xref: /linux/kernel/fork.c (revision 2a52ca7c98960aafb0eca9ef96b2d0c932171357)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/sched/ext.h>
27 #include <linux/seq_file.h>
28 #include <linux/rtmutex.h>
29 #include <linux/init.h>
30 #include <linux/unistd.h>
31 #include <linux/module.h>
32 #include <linux/vmalloc.h>
33 #include <linux/completion.h>
34 #include <linux/personality.h>
35 #include <linux/mempolicy.h>
36 #include <linux/sem.h>
37 #include <linux/file.h>
38 #include <linux/fdtable.h>
39 #include <linux/iocontext.h>
40 #include <linux/key.h>
41 #include <linux/kmsan.h>
42 #include <linux/binfmts.h>
43 #include <linux/mman.h>
44 #include <linux/mmu_notifier.h>
45 #include <linux/fs.h>
46 #include <linux/mm.h>
47 #include <linux/mm_inline.h>
48 #include <linux/nsproxy.h>
49 #include <linux/capability.h>
50 #include <linux/cpu.h>
51 #include <linux/cgroup.h>
52 #include <linux/security.h>
53 #include <linux/hugetlb.h>
54 #include <linux/seccomp.h>
55 #include <linux/swap.h>
56 #include <linux/syscalls.h>
57 #include <linux/syscall_user_dispatch.h>
58 #include <linux/jiffies.h>
59 #include <linux/futex.h>
60 #include <linux/compat.h>
61 #include <linux/kthread.h>
62 #include <linux/task_io_accounting_ops.h>
63 #include <linux/rcupdate.h>
64 #include <linux/ptrace.h>
65 #include <linux/mount.h>
66 #include <linux/audit.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/proc_fs.h>
70 #include <linux/profile.h>
71 #include <linux/rmap.h>
72 #include <linux/ksm.h>
73 #include <linux/acct.h>
74 #include <linux/userfaultfd_k.h>
75 #include <linux/tsacct_kern.h>
76 #include <linux/cn_proc.h>
77 #include <linux/freezer.h>
78 #include <linux/delayacct.h>
79 #include <linux/taskstats_kern.h>
80 #include <linux/tty.h>
81 #include <linux/fs_struct.h>
82 #include <linux/magic.h>
83 #include <linux/perf_event.h>
84 #include <linux/posix-timers.h>
85 #include <linux/user-return-notifier.h>
86 #include <linux/oom.h>
87 #include <linux/khugepaged.h>
88 #include <linux/signalfd.h>
89 #include <linux/uprobes.h>
90 #include <linux/aio.h>
91 #include <linux/compiler.h>
92 #include <linux/sysctl.h>
93 #include <linux/kcov.h>
94 #include <linux/livepatch.h>
95 #include <linux/thread_info.h>
96 #include <linux/stackleak.h>
97 #include <linux/kasan.h>
98 #include <linux/scs.h>
99 #include <linux/io_uring.h>
100 #include <linux/bpf.h>
101 #include <linux/stackprotector.h>
102 #include <linux/user_events.h>
103 #include <linux/iommu.h>
104 #include <linux/rseq.h>
105 #include <uapi/linux/pidfd.h>
106 #include <linux/pidfs.h>
107 
108 #include <asm/pgalloc.h>
109 #include <linux/uaccess.h>
110 #include <asm/mmu_context.h>
111 #include <asm/cacheflush.h>
112 #include <asm/tlbflush.h>
113 
114 #include <trace/events/sched.h>
115 
116 #define CREATE_TRACE_POINTS
117 #include <trace/events/task.h>
118 
119 /*
120  * Minimum number of threads to boot the kernel
121  */
122 #define MIN_THREADS 20
123 
124 /*
125  * Maximum number of threads
126  */
127 #define MAX_THREADS FUTEX_TID_MASK
128 
129 /*
130  * Protected counters by write_lock_irq(&tasklist_lock)
131  */
132 unsigned long total_forks;	/* Handle normal Linux uptimes. */
133 int nr_threads;			/* The idle threads do not count.. */
134 
135 static int max_threads;		/* tunable limit on nr_threads */
136 
137 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
138 
139 static const char * const resident_page_types[] = {
140 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
141 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
142 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
143 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
144 };
145 
146 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
147 
148 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
149 
150 #ifdef CONFIG_PROVE_RCU
151 int lockdep_tasklist_lock_is_held(void)
152 {
153 	return lockdep_is_held(&tasklist_lock);
154 }
155 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
156 #endif /* #ifdef CONFIG_PROVE_RCU */
157 
158 int nr_processes(void)
159 {
160 	int cpu;
161 	int total = 0;
162 
163 	for_each_possible_cpu(cpu)
164 		total += per_cpu(process_counts, cpu);
165 
166 	return total;
167 }
168 
169 void __weak arch_release_task_struct(struct task_struct *tsk)
170 {
171 }
172 
173 static struct kmem_cache *task_struct_cachep;
174 
175 static inline struct task_struct *alloc_task_struct_node(int node)
176 {
177 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
178 }
179 
180 static inline void free_task_struct(struct task_struct *tsk)
181 {
182 	kmem_cache_free(task_struct_cachep, tsk);
183 }
184 
185 /*
186  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
187  * kmemcache based allocator.
188  */
189 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
190 
191 #  ifdef CONFIG_VMAP_STACK
192 /*
193  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
194  * flush.  Try to minimize the number of calls by caching stacks.
195  */
196 #define NR_CACHED_STACKS 2
197 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
198 
199 struct vm_stack {
200 	struct rcu_head rcu;
201 	struct vm_struct *stack_vm_area;
202 };
203 
204 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
205 {
206 	unsigned int i;
207 
208 	for (i = 0; i < NR_CACHED_STACKS; i++) {
209 		if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
210 			continue;
211 		return true;
212 	}
213 	return false;
214 }
215 
216 static void thread_stack_free_rcu(struct rcu_head *rh)
217 {
218 	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
219 
220 	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
221 		return;
222 
223 	vfree(vm_stack);
224 }
225 
226 static void thread_stack_delayed_free(struct task_struct *tsk)
227 {
228 	struct vm_stack *vm_stack = tsk->stack;
229 
230 	vm_stack->stack_vm_area = tsk->stack_vm_area;
231 	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
232 }
233 
234 static int free_vm_stack_cache(unsigned int cpu)
235 {
236 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
237 	int i;
238 
239 	for (i = 0; i < NR_CACHED_STACKS; i++) {
240 		struct vm_struct *vm_stack = cached_vm_stacks[i];
241 
242 		if (!vm_stack)
243 			continue;
244 
245 		vfree(vm_stack->addr);
246 		cached_vm_stacks[i] = NULL;
247 	}
248 
249 	return 0;
250 }
251 
252 static int memcg_charge_kernel_stack(struct vm_struct *vm)
253 {
254 	int i;
255 	int ret;
256 	int nr_charged = 0;
257 
258 	BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
259 
260 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
261 		ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
262 		if (ret)
263 			goto err;
264 		nr_charged++;
265 	}
266 	return 0;
267 err:
268 	for (i = 0; i < nr_charged; i++)
269 		memcg_kmem_uncharge_page(vm->pages[i], 0);
270 	return ret;
271 }
272 
273 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
274 {
275 	struct vm_struct *vm;
276 	void *stack;
277 	int i;
278 
279 	for (i = 0; i < NR_CACHED_STACKS; i++) {
280 		struct vm_struct *s;
281 
282 		s = this_cpu_xchg(cached_stacks[i], NULL);
283 
284 		if (!s)
285 			continue;
286 
287 		/* Reset stack metadata. */
288 		kasan_unpoison_range(s->addr, THREAD_SIZE);
289 
290 		stack = kasan_reset_tag(s->addr);
291 
292 		/* Clear stale pointers from reused stack. */
293 		memset(stack, 0, THREAD_SIZE);
294 
295 		if (memcg_charge_kernel_stack(s)) {
296 			vfree(s->addr);
297 			return -ENOMEM;
298 		}
299 
300 		tsk->stack_vm_area = s;
301 		tsk->stack = stack;
302 		return 0;
303 	}
304 
305 	/*
306 	 * Allocated stacks are cached and later reused by new threads,
307 	 * so memcg accounting is performed manually on assigning/releasing
308 	 * stacks to tasks. Drop __GFP_ACCOUNT.
309 	 */
310 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
311 				     VMALLOC_START, VMALLOC_END,
312 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
313 				     PAGE_KERNEL,
314 				     0, node, __builtin_return_address(0));
315 	if (!stack)
316 		return -ENOMEM;
317 
318 	vm = find_vm_area(stack);
319 	if (memcg_charge_kernel_stack(vm)) {
320 		vfree(stack);
321 		return -ENOMEM;
322 	}
323 	/*
324 	 * We can't call find_vm_area() in interrupt context, and
325 	 * free_thread_stack() can be called in interrupt context,
326 	 * so cache the vm_struct.
327 	 */
328 	tsk->stack_vm_area = vm;
329 	stack = kasan_reset_tag(stack);
330 	tsk->stack = stack;
331 	return 0;
332 }
333 
334 static void free_thread_stack(struct task_struct *tsk)
335 {
336 	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
337 		thread_stack_delayed_free(tsk);
338 
339 	tsk->stack = NULL;
340 	tsk->stack_vm_area = NULL;
341 }
342 
343 #  else /* !CONFIG_VMAP_STACK */
344 
345 static void thread_stack_free_rcu(struct rcu_head *rh)
346 {
347 	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
348 }
349 
350 static void thread_stack_delayed_free(struct task_struct *tsk)
351 {
352 	struct rcu_head *rh = tsk->stack;
353 
354 	call_rcu(rh, thread_stack_free_rcu);
355 }
356 
357 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
358 {
359 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
360 					     THREAD_SIZE_ORDER);
361 
362 	if (likely(page)) {
363 		tsk->stack = kasan_reset_tag(page_address(page));
364 		return 0;
365 	}
366 	return -ENOMEM;
367 }
368 
369 static void free_thread_stack(struct task_struct *tsk)
370 {
371 	thread_stack_delayed_free(tsk);
372 	tsk->stack = NULL;
373 }
374 
375 #  endif /* CONFIG_VMAP_STACK */
376 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
377 
378 static struct kmem_cache *thread_stack_cache;
379 
380 static void thread_stack_free_rcu(struct rcu_head *rh)
381 {
382 	kmem_cache_free(thread_stack_cache, rh);
383 }
384 
385 static void thread_stack_delayed_free(struct task_struct *tsk)
386 {
387 	struct rcu_head *rh = tsk->stack;
388 
389 	call_rcu(rh, thread_stack_free_rcu);
390 }
391 
392 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
393 {
394 	unsigned long *stack;
395 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
396 	stack = kasan_reset_tag(stack);
397 	tsk->stack = stack;
398 	return stack ? 0 : -ENOMEM;
399 }
400 
401 static void free_thread_stack(struct task_struct *tsk)
402 {
403 	thread_stack_delayed_free(tsk);
404 	tsk->stack = NULL;
405 }
406 
407 void thread_stack_cache_init(void)
408 {
409 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
410 					THREAD_SIZE, THREAD_SIZE, 0, 0,
411 					THREAD_SIZE, NULL);
412 	BUG_ON(thread_stack_cache == NULL);
413 }
414 
415 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
416 
417 /* SLAB cache for signal_struct structures (tsk->signal) */
418 static struct kmem_cache *signal_cachep;
419 
420 /* SLAB cache for sighand_struct structures (tsk->sighand) */
421 struct kmem_cache *sighand_cachep;
422 
423 /* SLAB cache for files_struct structures (tsk->files) */
424 struct kmem_cache *files_cachep;
425 
426 /* SLAB cache for fs_struct structures (tsk->fs) */
427 struct kmem_cache *fs_cachep;
428 
429 /* SLAB cache for vm_area_struct structures */
430 static struct kmem_cache *vm_area_cachep;
431 
432 /* SLAB cache for mm_struct structures (tsk->mm) */
433 static struct kmem_cache *mm_cachep;
434 
435 #ifdef CONFIG_PER_VMA_LOCK
436 
437 /* SLAB cache for vm_area_struct.lock */
438 static struct kmem_cache *vma_lock_cachep;
439 
440 static bool vma_lock_alloc(struct vm_area_struct *vma)
441 {
442 	vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
443 	if (!vma->vm_lock)
444 		return false;
445 
446 	init_rwsem(&vma->vm_lock->lock);
447 	vma->vm_lock_seq = -1;
448 
449 	return true;
450 }
451 
452 static inline void vma_lock_free(struct vm_area_struct *vma)
453 {
454 	kmem_cache_free(vma_lock_cachep, vma->vm_lock);
455 }
456 
457 #else /* CONFIG_PER_VMA_LOCK */
458 
459 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
460 static inline void vma_lock_free(struct vm_area_struct *vma) {}
461 
462 #endif /* CONFIG_PER_VMA_LOCK */
463 
464 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
465 {
466 	struct vm_area_struct *vma;
467 
468 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
469 	if (!vma)
470 		return NULL;
471 
472 	vma_init(vma, mm);
473 	if (!vma_lock_alloc(vma)) {
474 		kmem_cache_free(vm_area_cachep, vma);
475 		return NULL;
476 	}
477 
478 	return vma;
479 }
480 
481 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
482 {
483 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
484 
485 	if (!new)
486 		return NULL;
487 
488 	ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
489 	ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
490 	/*
491 	 * orig->shared.rb may be modified concurrently, but the clone
492 	 * will be reinitialized.
493 	 */
494 	data_race(memcpy(new, orig, sizeof(*new)));
495 	if (!vma_lock_alloc(new)) {
496 		kmem_cache_free(vm_area_cachep, new);
497 		return NULL;
498 	}
499 	INIT_LIST_HEAD(&new->anon_vma_chain);
500 	vma_numab_state_init(new);
501 	dup_anon_vma_name(orig, new);
502 
503 	return new;
504 }
505 
506 void __vm_area_free(struct vm_area_struct *vma)
507 {
508 	vma_numab_state_free(vma);
509 	free_anon_vma_name(vma);
510 	vma_lock_free(vma);
511 	kmem_cache_free(vm_area_cachep, vma);
512 }
513 
514 #ifdef CONFIG_PER_VMA_LOCK
515 static void vm_area_free_rcu_cb(struct rcu_head *head)
516 {
517 	struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
518 						  vm_rcu);
519 
520 	/* The vma should not be locked while being destroyed. */
521 	VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
522 	__vm_area_free(vma);
523 }
524 #endif
525 
526 void vm_area_free(struct vm_area_struct *vma)
527 {
528 #ifdef CONFIG_PER_VMA_LOCK
529 	call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
530 #else
531 	__vm_area_free(vma);
532 #endif
533 }
534 
535 static void account_kernel_stack(struct task_struct *tsk, int account)
536 {
537 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
538 		struct vm_struct *vm = task_stack_vm_area(tsk);
539 		int i;
540 
541 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
542 			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
543 					      account * (PAGE_SIZE / 1024));
544 	} else {
545 		void *stack = task_stack_page(tsk);
546 
547 		/* All stack pages are in the same node. */
548 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
549 				      account * (THREAD_SIZE / 1024));
550 	}
551 }
552 
553 void exit_task_stack_account(struct task_struct *tsk)
554 {
555 	account_kernel_stack(tsk, -1);
556 
557 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
558 		struct vm_struct *vm;
559 		int i;
560 
561 		vm = task_stack_vm_area(tsk);
562 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
563 			memcg_kmem_uncharge_page(vm->pages[i], 0);
564 	}
565 }
566 
567 static void release_task_stack(struct task_struct *tsk)
568 {
569 	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
570 		return;  /* Better to leak the stack than to free prematurely */
571 
572 	free_thread_stack(tsk);
573 }
574 
575 #ifdef CONFIG_THREAD_INFO_IN_TASK
576 void put_task_stack(struct task_struct *tsk)
577 {
578 	if (refcount_dec_and_test(&tsk->stack_refcount))
579 		release_task_stack(tsk);
580 }
581 #endif
582 
583 void free_task(struct task_struct *tsk)
584 {
585 #ifdef CONFIG_SECCOMP
586 	WARN_ON_ONCE(tsk->seccomp.filter);
587 #endif
588 	release_user_cpus_ptr(tsk);
589 	scs_release(tsk);
590 
591 #ifndef CONFIG_THREAD_INFO_IN_TASK
592 	/*
593 	 * The task is finally done with both the stack and thread_info,
594 	 * so free both.
595 	 */
596 	release_task_stack(tsk);
597 #else
598 	/*
599 	 * If the task had a separate stack allocation, it should be gone
600 	 * by now.
601 	 */
602 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
603 #endif
604 	rt_mutex_debug_task_free(tsk);
605 	ftrace_graph_exit_task(tsk);
606 	arch_release_task_struct(tsk);
607 	if (tsk->flags & PF_KTHREAD)
608 		free_kthread_struct(tsk);
609 	bpf_task_storage_free(tsk);
610 	free_task_struct(tsk);
611 }
612 EXPORT_SYMBOL(free_task);
613 
614 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
615 {
616 	struct file *exe_file;
617 
618 	exe_file = get_mm_exe_file(oldmm);
619 	RCU_INIT_POINTER(mm->exe_file, exe_file);
620 	/*
621 	 * We depend on the oldmm having properly denied write access to the
622 	 * exe_file already.
623 	 */
624 	if (exe_file && deny_write_access(exe_file))
625 		pr_warn_once("deny_write_access() failed in %s\n", __func__);
626 }
627 
628 #ifdef CONFIG_MMU
629 static __latent_entropy int dup_mmap(struct mm_struct *mm,
630 					struct mm_struct *oldmm)
631 {
632 	struct vm_area_struct *mpnt, *tmp;
633 	int retval;
634 	unsigned long charge = 0;
635 	LIST_HEAD(uf);
636 	VMA_ITERATOR(vmi, mm, 0);
637 
638 	uprobe_start_dup_mmap();
639 	if (mmap_write_lock_killable(oldmm)) {
640 		retval = -EINTR;
641 		goto fail_uprobe_end;
642 	}
643 	flush_cache_dup_mm(oldmm);
644 	uprobe_dup_mmap(oldmm, mm);
645 	/*
646 	 * Not linked in yet - no deadlock potential:
647 	 */
648 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
649 
650 	/* No ordering required: file already has been exposed. */
651 	dup_mm_exe_file(mm, oldmm);
652 
653 	mm->total_vm = oldmm->total_vm;
654 	mm->data_vm = oldmm->data_vm;
655 	mm->exec_vm = oldmm->exec_vm;
656 	mm->stack_vm = oldmm->stack_vm;
657 
658 	retval = ksm_fork(mm, oldmm);
659 	if (retval)
660 		goto out;
661 	khugepaged_fork(mm, oldmm);
662 
663 	/* Use __mt_dup() to efficiently build an identical maple tree. */
664 	retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL);
665 	if (unlikely(retval))
666 		goto out;
667 
668 	mt_clear_in_rcu(vmi.mas.tree);
669 	for_each_vma(vmi, mpnt) {
670 		struct file *file;
671 
672 		vma_start_write(mpnt);
673 		if (mpnt->vm_flags & VM_DONTCOPY) {
674 			retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start,
675 						    mpnt->vm_end, GFP_KERNEL);
676 			if (retval)
677 				goto loop_out;
678 
679 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
680 			continue;
681 		}
682 		charge = 0;
683 		/*
684 		 * Don't duplicate many vmas if we've been oom-killed (for
685 		 * example)
686 		 */
687 		if (fatal_signal_pending(current)) {
688 			retval = -EINTR;
689 			goto loop_out;
690 		}
691 		if (mpnt->vm_flags & VM_ACCOUNT) {
692 			unsigned long len = vma_pages(mpnt);
693 
694 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
695 				goto fail_nomem;
696 			charge = len;
697 		}
698 		tmp = vm_area_dup(mpnt);
699 		if (!tmp)
700 			goto fail_nomem;
701 		retval = vma_dup_policy(mpnt, tmp);
702 		if (retval)
703 			goto fail_nomem_policy;
704 		tmp->vm_mm = mm;
705 		retval = dup_userfaultfd(tmp, &uf);
706 		if (retval)
707 			goto fail_nomem_anon_vma_fork;
708 		if (tmp->vm_flags & VM_WIPEONFORK) {
709 			/*
710 			 * VM_WIPEONFORK gets a clean slate in the child.
711 			 * Don't prepare anon_vma until fault since we don't
712 			 * copy page for current vma.
713 			 */
714 			tmp->anon_vma = NULL;
715 		} else if (anon_vma_fork(tmp, mpnt))
716 			goto fail_nomem_anon_vma_fork;
717 		vm_flags_clear(tmp, VM_LOCKED_MASK);
718 		/*
719 		 * Copy/update hugetlb private vma information.
720 		 */
721 		if (is_vm_hugetlb_page(tmp))
722 			hugetlb_dup_vma_private(tmp);
723 
724 		/*
725 		 * Link the vma into the MT. After using __mt_dup(), memory
726 		 * allocation is not necessary here, so it cannot fail.
727 		 */
728 		vma_iter_bulk_store(&vmi, tmp);
729 
730 		mm->map_count++;
731 
732 		if (tmp->vm_ops && tmp->vm_ops->open)
733 			tmp->vm_ops->open(tmp);
734 
735 		file = tmp->vm_file;
736 		if (file) {
737 			struct address_space *mapping = file->f_mapping;
738 
739 			get_file(file);
740 			i_mmap_lock_write(mapping);
741 			if (vma_is_shared_maywrite(tmp))
742 				mapping_allow_writable(mapping);
743 			flush_dcache_mmap_lock(mapping);
744 			/* insert tmp into the share list, just after mpnt */
745 			vma_interval_tree_insert_after(tmp, mpnt,
746 					&mapping->i_mmap);
747 			flush_dcache_mmap_unlock(mapping);
748 			i_mmap_unlock_write(mapping);
749 		}
750 
751 		if (!(tmp->vm_flags & VM_WIPEONFORK))
752 			retval = copy_page_range(tmp, mpnt);
753 
754 		if (retval) {
755 			mpnt = vma_next(&vmi);
756 			goto loop_out;
757 		}
758 	}
759 	/* a new mm has just been created */
760 	retval = arch_dup_mmap(oldmm, mm);
761 loop_out:
762 	vma_iter_free(&vmi);
763 	if (!retval) {
764 		mt_set_in_rcu(vmi.mas.tree);
765 	} else if (mpnt) {
766 		/*
767 		 * The entire maple tree has already been duplicated. If the
768 		 * mmap duplication fails, mark the failure point with
769 		 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered,
770 		 * stop releasing VMAs that have not been duplicated after this
771 		 * point.
772 		 */
773 		mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1);
774 		mas_store(&vmi.mas, XA_ZERO_ENTRY);
775 	}
776 out:
777 	mmap_write_unlock(mm);
778 	flush_tlb_mm(oldmm);
779 	mmap_write_unlock(oldmm);
780 	dup_userfaultfd_complete(&uf);
781 fail_uprobe_end:
782 	uprobe_end_dup_mmap();
783 	return retval;
784 
785 fail_nomem_anon_vma_fork:
786 	mpol_put(vma_policy(tmp));
787 fail_nomem_policy:
788 	vm_area_free(tmp);
789 fail_nomem:
790 	retval = -ENOMEM;
791 	vm_unacct_memory(charge);
792 	goto loop_out;
793 }
794 
795 static inline int mm_alloc_pgd(struct mm_struct *mm)
796 {
797 	mm->pgd = pgd_alloc(mm);
798 	if (unlikely(!mm->pgd))
799 		return -ENOMEM;
800 	return 0;
801 }
802 
803 static inline void mm_free_pgd(struct mm_struct *mm)
804 {
805 	pgd_free(mm, mm->pgd);
806 }
807 #else
808 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
809 {
810 	mmap_write_lock(oldmm);
811 	dup_mm_exe_file(mm, oldmm);
812 	mmap_write_unlock(oldmm);
813 	return 0;
814 }
815 #define mm_alloc_pgd(mm)	(0)
816 #define mm_free_pgd(mm)
817 #endif /* CONFIG_MMU */
818 
819 static void check_mm(struct mm_struct *mm)
820 {
821 	int i;
822 
823 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
824 			 "Please make sure 'struct resident_page_types[]' is updated as well");
825 
826 	for (i = 0; i < NR_MM_COUNTERS; i++) {
827 		long x = percpu_counter_sum(&mm->rss_stat[i]);
828 
829 		if (unlikely(x))
830 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
831 				 mm, resident_page_types[i], x);
832 	}
833 
834 	if (mm_pgtables_bytes(mm))
835 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
836 				mm_pgtables_bytes(mm));
837 
838 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
839 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
840 #endif
841 }
842 
843 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
844 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
845 
846 static void do_check_lazy_tlb(void *arg)
847 {
848 	struct mm_struct *mm = arg;
849 
850 	WARN_ON_ONCE(current->active_mm == mm);
851 }
852 
853 static void do_shoot_lazy_tlb(void *arg)
854 {
855 	struct mm_struct *mm = arg;
856 
857 	if (current->active_mm == mm) {
858 		WARN_ON_ONCE(current->mm);
859 		current->active_mm = &init_mm;
860 		switch_mm(mm, &init_mm, current);
861 	}
862 }
863 
864 static void cleanup_lazy_tlbs(struct mm_struct *mm)
865 {
866 	if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
867 		/*
868 		 * In this case, lazy tlb mms are refounted and would not reach
869 		 * __mmdrop until all CPUs have switched away and mmdrop()ed.
870 		 */
871 		return;
872 	}
873 
874 	/*
875 	 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
876 	 * requires lazy mm users to switch to another mm when the refcount
877 	 * drops to zero, before the mm is freed. This requires IPIs here to
878 	 * switch kernel threads to init_mm.
879 	 *
880 	 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
881 	 * switch with the final userspace teardown TLB flush which leaves the
882 	 * mm lazy on this CPU but no others, reducing the need for additional
883 	 * IPIs here. There are cases where a final IPI is still required here,
884 	 * such as the final mmdrop being performed on a different CPU than the
885 	 * one exiting, or kernel threads using the mm when userspace exits.
886 	 *
887 	 * IPI overheads have not found to be expensive, but they could be
888 	 * reduced in a number of possible ways, for example (roughly
889 	 * increasing order of complexity):
890 	 * - The last lazy reference created by exit_mm() could instead switch
891 	 *   to init_mm, however it's probable this will run on the same CPU
892 	 *   immediately afterwards, so this may not reduce IPIs much.
893 	 * - A batch of mms requiring IPIs could be gathered and freed at once.
894 	 * - CPUs store active_mm where it can be remotely checked without a
895 	 *   lock, to filter out false-positives in the cpumask.
896 	 * - After mm_users or mm_count reaches zero, switching away from the
897 	 *   mm could clear mm_cpumask to reduce some IPIs, perhaps together
898 	 *   with some batching or delaying of the final IPIs.
899 	 * - A delayed freeing and RCU-like quiescing sequence based on mm
900 	 *   switching to avoid IPIs completely.
901 	 */
902 	on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
903 	if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
904 		on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
905 }
906 
907 /*
908  * Called when the last reference to the mm
909  * is dropped: either by a lazy thread or by
910  * mmput. Free the page directory and the mm.
911  */
912 void __mmdrop(struct mm_struct *mm)
913 {
914 	BUG_ON(mm == &init_mm);
915 	WARN_ON_ONCE(mm == current->mm);
916 
917 	/* Ensure no CPUs are using this as their lazy tlb mm */
918 	cleanup_lazy_tlbs(mm);
919 
920 	WARN_ON_ONCE(mm == current->active_mm);
921 	mm_free_pgd(mm);
922 	destroy_context(mm);
923 	mmu_notifier_subscriptions_destroy(mm);
924 	check_mm(mm);
925 	put_user_ns(mm->user_ns);
926 	mm_pasid_drop(mm);
927 	mm_destroy_cid(mm);
928 	percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
929 
930 	free_mm(mm);
931 }
932 EXPORT_SYMBOL_GPL(__mmdrop);
933 
934 static void mmdrop_async_fn(struct work_struct *work)
935 {
936 	struct mm_struct *mm;
937 
938 	mm = container_of(work, struct mm_struct, async_put_work);
939 	__mmdrop(mm);
940 }
941 
942 static void mmdrop_async(struct mm_struct *mm)
943 {
944 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
945 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
946 		schedule_work(&mm->async_put_work);
947 	}
948 }
949 
950 static inline void free_signal_struct(struct signal_struct *sig)
951 {
952 	taskstats_tgid_free(sig);
953 	sched_autogroup_exit(sig);
954 	/*
955 	 * __mmdrop is not safe to call from softirq context on x86 due to
956 	 * pgd_dtor so postpone it to the async context
957 	 */
958 	if (sig->oom_mm)
959 		mmdrop_async(sig->oom_mm);
960 	kmem_cache_free(signal_cachep, sig);
961 }
962 
963 static inline void put_signal_struct(struct signal_struct *sig)
964 {
965 	if (refcount_dec_and_test(&sig->sigcnt))
966 		free_signal_struct(sig);
967 }
968 
969 void __put_task_struct(struct task_struct *tsk)
970 {
971 	WARN_ON(!tsk->exit_state);
972 	WARN_ON(refcount_read(&tsk->usage));
973 	WARN_ON(tsk == current);
974 
975 	sched_ext_free(tsk);
976 	io_uring_free(tsk);
977 	cgroup_free(tsk);
978 	task_numa_free(tsk, true);
979 	security_task_free(tsk);
980 	exit_creds(tsk);
981 	delayacct_tsk_free(tsk);
982 	put_signal_struct(tsk->signal);
983 	sched_core_free(tsk);
984 	free_task(tsk);
985 }
986 EXPORT_SYMBOL_GPL(__put_task_struct);
987 
988 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
989 {
990 	struct task_struct *task = container_of(rhp, struct task_struct, rcu);
991 
992 	__put_task_struct(task);
993 }
994 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
995 
996 void __init __weak arch_task_cache_init(void) { }
997 
998 /*
999  * set_max_threads
1000  */
1001 static void set_max_threads(unsigned int max_threads_suggested)
1002 {
1003 	u64 threads;
1004 	unsigned long nr_pages = totalram_pages();
1005 
1006 	/*
1007 	 * The number of threads shall be limited such that the thread
1008 	 * structures may only consume a small part of the available memory.
1009 	 */
1010 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
1011 		threads = MAX_THREADS;
1012 	else
1013 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
1014 				    (u64) THREAD_SIZE * 8UL);
1015 
1016 	if (threads > max_threads_suggested)
1017 		threads = max_threads_suggested;
1018 
1019 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
1020 }
1021 
1022 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1023 /* Initialized by the architecture: */
1024 int arch_task_struct_size __read_mostly;
1025 #endif
1026 
1027 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
1028 {
1029 	/* Fetch thread_struct whitelist for the architecture. */
1030 	arch_thread_struct_whitelist(offset, size);
1031 
1032 	/*
1033 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
1034 	 * adjust offset to position of thread_struct in task_struct.
1035 	 */
1036 	if (unlikely(*size == 0))
1037 		*offset = 0;
1038 	else
1039 		*offset += offsetof(struct task_struct, thread);
1040 }
1041 
1042 void __init fork_init(void)
1043 {
1044 	int i;
1045 #ifndef ARCH_MIN_TASKALIGN
1046 #define ARCH_MIN_TASKALIGN	0
1047 #endif
1048 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1049 	unsigned long useroffset, usersize;
1050 
1051 	/* create a slab on which task_structs can be allocated */
1052 	task_struct_whitelist(&useroffset, &usersize);
1053 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1054 			arch_task_struct_size, align,
1055 			SLAB_PANIC|SLAB_ACCOUNT,
1056 			useroffset, usersize, NULL);
1057 
1058 	/* do the arch specific task caches init */
1059 	arch_task_cache_init();
1060 
1061 	set_max_threads(MAX_THREADS);
1062 
1063 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1064 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1065 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
1066 		init_task.signal->rlim[RLIMIT_NPROC];
1067 
1068 	for (i = 0; i < UCOUNT_COUNTS; i++)
1069 		init_user_ns.ucount_max[i] = max_threads/2;
1070 
1071 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
1072 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
1073 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1074 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
1075 
1076 #ifdef CONFIG_VMAP_STACK
1077 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1078 			  NULL, free_vm_stack_cache);
1079 #endif
1080 
1081 	scs_init();
1082 
1083 	lockdep_init_task(&init_task);
1084 	uprobes_init();
1085 }
1086 
1087 int __weak arch_dup_task_struct(struct task_struct *dst,
1088 					       struct task_struct *src)
1089 {
1090 	*dst = *src;
1091 	return 0;
1092 }
1093 
1094 void set_task_stack_end_magic(struct task_struct *tsk)
1095 {
1096 	unsigned long *stackend;
1097 
1098 	stackend = end_of_stack(tsk);
1099 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
1100 }
1101 
1102 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1103 {
1104 	struct task_struct *tsk;
1105 	int err;
1106 
1107 	if (node == NUMA_NO_NODE)
1108 		node = tsk_fork_get_node(orig);
1109 	tsk = alloc_task_struct_node(node);
1110 	if (!tsk)
1111 		return NULL;
1112 
1113 	err = arch_dup_task_struct(tsk, orig);
1114 	if (err)
1115 		goto free_tsk;
1116 
1117 	err = alloc_thread_stack_node(tsk, node);
1118 	if (err)
1119 		goto free_tsk;
1120 
1121 #ifdef CONFIG_THREAD_INFO_IN_TASK
1122 	refcount_set(&tsk->stack_refcount, 1);
1123 #endif
1124 	account_kernel_stack(tsk, 1);
1125 
1126 	err = scs_prepare(tsk, node);
1127 	if (err)
1128 		goto free_stack;
1129 
1130 #ifdef CONFIG_SECCOMP
1131 	/*
1132 	 * We must handle setting up seccomp filters once we're under
1133 	 * the sighand lock in case orig has changed between now and
1134 	 * then. Until then, filter must be NULL to avoid messing up
1135 	 * the usage counts on the error path calling free_task.
1136 	 */
1137 	tsk->seccomp.filter = NULL;
1138 #endif
1139 
1140 	setup_thread_stack(tsk, orig);
1141 	clear_user_return_notifier(tsk);
1142 	clear_tsk_need_resched(tsk);
1143 	set_task_stack_end_magic(tsk);
1144 	clear_syscall_work_syscall_user_dispatch(tsk);
1145 
1146 #ifdef CONFIG_STACKPROTECTOR
1147 	tsk->stack_canary = get_random_canary();
1148 #endif
1149 	if (orig->cpus_ptr == &orig->cpus_mask)
1150 		tsk->cpus_ptr = &tsk->cpus_mask;
1151 	dup_user_cpus_ptr(tsk, orig, node);
1152 
1153 	/*
1154 	 * One for the user space visible state that goes away when reaped.
1155 	 * One for the scheduler.
1156 	 */
1157 	refcount_set(&tsk->rcu_users, 2);
1158 	/* One for the rcu users */
1159 	refcount_set(&tsk->usage, 1);
1160 #ifdef CONFIG_BLK_DEV_IO_TRACE
1161 	tsk->btrace_seq = 0;
1162 #endif
1163 	tsk->splice_pipe = NULL;
1164 	tsk->task_frag.page = NULL;
1165 	tsk->wake_q.next = NULL;
1166 	tsk->worker_private = NULL;
1167 
1168 	kcov_task_init(tsk);
1169 	kmsan_task_create(tsk);
1170 	kmap_local_fork(tsk);
1171 
1172 #ifdef CONFIG_FAULT_INJECTION
1173 	tsk->fail_nth = 0;
1174 #endif
1175 
1176 #ifdef CONFIG_BLK_CGROUP
1177 	tsk->throttle_disk = NULL;
1178 	tsk->use_memdelay = 0;
1179 #endif
1180 
1181 #ifdef CONFIG_ARCH_HAS_CPU_PASID
1182 	tsk->pasid_activated = 0;
1183 #endif
1184 
1185 #ifdef CONFIG_MEMCG
1186 	tsk->active_memcg = NULL;
1187 #endif
1188 
1189 #ifdef CONFIG_CPU_SUP_INTEL
1190 	tsk->reported_split_lock = 0;
1191 #endif
1192 
1193 #ifdef CONFIG_SCHED_MM_CID
1194 	tsk->mm_cid = -1;
1195 	tsk->last_mm_cid = -1;
1196 	tsk->mm_cid_active = 0;
1197 	tsk->migrate_from_cpu = -1;
1198 #endif
1199 	return tsk;
1200 
1201 free_stack:
1202 	exit_task_stack_account(tsk);
1203 	free_thread_stack(tsk);
1204 free_tsk:
1205 	free_task_struct(tsk);
1206 	return NULL;
1207 }
1208 
1209 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1210 
1211 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1212 
1213 static int __init coredump_filter_setup(char *s)
1214 {
1215 	default_dump_filter =
1216 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1217 		MMF_DUMP_FILTER_MASK;
1218 	return 1;
1219 }
1220 
1221 __setup("coredump_filter=", coredump_filter_setup);
1222 
1223 #include <linux/init_task.h>
1224 
1225 static void mm_init_aio(struct mm_struct *mm)
1226 {
1227 #ifdef CONFIG_AIO
1228 	spin_lock_init(&mm->ioctx_lock);
1229 	mm->ioctx_table = NULL;
1230 #endif
1231 }
1232 
1233 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1234 					   struct task_struct *p)
1235 {
1236 #ifdef CONFIG_MEMCG
1237 	if (mm->owner == p)
1238 		WRITE_ONCE(mm->owner, NULL);
1239 #endif
1240 }
1241 
1242 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1243 {
1244 #ifdef CONFIG_MEMCG
1245 	mm->owner = p;
1246 #endif
1247 }
1248 
1249 static void mm_init_uprobes_state(struct mm_struct *mm)
1250 {
1251 #ifdef CONFIG_UPROBES
1252 	mm->uprobes_state.xol_area = NULL;
1253 #endif
1254 }
1255 
1256 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1257 	struct user_namespace *user_ns)
1258 {
1259 	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1260 	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1261 	atomic_set(&mm->mm_users, 1);
1262 	atomic_set(&mm->mm_count, 1);
1263 	seqcount_init(&mm->write_protect_seq);
1264 	mmap_init_lock(mm);
1265 	INIT_LIST_HEAD(&mm->mmlist);
1266 #ifdef CONFIG_PER_VMA_LOCK
1267 	mm->mm_lock_seq = 0;
1268 #endif
1269 	mm_pgtables_bytes_init(mm);
1270 	mm->map_count = 0;
1271 	mm->locked_vm = 0;
1272 	atomic64_set(&mm->pinned_vm, 0);
1273 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1274 	spin_lock_init(&mm->page_table_lock);
1275 	spin_lock_init(&mm->arg_lock);
1276 	mm_init_cpumask(mm);
1277 	mm_init_aio(mm);
1278 	mm_init_owner(mm, p);
1279 	mm_pasid_init(mm);
1280 	RCU_INIT_POINTER(mm->exe_file, NULL);
1281 	mmu_notifier_subscriptions_init(mm);
1282 	init_tlb_flush_pending(mm);
1283 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1284 	mm->pmd_huge_pte = NULL;
1285 #endif
1286 	mm_init_uprobes_state(mm);
1287 	hugetlb_count_init(mm);
1288 
1289 	if (current->mm) {
1290 		mm->flags = mmf_init_flags(current->mm->flags);
1291 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1292 	} else {
1293 		mm->flags = default_dump_filter;
1294 		mm->def_flags = 0;
1295 	}
1296 
1297 	if (mm_alloc_pgd(mm))
1298 		goto fail_nopgd;
1299 
1300 	if (init_new_context(p, mm))
1301 		goto fail_nocontext;
1302 
1303 	if (mm_alloc_cid(mm))
1304 		goto fail_cid;
1305 
1306 	if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1307 				     NR_MM_COUNTERS))
1308 		goto fail_pcpu;
1309 
1310 	mm->user_ns = get_user_ns(user_ns);
1311 	lru_gen_init_mm(mm);
1312 	return mm;
1313 
1314 fail_pcpu:
1315 	mm_destroy_cid(mm);
1316 fail_cid:
1317 	destroy_context(mm);
1318 fail_nocontext:
1319 	mm_free_pgd(mm);
1320 fail_nopgd:
1321 	free_mm(mm);
1322 	return NULL;
1323 }
1324 
1325 /*
1326  * Allocate and initialize an mm_struct.
1327  */
1328 struct mm_struct *mm_alloc(void)
1329 {
1330 	struct mm_struct *mm;
1331 
1332 	mm = allocate_mm();
1333 	if (!mm)
1334 		return NULL;
1335 
1336 	memset(mm, 0, sizeof(*mm));
1337 	return mm_init(mm, current, current_user_ns());
1338 }
1339 
1340 static inline void __mmput(struct mm_struct *mm)
1341 {
1342 	VM_BUG_ON(atomic_read(&mm->mm_users));
1343 
1344 	uprobe_clear_state(mm);
1345 	exit_aio(mm);
1346 	ksm_exit(mm);
1347 	khugepaged_exit(mm); /* must run before exit_mmap */
1348 	exit_mmap(mm);
1349 	mm_put_huge_zero_folio(mm);
1350 	set_mm_exe_file(mm, NULL);
1351 	if (!list_empty(&mm->mmlist)) {
1352 		spin_lock(&mmlist_lock);
1353 		list_del(&mm->mmlist);
1354 		spin_unlock(&mmlist_lock);
1355 	}
1356 	if (mm->binfmt)
1357 		module_put(mm->binfmt->module);
1358 	lru_gen_del_mm(mm);
1359 	mmdrop(mm);
1360 }
1361 
1362 /*
1363  * Decrement the use count and release all resources for an mm.
1364  */
1365 void mmput(struct mm_struct *mm)
1366 {
1367 	might_sleep();
1368 
1369 	if (atomic_dec_and_test(&mm->mm_users))
1370 		__mmput(mm);
1371 }
1372 EXPORT_SYMBOL_GPL(mmput);
1373 
1374 #ifdef CONFIG_MMU
1375 static void mmput_async_fn(struct work_struct *work)
1376 {
1377 	struct mm_struct *mm = container_of(work, struct mm_struct,
1378 					    async_put_work);
1379 
1380 	__mmput(mm);
1381 }
1382 
1383 void mmput_async(struct mm_struct *mm)
1384 {
1385 	if (atomic_dec_and_test(&mm->mm_users)) {
1386 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1387 		schedule_work(&mm->async_put_work);
1388 	}
1389 }
1390 EXPORT_SYMBOL_GPL(mmput_async);
1391 #endif
1392 
1393 /**
1394  * set_mm_exe_file - change a reference to the mm's executable file
1395  * @mm: The mm to change.
1396  * @new_exe_file: The new file to use.
1397  *
1398  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1399  *
1400  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1401  * invocations: in mmput() nobody alive left, in execve it happens before
1402  * the new mm is made visible to anyone.
1403  *
1404  * Can only fail if new_exe_file != NULL.
1405  */
1406 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1407 {
1408 	struct file *old_exe_file;
1409 
1410 	/*
1411 	 * It is safe to dereference the exe_file without RCU as
1412 	 * this function is only called if nobody else can access
1413 	 * this mm -- see comment above for justification.
1414 	 */
1415 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1416 
1417 	if (new_exe_file) {
1418 		/*
1419 		 * We expect the caller (i.e., sys_execve) to already denied
1420 		 * write access, so this is unlikely to fail.
1421 		 */
1422 		if (unlikely(deny_write_access(new_exe_file)))
1423 			return -EACCES;
1424 		get_file(new_exe_file);
1425 	}
1426 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1427 	if (old_exe_file) {
1428 		allow_write_access(old_exe_file);
1429 		fput(old_exe_file);
1430 	}
1431 	return 0;
1432 }
1433 
1434 /**
1435  * replace_mm_exe_file - replace a reference to the mm's executable file
1436  * @mm: The mm to change.
1437  * @new_exe_file: The new file to use.
1438  *
1439  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1440  *
1441  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1442  */
1443 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1444 {
1445 	struct vm_area_struct *vma;
1446 	struct file *old_exe_file;
1447 	int ret = 0;
1448 
1449 	/* Forbid mm->exe_file change if old file still mapped. */
1450 	old_exe_file = get_mm_exe_file(mm);
1451 	if (old_exe_file) {
1452 		VMA_ITERATOR(vmi, mm, 0);
1453 		mmap_read_lock(mm);
1454 		for_each_vma(vmi, vma) {
1455 			if (!vma->vm_file)
1456 				continue;
1457 			if (path_equal(&vma->vm_file->f_path,
1458 				       &old_exe_file->f_path)) {
1459 				ret = -EBUSY;
1460 				break;
1461 			}
1462 		}
1463 		mmap_read_unlock(mm);
1464 		fput(old_exe_file);
1465 		if (ret)
1466 			return ret;
1467 	}
1468 
1469 	ret = deny_write_access(new_exe_file);
1470 	if (ret)
1471 		return -EACCES;
1472 	get_file(new_exe_file);
1473 
1474 	/* set the new file */
1475 	mmap_write_lock(mm);
1476 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1477 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1478 	mmap_write_unlock(mm);
1479 
1480 	if (old_exe_file) {
1481 		allow_write_access(old_exe_file);
1482 		fput(old_exe_file);
1483 	}
1484 	return 0;
1485 }
1486 
1487 /**
1488  * get_mm_exe_file - acquire a reference to the mm's executable file
1489  * @mm: The mm of interest.
1490  *
1491  * Returns %NULL if mm has no associated executable file.
1492  * User must release file via fput().
1493  */
1494 struct file *get_mm_exe_file(struct mm_struct *mm)
1495 {
1496 	struct file *exe_file;
1497 
1498 	rcu_read_lock();
1499 	exe_file = get_file_rcu(&mm->exe_file);
1500 	rcu_read_unlock();
1501 	return exe_file;
1502 }
1503 
1504 /**
1505  * get_task_exe_file - acquire a reference to the task's executable file
1506  * @task: The task.
1507  *
1508  * Returns %NULL if task's mm (if any) has no associated executable file or
1509  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1510  * User must release file via fput().
1511  */
1512 struct file *get_task_exe_file(struct task_struct *task)
1513 {
1514 	struct file *exe_file = NULL;
1515 	struct mm_struct *mm;
1516 
1517 	task_lock(task);
1518 	mm = task->mm;
1519 	if (mm) {
1520 		if (!(task->flags & PF_KTHREAD))
1521 			exe_file = get_mm_exe_file(mm);
1522 	}
1523 	task_unlock(task);
1524 	return exe_file;
1525 }
1526 
1527 /**
1528  * get_task_mm - acquire a reference to the task's mm
1529  * @task: The task.
1530  *
1531  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1532  * this kernel workthread has transiently adopted a user mm with use_mm,
1533  * to do its AIO) is not set and if so returns a reference to it, after
1534  * bumping up the use count.  User must release the mm via mmput()
1535  * after use.  Typically used by /proc and ptrace.
1536  */
1537 struct mm_struct *get_task_mm(struct task_struct *task)
1538 {
1539 	struct mm_struct *mm;
1540 
1541 	task_lock(task);
1542 	mm = task->mm;
1543 	if (mm) {
1544 		if (task->flags & PF_KTHREAD)
1545 			mm = NULL;
1546 		else
1547 			mmget(mm);
1548 	}
1549 	task_unlock(task);
1550 	return mm;
1551 }
1552 EXPORT_SYMBOL_GPL(get_task_mm);
1553 
1554 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1555 {
1556 	struct mm_struct *mm;
1557 	int err;
1558 
1559 	err =  down_read_killable(&task->signal->exec_update_lock);
1560 	if (err)
1561 		return ERR_PTR(err);
1562 
1563 	mm = get_task_mm(task);
1564 	if (mm && mm != current->mm &&
1565 			!ptrace_may_access(task, mode)) {
1566 		mmput(mm);
1567 		mm = ERR_PTR(-EACCES);
1568 	}
1569 	up_read(&task->signal->exec_update_lock);
1570 
1571 	return mm;
1572 }
1573 
1574 static void complete_vfork_done(struct task_struct *tsk)
1575 {
1576 	struct completion *vfork;
1577 
1578 	task_lock(tsk);
1579 	vfork = tsk->vfork_done;
1580 	if (likely(vfork)) {
1581 		tsk->vfork_done = NULL;
1582 		complete(vfork);
1583 	}
1584 	task_unlock(tsk);
1585 }
1586 
1587 static int wait_for_vfork_done(struct task_struct *child,
1588 				struct completion *vfork)
1589 {
1590 	unsigned int state = TASK_KILLABLE|TASK_FREEZABLE;
1591 	int killed;
1592 
1593 	cgroup_enter_frozen();
1594 	killed = wait_for_completion_state(vfork, state);
1595 	cgroup_leave_frozen(false);
1596 
1597 	if (killed) {
1598 		task_lock(child);
1599 		child->vfork_done = NULL;
1600 		task_unlock(child);
1601 	}
1602 
1603 	put_task_struct(child);
1604 	return killed;
1605 }
1606 
1607 /* Please note the differences between mmput and mm_release.
1608  * mmput is called whenever we stop holding onto a mm_struct,
1609  * error success whatever.
1610  *
1611  * mm_release is called after a mm_struct has been removed
1612  * from the current process.
1613  *
1614  * This difference is important for error handling, when we
1615  * only half set up a mm_struct for a new process and need to restore
1616  * the old one.  Because we mmput the new mm_struct before
1617  * restoring the old one. . .
1618  * Eric Biederman 10 January 1998
1619  */
1620 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1621 {
1622 	uprobe_free_utask(tsk);
1623 
1624 	/* Get rid of any cached register state */
1625 	deactivate_mm(tsk, mm);
1626 
1627 	/*
1628 	 * Signal userspace if we're not exiting with a core dump
1629 	 * because we want to leave the value intact for debugging
1630 	 * purposes.
1631 	 */
1632 	if (tsk->clear_child_tid) {
1633 		if (atomic_read(&mm->mm_users) > 1) {
1634 			/*
1635 			 * We don't check the error code - if userspace has
1636 			 * not set up a proper pointer then tough luck.
1637 			 */
1638 			put_user(0, tsk->clear_child_tid);
1639 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1640 					1, NULL, NULL, 0, 0);
1641 		}
1642 		tsk->clear_child_tid = NULL;
1643 	}
1644 
1645 	/*
1646 	 * All done, finally we can wake up parent and return this mm to him.
1647 	 * Also kthread_stop() uses this completion for synchronization.
1648 	 */
1649 	if (tsk->vfork_done)
1650 		complete_vfork_done(tsk);
1651 }
1652 
1653 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1654 {
1655 	futex_exit_release(tsk);
1656 	mm_release(tsk, mm);
1657 }
1658 
1659 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1660 {
1661 	futex_exec_release(tsk);
1662 	mm_release(tsk, mm);
1663 }
1664 
1665 /**
1666  * dup_mm() - duplicates an existing mm structure
1667  * @tsk: the task_struct with which the new mm will be associated.
1668  * @oldmm: the mm to duplicate.
1669  *
1670  * Allocates a new mm structure and duplicates the provided @oldmm structure
1671  * content into it.
1672  *
1673  * Return: the duplicated mm or NULL on failure.
1674  */
1675 static struct mm_struct *dup_mm(struct task_struct *tsk,
1676 				struct mm_struct *oldmm)
1677 {
1678 	struct mm_struct *mm;
1679 	int err;
1680 
1681 	mm = allocate_mm();
1682 	if (!mm)
1683 		goto fail_nomem;
1684 
1685 	memcpy(mm, oldmm, sizeof(*mm));
1686 
1687 	if (!mm_init(mm, tsk, mm->user_ns))
1688 		goto fail_nomem;
1689 
1690 	err = dup_mmap(mm, oldmm);
1691 	if (err)
1692 		goto free_pt;
1693 
1694 	mm->hiwater_rss = get_mm_rss(mm);
1695 	mm->hiwater_vm = mm->total_vm;
1696 
1697 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1698 		goto free_pt;
1699 
1700 	return mm;
1701 
1702 free_pt:
1703 	/* don't put binfmt in mmput, we haven't got module yet */
1704 	mm->binfmt = NULL;
1705 	mm_init_owner(mm, NULL);
1706 	mmput(mm);
1707 
1708 fail_nomem:
1709 	return NULL;
1710 }
1711 
1712 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1713 {
1714 	struct mm_struct *mm, *oldmm;
1715 
1716 	tsk->min_flt = tsk->maj_flt = 0;
1717 	tsk->nvcsw = tsk->nivcsw = 0;
1718 #ifdef CONFIG_DETECT_HUNG_TASK
1719 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1720 	tsk->last_switch_time = 0;
1721 #endif
1722 
1723 	tsk->mm = NULL;
1724 	tsk->active_mm = NULL;
1725 
1726 	/*
1727 	 * Are we cloning a kernel thread?
1728 	 *
1729 	 * We need to steal a active VM for that..
1730 	 */
1731 	oldmm = current->mm;
1732 	if (!oldmm)
1733 		return 0;
1734 
1735 	if (clone_flags & CLONE_VM) {
1736 		mmget(oldmm);
1737 		mm = oldmm;
1738 	} else {
1739 		mm = dup_mm(tsk, current->mm);
1740 		if (!mm)
1741 			return -ENOMEM;
1742 	}
1743 
1744 	tsk->mm = mm;
1745 	tsk->active_mm = mm;
1746 	sched_mm_cid_fork(tsk);
1747 	return 0;
1748 }
1749 
1750 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1751 {
1752 	struct fs_struct *fs = current->fs;
1753 	if (clone_flags & CLONE_FS) {
1754 		/* tsk->fs is already what we want */
1755 		spin_lock(&fs->lock);
1756 		/* "users" and "in_exec" locked for check_unsafe_exec() */
1757 		if (fs->in_exec) {
1758 			spin_unlock(&fs->lock);
1759 			return -EAGAIN;
1760 		}
1761 		fs->users++;
1762 		spin_unlock(&fs->lock);
1763 		return 0;
1764 	}
1765 	tsk->fs = copy_fs_struct(fs);
1766 	if (!tsk->fs)
1767 		return -ENOMEM;
1768 	return 0;
1769 }
1770 
1771 static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1772 		      int no_files)
1773 {
1774 	struct files_struct *oldf, *newf;
1775 	int error = 0;
1776 
1777 	/*
1778 	 * A background process may not have any files ...
1779 	 */
1780 	oldf = current->files;
1781 	if (!oldf)
1782 		goto out;
1783 
1784 	if (no_files) {
1785 		tsk->files = NULL;
1786 		goto out;
1787 	}
1788 
1789 	if (clone_flags & CLONE_FILES) {
1790 		atomic_inc(&oldf->count);
1791 		goto out;
1792 	}
1793 
1794 	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1795 	if (!newf)
1796 		goto out;
1797 
1798 	tsk->files = newf;
1799 	error = 0;
1800 out:
1801 	return error;
1802 }
1803 
1804 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1805 {
1806 	struct sighand_struct *sig;
1807 
1808 	if (clone_flags & CLONE_SIGHAND) {
1809 		refcount_inc(&current->sighand->count);
1810 		return 0;
1811 	}
1812 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1813 	RCU_INIT_POINTER(tsk->sighand, sig);
1814 	if (!sig)
1815 		return -ENOMEM;
1816 
1817 	refcount_set(&sig->count, 1);
1818 	spin_lock_irq(&current->sighand->siglock);
1819 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1820 	spin_unlock_irq(&current->sighand->siglock);
1821 
1822 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1823 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1824 		flush_signal_handlers(tsk, 0);
1825 
1826 	return 0;
1827 }
1828 
1829 void __cleanup_sighand(struct sighand_struct *sighand)
1830 {
1831 	if (refcount_dec_and_test(&sighand->count)) {
1832 		signalfd_cleanup(sighand);
1833 		/*
1834 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1835 		 * without an RCU grace period, see __lock_task_sighand().
1836 		 */
1837 		kmem_cache_free(sighand_cachep, sighand);
1838 	}
1839 }
1840 
1841 /*
1842  * Initialize POSIX timer handling for a thread group.
1843  */
1844 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1845 {
1846 	struct posix_cputimers *pct = &sig->posix_cputimers;
1847 	unsigned long cpu_limit;
1848 
1849 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1850 	posix_cputimers_group_init(pct, cpu_limit);
1851 }
1852 
1853 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1854 {
1855 	struct signal_struct *sig;
1856 
1857 	if (clone_flags & CLONE_THREAD)
1858 		return 0;
1859 
1860 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1861 	tsk->signal = sig;
1862 	if (!sig)
1863 		return -ENOMEM;
1864 
1865 	sig->nr_threads = 1;
1866 	sig->quick_threads = 1;
1867 	atomic_set(&sig->live, 1);
1868 	refcount_set(&sig->sigcnt, 1);
1869 
1870 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1871 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1872 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1873 
1874 	init_waitqueue_head(&sig->wait_chldexit);
1875 	sig->curr_target = tsk;
1876 	init_sigpending(&sig->shared_pending);
1877 	INIT_HLIST_HEAD(&sig->multiprocess);
1878 	seqlock_init(&sig->stats_lock);
1879 	prev_cputime_init(&sig->prev_cputime);
1880 
1881 #ifdef CONFIG_POSIX_TIMERS
1882 	INIT_LIST_HEAD(&sig->posix_timers);
1883 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1884 	sig->real_timer.function = it_real_fn;
1885 #endif
1886 
1887 	task_lock(current->group_leader);
1888 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1889 	task_unlock(current->group_leader);
1890 
1891 	posix_cpu_timers_init_group(sig);
1892 
1893 	tty_audit_fork(sig);
1894 	sched_autogroup_fork(sig);
1895 
1896 	sig->oom_score_adj = current->signal->oom_score_adj;
1897 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1898 
1899 	mutex_init(&sig->cred_guard_mutex);
1900 	init_rwsem(&sig->exec_update_lock);
1901 
1902 	return 0;
1903 }
1904 
1905 static void copy_seccomp(struct task_struct *p)
1906 {
1907 #ifdef CONFIG_SECCOMP
1908 	/*
1909 	 * Must be called with sighand->lock held, which is common to
1910 	 * all threads in the group. Holding cred_guard_mutex is not
1911 	 * needed because this new task is not yet running and cannot
1912 	 * be racing exec.
1913 	 */
1914 	assert_spin_locked(&current->sighand->siglock);
1915 
1916 	/* Ref-count the new filter user, and assign it. */
1917 	get_seccomp_filter(current);
1918 	p->seccomp = current->seccomp;
1919 
1920 	/*
1921 	 * Explicitly enable no_new_privs here in case it got set
1922 	 * between the task_struct being duplicated and holding the
1923 	 * sighand lock. The seccomp state and nnp must be in sync.
1924 	 */
1925 	if (task_no_new_privs(current))
1926 		task_set_no_new_privs(p);
1927 
1928 	/*
1929 	 * If the parent gained a seccomp mode after copying thread
1930 	 * flags and between before we held the sighand lock, we have
1931 	 * to manually enable the seccomp thread flag here.
1932 	 */
1933 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1934 		set_task_syscall_work(p, SECCOMP);
1935 #endif
1936 }
1937 
1938 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1939 {
1940 	current->clear_child_tid = tidptr;
1941 
1942 	return task_pid_vnr(current);
1943 }
1944 
1945 static void rt_mutex_init_task(struct task_struct *p)
1946 {
1947 	raw_spin_lock_init(&p->pi_lock);
1948 #ifdef CONFIG_RT_MUTEXES
1949 	p->pi_waiters = RB_ROOT_CACHED;
1950 	p->pi_top_task = NULL;
1951 	p->pi_blocked_on = NULL;
1952 #endif
1953 }
1954 
1955 static inline void init_task_pid_links(struct task_struct *task)
1956 {
1957 	enum pid_type type;
1958 
1959 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1960 		INIT_HLIST_NODE(&task->pid_links[type]);
1961 }
1962 
1963 static inline void
1964 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1965 {
1966 	if (type == PIDTYPE_PID)
1967 		task->thread_pid = pid;
1968 	else
1969 		task->signal->pids[type] = pid;
1970 }
1971 
1972 static inline void rcu_copy_process(struct task_struct *p)
1973 {
1974 #ifdef CONFIG_PREEMPT_RCU
1975 	p->rcu_read_lock_nesting = 0;
1976 	p->rcu_read_unlock_special.s = 0;
1977 	p->rcu_blocked_node = NULL;
1978 	INIT_LIST_HEAD(&p->rcu_node_entry);
1979 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1980 #ifdef CONFIG_TASKS_RCU
1981 	p->rcu_tasks_holdout = false;
1982 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1983 	p->rcu_tasks_idle_cpu = -1;
1984 	INIT_LIST_HEAD(&p->rcu_tasks_exit_list);
1985 #endif /* #ifdef CONFIG_TASKS_RCU */
1986 #ifdef CONFIG_TASKS_TRACE_RCU
1987 	p->trc_reader_nesting = 0;
1988 	p->trc_reader_special.s = 0;
1989 	INIT_LIST_HEAD(&p->trc_holdout_list);
1990 	INIT_LIST_HEAD(&p->trc_blkd_node);
1991 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1992 }
1993 
1994 /**
1995  * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
1996  * @pid:   the struct pid for which to create a pidfd
1997  * @flags: flags of the new @pidfd
1998  * @ret: Where to return the file for the pidfd.
1999  *
2000  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2001  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2002  *
2003  * The helper doesn't perform checks on @pid which makes it useful for pidfds
2004  * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
2005  * pidfd file are prepared.
2006  *
2007  * If this function returns successfully the caller is responsible to either
2008  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2009  * order to install the pidfd into its file descriptor table or they must use
2010  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2011  * respectively.
2012  *
2013  * This function is useful when a pidfd must already be reserved but there
2014  * might still be points of failure afterwards and the caller wants to ensure
2015  * that no pidfd is leaked into its file descriptor table.
2016  *
2017  * Return: On success, a reserved pidfd is returned from the function and a new
2018  *         pidfd file is returned in the last argument to the function. On
2019  *         error, a negative error code is returned from the function and the
2020  *         last argument remains unchanged.
2021  */
2022 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2023 {
2024 	int pidfd;
2025 	struct file *pidfd_file;
2026 
2027 	pidfd = get_unused_fd_flags(O_CLOEXEC);
2028 	if (pidfd < 0)
2029 		return pidfd;
2030 
2031 	pidfd_file = pidfs_alloc_file(pid, flags | O_RDWR);
2032 	if (IS_ERR(pidfd_file)) {
2033 		put_unused_fd(pidfd);
2034 		return PTR_ERR(pidfd_file);
2035 	}
2036 	/*
2037 	 * anon_inode_getfile() ignores everything outside of the
2038 	 * O_ACCMODE | O_NONBLOCK mask, set PIDFD_THREAD manually.
2039 	 */
2040 	pidfd_file->f_flags |= (flags & PIDFD_THREAD);
2041 	*ret = pidfd_file;
2042 	return pidfd;
2043 }
2044 
2045 /**
2046  * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2047  * @pid:   the struct pid for which to create a pidfd
2048  * @flags: flags of the new @pidfd
2049  * @ret: Where to return the pidfd.
2050  *
2051  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2052  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2053  *
2054  * The helper verifies that @pid is still in use, without PIDFD_THREAD the
2055  * task identified by @pid must be a thread-group leader.
2056  *
2057  * If this function returns successfully the caller is responsible to either
2058  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2059  * order to install the pidfd into its file descriptor table or they must use
2060  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2061  * respectively.
2062  *
2063  * This function is useful when a pidfd must already be reserved but there
2064  * might still be points of failure afterwards and the caller wants to ensure
2065  * that no pidfd is leaked into its file descriptor table.
2066  *
2067  * Return: On success, a reserved pidfd is returned from the function and a new
2068  *         pidfd file is returned in the last argument to the function. On
2069  *         error, a negative error code is returned from the function and the
2070  *         last argument remains unchanged.
2071  */
2072 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2073 {
2074 	bool thread = flags & PIDFD_THREAD;
2075 
2076 	if (!pid || !pid_has_task(pid, thread ? PIDTYPE_PID : PIDTYPE_TGID))
2077 		return -EINVAL;
2078 
2079 	return __pidfd_prepare(pid, flags, ret);
2080 }
2081 
2082 static void __delayed_free_task(struct rcu_head *rhp)
2083 {
2084 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2085 
2086 	free_task(tsk);
2087 }
2088 
2089 static __always_inline void delayed_free_task(struct task_struct *tsk)
2090 {
2091 	if (IS_ENABLED(CONFIG_MEMCG))
2092 		call_rcu(&tsk->rcu, __delayed_free_task);
2093 	else
2094 		free_task(tsk);
2095 }
2096 
2097 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2098 {
2099 	/* Skip if kernel thread */
2100 	if (!tsk->mm)
2101 		return;
2102 
2103 	/* Skip if spawning a thread or using vfork */
2104 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2105 		return;
2106 
2107 	/* We need to synchronize with __set_oom_adj */
2108 	mutex_lock(&oom_adj_mutex);
2109 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2110 	/* Update the values in case they were changed after copy_signal */
2111 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2112 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2113 	mutex_unlock(&oom_adj_mutex);
2114 }
2115 
2116 #ifdef CONFIG_RV
2117 static void rv_task_fork(struct task_struct *p)
2118 {
2119 	int i;
2120 
2121 	for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2122 		p->rv[i].da_mon.monitoring = false;
2123 }
2124 #else
2125 #define rv_task_fork(p) do {} while (0)
2126 #endif
2127 
2128 /*
2129  * This creates a new process as a copy of the old one,
2130  * but does not actually start it yet.
2131  *
2132  * It copies the registers, and all the appropriate
2133  * parts of the process environment (as per the clone
2134  * flags). The actual kick-off is left to the caller.
2135  */
2136 __latent_entropy struct task_struct *copy_process(
2137 					struct pid *pid,
2138 					int trace,
2139 					int node,
2140 					struct kernel_clone_args *args)
2141 {
2142 	int pidfd = -1, retval;
2143 	struct task_struct *p;
2144 	struct multiprocess_signals delayed;
2145 	struct file *pidfile = NULL;
2146 	const u64 clone_flags = args->flags;
2147 	struct nsproxy *nsp = current->nsproxy;
2148 
2149 	/*
2150 	 * Don't allow sharing the root directory with processes in a different
2151 	 * namespace
2152 	 */
2153 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2154 		return ERR_PTR(-EINVAL);
2155 
2156 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2157 		return ERR_PTR(-EINVAL);
2158 
2159 	/*
2160 	 * Thread groups must share signals as well, and detached threads
2161 	 * can only be started up within the thread group.
2162 	 */
2163 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2164 		return ERR_PTR(-EINVAL);
2165 
2166 	/*
2167 	 * Shared signal handlers imply shared VM. By way of the above,
2168 	 * thread groups also imply shared VM. Blocking this case allows
2169 	 * for various simplifications in other code.
2170 	 */
2171 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2172 		return ERR_PTR(-EINVAL);
2173 
2174 	/*
2175 	 * Siblings of global init remain as zombies on exit since they are
2176 	 * not reaped by their parent (swapper). To solve this and to avoid
2177 	 * multi-rooted process trees, prevent global and container-inits
2178 	 * from creating siblings.
2179 	 */
2180 	if ((clone_flags & CLONE_PARENT) &&
2181 				current->signal->flags & SIGNAL_UNKILLABLE)
2182 		return ERR_PTR(-EINVAL);
2183 
2184 	/*
2185 	 * If the new process will be in a different pid or user namespace
2186 	 * do not allow it to share a thread group with the forking task.
2187 	 */
2188 	if (clone_flags & CLONE_THREAD) {
2189 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2190 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2191 			return ERR_PTR(-EINVAL);
2192 	}
2193 
2194 	if (clone_flags & CLONE_PIDFD) {
2195 		/*
2196 		 * - CLONE_DETACHED is blocked so that we can potentially
2197 		 *   reuse it later for CLONE_PIDFD.
2198 		 */
2199 		if (clone_flags & CLONE_DETACHED)
2200 			return ERR_PTR(-EINVAL);
2201 	}
2202 
2203 	/*
2204 	 * Force any signals received before this point to be delivered
2205 	 * before the fork happens.  Collect up signals sent to multiple
2206 	 * processes that happen during the fork and delay them so that
2207 	 * they appear to happen after the fork.
2208 	 */
2209 	sigemptyset(&delayed.signal);
2210 	INIT_HLIST_NODE(&delayed.node);
2211 
2212 	spin_lock_irq(&current->sighand->siglock);
2213 	if (!(clone_flags & CLONE_THREAD))
2214 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2215 	recalc_sigpending();
2216 	spin_unlock_irq(&current->sighand->siglock);
2217 	retval = -ERESTARTNOINTR;
2218 	if (task_sigpending(current))
2219 		goto fork_out;
2220 
2221 	retval = -ENOMEM;
2222 	p = dup_task_struct(current, node);
2223 	if (!p)
2224 		goto fork_out;
2225 	p->flags &= ~PF_KTHREAD;
2226 	if (args->kthread)
2227 		p->flags |= PF_KTHREAD;
2228 	if (args->user_worker) {
2229 		/*
2230 		 * Mark us a user worker, and block any signal that isn't
2231 		 * fatal or STOP
2232 		 */
2233 		p->flags |= PF_USER_WORKER;
2234 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2235 	}
2236 	if (args->io_thread)
2237 		p->flags |= PF_IO_WORKER;
2238 
2239 	if (args->name)
2240 		strscpy_pad(p->comm, args->name, sizeof(p->comm));
2241 
2242 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2243 	/*
2244 	 * Clear TID on mm_release()?
2245 	 */
2246 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2247 
2248 	ftrace_graph_init_task(p);
2249 
2250 	rt_mutex_init_task(p);
2251 
2252 	lockdep_assert_irqs_enabled();
2253 #ifdef CONFIG_PROVE_LOCKING
2254 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2255 #endif
2256 	retval = copy_creds(p, clone_flags);
2257 	if (retval < 0)
2258 		goto bad_fork_free;
2259 
2260 	retval = -EAGAIN;
2261 	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2262 		if (p->real_cred->user != INIT_USER &&
2263 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2264 			goto bad_fork_cleanup_count;
2265 	}
2266 	current->flags &= ~PF_NPROC_EXCEEDED;
2267 
2268 	/*
2269 	 * If multiple threads are within copy_process(), then this check
2270 	 * triggers too late. This doesn't hurt, the check is only there
2271 	 * to stop root fork bombs.
2272 	 */
2273 	retval = -EAGAIN;
2274 	if (data_race(nr_threads >= max_threads))
2275 		goto bad_fork_cleanup_count;
2276 
2277 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2278 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2279 	p->flags |= PF_FORKNOEXEC;
2280 	INIT_LIST_HEAD(&p->children);
2281 	INIT_LIST_HEAD(&p->sibling);
2282 	rcu_copy_process(p);
2283 	p->vfork_done = NULL;
2284 	spin_lock_init(&p->alloc_lock);
2285 
2286 	init_sigpending(&p->pending);
2287 
2288 	p->utime = p->stime = p->gtime = 0;
2289 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2290 	p->utimescaled = p->stimescaled = 0;
2291 #endif
2292 	prev_cputime_init(&p->prev_cputime);
2293 
2294 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2295 	seqcount_init(&p->vtime.seqcount);
2296 	p->vtime.starttime = 0;
2297 	p->vtime.state = VTIME_INACTIVE;
2298 #endif
2299 
2300 #ifdef CONFIG_IO_URING
2301 	p->io_uring = NULL;
2302 #endif
2303 
2304 	p->default_timer_slack_ns = current->timer_slack_ns;
2305 
2306 #ifdef CONFIG_PSI
2307 	p->psi_flags = 0;
2308 #endif
2309 
2310 	task_io_accounting_init(&p->ioac);
2311 	acct_clear_integrals(p);
2312 
2313 	posix_cputimers_init(&p->posix_cputimers);
2314 
2315 	p->io_context = NULL;
2316 	audit_set_context(p, NULL);
2317 	cgroup_fork(p);
2318 	if (args->kthread) {
2319 		if (!set_kthread_struct(p))
2320 			goto bad_fork_cleanup_delayacct;
2321 	}
2322 #ifdef CONFIG_NUMA
2323 	p->mempolicy = mpol_dup(p->mempolicy);
2324 	if (IS_ERR(p->mempolicy)) {
2325 		retval = PTR_ERR(p->mempolicy);
2326 		p->mempolicy = NULL;
2327 		goto bad_fork_cleanup_delayacct;
2328 	}
2329 #endif
2330 #ifdef CONFIG_CPUSETS
2331 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2332 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2333 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2334 #endif
2335 #ifdef CONFIG_TRACE_IRQFLAGS
2336 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2337 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2338 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2339 	p->softirqs_enabled		= 1;
2340 	p->softirq_context		= 0;
2341 #endif
2342 
2343 	p->pagefault_disabled = 0;
2344 
2345 #ifdef CONFIG_LOCKDEP
2346 	lockdep_init_task(p);
2347 #endif
2348 
2349 #ifdef CONFIG_DEBUG_MUTEXES
2350 	p->blocked_on = NULL; /* not blocked yet */
2351 #endif
2352 #ifdef CONFIG_BCACHE
2353 	p->sequential_io	= 0;
2354 	p->sequential_io_avg	= 0;
2355 #endif
2356 #ifdef CONFIG_BPF_SYSCALL
2357 	RCU_INIT_POINTER(p->bpf_storage, NULL);
2358 	p->bpf_ctx = NULL;
2359 #endif
2360 
2361 	/* Perform scheduler related setup. Assign this task to a CPU. */
2362 	retval = sched_fork(clone_flags, p);
2363 	if (retval)
2364 		goto bad_fork_cleanup_policy;
2365 
2366 	retval = perf_event_init_task(p, clone_flags);
2367 	if (retval)
2368 		goto bad_fork_sched_cancel_fork;
2369 	retval = audit_alloc(p);
2370 	if (retval)
2371 		goto bad_fork_cleanup_perf;
2372 	/* copy all the process information */
2373 	shm_init_task(p);
2374 	retval = security_task_alloc(p, clone_flags);
2375 	if (retval)
2376 		goto bad_fork_cleanup_audit;
2377 	retval = copy_semundo(clone_flags, p);
2378 	if (retval)
2379 		goto bad_fork_cleanup_security;
2380 	retval = copy_files(clone_flags, p, args->no_files);
2381 	if (retval)
2382 		goto bad_fork_cleanup_semundo;
2383 	retval = copy_fs(clone_flags, p);
2384 	if (retval)
2385 		goto bad_fork_cleanup_files;
2386 	retval = copy_sighand(clone_flags, p);
2387 	if (retval)
2388 		goto bad_fork_cleanup_fs;
2389 	retval = copy_signal(clone_flags, p);
2390 	if (retval)
2391 		goto bad_fork_cleanup_sighand;
2392 	retval = copy_mm(clone_flags, p);
2393 	if (retval)
2394 		goto bad_fork_cleanup_signal;
2395 	retval = copy_namespaces(clone_flags, p);
2396 	if (retval)
2397 		goto bad_fork_cleanup_mm;
2398 	retval = copy_io(clone_flags, p);
2399 	if (retval)
2400 		goto bad_fork_cleanup_namespaces;
2401 	retval = copy_thread(p, args);
2402 	if (retval)
2403 		goto bad_fork_cleanup_io;
2404 
2405 	stackleak_task_init(p);
2406 
2407 	if (pid != &init_struct_pid) {
2408 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2409 				args->set_tid_size);
2410 		if (IS_ERR(pid)) {
2411 			retval = PTR_ERR(pid);
2412 			goto bad_fork_cleanup_thread;
2413 		}
2414 	}
2415 
2416 	/*
2417 	 * This has to happen after we've potentially unshared the file
2418 	 * descriptor table (so that the pidfd doesn't leak into the child
2419 	 * if the fd table isn't shared).
2420 	 */
2421 	if (clone_flags & CLONE_PIDFD) {
2422 		int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0;
2423 
2424 		/* Note that no task has been attached to @pid yet. */
2425 		retval = __pidfd_prepare(pid, flags, &pidfile);
2426 		if (retval < 0)
2427 			goto bad_fork_free_pid;
2428 		pidfd = retval;
2429 
2430 		retval = put_user(pidfd, args->pidfd);
2431 		if (retval)
2432 			goto bad_fork_put_pidfd;
2433 	}
2434 
2435 #ifdef CONFIG_BLOCK
2436 	p->plug = NULL;
2437 #endif
2438 	futex_init_task(p);
2439 
2440 	/*
2441 	 * sigaltstack should be cleared when sharing the same VM
2442 	 */
2443 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2444 		sas_ss_reset(p);
2445 
2446 	/*
2447 	 * Syscall tracing and stepping should be turned off in the
2448 	 * child regardless of CLONE_PTRACE.
2449 	 */
2450 	user_disable_single_step(p);
2451 	clear_task_syscall_work(p, SYSCALL_TRACE);
2452 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2453 	clear_task_syscall_work(p, SYSCALL_EMU);
2454 #endif
2455 	clear_tsk_latency_tracing(p);
2456 
2457 	/* ok, now we should be set up.. */
2458 	p->pid = pid_nr(pid);
2459 	if (clone_flags & CLONE_THREAD) {
2460 		p->group_leader = current->group_leader;
2461 		p->tgid = current->tgid;
2462 	} else {
2463 		p->group_leader = p;
2464 		p->tgid = p->pid;
2465 	}
2466 
2467 	p->nr_dirtied = 0;
2468 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2469 	p->dirty_paused_when = 0;
2470 
2471 	p->pdeath_signal = 0;
2472 	p->task_works = NULL;
2473 	clear_posix_cputimers_work(p);
2474 
2475 #ifdef CONFIG_KRETPROBES
2476 	p->kretprobe_instances.first = NULL;
2477 #endif
2478 #ifdef CONFIG_RETHOOK
2479 	p->rethooks.first = NULL;
2480 #endif
2481 
2482 	/*
2483 	 * Ensure that the cgroup subsystem policies allow the new process to be
2484 	 * forked. It should be noted that the new process's css_set can be changed
2485 	 * between here and cgroup_post_fork() if an organisation operation is in
2486 	 * progress.
2487 	 */
2488 	retval = cgroup_can_fork(p, args);
2489 	if (retval)
2490 		goto bad_fork_put_pidfd;
2491 
2492 	/*
2493 	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2494 	 * the new task on the correct runqueue. All this *before* the task
2495 	 * becomes visible.
2496 	 *
2497 	 * This isn't part of ->can_fork() because while the re-cloning is
2498 	 * cgroup specific, it unconditionally needs to place the task on a
2499 	 * runqueue.
2500 	 */
2501 	retval = sched_cgroup_fork(p, args);
2502 	if (retval)
2503 		goto bad_fork_cancel_cgroup;
2504 
2505 	/*
2506 	 * From this point on we must avoid any synchronous user-space
2507 	 * communication until we take the tasklist-lock. In particular, we do
2508 	 * not want user-space to be able to predict the process start-time by
2509 	 * stalling fork(2) after we recorded the start_time but before it is
2510 	 * visible to the system.
2511 	 */
2512 
2513 	p->start_time = ktime_get_ns();
2514 	p->start_boottime = ktime_get_boottime_ns();
2515 
2516 	/*
2517 	 * Make it visible to the rest of the system, but dont wake it up yet.
2518 	 * Need tasklist lock for parent etc handling!
2519 	 */
2520 	write_lock_irq(&tasklist_lock);
2521 
2522 	/* CLONE_PARENT re-uses the old parent */
2523 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2524 		p->real_parent = current->real_parent;
2525 		p->parent_exec_id = current->parent_exec_id;
2526 		if (clone_flags & CLONE_THREAD)
2527 			p->exit_signal = -1;
2528 		else
2529 			p->exit_signal = current->group_leader->exit_signal;
2530 	} else {
2531 		p->real_parent = current;
2532 		p->parent_exec_id = current->self_exec_id;
2533 		p->exit_signal = args->exit_signal;
2534 	}
2535 
2536 	klp_copy_process(p);
2537 
2538 	sched_core_fork(p);
2539 
2540 	spin_lock(&current->sighand->siglock);
2541 
2542 	rv_task_fork(p);
2543 
2544 	rseq_fork(p, clone_flags);
2545 
2546 	/* Don't start children in a dying pid namespace */
2547 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2548 		retval = -ENOMEM;
2549 		goto bad_fork_core_free;
2550 	}
2551 
2552 	/* Let kill terminate clone/fork in the middle */
2553 	if (fatal_signal_pending(current)) {
2554 		retval = -EINTR;
2555 		goto bad_fork_core_free;
2556 	}
2557 
2558 	/* No more failure paths after this point. */
2559 
2560 	/*
2561 	 * Copy seccomp details explicitly here, in case they were changed
2562 	 * before holding sighand lock.
2563 	 */
2564 	copy_seccomp(p);
2565 
2566 	init_task_pid_links(p);
2567 	if (likely(p->pid)) {
2568 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2569 
2570 		init_task_pid(p, PIDTYPE_PID, pid);
2571 		if (thread_group_leader(p)) {
2572 			init_task_pid(p, PIDTYPE_TGID, pid);
2573 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2574 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2575 
2576 			if (is_child_reaper(pid)) {
2577 				ns_of_pid(pid)->child_reaper = p;
2578 				p->signal->flags |= SIGNAL_UNKILLABLE;
2579 			}
2580 			p->signal->shared_pending.signal = delayed.signal;
2581 			p->signal->tty = tty_kref_get(current->signal->tty);
2582 			/*
2583 			 * Inherit has_child_subreaper flag under the same
2584 			 * tasklist_lock with adding child to the process tree
2585 			 * for propagate_has_child_subreaper optimization.
2586 			 */
2587 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2588 							 p->real_parent->signal->is_child_subreaper;
2589 			list_add_tail(&p->sibling, &p->real_parent->children);
2590 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2591 			attach_pid(p, PIDTYPE_TGID);
2592 			attach_pid(p, PIDTYPE_PGID);
2593 			attach_pid(p, PIDTYPE_SID);
2594 			__this_cpu_inc(process_counts);
2595 		} else {
2596 			current->signal->nr_threads++;
2597 			current->signal->quick_threads++;
2598 			atomic_inc(&current->signal->live);
2599 			refcount_inc(&current->signal->sigcnt);
2600 			task_join_group_stop(p);
2601 			list_add_tail_rcu(&p->thread_node,
2602 					  &p->signal->thread_head);
2603 		}
2604 		attach_pid(p, PIDTYPE_PID);
2605 		nr_threads++;
2606 	}
2607 	total_forks++;
2608 	hlist_del_init(&delayed.node);
2609 	spin_unlock(&current->sighand->siglock);
2610 	syscall_tracepoint_update(p);
2611 	write_unlock_irq(&tasklist_lock);
2612 
2613 	if (pidfile)
2614 		fd_install(pidfd, pidfile);
2615 
2616 	proc_fork_connector(p);
2617 	sched_post_fork(p);
2618 	cgroup_post_fork(p, args);
2619 	perf_event_fork(p);
2620 
2621 	trace_task_newtask(p, clone_flags);
2622 	uprobe_copy_process(p, clone_flags);
2623 	user_events_fork(p, clone_flags);
2624 
2625 	copy_oom_score_adj(clone_flags, p);
2626 
2627 	return p;
2628 
2629 bad_fork_core_free:
2630 	sched_core_free(p);
2631 	spin_unlock(&current->sighand->siglock);
2632 	write_unlock_irq(&tasklist_lock);
2633 bad_fork_cancel_cgroup:
2634 	cgroup_cancel_fork(p, args);
2635 bad_fork_put_pidfd:
2636 	if (clone_flags & CLONE_PIDFD) {
2637 		fput(pidfile);
2638 		put_unused_fd(pidfd);
2639 	}
2640 bad_fork_free_pid:
2641 	if (pid != &init_struct_pid)
2642 		free_pid(pid);
2643 bad_fork_cleanup_thread:
2644 	exit_thread(p);
2645 bad_fork_cleanup_io:
2646 	if (p->io_context)
2647 		exit_io_context(p);
2648 bad_fork_cleanup_namespaces:
2649 	exit_task_namespaces(p);
2650 bad_fork_cleanup_mm:
2651 	if (p->mm) {
2652 		mm_clear_owner(p->mm, p);
2653 		mmput(p->mm);
2654 	}
2655 bad_fork_cleanup_signal:
2656 	if (!(clone_flags & CLONE_THREAD))
2657 		free_signal_struct(p->signal);
2658 bad_fork_cleanup_sighand:
2659 	__cleanup_sighand(p->sighand);
2660 bad_fork_cleanup_fs:
2661 	exit_fs(p); /* blocking */
2662 bad_fork_cleanup_files:
2663 	exit_files(p); /* blocking */
2664 bad_fork_cleanup_semundo:
2665 	exit_sem(p);
2666 bad_fork_cleanup_security:
2667 	security_task_free(p);
2668 bad_fork_cleanup_audit:
2669 	audit_free(p);
2670 bad_fork_cleanup_perf:
2671 	perf_event_free_task(p);
2672 bad_fork_sched_cancel_fork:
2673 	sched_cancel_fork(p);
2674 bad_fork_cleanup_policy:
2675 	lockdep_free_task(p);
2676 #ifdef CONFIG_NUMA
2677 	mpol_put(p->mempolicy);
2678 #endif
2679 bad_fork_cleanup_delayacct:
2680 	delayacct_tsk_free(p);
2681 bad_fork_cleanup_count:
2682 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2683 	exit_creds(p);
2684 bad_fork_free:
2685 	WRITE_ONCE(p->__state, TASK_DEAD);
2686 	exit_task_stack_account(p);
2687 	put_task_stack(p);
2688 	delayed_free_task(p);
2689 fork_out:
2690 	spin_lock_irq(&current->sighand->siglock);
2691 	hlist_del_init(&delayed.node);
2692 	spin_unlock_irq(&current->sighand->siglock);
2693 	return ERR_PTR(retval);
2694 }
2695 
2696 static inline void init_idle_pids(struct task_struct *idle)
2697 {
2698 	enum pid_type type;
2699 
2700 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2701 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2702 		init_task_pid(idle, type, &init_struct_pid);
2703 	}
2704 }
2705 
2706 static int idle_dummy(void *dummy)
2707 {
2708 	/* This function is never called */
2709 	return 0;
2710 }
2711 
2712 struct task_struct * __init fork_idle(int cpu)
2713 {
2714 	struct task_struct *task;
2715 	struct kernel_clone_args args = {
2716 		.flags		= CLONE_VM,
2717 		.fn		= &idle_dummy,
2718 		.fn_arg		= NULL,
2719 		.kthread	= 1,
2720 		.idle		= 1,
2721 	};
2722 
2723 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2724 	if (!IS_ERR(task)) {
2725 		init_idle_pids(task);
2726 		init_idle(task, cpu);
2727 	}
2728 
2729 	return task;
2730 }
2731 
2732 /*
2733  * This is like kernel_clone(), but shaved down and tailored to just
2734  * creating io_uring workers. It returns a created task, or an error pointer.
2735  * The returned task is inactive, and the caller must fire it up through
2736  * wake_up_new_task(p). All signals are blocked in the created task.
2737  */
2738 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2739 {
2740 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2741 				CLONE_IO;
2742 	struct kernel_clone_args args = {
2743 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2744 				    CLONE_UNTRACED) & ~CSIGNAL),
2745 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2746 		.fn		= fn,
2747 		.fn_arg		= arg,
2748 		.io_thread	= 1,
2749 		.user_worker	= 1,
2750 	};
2751 
2752 	return copy_process(NULL, 0, node, &args);
2753 }
2754 
2755 /*
2756  *  Ok, this is the main fork-routine.
2757  *
2758  * It copies the process, and if successful kick-starts
2759  * it and waits for it to finish using the VM if required.
2760  *
2761  * args->exit_signal is expected to be checked for sanity by the caller.
2762  */
2763 pid_t kernel_clone(struct kernel_clone_args *args)
2764 {
2765 	u64 clone_flags = args->flags;
2766 	struct completion vfork;
2767 	struct pid *pid;
2768 	struct task_struct *p;
2769 	int trace = 0;
2770 	pid_t nr;
2771 
2772 	/*
2773 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2774 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2775 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2776 	 * field in struct clone_args and it still doesn't make sense to have
2777 	 * them both point at the same memory location. Performing this check
2778 	 * here has the advantage that we don't need to have a separate helper
2779 	 * to check for legacy clone().
2780 	 */
2781 	if ((clone_flags & CLONE_PIDFD) &&
2782 	    (clone_flags & CLONE_PARENT_SETTID) &&
2783 	    (args->pidfd == args->parent_tid))
2784 		return -EINVAL;
2785 
2786 	/*
2787 	 * Determine whether and which event to report to ptracer.  When
2788 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2789 	 * requested, no event is reported; otherwise, report if the event
2790 	 * for the type of forking is enabled.
2791 	 */
2792 	if (!(clone_flags & CLONE_UNTRACED)) {
2793 		if (clone_flags & CLONE_VFORK)
2794 			trace = PTRACE_EVENT_VFORK;
2795 		else if (args->exit_signal != SIGCHLD)
2796 			trace = PTRACE_EVENT_CLONE;
2797 		else
2798 			trace = PTRACE_EVENT_FORK;
2799 
2800 		if (likely(!ptrace_event_enabled(current, trace)))
2801 			trace = 0;
2802 	}
2803 
2804 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2805 	add_latent_entropy();
2806 
2807 	if (IS_ERR(p))
2808 		return PTR_ERR(p);
2809 
2810 	/*
2811 	 * Do this prior waking up the new thread - the thread pointer
2812 	 * might get invalid after that point, if the thread exits quickly.
2813 	 */
2814 	trace_sched_process_fork(current, p);
2815 
2816 	pid = get_task_pid(p, PIDTYPE_PID);
2817 	nr = pid_vnr(pid);
2818 
2819 	if (clone_flags & CLONE_PARENT_SETTID)
2820 		put_user(nr, args->parent_tid);
2821 
2822 	if (clone_flags & CLONE_VFORK) {
2823 		p->vfork_done = &vfork;
2824 		init_completion(&vfork);
2825 		get_task_struct(p);
2826 	}
2827 
2828 	if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) {
2829 		/* lock the task to synchronize with memcg migration */
2830 		task_lock(p);
2831 		lru_gen_add_mm(p->mm);
2832 		task_unlock(p);
2833 	}
2834 
2835 	wake_up_new_task(p);
2836 
2837 	/* forking complete and child started to run, tell ptracer */
2838 	if (unlikely(trace))
2839 		ptrace_event_pid(trace, pid);
2840 
2841 	if (clone_flags & CLONE_VFORK) {
2842 		if (!wait_for_vfork_done(p, &vfork))
2843 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2844 	}
2845 
2846 	put_pid(pid);
2847 	return nr;
2848 }
2849 
2850 /*
2851  * Create a kernel thread.
2852  */
2853 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2854 		    unsigned long flags)
2855 {
2856 	struct kernel_clone_args args = {
2857 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2858 				    CLONE_UNTRACED) & ~CSIGNAL),
2859 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2860 		.fn		= fn,
2861 		.fn_arg		= arg,
2862 		.name		= name,
2863 		.kthread	= 1,
2864 	};
2865 
2866 	return kernel_clone(&args);
2867 }
2868 
2869 /*
2870  * Create a user mode thread.
2871  */
2872 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2873 {
2874 	struct kernel_clone_args args = {
2875 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2876 				    CLONE_UNTRACED) & ~CSIGNAL),
2877 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2878 		.fn		= fn,
2879 		.fn_arg		= arg,
2880 	};
2881 
2882 	return kernel_clone(&args);
2883 }
2884 
2885 #ifdef __ARCH_WANT_SYS_FORK
2886 SYSCALL_DEFINE0(fork)
2887 {
2888 #ifdef CONFIG_MMU
2889 	struct kernel_clone_args args = {
2890 		.exit_signal = SIGCHLD,
2891 	};
2892 
2893 	return kernel_clone(&args);
2894 #else
2895 	/* can not support in nommu mode */
2896 	return -EINVAL;
2897 #endif
2898 }
2899 #endif
2900 
2901 #ifdef __ARCH_WANT_SYS_VFORK
2902 SYSCALL_DEFINE0(vfork)
2903 {
2904 	struct kernel_clone_args args = {
2905 		.flags		= CLONE_VFORK | CLONE_VM,
2906 		.exit_signal	= SIGCHLD,
2907 	};
2908 
2909 	return kernel_clone(&args);
2910 }
2911 #endif
2912 
2913 #ifdef __ARCH_WANT_SYS_CLONE
2914 #ifdef CONFIG_CLONE_BACKWARDS
2915 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2916 		 int __user *, parent_tidptr,
2917 		 unsigned long, tls,
2918 		 int __user *, child_tidptr)
2919 #elif defined(CONFIG_CLONE_BACKWARDS2)
2920 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2921 		 int __user *, parent_tidptr,
2922 		 int __user *, child_tidptr,
2923 		 unsigned long, tls)
2924 #elif defined(CONFIG_CLONE_BACKWARDS3)
2925 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2926 		int, stack_size,
2927 		int __user *, parent_tidptr,
2928 		int __user *, child_tidptr,
2929 		unsigned long, tls)
2930 #else
2931 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2932 		 int __user *, parent_tidptr,
2933 		 int __user *, child_tidptr,
2934 		 unsigned long, tls)
2935 #endif
2936 {
2937 	struct kernel_clone_args args = {
2938 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2939 		.pidfd		= parent_tidptr,
2940 		.child_tid	= child_tidptr,
2941 		.parent_tid	= parent_tidptr,
2942 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2943 		.stack		= newsp,
2944 		.tls		= tls,
2945 	};
2946 
2947 	return kernel_clone(&args);
2948 }
2949 #endif
2950 
2951 #ifdef __ARCH_WANT_SYS_CLONE3
2952 
2953 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2954 					      struct clone_args __user *uargs,
2955 					      size_t usize)
2956 {
2957 	int err;
2958 	struct clone_args args;
2959 	pid_t *kset_tid = kargs->set_tid;
2960 
2961 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2962 		     CLONE_ARGS_SIZE_VER0);
2963 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2964 		     CLONE_ARGS_SIZE_VER1);
2965 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2966 		     CLONE_ARGS_SIZE_VER2);
2967 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2968 
2969 	if (unlikely(usize > PAGE_SIZE))
2970 		return -E2BIG;
2971 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2972 		return -EINVAL;
2973 
2974 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2975 	if (err)
2976 		return err;
2977 
2978 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2979 		return -EINVAL;
2980 
2981 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2982 		return -EINVAL;
2983 
2984 	if (unlikely(args.set_tid && args.set_tid_size == 0))
2985 		return -EINVAL;
2986 
2987 	/*
2988 	 * Verify that higher 32bits of exit_signal are unset and that
2989 	 * it is a valid signal
2990 	 */
2991 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2992 		     !valid_signal(args.exit_signal)))
2993 		return -EINVAL;
2994 
2995 	if ((args.flags & CLONE_INTO_CGROUP) &&
2996 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2997 		return -EINVAL;
2998 
2999 	*kargs = (struct kernel_clone_args){
3000 		.flags		= args.flags,
3001 		.pidfd		= u64_to_user_ptr(args.pidfd),
3002 		.child_tid	= u64_to_user_ptr(args.child_tid),
3003 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
3004 		.exit_signal	= args.exit_signal,
3005 		.stack		= args.stack,
3006 		.stack_size	= args.stack_size,
3007 		.tls		= args.tls,
3008 		.set_tid_size	= args.set_tid_size,
3009 		.cgroup		= args.cgroup,
3010 	};
3011 
3012 	if (args.set_tid &&
3013 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
3014 			(kargs->set_tid_size * sizeof(pid_t))))
3015 		return -EFAULT;
3016 
3017 	kargs->set_tid = kset_tid;
3018 
3019 	return 0;
3020 }
3021 
3022 /**
3023  * clone3_stack_valid - check and prepare stack
3024  * @kargs: kernel clone args
3025  *
3026  * Verify that the stack arguments userspace gave us are sane.
3027  * In addition, set the stack direction for userspace since it's easy for us to
3028  * determine.
3029  */
3030 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3031 {
3032 	if (kargs->stack == 0) {
3033 		if (kargs->stack_size > 0)
3034 			return false;
3035 	} else {
3036 		if (kargs->stack_size == 0)
3037 			return false;
3038 
3039 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3040 			return false;
3041 
3042 #if !defined(CONFIG_STACK_GROWSUP)
3043 		kargs->stack += kargs->stack_size;
3044 #endif
3045 	}
3046 
3047 	return true;
3048 }
3049 
3050 static bool clone3_args_valid(struct kernel_clone_args *kargs)
3051 {
3052 	/* Verify that no unknown flags are passed along. */
3053 	if (kargs->flags &
3054 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3055 		return false;
3056 
3057 	/*
3058 	 * - make the CLONE_DETACHED bit reusable for clone3
3059 	 * - make the CSIGNAL bits reusable for clone3
3060 	 */
3061 	if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3062 		return false;
3063 
3064 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3065 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3066 		return false;
3067 
3068 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3069 	    kargs->exit_signal)
3070 		return false;
3071 
3072 	if (!clone3_stack_valid(kargs))
3073 		return false;
3074 
3075 	return true;
3076 }
3077 
3078 /**
3079  * sys_clone3 - create a new process with specific properties
3080  * @uargs: argument structure
3081  * @size:  size of @uargs
3082  *
3083  * clone3() is the extensible successor to clone()/clone2().
3084  * It takes a struct as argument that is versioned by its size.
3085  *
3086  * Return: On success, a positive PID for the child process.
3087  *         On error, a negative errno number.
3088  */
3089 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3090 {
3091 	int err;
3092 
3093 	struct kernel_clone_args kargs;
3094 	pid_t set_tid[MAX_PID_NS_LEVEL];
3095 
3096 	kargs.set_tid = set_tid;
3097 
3098 	err = copy_clone_args_from_user(&kargs, uargs, size);
3099 	if (err)
3100 		return err;
3101 
3102 	if (!clone3_args_valid(&kargs))
3103 		return -EINVAL;
3104 
3105 	return kernel_clone(&kargs);
3106 }
3107 #endif
3108 
3109 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3110 {
3111 	struct task_struct *leader, *parent, *child;
3112 	int res;
3113 
3114 	read_lock(&tasklist_lock);
3115 	leader = top = top->group_leader;
3116 down:
3117 	for_each_thread(leader, parent) {
3118 		list_for_each_entry(child, &parent->children, sibling) {
3119 			res = visitor(child, data);
3120 			if (res) {
3121 				if (res < 0)
3122 					goto out;
3123 				leader = child;
3124 				goto down;
3125 			}
3126 up:
3127 			;
3128 		}
3129 	}
3130 
3131 	if (leader != top) {
3132 		child = leader;
3133 		parent = child->real_parent;
3134 		leader = parent->group_leader;
3135 		goto up;
3136 	}
3137 out:
3138 	read_unlock(&tasklist_lock);
3139 }
3140 
3141 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3142 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3143 #endif
3144 
3145 static void sighand_ctor(void *data)
3146 {
3147 	struct sighand_struct *sighand = data;
3148 
3149 	spin_lock_init(&sighand->siglock);
3150 	init_waitqueue_head(&sighand->signalfd_wqh);
3151 }
3152 
3153 void __init mm_cache_init(void)
3154 {
3155 	unsigned int mm_size;
3156 
3157 	/*
3158 	 * The mm_cpumask is located at the end of mm_struct, and is
3159 	 * dynamically sized based on the maximum CPU number this system
3160 	 * can have, taking hotplug into account (nr_cpu_ids).
3161 	 */
3162 	mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3163 
3164 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
3165 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3166 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3167 			offsetof(struct mm_struct, saved_auxv),
3168 			sizeof_field(struct mm_struct, saved_auxv),
3169 			NULL);
3170 }
3171 
3172 void __init proc_caches_init(void)
3173 {
3174 	sighand_cachep = kmem_cache_create("sighand_cache",
3175 			sizeof(struct sighand_struct), 0,
3176 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3177 			SLAB_ACCOUNT, sighand_ctor);
3178 	signal_cachep = kmem_cache_create("signal_cache",
3179 			sizeof(struct signal_struct), 0,
3180 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3181 			NULL);
3182 	files_cachep = kmem_cache_create("files_cache",
3183 			sizeof(struct files_struct), 0,
3184 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3185 			NULL);
3186 	fs_cachep = kmem_cache_create("fs_cache",
3187 			sizeof(struct fs_struct), 0,
3188 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3189 			NULL);
3190 
3191 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3192 #ifdef CONFIG_PER_VMA_LOCK
3193 	vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3194 #endif
3195 	mmap_init();
3196 	nsproxy_cache_init();
3197 }
3198 
3199 /*
3200  * Check constraints on flags passed to the unshare system call.
3201  */
3202 static int check_unshare_flags(unsigned long unshare_flags)
3203 {
3204 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3205 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3206 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3207 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3208 				CLONE_NEWTIME))
3209 		return -EINVAL;
3210 	/*
3211 	 * Not implemented, but pretend it works if there is nothing
3212 	 * to unshare.  Note that unsharing the address space or the
3213 	 * signal handlers also need to unshare the signal queues (aka
3214 	 * CLONE_THREAD).
3215 	 */
3216 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3217 		if (!thread_group_empty(current))
3218 			return -EINVAL;
3219 	}
3220 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3221 		if (refcount_read(&current->sighand->count) > 1)
3222 			return -EINVAL;
3223 	}
3224 	if (unshare_flags & CLONE_VM) {
3225 		if (!current_is_single_threaded())
3226 			return -EINVAL;
3227 	}
3228 
3229 	return 0;
3230 }
3231 
3232 /*
3233  * Unshare the filesystem structure if it is being shared
3234  */
3235 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3236 {
3237 	struct fs_struct *fs = current->fs;
3238 
3239 	if (!(unshare_flags & CLONE_FS) || !fs)
3240 		return 0;
3241 
3242 	/* don't need lock here; in the worst case we'll do useless copy */
3243 	if (fs->users == 1)
3244 		return 0;
3245 
3246 	*new_fsp = copy_fs_struct(fs);
3247 	if (!*new_fsp)
3248 		return -ENOMEM;
3249 
3250 	return 0;
3251 }
3252 
3253 /*
3254  * Unshare file descriptor table if it is being shared
3255  */
3256 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3257 	       struct files_struct **new_fdp)
3258 {
3259 	struct files_struct *fd = current->files;
3260 	int error = 0;
3261 
3262 	if ((unshare_flags & CLONE_FILES) &&
3263 	    (fd && atomic_read(&fd->count) > 1)) {
3264 		*new_fdp = dup_fd(fd, max_fds, &error);
3265 		if (!*new_fdp)
3266 			return error;
3267 	}
3268 
3269 	return 0;
3270 }
3271 
3272 /*
3273  * unshare allows a process to 'unshare' part of the process
3274  * context which was originally shared using clone.  copy_*
3275  * functions used by kernel_clone() cannot be used here directly
3276  * because they modify an inactive task_struct that is being
3277  * constructed. Here we are modifying the current, active,
3278  * task_struct.
3279  */
3280 int ksys_unshare(unsigned long unshare_flags)
3281 {
3282 	struct fs_struct *fs, *new_fs = NULL;
3283 	struct files_struct *new_fd = NULL;
3284 	struct cred *new_cred = NULL;
3285 	struct nsproxy *new_nsproxy = NULL;
3286 	int do_sysvsem = 0;
3287 	int err;
3288 
3289 	/*
3290 	 * If unsharing a user namespace must also unshare the thread group
3291 	 * and unshare the filesystem root and working directories.
3292 	 */
3293 	if (unshare_flags & CLONE_NEWUSER)
3294 		unshare_flags |= CLONE_THREAD | CLONE_FS;
3295 	/*
3296 	 * If unsharing vm, must also unshare signal handlers.
3297 	 */
3298 	if (unshare_flags & CLONE_VM)
3299 		unshare_flags |= CLONE_SIGHAND;
3300 	/*
3301 	 * If unsharing a signal handlers, must also unshare the signal queues.
3302 	 */
3303 	if (unshare_flags & CLONE_SIGHAND)
3304 		unshare_flags |= CLONE_THREAD;
3305 	/*
3306 	 * If unsharing namespace, must also unshare filesystem information.
3307 	 */
3308 	if (unshare_flags & CLONE_NEWNS)
3309 		unshare_flags |= CLONE_FS;
3310 
3311 	err = check_unshare_flags(unshare_flags);
3312 	if (err)
3313 		goto bad_unshare_out;
3314 	/*
3315 	 * CLONE_NEWIPC must also detach from the undolist: after switching
3316 	 * to a new ipc namespace, the semaphore arrays from the old
3317 	 * namespace are unreachable.
3318 	 */
3319 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3320 		do_sysvsem = 1;
3321 	err = unshare_fs(unshare_flags, &new_fs);
3322 	if (err)
3323 		goto bad_unshare_out;
3324 	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3325 	if (err)
3326 		goto bad_unshare_cleanup_fs;
3327 	err = unshare_userns(unshare_flags, &new_cred);
3328 	if (err)
3329 		goto bad_unshare_cleanup_fd;
3330 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3331 					 new_cred, new_fs);
3332 	if (err)
3333 		goto bad_unshare_cleanup_cred;
3334 
3335 	if (new_cred) {
3336 		err = set_cred_ucounts(new_cred);
3337 		if (err)
3338 			goto bad_unshare_cleanup_cred;
3339 	}
3340 
3341 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3342 		if (do_sysvsem) {
3343 			/*
3344 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3345 			 */
3346 			exit_sem(current);
3347 		}
3348 		if (unshare_flags & CLONE_NEWIPC) {
3349 			/* Orphan segments in old ns (see sem above). */
3350 			exit_shm(current);
3351 			shm_init_task(current);
3352 		}
3353 
3354 		if (new_nsproxy)
3355 			switch_task_namespaces(current, new_nsproxy);
3356 
3357 		task_lock(current);
3358 
3359 		if (new_fs) {
3360 			fs = current->fs;
3361 			spin_lock(&fs->lock);
3362 			current->fs = new_fs;
3363 			if (--fs->users)
3364 				new_fs = NULL;
3365 			else
3366 				new_fs = fs;
3367 			spin_unlock(&fs->lock);
3368 		}
3369 
3370 		if (new_fd)
3371 			swap(current->files, new_fd);
3372 
3373 		task_unlock(current);
3374 
3375 		if (new_cred) {
3376 			/* Install the new user namespace */
3377 			commit_creds(new_cred);
3378 			new_cred = NULL;
3379 		}
3380 	}
3381 
3382 	perf_event_namespaces(current);
3383 
3384 bad_unshare_cleanup_cred:
3385 	if (new_cred)
3386 		put_cred(new_cred);
3387 bad_unshare_cleanup_fd:
3388 	if (new_fd)
3389 		put_files_struct(new_fd);
3390 
3391 bad_unshare_cleanup_fs:
3392 	if (new_fs)
3393 		free_fs_struct(new_fs);
3394 
3395 bad_unshare_out:
3396 	return err;
3397 }
3398 
3399 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3400 {
3401 	return ksys_unshare(unshare_flags);
3402 }
3403 
3404 /*
3405  *	Helper to unshare the files of the current task.
3406  *	We don't want to expose copy_files internals to
3407  *	the exec layer of the kernel.
3408  */
3409 
3410 int unshare_files(void)
3411 {
3412 	struct task_struct *task = current;
3413 	struct files_struct *old, *copy = NULL;
3414 	int error;
3415 
3416 	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3417 	if (error || !copy)
3418 		return error;
3419 
3420 	old = task->files;
3421 	task_lock(task);
3422 	task->files = copy;
3423 	task_unlock(task);
3424 	put_files_struct(old);
3425 	return 0;
3426 }
3427 
3428 int sysctl_max_threads(struct ctl_table *table, int write,
3429 		       void *buffer, size_t *lenp, loff_t *ppos)
3430 {
3431 	struct ctl_table t;
3432 	int ret;
3433 	int threads = max_threads;
3434 	int min = 1;
3435 	int max = MAX_THREADS;
3436 
3437 	t = *table;
3438 	t.data = &threads;
3439 	t.extra1 = &min;
3440 	t.extra2 = &max;
3441 
3442 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3443 	if (ret || !write)
3444 		return ret;
3445 
3446 	max_threads = threads;
3447 
3448 	return 0;
3449 }
3450