1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/sched/ext.h> 27 #include <linux/seq_file.h> 28 #include <linux/rtmutex.h> 29 #include <linux/init.h> 30 #include <linux/unistd.h> 31 #include <linux/module.h> 32 #include <linux/vmalloc.h> 33 #include <linux/completion.h> 34 #include <linux/personality.h> 35 #include <linux/mempolicy.h> 36 #include <linux/sem.h> 37 #include <linux/file.h> 38 #include <linux/fdtable.h> 39 #include <linux/iocontext.h> 40 #include <linux/key.h> 41 #include <linux/kmsan.h> 42 #include <linux/binfmts.h> 43 #include <linux/mman.h> 44 #include <linux/mmu_notifier.h> 45 #include <linux/fs.h> 46 #include <linux/mm.h> 47 #include <linux/mm_inline.h> 48 #include <linux/nsproxy.h> 49 #include <linux/capability.h> 50 #include <linux/cpu.h> 51 #include <linux/cgroup.h> 52 #include <linux/security.h> 53 #include <linux/hugetlb.h> 54 #include <linux/seccomp.h> 55 #include <linux/swap.h> 56 #include <linux/syscalls.h> 57 #include <linux/syscall_user_dispatch.h> 58 #include <linux/jiffies.h> 59 #include <linux/futex.h> 60 #include <linux/compat.h> 61 #include <linux/kthread.h> 62 #include <linux/task_io_accounting_ops.h> 63 #include <linux/rcupdate.h> 64 #include <linux/ptrace.h> 65 #include <linux/mount.h> 66 #include <linux/audit.h> 67 #include <linux/memcontrol.h> 68 #include <linux/ftrace.h> 69 #include <linux/proc_fs.h> 70 #include <linux/profile.h> 71 #include <linux/rmap.h> 72 #include <linux/ksm.h> 73 #include <linux/acct.h> 74 #include <linux/userfaultfd_k.h> 75 #include <linux/tsacct_kern.h> 76 #include <linux/cn_proc.h> 77 #include <linux/freezer.h> 78 #include <linux/delayacct.h> 79 #include <linux/taskstats_kern.h> 80 #include <linux/tty.h> 81 #include <linux/fs_struct.h> 82 #include <linux/magic.h> 83 #include <linux/perf_event.h> 84 #include <linux/posix-timers.h> 85 #include <linux/user-return-notifier.h> 86 #include <linux/oom.h> 87 #include <linux/khugepaged.h> 88 #include <linux/signalfd.h> 89 #include <linux/uprobes.h> 90 #include <linux/aio.h> 91 #include <linux/compiler.h> 92 #include <linux/sysctl.h> 93 #include <linux/kcov.h> 94 #include <linux/livepatch.h> 95 #include <linux/thread_info.h> 96 #include <linux/stackleak.h> 97 #include <linux/kasan.h> 98 #include <linux/scs.h> 99 #include <linux/io_uring.h> 100 #include <linux/bpf.h> 101 #include <linux/stackprotector.h> 102 #include <linux/user_events.h> 103 #include <linux/iommu.h> 104 #include <linux/rseq.h> 105 #include <uapi/linux/pidfd.h> 106 #include <linux/pidfs.h> 107 108 #include <asm/pgalloc.h> 109 #include <linux/uaccess.h> 110 #include <asm/mmu_context.h> 111 #include <asm/cacheflush.h> 112 #include <asm/tlbflush.h> 113 114 #include <trace/events/sched.h> 115 116 #define CREATE_TRACE_POINTS 117 #include <trace/events/task.h> 118 119 /* 120 * Minimum number of threads to boot the kernel 121 */ 122 #define MIN_THREADS 20 123 124 /* 125 * Maximum number of threads 126 */ 127 #define MAX_THREADS FUTEX_TID_MASK 128 129 /* 130 * Protected counters by write_lock_irq(&tasklist_lock) 131 */ 132 unsigned long total_forks; /* Handle normal Linux uptimes. */ 133 int nr_threads; /* The idle threads do not count.. */ 134 135 static int max_threads; /* tunable limit on nr_threads */ 136 137 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 138 139 static const char * const resident_page_types[] = { 140 NAMED_ARRAY_INDEX(MM_FILEPAGES), 141 NAMED_ARRAY_INDEX(MM_ANONPAGES), 142 NAMED_ARRAY_INDEX(MM_SWAPENTS), 143 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 144 }; 145 146 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 147 148 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 149 150 #ifdef CONFIG_PROVE_RCU 151 int lockdep_tasklist_lock_is_held(void) 152 { 153 return lockdep_is_held(&tasklist_lock); 154 } 155 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 156 #endif /* #ifdef CONFIG_PROVE_RCU */ 157 158 int nr_processes(void) 159 { 160 int cpu; 161 int total = 0; 162 163 for_each_possible_cpu(cpu) 164 total += per_cpu(process_counts, cpu); 165 166 return total; 167 } 168 169 void __weak arch_release_task_struct(struct task_struct *tsk) 170 { 171 } 172 173 static struct kmem_cache *task_struct_cachep; 174 175 static inline struct task_struct *alloc_task_struct_node(int node) 176 { 177 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 178 } 179 180 static inline void free_task_struct(struct task_struct *tsk) 181 { 182 kmem_cache_free(task_struct_cachep, tsk); 183 } 184 185 /* 186 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 187 * kmemcache based allocator. 188 */ 189 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 190 191 # ifdef CONFIG_VMAP_STACK 192 /* 193 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 194 * flush. Try to minimize the number of calls by caching stacks. 195 */ 196 #define NR_CACHED_STACKS 2 197 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 198 199 struct vm_stack { 200 struct rcu_head rcu; 201 struct vm_struct *stack_vm_area; 202 }; 203 204 static bool try_release_thread_stack_to_cache(struct vm_struct *vm) 205 { 206 unsigned int i; 207 208 for (i = 0; i < NR_CACHED_STACKS; i++) { 209 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL) 210 continue; 211 return true; 212 } 213 return false; 214 } 215 216 static void thread_stack_free_rcu(struct rcu_head *rh) 217 { 218 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 219 220 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 221 return; 222 223 vfree(vm_stack); 224 } 225 226 static void thread_stack_delayed_free(struct task_struct *tsk) 227 { 228 struct vm_stack *vm_stack = tsk->stack; 229 230 vm_stack->stack_vm_area = tsk->stack_vm_area; 231 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 232 } 233 234 static int free_vm_stack_cache(unsigned int cpu) 235 { 236 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 237 int i; 238 239 for (i = 0; i < NR_CACHED_STACKS; i++) { 240 struct vm_struct *vm_stack = cached_vm_stacks[i]; 241 242 if (!vm_stack) 243 continue; 244 245 vfree(vm_stack->addr); 246 cached_vm_stacks[i] = NULL; 247 } 248 249 return 0; 250 } 251 252 static int memcg_charge_kernel_stack(struct vm_struct *vm) 253 { 254 int i; 255 int ret; 256 int nr_charged = 0; 257 258 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 259 260 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 261 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0); 262 if (ret) 263 goto err; 264 nr_charged++; 265 } 266 return 0; 267 err: 268 for (i = 0; i < nr_charged; i++) 269 memcg_kmem_uncharge_page(vm->pages[i], 0); 270 return ret; 271 } 272 273 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 274 { 275 struct vm_struct *vm; 276 void *stack; 277 int i; 278 279 for (i = 0; i < NR_CACHED_STACKS; i++) { 280 struct vm_struct *s; 281 282 s = this_cpu_xchg(cached_stacks[i], NULL); 283 284 if (!s) 285 continue; 286 287 /* Reset stack metadata. */ 288 kasan_unpoison_range(s->addr, THREAD_SIZE); 289 290 stack = kasan_reset_tag(s->addr); 291 292 /* Clear stale pointers from reused stack. */ 293 memset(stack, 0, THREAD_SIZE); 294 295 if (memcg_charge_kernel_stack(s)) { 296 vfree(s->addr); 297 return -ENOMEM; 298 } 299 300 tsk->stack_vm_area = s; 301 tsk->stack = stack; 302 return 0; 303 } 304 305 /* 306 * Allocated stacks are cached and later reused by new threads, 307 * so memcg accounting is performed manually on assigning/releasing 308 * stacks to tasks. Drop __GFP_ACCOUNT. 309 */ 310 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 311 VMALLOC_START, VMALLOC_END, 312 THREADINFO_GFP & ~__GFP_ACCOUNT, 313 PAGE_KERNEL, 314 0, node, __builtin_return_address(0)); 315 if (!stack) 316 return -ENOMEM; 317 318 vm = find_vm_area(stack); 319 if (memcg_charge_kernel_stack(vm)) { 320 vfree(stack); 321 return -ENOMEM; 322 } 323 /* 324 * We can't call find_vm_area() in interrupt context, and 325 * free_thread_stack() can be called in interrupt context, 326 * so cache the vm_struct. 327 */ 328 tsk->stack_vm_area = vm; 329 stack = kasan_reset_tag(stack); 330 tsk->stack = stack; 331 return 0; 332 } 333 334 static void free_thread_stack(struct task_struct *tsk) 335 { 336 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 337 thread_stack_delayed_free(tsk); 338 339 tsk->stack = NULL; 340 tsk->stack_vm_area = NULL; 341 } 342 343 # else /* !CONFIG_VMAP_STACK */ 344 345 static void thread_stack_free_rcu(struct rcu_head *rh) 346 { 347 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 348 } 349 350 static void thread_stack_delayed_free(struct task_struct *tsk) 351 { 352 struct rcu_head *rh = tsk->stack; 353 354 call_rcu(rh, thread_stack_free_rcu); 355 } 356 357 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 358 { 359 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 360 THREAD_SIZE_ORDER); 361 362 if (likely(page)) { 363 tsk->stack = kasan_reset_tag(page_address(page)); 364 return 0; 365 } 366 return -ENOMEM; 367 } 368 369 static void free_thread_stack(struct task_struct *tsk) 370 { 371 thread_stack_delayed_free(tsk); 372 tsk->stack = NULL; 373 } 374 375 # endif /* CONFIG_VMAP_STACK */ 376 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */ 377 378 static struct kmem_cache *thread_stack_cache; 379 380 static void thread_stack_free_rcu(struct rcu_head *rh) 381 { 382 kmem_cache_free(thread_stack_cache, rh); 383 } 384 385 static void thread_stack_delayed_free(struct task_struct *tsk) 386 { 387 struct rcu_head *rh = tsk->stack; 388 389 call_rcu(rh, thread_stack_free_rcu); 390 } 391 392 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 393 { 394 unsigned long *stack; 395 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 396 stack = kasan_reset_tag(stack); 397 tsk->stack = stack; 398 return stack ? 0 : -ENOMEM; 399 } 400 401 static void free_thread_stack(struct task_struct *tsk) 402 { 403 thread_stack_delayed_free(tsk); 404 tsk->stack = NULL; 405 } 406 407 void thread_stack_cache_init(void) 408 { 409 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 410 THREAD_SIZE, THREAD_SIZE, 0, 0, 411 THREAD_SIZE, NULL); 412 BUG_ON(thread_stack_cache == NULL); 413 } 414 415 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */ 416 417 /* SLAB cache for signal_struct structures (tsk->signal) */ 418 static struct kmem_cache *signal_cachep; 419 420 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 421 struct kmem_cache *sighand_cachep; 422 423 /* SLAB cache for files_struct structures (tsk->files) */ 424 struct kmem_cache *files_cachep; 425 426 /* SLAB cache for fs_struct structures (tsk->fs) */ 427 struct kmem_cache *fs_cachep; 428 429 /* SLAB cache for vm_area_struct structures */ 430 static struct kmem_cache *vm_area_cachep; 431 432 /* SLAB cache for mm_struct structures (tsk->mm) */ 433 static struct kmem_cache *mm_cachep; 434 435 #ifdef CONFIG_PER_VMA_LOCK 436 437 /* SLAB cache for vm_area_struct.lock */ 438 static struct kmem_cache *vma_lock_cachep; 439 440 static bool vma_lock_alloc(struct vm_area_struct *vma) 441 { 442 vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL); 443 if (!vma->vm_lock) 444 return false; 445 446 init_rwsem(&vma->vm_lock->lock); 447 vma->vm_lock_seq = -1; 448 449 return true; 450 } 451 452 static inline void vma_lock_free(struct vm_area_struct *vma) 453 { 454 kmem_cache_free(vma_lock_cachep, vma->vm_lock); 455 } 456 457 #else /* CONFIG_PER_VMA_LOCK */ 458 459 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; } 460 static inline void vma_lock_free(struct vm_area_struct *vma) {} 461 462 #endif /* CONFIG_PER_VMA_LOCK */ 463 464 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 465 { 466 struct vm_area_struct *vma; 467 468 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 469 if (!vma) 470 return NULL; 471 472 vma_init(vma, mm); 473 if (!vma_lock_alloc(vma)) { 474 kmem_cache_free(vm_area_cachep, vma); 475 return NULL; 476 } 477 478 return vma; 479 } 480 481 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 482 { 483 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 484 485 if (!new) 486 return NULL; 487 488 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 489 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 490 /* 491 * orig->shared.rb may be modified concurrently, but the clone 492 * will be reinitialized. 493 */ 494 data_race(memcpy(new, orig, sizeof(*new))); 495 if (!vma_lock_alloc(new)) { 496 kmem_cache_free(vm_area_cachep, new); 497 return NULL; 498 } 499 INIT_LIST_HEAD(&new->anon_vma_chain); 500 vma_numab_state_init(new); 501 dup_anon_vma_name(orig, new); 502 503 return new; 504 } 505 506 void __vm_area_free(struct vm_area_struct *vma) 507 { 508 vma_numab_state_free(vma); 509 free_anon_vma_name(vma); 510 vma_lock_free(vma); 511 kmem_cache_free(vm_area_cachep, vma); 512 } 513 514 #ifdef CONFIG_PER_VMA_LOCK 515 static void vm_area_free_rcu_cb(struct rcu_head *head) 516 { 517 struct vm_area_struct *vma = container_of(head, struct vm_area_struct, 518 vm_rcu); 519 520 /* The vma should not be locked while being destroyed. */ 521 VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma); 522 __vm_area_free(vma); 523 } 524 #endif 525 526 void vm_area_free(struct vm_area_struct *vma) 527 { 528 #ifdef CONFIG_PER_VMA_LOCK 529 call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb); 530 #else 531 __vm_area_free(vma); 532 #endif 533 } 534 535 static void account_kernel_stack(struct task_struct *tsk, int account) 536 { 537 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 538 struct vm_struct *vm = task_stack_vm_area(tsk); 539 int i; 540 541 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 542 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 543 account * (PAGE_SIZE / 1024)); 544 } else { 545 void *stack = task_stack_page(tsk); 546 547 /* All stack pages are in the same node. */ 548 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 549 account * (THREAD_SIZE / 1024)); 550 } 551 } 552 553 void exit_task_stack_account(struct task_struct *tsk) 554 { 555 account_kernel_stack(tsk, -1); 556 557 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 558 struct vm_struct *vm; 559 int i; 560 561 vm = task_stack_vm_area(tsk); 562 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 563 memcg_kmem_uncharge_page(vm->pages[i], 0); 564 } 565 } 566 567 static void release_task_stack(struct task_struct *tsk) 568 { 569 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 570 return; /* Better to leak the stack than to free prematurely */ 571 572 free_thread_stack(tsk); 573 } 574 575 #ifdef CONFIG_THREAD_INFO_IN_TASK 576 void put_task_stack(struct task_struct *tsk) 577 { 578 if (refcount_dec_and_test(&tsk->stack_refcount)) 579 release_task_stack(tsk); 580 } 581 #endif 582 583 void free_task(struct task_struct *tsk) 584 { 585 #ifdef CONFIG_SECCOMP 586 WARN_ON_ONCE(tsk->seccomp.filter); 587 #endif 588 release_user_cpus_ptr(tsk); 589 scs_release(tsk); 590 591 #ifndef CONFIG_THREAD_INFO_IN_TASK 592 /* 593 * The task is finally done with both the stack and thread_info, 594 * so free both. 595 */ 596 release_task_stack(tsk); 597 #else 598 /* 599 * If the task had a separate stack allocation, it should be gone 600 * by now. 601 */ 602 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 603 #endif 604 rt_mutex_debug_task_free(tsk); 605 ftrace_graph_exit_task(tsk); 606 arch_release_task_struct(tsk); 607 if (tsk->flags & PF_KTHREAD) 608 free_kthread_struct(tsk); 609 bpf_task_storage_free(tsk); 610 free_task_struct(tsk); 611 } 612 EXPORT_SYMBOL(free_task); 613 614 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 615 { 616 struct file *exe_file; 617 618 exe_file = get_mm_exe_file(oldmm); 619 RCU_INIT_POINTER(mm->exe_file, exe_file); 620 /* 621 * We depend on the oldmm having properly denied write access to the 622 * exe_file already. 623 */ 624 if (exe_file && deny_write_access(exe_file)) 625 pr_warn_once("deny_write_access() failed in %s\n", __func__); 626 } 627 628 #ifdef CONFIG_MMU 629 static __latent_entropy int dup_mmap(struct mm_struct *mm, 630 struct mm_struct *oldmm) 631 { 632 struct vm_area_struct *mpnt, *tmp; 633 int retval; 634 unsigned long charge = 0; 635 LIST_HEAD(uf); 636 VMA_ITERATOR(vmi, mm, 0); 637 638 uprobe_start_dup_mmap(); 639 if (mmap_write_lock_killable(oldmm)) { 640 retval = -EINTR; 641 goto fail_uprobe_end; 642 } 643 flush_cache_dup_mm(oldmm); 644 uprobe_dup_mmap(oldmm, mm); 645 /* 646 * Not linked in yet - no deadlock potential: 647 */ 648 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 649 650 /* No ordering required: file already has been exposed. */ 651 dup_mm_exe_file(mm, oldmm); 652 653 mm->total_vm = oldmm->total_vm; 654 mm->data_vm = oldmm->data_vm; 655 mm->exec_vm = oldmm->exec_vm; 656 mm->stack_vm = oldmm->stack_vm; 657 658 retval = ksm_fork(mm, oldmm); 659 if (retval) 660 goto out; 661 khugepaged_fork(mm, oldmm); 662 663 /* Use __mt_dup() to efficiently build an identical maple tree. */ 664 retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL); 665 if (unlikely(retval)) 666 goto out; 667 668 mt_clear_in_rcu(vmi.mas.tree); 669 for_each_vma(vmi, mpnt) { 670 struct file *file; 671 672 vma_start_write(mpnt); 673 if (mpnt->vm_flags & VM_DONTCOPY) { 674 retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start, 675 mpnt->vm_end, GFP_KERNEL); 676 if (retval) 677 goto loop_out; 678 679 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 680 continue; 681 } 682 charge = 0; 683 /* 684 * Don't duplicate many vmas if we've been oom-killed (for 685 * example) 686 */ 687 if (fatal_signal_pending(current)) { 688 retval = -EINTR; 689 goto loop_out; 690 } 691 if (mpnt->vm_flags & VM_ACCOUNT) { 692 unsigned long len = vma_pages(mpnt); 693 694 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 695 goto fail_nomem; 696 charge = len; 697 } 698 tmp = vm_area_dup(mpnt); 699 if (!tmp) 700 goto fail_nomem; 701 retval = vma_dup_policy(mpnt, tmp); 702 if (retval) 703 goto fail_nomem_policy; 704 tmp->vm_mm = mm; 705 retval = dup_userfaultfd(tmp, &uf); 706 if (retval) 707 goto fail_nomem_anon_vma_fork; 708 if (tmp->vm_flags & VM_WIPEONFORK) { 709 /* 710 * VM_WIPEONFORK gets a clean slate in the child. 711 * Don't prepare anon_vma until fault since we don't 712 * copy page for current vma. 713 */ 714 tmp->anon_vma = NULL; 715 } else if (anon_vma_fork(tmp, mpnt)) 716 goto fail_nomem_anon_vma_fork; 717 vm_flags_clear(tmp, VM_LOCKED_MASK); 718 /* 719 * Copy/update hugetlb private vma information. 720 */ 721 if (is_vm_hugetlb_page(tmp)) 722 hugetlb_dup_vma_private(tmp); 723 724 /* 725 * Link the vma into the MT. After using __mt_dup(), memory 726 * allocation is not necessary here, so it cannot fail. 727 */ 728 vma_iter_bulk_store(&vmi, tmp); 729 730 mm->map_count++; 731 732 if (tmp->vm_ops && tmp->vm_ops->open) 733 tmp->vm_ops->open(tmp); 734 735 file = tmp->vm_file; 736 if (file) { 737 struct address_space *mapping = file->f_mapping; 738 739 get_file(file); 740 i_mmap_lock_write(mapping); 741 if (vma_is_shared_maywrite(tmp)) 742 mapping_allow_writable(mapping); 743 flush_dcache_mmap_lock(mapping); 744 /* insert tmp into the share list, just after mpnt */ 745 vma_interval_tree_insert_after(tmp, mpnt, 746 &mapping->i_mmap); 747 flush_dcache_mmap_unlock(mapping); 748 i_mmap_unlock_write(mapping); 749 } 750 751 if (!(tmp->vm_flags & VM_WIPEONFORK)) 752 retval = copy_page_range(tmp, mpnt); 753 754 if (retval) { 755 mpnt = vma_next(&vmi); 756 goto loop_out; 757 } 758 } 759 /* a new mm has just been created */ 760 retval = arch_dup_mmap(oldmm, mm); 761 loop_out: 762 vma_iter_free(&vmi); 763 if (!retval) { 764 mt_set_in_rcu(vmi.mas.tree); 765 } else if (mpnt) { 766 /* 767 * The entire maple tree has already been duplicated. If the 768 * mmap duplication fails, mark the failure point with 769 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered, 770 * stop releasing VMAs that have not been duplicated after this 771 * point. 772 */ 773 mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1); 774 mas_store(&vmi.mas, XA_ZERO_ENTRY); 775 } 776 out: 777 mmap_write_unlock(mm); 778 flush_tlb_mm(oldmm); 779 mmap_write_unlock(oldmm); 780 dup_userfaultfd_complete(&uf); 781 fail_uprobe_end: 782 uprobe_end_dup_mmap(); 783 return retval; 784 785 fail_nomem_anon_vma_fork: 786 mpol_put(vma_policy(tmp)); 787 fail_nomem_policy: 788 vm_area_free(tmp); 789 fail_nomem: 790 retval = -ENOMEM; 791 vm_unacct_memory(charge); 792 goto loop_out; 793 } 794 795 static inline int mm_alloc_pgd(struct mm_struct *mm) 796 { 797 mm->pgd = pgd_alloc(mm); 798 if (unlikely(!mm->pgd)) 799 return -ENOMEM; 800 return 0; 801 } 802 803 static inline void mm_free_pgd(struct mm_struct *mm) 804 { 805 pgd_free(mm, mm->pgd); 806 } 807 #else 808 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 809 { 810 mmap_write_lock(oldmm); 811 dup_mm_exe_file(mm, oldmm); 812 mmap_write_unlock(oldmm); 813 return 0; 814 } 815 #define mm_alloc_pgd(mm) (0) 816 #define mm_free_pgd(mm) 817 #endif /* CONFIG_MMU */ 818 819 static void check_mm(struct mm_struct *mm) 820 { 821 int i; 822 823 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 824 "Please make sure 'struct resident_page_types[]' is updated as well"); 825 826 for (i = 0; i < NR_MM_COUNTERS; i++) { 827 long x = percpu_counter_sum(&mm->rss_stat[i]); 828 829 if (unlikely(x)) 830 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 831 mm, resident_page_types[i], x); 832 } 833 834 if (mm_pgtables_bytes(mm)) 835 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 836 mm_pgtables_bytes(mm)); 837 838 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 839 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 840 #endif 841 } 842 843 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 844 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 845 846 static void do_check_lazy_tlb(void *arg) 847 { 848 struct mm_struct *mm = arg; 849 850 WARN_ON_ONCE(current->active_mm == mm); 851 } 852 853 static void do_shoot_lazy_tlb(void *arg) 854 { 855 struct mm_struct *mm = arg; 856 857 if (current->active_mm == mm) { 858 WARN_ON_ONCE(current->mm); 859 current->active_mm = &init_mm; 860 switch_mm(mm, &init_mm, current); 861 } 862 } 863 864 static void cleanup_lazy_tlbs(struct mm_struct *mm) 865 { 866 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) { 867 /* 868 * In this case, lazy tlb mms are refounted and would not reach 869 * __mmdrop until all CPUs have switched away and mmdrop()ed. 870 */ 871 return; 872 } 873 874 /* 875 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it 876 * requires lazy mm users to switch to another mm when the refcount 877 * drops to zero, before the mm is freed. This requires IPIs here to 878 * switch kernel threads to init_mm. 879 * 880 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm 881 * switch with the final userspace teardown TLB flush which leaves the 882 * mm lazy on this CPU but no others, reducing the need for additional 883 * IPIs here. There are cases where a final IPI is still required here, 884 * such as the final mmdrop being performed on a different CPU than the 885 * one exiting, or kernel threads using the mm when userspace exits. 886 * 887 * IPI overheads have not found to be expensive, but they could be 888 * reduced in a number of possible ways, for example (roughly 889 * increasing order of complexity): 890 * - The last lazy reference created by exit_mm() could instead switch 891 * to init_mm, however it's probable this will run on the same CPU 892 * immediately afterwards, so this may not reduce IPIs much. 893 * - A batch of mms requiring IPIs could be gathered and freed at once. 894 * - CPUs store active_mm where it can be remotely checked without a 895 * lock, to filter out false-positives in the cpumask. 896 * - After mm_users or mm_count reaches zero, switching away from the 897 * mm could clear mm_cpumask to reduce some IPIs, perhaps together 898 * with some batching or delaying of the final IPIs. 899 * - A delayed freeing and RCU-like quiescing sequence based on mm 900 * switching to avoid IPIs completely. 901 */ 902 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1); 903 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES)) 904 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1); 905 } 906 907 /* 908 * Called when the last reference to the mm 909 * is dropped: either by a lazy thread or by 910 * mmput. Free the page directory and the mm. 911 */ 912 void __mmdrop(struct mm_struct *mm) 913 { 914 BUG_ON(mm == &init_mm); 915 WARN_ON_ONCE(mm == current->mm); 916 917 /* Ensure no CPUs are using this as their lazy tlb mm */ 918 cleanup_lazy_tlbs(mm); 919 920 WARN_ON_ONCE(mm == current->active_mm); 921 mm_free_pgd(mm); 922 destroy_context(mm); 923 mmu_notifier_subscriptions_destroy(mm); 924 check_mm(mm); 925 put_user_ns(mm->user_ns); 926 mm_pasid_drop(mm); 927 mm_destroy_cid(mm); 928 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS); 929 930 free_mm(mm); 931 } 932 EXPORT_SYMBOL_GPL(__mmdrop); 933 934 static void mmdrop_async_fn(struct work_struct *work) 935 { 936 struct mm_struct *mm; 937 938 mm = container_of(work, struct mm_struct, async_put_work); 939 __mmdrop(mm); 940 } 941 942 static void mmdrop_async(struct mm_struct *mm) 943 { 944 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 945 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 946 schedule_work(&mm->async_put_work); 947 } 948 } 949 950 static inline void free_signal_struct(struct signal_struct *sig) 951 { 952 taskstats_tgid_free(sig); 953 sched_autogroup_exit(sig); 954 /* 955 * __mmdrop is not safe to call from softirq context on x86 due to 956 * pgd_dtor so postpone it to the async context 957 */ 958 if (sig->oom_mm) 959 mmdrop_async(sig->oom_mm); 960 kmem_cache_free(signal_cachep, sig); 961 } 962 963 static inline void put_signal_struct(struct signal_struct *sig) 964 { 965 if (refcount_dec_and_test(&sig->sigcnt)) 966 free_signal_struct(sig); 967 } 968 969 void __put_task_struct(struct task_struct *tsk) 970 { 971 WARN_ON(!tsk->exit_state); 972 WARN_ON(refcount_read(&tsk->usage)); 973 WARN_ON(tsk == current); 974 975 sched_ext_free(tsk); 976 io_uring_free(tsk); 977 cgroup_free(tsk); 978 task_numa_free(tsk, true); 979 security_task_free(tsk); 980 exit_creds(tsk); 981 delayacct_tsk_free(tsk); 982 put_signal_struct(tsk->signal); 983 sched_core_free(tsk); 984 free_task(tsk); 985 } 986 EXPORT_SYMBOL_GPL(__put_task_struct); 987 988 void __put_task_struct_rcu_cb(struct rcu_head *rhp) 989 { 990 struct task_struct *task = container_of(rhp, struct task_struct, rcu); 991 992 __put_task_struct(task); 993 } 994 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb); 995 996 void __init __weak arch_task_cache_init(void) { } 997 998 /* 999 * set_max_threads 1000 */ 1001 static void set_max_threads(unsigned int max_threads_suggested) 1002 { 1003 u64 threads; 1004 unsigned long nr_pages = totalram_pages(); 1005 1006 /* 1007 * The number of threads shall be limited such that the thread 1008 * structures may only consume a small part of the available memory. 1009 */ 1010 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 1011 threads = MAX_THREADS; 1012 else 1013 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 1014 (u64) THREAD_SIZE * 8UL); 1015 1016 if (threads > max_threads_suggested) 1017 threads = max_threads_suggested; 1018 1019 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 1020 } 1021 1022 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 1023 /* Initialized by the architecture: */ 1024 int arch_task_struct_size __read_mostly; 1025 #endif 1026 1027 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 1028 { 1029 /* Fetch thread_struct whitelist for the architecture. */ 1030 arch_thread_struct_whitelist(offset, size); 1031 1032 /* 1033 * Handle zero-sized whitelist or empty thread_struct, otherwise 1034 * adjust offset to position of thread_struct in task_struct. 1035 */ 1036 if (unlikely(*size == 0)) 1037 *offset = 0; 1038 else 1039 *offset += offsetof(struct task_struct, thread); 1040 } 1041 1042 void __init fork_init(void) 1043 { 1044 int i; 1045 #ifndef ARCH_MIN_TASKALIGN 1046 #define ARCH_MIN_TASKALIGN 0 1047 #endif 1048 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 1049 unsigned long useroffset, usersize; 1050 1051 /* create a slab on which task_structs can be allocated */ 1052 task_struct_whitelist(&useroffset, &usersize); 1053 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 1054 arch_task_struct_size, align, 1055 SLAB_PANIC|SLAB_ACCOUNT, 1056 useroffset, usersize, NULL); 1057 1058 /* do the arch specific task caches init */ 1059 arch_task_cache_init(); 1060 1061 set_max_threads(MAX_THREADS); 1062 1063 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 1064 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 1065 init_task.signal->rlim[RLIMIT_SIGPENDING] = 1066 init_task.signal->rlim[RLIMIT_NPROC]; 1067 1068 for (i = 0; i < UCOUNT_COUNTS; i++) 1069 init_user_ns.ucount_max[i] = max_threads/2; 1070 1071 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 1072 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 1073 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 1074 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 1075 1076 #ifdef CONFIG_VMAP_STACK 1077 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 1078 NULL, free_vm_stack_cache); 1079 #endif 1080 1081 scs_init(); 1082 1083 lockdep_init_task(&init_task); 1084 uprobes_init(); 1085 } 1086 1087 int __weak arch_dup_task_struct(struct task_struct *dst, 1088 struct task_struct *src) 1089 { 1090 *dst = *src; 1091 return 0; 1092 } 1093 1094 void set_task_stack_end_magic(struct task_struct *tsk) 1095 { 1096 unsigned long *stackend; 1097 1098 stackend = end_of_stack(tsk); 1099 *stackend = STACK_END_MAGIC; /* for overflow detection */ 1100 } 1101 1102 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 1103 { 1104 struct task_struct *tsk; 1105 int err; 1106 1107 if (node == NUMA_NO_NODE) 1108 node = tsk_fork_get_node(orig); 1109 tsk = alloc_task_struct_node(node); 1110 if (!tsk) 1111 return NULL; 1112 1113 err = arch_dup_task_struct(tsk, orig); 1114 if (err) 1115 goto free_tsk; 1116 1117 err = alloc_thread_stack_node(tsk, node); 1118 if (err) 1119 goto free_tsk; 1120 1121 #ifdef CONFIG_THREAD_INFO_IN_TASK 1122 refcount_set(&tsk->stack_refcount, 1); 1123 #endif 1124 account_kernel_stack(tsk, 1); 1125 1126 err = scs_prepare(tsk, node); 1127 if (err) 1128 goto free_stack; 1129 1130 #ifdef CONFIG_SECCOMP 1131 /* 1132 * We must handle setting up seccomp filters once we're under 1133 * the sighand lock in case orig has changed between now and 1134 * then. Until then, filter must be NULL to avoid messing up 1135 * the usage counts on the error path calling free_task. 1136 */ 1137 tsk->seccomp.filter = NULL; 1138 #endif 1139 1140 setup_thread_stack(tsk, orig); 1141 clear_user_return_notifier(tsk); 1142 clear_tsk_need_resched(tsk); 1143 set_task_stack_end_magic(tsk); 1144 clear_syscall_work_syscall_user_dispatch(tsk); 1145 1146 #ifdef CONFIG_STACKPROTECTOR 1147 tsk->stack_canary = get_random_canary(); 1148 #endif 1149 if (orig->cpus_ptr == &orig->cpus_mask) 1150 tsk->cpus_ptr = &tsk->cpus_mask; 1151 dup_user_cpus_ptr(tsk, orig, node); 1152 1153 /* 1154 * One for the user space visible state that goes away when reaped. 1155 * One for the scheduler. 1156 */ 1157 refcount_set(&tsk->rcu_users, 2); 1158 /* One for the rcu users */ 1159 refcount_set(&tsk->usage, 1); 1160 #ifdef CONFIG_BLK_DEV_IO_TRACE 1161 tsk->btrace_seq = 0; 1162 #endif 1163 tsk->splice_pipe = NULL; 1164 tsk->task_frag.page = NULL; 1165 tsk->wake_q.next = NULL; 1166 tsk->worker_private = NULL; 1167 1168 kcov_task_init(tsk); 1169 kmsan_task_create(tsk); 1170 kmap_local_fork(tsk); 1171 1172 #ifdef CONFIG_FAULT_INJECTION 1173 tsk->fail_nth = 0; 1174 #endif 1175 1176 #ifdef CONFIG_BLK_CGROUP 1177 tsk->throttle_disk = NULL; 1178 tsk->use_memdelay = 0; 1179 #endif 1180 1181 #ifdef CONFIG_ARCH_HAS_CPU_PASID 1182 tsk->pasid_activated = 0; 1183 #endif 1184 1185 #ifdef CONFIG_MEMCG 1186 tsk->active_memcg = NULL; 1187 #endif 1188 1189 #ifdef CONFIG_CPU_SUP_INTEL 1190 tsk->reported_split_lock = 0; 1191 #endif 1192 1193 #ifdef CONFIG_SCHED_MM_CID 1194 tsk->mm_cid = -1; 1195 tsk->last_mm_cid = -1; 1196 tsk->mm_cid_active = 0; 1197 tsk->migrate_from_cpu = -1; 1198 #endif 1199 return tsk; 1200 1201 free_stack: 1202 exit_task_stack_account(tsk); 1203 free_thread_stack(tsk); 1204 free_tsk: 1205 free_task_struct(tsk); 1206 return NULL; 1207 } 1208 1209 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 1210 1211 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 1212 1213 static int __init coredump_filter_setup(char *s) 1214 { 1215 default_dump_filter = 1216 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 1217 MMF_DUMP_FILTER_MASK; 1218 return 1; 1219 } 1220 1221 __setup("coredump_filter=", coredump_filter_setup); 1222 1223 #include <linux/init_task.h> 1224 1225 static void mm_init_aio(struct mm_struct *mm) 1226 { 1227 #ifdef CONFIG_AIO 1228 spin_lock_init(&mm->ioctx_lock); 1229 mm->ioctx_table = NULL; 1230 #endif 1231 } 1232 1233 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1234 struct task_struct *p) 1235 { 1236 #ifdef CONFIG_MEMCG 1237 if (mm->owner == p) 1238 WRITE_ONCE(mm->owner, NULL); 1239 #endif 1240 } 1241 1242 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1243 { 1244 #ifdef CONFIG_MEMCG 1245 mm->owner = p; 1246 #endif 1247 } 1248 1249 static void mm_init_uprobes_state(struct mm_struct *mm) 1250 { 1251 #ifdef CONFIG_UPROBES 1252 mm->uprobes_state.xol_area = NULL; 1253 #endif 1254 } 1255 1256 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1257 struct user_namespace *user_ns) 1258 { 1259 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); 1260 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); 1261 atomic_set(&mm->mm_users, 1); 1262 atomic_set(&mm->mm_count, 1); 1263 seqcount_init(&mm->write_protect_seq); 1264 mmap_init_lock(mm); 1265 INIT_LIST_HEAD(&mm->mmlist); 1266 #ifdef CONFIG_PER_VMA_LOCK 1267 mm->mm_lock_seq = 0; 1268 #endif 1269 mm_pgtables_bytes_init(mm); 1270 mm->map_count = 0; 1271 mm->locked_vm = 0; 1272 atomic64_set(&mm->pinned_vm, 0); 1273 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1274 spin_lock_init(&mm->page_table_lock); 1275 spin_lock_init(&mm->arg_lock); 1276 mm_init_cpumask(mm); 1277 mm_init_aio(mm); 1278 mm_init_owner(mm, p); 1279 mm_pasid_init(mm); 1280 RCU_INIT_POINTER(mm->exe_file, NULL); 1281 mmu_notifier_subscriptions_init(mm); 1282 init_tlb_flush_pending(mm); 1283 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1284 mm->pmd_huge_pte = NULL; 1285 #endif 1286 mm_init_uprobes_state(mm); 1287 hugetlb_count_init(mm); 1288 1289 if (current->mm) { 1290 mm->flags = mmf_init_flags(current->mm->flags); 1291 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1292 } else { 1293 mm->flags = default_dump_filter; 1294 mm->def_flags = 0; 1295 } 1296 1297 if (mm_alloc_pgd(mm)) 1298 goto fail_nopgd; 1299 1300 if (init_new_context(p, mm)) 1301 goto fail_nocontext; 1302 1303 if (mm_alloc_cid(mm)) 1304 goto fail_cid; 1305 1306 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT, 1307 NR_MM_COUNTERS)) 1308 goto fail_pcpu; 1309 1310 mm->user_ns = get_user_ns(user_ns); 1311 lru_gen_init_mm(mm); 1312 return mm; 1313 1314 fail_pcpu: 1315 mm_destroy_cid(mm); 1316 fail_cid: 1317 destroy_context(mm); 1318 fail_nocontext: 1319 mm_free_pgd(mm); 1320 fail_nopgd: 1321 free_mm(mm); 1322 return NULL; 1323 } 1324 1325 /* 1326 * Allocate and initialize an mm_struct. 1327 */ 1328 struct mm_struct *mm_alloc(void) 1329 { 1330 struct mm_struct *mm; 1331 1332 mm = allocate_mm(); 1333 if (!mm) 1334 return NULL; 1335 1336 memset(mm, 0, sizeof(*mm)); 1337 return mm_init(mm, current, current_user_ns()); 1338 } 1339 1340 static inline void __mmput(struct mm_struct *mm) 1341 { 1342 VM_BUG_ON(atomic_read(&mm->mm_users)); 1343 1344 uprobe_clear_state(mm); 1345 exit_aio(mm); 1346 ksm_exit(mm); 1347 khugepaged_exit(mm); /* must run before exit_mmap */ 1348 exit_mmap(mm); 1349 mm_put_huge_zero_folio(mm); 1350 set_mm_exe_file(mm, NULL); 1351 if (!list_empty(&mm->mmlist)) { 1352 spin_lock(&mmlist_lock); 1353 list_del(&mm->mmlist); 1354 spin_unlock(&mmlist_lock); 1355 } 1356 if (mm->binfmt) 1357 module_put(mm->binfmt->module); 1358 lru_gen_del_mm(mm); 1359 mmdrop(mm); 1360 } 1361 1362 /* 1363 * Decrement the use count and release all resources for an mm. 1364 */ 1365 void mmput(struct mm_struct *mm) 1366 { 1367 might_sleep(); 1368 1369 if (atomic_dec_and_test(&mm->mm_users)) 1370 __mmput(mm); 1371 } 1372 EXPORT_SYMBOL_GPL(mmput); 1373 1374 #ifdef CONFIG_MMU 1375 static void mmput_async_fn(struct work_struct *work) 1376 { 1377 struct mm_struct *mm = container_of(work, struct mm_struct, 1378 async_put_work); 1379 1380 __mmput(mm); 1381 } 1382 1383 void mmput_async(struct mm_struct *mm) 1384 { 1385 if (atomic_dec_and_test(&mm->mm_users)) { 1386 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1387 schedule_work(&mm->async_put_work); 1388 } 1389 } 1390 EXPORT_SYMBOL_GPL(mmput_async); 1391 #endif 1392 1393 /** 1394 * set_mm_exe_file - change a reference to the mm's executable file 1395 * @mm: The mm to change. 1396 * @new_exe_file: The new file to use. 1397 * 1398 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1399 * 1400 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1401 * invocations: in mmput() nobody alive left, in execve it happens before 1402 * the new mm is made visible to anyone. 1403 * 1404 * Can only fail if new_exe_file != NULL. 1405 */ 1406 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1407 { 1408 struct file *old_exe_file; 1409 1410 /* 1411 * It is safe to dereference the exe_file without RCU as 1412 * this function is only called if nobody else can access 1413 * this mm -- see comment above for justification. 1414 */ 1415 old_exe_file = rcu_dereference_raw(mm->exe_file); 1416 1417 if (new_exe_file) { 1418 /* 1419 * We expect the caller (i.e., sys_execve) to already denied 1420 * write access, so this is unlikely to fail. 1421 */ 1422 if (unlikely(deny_write_access(new_exe_file))) 1423 return -EACCES; 1424 get_file(new_exe_file); 1425 } 1426 rcu_assign_pointer(mm->exe_file, new_exe_file); 1427 if (old_exe_file) { 1428 allow_write_access(old_exe_file); 1429 fput(old_exe_file); 1430 } 1431 return 0; 1432 } 1433 1434 /** 1435 * replace_mm_exe_file - replace a reference to the mm's executable file 1436 * @mm: The mm to change. 1437 * @new_exe_file: The new file to use. 1438 * 1439 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1440 * 1441 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1442 */ 1443 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1444 { 1445 struct vm_area_struct *vma; 1446 struct file *old_exe_file; 1447 int ret = 0; 1448 1449 /* Forbid mm->exe_file change if old file still mapped. */ 1450 old_exe_file = get_mm_exe_file(mm); 1451 if (old_exe_file) { 1452 VMA_ITERATOR(vmi, mm, 0); 1453 mmap_read_lock(mm); 1454 for_each_vma(vmi, vma) { 1455 if (!vma->vm_file) 1456 continue; 1457 if (path_equal(&vma->vm_file->f_path, 1458 &old_exe_file->f_path)) { 1459 ret = -EBUSY; 1460 break; 1461 } 1462 } 1463 mmap_read_unlock(mm); 1464 fput(old_exe_file); 1465 if (ret) 1466 return ret; 1467 } 1468 1469 ret = deny_write_access(new_exe_file); 1470 if (ret) 1471 return -EACCES; 1472 get_file(new_exe_file); 1473 1474 /* set the new file */ 1475 mmap_write_lock(mm); 1476 old_exe_file = rcu_dereference_raw(mm->exe_file); 1477 rcu_assign_pointer(mm->exe_file, new_exe_file); 1478 mmap_write_unlock(mm); 1479 1480 if (old_exe_file) { 1481 allow_write_access(old_exe_file); 1482 fput(old_exe_file); 1483 } 1484 return 0; 1485 } 1486 1487 /** 1488 * get_mm_exe_file - acquire a reference to the mm's executable file 1489 * @mm: The mm of interest. 1490 * 1491 * Returns %NULL if mm has no associated executable file. 1492 * User must release file via fput(). 1493 */ 1494 struct file *get_mm_exe_file(struct mm_struct *mm) 1495 { 1496 struct file *exe_file; 1497 1498 rcu_read_lock(); 1499 exe_file = get_file_rcu(&mm->exe_file); 1500 rcu_read_unlock(); 1501 return exe_file; 1502 } 1503 1504 /** 1505 * get_task_exe_file - acquire a reference to the task's executable file 1506 * @task: The task. 1507 * 1508 * Returns %NULL if task's mm (if any) has no associated executable file or 1509 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1510 * User must release file via fput(). 1511 */ 1512 struct file *get_task_exe_file(struct task_struct *task) 1513 { 1514 struct file *exe_file = NULL; 1515 struct mm_struct *mm; 1516 1517 task_lock(task); 1518 mm = task->mm; 1519 if (mm) { 1520 if (!(task->flags & PF_KTHREAD)) 1521 exe_file = get_mm_exe_file(mm); 1522 } 1523 task_unlock(task); 1524 return exe_file; 1525 } 1526 1527 /** 1528 * get_task_mm - acquire a reference to the task's mm 1529 * @task: The task. 1530 * 1531 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1532 * this kernel workthread has transiently adopted a user mm with use_mm, 1533 * to do its AIO) is not set and if so returns a reference to it, after 1534 * bumping up the use count. User must release the mm via mmput() 1535 * after use. Typically used by /proc and ptrace. 1536 */ 1537 struct mm_struct *get_task_mm(struct task_struct *task) 1538 { 1539 struct mm_struct *mm; 1540 1541 task_lock(task); 1542 mm = task->mm; 1543 if (mm) { 1544 if (task->flags & PF_KTHREAD) 1545 mm = NULL; 1546 else 1547 mmget(mm); 1548 } 1549 task_unlock(task); 1550 return mm; 1551 } 1552 EXPORT_SYMBOL_GPL(get_task_mm); 1553 1554 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1555 { 1556 struct mm_struct *mm; 1557 int err; 1558 1559 err = down_read_killable(&task->signal->exec_update_lock); 1560 if (err) 1561 return ERR_PTR(err); 1562 1563 mm = get_task_mm(task); 1564 if (mm && mm != current->mm && 1565 !ptrace_may_access(task, mode)) { 1566 mmput(mm); 1567 mm = ERR_PTR(-EACCES); 1568 } 1569 up_read(&task->signal->exec_update_lock); 1570 1571 return mm; 1572 } 1573 1574 static void complete_vfork_done(struct task_struct *tsk) 1575 { 1576 struct completion *vfork; 1577 1578 task_lock(tsk); 1579 vfork = tsk->vfork_done; 1580 if (likely(vfork)) { 1581 tsk->vfork_done = NULL; 1582 complete(vfork); 1583 } 1584 task_unlock(tsk); 1585 } 1586 1587 static int wait_for_vfork_done(struct task_struct *child, 1588 struct completion *vfork) 1589 { 1590 unsigned int state = TASK_KILLABLE|TASK_FREEZABLE; 1591 int killed; 1592 1593 cgroup_enter_frozen(); 1594 killed = wait_for_completion_state(vfork, state); 1595 cgroup_leave_frozen(false); 1596 1597 if (killed) { 1598 task_lock(child); 1599 child->vfork_done = NULL; 1600 task_unlock(child); 1601 } 1602 1603 put_task_struct(child); 1604 return killed; 1605 } 1606 1607 /* Please note the differences between mmput and mm_release. 1608 * mmput is called whenever we stop holding onto a mm_struct, 1609 * error success whatever. 1610 * 1611 * mm_release is called after a mm_struct has been removed 1612 * from the current process. 1613 * 1614 * This difference is important for error handling, when we 1615 * only half set up a mm_struct for a new process and need to restore 1616 * the old one. Because we mmput the new mm_struct before 1617 * restoring the old one. . . 1618 * Eric Biederman 10 January 1998 1619 */ 1620 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1621 { 1622 uprobe_free_utask(tsk); 1623 1624 /* Get rid of any cached register state */ 1625 deactivate_mm(tsk, mm); 1626 1627 /* 1628 * Signal userspace if we're not exiting with a core dump 1629 * because we want to leave the value intact for debugging 1630 * purposes. 1631 */ 1632 if (tsk->clear_child_tid) { 1633 if (atomic_read(&mm->mm_users) > 1) { 1634 /* 1635 * We don't check the error code - if userspace has 1636 * not set up a proper pointer then tough luck. 1637 */ 1638 put_user(0, tsk->clear_child_tid); 1639 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1640 1, NULL, NULL, 0, 0); 1641 } 1642 tsk->clear_child_tid = NULL; 1643 } 1644 1645 /* 1646 * All done, finally we can wake up parent and return this mm to him. 1647 * Also kthread_stop() uses this completion for synchronization. 1648 */ 1649 if (tsk->vfork_done) 1650 complete_vfork_done(tsk); 1651 } 1652 1653 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1654 { 1655 futex_exit_release(tsk); 1656 mm_release(tsk, mm); 1657 } 1658 1659 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1660 { 1661 futex_exec_release(tsk); 1662 mm_release(tsk, mm); 1663 } 1664 1665 /** 1666 * dup_mm() - duplicates an existing mm structure 1667 * @tsk: the task_struct with which the new mm will be associated. 1668 * @oldmm: the mm to duplicate. 1669 * 1670 * Allocates a new mm structure and duplicates the provided @oldmm structure 1671 * content into it. 1672 * 1673 * Return: the duplicated mm or NULL on failure. 1674 */ 1675 static struct mm_struct *dup_mm(struct task_struct *tsk, 1676 struct mm_struct *oldmm) 1677 { 1678 struct mm_struct *mm; 1679 int err; 1680 1681 mm = allocate_mm(); 1682 if (!mm) 1683 goto fail_nomem; 1684 1685 memcpy(mm, oldmm, sizeof(*mm)); 1686 1687 if (!mm_init(mm, tsk, mm->user_ns)) 1688 goto fail_nomem; 1689 1690 err = dup_mmap(mm, oldmm); 1691 if (err) 1692 goto free_pt; 1693 1694 mm->hiwater_rss = get_mm_rss(mm); 1695 mm->hiwater_vm = mm->total_vm; 1696 1697 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1698 goto free_pt; 1699 1700 return mm; 1701 1702 free_pt: 1703 /* don't put binfmt in mmput, we haven't got module yet */ 1704 mm->binfmt = NULL; 1705 mm_init_owner(mm, NULL); 1706 mmput(mm); 1707 1708 fail_nomem: 1709 return NULL; 1710 } 1711 1712 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1713 { 1714 struct mm_struct *mm, *oldmm; 1715 1716 tsk->min_flt = tsk->maj_flt = 0; 1717 tsk->nvcsw = tsk->nivcsw = 0; 1718 #ifdef CONFIG_DETECT_HUNG_TASK 1719 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1720 tsk->last_switch_time = 0; 1721 #endif 1722 1723 tsk->mm = NULL; 1724 tsk->active_mm = NULL; 1725 1726 /* 1727 * Are we cloning a kernel thread? 1728 * 1729 * We need to steal a active VM for that.. 1730 */ 1731 oldmm = current->mm; 1732 if (!oldmm) 1733 return 0; 1734 1735 if (clone_flags & CLONE_VM) { 1736 mmget(oldmm); 1737 mm = oldmm; 1738 } else { 1739 mm = dup_mm(tsk, current->mm); 1740 if (!mm) 1741 return -ENOMEM; 1742 } 1743 1744 tsk->mm = mm; 1745 tsk->active_mm = mm; 1746 sched_mm_cid_fork(tsk); 1747 return 0; 1748 } 1749 1750 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1751 { 1752 struct fs_struct *fs = current->fs; 1753 if (clone_flags & CLONE_FS) { 1754 /* tsk->fs is already what we want */ 1755 spin_lock(&fs->lock); 1756 /* "users" and "in_exec" locked for check_unsafe_exec() */ 1757 if (fs->in_exec) { 1758 spin_unlock(&fs->lock); 1759 return -EAGAIN; 1760 } 1761 fs->users++; 1762 spin_unlock(&fs->lock); 1763 return 0; 1764 } 1765 tsk->fs = copy_fs_struct(fs); 1766 if (!tsk->fs) 1767 return -ENOMEM; 1768 return 0; 1769 } 1770 1771 static int copy_files(unsigned long clone_flags, struct task_struct *tsk, 1772 int no_files) 1773 { 1774 struct files_struct *oldf, *newf; 1775 int error = 0; 1776 1777 /* 1778 * A background process may not have any files ... 1779 */ 1780 oldf = current->files; 1781 if (!oldf) 1782 goto out; 1783 1784 if (no_files) { 1785 tsk->files = NULL; 1786 goto out; 1787 } 1788 1789 if (clone_flags & CLONE_FILES) { 1790 atomic_inc(&oldf->count); 1791 goto out; 1792 } 1793 1794 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1795 if (!newf) 1796 goto out; 1797 1798 tsk->files = newf; 1799 error = 0; 1800 out: 1801 return error; 1802 } 1803 1804 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1805 { 1806 struct sighand_struct *sig; 1807 1808 if (clone_flags & CLONE_SIGHAND) { 1809 refcount_inc(¤t->sighand->count); 1810 return 0; 1811 } 1812 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1813 RCU_INIT_POINTER(tsk->sighand, sig); 1814 if (!sig) 1815 return -ENOMEM; 1816 1817 refcount_set(&sig->count, 1); 1818 spin_lock_irq(¤t->sighand->siglock); 1819 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1820 spin_unlock_irq(¤t->sighand->siglock); 1821 1822 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1823 if (clone_flags & CLONE_CLEAR_SIGHAND) 1824 flush_signal_handlers(tsk, 0); 1825 1826 return 0; 1827 } 1828 1829 void __cleanup_sighand(struct sighand_struct *sighand) 1830 { 1831 if (refcount_dec_and_test(&sighand->count)) { 1832 signalfd_cleanup(sighand); 1833 /* 1834 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1835 * without an RCU grace period, see __lock_task_sighand(). 1836 */ 1837 kmem_cache_free(sighand_cachep, sighand); 1838 } 1839 } 1840 1841 /* 1842 * Initialize POSIX timer handling for a thread group. 1843 */ 1844 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1845 { 1846 struct posix_cputimers *pct = &sig->posix_cputimers; 1847 unsigned long cpu_limit; 1848 1849 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1850 posix_cputimers_group_init(pct, cpu_limit); 1851 } 1852 1853 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1854 { 1855 struct signal_struct *sig; 1856 1857 if (clone_flags & CLONE_THREAD) 1858 return 0; 1859 1860 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1861 tsk->signal = sig; 1862 if (!sig) 1863 return -ENOMEM; 1864 1865 sig->nr_threads = 1; 1866 sig->quick_threads = 1; 1867 atomic_set(&sig->live, 1); 1868 refcount_set(&sig->sigcnt, 1); 1869 1870 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1871 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1872 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1873 1874 init_waitqueue_head(&sig->wait_chldexit); 1875 sig->curr_target = tsk; 1876 init_sigpending(&sig->shared_pending); 1877 INIT_HLIST_HEAD(&sig->multiprocess); 1878 seqlock_init(&sig->stats_lock); 1879 prev_cputime_init(&sig->prev_cputime); 1880 1881 #ifdef CONFIG_POSIX_TIMERS 1882 INIT_LIST_HEAD(&sig->posix_timers); 1883 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1884 sig->real_timer.function = it_real_fn; 1885 #endif 1886 1887 task_lock(current->group_leader); 1888 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1889 task_unlock(current->group_leader); 1890 1891 posix_cpu_timers_init_group(sig); 1892 1893 tty_audit_fork(sig); 1894 sched_autogroup_fork(sig); 1895 1896 sig->oom_score_adj = current->signal->oom_score_adj; 1897 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1898 1899 mutex_init(&sig->cred_guard_mutex); 1900 init_rwsem(&sig->exec_update_lock); 1901 1902 return 0; 1903 } 1904 1905 static void copy_seccomp(struct task_struct *p) 1906 { 1907 #ifdef CONFIG_SECCOMP 1908 /* 1909 * Must be called with sighand->lock held, which is common to 1910 * all threads in the group. Holding cred_guard_mutex is not 1911 * needed because this new task is not yet running and cannot 1912 * be racing exec. 1913 */ 1914 assert_spin_locked(¤t->sighand->siglock); 1915 1916 /* Ref-count the new filter user, and assign it. */ 1917 get_seccomp_filter(current); 1918 p->seccomp = current->seccomp; 1919 1920 /* 1921 * Explicitly enable no_new_privs here in case it got set 1922 * between the task_struct being duplicated and holding the 1923 * sighand lock. The seccomp state and nnp must be in sync. 1924 */ 1925 if (task_no_new_privs(current)) 1926 task_set_no_new_privs(p); 1927 1928 /* 1929 * If the parent gained a seccomp mode after copying thread 1930 * flags and between before we held the sighand lock, we have 1931 * to manually enable the seccomp thread flag here. 1932 */ 1933 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1934 set_task_syscall_work(p, SECCOMP); 1935 #endif 1936 } 1937 1938 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1939 { 1940 current->clear_child_tid = tidptr; 1941 1942 return task_pid_vnr(current); 1943 } 1944 1945 static void rt_mutex_init_task(struct task_struct *p) 1946 { 1947 raw_spin_lock_init(&p->pi_lock); 1948 #ifdef CONFIG_RT_MUTEXES 1949 p->pi_waiters = RB_ROOT_CACHED; 1950 p->pi_top_task = NULL; 1951 p->pi_blocked_on = NULL; 1952 #endif 1953 } 1954 1955 static inline void init_task_pid_links(struct task_struct *task) 1956 { 1957 enum pid_type type; 1958 1959 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1960 INIT_HLIST_NODE(&task->pid_links[type]); 1961 } 1962 1963 static inline void 1964 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1965 { 1966 if (type == PIDTYPE_PID) 1967 task->thread_pid = pid; 1968 else 1969 task->signal->pids[type] = pid; 1970 } 1971 1972 static inline void rcu_copy_process(struct task_struct *p) 1973 { 1974 #ifdef CONFIG_PREEMPT_RCU 1975 p->rcu_read_lock_nesting = 0; 1976 p->rcu_read_unlock_special.s = 0; 1977 p->rcu_blocked_node = NULL; 1978 INIT_LIST_HEAD(&p->rcu_node_entry); 1979 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1980 #ifdef CONFIG_TASKS_RCU 1981 p->rcu_tasks_holdout = false; 1982 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1983 p->rcu_tasks_idle_cpu = -1; 1984 INIT_LIST_HEAD(&p->rcu_tasks_exit_list); 1985 #endif /* #ifdef CONFIG_TASKS_RCU */ 1986 #ifdef CONFIG_TASKS_TRACE_RCU 1987 p->trc_reader_nesting = 0; 1988 p->trc_reader_special.s = 0; 1989 INIT_LIST_HEAD(&p->trc_holdout_list); 1990 INIT_LIST_HEAD(&p->trc_blkd_node); 1991 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1992 } 1993 1994 /** 1995 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 1996 * @pid: the struct pid for which to create a pidfd 1997 * @flags: flags of the new @pidfd 1998 * @ret: Where to return the file for the pidfd. 1999 * 2000 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2001 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2002 * 2003 * The helper doesn't perform checks on @pid which makes it useful for pidfds 2004 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and 2005 * pidfd file are prepared. 2006 * 2007 * If this function returns successfully the caller is responsible to either 2008 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2009 * order to install the pidfd into its file descriptor table or they must use 2010 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2011 * respectively. 2012 * 2013 * This function is useful when a pidfd must already be reserved but there 2014 * might still be points of failure afterwards and the caller wants to ensure 2015 * that no pidfd is leaked into its file descriptor table. 2016 * 2017 * Return: On success, a reserved pidfd is returned from the function and a new 2018 * pidfd file is returned in the last argument to the function. On 2019 * error, a negative error code is returned from the function and the 2020 * last argument remains unchanged. 2021 */ 2022 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2023 { 2024 int pidfd; 2025 struct file *pidfd_file; 2026 2027 pidfd = get_unused_fd_flags(O_CLOEXEC); 2028 if (pidfd < 0) 2029 return pidfd; 2030 2031 pidfd_file = pidfs_alloc_file(pid, flags | O_RDWR); 2032 if (IS_ERR(pidfd_file)) { 2033 put_unused_fd(pidfd); 2034 return PTR_ERR(pidfd_file); 2035 } 2036 /* 2037 * anon_inode_getfile() ignores everything outside of the 2038 * O_ACCMODE | O_NONBLOCK mask, set PIDFD_THREAD manually. 2039 */ 2040 pidfd_file->f_flags |= (flags & PIDFD_THREAD); 2041 *ret = pidfd_file; 2042 return pidfd; 2043 } 2044 2045 /** 2046 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 2047 * @pid: the struct pid for which to create a pidfd 2048 * @flags: flags of the new @pidfd 2049 * @ret: Where to return the pidfd. 2050 * 2051 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2052 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2053 * 2054 * The helper verifies that @pid is still in use, without PIDFD_THREAD the 2055 * task identified by @pid must be a thread-group leader. 2056 * 2057 * If this function returns successfully the caller is responsible to either 2058 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2059 * order to install the pidfd into its file descriptor table or they must use 2060 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2061 * respectively. 2062 * 2063 * This function is useful when a pidfd must already be reserved but there 2064 * might still be points of failure afterwards and the caller wants to ensure 2065 * that no pidfd is leaked into its file descriptor table. 2066 * 2067 * Return: On success, a reserved pidfd is returned from the function and a new 2068 * pidfd file is returned in the last argument to the function. On 2069 * error, a negative error code is returned from the function and the 2070 * last argument remains unchanged. 2071 */ 2072 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2073 { 2074 bool thread = flags & PIDFD_THREAD; 2075 2076 if (!pid || !pid_has_task(pid, thread ? PIDTYPE_PID : PIDTYPE_TGID)) 2077 return -EINVAL; 2078 2079 return __pidfd_prepare(pid, flags, ret); 2080 } 2081 2082 static void __delayed_free_task(struct rcu_head *rhp) 2083 { 2084 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 2085 2086 free_task(tsk); 2087 } 2088 2089 static __always_inline void delayed_free_task(struct task_struct *tsk) 2090 { 2091 if (IS_ENABLED(CONFIG_MEMCG)) 2092 call_rcu(&tsk->rcu, __delayed_free_task); 2093 else 2094 free_task(tsk); 2095 } 2096 2097 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 2098 { 2099 /* Skip if kernel thread */ 2100 if (!tsk->mm) 2101 return; 2102 2103 /* Skip if spawning a thread or using vfork */ 2104 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 2105 return; 2106 2107 /* We need to synchronize with __set_oom_adj */ 2108 mutex_lock(&oom_adj_mutex); 2109 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 2110 /* Update the values in case they were changed after copy_signal */ 2111 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 2112 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 2113 mutex_unlock(&oom_adj_mutex); 2114 } 2115 2116 #ifdef CONFIG_RV 2117 static void rv_task_fork(struct task_struct *p) 2118 { 2119 int i; 2120 2121 for (i = 0; i < RV_PER_TASK_MONITORS; i++) 2122 p->rv[i].da_mon.monitoring = false; 2123 } 2124 #else 2125 #define rv_task_fork(p) do {} while (0) 2126 #endif 2127 2128 /* 2129 * This creates a new process as a copy of the old one, 2130 * but does not actually start it yet. 2131 * 2132 * It copies the registers, and all the appropriate 2133 * parts of the process environment (as per the clone 2134 * flags). The actual kick-off is left to the caller. 2135 */ 2136 __latent_entropy struct task_struct *copy_process( 2137 struct pid *pid, 2138 int trace, 2139 int node, 2140 struct kernel_clone_args *args) 2141 { 2142 int pidfd = -1, retval; 2143 struct task_struct *p; 2144 struct multiprocess_signals delayed; 2145 struct file *pidfile = NULL; 2146 const u64 clone_flags = args->flags; 2147 struct nsproxy *nsp = current->nsproxy; 2148 2149 /* 2150 * Don't allow sharing the root directory with processes in a different 2151 * namespace 2152 */ 2153 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 2154 return ERR_PTR(-EINVAL); 2155 2156 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 2157 return ERR_PTR(-EINVAL); 2158 2159 /* 2160 * Thread groups must share signals as well, and detached threads 2161 * can only be started up within the thread group. 2162 */ 2163 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 2164 return ERR_PTR(-EINVAL); 2165 2166 /* 2167 * Shared signal handlers imply shared VM. By way of the above, 2168 * thread groups also imply shared VM. Blocking this case allows 2169 * for various simplifications in other code. 2170 */ 2171 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 2172 return ERR_PTR(-EINVAL); 2173 2174 /* 2175 * Siblings of global init remain as zombies on exit since they are 2176 * not reaped by their parent (swapper). To solve this and to avoid 2177 * multi-rooted process trees, prevent global and container-inits 2178 * from creating siblings. 2179 */ 2180 if ((clone_flags & CLONE_PARENT) && 2181 current->signal->flags & SIGNAL_UNKILLABLE) 2182 return ERR_PTR(-EINVAL); 2183 2184 /* 2185 * If the new process will be in a different pid or user namespace 2186 * do not allow it to share a thread group with the forking task. 2187 */ 2188 if (clone_flags & CLONE_THREAD) { 2189 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 2190 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 2191 return ERR_PTR(-EINVAL); 2192 } 2193 2194 if (clone_flags & CLONE_PIDFD) { 2195 /* 2196 * - CLONE_DETACHED is blocked so that we can potentially 2197 * reuse it later for CLONE_PIDFD. 2198 */ 2199 if (clone_flags & CLONE_DETACHED) 2200 return ERR_PTR(-EINVAL); 2201 } 2202 2203 /* 2204 * Force any signals received before this point to be delivered 2205 * before the fork happens. Collect up signals sent to multiple 2206 * processes that happen during the fork and delay them so that 2207 * they appear to happen after the fork. 2208 */ 2209 sigemptyset(&delayed.signal); 2210 INIT_HLIST_NODE(&delayed.node); 2211 2212 spin_lock_irq(¤t->sighand->siglock); 2213 if (!(clone_flags & CLONE_THREAD)) 2214 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2215 recalc_sigpending(); 2216 spin_unlock_irq(¤t->sighand->siglock); 2217 retval = -ERESTARTNOINTR; 2218 if (task_sigpending(current)) 2219 goto fork_out; 2220 2221 retval = -ENOMEM; 2222 p = dup_task_struct(current, node); 2223 if (!p) 2224 goto fork_out; 2225 p->flags &= ~PF_KTHREAD; 2226 if (args->kthread) 2227 p->flags |= PF_KTHREAD; 2228 if (args->user_worker) { 2229 /* 2230 * Mark us a user worker, and block any signal that isn't 2231 * fatal or STOP 2232 */ 2233 p->flags |= PF_USER_WORKER; 2234 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2235 } 2236 if (args->io_thread) 2237 p->flags |= PF_IO_WORKER; 2238 2239 if (args->name) 2240 strscpy_pad(p->comm, args->name, sizeof(p->comm)); 2241 2242 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2243 /* 2244 * Clear TID on mm_release()? 2245 */ 2246 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2247 2248 ftrace_graph_init_task(p); 2249 2250 rt_mutex_init_task(p); 2251 2252 lockdep_assert_irqs_enabled(); 2253 #ifdef CONFIG_PROVE_LOCKING 2254 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2255 #endif 2256 retval = copy_creds(p, clone_flags); 2257 if (retval < 0) 2258 goto bad_fork_free; 2259 2260 retval = -EAGAIN; 2261 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2262 if (p->real_cred->user != INIT_USER && 2263 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2264 goto bad_fork_cleanup_count; 2265 } 2266 current->flags &= ~PF_NPROC_EXCEEDED; 2267 2268 /* 2269 * If multiple threads are within copy_process(), then this check 2270 * triggers too late. This doesn't hurt, the check is only there 2271 * to stop root fork bombs. 2272 */ 2273 retval = -EAGAIN; 2274 if (data_race(nr_threads >= max_threads)) 2275 goto bad_fork_cleanup_count; 2276 2277 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2278 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2279 p->flags |= PF_FORKNOEXEC; 2280 INIT_LIST_HEAD(&p->children); 2281 INIT_LIST_HEAD(&p->sibling); 2282 rcu_copy_process(p); 2283 p->vfork_done = NULL; 2284 spin_lock_init(&p->alloc_lock); 2285 2286 init_sigpending(&p->pending); 2287 2288 p->utime = p->stime = p->gtime = 0; 2289 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2290 p->utimescaled = p->stimescaled = 0; 2291 #endif 2292 prev_cputime_init(&p->prev_cputime); 2293 2294 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2295 seqcount_init(&p->vtime.seqcount); 2296 p->vtime.starttime = 0; 2297 p->vtime.state = VTIME_INACTIVE; 2298 #endif 2299 2300 #ifdef CONFIG_IO_URING 2301 p->io_uring = NULL; 2302 #endif 2303 2304 p->default_timer_slack_ns = current->timer_slack_ns; 2305 2306 #ifdef CONFIG_PSI 2307 p->psi_flags = 0; 2308 #endif 2309 2310 task_io_accounting_init(&p->ioac); 2311 acct_clear_integrals(p); 2312 2313 posix_cputimers_init(&p->posix_cputimers); 2314 2315 p->io_context = NULL; 2316 audit_set_context(p, NULL); 2317 cgroup_fork(p); 2318 if (args->kthread) { 2319 if (!set_kthread_struct(p)) 2320 goto bad_fork_cleanup_delayacct; 2321 } 2322 #ifdef CONFIG_NUMA 2323 p->mempolicy = mpol_dup(p->mempolicy); 2324 if (IS_ERR(p->mempolicy)) { 2325 retval = PTR_ERR(p->mempolicy); 2326 p->mempolicy = NULL; 2327 goto bad_fork_cleanup_delayacct; 2328 } 2329 #endif 2330 #ifdef CONFIG_CPUSETS 2331 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2332 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2333 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2334 #endif 2335 #ifdef CONFIG_TRACE_IRQFLAGS 2336 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2337 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2338 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2339 p->softirqs_enabled = 1; 2340 p->softirq_context = 0; 2341 #endif 2342 2343 p->pagefault_disabled = 0; 2344 2345 #ifdef CONFIG_LOCKDEP 2346 lockdep_init_task(p); 2347 #endif 2348 2349 #ifdef CONFIG_DEBUG_MUTEXES 2350 p->blocked_on = NULL; /* not blocked yet */ 2351 #endif 2352 #ifdef CONFIG_BCACHE 2353 p->sequential_io = 0; 2354 p->sequential_io_avg = 0; 2355 #endif 2356 #ifdef CONFIG_BPF_SYSCALL 2357 RCU_INIT_POINTER(p->bpf_storage, NULL); 2358 p->bpf_ctx = NULL; 2359 #endif 2360 2361 /* Perform scheduler related setup. Assign this task to a CPU. */ 2362 retval = sched_fork(clone_flags, p); 2363 if (retval) 2364 goto bad_fork_cleanup_policy; 2365 2366 retval = perf_event_init_task(p, clone_flags); 2367 if (retval) 2368 goto bad_fork_sched_cancel_fork; 2369 retval = audit_alloc(p); 2370 if (retval) 2371 goto bad_fork_cleanup_perf; 2372 /* copy all the process information */ 2373 shm_init_task(p); 2374 retval = security_task_alloc(p, clone_flags); 2375 if (retval) 2376 goto bad_fork_cleanup_audit; 2377 retval = copy_semundo(clone_flags, p); 2378 if (retval) 2379 goto bad_fork_cleanup_security; 2380 retval = copy_files(clone_flags, p, args->no_files); 2381 if (retval) 2382 goto bad_fork_cleanup_semundo; 2383 retval = copy_fs(clone_flags, p); 2384 if (retval) 2385 goto bad_fork_cleanup_files; 2386 retval = copy_sighand(clone_flags, p); 2387 if (retval) 2388 goto bad_fork_cleanup_fs; 2389 retval = copy_signal(clone_flags, p); 2390 if (retval) 2391 goto bad_fork_cleanup_sighand; 2392 retval = copy_mm(clone_flags, p); 2393 if (retval) 2394 goto bad_fork_cleanup_signal; 2395 retval = copy_namespaces(clone_flags, p); 2396 if (retval) 2397 goto bad_fork_cleanup_mm; 2398 retval = copy_io(clone_flags, p); 2399 if (retval) 2400 goto bad_fork_cleanup_namespaces; 2401 retval = copy_thread(p, args); 2402 if (retval) 2403 goto bad_fork_cleanup_io; 2404 2405 stackleak_task_init(p); 2406 2407 if (pid != &init_struct_pid) { 2408 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2409 args->set_tid_size); 2410 if (IS_ERR(pid)) { 2411 retval = PTR_ERR(pid); 2412 goto bad_fork_cleanup_thread; 2413 } 2414 } 2415 2416 /* 2417 * This has to happen after we've potentially unshared the file 2418 * descriptor table (so that the pidfd doesn't leak into the child 2419 * if the fd table isn't shared). 2420 */ 2421 if (clone_flags & CLONE_PIDFD) { 2422 int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0; 2423 2424 /* Note that no task has been attached to @pid yet. */ 2425 retval = __pidfd_prepare(pid, flags, &pidfile); 2426 if (retval < 0) 2427 goto bad_fork_free_pid; 2428 pidfd = retval; 2429 2430 retval = put_user(pidfd, args->pidfd); 2431 if (retval) 2432 goto bad_fork_put_pidfd; 2433 } 2434 2435 #ifdef CONFIG_BLOCK 2436 p->plug = NULL; 2437 #endif 2438 futex_init_task(p); 2439 2440 /* 2441 * sigaltstack should be cleared when sharing the same VM 2442 */ 2443 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2444 sas_ss_reset(p); 2445 2446 /* 2447 * Syscall tracing and stepping should be turned off in the 2448 * child regardless of CLONE_PTRACE. 2449 */ 2450 user_disable_single_step(p); 2451 clear_task_syscall_work(p, SYSCALL_TRACE); 2452 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2453 clear_task_syscall_work(p, SYSCALL_EMU); 2454 #endif 2455 clear_tsk_latency_tracing(p); 2456 2457 /* ok, now we should be set up.. */ 2458 p->pid = pid_nr(pid); 2459 if (clone_flags & CLONE_THREAD) { 2460 p->group_leader = current->group_leader; 2461 p->tgid = current->tgid; 2462 } else { 2463 p->group_leader = p; 2464 p->tgid = p->pid; 2465 } 2466 2467 p->nr_dirtied = 0; 2468 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2469 p->dirty_paused_when = 0; 2470 2471 p->pdeath_signal = 0; 2472 p->task_works = NULL; 2473 clear_posix_cputimers_work(p); 2474 2475 #ifdef CONFIG_KRETPROBES 2476 p->kretprobe_instances.first = NULL; 2477 #endif 2478 #ifdef CONFIG_RETHOOK 2479 p->rethooks.first = NULL; 2480 #endif 2481 2482 /* 2483 * Ensure that the cgroup subsystem policies allow the new process to be 2484 * forked. It should be noted that the new process's css_set can be changed 2485 * between here and cgroup_post_fork() if an organisation operation is in 2486 * progress. 2487 */ 2488 retval = cgroup_can_fork(p, args); 2489 if (retval) 2490 goto bad_fork_put_pidfd; 2491 2492 /* 2493 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2494 * the new task on the correct runqueue. All this *before* the task 2495 * becomes visible. 2496 * 2497 * This isn't part of ->can_fork() because while the re-cloning is 2498 * cgroup specific, it unconditionally needs to place the task on a 2499 * runqueue. 2500 */ 2501 retval = sched_cgroup_fork(p, args); 2502 if (retval) 2503 goto bad_fork_cancel_cgroup; 2504 2505 /* 2506 * From this point on we must avoid any synchronous user-space 2507 * communication until we take the tasklist-lock. In particular, we do 2508 * not want user-space to be able to predict the process start-time by 2509 * stalling fork(2) after we recorded the start_time but before it is 2510 * visible to the system. 2511 */ 2512 2513 p->start_time = ktime_get_ns(); 2514 p->start_boottime = ktime_get_boottime_ns(); 2515 2516 /* 2517 * Make it visible to the rest of the system, but dont wake it up yet. 2518 * Need tasklist lock for parent etc handling! 2519 */ 2520 write_lock_irq(&tasklist_lock); 2521 2522 /* CLONE_PARENT re-uses the old parent */ 2523 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2524 p->real_parent = current->real_parent; 2525 p->parent_exec_id = current->parent_exec_id; 2526 if (clone_flags & CLONE_THREAD) 2527 p->exit_signal = -1; 2528 else 2529 p->exit_signal = current->group_leader->exit_signal; 2530 } else { 2531 p->real_parent = current; 2532 p->parent_exec_id = current->self_exec_id; 2533 p->exit_signal = args->exit_signal; 2534 } 2535 2536 klp_copy_process(p); 2537 2538 sched_core_fork(p); 2539 2540 spin_lock(¤t->sighand->siglock); 2541 2542 rv_task_fork(p); 2543 2544 rseq_fork(p, clone_flags); 2545 2546 /* Don't start children in a dying pid namespace */ 2547 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2548 retval = -ENOMEM; 2549 goto bad_fork_core_free; 2550 } 2551 2552 /* Let kill terminate clone/fork in the middle */ 2553 if (fatal_signal_pending(current)) { 2554 retval = -EINTR; 2555 goto bad_fork_core_free; 2556 } 2557 2558 /* No more failure paths after this point. */ 2559 2560 /* 2561 * Copy seccomp details explicitly here, in case they were changed 2562 * before holding sighand lock. 2563 */ 2564 copy_seccomp(p); 2565 2566 init_task_pid_links(p); 2567 if (likely(p->pid)) { 2568 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2569 2570 init_task_pid(p, PIDTYPE_PID, pid); 2571 if (thread_group_leader(p)) { 2572 init_task_pid(p, PIDTYPE_TGID, pid); 2573 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2574 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2575 2576 if (is_child_reaper(pid)) { 2577 ns_of_pid(pid)->child_reaper = p; 2578 p->signal->flags |= SIGNAL_UNKILLABLE; 2579 } 2580 p->signal->shared_pending.signal = delayed.signal; 2581 p->signal->tty = tty_kref_get(current->signal->tty); 2582 /* 2583 * Inherit has_child_subreaper flag under the same 2584 * tasklist_lock with adding child to the process tree 2585 * for propagate_has_child_subreaper optimization. 2586 */ 2587 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2588 p->real_parent->signal->is_child_subreaper; 2589 list_add_tail(&p->sibling, &p->real_parent->children); 2590 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2591 attach_pid(p, PIDTYPE_TGID); 2592 attach_pid(p, PIDTYPE_PGID); 2593 attach_pid(p, PIDTYPE_SID); 2594 __this_cpu_inc(process_counts); 2595 } else { 2596 current->signal->nr_threads++; 2597 current->signal->quick_threads++; 2598 atomic_inc(¤t->signal->live); 2599 refcount_inc(¤t->signal->sigcnt); 2600 task_join_group_stop(p); 2601 list_add_tail_rcu(&p->thread_node, 2602 &p->signal->thread_head); 2603 } 2604 attach_pid(p, PIDTYPE_PID); 2605 nr_threads++; 2606 } 2607 total_forks++; 2608 hlist_del_init(&delayed.node); 2609 spin_unlock(¤t->sighand->siglock); 2610 syscall_tracepoint_update(p); 2611 write_unlock_irq(&tasklist_lock); 2612 2613 if (pidfile) 2614 fd_install(pidfd, pidfile); 2615 2616 proc_fork_connector(p); 2617 sched_post_fork(p); 2618 cgroup_post_fork(p, args); 2619 perf_event_fork(p); 2620 2621 trace_task_newtask(p, clone_flags); 2622 uprobe_copy_process(p, clone_flags); 2623 user_events_fork(p, clone_flags); 2624 2625 copy_oom_score_adj(clone_flags, p); 2626 2627 return p; 2628 2629 bad_fork_core_free: 2630 sched_core_free(p); 2631 spin_unlock(¤t->sighand->siglock); 2632 write_unlock_irq(&tasklist_lock); 2633 bad_fork_cancel_cgroup: 2634 cgroup_cancel_fork(p, args); 2635 bad_fork_put_pidfd: 2636 if (clone_flags & CLONE_PIDFD) { 2637 fput(pidfile); 2638 put_unused_fd(pidfd); 2639 } 2640 bad_fork_free_pid: 2641 if (pid != &init_struct_pid) 2642 free_pid(pid); 2643 bad_fork_cleanup_thread: 2644 exit_thread(p); 2645 bad_fork_cleanup_io: 2646 if (p->io_context) 2647 exit_io_context(p); 2648 bad_fork_cleanup_namespaces: 2649 exit_task_namespaces(p); 2650 bad_fork_cleanup_mm: 2651 if (p->mm) { 2652 mm_clear_owner(p->mm, p); 2653 mmput(p->mm); 2654 } 2655 bad_fork_cleanup_signal: 2656 if (!(clone_flags & CLONE_THREAD)) 2657 free_signal_struct(p->signal); 2658 bad_fork_cleanup_sighand: 2659 __cleanup_sighand(p->sighand); 2660 bad_fork_cleanup_fs: 2661 exit_fs(p); /* blocking */ 2662 bad_fork_cleanup_files: 2663 exit_files(p); /* blocking */ 2664 bad_fork_cleanup_semundo: 2665 exit_sem(p); 2666 bad_fork_cleanup_security: 2667 security_task_free(p); 2668 bad_fork_cleanup_audit: 2669 audit_free(p); 2670 bad_fork_cleanup_perf: 2671 perf_event_free_task(p); 2672 bad_fork_sched_cancel_fork: 2673 sched_cancel_fork(p); 2674 bad_fork_cleanup_policy: 2675 lockdep_free_task(p); 2676 #ifdef CONFIG_NUMA 2677 mpol_put(p->mempolicy); 2678 #endif 2679 bad_fork_cleanup_delayacct: 2680 delayacct_tsk_free(p); 2681 bad_fork_cleanup_count: 2682 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2683 exit_creds(p); 2684 bad_fork_free: 2685 WRITE_ONCE(p->__state, TASK_DEAD); 2686 exit_task_stack_account(p); 2687 put_task_stack(p); 2688 delayed_free_task(p); 2689 fork_out: 2690 spin_lock_irq(¤t->sighand->siglock); 2691 hlist_del_init(&delayed.node); 2692 spin_unlock_irq(¤t->sighand->siglock); 2693 return ERR_PTR(retval); 2694 } 2695 2696 static inline void init_idle_pids(struct task_struct *idle) 2697 { 2698 enum pid_type type; 2699 2700 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2701 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2702 init_task_pid(idle, type, &init_struct_pid); 2703 } 2704 } 2705 2706 static int idle_dummy(void *dummy) 2707 { 2708 /* This function is never called */ 2709 return 0; 2710 } 2711 2712 struct task_struct * __init fork_idle(int cpu) 2713 { 2714 struct task_struct *task; 2715 struct kernel_clone_args args = { 2716 .flags = CLONE_VM, 2717 .fn = &idle_dummy, 2718 .fn_arg = NULL, 2719 .kthread = 1, 2720 .idle = 1, 2721 }; 2722 2723 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2724 if (!IS_ERR(task)) { 2725 init_idle_pids(task); 2726 init_idle(task, cpu); 2727 } 2728 2729 return task; 2730 } 2731 2732 /* 2733 * This is like kernel_clone(), but shaved down and tailored to just 2734 * creating io_uring workers. It returns a created task, or an error pointer. 2735 * The returned task is inactive, and the caller must fire it up through 2736 * wake_up_new_task(p). All signals are blocked in the created task. 2737 */ 2738 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2739 { 2740 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2741 CLONE_IO; 2742 struct kernel_clone_args args = { 2743 .flags = ((lower_32_bits(flags) | CLONE_VM | 2744 CLONE_UNTRACED) & ~CSIGNAL), 2745 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2746 .fn = fn, 2747 .fn_arg = arg, 2748 .io_thread = 1, 2749 .user_worker = 1, 2750 }; 2751 2752 return copy_process(NULL, 0, node, &args); 2753 } 2754 2755 /* 2756 * Ok, this is the main fork-routine. 2757 * 2758 * It copies the process, and if successful kick-starts 2759 * it and waits for it to finish using the VM if required. 2760 * 2761 * args->exit_signal is expected to be checked for sanity by the caller. 2762 */ 2763 pid_t kernel_clone(struct kernel_clone_args *args) 2764 { 2765 u64 clone_flags = args->flags; 2766 struct completion vfork; 2767 struct pid *pid; 2768 struct task_struct *p; 2769 int trace = 0; 2770 pid_t nr; 2771 2772 /* 2773 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2774 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2775 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2776 * field in struct clone_args and it still doesn't make sense to have 2777 * them both point at the same memory location. Performing this check 2778 * here has the advantage that we don't need to have a separate helper 2779 * to check for legacy clone(). 2780 */ 2781 if ((clone_flags & CLONE_PIDFD) && 2782 (clone_flags & CLONE_PARENT_SETTID) && 2783 (args->pidfd == args->parent_tid)) 2784 return -EINVAL; 2785 2786 /* 2787 * Determine whether and which event to report to ptracer. When 2788 * called from kernel_thread or CLONE_UNTRACED is explicitly 2789 * requested, no event is reported; otherwise, report if the event 2790 * for the type of forking is enabled. 2791 */ 2792 if (!(clone_flags & CLONE_UNTRACED)) { 2793 if (clone_flags & CLONE_VFORK) 2794 trace = PTRACE_EVENT_VFORK; 2795 else if (args->exit_signal != SIGCHLD) 2796 trace = PTRACE_EVENT_CLONE; 2797 else 2798 trace = PTRACE_EVENT_FORK; 2799 2800 if (likely(!ptrace_event_enabled(current, trace))) 2801 trace = 0; 2802 } 2803 2804 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2805 add_latent_entropy(); 2806 2807 if (IS_ERR(p)) 2808 return PTR_ERR(p); 2809 2810 /* 2811 * Do this prior waking up the new thread - the thread pointer 2812 * might get invalid after that point, if the thread exits quickly. 2813 */ 2814 trace_sched_process_fork(current, p); 2815 2816 pid = get_task_pid(p, PIDTYPE_PID); 2817 nr = pid_vnr(pid); 2818 2819 if (clone_flags & CLONE_PARENT_SETTID) 2820 put_user(nr, args->parent_tid); 2821 2822 if (clone_flags & CLONE_VFORK) { 2823 p->vfork_done = &vfork; 2824 init_completion(&vfork); 2825 get_task_struct(p); 2826 } 2827 2828 if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) { 2829 /* lock the task to synchronize with memcg migration */ 2830 task_lock(p); 2831 lru_gen_add_mm(p->mm); 2832 task_unlock(p); 2833 } 2834 2835 wake_up_new_task(p); 2836 2837 /* forking complete and child started to run, tell ptracer */ 2838 if (unlikely(trace)) 2839 ptrace_event_pid(trace, pid); 2840 2841 if (clone_flags & CLONE_VFORK) { 2842 if (!wait_for_vfork_done(p, &vfork)) 2843 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2844 } 2845 2846 put_pid(pid); 2847 return nr; 2848 } 2849 2850 /* 2851 * Create a kernel thread. 2852 */ 2853 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name, 2854 unsigned long flags) 2855 { 2856 struct kernel_clone_args args = { 2857 .flags = ((lower_32_bits(flags) | CLONE_VM | 2858 CLONE_UNTRACED) & ~CSIGNAL), 2859 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2860 .fn = fn, 2861 .fn_arg = arg, 2862 .name = name, 2863 .kthread = 1, 2864 }; 2865 2866 return kernel_clone(&args); 2867 } 2868 2869 /* 2870 * Create a user mode thread. 2871 */ 2872 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) 2873 { 2874 struct kernel_clone_args args = { 2875 .flags = ((lower_32_bits(flags) | CLONE_VM | 2876 CLONE_UNTRACED) & ~CSIGNAL), 2877 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2878 .fn = fn, 2879 .fn_arg = arg, 2880 }; 2881 2882 return kernel_clone(&args); 2883 } 2884 2885 #ifdef __ARCH_WANT_SYS_FORK 2886 SYSCALL_DEFINE0(fork) 2887 { 2888 #ifdef CONFIG_MMU 2889 struct kernel_clone_args args = { 2890 .exit_signal = SIGCHLD, 2891 }; 2892 2893 return kernel_clone(&args); 2894 #else 2895 /* can not support in nommu mode */ 2896 return -EINVAL; 2897 #endif 2898 } 2899 #endif 2900 2901 #ifdef __ARCH_WANT_SYS_VFORK 2902 SYSCALL_DEFINE0(vfork) 2903 { 2904 struct kernel_clone_args args = { 2905 .flags = CLONE_VFORK | CLONE_VM, 2906 .exit_signal = SIGCHLD, 2907 }; 2908 2909 return kernel_clone(&args); 2910 } 2911 #endif 2912 2913 #ifdef __ARCH_WANT_SYS_CLONE 2914 #ifdef CONFIG_CLONE_BACKWARDS 2915 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2916 int __user *, parent_tidptr, 2917 unsigned long, tls, 2918 int __user *, child_tidptr) 2919 #elif defined(CONFIG_CLONE_BACKWARDS2) 2920 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2921 int __user *, parent_tidptr, 2922 int __user *, child_tidptr, 2923 unsigned long, tls) 2924 #elif defined(CONFIG_CLONE_BACKWARDS3) 2925 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2926 int, stack_size, 2927 int __user *, parent_tidptr, 2928 int __user *, child_tidptr, 2929 unsigned long, tls) 2930 #else 2931 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2932 int __user *, parent_tidptr, 2933 int __user *, child_tidptr, 2934 unsigned long, tls) 2935 #endif 2936 { 2937 struct kernel_clone_args args = { 2938 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2939 .pidfd = parent_tidptr, 2940 .child_tid = child_tidptr, 2941 .parent_tid = parent_tidptr, 2942 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2943 .stack = newsp, 2944 .tls = tls, 2945 }; 2946 2947 return kernel_clone(&args); 2948 } 2949 #endif 2950 2951 #ifdef __ARCH_WANT_SYS_CLONE3 2952 2953 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2954 struct clone_args __user *uargs, 2955 size_t usize) 2956 { 2957 int err; 2958 struct clone_args args; 2959 pid_t *kset_tid = kargs->set_tid; 2960 2961 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2962 CLONE_ARGS_SIZE_VER0); 2963 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2964 CLONE_ARGS_SIZE_VER1); 2965 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2966 CLONE_ARGS_SIZE_VER2); 2967 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2968 2969 if (unlikely(usize > PAGE_SIZE)) 2970 return -E2BIG; 2971 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2972 return -EINVAL; 2973 2974 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2975 if (err) 2976 return err; 2977 2978 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2979 return -EINVAL; 2980 2981 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2982 return -EINVAL; 2983 2984 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2985 return -EINVAL; 2986 2987 /* 2988 * Verify that higher 32bits of exit_signal are unset and that 2989 * it is a valid signal 2990 */ 2991 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2992 !valid_signal(args.exit_signal))) 2993 return -EINVAL; 2994 2995 if ((args.flags & CLONE_INTO_CGROUP) && 2996 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2997 return -EINVAL; 2998 2999 *kargs = (struct kernel_clone_args){ 3000 .flags = args.flags, 3001 .pidfd = u64_to_user_ptr(args.pidfd), 3002 .child_tid = u64_to_user_ptr(args.child_tid), 3003 .parent_tid = u64_to_user_ptr(args.parent_tid), 3004 .exit_signal = args.exit_signal, 3005 .stack = args.stack, 3006 .stack_size = args.stack_size, 3007 .tls = args.tls, 3008 .set_tid_size = args.set_tid_size, 3009 .cgroup = args.cgroup, 3010 }; 3011 3012 if (args.set_tid && 3013 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 3014 (kargs->set_tid_size * sizeof(pid_t)))) 3015 return -EFAULT; 3016 3017 kargs->set_tid = kset_tid; 3018 3019 return 0; 3020 } 3021 3022 /** 3023 * clone3_stack_valid - check and prepare stack 3024 * @kargs: kernel clone args 3025 * 3026 * Verify that the stack arguments userspace gave us are sane. 3027 * In addition, set the stack direction for userspace since it's easy for us to 3028 * determine. 3029 */ 3030 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 3031 { 3032 if (kargs->stack == 0) { 3033 if (kargs->stack_size > 0) 3034 return false; 3035 } else { 3036 if (kargs->stack_size == 0) 3037 return false; 3038 3039 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 3040 return false; 3041 3042 #if !defined(CONFIG_STACK_GROWSUP) 3043 kargs->stack += kargs->stack_size; 3044 #endif 3045 } 3046 3047 return true; 3048 } 3049 3050 static bool clone3_args_valid(struct kernel_clone_args *kargs) 3051 { 3052 /* Verify that no unknown flags are passed along. */ 3053 if (kargs->flags & 3054 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 3055 return false; 3056 3057 /* 3058 * - make the CLONE_DETACHED bit reusable for clone3 3059 * - make the CSIGNAL bits reusable for clone3 3060 */ 3061 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME)))) 3062 return false; 3063 3064 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 3065 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 3066 return false; 3067 3068 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 3069 kargs->exit_signal) 3070 return false; 3071 3072 if (!clone3_stack_valid(kargs)) 3073 return false; 3074 3075 return true; 3076 } 3077 3078 /** 3079 * sys_clone3 - create a new process with specific properties 3080 * @uargs: argument structure 3081 * @size: size of @uargs 3082 * 3083 * clone3() is the extensible successor to clone()/clone2(). 3084 * It takes a struct as argument that is versioned by its size. 3085 * 3086 * Return: On success, a positive PID for the child process. 3087 * On error, a negative errno number. 3088 */ 3089 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 3090 { 3091 int err; 3092 3093 struct kernel_clone_args kargs; 3094 pid_t set_tid[MAX_PID_NS_LEVEL]; 3095 3096 kargs.set_tid = set_tid; 3097 3098 err = copy_clone_args_from_user(&kargs, uargs, size); 3099 if (err) 3100 return err; 3101 3102 if (!clone3_args_valid(&kargs)) 3103 return -EINVAL; 3104 3105 return kernel_clone(&kargs); 3106 } 3107 #endif 3108 3109 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 3110 { 3111 struct task_struct *leader, *parent, *child; 3112 int res; 3113 3114 read_lock(&tasklist_lock); 3115 leader = top = top->group_leader; 3116 down: 3117 for_each_thread(leader, parent) { 3118 list_for_each_entry(child, &parent->children, sibling) { 3119 res = visitor(child, data); 3120 if (res) { 3121 if (res < 0) 3122 goto out; 3123 leader = child; 3124 goto down; 3125 } 3126 up: 3127 ; 3128 } 3129 } 3130 3131 if (leader != top) { 3132 child = leader; 3133 parent = child->real_parent; 3134 leader = parent->group_leader; 3135 goto up; 3136 } 3137 out: 3138 read_unlock(&tasklist_lock); 3139 } 3140 3141 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 3142 #define ARCH_MIN_MMSTRUCT_ALIGN 0 3143 #endif 3144 3145 static void sighand_ctor(void *data) 3146 { 3147 struct sighand_struct *sighand = data; 3148 3149 spin_lock_init(&sighand->siglock); 3150 init_waitqueue_head(&sighand->signalfd_wqh); 3151 } 3152 3153 void __init mm_cache_init(void) 3154 { 3155 unsigned int mm_size; 3156 3157 /* 3158 * The mm_cpumask is located at the end of mm_struct, and is 3159 * dynamically sized based on the maximum CPU number this system 3160 * can have, taking hotplug into account (nr_cpu_ids). 3161 */ 3162 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size(); 3163 3164 mm_cachep = kmem_cache_create_usercopy("mm_struct", 3165 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 3166 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3167 offsetof(struct mm_struct, saved_auxv), 3168 sizeof_field(struct mm_struct, saved_auxv), 3169 NULL); 3170 } 3171 3172 void __init proc_caches_init(void) 3173 { 3174 sighand_cachep = kmem_cache_create("sighand_cache", 3175 sizeof(struct sighand_struct), 0, 3176 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 3177 SLAB_ACCOUNT, sighand_ctor); 3178 signal_cachep = kmem_cache_create("signal_cache", 3179 sizeof(struct signal_struct), 0, 3180 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3181 NULL); 3182 files_cachep = kmem_cache_create("files_cache", 3183 sizeof(struct files_struct), 0, 3184 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3185 NULL); 3186 fs_cachep = kmem_cache_create("fs_cache", 3187 sizeof(struct fs_struct), 0, 3188 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3189 NULL); 3190 3191 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 3192 #ifdef CONFIG_PER_VMA_LOCK 3193 vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT); 3194 #endif 3195 mmap_init(); 3196 nsproxy_cache_init(); 3197 } 3198 3199 /* 3200 * Check constraints on flags passed to the unshare system call. 3201 */ 3202 static int check_unshare_flags(unsigned long unshare_flags) 3203 { 3204 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 3205 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 3206 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 3207 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 3208 CLONE_NEWTIME)) 3209 return -EINVAL; 3210 /* 3211 * Not implemented, but pretend it works if there is nothing 3212 * to unshare. Note that unsharing the address space or the 3213 * signal handlers also need to unshare the signal queues (aka 3214 * CLONE_THREAD). 3215 */ 3216 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3217 if (!thread_group_empty(current)) 3218 return -EINVAL; 3219 } 3220 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3221 if (refcount_read(¤t->sighand->count) > 1) 3222 return -EINVAL; 3223 } 3224 if (unshare_flags & CLONE_VM) { 3225 if (!current_is_single_threaded()) 3226 return -EINVAL; 3227 } 3228 3229 return 0; 3230 } 3231 3232 /* 3233 * Unshare the filesystem structure if it is being shared 3234 */ 3235 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3236 { 3237 struct fs_struct *fs = current->fs; 3238 3239 if (!(unshare_flags & CLONE_FS) || !fs) 3240 return 0; 3241 3242 /* don't need lock here; in the worst case we'll do useless copy */ 3243 if (fs->users == 1) 3244 return 0; 3245 3246 *new_fsp = copy_fs_struct(fs); 3247 if (!*new_fsp) 3248 return -ENOMEM; 3249 3250 return 0; 3251 } 3252 3253 /* 3254 * Unshare file descriptor table if it is being shared 3255 */ 3256 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 3257 struct files_struct **new_fdp) 3258 { 3259 struct files_struct *fd = current->files; 3260 int error = 0; 3261 3262 if ((unshare_flags & CLONE_FILES) && 3263 (fd && atomic_read(&fd->count) > 1)) { 3264 *new_fdp = dup_fd(fd, max_fds, &error); 3265 if (!*new_fdp) 3266 return error; 3267 } 3268 3269 return 0; 3270 } 3271 3272 /* 3273 * unshare allows a process to 'unshare' part of the process 3274 * context which was originally shared using clone. copy_* 3275 * functions used by kernel_clone() cannot be used here directly 3276 * because they modify an inactive task_struct that is being 3277 * constructed. Here we are modifying the current, active, 3278 * task_struct. 3279 */ 3280 int ksys_unshare(unsigned long unshare_flags) 3281 { 3282 struct fs_struct *fs, *new_fs = NULL; 3283 struct files_struct *new_fd = NULL; 3284 struct cred *new_cred = NULL; 3285 struct nsproxy *new_nsproxy = NULL; 3286 int do_sysvsem = 0; 3287 int err; 3288 3289 /* 3290 * If unsharing a user namespace must also unshare the thread group 3291 * and unshare the filesystem root and working directories. 3292 */ 3293 if (unshare_flags & CLONE_NEWUSER) 3294 unshare_flags |= CLONE_THREAD | CLONE_FS; 3295 /* 3296 * If unsharing vm, must also unshare signal handlers. 3297 */ 3298 if (unshare_flags & CLONE_VM) 3299 unshare_flags |= CLONE_SIGHAND; 3300 /* 3301 * If unsharing a signal handlers, must also unshare the signal queues. 3302 */ 3303 if (unshare_flags & CLONE_SIGHAND) 3304 unshare_flags |= CLONE_THREAD; 3305 /* 3306 * If unsharing namespace, must also unshare filesystem information. 3307 */ 3308 if (unshare_flags & CLONE_NEWNS) 3309 unshare_flags |= CLONE_FS; 3310 3311 err = check_unshare_flags(unshare_flags); 3312 if (err) 3313 goto bad_unshare_out; 3314 /* 3315 * CLONE_NEWIPC must also detach from the undolist: after switching 3316 * to a new ipc namespace, the semaphore arrays from the old 3317 * namespace are unreachable. 3318 */ 3319 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3320 do_sysvsem = 1; 3321 err = unshare_fs(unshare_flags, &new_fs); 3322 if (err) 3323 goto bad_unshare_out; 3324 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 3325 if (err) 3326 goto bad_unshare_cleanup_fs; 3327 err = unshare_userns(unshare_flags, &new_cred); 3328 if (err) 3329 goto bad_unshare_cleanup_fd; 3330 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3331 new_cred, new_fs); 3332 if (err) 3333 goto bad_unshare_cleanup_cred; 3334 3335 if (new_cred) { 3336 err = set_cred_ucounts(new_cred); 3337 if (err) 3338 goto bad_unshare_cleanup_cred; 3339 } 3340 3341 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3342 if (do_sysvsem) { 3343 /* 3344 * CLONE_SYSVSEM is equivalent to sys_exit(). 3345 */ 3346 exit_sem(current); 3347 } 3348 if (unshare_flags & CLONE_NEWIPC) { 3349 /* Orphan segments in old ns (see sem above). */ 3350 exit_shm(current); 3351 shm_init_task(current); 3352 } 3353 3354 if (new_nsproxy) 3355 switch_task_namespaces(current, new_nsproxy); 3356 3357 task_lock(current); 3358 3359 if (new_fs) { 3360 fs = current->fs; 3361 spin_lock(&fs->lock); 3362 current->fs = new_fs; 3363 if (--fs->users) 3364 new_fs = NULL; 3365 else 3366 new_fs = fs; 3367 spin_unlock(&fs->lock); 3368 } 3369 3370 if (new_fd) 3371 swap(current->files, new_fd); 3372 3373 task_unlock(current); 3374 3375 if (new_cred) { 3376 /* Install the new user namespace */ 3377 commit_creds(new_cred); 3378 new_cred = NULL; 3379 } 3380 } 3381 3382 perf_event_namespaces(current); 3383 3384 bad_unshare_cleanup_cred: 3385 if (new_cred) 3386 put_cred(new_cred); 3387 bad_unshare_cleanup_fd: 3388 if (new_fd) 3389 put_files_struct(new_fd); 3390 3391 bad_unshare_cleanup_fs: 3392 if (new_fs) 3393 free_fs_struct(new_fs); 3394 3395 bad_unshare_out: 3396 return err; 3397 } 3398 3399 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3400 { 3401 return ksys_unshare(unshare_flags); 3402 } 3403 3404 /* 3405 * Helper to unshare the files of the current task. 3406 * We don't want to expose copy_files internals to 3407 * the exec layer of the kernel. 3408 */ 3409 3410 int unshare_files(void) 3411 { 3412 struct task_struct *task = current; 3413 struct files_struct *old, *copy = NULL; 3414 int error; 3415 3416 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3417 if (error || !copy) 3418 return error; 3419 3420 old = task->files; 3421 task_lock(task); 3422 task->files = copy; 3423 task_unlock(task); 3424 put_files_struct(old); 3425 return 0; 3426 } 3427 3428 int sysctl_max_threads(struct ctl_table *table, int write, 3429 void *buffer, size_t *lenp, loff_t *ppos) 3430 { 3431 struct ctl_table t; 3432 int ret; 3433 int threads = max_threads; 3434 int min = 1; 3435 int max = MAX_THREADS; 3436 3437 t = *table; 3438 t.data = &threads; 3439 t.extra1 = &min; 3440 t.extra2 = &max; 3441 3442 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3443 if (ret || !write) 3444 return ret; 3445 3446 max_threads = threads; 3447 3448 return 0; 3449 } 3450