1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/kmsan.h> 41 #include <linux/binfmts.h> 42 #include <linux/mman.h> 43 #include <linux/mmu_notifier.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/mm_inline.h> 47 #include <linux/nsproxy.h> 48 #include <linux/capability.h> 49 #include <linux/cpu.h> 50 #include <linux/cgroup.h> 51 #include <linux/security.h> 52 #include <linux/hugetlb.h> 53 #include <linux/seccomp.h> 54 #include <linux/swap.h> 55 #include <linux/syscalls.h> 56 #include <linux/syscall_user_dispatch.h> 57 #include <linux/jiffies.h> 58 #include <linux/futex.h> 59 #include <linux/compat.h> 60 #include <linux/kthread.h> 61 #include <linux/task_io_accounting_ops.h> 62 #include <linux/rcupdate.h> 63 #include <linux/ptrace.h> 64 #include <linux/mount.h> 65 #include <linux/audit.h> 66 #include <linux/memcontrol.h> 67 #include <linux/ftrace.h> 68 #include <linux/proc_fs.h> 69 #include <linux/profile.h> 70 #include <linux/rmap.h> 71 #include <linux/ksm.h> 72 #include <linux/acct.h> 73 #include <linux/userfaultfd_k.h> 74 #include <linux/tsacct_kern.h> 75 #include <linux/cn_proc.h> 76 #include <linux/freezer.h> 77 #include <linux/delayacct.h> 78 #include <linux/taskstats_kern.h> 79 #include <linux/tty.h> 80 #include <linux/fs_struct.h> 81 #include <linux/magic.h> 82 #include <linux/perf_event.h> 83 #include <linux/posix-timers.h> 84 #include <linux/user-return-notifier.h> 85 #include <linux/oom.h> 86 #include <linux/khugepaged.h> 87 #include <linux/signalfd.h> 88 #include <linux/uprobes.h> 89 #include <linux/aio.h> 90 #include <linux/compiler.h> 91 #include <linux/sysctl.h> 92 #include <linux/kcov.h> 93 #include <linux/livepatch.h> 94 #include <linux/thread_info.h> 95 #include <linux/stackleak.h> 96 #include <linux/kasan.h> 97 #include <linux/scs.h> 98 #include <linux/io_uring.h> 99 #include <linux/bpf.h> 100 #include <linux/stackprotector.h> 101 #include <linux/user_events.h> 102 #include <linux/iommu.h> 103 #include <linux/rseq.h> 104 105 #include <asm/pgalloc.h> 106 #include <linux/uaccess.h> 107 #include <asm/mmu_context.h> 108 #include <asm/cacheflush.h> 109 #include <asm/tlbflush.h> 110 111 #include <trace/events/sched.h> 112 113 #define CREATE_TRACE_POINTS 114 #include <trace/events/task.h> 115 116 /* 117 * Minimum number of threads to boot the kernel 118 */ 119 #define MIN_THREADS 20 120 121 /* 122 * Maximum number of threads 123 */ 124 #define MAX_THREADS FUTEX_TID_MASK 125 126 /* 127 * Protected counters by write_lock_irq(&tasklist_lock) 128 */ 129 unsigned long total_forks; /* Handle normal Linux uptimes. */ 130 int nr_threads; /* The idle threads do not count.. */ 131 132 static int max_threads; /* tunable limit on nr_threads */ 133 134 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 135 136 static const char * const resident_page_types[] = { 137 NAMED_ARRAY_INDEX(MM_FILEPAGES), 138 NAMED_ARRAY_INDEX(MM_ANONPAGES), 139 NAMED_ARRAY_INDEX(MM_SWAPENTS), 140 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 141 }; 142 143 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 144 145 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 146 147 #ifdef CONFIG_PROVE_RCU 148 int lockdep_tasklist_lock_is_held(void) 149 { 150 return lockdep_is_held(&tasklist_lock); 151 } 152 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 153 #endif /* #ifdef CONFIG_PROVE_RCU */ 154 155 int nr_processes(void) 156 { 157 int cpu; 158 int total = 0; 159 160 for_each_possible_cpu(cpu) 161 total += per_cpu(process_counts, cpu); 162 163 return total; 164 } 165 166 void __weak arch_release_task_struct(struct task_struct *tsk) 167 { 168 } 169 170 static struct kmem_cache *task_struct_cachep; 171 172 static inline struct task_struct *alloc_task_struct_node(int node) 173 { 174 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 175 } 176 177 static inline void free_task_struct(struct task_struct *tsk) 178 { 179 kmem_cache_free(task_struct_cachep, tsk); 180 } 181 182 /* 183 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 184 * kmemcache based allocator. 185 */ 186 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 187 188 # ifdef CONFIG_VMAP_STACK 189 /* 190 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 191 * flush. Try to minimize the number of calls by caching stacks. 192 */ 193 #define NR_CACHED_STACKS 2 194 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 195 196 struct vm_stack { 197 struct rcu_head rcu; 198 struct vm_struct *stack_vm_area; 199 }; 200 201 static bool try_release_thread_stack_to_cache(struct vm_struct *vm) 202 { 203 unsigned int i; 204 205 for (i = 0; i < NR_CACHED_STACKS; i++) { 206 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL) 207 continue; 208 return true; 209 } 210 return false; 211 } 212 213 static void thread_stack_free_rcu(struct rcu_head *rh) 214 { 215 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 216 217 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 218 return; 219 220 vfree(vm_stack); 221 } 222 223 static void thread_stack_delayed_free(struct task_struct *tsk) 224 { 225 struct vm_stack *vm_stack = tsk->stack; 226 227 vm_stack->stack_vm_area = tsk->stack_vm_area; 228 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 229 } 230 231 static int free_vm_stack_cache(unsigned int cpu) 232 { 233 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 234 int i; 235 236 for (i = 0; i < NR_CACHED_STACKS; i++) { 237 struct vm_struct *vm_stack = cached_vm_stacks[i]; 238 239 if (!vm_stack) 240 continue; 241 242 vfree(vm_stack->addr); 243 cached_vm_stacks[i] = NULL; 244 } 245 246 return 0; 247 } 248 249 static int memcg_charge_kernel_stack(struct vm_struct *vm) 250 { 251 int i; 252 int ret; 253 int nr_charged = 0; 254 255 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 256 257 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 258 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0); 259 if (ret) 260 goto err; 261 nr_charged++; 262 } 263 return 0; 264 err: 265 for (i = 0; i < nr_charged; i++) 266 memcg_kmem_uncharge_page(vm->pages[i], 0); 267 return ret; 268 } 269 270 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 271 { 272 struct vm_struct *vm; 273 void *stack; 274 int i; 275 276 for (i = 0; i < NR_CACHED_STACKS; i++) { 277 struct vm_struct *s; 278 279 s = this_cpu_xchg(cached_stacks[i], NULL); 280 281 if (!s) 282 continue; 283 284 /* Reset stack metadata. */ 285 kasan_unpoison_range(s->addr, THREAD_SIZE); 286 287 stack = kasan_reset_tag(s->addr); 288 289 /* Clear stale pointers from reused stack. */ 290 memset(stack, 0, THREAD_SIZE); 291 292 if (memcg_charge_kernel_stack(s)) { 293 vfree(s->addr); 294 return -ENOMEM; 295 } 296 297 tsk->stack_vm_area = s; 298 tsk->stack = stack; 299 return 0; 300 } 301 302 /* 303 * Allocated stacks are cached and later reused by new threads, 304 * so memcg accounting is performed manually on assigning/releasing 305 * stacks to tasks. Drop __GFP_ACCOUNT. 306 */ 307 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 308 VMALLOC_START, VMALLOC_END, 309 THREADINFO_GFP & ~__GFP_ACCOUNT, 310 PAGE_KERNEL, 311 0, node, __builtin_return_address(0)); 312 if (!stack) 313 return -ENOMEM; 314 315 vm = find_vm_area(stack); 316 if (memcg_charge_kernel_stack(vm)) { 317 vfree(stack); 318 return -ENOMEM; 319 } 320 /* 321 * We can't call find_vm_area() in interrupt context, and 322 * free_thread_stack() can be called in interrupt context, 323 * so cache the vm_struct. 324 */ 325 tsk->stack_vm_area = vm; 326 stack = kasan_reset_tag(stack); 327 tsk->stack = stack; 328 return 0; 329 } 330 331 static void free_thread_stack(struct task_struct *tsk) 332 { 333 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 334 thread_stack_delayed_free(tsk); 335 336 tsk->stack = NULL; 337 tsk->stack_vm_area = NULL; 338 } 339 340 # else /* !CONFIG_VMAP_STACK */ 341 342 static void thread_stack_free_rcu(struct rcu_head *rh) 343 { 344 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 345 } 346 347 static void thread_stack_delayed_free(struct task_struct *tsk) 348 { 349 struct rcu_head *rh = tsk->stack; 350 351 call_rcu(rh, thread_stack_free_rcu); 352 } 353 354 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 355 { 356 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 357 THREAD_SIZE_ORDER); 358 359 if (likely(page)) { 360 tsk->stack = kasan_reset_tag(page_address(page)); 361 return 0; 362 } 363 return -ENOMEM; 364 } 365 366 static void free_thread_stack(struct task_struct *tsk) 367 { 368 thread_stack_delayed_free(tsk); 369 tsk->stack = NULL; 370 } 371 372 # endif /* CONFIG_VMAP_STACK */ 373 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */ 374 375 static struct kmem_cache *thread_stack_cache; 376 377 static void thread_stack_free_rcu(struct rcu_head *rh) 378 { 379 kmem_cache_free(thread_stack_cache, rh); 380 } 381 382 static void thread_stack_delayed_free(struct task_struct *tsk) 383 { 384 struct rcu_head *rh = tsk->stack; 385 386 call_rcu(rh, thread_stack_free_rcu); 387 } 388 389 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 390 { 391 unsigned long *stack; 392 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 393 stack = kasan_reset_tag(stack); 394 tsk->stack = stack; 395 return stack ? 0 : -ENOMEM; 396 } 397 398 static void free_thread_stack(struct task_struct *tsk) 399 { 400 thread_stack_delayed_free(tsk); 401 tsk->stack = NULL; 402 } 403 404 void thread_stack_cache_init(void) 405 { 406 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 407 THREAD_SIZE, THREAD_SIZE, 0, 0, 408 THREAD_SIZE, NULL); 409 BUG_ON(thread_stack_cache == NULL); 410 } 411 412 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */ 413 414 /* SLAB cache for signal_struct structures (tsk->signal) */ 415 static struct kmem_cache *signal_cachep; 416 417 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 418 struct kmem_cache *sighand_cachep; 419 420 /* SLAB cache for files_struct structures (tsk->files) */ 421 struct kmem_cache *files_cachep; 422 423 /* SLAB cache for fs_struct structures (tsk->fs) */ 424 struct kmem_cache *fs_cachep; 425 426 /* SLAB cache for vm_area_struct structures */ 427 static struct kmem_cache *vm_area_cachep; 428 429 /* SLAB cache for mm_struct structures (tsk->mm) */ 430 static struct kmem_cache *mm_cachep; 431 432 #ifdef CONFIG_PER_VMA_LOCK 433 434 /* SLAB cache for vm_area_struct.lock */ 435 static struct kmem_cache *vma_lock_cachep; 436 437 static bool vma_lock_alloc(struct vm_area_struct *vma) 438 { 439 vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL); 440 if (!vma->vm_lock) 441 return false; 442 443 init_rwsem(&vma->vm_lock->lock); 444 vma->vm_lock_seq = -1; 445 446 return true; 447 } 448 449 static inline void vma_lock_free(struct vm_area_struct *vma) 450 { 451 kmem_cache_free(vma_lock_cachep, vma->vm_lock); 452 } 453 454 #else /* CONFIG_PER_VMA_LOCK */ 455 456 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; } 457 static inline void vma_lock_free(struct vm_area_struct *vma) {} 458 459 #endif /* CONFIG_PER_VMA_LOCK */ 460 461 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 462 { 463 struct vm_area_struct *vma; 464 465 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 466 if (!vma) 467 return NULL; 468 469 vma_init(vma, mm); 470 if (!vma_lock_alloc(vma)) { 471 kmem_cache_free(vm_area_cachep, vma); 472 return NULL; 473 } 474 475 return vma; 476 } 477 478 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 479 { 480 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 481 482 if (!new) 483 return NULL; 484 485 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 486 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 487 /* 488 * orig->shared.rb may be modified concurrently, but the clone 489 * will be reinitialized. 490 */ 491 data_race(memcpy(new, orig, sizeof(*new))); 492 if (!vma_lock_alloc(new)) { 493 kmem_cache_free(vm_area_cachep, new); 494 return NULL; 495 } 496 INIT_LIST_HEAD(&new->anon_vma_chain); 497 vma_numab_state_init(new); 498 dup_anon_vma_name(orig, new); 499 500 return new; 501 } 502 503 void __vm_area_free(struct vm_area_struct *vma) 504 { 505 vma_numab_state_free(vma); 506 free_anon_vma_name(vma); 507 vma_lock_free(vma); 508 kmem_cache_free(vm_area_cachep, vma); 509 } 510 511 #ifdef CONFIG_PER_VMA_LOCK 512 static void vm_area_free_rcu_cb(struct rcu_head *head) 513 { 514 struct vm_area_struct *vma = container_of(head, struct vm_area_struct, 515 vm_rcu); 516 517 /* The vma should not be locked while being destroyed. */ 518 VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma); 519 __vm_area_free(vma); 520 } 521 #endif 522 523 void vm_area_free(struct vm_area_struct *vma) 524 { 525 #ifdef CONFIG_PER_VMA_LOCK 526 call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb); 527 #else 528 __vm_area_free(vma); 529 #endif 530 } 531 532 static void account_kernel_stack(struct task_struct *tsk, int account) 533 { 534 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 535 struct vm_struct *vm = task_stack_vm_area(tsk); 536 int i; 537 538 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 539 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 540 account * (PAGE_SIZE / 1024)); 541 } else { 542 void *stack = task_stack_page(tsk); 543 544 /* All stack pages are in the same node. */ 545 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 546 account * (THREAD_SIZE / 1024)); 547 } 548 } 549 550 void exit_task_stack_account(struct task_struct *tsk) 551 { 552 account_kernel_stack(tsk, -1); 553 554 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 555 struct vm_struct *vm; 556 int i; 557 558 vm = task_stack_vm_area(tsk); 559 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 560 memcg_kmem_uncharge_page(vm->pages[i], 0); 561 } 562 } 563 564 static void release_task_stack(struct task_struct *tsk) 565 { 566 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 567 return; /* Better to leak the stack than to free prematurely */ 568 569 free_thread_stack(tsk); 570 } 571 572 #ifdef CONFIG_THREAD_INFO_IN_TASK 573 void put_task_stack(struct task_struct *tsk) 574 { 575 if (refcount_dec_and_test(&tsk->stack_refcount)) 576 release_task_stack(tsk); 577 } 578 #endif 579 580 void free_task(struct task_struct *tsk) 581 { 582 #ifdef CONFIG_SECCOMP 583 WARN_ON_ONCE(tsk->seccomp.filter); 584 #endif 585 release_user_cpus_ptr(tsk); 586 scs_release(tsk); 587 588 #ifndef CONFIG_THREAD_INFO_IN_TASK 589 /* 590 * The task is finally done with both the stack and thread_info, 591 * so free both. 592 */ 593 release_task_stack(tsk); 594 #else 595 /* 596 * If the task had a separate stack allocation, it should be gone 597 * by now. 598 */ 599 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 600 #endif 601 rt_mutex_debug_task_free(tsk); 602 ftrace_graph_exit_task(tsk); 603 arch_release_task_struct(tsk); 604 if (tsk->flags & PF_KTHREAD) 605 free_kthread_struct(tsk); 606 bpf_task_storage_free(tsk); 607 free_task_struct(tsk); 608 } 609 EXPORT_SYMBOL(free_task); 610 611 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 612 { 613 struct file *exe_file; 614 615 exe_file = get_mm_exe_file(oldmm); 616 RCU_INIT_POINTER(mm->exe_file, exe_file); 617 /* 618 * We depend on the oldmm having properly denied write access to the 619 * exe_file already. 620 */ 621 if (exe_file && deny_write_access(exe_file)) 622 pr_warn_once("deny_write_access() failed in %s\n", __func__); 623 } 624 625 #ifdef CONFIG_MMU 626 static __latent_entropy int dup_mmap(struct mm_struct *mm, 627 struct mm_struct *oldmm) 628 { 629 struct vm_area_struct *mpnt, *tmp; 630 int retval; 631 unsigned long charge = 0; 632 LIST_HEAD(uf); 633 VMA_ITERATOR(vmi, mm, 0); 634 635 uprobe_start_dup_mmap(); 636 if (mmap_write_lock_killable(oldmm)) { 637 retval = -EINTR; 638 goto fail_uprobe_end; 639 } 640 flush_cache_dup_mm(oldmm); 641 uprobe_dup_mmap(oldmm, mm); 642 /* 643 * Not linked in yet - no deadlock potential: 644 */ 645 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 646 647 /* No ordering required: file already has been exposed. */ 648 dup_mm_exe_file(mm, oldmm); 649 650 mm->total_vm = oldmm->total_vm; 651 mm->data_vm = oldmm->data_vm; 652 mm->exec_vm = oldmm->exec_vm; 653 mm->stack_vm = oldmm->stack_vm; 654 655 retval = ksm_fork(mm, oldmm); 656 if (retval) 657 goto out; 658 khugepaged_fork(mm, oldmm); 659 660 /* Use __mt_dup() to efficiently build an identical maple tree. */ 661 retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL); 662 if (unlikely(retval)) 663 goto out; 664 665 mt_clear_in_rcu(vmi.mas.tree); 666 for_each_vma(vmi, mpnt) { 667 struct file *file; 668 669 vma_start_write(mpnt); 670 if (mpnt->vm_flags & VM_DONTCOPY) { 671 retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start, 672 mpnt->vm_end, GFP_KERNEL); 673 if (retval) 674 goto loop_out; 675 676 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 677 continue; 678 } 679 charge = 0; 680 /* 681 * Don't duplicate many vmas if we've been oom-killed (for 682 * example) 683 */ 684 if (fatal_signal_pending(current)) { 685 retval = -EINTR; 686 goto loop_out; 687 } 688 if (mpnt->vm_flags & VM_ACCOUNT) { 689 unsigned long len = vma_pages(mpnt); 690 691 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 692 goto fail_nomem; 693 charge = len; 694 } 695 tmp = vm_area_dup(mpnt); 696 if (!tmp) 697 goto fail_nomem; 698 retval = vma_dup_policy(mpnt, tmp); 699 if (retval) 700 goto fail_nomem_policy; 701 tmp->vm_mm = mm; 702 retval = dup_userfaultfd(tmp, &uf); 703 if (retval) 704 goto fail_nomem_anon_vma_fork; 705 if (tmp->vm_flags & VM_WIPEONFORK) { 706 /* 707 * VM_WIPEONFORK gets a clean slate in the child. 708 * Don't prepare anon_vma until fault since we don't 709 * copy page for current vma. 710 */ 711 tmp->anon_vma = NULL; 712 } else if (anon_vma_fork(tmp, mpnt)) 713 goto fail_nomem_anon_vma_fork; 714 vm_flags_clear(tmp, VM_LOCKED_MASK); 715 file = tmp->vm_file; 716 if (file) { 717 struct address_space *mapping = file->f_mapping; 718 719 get_file(file); 720 i_mmap_lock_write(mapping); 721 if (vma_is_shared_maywrite(tmp)) 722 mapping_allow_writable(mapping); 723 flush_dcache_mmap_lock(mapping); 724 /* insert tmp into the share list, just after mpnt */ 725 vma_interval_tree_insert_after(tmp, mpnt, 726 &mapping->i_mmap); 727 flush_dcache_mmap_unlock(mapping); 728 i_mmap_unlock_write(mapping); 729 } 730 731 /* 732 * Copy/update hugetlb private vma information. 733 */ 734 if (is_vm_hugetlb_page(tmp)) 735 hugetlb_dup_vma_private(tmp); 736 737 /* 738 * Link the vma into the MT. After using __mt_dup(), memory 739 * allocation is not necessary here, so it cannot fail. 740 */ 741 vma_iter_bulk_store(&vmi, tmp); 742 743 mm->map_count++; 744 if (!(tmp->vm_flags & VM_WIPEONFORK)) 745 retval = copy_page_range(tmp, mpnt); 746 747 if (tmp->vm_ops && tmp->vm_ops->open) 748 tmp->vm_ops->open(tmp); 749 750 if (retval) { 751 mpnt = vma_next(&vmi); 752 goto loop_out; 753 } 754 } 755 /* a new mm has just been created */ 756 retval = arch_dup_mmap(oldmm, mm); 757 loop_out: 758 vma_iter_free(&vmi); 759 if (!retval) { 760 mt_set_in_rcu(vmi.mas.tree); 761 } else if (mpnt) { 762 /* 763 * The entire maple tree has already been duplicated. If the 764 * mmap duplication fails, mark the failure point with 765 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered, 766 * stop releasing VMAs that have not been duplicated after this 767 * point. 768 */ 769 mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1); 770 mas_store(&vmi.mas, XA_ZERO_ENTRY); 771 } 772 out: 773 mmap_write_unlock(mm); 774 flush_tlb_mm(oldmm); 775 mmap_write_unlock(oldmm); 776 dup_userfaultfd_complete(&uf); 777 fail_uprobe_end: 778 uprobe_end_dup_mmap(); 779 return retval; 780 781 fail_nomem_anon_vma_fork: 782 mpol_put(vma_policy(tmp)); 783 fail_nomem_policy: 784 vm_area_free(tmp); 785 fail_nomem: 786 retval = -ENOMEM; 787 vm_unacct_memory(charge); 788 goto loop_out; 789 } 790 791 static inline int mm_alloc_pgd(struct mm_struct *mm) 792 { 793 mm->pgd = pgd_alloc(mm); 794 if (unlikely(!mm->pgd)) 795 return -ENOMEM; 796 return 0; 797 } 798 799 static inline void mm_free_pgd(struct mm_struct *mm) 800 { 801 pgd_free(mm, mm->pgd); 802 } 803 #else 804 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 805 { 806 mmap_write_lock(oldmm); 807 dup_mm_exe_file(mm, oldmm); 808 mmap_write_unlock(oldmm); 809 return 0; 810 } 811 #define mm_alloc_pgd(mm) (0) 812 #define mm_free_pgd(mm) 813 #endif /* CONFIG_MMU */ 814 815 static void check_mm(struct mm_struct *mm) 816 { 817 int i; 818 819 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 820 "Please make sure 'struct resident_page_types[]' is updated as well"); 821 822 for (i = 0; i < NR_MM_COUNTERS; i++) { 823 long x = percpu_counter_sum(&mm->rss_stat[i]); 824 825 if (unlikely(x)) 826 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 827 mm, resident_page_types[i], x); 828 } 829 830 if (mm_pgtables_bytes(mm)) 831 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 832 mm_pgtables_bytes(mm)); 833 834 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 835 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 836 #endif 837 } 838 839 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 840 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 841 842 static void do_check_lazy_tlb(void *arg) 843 { 844 struct mm_struct *mm = arg; 845 846 WARN_ON_ONCE(current->active_mm == mm); 847 } 848 849 static void do_shoot_lazy_tlb(void *arg) 850 { 851 struct mm_struct *mm = arg; 852 853 if (current->active_mm == mm) { 854 WARN_ON_ONCE(current->mm); 855 current->active_mm = &init_mm; 856 switch_mm(mm, &init_mm, current); 857 } 858 } 859 860 static void cleanup_lazy_tlbs(struct mm_struct *mm) 861 { 862 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) { 863 /* 864 * In this case, lazy tlb mms are refounted and would not reach 865 * __mmdrop until all CPUs have switched away and mmdrop()ed. 866 */ 867 return; 868 } 869 870 /* 871 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it 872 * requires lazy mm users to switch to another mm when the refcount 873 * drops to zero, before the mm is freed. This requires IPIs here to 874 * switch kernel threads to init_mm. 875 * 876 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm 877 * switch with the final userspace teardown TLB flush which leaves the 878 * mm lazy on this CPU but no others, reducing the need for additional 879 * IPIs here. There are cases where a final IPI is still required here, 880 * such as the final mmdrop being performed on a different CPU than the 881 * one exiting, or kernel threads using the mm when userspace exits. 882 * 883 * IPI overheads have not found to be expensive, but they could be 884 * reduced in a number of possible ways, for example (roughly 885 * increasing order of complexity): 886 * - The last lazy reference created by exit_mm() could instead switch 887 * to init_mm, however it's probable this will run on the same CPU 888 * immediately afterwards, so this may not reduce IPIs much. 889 * - A batch of mms requiring IPIs could be gathered and freed at once. 890 * - CPUs store active_mm where it can be remotely checked without a 891 * lock, to filter out false-positives in the cpumask. 892 * - After mm_users or mm_count reaches zero, switching away from the 893 * mm could clear mm_cpumask to reduce some IPIs, perhaps together 894 * with some batching or delaying of the final IPIs. 895 * - A delayed freeing and RCU-like quiescing sequence based on mm 896 * switching to avoid IPIs completely. 897 */ 898 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1); 899 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES)) 900 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1); 901 } 902 903 /* 904 * Called when the last reference to the mm 905 * is dropped: either by a lazy thread or by 906 * mmput. Free the page directory and the mm. 907 */ 908 void __mmdrop(struct mm_struct *mm) 909 { 910 BUG_ON(mm == &init_mm); 911 WARN_ON_ONCE(mm == current->mm); 912 913 /* Ensure no CPUs are using this as their lazy tlb mm */ 914 cleanup_lazy_tlbs(mm); 915 916 WARN_ON_ONCE(mm == current->active_mm); 917 mm_free_pgd(mm); 918 destroy_context(mm); 919 mmu_notifier_subscriptions_destroy(mm); 920 check_mm(mm); 921 put_user_ns(mm->user_ns); 922 mm_pasid_drop(mm); 923 mm_destroy_cid(mm); 924 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS); 925 926 free_mm(mm); 927 } 928 EXPORT_SYMBOL_GPL(__mmdrop); 929 930 static void mmdrop_async_fn(struct work_struct *work) 931 { 932 struct mm_struct *mm; 933 934 mm = container_of(work, struct mm_struct, async_put_work); 935 __mmdrop(mm); 936 } 937 938 static void mmdrop_async(struct mm_struct *mm) 939 { 940 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 941 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 942 schedule_work(&mm->async_put_work); 943 } 944 } 945 946 static inline void free_signal_struct(struct signal_struct *sig) 947 { 948 taskstats_tgid_free(sig); 949 sched_autogroup_exit(sig); 950 /* 951 * __mmdrop is not safe to call from softirq context on x86 due to 952 * pgd_dtor so postpone it to the async context 953 */ 954 if (sig->oom_mm) 955 mmdrop_async(sig->oom_mm); 956 kmem_cache_free(signal_cachep, sig); 957 } 958 959 static inline void put_signal_struct(struct signal_struct *sig) 960 { 961 if (refcount_dec_and_test(&sig->sigcnt)) 962 free_signal_struct(sig); 963 } 964 965 void __put_task_struct(struct task_struct *tsk) 966 { 967 WARN_ON(!tsk->exit_state); 968 WARN_ON(refcount_read(&tsk->usage)); 969 WARN_ON(tsk == current); 970 971 io_uring_free(tsk); 972 cgroup_free(tsk); 973 task_numa_free(tsk, true); 974 security_task_free(tsk); 975 exit_creds(tsk); 976 delayacct_tsk_free(tsk); 977 put_signal_struct(tsk->signal); 978 sched_core_free(tsk); 979 free_task(tsk); 980 } 981 EXPORT_SYMBOL_GPL(__put_task_struct); 982 983 void __put_task_struct_rcu_cb(struct rcu_head *rhp) 984 { 985 struct task_struct *task = container_of(rhp, struct task_struct, rcu); 986 987 __put_task_struct(task); 988 } 989 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb); 990 991 void __init __weak arch_task_cache_init(void) { } 992 993 /* 994 * set_max_threads 995 */ 996 static void set_max_threads(unsigned int max_threads_suggested) 997 { 998 u64 threads; 999 unsigned long nr_pages = totalram_pages(); 1000 1001 /* 1002 * The number of threads shall be limited such that the thread 1003 * structures may only consume a small part of the available memory. 1004 */ 1005 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 1006 threads = MAX_THREADS; 1007 else 1008 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 1009 (u64) THREAD_SIZE * 8UL); 1010 1011 if (threads > max_threads_suggested) 1012 threads = max_threads_suggested; 1013 1014 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 1015 } 1016 1017 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 1018 /* Initialized by the architecture: */ 1019 int arch_task_struct_size __read_mostly; 1020 #endif 1021 1022 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 1023 { 1024 /* Fetch thread_struct whitelist for the architecture. */ 1025 arch_thread_struct_whitelist(offset, size); 1026 1027 /* 1028 * Handle zero-sized whitelist or empty thread_struct, otherwise 1029 * adjust offset to position of thread_struct in task_struct. 1030 */ 1031 if (unlikely(*size == 0)) 1032 *offset = 0; 1033 else 1034 *offset += offsetof(struct task_struct, thread); 1035 } 1036 1037 void __init fork_init(void) 1038 { 1039 int i; 1040 #ifndef ARCH_MIN_TASKALIGN 1041 #define ARCH_MIN_TASKALIGN 0 1042 #endif 1043 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 1044 unsigned long useroffset, usersize; 1045 1046 /* create a slab on which task_structs can be allocated */ 1047 task_struct_whitelist(&useroffset, &usersize); 1048 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 1049 arch_task_struct_size, align, 1050 SLAB_PANIC|SLAB_ACCOUNT, 1051 useroffset, usersize, NULL); 1052 1053 /* do the arch specific task caches init */ 1054 arch_task_cache_init(); 1055 1056 set_max_threads(MAX_THREADS); 1057 1058 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 1059 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 1060 init_task.signal->rlim[RLIMIT_SIGPENDING] = 1061 init_task.signal->rlim[RLIMIT_NPROC]; 1062 1063 for (i = 0; i < UCOUNT_COUNTS; i++) 1064 init_user_ns.ucount_max[i] = max_threads/2; 1065 1066 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 1067 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 1068 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 1069 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 1070 1071 #ifdef CONFIG_VMAP_STACK 1072 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 1073 NULL, free_vm_stack_cache); 1074 #endif 1075 1076 scs_init(); 1077 1078 lockdep_init_task(&init_task); 1079 uprobes_init(); 1080 } 1081 1082 int __weak arch_dup_task_struct(struct task_struct *dst, 1083 struct task_struct *src) 1084 { 1085 *dst = *src; 1086 return 0; 1087 } 1088 1089 void set_task_stack_end_magic(struct task_struct *tsk) 1090 { 1091 unsigned long *stackend; 1092 1093 stackend = end_of_stack(tsk); 1094 *stackend = STACK_END_MAGIC; /* for overflow detection */ 1095 } 1096 1097 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 1098 { 1099 struct task_struct *tsk; 1100 int err; 1101 1102 if (node == NUMA_NO_NODE) 1103 node = tsk_fork_get_node(orig); 1104 tsk = alloc_task_struct_node(node); 1105 if (!tsk) 1106 return NULL; 1107 1108 err = arch_dup_task_struct(tsk, orig); 1109 if (err) 1110 goto free_tsk; 1111 1112 err = alloc_thread_stack_node(tsk, node); 1113 if (err) 1114 goto free_tsk; 1115 1116 #ifdef CONFIG_THREAD_INFO_IN_TASK 1117 refcount_set(&tsk->stack_refcount, 1); 1118 #endif 1119 account_kernel_stack(tsk, 1); 1120 1121 err = scs_prepare(tsk, node); 1122 if (err) 1123 goto free_stack; 1124 1125 #ifdef CONFIG_SECCOMP 1126 /* 1127 * We must handle setting up seccomp filters once we're under 1128 * the sighand lock in case orig has changed between now and 1129 * then. Until then, filter must be NULL to avoid messing up 1130 * the usage counts on the error path calling free_task. 1131 */ 1132 tsk->seccomp.filter = NULL; 1133 #endif 1134 1135 setup_thread_stack(tsk, orig); 1136 clear_user_return_notifier(tsk); 1137 clear_tsk_need_resched(tsk); 1138 set_task_stack_end_magic(tsk); 1139 clear_syscall_work_syscall_user_dispatch(tsk); 1140 1141 #ifdef CONFIG_STACKPROTECTOR 1142 tsk->stack_canary = get_random_canary(); 1143 #endif 1144 if (orig->cpus_ptr == &orig->cpus_mask) 1145 tsk->cpus_ptr = &tsk->cpus_mask; 1146 dup_user_cpus_ptr(tsk, orig, node); 1147 1148 /* 1149 * One for the user space visible state that goes away when reaped. 1150 * One for the scheduler. 1151 */ 1152 refcount_set(&tsk->rcu_users, 2); 1153 /* One for the rcu users */ 1154 refcount_set(&tsk->usage, 1); 1155 #ifdef CONFIG_BLK_DEV_IO_TRACE 1156 tsk->btrace_seq = 0; 1157 #endif 1158 tsk->splice_pipe = NULL; 1159 tsk->task_frag.page = NULL; 1160 tsk->wake_q.next = NULL; 1161 tsk->worker_private = NULL; 1162 1163 kcov_task_init(tsk); 1164 kmsan_task_create(tsk); 1165 kmap_local_fork(tsk); 1166 1167 #ifdef CONFIG_FAULT_INJECTION 1168 tsk->fail_nth = 0; 1169 #endif 1170 1171 #ifdef CONFIG_BLK_CGROUP 1172 tsk->throttle_disk = NULL; 1173 tsk->use_memdelay = 0; 1174 #endif 1175 1176 #ifdef CONFIG_ARCH_HAS_CPU_PASID 1177 tsk->pasid_activated = 0; 1178 #endif 1179 1180 #ifdef CONFIG_MEMCG 1181 tsk->active_memcg = NULL; 1182 #endif 1183 1184 #ifdef CONFIG_CPU_SUP_INTEL 1185 tsk->reported_split_lock = 0; 1186 #endif 1187 1188 #ifdef CONFIG_SCHED_MM_CID 1189 tsk->mm_cid = -1; 1190 tsk->last_mm_cid = -1; 1191 tsk->mm_cid_active = 0; 1192 tsk->migrate_from_cpu = -1; 1193 #endif 1194 return tsk; 1195 1196 free_stack: 1197 exit_task_stack_account(tsk); 1198 free_thread_stack(tsk); 1199 free_tsk: 1200 free_task_struct(tsk); 1201 return NULL; 1202 } 1203 1204 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 1205 1206 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 1207 1208 static int __init coredump_filter_setup(char *s) 1209 { 1210 default_dump_filter = 1211 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 1212 MMF_DUMP_FILTER_MASK; 1213 return 1; 1214 } 1215 1216 __setup("coredump_filter=", coredump_filter_setup); 1217 1218 #include <linux/init_task.h> 1219 1220 static void mm_init_aio(struct mm_struct *mm) 1221 { 1222 #ifdef CONFIG_AIO 1223 spin_lock_init(&mm->ioctx_lock); 1224 mm->ioctx_table = NULL; 1225 #endif 1226 } 1227 1228 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1229 struct task_struct *p) 1230 { 1231 #ifdef CONFIG_MEMCG 1232 if (mm->owner == p) 1233 WRITE_ONCE(mm->owner, NULL); 1234 #endif 1235 } 1236 1237 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1238 { 1239 #ifdef CONFIG_MEMCG 1240 mm->owner = p; 1241 #endif 1242 } 1243 1244 static void mm_init_uprobes_state(struct mm_struct *mm) 1245 { 1246 #ifdef CONFIG_UPROBES 1247 mm->uprobes_state.xol_area = NULL; 1248 #endif 1249 } 1250 1251 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1252 struct user_namespace *user_ns) 1253 { 1254 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); 1255 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); 1256 atomic_set(&mm->mm_users, 1); 1257 atomic_set(&mm->mm_count, 1); 1258 seqcount_init(&mm->write_protect_seq); 1259 mmap_init_lock(mm); 1260 INIT_LIST_HEAD(&mm->mmlist); 1261 #ifdef CONFIG_PER_VMA_LOCK 1262 mm->mm_lock_seq = 0; 1263 #endif 1264 mm_pgtables_bytes_init(mm); 1265 mm->map_count = 0; 1266 mm->locked_vm = 0; 1267 atomic64_set(&mm->pinned_vm, 0); 1268 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1269 spin_lock_init(&mm->page_table_lock); 1270 spin_lock_init(&mm->arg_lock); 1271 mm_init_cpumask(mm); 1272 mm_init_aio(mm); 1273 mm_init_owner(mm, p); 1274 mm_pasid_init(mm); 1275 RCU_INIT_POINTER(mm->exe_file, NULL); 1276 mmu_notifier_subscriptions_init(mm); 1277 init_tlb_flush_pending(mm); 1278 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1279 mm->pmd_huge_pte = NULL; 1280 #endif 1281 mm_init_uprobes_state(mm); 1282 hugetlb_count_init(mm); 1283 1284 if (current->mm) { 1285 mm->flags = mmf_init_flags(current->mm->flags); 1286 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1287 } else { 1288 mm->flags = default_dump_filter; 1289 mm->def_flags = 0; 1290 } 1291 1292 if (mm_alloc_pgd(mm)) 1293 goto fail_nopgd; 1294 1295 if (init_new_context(p, mm)) 1296 goto fail_nocontext; 1297 1298 if (mm_alloc_cid(mm)) 1299 goto fail_cid; 1300 1301 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT, 1302 NR_MM_COUNTERS)) 1303 goto fail_pcpu; 1304 1305 mm->user_ns = get_user_ns(user_ns); 1306 lru_gen_init_mm(mm); 1307 return mm; 1308 1309 fail_pcpu: 1310 mm_destroy_cid(mm); 1311 fail_cid: 1312 destroy_context(mm); 1313 fail_nocontext: 1314 mm_free_pgd(mm); 1315 fail_nopgd: 1316 free_mm(mm); 1317 return NULL; 1318 } 1319 1320 /* 1321 * Allocate and initialize an mm_struct. 1322 */ 1323 struct mm_struct *mm_alloc(void) 1324 { 1325 struct mm_struct *mm; 1326 1327 mm = allocate_mm(); 1328 if (!mm) 1329 return NULL; 1330 1331 memset(mm, 0, sizeof(*mm)); 1332 return mm_init(mm, current, current_user_ns()); 1333 } 1334 1335 static inline void __mmput(struct mm_struct *mm) 1336 { 1337 VM_BUG_ON(atomic_read(&mm->mm_users)); 1338 1339 uprobe_clear_state(mm); 1340 exit_aio(mm); 1341 ksm_exit(mm); 1342 khugepaged_exit(mm); /* must run before exit_mmap */ 1343 exit_mmap(mm); 1344 mm_put_huge_zero_page(mm); 1345 set_mm_exe_file(mm, NULL); 1346 if (!list_empty(&mm->mmlist)) { 1347 spin_lock(&mmlist_lock); 1348 list_del(&mm->mmlist); 1349 spin_unlock(&mmlist_lock); 1350 } 1351 if (mm->binfmt) 1352 module_put(mm->binfmt->module); 1353 lru_gen_del_mm(mm); 1354 mmdrop(mm); 1355 } 1356 1357 /* 1358 * Decrement the use count and release all resources for an mm. 1359 */ 1360 void mmput(struct mm_struct *mm) 1361 { 1362 might_sleep(); 1363 1364 if (atomic_dec_and_test(&mm->mm_users)) 1365 __mmput(mm); 1366 } 1367 EXPORT_SYMBOL_GPL(mmput); 1368 1369 #ifdef CONFIG_MMU 1370 static void mmput_async_fn(struct work_struct *work) 1371 { 1372 struct mm_struct *mm = container_of(work, struct mm_struct, 1373 async_put_work); 1374 1375 __mmput(mm); 1376 } 1377 1378 void mmput_async(struct mm_struct *mm) 1379 { 1380 if (atomic_dec_and_test(&mm->mm_users)) { 1381 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1382 schedule_work(&mm->async_put_work); 1383 } 1384 } 1385 EXPORT_SYMBOL_GPL(mmput_async); 1386 #endif 1387 1388 /** 1389 * set_mm_exe_file - change a reference to the mm's executable file 1390 * @mm: The mm to change. 1391 * @new_exe_file: The new file to use. 1392 * 1393 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1394 * 1395 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1396 * invocations: in mmput() nobody alive left, in execve it happens before 1397 * the new mm is made visible to anyone. 1398 * 1399 * Can only fail if new_exe_file != NULL. 1400 */ 1401 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1402 { 1403 struct file *old_exe_file; 1404 1405 /* 1406 * It is safe to dereference the exe_file without RCU as 1407 * this function is only called if nobody else can access 1408 * this mm -- see comment above for justification. 1409 */ 1410 old_exe_file = rcu_dereference_raw(mm->exe_file); 1411 1412 if (new_exe_file) { 1413 /* 1414 * We expect the caller (i.e., sys_execve) to already denied 1415 * write access, so this is unlikely to fail. 1416 */ 1417 if (unlikely(deny_write_access(new_exe_file))) 1418 return -EACCES; 1419 get_file(new_exe_file); 1420 } 1421 rcu_assign_pointer(mm->exe_file, new_exe_file); 1422 if (old_exe_file) { 1423 allow_write_access(old_exe_file); 1424 fput(old_exe_file); 1425 } 1426 return 0; 1427 } 1428 1429 /** 1430 * replace_mm_exe_file - replace a reference to the mm's executable file 1431 * @mm: The mm to change. 1432 * @new_exe_file: The new file to use. 1433 * 1434 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1435 * 1436 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1437 */ 1438 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1439 { 1440 struct vm_area_struct *vma; 1441 struct file *old_exe_file; 1442 int ret = 0; 1443 1444 /* Forbid mm->exe_file change if old file still mapped. */ 1445 old_exe_file = get_mm_exe_file(mm); 1446 if (old_exe_file) { 1447 VMA_ITERATOR(vmi, mm, 0); 1448 mmap_read_lock(mm); 1449 for_each_vma(vmi, vma) { 1450 if (!vma->vm_file) 1451 continue; 1452 if (path_equal(&vma->vm_file->f_path, 1453 &old_exe_file->f_path)) { 1454 ret = -EBUSY; 1455 break; 1456 } 1457 } 1458 mmap_read_unlock(mm); 1459 fput(old_exe_file); 1460 if (ret) 1461 return ret; 1462 } 1463 1464 ret = deny_write_access(new_exe_file); 1465 if (ret) 1466 return -EACCES; 1467 get_file(new_exe_file); 1468 1469 /* set the new file */ 1470 mmap_write_lock(mm); 1471 old_exe_file = rcu_dereference_raw(mm->exe_file); 1472 rcu_assign_pointer(mm->exe_file, new_exe_file); 1473 mmap_write_unlock(mm); 1474 1475 if (old_exe_file) { 1476 allow_write_access(old_exe_file); 1477 fput(old_exe_file); 1478 } 1479 return 0; 1480 } 1481 1482 /** 1483 * get_mm_exe_file - acquire a reference to the mm's executable file 1484 * @mm: The mm of interest. 1485 * 1486 * Returns %NULL if mm has no associated executable file. 1487 * User must release file via fput(). 1488 */ 1489 struct file *get_mm_exe_file(struct mm_struct *mm) 1490 { 1491 struct file *exe_file; 1492 1493 rcu_read_lock(); 1494 exe_file = get_file_rcu(&mm->exe_file); 1495 rcu_read_unlock(); 1496 return exe_file; 1497 } 1498 1499 /** 1500 * get_task_exe_file - acquire a reference to the task's executable file 1501 * @task: The task. 1502 * 1503 * Returns %NULL if task's mm (if any) has no associated executable file or 1504 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1505 * User must release file via fput(). 1506 */ 1507 struct file *get_task_exe_file(struct task_struct *task) 1508 { 1509 struct file *exe_file = NULL; 1510 struct mm_struct *mm; 1511 1512 task_lock(task); 1513 mm = task->mm; 1514 if (mm) { 1515 if (!(task->flags & PF_KTHREAD)) 1516 exe_file = get_mm_exe_file(mm); 1517 } 1518 task_unlock(task); 1519 return exe_file; 1520 } 1521 1522 /** 1523 * get_task_mm - acquire a reference to the task's mm 1524 * @task: The task. 1525 * 1526 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1527 * this kernel workthread has transiently adopted a user mm with use_mm, 1528 * to do its AIO) is not set and if so returns a reference to it, after 1529 * bumping up the use count. User must release the mm via mmput() 1530 * after use. Typically used by /proc and ptrace. 1531 */ 1532 struct mm_struct *get_task_mm(struct task_struct *task) 1533 { 1534 struct mm_struct *mm; 1535 1536 task_lock(task); 1537 mm = task->mm; 1538 if (mm) { 1539 if (task->flags & PF_KTHREAD) 1540 mm = NULL; 1541 else 1542 mmget(mm); 1543 } 1544 task_unlock(task); 1545 return mm; 1546 } 1547 EXPORT_SYMBOL_GPL(get_task_mm); 1548 1549 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1550 { 1551 struct mm_struct *mm; 1552 int err; 1553 1554 err = down_read_killable(&task->signal->exec_update_lock); 1555 if (err) 1556 return ERR_PTR(err); 1557 1558 mm = get_task_mm(task); 1559 if (mm && mm != current->mm && 1560 !ptrace_may_access(task, mode)) { 1561 mmput(mm); 1562 mm = ERR_PTR(-EACCES); 1563 } 1564 up_read(&task->signal->exec_update_lock); 1565 1566 return mm; 1567 } 1568 1569 static void complete_vfork_done(struct task_struct *tsk) 1570 { 1571 struct completion *vfork; 1572 1573 task_lock(tsk); 1574 vfork = tsk->vfork_done; 1575 if (likely(vfork)) { 1576 tsk->vfork_done = NULL; 1577 complete(vfork); 1578 } 1579 task_unlock(tsk); 1580 } 1581 1582 static int wait_for_vfork_done(struct task_struct *child, 1583 struct completion *vfork) 1584 { 1585 unsigned int state = TASK_KILLABLE|TASK_FREEZABLE; 1586 int killed; 1587 1588 cgroup_enter_frozen(); 1589 killed = wait_for_completion_state(vfork, state); 1590 cgroup_leave_frozen(false); 1591 1592 if (killed) { 1593 task_lock(child); 1594 child->vfork_done = NULL; 1595 task_unlock(child); 1596 } 1597 1598 put_task_struct(child); 1599 return killed; 1600 } 1601 1602 /* Please note the differences between mmput and mm_release. 1603 * mmput is called whenever we stop holding onto a mm_struct, 1604 * error success whatever. 1605 * 1606 * mm_release is called after a mm_struct has been removed 1607 * from the current process. 1608 * 1609 * This difference is important for error handling, when we 1610 * only half set up a mm_struct for a new process and need to restore 1611 * the old one. Because we mmput the new mm_struct before 1612 * restoring the old one. . . 1613 * Eric Biederman 10 January 1998 1614 */ 1615 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1616 { 1617 uprobe_free_utask(tsk); 1618 1619 /* Get rid of any cached register state */ 1620 deactivate_mm(tsk, mm); 1621 1622 /* 1623 * Signal userspace if we're not exiting with a core dump 1624 * because we want to leave the value intact for debugging 1625 * purposes. 1626 */ 1627 if (tsk->clear_child_tid) { 1628 if (atomic_read(&mm->mm_users) > 1) { 1629 /* 1630 * We don't check the error code - if userspace has 1631 * not set up a proper pointer then tough luck. 1632 */ 1633 put_user(0, tsk->clear_child_tid); 1634 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1635 1, NULL, NULL, 0, 0); 1636 } 1637 tsk->clear_child_tid = NULL; 1638 } 1639 1640 /* 1641 * All done, finally we can wake up parent and return this mm to him. 1642 * Also kthread_stop() uses this completion for synchronization. 1643 */ 1644 if (tsk->vfork_done) 1645 complete_vfork_done(tsk); 1646 } 1647 1648 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1649 { 1650 futex_exit_release(tsk); 1651 mm_release(tsk, mm); 1652 } 1653 1654 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1655 { 1656 futex_exec_release(tsk); 1657 mm_release(tsk, mm); 1658 } 1659 1660 /** 1661 * dup_mm() - duplicates an existing mm structure 1662 * @tsk: the task_struct with which the new mm will be associated. 1663 * @oldmm: the mm to duplicate. 1664 * 1665 * Allocates a new mm structure and duplicates the provided @oldmm structure 1666 * content into it. 1667 * 1668 * Return: the duplicated mm or NULL on failure. 1669 */ 1670 static struct mm_struct *dup_mm(struct task_struct *tsk, 1671 struct mm_struct *oldmm) 1672 { 1673 struct mm_struct *mm; 1674 int err; 1675 1676 mm = allocate_mm(); 1677 if (!mm) 1678 goto fail_nomem; 1679 1680 memcpy(mm, oldmm, sizeof(*mm)); 1681 1682 if (!mm_init(mm, tsk, mm->user_ns)) 1683 goto fail_nomem; 1684 1685 err = dup_mmap(mm, oldmm); 1686 if (err) 1687 goto free_pt; 1688 1689 mm->hiwater_rss = get_mm_rss(mm); 1690 mm->hiwater_vm = mm->total_vm; 1691 1692 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1693 goto free_pt; 1694 1695 return mm; 1696 1697 free_pt: 1698 /* don't put binfmt in mmput, we haven't got module yet */ 1699 mm->binfmt = NULL; 1700 mm_init_owner(mm, NULL); 1701 mmput(mm); 1702 1703 fail_nomem: 1704 return NULL; 1705 } 1706 1707 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1708 { 1709 struct mm_struct *mm, *oldmm; 1710 1711 tsk->min_flt = tsk->maj_flt = 0; 1712 tsk->nvcsw = tsk->nivcsw = 0; 1713 #ifdef CONFIG_DETECT_HUNG_TASK 1714 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1715 tsk->last_switch_time = 0; 1716 #endif 1717 1718 tsk->mm = NULL; 1719 tsk->active_mm = NULL; 1720 1721 /* 1722 * Are we cloning a kernel thread? 1723 * 1724 * We need to steal a active VM for that.. 1725 */ 1726 oldmm = current->mm; 1727 if (!oldmm) 1728 return 0; 1729 1730 if (clone_flags & CLONE_VM) { 1731 mmget(oldmm); 1732 mm = oldmm; 1733 } else { 1734 mm = dup_mm(tsk, current->mm); 1735 if (!mm) 1736 return -ENOMEM; 1737 } 1738 1739 tsk->mm = mm; 1740 tsk->active_mm = mm; 1741 sched_mm_cid_fork(tsk); 1742 return 0; 1743 } 1744 1745 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1746 { 1747 struct fs_struct *fs = current->fs; 1748 if (clone_flags & CLONE_FS) { 1749 /* tsk->fs is already what we want */ 1750 spin_lock(&fs->lock); 1751 if (fs->in_exec) { 1752 spin_unlock(&fs->lock); 1753 return -EAGAIN; 1754 } 1755 fs->users++; 1756 spin_unlock(&fs->lock); 1757 return 0; 1758 } 1759 tsk->fs = copy_fs_struct(fs); 1760 if (!tsk->fs) 1761 return -ENOMEM; 1762 return 0; 1763 } 1764 1765 static int copy_files(unsigned long clone_flags, struct task_struct *tsk, 1766 int no_files) 1767 { 1768 struct files_struct *oldf, *newf; 1769 int error = 0; 1770 1771 /* 1772 * A background process may not have any files ... 1773 */ 1774 oldf = current->files; 1775 if (!oldf) 1776 goto out; 1777 1778 if (no_files) { 1779 tsk->files = NULL; 1780 goto out; 1781 } 1782 1783 if (clone_flags & CLONE_FILES) { 1784 atomic_inc(&oldf->count); 1785 goto out; 1786 } 1787 1788 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1789 if (!newf) 1790 goto out; 1791 1792 tsk->files = newf; 1793 error = 0; 1794 out: 1795 return error; 1796 } 1797 1798 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1799 { 1800 struct sighand_struct *sig; 1801 1802 if (clone_flags & CLONE_SIGHAND) { 1803 refcount_inc(¤t->sighand->count); 1804 return 0; 1805 } 1806 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1807 RCU_INIT_POINTER(tsk->sighand, sig); 1808 if (!sig) 1809 return -ENOMEM; 1810 1811 refcount_set(&sig->count, 1); 1812 spin_lock_irq(¤t->sighand->siglock); 1813 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1814 spin_unlock_irq(¤t->sighand->siglock); 1815 1816 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1817 if (clone_flags & CLONE_CLEAR_SIGHAND) 1818 flush_signal_handlers(tsk, 0); 1819 1820 return 0; 1821 } 1822 1823 void __cleanup_sighand(struct sighand_struct *sighand) 1824 { 1825 if (refcount_dec_and_test(&sighand->count)) { 1826 signalfd_cleanup(sighand); 1827 /* 1828 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1829 * without an RCU grace period, see __lock_task_sighand(). 1830 */ 1831 kmem_cache_free(sighand_cachep, sighand); 1832 } 1833 } 1834 1835 /* 1836 * Initialize POSIX timer handling for a thread group. 1837 */ 1838 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1839 { 1840 struct posix_cputimers *pct = &sig->posix_cputimers; 1841 unsigned long cpu_limit; 1842 1843 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1844 posix_cputimers_group_init(pct, cpu_limit); 1845 } 1846 1847 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1848 { 1849 struct signal_struct *sig; 1850 1851 if (clone_flags & CLONE_THREAD) 1852 return 0; 1853 1854 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1855 tsk->signal = sig; 1856 if (!sig) 1857 return -ENOMEM; 1858 1859 sig->nr_threads = 1; 1860 sig->quick_threads = 1; 1861 atomic_set(&sig->live, 1); 1862 refcount_set(&sig->sigcnt, 1); 1863 1864 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1865 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1866 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1867 1868 init_waitqueue_head(&sig->wait_chldexit); 1869 sig->curr_target = tsk; 1870 init_sigpending(&sig->shared_pending); 1871 INIT_HLIST_HEAD(&sig->multiprocess); 1872 seqlock_init(&sig->stats_lock); 1873 prev_cputime_init(&sig->prev_cputime); 1874 1875 #ifdef CONFIG_POSIX_TIMERS 1876 INIT_LIST_HEAD(&sig->posix_timers); 1877 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1878 sig->real_timer.function = it_real_fn; 1879 #endif 1880 1881 task_lock(current->group_leader); 1882 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1883 task_unlock(current->group_leader); 1884 1885 posix_cpu_timers_init_group(sig); 1886 1887 tty_audit_fork(sig); 1888 sched_autogroup_fork(sig); 1889 1890 sig->oom_score_adj = current->signal->oom_score_adj; 1891 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1892 1893 mutex_init(&sig->cred_guard_mutex); 1894 init_rwsem(&sig->exec_update_lock); 1895 1896 return 0; 1897 } 1898 1899 static void copy_seccomp(struct task_struct *p) 1900 { 1901 #ifdef CONFIG_SECCOMP 1902 /* 1903 * Must be called with sighand->lock held, which is common to 1904 * all threads in the group. Holding cred_guard_mutex is not 1905 * needed because this new task is not yet running and cannot 1906 * be racing exec. 1907 */ 1908 assert_spin_locked(¤t->sighand->siglock); 1909 1910 /* Ref-count the new filter user, and assign it. */ 1911 get_seccomp_filter(current); 1912 p->seccomp = current->seccomp; 1913 1914 /* 1915 * Explicitly enable no_new_privs here in case it got set 1916 * between the task_struct being duplicated and holding the 1917 * sighand lock. The seccomp state and nnp must be in sync. 1918 */ 1919 if (task_no_new_privs(current)) 1920 task_set_no_new_privs(p); 1921 1922 /* 1923 * If the parent gained a seccomp mode after copying thread 1924 * flags and between before we held the sighand lock, we have 1925 * to manually enable the seccomp thread flag here. 1926 */ 1927 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1928 set_task_syscall_work(p, SECCOMP); 1929 #endif 1930 } 1931 1932 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1933 { 1934 current->clear_child_tid = tidptr; 1935 1936 return task_pid_vnr(current); 1937 } 1938 1939 static void rt_mutex_init_task(struct task_struct *p) 1940 { 1941 raw_spin_lock_init(&p->pi_lock); 1942 #ifdef CONFIG_RT_MUTEXES 1943 p->pi_waiters = RB_ROOT_CACHED; 1944 p->pi_top_task = NULL; 1945 p->pi_blocked_on = NULL; 1946 #endif 1947 } 1948 1949 static inline void init_task_pid_links(struct task_struct *task) 1950 { 1951 enum pid_type type; 1952 1953 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1954 INIT_HLIST_NODE(&task->pid_links[type]); 1955 } 1956 1957 static inline void 1958 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1959 { 1960 if (type == PIDTYPE_PID) 1961 task->thread_pid = pid; 1962 else 1963 task->signal->pids[type] = pid; 1964 } 1965 1966 static inline void rcu_copy_process(struct task_struct *p) 1967 { 1968 #ifdef CONFIG_PREEMPT_RCU 1969 p->rcu_read_lock_nesting = 0; 1970 p->rcu_read_unlock_special.s = 0; 1971 p->rcu_blocked_node = NULL; 1972 INIT_LIST_HEAD(&p->rcu_node_entry); 1973 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1974 #ifdef CONFIG_TASKS_RCU 1975 p->rcu_tasks_holdout = false; 1976 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1977 p->rcu_tasks_idle_cpu = -1; 1978 #endif /* #ifdef CONFIG_TASKS_RCU */ 1979 #ifdef CONFIG_TASKS_TRACE_RCU 1980 p->trc_reader_nesting = 0; 1981 p->trc_reader_special.s = 0; 1982 INIT_LIST_HEAD(&p->trc_holdout_list); 1983 INIT_LIST_HEAD(&p->trc_blkd_node); 1984 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1985 } 1986 1987 struct pid *pidfd_pid(const struct file *file) 1988 { 1989 if (file->f_op == &pidfd_fops) 1990 return file->private_data; 1991 1992 return ERR_PTR(-EBADF); 1993 } 1994 1995 static int pidfd_release(struct inode *inode, struct file *file) 1996 { 1997 struct pid *pid = file->private_data; 1998 1999 file->private_data = NULL; 2000 put_pid(pid); 2001 return 0; 2002 } 2003 2004 #ifdef CONFIG_PROC_FS 2005 /** 2006 * pidfd_show_fdinfo - print information about a pidfd 2007 * @m: proc fdinfo file 2008 * @f: file referencing a pidfd 2009 * 2010 * Pid: 2011 * This function will print the pid that a given pidfd refers to in the 2012 * pid namespace of the procfs instance. 2013 * If the pid namespace of the process is not a descendant of the pid 2014 * namespace of the procfs instance 0 will be shown as its pid. This is 2015 * similar to calling getppid() on a process whose parent is outside of 2016 * its pid namespace. 2017 * 2018 * NSpid: 2019 * If pid namespaces are supported then this function will also print 2020 * the pid of a given pidfd refers to for all descendant pid namespaces 2021 * starting from the current pid namespace of the instance, i.e. the 2022 * Pid field and the first entry in the NSpid field will be identical. 2023 * If the pid namespace of the process is not a descendant of the pid 2024 * namespace of the procfs instance 0 will be shown as its first NSpid 2025 * entry and no others will be shown. 2026 * Note that this differs from the Pid and NSpid fields in 2027 * /proc/<pid>/status where Pid and NSpid are always shown relative to 2028 * the pid namespace of the procfs instance. The difference becomes 2029 * obvious when sending around a pidfd between pid namespaces from a 2030 * different branch of the tree, i.e. where no ancestral relation is 2031 * present between the pid namespaces: 2032 * - create two new pid namespaces ns1 and ns2 in the initial pid 2033 * namespace (also take care to create new mount namespaces in the 2034 * new pid namespace and mount procfs) 2035 * - create a process with a pidfd in ns1 2036 * - send pidfd from ns1 to ns2 2037 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 2038 * have exactly one entry, which is 0 2039 */ 2040 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 2041 { 2042 struct pid *pid = f->private_data; 2043 struct pid_namespace *ns; 2044 pid_t nr = -1; 2045 2046 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 2047 ns = proc_pid_ns(file_inode(m->file)->i_sb); 2048 nr = pid_nr_ns(pid, ns); 2049 } 2050 2051 seq_put_decimal_ll(m, "Pid:\t", nr); 2052 2053 #ifdef CONFIG_PID_NS 2054 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 2055 if (nr > 0) { 2056 int i; 2057 2058 /* If nr is non-zero it means that 'pid' is valid and that 2059 * ns, i.e. the pid namespace associated with the procfs 2060 * instance, is in the pid namespace hierarchy of pid. 2061 * Start at one below the already printed level. 2062 */ 2063 for (i = ns->level + 1; i <= pid->level; i++) 2064 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 2065 } 2066 #endif 2067 seq_putc(m, '\n'); 2068 } 2069 #endif 2070 2071 /* 2072 * Poll support for process exit notification. 2073 */ 2074 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 2075 { 2076 struct pid *pid = file->private_data; 2077 __poll_t poll_flags = 0; 2078 2079 poll_wait(file, &pid->wait_pidfd, pts); 2080 2081 /* 2082 * Inform pollers only when the whole thread group exits. 2083 * If the thread group leader exits before all other threads in the 2084 * group, then poll(2) should block, similar to the wait(2) family. 2085 */ 2086 if (thread_group_exited(pid)) 2087 poll_flags = EPOLLIN | EPOLLRDNORM; 2088 2089 return poll_flags; 2090 } 2091 2092 const struct file_operations pidfd_fops = { 2093 .release = pidfd_release, 2094 .poll = pidfd_poll, 2095 #ifdef CONFIG_PROC_FS 2096 .show_fdinfo = pidfd_show_fdinfo, 2097 #endif 2098 }; 2099 2100 /** 2101 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 2102 * @pid: the struct pid for which to create a pidfd 2103 * @flags: flags of the new @pidfd 2104 * @ret: Where to return the file for the pidfd. 2105 * 2106 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2107 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2108 * 2109 * The helper doesn't perform checks on @pid which makes it useful for pidfds 2110 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and 2111 * pidfd file are prepared. 2112 * 2113 * If this function returns successfully the caller is responsible to either 2114 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2115 * order to install the pidfd into its file descriptor table or they must use 2116 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2117 * respectively. 2118 * 2119 * This function is useful when a pidfd must already be reserved but there 2120 * might still be points of failure afterwards and the caller wants to ensure 2121 * that no pidfd is leaked into its file descriptor table. 2122 * 2123 * Return: On success, a reserved pidfd is returned from the function and a new 2124 * pidfd file is returned in the last argument to the function. On 2125 * error, a negative error code is returned from the function and the 2126 * last argument remains unchanged. 2127 */ 2128 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2129 { 2130 int pidfd; 2131 struct file *pidfd_file; 2132 2133 if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC)) 2134 return -EINVAL; 2135 2136 pidfd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2137 if (pidfd < 0) 2138 return pidfd; 2139 2140 pidfd_file = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2141 flags | O_RDWR | O_CLOEXEC); 2142 if (IS_ERR(pidfd_file)) { 2143 put_unused_fd(pidfd); 2144 return PTR_ERR(pidfd_file); 2145 } 2146 get_pid(pid); /* held by pidfd_file now */ 2147 *ret = pidfd_file; 2148 return pidfd; 2149 } 2150 2151 /** 2152 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 2153 * @pid: the struct pid for which to create a pidfd 2154 * @flags: flags of the new @pidfd 2155 * @ret: Where to return the pidfd. 2156 * 2157 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2158 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2159 * 2160 * The helper verifies that @pid is used as a thread group leader. 2161 * 2162 * If this function returns successfully the caller is responsible to either 2163 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2164 * order to install the pidfd into its file descriptor table or they must use 2165 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2166 * respectively. 2167 * 2168 * This function is useful when a pidfd must already be reserved but there 2169 * might still be points of failure afterwards and the caller wants to ensure 2170 * that no pidfd is leaked into its file descriptor table. 2171 * 2172 * Return: On success, a reserved pidfd is returned from the function and a new 2173 * pidfd file is returned in the last argument to the function. On 2174 * error, a negative error code is returned from the function and the 2175 * last argument remains unchanged. 2176 */ 2177 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2178 { 2179 if (!pid || !pid_has_task(pid, PIDTYPE_TGID)) 2180 return -EINVAL; 2181 2182 return __pidfd_prepare(pid, flags, ret); 2183 } 2184 2185 static void __delayed_free_task(struct rcu_head *rhp) 2186 { 2187 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 2188 2189 free_task(tsk); 2190 } 2191 2192 static __always_inline void delayed_free_task(struct task_struct *tsk) 2193 { 2194 if (IS_ENABLED(CONFIG_MEMCG)) 2195 call_rcu(&tsk->rcu, __delayed_free_task); 2196 else 2197 free_task(tsk); 2198 } 2199 2200 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 2201 { 2202 /* Skip if kernel thread */ 2203 if (!tsk->mm) 2204 return; 2205 2206 /* Skip if spawning a thread or using vfork */ 2207 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 2208 return; 2209 2210 /* We need to synchronize with __set_oom_adj */ 2211 mutex_lock(&oom_adj_mutex); 2212 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 2213 /* Update the values in case they were changed after copy_signal */ 2214 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 2215 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 2216 mutex_unlock(&oom_adj_mutex); 2217 } 2218 2219 #ifdef CONFIG_RV 2220 static void rv_task_fork(struct task_struct *p) 2221 { 2222 int i; 2223 2224 for (i = 0; i < RV_PER_TASK_MONITORS; i++) 2225 p->rv[i].da_mon.monitoring = false; 2226 } 2227 #else 2228 #define rv_task_fork(p) do {} while (0) 2229 #endif 2230 2231 /* 2232 * This creates a new process as a copy of the old one, 2233 * but does not actually start it yet. 2234 * 2235 * It copies the registers, and all the appropriate 2236 * parts of the process environment (as per the clone 2237 * flags). The actual kick-off is left to the caller. 2238 */ 2239 __latent_entropy struct task_struct *copy_process( 2240 struct pid *pid, 2241 int trace, 2242 int node, 2243 struct kernel_clone_args *args) 2244 { 2245 int pidfd = -1, retval; 2246 struct task_struct *p; 2247 struct multiprocess_signals delayed; 2248 struct file *pidfile = NULL; 2249 const u64 clone_flags = args->flags; 2250 struct nsproxy *nsp = current->nsproxy; 2251 2252 /* 2253 * Don't allow sharing the root directory with processes in a different 2254 * namespace 2255 */ 2256 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 2257 return ERR_PTR(-EINVAL); 2258 2259 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 2260 return ERR_PTR(-EINVAL); 2261 2262 /* 2263 * Thread groups must share signals as well, and detached threads 2264 * can only be started up within the thread group. 2265 */ 2266 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 2267 return ERR_PTR(-EINVAL); 2268 2269 /* 2270 * Shared signal handlers imply shared VM. By way of the above, 2271 * thread groups also imply shared VM. Blocking this case allows 2272 * for various simplifications in other code. 2273 */ 2274 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 2275 return ERR_PTR(-EINVAL); 2276 2277 /* 2278 * Siblings of global init remain as zombies on exit since they are 2279 * not reaped by their parent (swapper). To solve this and to avoid 2280 * multi-rooted process trees, prevent global and container-inits 2281 * from creating siblings. 2282 */ 2283 if ((clone_flags & CLONE_PARENT) && 2284 current->signal->flags & SIGNAL_UNKILLABLE) 2285 return ERR_PTR(-EINVAL); 2286 2287 /* 2288 * If the new process will be in a different pid or user namespace 2289 * do not allow it to share a thread group with the forking task. 2290 */ 2291 if (clone_flags & CLONE_THREAD) { 2292 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 2293 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 2294 return ERR_PTR(-EINVAL); 2295 } 2296 2297 if (clone_flags & CLONE_PIDFD) { 2298 /* 2299 * - CLONE_DETACHED is blocked so that we can potentially 2300 * reuse it later for CLONE_PIDFD. 2301 * - CLONE_THREAD is blocked until someone really needs it. 2302 */ 2303 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 2304 return ERR_PTR(-EINVAL); 2305 } 2306 2307 /* 2308 * Force any signals received before this point to be delivered 2309 * before the fork happens. Collect up signals sent to multiple 2310 * processes that happen during the fork and delay them so that 2311 * they appear to happen after the fork. 2312 */ 2313 sigemptyset(&delayed.signal); 2314 INIT_HLIST_NODE(&delayed.node); 2315 2316 spin_lock_irq(¤t->sighand->siglock); 2317 if (!(clone_flags & CLONE_THREAD)) 2318 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2319 recalc_sigpending(); 2320 spin_unlock_irq(¤t->sighand->siglock); 2321 retval = -ERESTARTNOINTR; 2322 if (task_sigpending(current)) 2323 goto fork_out; 2324 2325 retval = -ENOMEM; 2326 p = dup_task_struct(current, node); 2327 if (!p) 2328 goto fork_out; 2329 p->flags &= ~PF_KTHREAD; 2330 if (args->kthread) 2331 p->flags |= PF_KTHREAD; 2332 if (args->user_worker) { 2333 /* 2334 * Mark us a user worker, and block any signal that isn't 2335 * fatal or STOP 2336 */ 2337 p->flags |= PF_USER_WORKER; 2338 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2339 } 2340 if (args->io_thread) 2341 p->flags |= PF_IO_WORKER; 2342 2343 if (args->name) 2344 strscpy_pad(p->comm, args->name, sizeof(p->comm)); 2345 2346 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2347 /* 2348 * Clear TID on mm_release()? 2349 */ 2350 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2351 2352 ftrace_graph_init_task(p); 2353 2354 rt_mutex_init_task(p); 2355 2356 lockdep_assert_irqs_enabled(); 2357 #ifdef CONFIG_PROVE_LOCKING 2358 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2359 #endif 2360 retval = copy_creds(p, clone_flags); 2361 if (retval < 0) 2362 goto bad_fork_free; 2363 2364 retval = -EAGAIN; 2365 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2366 if (p->real_cred->user != INIT_USER && 2367 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2368 goto bad_fork_cleanup_count; 2369 } 2370 current->flags &= ~PF_NPROC_EXCEEDED; 2371 2372 /* 2373 * If multiple threads are within copy_process(), then this check 2374 * triggers too late. This doesn't hurt, the check is only there 2375 * to stop root fork bombs. 2376 */ 2377 retval = -EAGAIN; 2378 if (data_race(nr_threads >= max_threads)) 2379 goto bad_fork_cleanup_count; 2380 2381 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2382 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2383 p->flags |= PF_FORKNOEXEC; 2384 INIT_LIST_HEAD(&p->children); 2385 INIT_LIST_HEAD(&p->sibling); 2386 rcu_copy_process(p); 2387 p->vfork_done = NULL; 2388 spin_lock_init(&p->alloc_lock); 2389 2390 init_sigpending(&p->pending); 2391 2392 p->utime = p->stime = p->gtime = 0; 2393 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2394 p->utimescaled = p->stimescaled = 0; 2395 #endif 2396 prev_cputime_init(&p->prev_cputime); 2397 2398 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2399 seqcount_init(&p->vtime.seqcount); 2400 p->vtime.starttime = 0; 2401 p->vtime.state = VTIME_INACTIVE; 2402 #endif 2403 2404 #ifdef CONFIG_IO_URING 2405 p->io_uring = NULL; 2406 #endif 2407 2408 p->default_timer_slack_ns = current->timer_slack_ns; 2409 2410 #ifdef CONFIG_PSI 2411 p->psi_flags = 0; 2412 #endif 2413 2414 task_io_accounting_init(&p->ioac); 2415 acct_clear_integrals(p); 2416 2417 posix_cputimers_init(&p->posix_cputimers); 2418 2419 p->io_context = NULL; 2420 audit_set_context(p, NULL); 2421 cgroup_fork(p); 2422 if (args->kthread) { 2423 if (!set_kthread_struct(p)) 2424 goto bad_fork_cleanup_delayacct; 2425 } 2426 #ifdef CONFIG_NUMA 2427 p->mempolicy = mpol_dup(p->mempolicy); 2428 if (IS_ERR(p->mempolicy)) { 2429 retval = PTR_ERR(p->mempolicy); 2430 p->mempolicy = NULL; 2431 goto bad_fork_cleanup_delayacct; 2432 } 2433 #endif 2434 #ifdef CONFIG_CPUSETS 2435 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2436 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2437 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2438 #endif 2439 #ifdef CONFIG_TRACE_IRQFLAGS 2440 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2441 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2442 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2443 p->softirqs_enabled = 1; 2444 p->softirq_context = 0; 2445 #endif 2446 2447 p->pagefault_disabled = 0; 2448 2449 #ifdef CONFIG_LOCKDEP 2450 lockdep_init_task(p); 2451 #endif 2452 2453 #ifdef CONFIG_DEBUG_MUTEXES 2454 p->blocked_on = NULL; /* not blocked yet */ 2455 #endif 2456 #ifdef CONFIG_BCACHE 2457 p->sequential_io = 0; 2458 p->sequential_io_avg = 0; 2459 #endif 2460 #ifdef CONFIG_BPF_SYSCALL 2461 RCU_INIT_POINTER(p->bpf_storage, NULL); 2462 p->bpf_ctx = NULL; 2463 #endif 2464 2465 /* Perform scheduler related setup. Assign this task to a CPU. */ 2466 retval = sched_fork(clone_flags, p); 2467 if (retval) 2468 goto bad_fork_cleanup_policy; 2469 2470 retval = perf_event_init_task(p, clone_flags); 2471 if (retval) 2472 goto bad_fork_cleanup_policy; 2473 retval = audit_alloc(p); 2474 if (retval) 2475 goto bad_fork_cleanup_perf; 2476 /* copy all the process information */ 2477 shm_init_task(p); 2478 retval = security_task_alloc(p, clone_flags); 2479 if (retval) 2480 goto bad_fork_cleanup_audit; 2481 retval = copy_semundo(clone_flags, p); 2482 if (retval) 2483 goto bad_fork_cleanup_security; 2484 retval = copy_files(clone_flags, p, args->no_files); 2485 if (retval) 2486 goto bad_fork_cleanup_semundo; 2487 retval = copy_fs(clone_flags, p); 2488 if (retval) 2489 goto bad_fork_cleanup_files; 2490 retval = copy_sighand(clone_flags, p); 2491 if (retval) 2492 goto bad_fork_cleanup_fs; 2493 retval = copy_signal(clone_flags, p); 2494 if (retval) 2495 goto bad_fork_cleanup_sighand; 2496 retval = copy_mm(clone_flags, p); 2497 if (retval) 2498 goto bad_fork_cleanup_signal; 2499 retval = copy_namespaces(clone_flags, p); 2500 if (retval) 2501 goto bad_fork_cleanup_mm; 2502 retval = copy_io(clone_flags, p); 2503 if (retval) 2504 goto bad_fork_cleanup_namespaces; 2505 retval = copy_thread(p, args); 2506 if (retval) 2507 goto bad_fork_cleanup_io; 2508 2509 stackleak_task_init(p); 2510 2511 if (pid != &init_struct_pid) { 2512 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2513 args->set_tid_size); 2514 if (IS_ERR(pid)) { 2515 retval = PTR_ERR(pid); 2516 goto bad_fork_cleanup_thread; 2517 } 2518 } 2519 2520 /* 2521 * This has to happen after we've potentially unshared the file 2522 * descriptor table (so that the pidfd doesn't leak into the child 2523 * if the fd table isn't shared). 2524 */ 2525 if (clone_flags & CLONE_PIDFD) { 2526 /* Note that no task has been attached to @pid yet. */ 2527 retval = __pidfd_prepare(pid, O_RDWR | O_CLOEXEC, &pidfile); 2528 if (retval < 0) 2529 goto bad_fork_free_pid; 2530 pidfd = retval; 2531 2532 retval = put_user(pidfd, args->pidfd); 2533 if (retval) 2534 goto bad_fork_put_pidfd; 2535 } 2536 2537 #ifdef CONFIG_BLOCK 2538 p->plug = NULL; 2539 #endif 2540 futex_init_task(p); 2541 2542 /* 2543 * sigaltstack should be cleared when sharing the same VM 2544 */ 2545 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2546 sas_ss_reset(p); 2547 2548 /* 2549 * Syscall tracing and stepping should be turned off in the 2550 * child regardless of CLONE_PTRACE. 2551 */ 2552 user_disable_single_step(p); 2553 clear_task_syscall_work(p, SYSCALL_TRACE); 2554 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2555 clear_task_syscall_work(p, SYSCALL_EMU); 2556 #endif 2557 clear_tsk_latency_tracing(p); 2558 2559 /* ok, now we should be set up.. */ 2560 p->pid = pid_nr(pid); 2561 if (clone_flags & CLONE_THREAD) { 2562 p->group_leader = current->group_leader; 2563 p->tgid = current->tgid; 2564 } else { 2565 p->group_leader = p; 2566 p->tgid = p->pid; 2567 } 2568 2569 p->nr_dirtied = 0; 2570 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2571 p->dirty_paused_when = 0; 2572 2573 p->pdeath_signal = 0; 2574 p->task_works = NULL; 2575 clear_posix_cputimers_work(p); 2576 2577 #ifdef CONFIG_KRETPROBES 2578 p->kretprobe_instances.first = NULL; 2579 #endif 2580 #ifdef CONFIG_RETHOOK 2581 p->rethooks.first = NULL; 2582 #endif 2583 2584 /* 2585 * Ensure that the cgroup subsystem policies allow the new process to be 2586 * forked. It should be noted that the new process's css_set can be changed 2587 * between here and cgroup_post_fork() if an organisation operation is in 2588 * progress. 2589 */ 2590 retval = cgroup_can_fork(p, args); 2591 if (retval) 2592 goto bad_fork_put_pidfd; 2593 2594 /* 2595 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2596 * the new task on the correct runqueue. All this *before* the task 2597 * becomes visible. 2598 * 2599 * This isn't part of ->can_fork() because while the re-cloning is 2600 * cgroup specific, it unconditionally needs to place the task on a 2601 * runqueue. 2602 */ 2603 sched_cgroup_fork(p, args); 2604 2605 /* 2606 * From this point on we must avoid any synchronous user-space 2607 * communication until we take the tasklist-lock. In particular, we do 2608 * not want user-space to be able to predict the process start-time by 2609 * stalling fork(2) after we recorded the start_time but before it is 2610 * visible to the system. 2611 */ 2612 2613 p->start_time = ktime_get_ns(); 2614 p->start_boottime = ktime_get_boottime_ns(); 2615 2616 /* 2617 * Make it visible to the rest of the system, but dont wake it up yet. 2618 * Need tasklist lock for parent etc handling! 2619 */ 2620 write_lock_irq(&tasklist_lock); 2621 2622 /* CLONE_PARENT re-uses the old parent */ 2623 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2624 p->real_parent = current->real_parent; 2625 p->parent_exec_id = current->parent_exec_id; 2626 if (clone_flags & CLONE_THREAD) 2627 p->exit_signal = -1; 2628 else 2629 p->exit_signal = current->group_leader->exit_signal; 2630 } else { 2631 p->real_parent = current; 2632 p->parent_exec_id = current->self_exec_id; 2633 p->exit_signal = args->exit_signal; 2634 } 2635 2636 klp_copy_process(p); 2637 2638 sched_core_fork(p); 2639 2640 spin_lock(¤t->sighand->siglock); 2641 2642 rv_task_fork(p); 2643 2644 rseq_fork(p, clone_flags); 2645 2646 /* Don't start children in a dying pid namespace */ 2647 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2648 retval = -ENOMEM; 2649 goto bad_fork_cancel_cgroup; 2650 } 2651 2652 /* Let kill terminate clone/fork in the middle */ 2653 if (fatal_signal_pending(current)) { 2654 retval = -EINTR; 2655 goto bad_fork_cancel_cgroup; 2656 } 2657 2658 /* No more failure paths after this point. */ 2659 2660 /* 2661 * Copy seccomp details explicitly here, in case they were changed 2662 * before holding sighand lock. 2663 */ 2664 copy_seccomp(p); 2665 2666 init_task_pid_links(p); 2667 if (likely(p->pid)) { 2668 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2669 2670 init_task_pid(p, PIDTYPE_PID, pid); 2671 if (thread_group_leader(p)) { 2672 init_task_pid(p, PIDTYPE_TGID, pid); 2673 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2674 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2675 2676 if (is_child_reaper(pid)) { 2677 ns_of_pid(pid)->child_reaper = p; 2678 p->signal->flags |= SIGNAL_UNKILLABLE; 2679 } 2680 p->signal->shared_pending.signal = delayed.signal; 2681 p->signal->tty = tty_kref_get(current->signal->tty); 2682 /* 2683 * Inherit has_child_subreaper flag under the same 2684 * tasklist_lock with adding child to the process tree 2685 * for propagate_has_child_subreaper optimization. 2686 */ 2687 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2688 p->real_parent->signal->is_child_subreaper; 2689 list_add_tail(&p->sibling, &p->real_parent->children); 2690 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2691 attach_pid(p, PIDTYPE_TGID); 2692 attach_pid(p, PIDTYPE_PGID); 2693 attach_pid(p, PIDTYPE_SID); 2694 __this_cpu_inc(process_counts); 2695 } else { 2696 current->signal->nr_threads++; 2697 current->signal->quick_threads++; 2698 atomic_inc(¤t->signal->live); 2699 refcount_inc(¤t->signal->sigcnt); 2700 task_join_group_stop(p); 2701 list_add_tail_rcu(&p->thread_node, 2702 &p->signal->thread_head); 2703 } 2704 attach_pid(p, PIDTYPE_PID); 2705 nr_threads++; 2706 } 2707 total_forks++; 2708 hlist_del_init(&delayed.node); 2709 spin_unlock(¤t->sighand->siglock); 2710 syscall_tracepoint_update(p); 2711 write_unlock_irq(&tasklist_lock); 2712 2713 if (pidfile) 2714 fd_install(pidfd, pidfile); 2715 2716 proc_fork_connector(p); 2717 sched_post_fork(p); 2718 cgroup_post_fork(p, args); 2719 perf_event_fork(p); 2720 2721 trace_task_newtask(p, clone_flags); 2722 uprobe_copy_process(p, clone_flags); 2723 user_events_fork(p, clone_flags); 2724 2725 copy_oom_score_adj(clone_flags, p); 2726 2727 return p; 2728 2729 bad_fork_cancel_cgroup: 2730 sched_core_free(p); 2731 spin_unlock(¤t->sighand->siglock); 2732 write_unlock_irq(&tasklist_lock); 2733 cgroup_cancel_fork(p, args); 2734 bad_fork_put_pidfd: 2735 if (clone_flags & CLONE_PIDFD) { 2736 fput(pidfile); 2737 put_unused_fd(pidfd); 2738 } 2739 bad_fork_free_pid: 2740 if (pid != &init_struct_pid) 2741 free_pid(pid); 2742 bad_fork_cleanup_thread: 2743 exit_thread(p); 2744 bad_fork_cleanup_io: 2745 if (p->io_context) 2746 exit_io_context(p); 2747 bad_fork_cleanup_namespaces: 2748 exit_task_namespaces(p); 2749 bad_fork_cleanup_mm: 2750 if (p->mm) { 2751 mm_clear_owner(p->mm, p); 2752 mmput(p->mm); 2753 } 2754 bad_fork_cleanup_signal: 2755 if (!(clone_flags & CLONE_THREAD)) 2756 free_signal_struct(p->signal); 2757 bad_fork_cleanup_sighand: 2758 __cleanup_sighand(p->sighand); 2759 bad_fork_cleanup_fs: 2760 exit_fs(p); /* blocking */ 2761 bad_fork_cleanup_files: 2762 exit_files(p); /* blocking */ 2763 bad_fork_cleanup_semundo: 2764 exit_sem(p); 2765 bad_fork_cleanup_security: 2766 security_task_free(p); 2767 bad_fork_cleanup_audit: 2768 audit_free(p); 2769 bad_fork_cleanup_perf: 2770 perf_event_free_task(p); 2771 bad_fork_cleanup_policy: 2772 lockdep_free_task(p); 2773 #ifdef CONFIG_NUMA 2774 mpol_put(p->mempolicy); 2775 #endif 2776 bad_fork_cleanup_delayacct: 2777 delayacct_tsk_free(p); 2778 bad_fork_cleanup_count: 2779 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2780 exit_creds(p); 2781 bad_fork_free: 2782 WRITE_ONCE(p->__state, TASK_DEAD); 2783 exit_task_stack_account(p); 2784 put_task_stack(p); 2785 delayed_free_task(p); 2786 fork_out: 2787 spin_lock_irq(¤t->sighand->siglock); 2788 hlist_del_init(&delayed.node); 2789 spin_unlock_irq(¤t->sighand->siglock); 2790 return ERR_PTR(retval); 2791 } 2792 2793 static inline void init_idle_pids(struct task_struct *idle) 2794 { 2795 enum pid_type type; 2796 2797 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2798 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2799 init_task_pid(idle, type, &init_struct_pid); 2800 } 2801 } 2802 2803 static int idle_dummy(void *dummy) 2804 { 2805 /* This function is never called */ 2806 return 0; 2807 } 2808 2809 struct task_struct * __init fork_idle(int cpu) 2810 { 2811 struct task_struct *task; 2812 struct kernel_clone_args args = { 2813 .flags = CLONE_VM, 2814 .fn = &idle_dummy, 2815 .fn_arg = NULL, 2816 .kthread = 1, 2817 .idle = 1, 2818 }; 2819 2820 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2821 if (!IS_ERR(task)) { 2822 init_idle_pids(task); 2823 init_idle(task, cpu); 2824 } 2825 2826 return task; 2827 } 2828 2829 /* 2830 * This is like kernel_clone(), but shaved down and tailored to just 2831 * creating io_uring workers. It returns a created task, or an error pointer. 2832 * The returned task is inactive, and the caller must fire it up through 2833 * wake_up_new_task(p). All signals are blocked in the created task. 2834 */ 2835 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2836 { 2837 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2838 CLONE_IO; 2839 struct kernel_clone_args args = { 2840 .flags = ((lower_32_bits(flags) | CLONE_VM | 2841 CLONE_UNTRACED) & ~CSIGNAL), 2842 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2843 .fn = fn, 2844 .fn_arg = arg, 2845 .io_thread = 1, 2846 .user_worker = 1, 2847 }; 2848 2849 return copy_process(NULL, 0, node, &args); 2850 } 2851 2852 /* 2853 * Ok, this is the main fork-routine. 2854 * 2855 * It copies the process, and if successful kick-starts 2856 * it and waits for it to finish using the VM if required. 2857 * 2858 * args->exit_signal is expected to be checked for sanity by the caller. 2859 */ 2860 pid_t kernel_clone(struct kernel_clone_args *args) 2861 { 2862 u64 clone_flags = args->flags; 2863 struct completion vfork; 2864 struct pid *pid; 2865 struct task_struct *p; 2866 int trace = 0; 2867 pid_t nr; 2868 2869 /* 2870 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2871 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2872 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2873 * field in struct clone_args and it still doesn't make sense to have 2874 * them both point at the same memory location. Performing this check 2875 * here has the advantage that we don't need to have a separate helper 2876 * to check for legacy clone(). 2877 */ 2878 if ((args->flags & CLONE_PIDFD) && 2879 (args->flags & CLONE_PARENT_SETTID) && 2880 (args->pidfd == args->parent_tid)) 2881 return -EINVAL; 2882 2883 /* 2884 * Determine whether and which event to report to ptracer. When 2885 * called from kernel_thread or CLONE_UNTRACED is explicitly 2886 * requested, no event is reported; otherwise, report if the event 2887 * for the type of forking is enabled. 2888 */ 2889 if (!(clone_flags & CLONE_UNTRACED)) { 2890 if (clone_flags & CLONE_VFORK) 2891 trace = PTRACE_EVENT_VFORK; 2892 else if (args->exit_signal != SIGCHLD) 2893 trace = PTRACE_EVENT_CLONE; 2894 else 2895 trace = PTRACE_EVENT_FORK; 2896 2897 if (likely(!ptrace_event_enabled(current, trace))) 2898 trace = 0; 2899 } 2900 2901 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2902 add_latent_entropy(); 2903 2904 if (IS_ERR(p)) 2905 return PTR_ERR(p); 2906 2907 /* 2908 * Do this prior waking up the new thread - the thread pointer 2909 * might get invalid after that point, if the thread exits quickly. 2910 */ 2911 trace_sched_process_fork(current, p); 2912 2913 pid = get_task_pid(p, PIDTYPE_PID); 2914 nr = pid_vnr(pid); 2915 2916 if (clone_flags & CLONE_PARENT_SETTID) 2917 put_user(nr, args->parent_tid); 2918 2919 if (clone_flags & CLONE_VFORK) { 2920 p->vfork_done = &vfork; 2921 init_completion(&vfork); 2922 get_task_struct(p); 2923 } 2924 2925 if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) { 2926 /* lock the task to synchronize with memcg migration */ 2927 task_lock(p); 2928 lru_gen_add_mm(p->mm); 2929 task_unlock(p); 2930 } 2931 2932 wake_up_new_task(p); 2933 2934 /* forking complete and child started to run, tell ptracer */ 2935 if (unlikely(trace)) 2936 ptrace_event_pid(trace, pid); 2937 2938 if (clone_flags & CLONE_VFORK) { 2939 if (!wait_for_vfork_done(p, &vfork)) 2940 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2941 } 2942 2943 put_pid(pid); 2944 return nr; 2945 } 2946 2947 /* 2948 * Create a kernel thread. 2949 */ 2950 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name, 2951 unsigned long flags) 2952 { 2953 struct kernel_clone_args args = { 2954 .flags = ((lower_32_bits(flags) | CLONE_VM | 2955 CLONE_UNTRACED) & ~CSIGNAL), 2956 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2957 .fn = fn, 2958 .fn_arg = arg, 2959 .name = name, 2960 .kthread = 1, 2961 }; 2962 2963 return kernel_clone(&args); 2964 } 2965 2966 /* 2967 * Create a user mode thread. 2968 */ 2969 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) 2970 { 2971 struct kernel_clone_args args = { 2972 .flags = ((lower_32_bits(flags) | CLONE_VM | 2973 CLONE_UNTRACED) & ~CSIGNAL), 2974 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2975 .fn = fn, 2976 .fn_arg = arg, 2977 }; 2978 2979 return kernel_clone(&args); 2980 } 2981 2982 #ifdef __ARCH_WANT_SYS_FORK 2983 SYSCALL_DEFINE0(fork) 2984 { 2985 #ifdef CONFIG_MMU 2986 struct kernel_clone_args args = { 2987 .exit_signal = SIGCHLD, 2988 }; 2989 2990 return kernel_clone(&args); 2991 #else 2992 /* can not support in nommu mode */ 2993 return -EINVAL; 2994 #endif 2995 } 2996 #endif 2997 2998 #ifdef __ARCH_WANT_SYS_VFORK 2999 SYSCALL_DEFINE0(vfork) 3000 { 3001 struct kernel_clone_args args = { 3002 .flags = CLONE_VFORK | CLONE_VM, 3003 .exit_signal = SIGCHLD, 3004 }; 3005 3006 return kernel_clone(&args); 3007 } 3008 #endif 3009 3010 #ifdef __ARCH_WANT_SYS_CLONE 3011 #ifdef CONFIG_CLONE_BACKWARDS 3012 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 3013 int __user *, parent_tidptr, 3014 unsigned long, tls, 3015 int __user *, child_tidptr) 3016 #elif defined(CONFIG_CLONE_BACKWARDS2) 3017 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 3018 int __user *, parent_tidptr, 3019 int __user *, child_tidptr, 3020 unsigned long, tls) 3021 #elif defined(CONFIG_CLONE_BACKWARDS3) 3022 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 3023 int, stack_size, 3024 int __user *, parent_tidptr, 3025 int __user *, child_tidptr, 3026 unsigned long, tls) 3027 #else 3028 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 3029 int __user *, parent_tidptr, 3030 int __user *, child_tidptr, 3031 unsigned long, tls) 3032 #endif 3033 { 3034 struct kernel_clone_args args = { 3035 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 3036 .pidfd = parent_tidptr, 3037 .child_tid = child_tidptr, 3038 .parent_tid = parent_tidptr, 3039 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 3040 .stack = newsp, 3041 .tls = tls, 3042 }; 3043 3044 return kernel_clone(&args); 3045 } 3046 #endif 3047 3048 #ifdef __ARCH_WANT_SYS_CLONE3 3049 3050 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 3051 struct clone_args __user *uargs, 3052 size_t usize) 3053 { 3054 int err; 3055 struct clone_args args; 3056 pid_t *kset_tid = kargs->set_tid; 3057 3058 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 3059 CLONE_ARGS_SIZE_VER0); 3060 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 3061 CLONE_ARGS_SIZE_VER1); 3062 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 3063 CLONE_ARGS_SIZE_VER2); 3064 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 3065 3066 if (unlikely(usize > PAGE_SIZE)) 3067 return -E2BIG; 3068 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 3069 return -EINVAL; 3070 3071 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 3072 if (err) 3073 return err; 3074 3075 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 3076 return -EINVAL; 3077 3078 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 3079 return -EINVAL; 3080 3081 if (unlikely(args.set_tid && args.set_tid_size == 0)) 3082 return -EINVAL; 3083 3084 /* 3085 * Verify that higher 32bits of exit_signal are unset and that 3086 * it is a valid signal 3087 */ 3088 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 3089 !valid_signal(args.exit_signal))) 3090 return -EINVAL; 3091 3092 if ((args.flags & CLONE_INTO_CGROUP) && 3093 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 3094 return -EINVAL; 3095 3096 *kargs = (struct kernel_clone_args){ 3097 .flags = args.flags, 3098 .pidfd = u64_to_user_ptr(args.pidfd), 3099 .child_tid = u64_to_user_ptr(args.child_tid), 3100 .parent_tid = u64_to_user_ptr(args.parent_tid), 3101 .exit_signal = args.exit_signal, 3102 .stack = args.stack, 3103 .stack_size = args.stack_size, 3104 .tls = args.tls, 3105 .set_tid_size = args.set_tid_size, 3106 .cgroup = args.cgroup, 3107 }; 3108 3109 if (args.set_tid && 3110 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 3111 (kargs->set_tid_size * sizeof(pid_t)))) 3112 return -EFAULT; 3113 3114 kargs->set_tid = kset_tid; 3115 3116 return 0; 3117 } 3118 3119 /** 3120 * clone3_stack_valid - check and prepare stack 3121 * @kargs: kernel clone args 3122 * 3123 * Verify that the stack arguments userspace gave us are sane. 3124 * In addition, set the stack direction for userspace since it's easy for us to 3125 * determine. 3126 */ 3127 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 3128 { 3129 if (kargs->stack == 0) { 3130 if (kargs->stack_size > 0) 3131 return false; 3132 } else { 3133 if (kargs->stack_size == 0) 3134 return false; 3135 3136 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 3137 return false; 3138 3139 #if !defined(CONFIG_STACK_GROWSUP) 3140 kargs->stack += kargs->stack_size; 3141 #endif 3142 } 3143 3144 return true; 3145 } 3146 3147 static bool clone3_args_valid(struct kernel_clone_args *kargs) 3148 { 3149 /* Verify that no unknown flags are passed along. */ 3150 if (kargs->flags & 3151 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 3152 return false; 3153 3154 /* 3155 * - make the CLONE_DETACHED bit reusable for clone3 3156 * - make the CSIGNAL bits reusable for clone3 3157 */ 3158 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME)))) 3159 return false; 3160 3161 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 3162 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 3163 return false; 3164 3165 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 3166 kargs->exit_signal) 3167 return false; 3168 3169 if (!clone3_stack_valid(kargs)) 3170 return false; 3171 3172 return true; 3173 } 3174 3175 /** 3176 * sys_clone3 - create a new process with specific properties 3177 * @uargs: argument structure 3178 * @size: size of @uargs 3179 * 3180 * clone3() is the extensible successor to clone()/clone2(). 3181 * It takes a struct as argument that is versioned by its size. 3182 * 3183 * Return: On success, a positive PID for the child process. 3184 * On error, a negative errno number. 3185 */ 3186 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 3187 { 3188 int err; 3189 3190 struct kernel_clone_args kargs; 3191 pid_t set_tid[MAX_PID_NS_LEVEL]; 3192 3193 kargs.set_tid = set_tid; 3194 3195 err = copy_clone_args_from_user(&kargs, uargs, size); 3196 if (err) 3197 return err; 3198 3199 if (!clone3_args_valid(&kargs)) 3200 return -EINVAL; 3201 3202 return kernel_clone(&kargs); 3203 } 3204 #endif 3205 3206 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 3207 { 3208 struct task_struct *leader, *parent, *child; 3209 int res; 3210 3211 read_lock(&tasklist_lock); 3212 leader = top = top->group_leader; 3213 down: 3214 for_each_thread(leader, parent) { 3215 list_for_each_entry(child, &parent->children, sibling) { 3216 res = visitor(child, data); 3217 if (res) { 3218 if (res < 0) 3219 goto out; 3220 leader = child; 3221 goto down; 3222 } 3223 up: 3224 ; 3225 } 3226 } 3227 3228 if (leader != top) { 3229 child = leader; 3230 parent = child->real_parent; 3231 leader = parent->group_leader; 3232 goto up; 3233 } 3234 out: 3235 read_unlock(&tasklist_lock); 3236 } 3237 3238 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 3239 #define ARCH_MIN_MMSTRUCT_ALIGN 0 3240 #endif 3241 3242 static void sighand_ctor(void *data) 3243 { 3244 struct sighand_struct *sighand = data; 3245 3246 spin_lock_init(&sighand->siglock); 3247 init_waitqueue_head(&sighand->signalfd_wqh); 3248 } 3249 3250 void __init mm_cache_init(void) 3251 { 3252 unsigned int mm_size; 3253 3254 /* 3255 * The mm_cpumask is located at the end of mm_struct, and is 3256 * dynamically sized based on the maximum CPU number this system 3257 * can have, taking hotplug into account (nr_cpu_ids). 3258 */ 3259 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size(); 3260 3261 mm_cachep = kmem_cache_create_usercopy("mm_struct", 3262 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 3263 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3264 offsetof(struct mm_struct, saved_auxv), 3265 sizeof_field(struct mm_struct, saved_auxv), 3266 NULL); 3267 } 3268 3269 void __init proc_caches_init(void) 3270 { 3271 sighand_cachep = kmem_cache_create("sighand_cache", 3272 sizeof(struct sighand_struct), 0, 3273 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 3274 SLAB_ACCOUNT, sighand_ctor); 3275 signal_cachep = kmem_cache_create("signal_cache", 3276 sizeof(struct signal_struct), 0, 3277 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3278 NULL); 3279 files_cachep = kmem_cache_create("files_cache", 3280 sizeof(struct files_struct), 0, 3281 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3282 NULL); 3283 fs_cachep = kmem_cache_create("fs_cache", 3284 sizeof(struct fs_struct), 0, 3285 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3286 NULL); 3287 3288 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 3289 #ifdef CONFIG_PER_VMA_LOCK 3290 vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT); 3291 #endif 3292 mmap_init(); 3293 nsproxy_cache_init(); 3294 } 3295 3296 /* 3297 * Check constraints on flags passed to the unshare system call. 3298 */ 3299 static int check_unshare_flags(unsigned long unshare_flags) 3300 { 3301 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 3302 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 3303 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 3304 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 3305 CLONE_NEWTIME)) 3306 return -EINVAL; 3307 /* 3308 * Not implemented, but pretend it works if there is nothing 3309 * to unshare. Note that unsharing the address space or the 3310 * signal handlers also need to unshare the signal queues (aka 3311 * CLONE_THREAD). 3312 */ 3313 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3314 if (!thread_group_empty(current)) 3315 return -EINVAL; 3316 } 3317 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3318 if (refcount_read(¤t->sighand->count) > 1) 3319 return -EINVAL; 3320 } 3321 if (unshare_flags & CLONE_VM) { 3322 if (!current_is_single_threaded()) 3323 return -EINVAL; 3324 } 3325 3326 return 0; 3327 } 3328 3329 /* 3330 * Unshare the filesystem structure if it is being shared 3331 */ 3332 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3333 { 3334 struct fs_struct *fs = current->fs; 3335 3336 if (!(unshare_flags & CLONE_FS) || !fs) 3337 return 0; 3338 3339 /* don't need lock here; in the worst case we'll do useless copy */ 3340 if (fs->users == 1) 3341 return 0; 3342 3343 *new_fsp = copy_fs_struct(fs); 3344 if (!*new_fsp) 3345 return -ENOMEM; 3346 3347 return 0; 3348 } 3349 3350 /* 3351 * Unshare file descriptor table if it is being shared 3352 */ 3353 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 3354 struct files_struct **new_fdp) 3355 { 3356 struct files_struct *fd = current->files; 3357 int error = 0; 3358 3359 if ((unshare_flags & CLONE_FILES) && 3360 (fd && atomic_read(&fd->count) > 1)) { 3361 *new_fdp = dup_fd(fd, max_fds, &error); 3362 if (!*new_fdp) 3363 return error; 3364 } 3365 3366 return 0; 3367 } 3368 3369 /* 3370 * unshare allows a process to 'unshare' part of the process 3371 * context which was originally shared using clone. copy_* 3372 * functions used by kernel_clone() cannot be used here directly 3373 * because they modify an inactive task_struct that is being 3374 * constructed. Here we are modifying the current, active, 3375 * task_struct. 3376 */ 3377 int ksys_unshare(unsigned long unshare_flags) 3378 { 3379 struct fs_struct *fs, *new_fs = NULL; 3380 struct files_struct *new_fd = NULL; 3381 struct cred *new_cred = NULL; 3382 struct nsproxy *new_nsproxy = NULL; 3383 int do_sysvsem = 0; 3384 int err; 3385 3386 /* 3387 * If unsharing a user namespace must also unshare the thread group 3388 * and unshare the filesystem root and working directories. 3389 */ 3390 if (unshare_flags & CLONE_NEWUSER) 3391 unshare_flags |= CLONE_THREAD | CLONE_FS; 3392 /* 3393 * If unsharing vm, must also unshare signal handlers. 3394 */ 3395 if (unshare_flags & CLONE_VM) 3396 unshare_flags |= CLONE_SIGHAND; 3397 /* 3398 * If unsharing a signal handlers, must also unshare the signal queues. 3399 */ 3400 if (unshare_flags & CLONE_SIGHAND) 3401 unshare_flags |= CLONE_THREAD; 3402 /* 3403 * If unsharing namespace, must also unshare filesystem information. 3404 */ 3405 if (unshare_flags & CLONE_NEWNS) 3406 unshare_flags |= CLONE_FS; 3407 3408 err = check_unshare_flags(unshare_flags); 3409 if (err) 3410 goto bad_unshare_out; 3411 /* 3412 * CLONE_NEWIPC must also detach from the undolist: after switching 3413 * to a new ipc namespace, the semaphore arrays from the old 3414 * namespace are unreachable. 3415 */ 3416 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3417 do_sysvsem = 1; 3418 err = unshare_fs(unshare_flags, &new_fs); 3419 if (err) 3420 goto bad_unshare_out; 3421 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 3422 if (err) 3423 goto bad_unshare_cleanup_fs; 3424 err = unshare_userns(unshare_flags, &new_cred); 3425 if (err) 3426 goto bad_unshare_cleanup_fd; 3427 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3428 new_cred, new_fs); 3429 if (err) 3430 goto bad_unshare_cleanup_cred; 3431 3432 if (new_cred) { 3433 err = set_cred_ucounts(new_cred); 3434 if (err) 3435 goto bad_unshare_cleanup_cred; 3436 } 3437 3438 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3439 if (do_sysvsem) { 3440 /* 3441 * CLONE_SYSVSEM is equivalent to sys_exit(). 3442 */ 3443 exit_sem(current); 3444 } 3445 if (unshare_flags & CLONE_NEWIPC) { 3446 /* Orphan segments in old ns (see sem above). */ 3447 exit_shm(current); 3448 shm_init_task(current); 3449 } 3450 3451 if (new_nsproxy) 3452 switch_task_namespaces(current, new_nsproxy); 3453 3454 task_lock(current); 3455 3456 if (new_fs) { 3457 fs = current->fs; 3458 spin_lock(&fs->lock); 3459 current->fs = new_fs; 3460 if (--fs->users) 3461 new_fs = NULL; 3462 else 3463 new_fs = fs; 3464 spin_unlock(&fs->lock); 3465 } 3466 3467 if (new_fd) 3468 swap(current->files, new_fd); 3469 3470 task_unlock(current); 3471 3472 if (new_cred) { 3473 /* Install the new user namespace */ 3474 commit_creds(new_cred); 3475 new_cred = NULL; 3476 } 3477 } 3478 3479 perf_event_namespaces(current); 3480 3481 bad_unshare_cleanup_cred: 3482 if (new_cred) 3483 put_cred(new_cred); 3484 bad_unshare_cleanup_fd: 3485 if (new_fd) 3486 put_files_struct(new_fd); 3487 3488 bad_unshare_cleanup_fs: 3489 if (new_fs) 3490 free_fs_struct(new_fs); 3491 3492 bad_unshare_out: 3493 return err; 3494 } 3495 3496 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3497 { 3498 return ksys_unshare(unshare_flags); 3499 } 3500 3501 /* 3502 * Helper to unshare the files of the current task. 3503 * We don't want to expose copy_files internals to 3504 * the exec layer of the kernel. 3505 */ 3506 3507 int unshare_files(void) 3508 { 3509 struct task_struct *task = current; 3510 struct files_struct *old, *copy = NULL; 3511 int error; 3512 3513 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3514 if (error || !copy) 3515 return error; 3516 3517 old = task->files; 3518 task_lock(task); 3519 task->files = copy; 3520 task_unlock(task); 3521 put_files_struct(old); 3522 return 0; 3523 } 3524 3525 int sysctl_max_threads(struct ctl_table *table, int write, 3526 void *buffer, size_t *lenp, loff_t *ppos) 3527 { 3528 struct ctl_table t; 3529 int ret; 3530 int threads = max_threads; 3531 int min = 1; 3532 int max = MAX_THREADS; 3533 3534 t = *table; 3535 t.data = &threads; 3536 t.extra1 = &min; 3537 t.extra2 = &max; 3538 3539 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3540 if (ret || !write) 3541 return ret; 3542 3543 max_threads = threads; 3544 3545 return 0; 3546 } 3547