p->vfork_done = NULL;
1204 	spin_lock_init(&p->alloc_lock);
1205 
1206 	init_sigpending(&p->pending);
1207 
1208 	p->utime = p->stime = p->gtime = 0;
1209 	p->utimescaled = p->stimescaled = 0;
1210 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1211 	p->prev_utime = p->prev_stime = 0;
1212 #endif
1213 #if defined(SPLIT_RSS_COUNTING)
1214 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1215 #endif
1216 
1217 	p->default_timer_slack_ns = current->timer_slack_ns;
1218 
1219 	task_io_accounting_init(&p->ioac);
1220 	acct_clear_integrals(p);
1221 
1222 	posix_cpu_timers_init(p);
1223 
1224 	do_posix_clock_monotonic_gettime(&p->start_time);
1225 	p->real_start_time = p->start_time;
1226 	monotonic_to_bootbased(&p->real_start_time);
1227 	p->io_context = NULL;
1228 	p->audit_context = NULL;
1229 	if (clone_flags & CLONE_THREAD)
1230 		threadgroup_change_begin(current);
1231 	cgroup_fork(p);
1232 #ifdef CONFIG_NUMA
1233 	p->mempolicy = mpol_dup(p->mempolicy);
1234 	if (IS_ERR(p->mempolicy)) {
1235 		retval = PTR_ERR(p->mempolicy);
1236 		p->mempolicy = NULL;
1237 		goto bad_fork_cleanup_cgroup;
1238 	}
1239 	mpol_fix_fork_child_flag(p);
1240 #endif
1241 #ifdef CONFIG_CPUSETS
1242 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1243 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1244 	seqcount_init(&p->mems_allowed_seq);
1245 #endif
1246 #ifdef CONFIG_TRACE_IRQFLAGS
1247 	p->irq_events = 0;
1248 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1249 	p->hardirqs_enabled = 1;
1250 #else
1251 	p->hardirqs_enabled = 0;
1252 #endif
1253 	p->hardirq_enable_ip = 0;
1254 	p->hardirq_enable_event = 0;
1255 	p->hardirq_disable_ip = _THIS_IP_;
1256 	p->hardirq_disable_event = 0;
1257 	p->softirqs_enabled = 1;
1258 	p->softirq_enable_ip = _THIS_IP_;
1259 	p->softirq_enable_event = 0;
1260 	p->softirq_disable_ip = 0;
1261 	p->softirq_disable_event = 0;
1262 	p->hardirq_context = 0;
1263 	p->softirq_context = 0;
1264 #endif
1265 #ifdef CONFIG_LOCKDEP
1266 	p->lockdep_depth = 0; /* no locks held yet */
1267 	p->curr_chain_key = 0;
1268 	p->lockdep_recursion = 0;
1269 #endif
1270 
1271 #ifdef CONFIG_DEBUG_MUTEXES
1272 	p->blocked_on = NULL; /* not blocked yet */
1273 #endif
1274 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1275 	p->memcg_batch.do_batch = 0;
1276 	p->memcg_batch.memcg = NULL;
1277 #endif
1278 
1279 	/* Perform scheduler related setup. Assign this task to a CPU. */
1280 	sched_fork(p);
1281 
1282 	retval = perf_event_init_task(p);
1283 	if (retval)
1284 		goto bad_fork_cleanup_policy;
1285 	retval = audit_alloc(p);
1286 	if (retval)
1287 		goto bad_fork_cleanup_policy;
1288 	/* copy all the process information */
1289 	retval = copy_semundo(clone_flags, p);
1290 	if (retval)
1291 		goto bad_fork_cleanup_audit;
1292 	retval = copy_files(clone_flags, p);
1293 	if (retval)
1294 		goto bad_fork_cleanup_semundo;
1295 	retval = copy_fs(clone_flags, p);
1296 	if (retval)
1297 		goto bad_fork_cleanup_files;
1298 	retval = copy_sighand(clone_flags, p);
1299 	if (retval)
1300 		goto bad_fork_cleanup_fs;
1301 	retval = copy_signal(clone_flags, p);
1302 	if (retval)
1303 		goto bad_fork_cleanup_sighand;
1304 	retval = copy_mm(clone_flags, p);
1305 	if (retval)
1306 		goto bad_fork_cleanup_signal;
1307 	retval = copy_namespaces(clone_flags, p);
1308 	if (retval)
1309 		goto bad_fork_cleanup_mm;
1310 	retval = copy_io(clone_flags, p);
1311 	if (retval)
1312 		goto bad_fork_cleanup_namespaces;
1313 	retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1314 	if (retval)
1315 		goto bad_fork_cleanup_io;
1316 
1317 	if (pid != &init_struct_pid) {
1318 		retval = -ENOMEM;
1319 		pid = alloc_pid(p->nsproxy->pid_ns);
1320 		if (!pid)
1321 			goto bad_fork_cleanup_io;
1322 	}
1323 
1324 	p->pid = pid_nr(pid);
1325 	p->tgid = p->pid;
1326 	if (clone_flags & CLONE_THREAD)
1327 		p->tgid = current->tgid;
1328 
1329 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1330 	/*
1331 	 * Clear TID on mm_release()?
1332 	 */
1333 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1334 #ifdef CONFIG_BLOCK
1335 	p->plug = NULL;
1336 #endif
1337 #ifdef CONFIG_FUTEX
1338 	p->robust_list = NULL;
1339 #ifdef CONFIG_COMPAT
1340 	p->compat_robust_list = NULL;
1341 #endif
1342 	INIT_LIST_HEAD(&p->pi_state_list);
1343 	p->pi_state_cache = NULL;
1344 #endif
1345 	/*
1346 	 * sigaltstack should be cleared when sharing the same VM
1347 	 */
1348 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1349 		p->sas_ss_sp = p->sas_ss_size = 0;
1350 
1351 	/*
1352 	 * Syscall tracing and stepping should be turned off in the
1353 	 * child regardless of CLONE_PTRACE.
1354 	 */
1355 	user_disable_single_step(p);
1356 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1357 #ifdef TIF_SYSCALL_EMU
1358 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1359 #endif
1360 	clear_all_latency_tracing(p);
1361 
1362 	/* ok, now we should be set up.. */
1363 	if (clone_flags & CLONE_THREAD)
1364 		p->exit_signal = -1;
1365 	else if (clone_flags & CLONE_PARENT)
1366 		p->exit_signal = current->group_leader->exit_signal;
1367 	else
1368 		p->exit_signal = (clone_flags & CSIGNAL);
1369 
1370 	p->pdeath_signal = 0;
1371 	p->exit_state = 0;
1372 
1373 	p->nr_dirtied = 0;
1374 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1375 	p->dirty_paused_when = 0;
1376 
1377 	/*
1378 	 * Ok, make it visible to the rest of the system.
1379 	 * We dont wake it up yet.
1380 	 */
1381 	p->group_leader = p;
1382 	INIT_LIST_HEAD(&p->thread_group);
1383 
1384 	/* Now that the task is set up, run cgroup callbacks if
1385 	 * necessary. We need to run them before the task is visible
1386 	 * on the tasklist. */
1387 	cgroup_fork_callbacks(p);
1388 	cgroup_callbacks_done = 1;
1389 
1390 	/* Need tasklist lock for parent etc handling! */
1391 	write_lock_irq(&tasklist_lock);
1392 
1393 	/* CLONE_PARENT re-uses the old parent */
1394 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1395 		p->real_parent = current->real_parent;
1396 		p->parent_exec_id = current->parent_exec_id;
1397 	} else {
1398 		p->real_parent = current;
1399 		p->parent_exec_id = current->self_exec_id;
1400 	}
1401 
1402 	spin_lock(&current->sighand->siglock);
1403 
1404 	/*
1405 	 * Process group and session signals need to be delivered to just the
1406 	 * parent before the fork or both the parent and the child after the
1407 	 * fork. Restart if a signal comes in before we add the new process to
1408 	 * it's process group.
1409 	 * A fatal signal pending means that current will exit, so the new
1410 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1411 	*/
1412 	recalc_sigpending();
1413 	if (signal_pending(current)) {
1414 		spin_unlock(&current->sighand->siglock);
1415 		write_unlock_irq(&tasklist_lock);
1416 		retval = -ERESTARTNOINTR;
1417 		goto bad_fork_free_pid;
1418 	}
1419 
1420 	if (clone_flags & CLONE_THREAD) {
1421 		current->signal->nr_threads++;
1422 		atomic_inc(&current->signal->live);
1423 		atomic_inc(&current->signal->sigcnt);
1424 		p->group_leader = current->group_leader;
1425 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1426 	}
1427 
1428 	if (likely(p->pid)) {
1429 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1430 
1431 		if (thread_group_leader(p)) {
1432 			if (is_child_reaper(pid))
1433 				p->nsproxy->pid_ns->child_reaper = p;
1434 
1435 			p->signal->leader_pid = pid;
1436 			p->signal->tty = tty_kref_get(current->signal->tty);
1437 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1438 			attach_pid(p, PIDTYPE_SID, task_session(current));
1439 			list_add_tail(&p->sibling, &p->real_parent->children);
1440 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1441 			__this_cpu_inc(process_counts);
1442 		}
1443 		attach_pid(p, PIDTYPE_PID, pid);
1444 		nr_threads++;
1445 	}
1446 
1447 	total_forks++;
1448 	spin_unlock(&current->sighand->siglock);
1449 	write_unlock_irq(&tasklist_lock);
1450 	proc_fork_connector(p);
1451 	cgroup_post_fork(p);
1452 	if (clone_flags & CLONE_THREAD)
1453 		threadgroup_change_end(current);
1454 	perf_event_fork(p);
1455 
1456 	trace_task_newtask(p, clone_flags);
1457 
1458 	return p;
1459 
1460 bad_fork_free_pid:
1461 	if (pid != &init_struct_pid)
1462 		free_pid(pid);
1463 bad_fork_cleanup_io:
1464 	if (p->io_context)
1465 		exit_io_context(p);
1466 bad_fork_cleanup_namespaces:
1467 	exit_task_namespaces(p);
1468 bad_fork_cleanup_mm:
1469 	if (p->mm)
1470 		mmput(p->mm);
1471 bad_fork_cleanup_signal:
1472 	if (!(clone_flags & CLONE_THREAD))
1473 		free_signal_struct(p->signal);
1474 bad_fork_cleanup_sighand:
1475 	__cleanup_sighand(p->sighand);
1476 bad_fork_cleanup_fs:
1477 	exit_fs(p); /* blocking */
1478 bad_fork_cleanup_files:
1479 	exit_files(p); /* blocking */
1480 bad_fork_cleanup_semundo:
1481 	exit_sem(p);
1482 bad_fork_cleanup_audit:
1483 	audit_free(p);
1484 bad_fork_cleanup_policy:
1485 	perf_event_free_task(p);
1486 #ifdef CONFIG_NUMA
1487 	mpol_put(p->mempolicy);
1488 bad_fork_cleanup_cgroup:
1489 #endif
1490 	if (clone_flags & CLONE_THREAD)
1491 		threadgroup_change_end(current);
1492 	cgroup_exit(p, cgroup_callbacks_done);
1493 	delayacct_tsk_free(p);
1494 	module_put(task_thread_info(p)->exec_domain->module);
1495 bad_fork_cleanup_count:
1496 	atomic_dec(&p->cred->user->processes);
1497 	exit_creds(p);
1498 bad_fork_free:
1499 	free_task(p);
1500 fork_out:
1501 	return ERR_PTR(retval);
1502 }
1503 
1504 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1505 {
1506 	memset(regs, 0, sizeof(struct pt_regs));
1507 	return regs;
1508 }
1509 
1510 static inline void init_idle_pids(struct pid_link *links)
1511 {
1512 	enum pid_type type;
1513 
1514 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1515 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1516 		links[type].pid = &init_struct_pid;
1517 	}
1518 }
1519 
1520 struct task_struct * __cpuinit fork_idle(int cpu)
1521 {
1522 	struct task_struct *task;
1523 	struct pt_regs regs;
1524 
1525 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1526 			    &init_struct_pid, 0);
1527 	if (!IS_ERR(task)) {
1528 		init_idle_pids(task->pids);
1529 		init_idle(task, cpu);
1530 	}
1531 
1532 	return task;
1533 }
1534 
1535 /*
1536  *  Ok, this is the main fork-routine.
1537  *
1538  * It copies the process, and if successful kick-starts
1539  * it and waits for it to finish using the VM if required.
1540  */
1541 long do_fork(unsigned long clone_flags,
1542 	      unsigned long stack_start,
1543 	      struct pt_regs *regs,
1544 	      unsigned long stack_size,
1545 	      int __user *parent_tidptr,
1546 	      int __user *child_tidptr)
1547 {
1548 	struct task_struct *p;
1549 	int trace = 0;
1550 	long nr;
1551 
1552 	/*
1553 	 * Do some preliminary argument and permissions checking before we
1554 	 * actually start allocating stuff
1555 	 */
1556 	if (clone_flags & CLONE_NEWUSER) {
1557 		if (clone_flags & CLONE_THREAD)
1558 			return -EINVAL;
1559 		/* hopefully this check will go away when userns support is
1560 		 * complete
1561 		 */
1562 		if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1563 				!capable(CAP_SETGID))
1564 			return -EPERM;
1565 	}
1566 
1567 	/*
1568 	 * Determine whether and which event to report to ptracer.  When
1569 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
1570 	 * requested, no event is reported; otherwise, report if the event
1571 	 * for the type of forking is enabled.
1572 	 */
1573 	if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
1574 		if (clone_flags & CLONE_VFORK)
1575 			trace = PTRACE_EVENT_VFORK;
1576 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
1577 			trace = PTRACE_EVENT_CLONE;
1578 		else
1579 			trace = PTRACE_EVENT_FORK;
1580 
1581 		if (likely(!ptrace_event_enabled(current, trace)))
1582 			trace = 0;
1583 	}
1584 
1585 	p = copy_process(clone_flags, stack_start, regs, stack_size,
1586 			 child_tidptr, NULL, trace);
1587 	/*
1588 	 * Do this prior waking up the new thread - the thread pointer
1589 	 * might get invalid after that point, if the thread exits quickly.
1590 	 */
1591 	if (!IS_ERR(p)) {
1592 		struct completion vfork;
1593 
1594 		trace_sched_process_fork(current, p);
1595 
1596 		nr = task_pid_vnr(p);
1597 
1598 		if (clone_flags & CLONE_PARENT_SETTID)
1599 			put_user(nr, parent_tidptr);
1600 
1601 		if (clone_flags & CLONE_VFORK) {
1602 			p->vfork_done = &vfork;
1603 			init_completion(&vfork);
1604 			get_task_struct(p);
1605 		}
1606 
1607 		wake_up_new_task(p);
1608 
1609 		/* forking complete and child started to run, tell ptracer */
1610 		if (unlikely(trace))
1611 			ptrace_event(trace, nr);
1612 
1613 		if (clone_flags & CLONE_VFORK) {
1614 			if (!wait_for_vfork_done(p, &vfork))
1615 				ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1616 		}
1617 	} else {
1618 		nr = PTR_ERR(p);
1619 	}
1620 	return nr;
1621 }
1622 
1623 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1624 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1625 #endif
1626 
1627 static void sighand_ctor(void *data)
1628 {
1629 	struct sighand_struct *sighand = data;
1630 
1631 	spin_lock_init(&sighand->siglock);
1632 	init_waitqueue_head(&sighand->signalfd_wqh);
1633 }
1634 
1635 void __init proc_caches_init(void)
1636 {
1637 	sighand_cachep = kmem_cache_create("sighand_cache",
1638 			sizeof(struct sighand_struct), 0,
1639 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1640 			SLAB_NOTRACK, sighand_ctor);
1641 	signal_cachep = kmem_cache_create("signal_cache",
1642 			sizeof(struct signal_struct), 0,
1643 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1644 	files_cachep = kmem_cache_create("files_cache",
1645 			sizeof(struct files_struct), 0,
1646 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1647 	fs_cachep = kmem_cache_create("fs_cache",
1648 			sizeof(struct fs_struct), 0,
1649 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1650 	/*
1651 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1652 	 * whole struct cpumask for the OFFSTACK case. We could change
1653 	 * this to *only* allocate as much of it as required by the
1654 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
1655 	 * is at the end of the structure, exactly for that reason.
1656 	 */
1657 	mm_cachep = kmem_cache_create("mm_struct",
1658 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1659 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1660 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1661 	mmap_init();
1662 	nsproxy_cache_init();
1663 }
1664 
1665 /*
1666  * Check constraints on flags passed to the unshare system call.
1667  */
1668 static int check_unshare_flags(unsigned long unshare_flags)
1669 {
1670 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1671 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1672 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1673 		return -EINVAL;
1674 	/*
1675 	 * Not implemented, but pretend it works if there is nothing to
1676 	 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1677 	 * needs to unshare vm.
1678 	 */
1679 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1680 		/* FIXME: get_task_mm() increments ->mm_users */
1681 		if (atomic_read(&current->mm->mm_users) > 1)
1682 			return -EINVAL;
1683 	}
1684 
1685 	return 0;
1686 }
1687 
1688 /*
1689  * Unshare the filesystem structure if it is being shared
1690  */
1691 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1692 {
1693 	struct fs_struct *fs = current->fs;
1694 
1695 	if (!(unshare_flags & CLONE_FS) || !fs)
1696 		return 0;
1697 
1698 	/* don't need lock here; in the worst case we'll do useless copy */
1699 	if (fs->users == 1)
1700 		return 0;
1701 
1702 	*new_fsp = copy_fs_struct(fs);
1703 	if (!*new_fsp)
1704 		return -ENOMEM;
1705 
1706 	return 0;
1707 }
1708 
1709 /*
1710  * Unshare file descriptor table if it is being shared
1711  */
1712 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1713 {
1714 	struct files_struct *fd = current->files;
1715 	int error = 0;
1716 
1717 	if ((unshare_flags & CLONE_FILES) &&
1718 	    (fd && atomic_read(&fd->count) > 1)) {
1719 		*new_fdp = dup_fd(fd, &error);
1720 		if (!*new_fdp)
1721 			return error;
1722 	}
1723 
1724 	return 0;
1725 }
1726 
1727 /*
1728  * unshare allows a process to 'unshare' part of the process
1729  * context which was originally shared using clone.  copy_*
1730  * functions used by do_fork() cannot be used here directly
1731  * because they modify an inactive task_struct that is being
1732  * constructed. Here we are modifying the current, active,
1733  * task_struct.
1734  */
1735 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1736 {
1737 	struct fs_struct *fs, *new_fs = NULL;
1738 	struct files_struct *fd, *new_fd = NULL;
1739 	struct nsproxy *new_nsproxy = NULL;
1740 	int do_sysvsem = 0;
1741 	int err;
1742 
1743 	err = check_unshare_flags(unshare_flags);
1744 	if (err)
1745 		goto bad_unshare_out;
1746 
1747 	/*
1748 	 * If unsharing namespace, must also unshare filesystem information.
1749 	 */
1750 	if (unshare_flags & CLONE_NEWNS)
1751 		unshare_flags |= CLONE_FS;
1752 	/*
1753 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1754 	 * to a new ipc namespace, the semaphore arrays from the old
1755 	 * namespace are unreachable.
1756 	 */
1757 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1758 		do_sysvsem = 1;
1759 	err = unshare_fs(unshare_flags, &new_fs);
1760 	if (err)
1761 		goto bad_unshare_out;
1762 	err = unshare_fd(unshare_flags, &new_fd);
1763 	if (err)
1764 		goto bad_unshare_cleanup_fs;
1765 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
1766 	if (err)
1767 		goto bad_unshare_cleanup_fd;
1768 
1769 	if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1770 		if (do_sysvsem) {
1771 			/*
1772 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1773 			 */
1774 			exit_sem(current);
1775 		}
1776 
1777 		if (new_nsproxy) {
1778 			switch_task_namespaces(current, new_nsproxy);
1779 			new_nsproxy = NULL;
1780 		}
1781 
1782 		task_lock(current);
1783 
1784 		if (new_fs) {
1785 			fs = current->fs;
1786 			spin_lock(&fs->lock);
1787 			current->fs = new_fs;
1788 			if (--fs->users)
1789 				new_fs = NULL;
1790 			else
1791 				new_fs = fs;
1792 			spin_unlock(&fs->lock);
1793 		}
1794 
1795 		if (new_fd) {
1796 			fd = current->files;
1797 			current->files = new_fd;
1798 			new_fd = fd;
1799 		}
1800 
1801 		task_unlock(current);
1802 	}
1803 
1804 	if (new_nsproxy)
1805 		put_nsproxy(new_nsproxy);
1806 
1807 bad_unshare_cleanup_fd:
1808 	if (new_fd)
1809 		put_files_struct(new_fd);
1810 
1811 bad_unshare_cleanup_fs:
1812 	if (new_fs)
1813 		free_fs_struct(new_fs);
1814 
1815 bad_unshare_out:
1816 	return err;
1817 }
1818 
1819 /*
1820  *	Helper to unshare the files of the current task.
1821  *	We don't want to expose copy_files internals to
1822  *	the exec layer of the kernel.
1823  */
1824 
1825 int unshare_files(struct files_struct **displaced)
1826 {
1827 	struct task_struct *task = current;
1828 	struct files_struct *copy = NULL;
1829 	int error;
1830 
1831 	error = unshare_fd(CLONE_FILES, &copy);
1832 	if (error || !copy) {
1833 		*displaced = NULL;
1834 		return error;
1835 	}
1836 	*displaced = task->files;
1837 	task_lock(task);
1838 	task->files = copy;
1839 	task_unlock(task);
1840 	return 0;
1841 }
1842