1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/binfmts.h> 41 #include <linux/mman.h> 42 #include <linux/mmu_notifier.h> 43 #include <linux/fs.h> 44 #include <linux/mm.h> 45 #include <linux/mm_inline.h> 46 #include <linux/vmacache.h> 47 #include <linux/nsproxy.h> 48 #include <linux/capability.h> 49 #include <linux/cpu.h> 50 #include <linux/cgroup.h> 51 #include <linux/security.h> 52 #include <linux/hugetlb.h> 53 #include <linux/seccomp.h> 54 #include <linux/swap.h> 55 #include <linux/syscalls.h> 56 #include <linux/jiffies.h> 57 #include <linux/futex.h> 58 #include <linux/compat.h> 59 #include <linux/kthread.h> 60 #include <linux/task_io_accounting_ops.h> 61 #include <linux/rcupdate.h> 62 #include <linux/ptrace.h> 63 #include <linux/mount.h> 64 #include <linux/audit.h> 65 #include <linux/memcontrol.h> 66 #include <linux/ftrace.h> 67 #include <linux/proc_fs.h> 68 #include <linux/profile.h> 69 #include <linux/rmap.h> 70 #include <linux/ksm.h> 71 #include <linux/acct.h> 72 #include <linux/userfaultfd_k.h> 73 #include <linux/tsacct_kern.h> 74 #include <linux/cn_proc.h> 75 #include <linux/freezer.h> 76 #include <linux/delayacct.h> 77 #include <linux/taskstats_kern.h> 78 #include <linux/random.h> 79 #include <linux/tty.h> 80 #include <linux/fs_struct.h> 81 #include <linux/magic.h> 82 #include <linux/perf_event.h> 83 #include <linux/posix-timers.h> 84 #include <linux/user-return-notifier.h> 85 #include <linux/oom.h> 86 #include <linux/khugepaged.h> 87 #include <linux/signalfd.h> 88 #include <linux/uprobes.h> 89 #include <linux/aio.h> 90 #include <linux/compiler.h> 91 #include <linux/sysctl.h> 92 #include <linux/kcov.h> 93 #include <linux/livepatch.h> 94 #include <linux/thread_info.h> 95 #include <linux/stackleak.h> 96 #include <linux/kasan.h> 97 #include <linux/scs.h> 98 #include <linux/io_uring.h> 99 #include <linux/bpf.h> 100 #include <linux/sched/mm.h> 101 102 #include <asm/pgalloc.h> 103 #include <linux/uaccess.h> 104 #include <asm/mmu_context.h> 105 #include <asm/cacheflush.h> 106 #include <asm/tlbflush.h> 107 108 #include <trace/events/sched.h> 109 110 #define CREATE_TRACE_POINTS 111 #include <trace/events/task.h> 112 113 /* 114 * Minimum number of threads to boot the kernel 115 */ 116 #define MIN_THREADS 20 117 118 /* 119 * Maximum number of threads 120 */ 121 #define MAX_THREADS FUTEX_TID_MASK 122 123 /* 124 * Protected counters by write_lock_irq(&tasklist_lock) 125 */ 126 unsigned long total_forks; /* Handle normal Linux uptimes. */ 127 int nr_threads; /* The idle threads do not count.. */ 128 129 static int max_threads; /* tunable limit on nr_threads */ 130 131 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 132 133 static const char * const resident_page_types[] = { 134 NAMED_ARRAY_INDEX(MM_FILEPAGES), 135 NAMED_ARRAY_INDEX(MM_ANONPAGES), 136 NAMED_ARRAY_INDEX(MM_SWAPENTS), 137 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 138 }; 139 140 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 141 142 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 143 144 #ifdef CONFIG_PROVE_RCU 145 int lockdep_tasklist_lock_is_held(void) 146 { 147 return lockdep_is_held(&tasklist_lock); 148 } 149 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 150 #endif /* #ifdef CONFIG_PROVE_RCU */ 151 152 int nr_processes(void) 153 { 154 int cpu; 155 int total = 0; 156 157 for_each_possible_cpu(cpu) 158 total += per_cpu(process_counts, cpu); 159 160 return total; 161 } 162 163 void __weak arch_release_task_struct(struct task_struct *tsk) 164 { 165 } 166 167 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 168 static struct kmem_cache *task_struct_cachep; 169 170 static inline struct task_struct *alloc_task_struct_node(int node) 171 { 172 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 173 } 174 175 static inline void free_task_struct(struct task_struct *tsk) 176 { 177 kmem_cache_free(task_struct_cachep, tsk); 178 } 179 #endif 180 181 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 182 183 /* 184 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 185 * kmemcache based allocator. 186 */ 187 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 188 189 # ifdef CONFIG_VMAP_STACK 190 /* 191 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 192 * flush. Try to minimize the number of calls by caching stacks. 193 */ 194 #define NR_CACHED_STACKS 2 195 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 196 197 struct vm_stack { 198 struct rcu_head rcu; 199 struct vm_struct *stack_vm_area; 200 }; 201 202 static bool try_release_thread_stack_to_cache(struct vm_struct *vm) 203 { 204 unsigned int i; 205 206 for (i = 0; i < NR_CACHED_STACKS; i++) { 207 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL) 208 continue; 209 return true; 210 } 211 return false; 212 } 213 214 static void thread_stack_free_rcu(struct rcu_head *rh) 215 { 216 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 217 218 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 219 return; 220 221 vfree(vm_stack); 222 } 223 224 static void thread_stack_delayed_free(struct task_struct *tsk) 225 { 226 struct vm_stack *vm_stack = tsk->stack; 227 228 vm_stack->stack_vm_area = tsk->stack_vm_area; 229 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 230 } 231 232 static int free_vm_stack_cache(unsigned int cpu) 233 { 234 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 235 int i; 236 237 for (i = 0; i < NR_CACHED_STACKS; i++) { 238 struct vm_struct *vm_stack = cached_vm_stacks[i]; 239 240 if (!vm_stack) 241 continue; 242 243 vfree(vm_stack->addr); 244 cached_vm_stacks[i] = NULL; 245 } 246 247 return 0; 248 } 249 250 static int memcg_charge_kernel_stack(struct vm_struct *vm) 251 { 252 int i; 253 int ret; 254 255 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 256 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 257 258 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 259 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0); 260 if (ret) 261 goto err; 262 } 263 return 0; 264 err: 265 /* 266 * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is 267 * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will 268 * ignore this page. 269 */ 270 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 271 memcg_kmem_uncharge_page(vm->pages[i], 0); 272 return ret; 273 } 274 275 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 276 { 277 struct vm_struct *vm; 278 void *stack; 279 int i; 280 281 for (i = 0; i < NR_CACHED_STACKS; i++) { 282 struct vm_struct *s; 283 284 s = this_cpu_xchg(cached_stacks[i], NULL); 285 286 if (!s) 287 continue; 288 289 /* Reset stack metadata. */ 290 kasan_unpoison_range(s->addr, THREAD_SIZE); 291 292 stack = kasan_reset_tag(s->addr); 293 294 /* Clear stale pointers from reused stack. */ 295 memset(stack, 0, THREAD_SIZE); 296 297 if (memcg_charge_kernel_stack(s)) { 298 vfree(s->addr); 299 return -ENOMEM; 300 } 301 302 tsk->stack_vm_area = s; 303 tsk->stack = stack; 304 return 0; 305 } 306 307 /* 308 * Allocated stacks are cached and later reused by new threads, 309 * so memcg accounting is performed manually on assigning/releasing 310 * stacks to tasks. Drop __GFP_ACCOUNT. 311 */ 312 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 313 VMALLOC_START, VMALLOC_END, 314 THREADINFO_GFP & ~__GFP_ACCOUNT, 315 PAGE_KERNEL, 316 0, node, __builtin_return_address(0)); 317 if (!stack) 318 return -ENOMEM; 319 320 vm = find_vm_area(stack); 321 if (memcg_charge_kernel_stack(vm)) { 322 vfree(stack); 323 return -ENOMEM; 324 } 325 /* 326 * We can't call find_vm_area() in interrupt context, and 327 * free_thread_stack() can be called in interrupt context, 328 * so cache the vm_struct. 329 */ 330 tsk->stack_vm_area = vm; 331 stack = kasan_reset_tag(stack); 332 tsk->stack = stack; 333 return 0; 334 } 335 336 static void free_thread_stack(struct task_struct *tsk) 337 { 338 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 339 thread_stack_delayed_free(tsk); 340 341 tsk->stack = NULL; 342 tsk->stack_vm_area = NULL; 343 } 344 345 # else /* !CONFIG_VMAP_STACK */ 346 347 static void thread_stack_free_rcu(struct rcu_head *rh) 348 { 349 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 350 } 351 352 static void thread_stack_delayed_free(struct task_struct *tsk) 353 { 354 struct rcu_head *rh = tsk->stack; 355 356 call_rcu(rh, thread_stack_free_rcu); 357 } 358 359 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 360 { 361 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 362 THREAD_SIZE_ORDER); 363 364 if (likely(page)) { 365 tsk->stack = kasan_reset_tag(page_address(page)); 366 return 0; 367 } 368 return -ENOMEM; 369 } 370 371 static void free_thread_stack(struct task_struct *tsk) 372 { 373 thread_stack_delayed_free(tsk); 374 tsk->stack = NULL; 375 } 376 377 # endif /* CONFIG_VMAP_STACK */ 378 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */ 379 380 static struct kmem_cache *thread_stack_cache; 381 382 static void thread_stack_free_rcu(struct rcu_head *rh) 383 { 384 kmem_cache_free(thread_stack_cache, rh); 385 } 386 387 static void thread_stack_delayed_free(struct task_struct *tsk) 388 { 389 struct rcu_head *rh = tsk->stack; 390 391 call_rcu(rh, thread_stack_free_rcu); 392 } 393 394 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 395 { 396 unsigned long *stack; 397 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 398 stack = kasan_reset_tag(stack); 399 tsk->stack = stack; 400 return stack ? 0 : -ENOMEM; 401 } 402 403 static void free_thread_stack(struct task_struct *tsk) 404 { 405 thread_stack_delayed_free(tsk); 406 tsk->stack = NULL; 407 } 408 409 void thread_stack_cache_init(void) 410 { 411 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 412 THREAD_SIZE, THREAD_SIZE, 0, 0, 413 THREAD_SIZE, NULL); 414 BUG_ON(thread_stack_cache == NULL); 415 } 416 417 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */ 418 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ 419 420 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 421 { 422 unsigned long *stack; 423 424 stack = arch_alloc_thread_stack_node(tsk, node); 425 tsk->stack = stack; 426 return stack ? 0 : -ENOMEM; 427 } 428 429 static void free_thread_stack(struct task_struct *tsk) 430 { 431 arch_free_thread_stack(tsk); 432 tsk->stack = NULL; 433 } 434 435 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ 436 437 /* SLAB cache for signal_struct structures (tsk->signal) */ 438 static struct kmem_cache *signal_cachep; 439 440 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 441 struct kmem_cache *sighand_cachep; 442 443 /* SLAB cache for files_struct structures (tsk->files) */ 444 struct kmem_cache *files_cachep; 445 446 /* SLAB cache for fs_struct structures (tsk->fs) */ 447 struct kmem_cache *fs_cachep; 448 449 /* SLAB cache for vm_area_struct structures */ 450 static struct kmem_cache *vm_area_cachep; 451 452 /* SLAB cache for mm_struct structures (tsk->mm) */ 453 static struct kmem_cache *mm_cachep; 454 455 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 456 { 457 struct vm_area_struct *vma; 458 459 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 460 if (vma) 461 vma_init(vma, mm); 462 return vma; 463 } 464 465 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 466 { 467 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 468 469 if (new) { 470 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 471 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 472 /* 473 * orig->shared.rb may be modified concurrently, but the clone 474 * will be reinitialized. 475 */ 476 *new = data_race(*orig); 477 INIT_LIST_HEAD(&new->anon_vma_chain); 478 new->vm_next = new->vm_prev = NULL; 479 dup_anon_vma_name(orig, new); 480 } 481 return new; 482 } 483 484 void vm_area_free(struct vm_area_struct *vma) 485 { 486 free_anon_vma_name(vma); 487 kmem_cache_free(vm_area_cachep, vma); 488 } 489 490 static void account_kernel_stack(struct task_struct *tsk, int account) 491 { 492 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 493 struct vm_struct *vm = task_stack_vm_area(tsk); 494 int i; 495 496 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 497 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 498 account * (PAGE_SIZE / 1024)); 499 } else { 500 void *stack = task_stack_page(tsk); 501 502 /* All stack pages are in the same node. */ 503 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 504 account * (THREAD_SIZE / 1024)); 505 } 506 } 507 508 void exit_task_stack_account(struct task_struct *tsk) 509 { 510 account_kernel_stack(tsk, -1); 511 512 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 513 struct vm_struct *vm; 514 int i; 515 516 vm = task_stack_vm_area(tsk); 517 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 518 memcg_kmem_uncharge_page(vm->pages[i], 0); 519 } 520 } 521 522 static void release_task_stack(struct task_struct *tsk) 523 { 524 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 525 return; /* Better to leak the stack than to free prematurely */ 526 527 free_thread_stack(tsk); 528 } 529 530 #ifdef CONFIG_THREAD_INFO_IN_TASK 531 void put_task_stack(struct task_struct *tsk) 532 { 533 if (refcount_dec_and_test(&tsk->stack_refcount)) 534 release_task_stack(tsk); 535 } 536 #endif 537 538 void free_task(struct task_struct *tsk) 539 { 540 release_user_cpus_ptr(tsk); 541 scs_release(tsk); 542 543 #ifndef CONFIG_THREAD_INFO_IN_TASK 544 /* 545 * The task is finally done with both the stack and thread_info, 546 * so free both. 547 */ 548 release_task_stack(tsk); 549 #else 550 /* 551 * If the task had a separate stack allocation, it should be gone 552 * by now. 553 */ 554 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 555 #endif 556 rt_mutex_debug_task_free(tsk); 557 ftrace_graph_exit_task(tsk); 558 arch_release_task_struct(tsk); 559 if (tsk->flags & PF_KTHREAD) 560 free_kthread_struct(tsk); 561 free_task_struct(tsk); 562 } 563 EXPORT_SYMBOL(free_task); 564 565 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 566 { 567 struct file *exe_file; 568 569 exe_file = get_mm_exe_file(oldmm); 570 RCU_INIT_POINTER(mm->exe_file, exe_file); 571 /* 572 * We depend on the oldmm having properly denied write access to the 573 * exe_file already. 574 */ 575 if (exe_file && deny_write_access(exe_file)) 576 pr_warn_once("deny_write_access() failed in %s\n", __func__); 577 } 578 579 #ifdef CONFIG_MMU 580 static __latent_entropy int dup_mmap(struct mm_struct *mm, 581 struct mm_struct *oldmm) 582 { 583 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 584 struct rb_node **rb_link, *rb_parent; 585 int retval; 586 unsigned long charge; 587 LIST_HEAD(uf); 588 589 uprobe_start_dup_mmap(); 590 if (mmap_write_lock_killable(oldmm)) { 591 retval = -EINTR; 592 goto fail_uprobe_end; 593 } 594 flush_cache_dup_mm(oldmm); 595 uprobe_dup_mmap(oldmm, mm); 596 /* 597 * Not linked in yet - no deadlock potential: 598 */ 599 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 600 601 /* No ordering required: file already has been exposed. */ 602 dup_mm_exe_file(mm, oldmm); 603 604 mm->total_vm = oldmm->total_vm; 605 mm->data_vm = oldmm->data_vm; 606 mm->exec_vm = oldmm->exec_vm; 607 mm->stack_vm = oldmm->stack_vm; 608 609 rb_link = &mm->mm_rb.rb_node; 610 rb_parent = NULL; 611 pprev = &mm->mmap; 612 retval = ksm_fork(mm, oldmm); 613 if (retval) 614 goto out; 615 khugepaged_fork(mm, oldmm); 616 617 prev = NULL; 618 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 619 struct file *file; 620 621 if (mpnt->vm_flags & VM_DONTCOPY) { 622 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 623 continue; 624 } 625 charge = 0; 626 /* 627 * Don't duplicate many vmas if we've been oom-killed (for 628 * example) 629 */ 630 if (fatal_signal_pending(current)) { 631 retval = -EINTR; 632 goto out; 633 } 634 if (mpnt->vm_flags & VM_ACCOUNT) { 635 unsigned long len = vma_pages(mpnt); 636 637 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 638 goto fail_nomem; 639 charge = len; 640 } 641 tmp = vm_area_dup(mpnt); 642 if (!tmp) 643 goto fail_nomem; 644 retval = vma_dup_policy(mpnt, tmp); 645 if (retval) 646 goto fail_nomem_policy; 647 tmp->vm_mm = mm; 648 retval = dup_userfaultfd(tmp, &uf); 649 if (retval) 650 goto fail_nomem_anon_vma_fork; 651 if (tmp->vm_flags & VM_WIPEONFORK) { 652 /* 653 * VM_WIPEONFORK gets a clean slate in the child. 654 * Don't prepare anon_vma until fault since we don't 655 * copy page for current vma. 656 */ 657 tmp->anon_vma = NULL; 658 } else if (anon_vma_fork(tmp, mpnt)) 659 goto fail_nomem_anon_vma_fork; 660 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT); 661 file = tmp->vm_file; 662 if (file) { 663 struct address_space *mapping = file->f_mapping; 664 665 get_file(file); 666 i_mmap_lock_write(mapping); 667 if (tmp->vm_flags & VM_SHARED) 668 mapping_allow_writable(mapping); 669 flush_dcache_mmap_lock(mapping); 670 /* insert tmp into the share list, just after mpnt */ 671 vma_interval_tree_insert_after(tmp, mpnt, 672 &mapping->i_mmap); 673 flush_dcache_mmap_unlock(mapping); 674 i_mmap_unlock_write(mapping); 675 } 676 677 /* 678 * Clear hugetlb-related page reserves for children. This only 679 * affects MAP_PRIVATE mappings. Faults generated by the child 680 * are not guaranteed to succeed, even if read-only 681 */ 682 if (is_vm_hugetlb_page(tmp)) 683 reset_vma_resv_huge_pages(tmp); 684 685 /* 686 * Link in the new vma and copy the page table entries. 687 */ 688 *pprev = tmp; 689 pprev = &tmp->vm_next; 690 tmp->vm_prev = prev; 691 prev = tmp; 692 693 __vma_link_rb(mm, tmp, rb_link, rb_parent); 694 rb_link = &tmp->vm_rb.rb_right; 695 rb_parent = &tmp->vm_rb; 696 697 mm->map_count++; 698 if (!(tmp->vm_flags & VM_WIPEONFORK)) 699 retval = copy_page_range(tmp, mpnt); 700 701 if (tmp->vm_ops && tmp->vm_ops->open) 702 tmp->vm_ops->open(tmp); 703 704 if (retval) 705 goto out; 706 } 707 /* a new mm has just been created */ 708 retval = arch_dup_mmap(oldmm, mm); 709 out: 710 mmap_write_unlock(mm); 711 flush_tlb_mm(oldmm); 712 mmap_write_unlock(oldmm); 713 dup_userfaultfd_complete(&uf); 714 fail_uprobe_end: 715 uprobe_end_dup_mmap(); 716 return retval; 717 fail_nomem_anon_vma_fork: 718 mpol_put(vma_policy(tmp)); 719 fail_nomem_policy: 720 vm_area_free(tmp); 721 fail_nomem: 722 retval = -ENOMEM; 723 vm_unacct_memory(charge); 724 goto out; 725 } 726 727 static inline int mm_alloc_pgd(struct mm_struct *mm) 728 { 729 mm->pgd = pgd_alloc(mm); 730 if (unlikely(!mm->pgd)) 731 return -ENOMEM; 732 return 0; 733 } 734 735 static inline void mm_free_pgd(struct mm_struct *mm) 736 { 737 pgd_free(mm, mm->pgd); 738 } 739 #else 740 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 741 { 742 mmap_write_lock(oldmm); 743 dup_mm_exe_file(mm, oldmm); 744 mmap_write_unlock(oldmm); 745 return 0; 746 } 747 #define mm_alloc_pgd(mm) (0) 748 #define mm_free_pgd(mm) 749 #endif /* CONFIG_MMU */ 750 751 static void check_mm(struct mm_struct *mm) 752 { 753 int i; 754 755 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 756 "Please make sure 'struct resident_page_types[]' is updated as well"); 757 758 for (i = 0; i < NR_MM_COUNTERS; i++) { 759 long x = atomic_long_read(&mm->rss_stat.count[i]); 760 761 if (unlikely(x)) 762 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 763 mm, resident_page_types[i], x); 764 } 765 766 if (mm_pgtables_bytes(mm)) 767 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 768 mm_pgtables_bytes(mm)); 769 770 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 771 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 772 #endif 773 } 774 775 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 776 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 777 778 /* 779 * Called when the last reference to the mm 780 * is dropped: either by a lazy thread or by 781 * mmput. Free the page directory and the mm. 782 */ 783 void __mmdrop(struct mm_struct *mm) 784 { 785 BUG_ON(mm == &init_mm); 786 WARN_ON_ONCE(mm == current->mm); 787 WARN_ON_ONCE(mm == current->active_mm); 788 mm_free_pgd(mm); 789 destroy_context(mm); 790 mmu_notifier_subscriptions_destroy(mm); 791 check_mm(mm); 792 put_user_ns(mm->user_ns); 793 mm_pasid_drop(mm); 794 free_mm(mm); 795 } 796 EXPORT_SYMBOL_GPL(__mmdrop); 797 798 static void mmdrop_async_fn(struct work_struct *work) 799 { 800 struct mm_struct *mm; 801 802 mm = container_of(work, struct mm_struct, async_put_work); 803 __mmdrop(mm); 804 } 805 806 static void mmdrop_async(struct mm_struct *mm) 807 { 808 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 809 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 810 schedule_work(&mm->async_put_work); 811 } 812 } 813 814 static inline void free_signal_struct(struct signal_struct *sig) 815 { 816 taskstats_tgid_free(sig); 817 sched_autogroup_exit(sig); 818 /* 819 * __mmdrop is not safe to call from softirq context on x86 due to 820 * pgd_dtor so postpone it to the async context 821 */ 822 if (sig->oom_mm) 823 mmdrop_async(sig->oom_mm); 824 kmem_cache_free(signal_cachep, sig); 825 } 826 827 static inline void put_signal_struct(struct signal_struct *sig) 828 { 829 if (refcount_dec_and_test(&sig->sigcnt)) 830 free_signal_struct(sig); 831 } 832 833 void __put_task_struct(struct task_struct *tsk) 834 { 835 WARN_ON(!tsk->exit_state); 836 WARN_ON(refcount_read(&tsk->usage)); 837 WARN_ON(tsk == current); 838 839 io_uring_free(tsk); 840 cgroup_free(tsk); 841 task_numa_free(tsk, true); 842 security_task_free(tsk); 843 bpf_task_storage_free(tsk); 844 exit_creds(tsk); 845 delayacct_tsk_free(tsk); 846 put_signal_struct(tsk->signal); 847 sched_core_free(tsk); 848 free_task(tsk); 849 } 850 EXPORT_SYMBOL_GPL(__put_task_struct); 851 852 void __init __weak arch_task_cache_init(void) { } 853 854 /* 855 * set_max_threads 856 */ 857 static void set_max_threads(unsigned int max_threads_suggested) 858 { 859 u64 threads; 860 unsigned long nr_pages = totalram_pages(); 861 862 /* 863 * The number of threads shall be limited such that the thread 864 * structures may only consume a small part of the available memory. 865 */ 866 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 867 threads = MAX_THREADS; 868 else 869 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 870 (u64) THREAD_SIZE * 8UL); 871 872 if (threads > max_threads_suggested) 873 threads = max_threads_suggested; 874 875 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 876 } 877 878 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 879 /* Initialized by the architecture: */ 880 int arch_task_struct_size __read_mostly; 881 #endif 882 883 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 884 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 885 { 886 /* Fetch thread_struct whitelist for the architecture. */ 887 arch_thread_struct_whitelist(offset, size); 888 889 /* 890 * Handle zero-sized whitelist or empty thread_struct, otherwise 891 * adjust offset to position of thread_struct in task_struct. 892 */ 893 if (unlikely(*size == 0)) 894 *offset = 0; 895 else 896 *offset += offsetof(struct task_struct, thread); 897 } 898 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 899 900 void __init fork_init(void) 901 { 902 int i; 903 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 904 #ifndef ARCH_MIN_TASKALIGN 905 #define ARCH_MIN_TASKALIGN 0 906 #endif 907 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 908 unsigned long useroffset, usersize; 909 910 /* create a slab on which task_structs can be allocated */ 911 task_struct_whitelist(&useroffset, &usersize); 912 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 913 arch_task_struct_size, align, 914 SLAB_PANIC|SLAB_ACCOUNT, 915 useroffset, usersize, NULL); 916 #endif 917 918 /* do the arch specific task caches init */ 919 arch_task_cache_init(); 920 921 set_max_threads(MAX_THREADS); 922 923 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 924 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 925 init_task.signal->rlim[RLIMIT_SIGPENDING] = 926 init_task.signal->rlim[RLIMIT_NPROC]; 927 928 for (i = 0; i < MAX_PER_NAMESPACE_UCOUNTS; i++) 929 init_user_ns.ucount_max[i] = max_threads/2; 930 931 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 932 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 933 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 934 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 935 936 #ifdef CONFIG_VMAP_STACK 937 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 938 NULL, free_vm_stack_cache); 939 #endif 940 941 scs_init(); 942 943 lockdep_init_task(&init_task); 944 uprobes_init(); 945 } 946 947 int __weak arch_dup_task_struct(struct task_struct *dst, 948 struct task_struct *src) 949 { 950 *dst = *src; 951 return 0; 952 } 953 954 void set_task_stack_end_magic(struct task_struct *tsk) 955 { 956 unsigned long *stackend; 957 958 stackend = end_of_stack(tsk); 959 *stackend = STACK_END_MAGIC; /* for overflow detection */ 960 } 961 962 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 963 { 964 struct task_struct *tsk; 965 int err; 966 967 if (node == NUMA_NO_NODE) 968 node = tsk_fork_get_node(orig); 969 tsk = alloc_task_struct_node(node); 970 if (!tsk) 971 return NULL; 972 973 err = arch_dup_task_struct(tsk, orig); 974 if (err) 975 goto free_tsk; 976 977 err = alloc_thread_stack_node(tsk, node); 978 if (err) 979 goto free_tsk; 980 981 #ifdef CONFIG_THREAD_INFO_IN_TASK 982 refcount_set(&tsk->stack_refcount, 1); 983 #endif 984 account_kernel_stack(tsk, 1); 985 986 err = scs_prepare(tsk, node); 987 if (err) 988 goto free_stack; 989 990 #ifdef CONFIG_SECCOMP 991 /* 992 * We must handle setting up seccomp filters once we're under 993 * the sighand lock in case orig has changed between now and 994 * then. Until then, filter must be NULL to avoid messing up 995 * the usage counts on the error path calling free_task. 996 */ 997 tsk->seccomp.filter = NULL; 998 #endif 999 1000 setup_thread_stack(tsk, orig); 1001 clear_user_return_notifier(tsk); 1002 clear_tsk_need_resched(tsk); 1003 set_task_stack_end_magic(tsk); 1004 clear_syscall_work_syscall_user_dispatch(tsk); 1005 1006 #ifdef CONFIG_STACKPROTECTOR 1007 tsk->stack_canary = get_random_canary(); 1008 #endif 1009 if (orig->cpus_ptr == &orig->cpus_mask) 1010 tsk->cpus_ptr = &tsk->cpus_mask; 1011 dup_user_cpus_ptr(tsk, orig, node); 1012 1013 /* 1014 * One for the user space visible state that goes away when reaped. 1015 * One for the scheduler. 1016 */ 1017 refcount_set(&tsk->rcu_users, 2); 1018 /* One for the rcu users */ 1019 refcount_set(&tsk->usage, 1); 1020 #ifdef CONFIG_BLK_DEV_IO_TRACE 1021 tsk->btrace_seq = 0; 1022 #endif 1023 tsk->splice_pipe = NULL; 1024 tsk->task_frag.page = NULL; 1025 tsk->wake_q.next = NULL; 1026 tsk->worker_private = NULL; 1027 1028 kcov_task_init(tsk); 1029 kmap_local_fork(tsk); 1030 1031 #ifdef CONFIG_FAULT_INJECTION 1032 tsk->fail_nth = 0; 1033 #endif 1034 1035 #ifdef CONFIG_BLK_CGROUP 1036 tsk->throttle_queue = NULL; 1037 tsk->use_memdelay = 0; 1038 #endif 1039 1040 #ifdef CONFIG_IOMMU_SVA 1041 tsk->pasid_activated = 0; 1042 #endif 1043 1044 #ifdef CONFIG_MEMCG 1045 tsk->active_memcg = NULL; 1046 #endif 1047 1048 #ifdef CONFIG_CPU_SUP_INTEL 1049 tsk->reported_split_lock = 0; 1050 #endif 1051 1052 return tsk; 1053 1054 free_stack: 1055 exit_task_stack_account(tsk); 1056 free_thread_stack(tsk); 1057 free_tsk: 1058 free_task_struct(tsk); 1059 return NULL; 1060 } 1061 1062 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 1063 1064 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 1065 1066 static int __init coredump_filter_setup(char *s) 1067 { 1068 default_dump_filter = 1069 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 1070 MMF_DUMP_FILTER_MASK; 1071 return 1; 1072 } 1073 1074 __setup("coredump_filter=", coredump_filter_setup); 1075 1076 #include <linux/init_task.h> 1077 1078 static void mm_init_aio(struct mm_struct *mm) 1079 { 1080 #ifdef CONFIG_AIO 1081 spin_lock_init(&mm->ioctx_lock); 1082 mm->ioctx_table = NULL; 1083 #endif 1084 } 1085 1086 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1087 struct task_struct *p) 1088 { 1089 #ifdef CONFIG_MEMCG 1090 if (mm->owner == p) 1091 WRITE_ONCE(mm->owner, NULL); 1092 #endif 1093 } 1094 1095 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1096 { 1097 #ifdef CONFIG_MEMCG 1098 mm->owner = p; 1099 #endif 1100 } 1101 1102 static void mm_init_uprobes_state(struct mm_struct *mm) 1103 { 1104 #ifdef CONFIG_UPROBES 1105 mm->uprobes_state.xol_area = NULL; 1106 #endif 1107 } 1108 1109 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1110 struct user_namespace *user_ns) 1111 { 1112 mm->mmap = NULL; 1113 mm->mm_rb = RB_ROOT; 1114 mm->vmacache_seqnum = 0; 1115 atomic_set(&mm->mm_users, 1); 1116 atomic_set(&mm->mm_count, 1); 1117 seqcount_init(&mm->write_protect_seq); 1118 mmap_init_lock(mm); 1119 INIT_LIST_HEAD(&mm->mmlist); 1120 mm_pgtables_bytes_init(mm); 1121 mm->map_count = 0; 1122 mm->locked_vm = 0; 1123 atomic64_set(&mm->pinned_vm, 0); 1124 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1125 spin_lock_init(&mm->page_table_lock); 1126 spin_lock_init(&mm->arg_lock); 1127 mm_init_cpumask(mm); 1128 mm_init_aio(mm); 1129 mm_init_owner(mm, p); 1130 mm_pasid_init(mm); 1131 RCU_INIT_POINTER(mm->exe_file, NULL); 1132 mmu_notifier_subscriptions_init(mm); 1133 init_tlb_flush_pending(mm); 1134 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1135 mm->pmd_huge_pte = NULL; 1136 #endif 1137 mm_init_uprobes_state(mm); 1138 hugetlb_count_init(mm); 1139 1140 if (current->mm) { 1141 mm->flags = current->mm->flags & MMF_INIT_MASK; 1142 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1143 } else { 1144 mm->flags = default_dump_filter; 1145 mm->def_flags = 0; 1146 } 1147 1148 if (mm_alloc_pgd(mm)) 1149 goto fail_nopgd; 1150 1151 if (init_new_context(p, mm)) 1152 goto fail_nocontext; 1153 1154 mm->user_ns = get_user_ns(user_ns); 1155 return mm; 1156 1157 fail_nocontext: 1158 mm_free_pgd(mm); 1159 fail_nopgd: 1160 free_mm(mm); 1161 return NULL; 1162 } 1163 1164 /* 1165 * Allocate and initialize an mm_struct. 1166 */ 1167 struct mm_struct *mm_alloc(void) 1168 { 1169 struct mm_struct *mm; 1170 1171 mm = allocate_mm(); 1172 if (!mm) 1173 return NULL; 1174 1175 memset(mm, 0, sizeof(*mm)); 1176 return mm_init(mm, current, current_user_ns()); 1177 } 1178 1179 static inline void __mmput(struct mm_struct *mm) 1180 { 1181 VM_BUG_ON(atomic_read(&mm->mm_users)); 1182 1183 uprobe_clear_state(mm); 1184 exit_aio(mm); 1185 ksm_exit(mm); 1186 khugepaged_exit(mm); /* must run before exit_mmap */ 1187 exit_mmap(mm); 1188 mm_put_huge_zero_page(mm); 1189 set_mm_exe_file(mm, NULL); 1190 if (!list_empty(&mm->mmlist)) { 1191 spin_lock(&mmlist_lock); 1192 list_del(&mm->mmlist); 1193 spin_unlock(&mmlist_lock); 1194 } 1195 if (mm->binfmt) 1196 module_put(mm->binfmt->module); 1197 mmdrop(mm); 1198 } 1199 1200 /* 1201 * Decrement the use count and release all resources for an mm. 1202 */ 1203 void mmput(struct mm_struct *mm) 1204 { 1205 might_sleep(); 1206 1207 if (atomic_dec_and_test(&mm->mm_users)) 1208 __mmput(mm); 1209 } 1210 EXPORT_SYMBOL_GPL(mmput); 1211 1212 #ifdef CONFIG_MMU 1213 static void mmput_async_fn(struct work_struct *work) 1214 { 1215 struct mm_struct *mm = container_of(work, struct mm_struct, 1216 async_put_work); 1217 1218 __mmput(mm); 1219 } 1220 1221 void mmput_async(struct mm_struct *mm) 1222 { 1223 if (atomic_dec_and_test(&mm->mm_users)) { 1224 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1225 schedule_work(&mm->async_put_work); 1226 } 1227 } 1228 #endif 1229 1230 /** 1231 * set_mm_exe_file - change a reference to the mm's executable file 1232 * 1233 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1234 * 1235 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1236 * invocations: in mmput() nobody alive left, in execve task is single 1237 * threaded. 1238 * 1239 * Can only fail if new_exe_file != NULL. 1240 */ 1241 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1242 { 1243 struct file *old_exe_file; 1244 1245 /* 1246 * It is safe to dereference the exe_file without RCU as 1247 * this function is only called if nobody else can access 1248 * this mm -- see comment above for justification. 1249 */ 1250 old_exe_file = rcu_dereference_raw(mm->exe_file); 1251 1252 if (new_exe_file) { 1253 /* 1254 * We expect the caller (i.e., sys_execve) to already denied 1255 * write access, so this is unlikely to fail. 1256 */ 1257 if (unlikely(deny_write_access(new_exe_file))) 1258 return -EACCES; 1259 get_file(new_exe_file); 1260 } 1261 rcu_assign_pointer(mm->exe_file, new_exe_file); 1262 if (old_exe_file) { 1263 allow_write_access(old_exe_file); 1264 fput(old_exe_file); 1265 } 1266 return 0; 1267 } 1268 1269 /** 1270 * replace_mm_exe_file - replace a reference to the mm's executable file 1271 * 1272 * This changes mm's executable file (shown as symlink /proc/[pid]/exe), 1273 * dealing with concurrent invocation and without grabbing the mmap lock in 1274 * write mode. 1275 * 1276 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1277 */ 1278 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1279 { 1280 struct vm_area_struct *vma; 1281 struct file *old_exe_file; 1282 int ret = 0; 1283 1284 /* Forbid mm->exe_file change if old file still mapped. */ 1285 old_exe_file = get_mm_exe_file(mm); 1286 if (old_exe_file) { 1287 mmap_read_lock(mm); 1288 for (vma = mm->mmap; vma && !ret; vma = vma->vm_next) { 1289 if (!vma->vm_file) 1290 continue; 1291 if (path_equal(&vma->vm_file->f_path, 1292 &old_exe_file->f_path)) 1293 ret = -EBUSY; 1294 } 1295 mmap_read_unlock(mm); 1296 fput(old_exe_file); 1297 if (ret) 1298 return ret; 1299 } 1300 1301 /* set the new file, lockless */ 1302 ret = deny_write_access(new_exe_file); 1303 if (ret) 1304 return -EACCES; 1305 get_file(new_exe_file); 1306 1307 old_exe_file = xchg(&mm->exe_file, new_exe_file); 1308 if (old_exe_file) { 1309 /* 1310 * Don't race with dup_mmap() getting the file and disallowing 1311 * write access while someone might open the file writable. 1312 */ 1313 mmap_read_lock(mm); 1314 allow_write_access(old_exe_file); 1315 fput(old_exe_file); 1316 mmap_read_unlock(mm); 1317 } 1318 return 0; 1319 } 1320 1321 /** 1322 * get_mm_exe_file - acquire a reference to the mm's executable file 1323 * 1324 * Returns %NULL if mm has no associated executable file. 1325 * User must release file via fput(). 1326 */ 1327 struct file *get_mm_exe_file(struct mm_struct *mm) 1328 { 1329 struct file *exe_file; 1330 1331 rcu_read_lock(); 1332 exe_file = rcu_dereference(mm->exe_file); 1333 if (exe_file && !get_file_rcu(exe_file)) 1334 exe_file = NULL; 1335 rcu_read_unlock(); 1336 return exe_file; 1337 } 1338 1339 /** 1340 * get_task_exe_file - acquire a reference to the task's executable file 1341 * 1342 * Returns %NULL if task's mm (if any) has no associated executable file or 1343 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1344 * User must release file via fput(). 1345 */ 1346 struct file *get_task_exe_file(struct task_struct *task) 1347 { 1348 struct file *exe_file = NULL; 1349 struct mm_struct *mm; 1350 1351 task_lock(task); 1352 mm = task->mm; 1353 if (mm) { 1354 if (!(task->flags & PF_KTHREAD)) 1355 exe_file = get_mm_exe_file(mm); 1356 } 1357 task_unlock(task); 1358 return exe_file; 1359 } 1360 1361 /** 1362 * get_task_mm - acquire a reference to the task's mm 1363 * 1364 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1365 * this kernel workthread has transiently adopted a user mm with use_mm, 1366 * to do its AIO) is not set and if so returns a reference to it, after 1367 * bumping up the use count. User must release the mm via mmput() 1368 * after use. Typically used by /proc and ptrace. 1369 */ 1370 struct mm_struct *get_task_mm(struct task_struct *task) 1371 { 1372 struct mm_struct *mm; 1373 1374 task_lock(task); 1375 mm = task->mm; 1376 if (mm) { 1377 if (task->flags & PF_KTHREAD) 1378 mm = NULL; 1379 else 1380 mmget(mm); 1381 } 1382 task_unlock(task); 1383 return mm; 1384 } 1385 EXPORT_SYMBOL_GPL(get_task_mm); 1386 1387 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1388 { 1389 struct mm_struct *mm; 1390 int err; 1391 1392 err = down_read_killable(&task->signal->exec_update_lock); 1393 if (err) 1394 return ERR_PTR(err); 1395 1396 mm = get_task_mm(task); 1397 if (mm && mm != current->mm && 1398 !ptrace_may_access(task, mode)) { 1399 mmput(mm); 1400 mm = ERR_PTR(-EACCES); 1401 } 1402 up_read(&task->signal->exec_update_lock); 1403 1404 return mm; 1405 } 1406 1407 static void complete_vfork_done(struct task_struct *tsk) 1408 { 1409 struct completion *vfork; 1410 1411 task_lock(tsk); 1412 vfork = tsk->vfork_done; 1413 if (likely(vfork)) { 1414 tsk->vfork_done = NULL; 1415 complete(vfork); 1416 } 1417 task_unlock(tsk); 1418 } 1419 1420 static int wait_for_vfork_done(struct task_struct *child, 1421 struct completion *vfork) 1422 { 1423 int killed; 1424 1425 freezer_do_not_count(); 1426 cgroup_enter_frozen(); 1427 killed = wait_for_completion_killable(vfork); 1428 cgroup_leave_frozen(false); 1429 freezer_count(); 1430 1431 if (killed) { 1432 task_lock(child); 1433 child->vfork_done = NULL; 1434 task_unlock(child); 1435 } 1436 1437 put_task_struct(child); 1438 return killed; 1439 } 1440 1441 /* Please note the differences between mmput and mm_release. 1442 * mmput is called whenever we stop holding onto a mm_struct, 1443 * error success whatever. 1444 * 1445 * mm_release is called after a mm_struct has been removed 1446 * from the current process. 1447 * 1448 * This difference is important for error handling, when we 1449 * only half set up a mm_struct for a new process and need to restore 1450 * the old one. Because we mmput the new mm_struct before 1451 * restoring the old one. . . 1452 * Eric Biederman 10 January 1998 1453 */ 1454 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1455 { 1456 uprobe_free_utask(tsk); 1457 1458 /* Get rid of any cached register state */ 1459 deactivate_mm(tsk, mm); 1460 1461 /* 1462 * Signal userspace if we're not exiting with a core dump 1463 * because we want to leave the value intact for debugging 1464 * purposes. 1465 */ 1466 if (tsk->clear_child_tid) { 1467 if (atomic_read(&mm->mm_users) > 1) { 1468 /* 1469 * We don't check the error code - if userspace has 1470 * not set up a proper pointer then tough luck. 1471 */ 1472 put_user(0, tsk->clear_child_tid); 1473 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1474 1, NULL, NULL, 0, 0); 1475 } 1476 tsk->clear_child_tid = NULL; 1477 } 1478 1479 /* 1480 * All done, finally we can wake up parent and return this mm to him. 1481 * Also kthread_stop() uses this completion for synchronization. 1482 */ 1483 if (tsk->vfork_done) 1484 complete_vfork_done(tsk); 1485 } 1486 1487 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1488 { 1489 futex_exit_release(tsk); 1490 mm_release(tsk, mm); 1491 } 1492 1493 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1494 { 1495 futex_exec_release(tsk); 1496 mm_release(tsk, mm); 1497 } 1498 1499 /** 1500 * dup_mm() - duplicates an existing mm structure 1501 * @tsk: the task_struct with which the new mm will be associated. 1502 * @oldmm: the mm to duplicate. 1503 * 1504 * Allocates a new mm structure and duplicates the provided @oldmm structure 1505 * content into it. 1506 * 1507 * Return: the duplicated mm or NULL on failure. 1508 */ 1509 static struct mm_struct *dup_mm(struct task_struct *tsk, 1510 struct mm_struct *oldmm) 1511 { 1512 struct mm_struct *mm; 1513 int err; 1514 1515 mm = allocate_mm(); 1516 if (!mm) 1517 goto fail_nomem; 1518 1519 memcpy(mm, oldmm, sizeof(*mm)); 1520 1521 if (!mm_init(mm, tsk, mm->user_ns)) 1522 goto fail_nomem; 1523 1524 err = dup_mmap(mm, oldmm); 1525 if (err) 1526 goto free_pt; 1527 1528 mm->hiwater_rss = get_mm_rss(mm); 1529 mm->hiwater_vm = mm->total_vm; 1530 1531 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1532 goto free_pt; 1533 1534 return mm; 1535 1536 free_pt: 1537 /* don't put binfmt in mmput, we haven't got module yet */ 1538 mm->binfmt = NULL; 1539 mm_init_owner(mm, NULL); 1540 mmput(mm); 1541 1542 fail_nomem: 1543 return NULL; 1544 } 1545 1546 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1547 { 1548 struct mm_struct *mm, *oldmm; 1549 1550 tsk->min_flt = tsk->maj_flt = 0; 1551 tsk->nvcsw = tsk->nivcsw = 0; 1552 #ifdef CONFIG_DETECT_HUNG_TASK 1553 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1554 tsk->last_switch_time = 0; 1555 #endif 1556 1557 tsk->mm = NULL; 1558 tsk->active_mm = NULL; 1559 1560 /* 1561 * Are we cloning a kernel thread? 1562 * 1563 * We need to steal a active VM for that.. 1564 */ 1565 oldmm = current->mm; 1566 if (!oldmm) 1567 return 0; 1568 1569 /* initialize the new vmacache entries */ 1570 vmacache_flush(tsk); 1571 1572 if (clone_flags & CLONE_VM) { 1573 mmget(oldmm); 1574 mm = oldmm; 1575 } else { 1576 mm = dup_mm(tsk, current->mm); 1577 if (!mm) 1578 return -ENOMEM; 1579 } 1580 1581 tsk->mm = mm; 1582 tsk->active_mm = mm; 1583 return 0; 1584 } 1585 1586 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1587 { 1588 struct fs_struct *fs = current->fs; 1589 if (clone_flags & CLONE_FS) { 1590 /* tsk->fs is already what we want */ 1591 spin_lock(&fs->lock); 1592 if (fs->in_exec) { 1593 spin_unlock(&fs->lock); 1594 return -EAGAIN; 1595 } 1596 fs->users++; 1597 spin_unlock(&fs->lock); 1598 return 0; 1599 } 1600 tsk->fs = copy_fs_struct(fs); 1601 if (!tsk->fs) 1602 return -ENOMEM; 1603 return 0; 1604 } 1605 1606 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1607 { 1608 struct files_struct *oldf, *newf; 1609 int error = 0; 1610 1611 /* 1612 * A background process may not have any files ... 1613 */ 1614 oldf = current->files; 1615 if (!oldf) 1616 goto out; 1617 1618 if (clone_flags & CLONE_FILES) { 1619 atomic_inc(&oldf->count); 1620 goto out; 1621 } 1622 1623 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1624 if (!newf) 1625 goto out; 1626 1627 tsk->files = newf; 1628 error = 0; 1629 out: 1630 return error; 1631 } 1632 1633 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1634 { 1635 struct sighand_struct *sig; 1636 1637 if (clone_flags & CLONE_SIGHAND) { 1638 refcount_inc(¤t->sighand->count); 1639 return 0; 1640 } 1641 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1642 RCU_INIT_POINTER(tsk->sighand, sig); 1643 if (!sig) 1644 return -ENOMEM; 1645 1646 refcount_set(&sig->count, 1); 1647 spin_lock_irq(¤t->sighand->siglock); 1648 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1649 spin_unlock_irq(¤t->sighand->siglock); 1650 1651 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1652 if (clone_flags & CLONE_CLEAR_SIGHAND) 1653 flush_signal_handlers(tsk, 0); 1654 1655 return 0; 1656 } 1657 1658 void __cleanup_sighand(struct sighand_struct *sighand) 1659 { 1660 if (refcount_dec_and_test(&sighand->count)) { 1661 signalfd_cleanup(sighand); 1662 /* 1663 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1664 * without an RCU grace period, see __lock_task_sighand(). 1665 */ 1666 kmem_cache_free(sighand_cachep, sighand); 1667 } 1668 } 1669 1670 /* 1671 * Initialize POSIX timer handling for a thread group. 1672 */ 1673 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1674 { 1675 struct posix_cputimers *pct = &sig->posix_cputimers; 1676 unsigned long cpu_limit; 1677 1678 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1679 posix_cputimers_group_init(pct, cpu_limit); 1680 } 1681 1682 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1683 { 1684 struct signal_struct *sig; 1685 1686 if (clone_flags & CLONE_THREAD) 1687 return 0; 1688 1689 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1690 tsk->signal = sig; 1691 if (!sig) 1692 return -ENOMEM; 1693 1694 sig->nr_threads = 1; 1695 atomic_set(&sig->live, 1); 1696 refcount_set(&sig->sigcnt, 1); 1697 1698 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1699 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1700 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1701 1702 init_waitqueue_head(&sig->wait_chldexit); 1703 sig->curr_target = tsk; 1704 init_sigpending(&sig->shared_pending); 1705 INIT_HLIST_HEAD(&sig->multiprocess); 1706 seqlock_init(&sig->stats_lock); 1707 prev_cputime_init(&sig->prev_cputime); 1708 1709 #ifdef CONFIG_POSIX_TIMERS 1710 INIT_LIST_HEAD(&sig->posix_timers); 1711 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1712 sig->real_timer.function = it_real_fn; 1713 #endif 1714 1715 task_lock(current->group_leader); 1716 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1717 task_unlock(current->group_leader); 1718 1719 posix_cpu_timers_init_group(sig); 1720 1721 tty_audit_fork(sig); 1722 sched_autogroup_fork(sig); 1723 1724 sig->oom_score_adj = current->signal->oom_score_adj; 1725 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1726 1727 mutex_init(&sig->cred_guard_mutex); 1728 init_rwsem(&sig->exec_update_lock); 1729 1730 return 0; 1731 } 1732 1733 static void copy_seccomp(struct task_struct *p) 1734 { 1735 #ifdef CONFIG_SECCOMP 1736 /* 1737 * Must be called with sighand->lock held, which is common to 1738 * all threads in the group. Holding cred_guard_mutex is not 1739 * needed because this new task is not yet running and cannot 1740 * be racing exec. 1741 */ 1742 assert_spin_locked(¤t->sighand->siglock); 1743 1744 /* Ref-count the new filter user, and assign it. */ 1745 get_seccomp_filter(current); 1746 p->seccomp = current->seccomp; 1747 1748 /* 1749 * Explicitly enable no_new_privs here in case it got set 1750 * between the task_struct being duplicated and holding the 1751 * sighand lock. The seccomp state and nnp must be in sync. 1752 */ 1753 if (task_no_new_privs(current)) 1754 task_set_no_new_privs(p); 1755 1756 /* 1757 * If the parent gained a seccomp mode after copying thread 1758 * flags and between before we held the sighand lock, we have 1759 * to manually enable the seccomp thread flag here. 1760 */ 1761 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1762 set_task_syscall_work(p, SECCOMP); 1763 #endif 1764 } 1765 1766 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1767 { 1768 current->clear_child_tid = tidptr; 1769 1770 return task_pid_vnr(current); 1771 } 1772 1773 static void rt_mutex_init_task(struct task_struct *p) 1774 { 1775 raw_spin_lock_init(&p->pi_lock); 1776 #ifdef CONFIG_RT_MUTEXES 1777 p->pi_waiters = RB_ROOT_CACHED; 1778 p->pi_top_task = NULL; 1779 p->pi_blocked_on = NULL; 1780 #endif 1781 } 1782 1783 static inline void init_task_pid_links(struct task_struct *task) 1784 { 1785 enum pid_type type; 1786 1787 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1788 INIT_HLIST_NODE(&task->pid_links[type]); 1789 } 1790 1791 static inline void 1792 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1793 { 1794 if (type == PIDTYPE_PID) 1795 task->thread_pid = pid; 1796 else 1797 task->signal->pids[type] = pid; 1798 } 1799 1800 static inline void rcu_copy_process(struct task_struct *p) 1801 { 1802 #ifdef CONFIG_PREEMPT_RCU 1803 p->rcu_read_lock_nesting = 0; 1804 p->rcu_read_unlock_special.s = 0; 1805 p->rcu_blocked_node = NULL; 1806 INIT_LIST_HEAD(&p->rcu_node_entry); 1807 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1808 #ifdef CONFIG_TASKS_RCU 1809 p->rcu_tasks_holdout = false; 1810 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1811 p->rcu_tasks_idle_cpu = -1; 1812 #endif /* #ifdef CONFIG_TASKS_RCU */ 1813 #ifdef CONFIG_TASKS_TRACE_RCU 1814 p->trc_reader_nesting = 0; 1815 p->trc_reader_special.s = 0; 1816 INIT_LIST_HEAD(&p->trc_holdout_list); 1817 INIT_LIST_HEAD(&p->trc_blkd_node); 1818 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1819 } 1820 1821 struct pid *pidfd_pid(const struct file *file) 1822 { 1823 if (file->f_op == &pidfd_fops) 1824 return file->private_data; 1825 1826 return ERR_PTR(-EBADF); 1827 } 1828 1829 static int pidfd_release(struct inode *inode, struct file *file) 1830 { 1831 struct pid *pid = file->private_data; 1832 1833 file->private_data = NULL; 1834 put_pid(pid); 1835 return 0; 1836 } 1837 1838 #ifdef CONFIG_PROC_FS 1839 /** 1840 * pidfd_show_fdinfo - print information about a pidfd 1841 * @m: proc fdinfo file 1842 * @f: file referencing a pidfd 1843 * 1844 * Pid: 1845 * This function will print the pid that a given pidfd refers to in the 1846 * pid namespace of the procfs instance. 1847 * If the pid namespace of the process is not a descendant of the pid 1848 * namespace of the procfs instance 0 will be shown as its pid. This is 1849 * similar to calling getppid() on a process whose parent is outside of 1850 * its pid namespace. 1851 * 1852 * NSpid: 1853 * If pid namespaces are supported then this function will also print 1854 * the pid of a given pidfd refers to for all descendant pid namespaces 1855 * starting from the current pid namespace of the instance, i.e. the 1856 * Pid field and the first entry in the NSpid field will be identical. 1857 * If the pid namespace of the process is not a descendant of the pid 1858 * namespace of the procfs instance 0 will be shown as its first NSpid 1859 * entry and no others will be shown. 1860 * Note that this differs from the Pid and NSpid fields in 1861 * /proc/<pid>/status where Pid and NSpid are always shown relative to 1862 * the pid namespace of the procfs instance. The difference becomes 1863 * obvious when sending around a pidfd between pid namespaces from a 1864 * different branch of the tree, i.e. where no ancestral relation is 1865 * present between the pid namespaces: 1866 * - create two new pid namespaces ns1 and ns2 in the initial pid 1867 * namespace (also take care to create new mount namespaces in the 1868 * new pid namespace and mount procfs) 1869 * - create a process with a pidfd in ns1 1870 * - send pidfd from ns1 to ns2 1871 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 1872 * have exactly one entry, which is 0 1873 */ 1874 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 1875 { 1876 struct pid *pid = f->private_data; 1877 struct pid_namespace *ns; 1878 pid_t nr = -1; 1879 1880 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 1881 ns = proc_pid_ns(file_inode(m->file)->i_sb); 1882 nr = pid_nr_ns(pid, ns); 1883 } 1884 1885 seq_put_decimal_ll(m, "Pid:\t", nr); 1886 1887 #ifdef CONFIG_PID_NS 1888 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 1889 if (nr > 0) { 1890 int i; 1891 1892 /* If nr is non-zero it means that 'pid' is valid and that 1893 * ns, i.e. the pid namespace associated with the procfs 1894 * instance, is in the pid namespace hierarchy of pid. 1895 * Start at one below the already printed level. 1896 */ 1897 for (i = ns->level + 1; i <= pid->level; i++) 1898 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 1899 } 1900 #endif 1901 seq_putc(m, '\n'); 1902 } 1903 #endif 1904 1905 /* 1906 * Poll support for process exit notification. 1907 */ 1908 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 1909 { 1910 struct pid *pid = file->private_data; 1911 __poll_t poll_flags = 0; 1912 1913 poll_wait(file, &pid->wait_pidfd, pts); 1914 1915 /* 1916 * Inform pollers only when the whole thread group exits. 1917 * If the thread group leader exits before all other threads in the 1918 * group, then poll(2) should block, similar to the wait(2) family. 1919 */ 1920 if (thread_group_exited(pid)) 1921 poll_flags = EPOLLIN | EPOLLRDNORM; 1922 1923 return poll_flags; 1924 } 1925 1926 const struct file_operations pidfd_fops = { 1927 .release = pidfd_release, 1928 .poll = pidfd_poll, 1929 #ifdef CONFIG_PROC_FS 1930 .show_fdinfo = pidfd_show_fdinfo, 1931 #endif 1932 }; 1933 1934 static void __delayed_free_task(struct rcu_head *rhp) 1935 { 1936 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1937 1938 free_task(tsk); 1939 } 1940 1941 static __always_inline void delayed_free_task(struct task_struct *tsk) 1942 { 1943 if (IS_ENABLED(CONFIG_MEMCG)) 1944 call_rcu(&tsk->rcu, __delayed_free_task); 1945 else 1946 free_task(tsk); 1947 } 1948 1949 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 1950 { 1951 /* Skip if kernel thread */ 1952 if (!tsk->mm) 1953 return; 1954 1955 /* Skip if spawning a thread or using vfork */ 1956 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 1957 return; 1958 1959 /* We need to synchronize with __set_oom_adj */ 1960 mutex_lock(&oom_adj_mutex); 1961 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 1962 /* Update the values in case they were changed after copy_signal */ 1963 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 1964 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 1965 mutex_unlock(&oom_adj_mutex); 1966 } 1967 1968 #ifdef CONFIG_RV 1969 static void rv_task_fork(struct task_struct *p) 1970 { 1971 int i; 1972 1973 for (i = 0; i < RV_PER_TASK_MONITORS; i++) 1974 p->rv[i].da_mon.monitoring = false; 1975 } 1976 #else 1977 #define rv_task_fork(p) do {} while (0) 1978 #endif 1979 1980 /* 1981 * This creates a new process as a copy of the old one, 1982 * but does not actually start it yet. 1983 * 1984 * It copies the registers, and all the appropriate 1985 * parts of the process environment (as per the clone 1986 * flags). The actual kick-off is left to the caller. 1987 */ 1988 static __latent_entropy struct task_struct *copy_process( 1989 struct pid *pid, 1990 int trace, 1991 int node, 1992 struct kernel_clone_args *args) 1993 { 1994 int pidfd = -1, retval; 1995 struct task_struct *p; 1996 struct multiprocess_signals delayed; 1997 struct file *pidfile = NULL; 1998 const u64 clone_flags = args->flags; 1999 struct nsproxy *nsp = current->nsproxy; 2000 2001 /* 2002 * Don't allow sharing the root directory with processes in a different 2003 * namespace 2004 */ 2005 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 2006 return ERR_PTR(-EINVAL); 2007 2008 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 2009 return ERR_PTR(-EINVAL); 2010 2011 /* 2012 * Thread groups must share signals as well, and detached threads 2013 * can only be started up within the thread group. 2014 */ 2015 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 2016 return ERR_PTR(-EINVAL); 2017 2018 /* 2019 * Shared signal handlers imply shared VM. By way of the above, 2020 * thread groups also imply shared VM. Blocking this case allows 2021 * for various simplifications in other code. 2022 */ 2023 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 2024 return ERR_PTR(-EINVAL); 2025 2026 /* 2027 * Siblings of global init remain as zombies on exit since they are 2028 * not reaped by their parent (swapper). To solve this and to avoid 2029 * multi-rooted process trees, prevent global and container-inits 2030 * from creating siblings. 2031 */ 2032 if ((clone_flags & CLONE_PARENT) && 2033 current->signal->flags & SIGNAL_UNKILLABLE) 2034 return ERR_PTR(-EINVAL); 2035 2036 /* 2037 * If the new process will be in a different pid or user namespace 2038 * do not allow it to share a thread group with the forking task. 2039 */ 2040 if (clone_flags & CLONE_THREAD) { 2041 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 2042 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 2043 return ERR_PTR(-EINVAL); 2044 } 2045 2046 /* 2047 * If the new process will be in a different time namespace 2048 * do not allow it to share VM or a thread group with the forking task. 2049 * 2050 * On vfork, the child process enters the target time namespace only 2051 * after exec. 2052 */ 2053 if ((clone_flags & (CLONE_VM | CLONE_VFORK)) == CLONE_VM) { 2054 if (nsp->time_ns != nsp->time_ns_for_children) 2055 return ERR_PTR(-EINVAL); 2056 } 2057 2058 if (clone_flags & CLONE_PIDFD) { 2059 /* 2060 * - CLONE_DETACHED is blocked so that we can potentially 2061 * reuse it later for CLONE_PIDFD. 2062 * - CLONE_THREAD is blocked until someone really needs it. 2063 */ 2064 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 2065 return ERR_PTR(-EINVAL); 2066 } 2067 2068 /* 2069 * Force any signals received before this point to be delivered 2070 * before the fork happens. Collect up signals sent to multiple 2071 * processes that happen during the fork and delay them so that 2072 * they appear to happen after the fork. 2073 */ 2074 sigemptyset(&delayed.signal); 2075 INIT_HLIST_NODE(&delayed.node); 2076 2077 spin_lock_irq(¤t->sighand->siglock); 2078 if (!(clone_flags & CLONE_THREAD)) 2079 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2080 recalc_sigpending(); 2081 spin_unlock_irq(¤t->sighand->siglock); 2082 retval = -ERESTARTNOINTR; 2083 if (task_sigpending(current)) 2084 goto fork_out; 2085 2086 retval = -ENOMEM; 2087 p = dup_task_struct(current, node); 2088 if (!p) 2089 goto fork_out; 2090 p->flags &= ~PF_KTHREAD; 2091 if (args->kthread) 2092 p->flags |= PF_KTHREAD; 2093 if (args->io_thread) { 2094 /* 2095 * Mark us an IO worker, and block any signal that isn't 2096 * fatal or STOP 2097 */ 2098 p->flags |= PF_IO_WORKER; 2099 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2100 } 2101 2102 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2103 /* 2104 * Clear TID on mm_release()? 2105 */ 2106 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2107 2108 ftrace_graph_init_task(p); 2109 2110 rt_mutex_init_task(p); 2111 2112 lockdep_assert_irqs_enabled(); 2113 #ifdef CONFIG_PROVE_LOCKING 2114 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2115 #endif 2116 retval = copy_creds(p, clone_flags); 2117 if (retval < 0) 2118 goto bad_fork_free; 2119 2120 retval = -EAGAIN; 2121 if (is_ucounts_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2122 if (p->real_cred->user != INIT_USER && 2123 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2124 goto bad_fork_cleanup_count; 2125 } 2126 current->flags &= ~PF_NPROC_EXCEEDED; 2127 2128 /* 2129 * If multiple threads are within copy_process(), then this check 2130 * triggers too late. This doesn't hurt, the check is only there 2131 * to stop root fork bombs. 2132 */ 2133 retval = -EAGAIN; 2134 if (data_race(nr_threads >= max_threads)) 2135 goto bad_fork_cleanup_count; 2136 2137 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2138 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2139 p->flags |= PF_FORKNOEXEC; 2140 INIT_LIST_HEAD(&p->children); 2141 INIT_LIST_HEAD(&p->sibling); 2142 rcu_copy_process(p); 2143 p->vfork_done = NULL; 2144 spin_lock_init(&p->alloc_lock); 2145 2146 init_sigpending(&p->pending); 2147 2148 p->utime = p->stime = p->gtime = 0; 2149 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2150 p->utimescaled = p->stimescaled = 0; 2151 #endif 2152 prev_cputime_init(&p->prev_cputime); 2153 2154 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2155 seqcount_init(&p->vtime.seqcount); 2156 p->vtime.starttime = 0; 2157 p->vtime.state = VTIME_INACTIVE; 2158 #endif 2159 2160 #ifdef CONFIG_IO_URING 2161 p->io_uring = NULL; 2162 #endif 2163 2164 #if defined(SPLIT_RSS_COUNTING) 2165 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 2166 #endif 2167 2168 p->default_timer_slack_ns = current->timer_slack_ns; 2169 2170 #ifdef CONFIG_PSI 2171 p->psi_flags = 0; 2172 #endif 2173 2174 task_io_accounting_init(&p->ioac); 2175 acct_clear_integrals(p); 2176 2177 posix_cputimers_init(&p->posix_cputimers); 2178 2179 p->io_context = NULL; 2180 audit_set_context(p, NULL); 2181 cgroup_fork(p); 2182 if (args->kthread) { 2183 if (!set_kthread_struct(p)) 2184 goto bad_fork_cleanup_delayacct; 2185 } 2186 #ifdef CONFIG_NUMA 2187 p->mempolicy = mpol_dup(p->mempolicy); 2188 if (IS_ERR(p->mempolicy)) { 2189 retval = PTR_ERR(p->mempolicy); 2190 p->mempolicy = NULL; 2191 goto bad_fork_cleanup_delayacct; 2192 } 2193 #endif 2194 #ifdef CONFIG_CPUSETS 2195 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2196 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2197 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2198 #endif 2199 #ifdef CONFIG_TRACE_IRQFLAGS 2200 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2201 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2202 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2203 p->softirqs_enabled = 1; 2204 p->softirq_context = 0; 2205 #endif 2206 2207 p->pagefault_disabled = 0; 2208 2209 #ifdef CONFIG_LOCKDEP 2210 lockdep_init_task(p); 2211 #endif 2212 2213 #ifdef CONFIG_DEBUG_MUTEXES 2214 p->blocked_on = NULL; /* not blocked yet */ 2215 #endif 2216 #ifdef CONFIG_BCACHE 2217 p->sequential_io = 0; 2218 p->sequential_io_avg = 0; 2219 #endif 2220 #ifdef CONFIG_BPF_SYSCALL 2221 RCU_INIT_POINTER(p->bpf_storage, NULL); 2222 p->bpf_ctx = NULL; 2223 #endif 2224 2225 /* Perform scheduler related setup. Assign this task to a CPU. */ 2226 retval = sched_fork(clone_flags, p); 2227 if (retval) 2228 goto bad_fork_cleanup_policy; 2229 2230 retval = perf_event_init_task(p, clone_flags); 2231 if (retval) 2232 goto bad_fork_cleanup_policy; 2233 retval = audit_alloc(p); 2234 if (retval) 2235 goto bad_fork_cleanup_perf; 2236 /* copy all the process information */ 2237 shm_init_task(p); 2238 retval = security_task_alloc(p, clone_flags); 2239 if (retval) 2240 goto bad_fork_cleanup_audit; 2241 retval = copy_semundo(clone_flags, p); 2242 if (retval) 2243 goto bad_fork_cleanup_security; 2244 retval = copy_files(clone_flags, p); 2245 if (retval) 2246 goto bad_fork_cleanup_semundo; 2247 retval = copy_fs(clone_flags, p); 2248 if (retval) 2249 goto bad_fork_cleanup_files; 2250 retval = copy_sighand(clone_flags, p); 2251 if (retval) 2252 goto bad_fork_cleanup_fs; 2253 retval = copy_signal(clone_flags, p); 2254 if (retval) 2255 goto bad_fork_cleanup_sighand; 2256 retval = copy_mm(clone_flags, p); 2257 if (retval) 2258 goto bad_fork_cleanup_signal; 2259 retval = copy_namespaces(clone_flags, p); 2260 if (retval) 2261 goto bad_fork_cleanup_mm; 2262 retval = copy_io(clone_flags, p); 2263 if (retval) 2264 goto bad_fork_cleanup_namespaces; 2265 retval = copy_thread(p, args); 2266 if (retval) 2267 goto bad_fork_cleanup_io; 2268 2269 stackleak_task_init(p); 2270 2271 if (pid != &init_struct_pid) { 2272 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2273 args->set_tid_size); 2274 if (IS_ERR(pid)) { 2275 retval = PTR_ERR(pid); 2276 goto bad_fork_cleanup_thread; 2277 } 2278 } 2279 2280 /* 2281 * This has to happen after we've potentially unshared the file 2282 * descriptor table (so that the pidfd doesn't leak into the child 2283 * if the fd table isn't shared). 2284 */ 2285 if (clone_flags & CLONE_PIDFD) { 2286 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2287 if (retval < 0) 2288 goto bad_fork_free_pid; 2289 2290 pidfd = retval; 2291 2292 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2293 O_RDWR | O_CLOEXEC); 2294 if (IS_ERR(pidfile)) { 2295 put_unused_fd(pidfd); 2296 retval = PTR_ERR(pidfile); 2297 goto bad_fork_free_pid; 2298 } 2299 get_pid(pid); /* held by pidfile now */ 2300 2301 retval = put_user(pidfd, args->pidfd); 2302 if (retval) 2303 goto bad_fork_put_pidfd; 2304 } 2305 2306 #ifdef CONFIG_BLOCK 2307 p->plug = NULL; 2308 #endif 2309 futex_init_task(p); 2310 2311 /* 2312 * sigaltstack should be cleared when sharing the same VM 2313 */ 2314 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2315 sas_ss_reset(p); 2316 2317 /* 2318 * Syscall tracing and stepping should be turned off in the 2319 * child regardless of CLONE_PTRACE. 2320 */ 2321 user_disable_single_step(p); 2322 clear_task_syscall_work(p, SYSCALL_TRACE); 2323 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2324 clear_task_syscall_work(p, SYSCALL_EMU); 2325 #endif 2326 clear_tsk_latency_tracing(p); 2327 2328 /* ok, now we should be set up.. */ 2329 p->pid = pid_nr(pid); 2330 if (clone_flags & CLONE_THREAD) { 2331 p->group_leader = current->group_leader; 2332 p->tgid = current->tgid; 2333 } else { 2334 p->group_leader = p; 2335 p->tgid = p->pid; 2336 } 2337 2338 p->nr_dirtied = 0; 2339 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2340 p->dirty_paused_when = 0; 2341 2342 p->pdeath_signal = 0; 2343 INIT_LIST_HEAD(&p->thread_group); 2344 p->task_works = NULL; 2345 clear_posix_cputimers_work(p); 2346 2347 #ifdef CONFIG_KRETPROBES 2348 p->kretprobe_instances.first = NULL; 2349 #endif 2350 #ifdef CONFIG_RETHOOK 2351 p->rethooks.first = NULL; 2352 #endif 2353 2354 /* 2355 * Ensure that the cgroup subsystem policies allow the new process to be 2356 * forked. It should be noted that the new process's css_set can be changed 2357 * between here and cgroup_post_fork() if an organisation operation is in 2358 * progress. 2359 */ 2360 retval = cgroup_can_fork(p, args); 2361 if (retval) 2362 goto bad_fork_put_pidfd; 2363 2364 /* 2365 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2366 * the new task on the correct runqueue. All this *before* the task 2367 * becomes visible. 2368 * 2369 * This isn't part of ->can_fork() because while the re-cloning is 2370 * cgroup specific, it unconditionally needs to place the task on a 2371 * runqueue. 2372 */ 2373 sched_cgroup_fork(p, args); 2374 2375 /* 2376 * From this point on we must avoid any synchronous user-space 2377 * communication until we take the tasklist-lock. In particular, we do 2378 * not want user-space to be able to predict the process start-time by 2379 * stalling fork(2) after we recorded the start_time but before it is 2380 * visible to the system. 2381 */ 2382 2383 p->start_time = ktime_get_ns(); 2384 p->start_boottime = ktime_get_boottime_ns(); 2385 2386 /* 2387 * Make it visible to the rest of the system, but dont wake it up yet. 2388 * Need tasklist lock for parent etc handling! 2389 */ 2390 write_lock_irq(&tasklist_lock); 2391 2392 /* CLONE_PARENT re-uses the old parent */ 2393 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2394 p->real_parent = current->real_parent; 2395 p->parent_exec_id = current->parent_exec_id; 2396 if (clone_flags & CLONE_THREAD) 2397 p->exit_signal = -1; 2398 else 2399 p->exit_signal = current->group_leader->exit_signal; 2400 } else { 2401 p->real_parent = current; 2402 p->parent_exec_id = current->self_exec_id; 2403 p->exit_signal = args->exit_signal; 2404 } 2405 2406 klp_copy_process(p); 2407 2408 sched_core_fork(p); 2409 2410 spin_lock(¤t->sighand->siglock); 2411 2412 /* 2413 * Copy seccomp details explicitly here, in case they were changed 2414 * before holding sighand lock. 2415 */ 2416 copy_seccomp(p); 2417 2418 rv_task_fork(p); 2419 2420 rseq_fork(p, clone_flags); 2421 2422 /* Don't start children in a dying pid namespace */ 2423 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2424 retval = -ENOMEM; 2425 goto bad_fork_cancel_cgroup; 2426 } 2427 2428 /* Let kill terminate clone/fork in the middle */ 2429 if (fatal_signal_pending(current)) { 2430 retval = -EINTR; 2431 goto bad_fork_cancel_cgroup; 2432 } 2433 2434 init_task_pid_links(p); 2435 if (likely(p->pid)) { 2436 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2437 2438 init_task_pid(p, PIDTYPE_PID, pid); 2439 if (thread_group_leader(p)) { 2440 init_task_pid(p, PIDTYPE_TGID, pid); 2441 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2442 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2443 2444 if (is_child_reaper(pid)) { 2445 ns_of_pid(pid)->child_reaper = p; 2446 p->signal->flags |= SIGNAL_UNKILLABLE; 2447 } 2448 p->signal->shared_pending.signal = delayed.signal; 2449 p->signal->tty = tty_kref_get(current->signal->tty); 2450 /* 2451 * Inherit has_child_subreaper flag under the same 2452 * tasklist_lock with adding child to the process tree 2453 * for propagate_has_child_subreaper optimization. 2454 */ 2455 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2456 p->real_parent->signal->is_child_subreaper; 2457 list_add_tail(&p->sibling, &p->real_parent->children); 2458 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2459 attach_pid(p, PIDTYPE_TGID); 2460 attach_pid(p, PIDTYPE_PGID); 2461 attach_pid(p, PIDTYPE_SID); 2462 __this_cpu_inc(process_counts); 2463 } else { 2464 current->signal->nr_threads++; 2465 atomic_inc(¤t->signal->live); 2466 refcount_inc(¤t->signal->sigcnt); 2467 task_join_group_stop(p); 2468 list_add_tail_rcu(&p->thread_group, 2469 &p->group_leader->thread_group); 2470 list_add_tail_rcu(&p->thread_node, 2471 &p->signal->thread_head); 2472 } 2473 attach_pid(p, PIDTYPE_PID); 2474 nr_threads++; 2475 } 2476 total_forks++; 2477 hlist_del_init(&delayed.node); 2478 spin_unlock(¤t->sighand->siglock); 2479 syscall_tracepoint_update(p); 2480 write_unlock_irq(&tasklist_lock); 2481 2482 if (pidfile) 2483 fd_install(pidfd, pidfile); 2484 2485 proc_fork_connector(p); 2486 sched_post_fork(p); 2487 cgroup_post_fork(p, args); 2488 perf_event_fork(p); 2489 2490 trace_task_newtask(p, clone_flags); 2491 uprobe_copy_process(p, clone_flags); 2492 2493 copy_oom_score_adj(clone_flags, p); 2494 2495 return p; 2496 2497 bad_fork_cancel_cgroup: 2498 sched_core_free(p); 2499 spin_unlock(¤t->sighand->siglock); 2500 write_unlock_irq(&tasklist_lock); 2501 cgroup_cancel_fork(p, args); 2502 bad_fork_put_pidfd: 2503 if (clone_flags & CLONE_PIDFD) { 2504 fput(pidfile); 2505 put_unused_fd(pidfd); 2506 } 2507 bad_fork_free_pid: 2508 if (pid != &init_struct_pid) 2509 free_pid(pid); 2510 bad_fork_cleanup_thread: 2511 exit_thread(p); 2512 bad_fork_cleanup_io: 2513 if (p->io_context) 2514 exit_io_context(p); 2515 bad_fork_cleanup_namespaces: 2516 exit_task_namespaces(p); 2517 bad_fork_cleanup_mm: 2518 if (p->mm) { 2519 mm_clear_owner(p->mm, p); 2520 mmput(p->mm); 2521 } 2522 bad_fork_cleanup_signal: 2523 if (!(clone_flags & CLONE_THREAD)) 2524 free_signal_struct(p->signal); 2525 bad_fork_cleanup_sighand: 2526 __cleanup_sighand(p->sighand); 2527 bad_fork_cleanup_fs: 2528 exit_fs(p); /* blocking */ 2529 bad_fork_cleanup_files: 2530 exit_files(p); /* blocking */ 2531 bad_fork_cleanup_semundo: 2532 exit_sem(p); 2533 bad_fork_cleanup_security: 2534 security_task_free(p); 2535 bad_fork_cleanup_audit: 2536 audit_free(p); 2537 bad_fork_cleanup_perf: 2538 perf_event_free_task(p); 2539 bad_fork_cleanup_policy: 2540 lockdep_free_task(p); 2541 #ifdef CONFIG_NUMA 2542 mpol_put(p->mempolicy); 2543 #endif 2544 bad_fork_cleanup_delayacct: 2545 delayacct_tsk_free(p); 2546 bad_fork_cleanup_count: 2547 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2548 exit_creds(p); 2549 bad_fork_free: 2550 WRITE_ONCE(p->__state, TASK_DEAD); 2551 exit_task_stack_account(p); 2552 put_task_stack(p); 2553 delayed_free_task(p); 2554 fork_out: 2555 spin_lock_irq(¤t->sighand->siglock); 2556 hlist_del_init(&delayed.node); 2557 spin_unlock_irq(¤t->sighand->siglock); 2558 return ERR_PTR(retval); 2559 } 2560 2561 static inline void init_idle_pids(struct task_struct *idle) 2562 { 2563 enum pid_type type; 2564 2565 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2566 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2567 init_task_pid(idle, type, &init_struct_pid); 2568 } 2569 } 2570 2571 static int idle_dummy(void *dummy) 2572 { 2573 /* This function is never called */ 2574 return 0; 2575 } 2576 2577 struct task_struct * __init fork_idle(int cpu) 2578 { 2579 struct task_struct *task; 2580 struct kernel_clone_args args = { 2581 .flags = CLONE_VM, 2582 .fn = &idle_dummy, 2583 .fn_arg = NULL, 2584 .kthread = 1, 2585 .idle = 1, 2586 }; 2587 2588 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2589 if (!IS_ERR(task)) { 2590 init_idle_pids(task); 2591 init_idle(task, cpu); 2592 } 2593 2594 return task; 2595 } 2596 2597 struct mm_struct *copy_init_mm(void) 2598 { 2599 return dup_mm(NULL, &init_mm); 2600 } 2601 2602 /* 2603 * This is like kernel_clone(), but shaved down and tailored to just 2604 * creating io_uring workers. It returns a created task, or an error pointer. 2605 * The returned task is inactive, and the caller must fire it up through 2606 * wake_up_new_task(p). All signals are blocked in the created task. 2607 */ 2608 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2609 { 2610 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2611 CLONE_IO; 2612 struct kernel_clone_args args = { 2613 .flags = ((lower_32_bits(flags) | CLONE_VM | 2614 CLONE_UNTRACED) & ~CSIGNAL), 2615 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2616 .fn = fn, 2617 .fn_arg = arg, 2618 .io_thread = 1, 2619 }; 2620 2621 return copy_process(NULL, 0, node, &args); 2622 } 2623 2624 /* 2625 * Ok, this is the main fork-routine. 2626 * 2627 * It copies the process, and if successful kick-starts 2628 * it and waits for it to finish using the VM if required. 2629 * 2630 * args->exit_signal is expected to be checked for sanity by the caller. 2631 */ 2632 pid_t kernel_clone(struct kernel_clone_args *args) 2633 { 2634 u64 clone_flags = args->flags; 2635 struct completion vfork; 2636 struct pid *pid; 2637 struct task_struct *p; 2638 int trace = 0; 2639 pid_t nr; 2640 2641 /* 2642 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2643 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2644 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2645 * field in struct clone_args and it still doesn't make sense to have 2646 * them both point at the same memory location. Performing this check 2647 * here has the advantage that we don't need to have a separate helper 2648 * to check for legacy clone(). 2649 */ 2650 if ((args->flags & CLONE_PIDFD) && 2651 (args->flags & CLONE_PARENT_SETTID) && 2652 (args->pidfd == args->parent_tid)) 2653 return -EINVAL; 2654 2655 /* 2656 * Determine whether and which event to report to ptracer. When 2657 * called from kernel_thread or CLONE_UNTRACED is explicitly 2658 * requested, no event is reported; otherwise, report if the event 2659 * for the type of forking is enabled. 2660 */ 2661 if (!(clone_flags & CLONE_UNTRACED)) { 2662 if (clone_flags & CLONE_VFORK) 2663 trace = PTRACE_EVENT_VFORK; 2664 else if (args->exit_signal != SIGCHLD) 2665 trace = PTRACE_EVENT_CLONE; 2666 else 2667 trace = PTRACE_EVENT_FORK; 2668 2669 if (likely(!ptrace_event_enabled(current, trace))) 2670 trace = 0; 2671 } 2672 2673 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2674 add_latent_entropy(); 2675 2676 if (IS_ERR(p)) 2677 return PTR_ERR(p); 2678 2679 /* 2680 * Do this prior waking up the new thread - the thread pointer 2681 * might get invalid after that point, if the thread exits quickly. 2682 */ 2683 trace_sched_process_fork(current, p); 2684 2685 pid = get_task_pid(p, PIDTYPE_PID); 2686 nr = pid_vnr(pid); 2687 2688 if (clone_flags & CLONE_PARENT_SETTID) 2689 put_user(nr, args->parent_tid); 2690 2691 if (clone_flags & CLONE_VFORK) { 2692 p->vfork_done = &vfork; 2693 init_completion(&vfork); 2694 get_task_struct(p); 2695 } 2696 2697 wake_up_new_task(p); 2698 2699 /* forking complete and child started to run, tell ptracer */ 2700 if (unlikely(trace)) 2701 ptrace_event_pid(trace, pid); 2702 2703 if (clone_flags & CLONE_VFORK) { 2704 if (!wait_for_vfork_done(p, &vfork)) 2705 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2706 } 2707 2708 put_pid(pid); 2709 return nr; 2710 } 2711 2712 /* 2713 * Create a kernel thread. 2714 */ 2715 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 2716 { 2717 struct kernel_clone_args args = { 2718 .flags = ((lower_32_bits(flags) | CLONE_VM | 2719 CLONE_UNTRACED) & ~CSIGNAL), 2720 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2721 .fn = fn, 2722 .fn_arg = arg, 2723 .kthread = 1, 2724 }; 2725 2726 return kernel_clone(&args); 2727 } 2728 2729 /* 2730 * Create a user mode thread. 2731 */ 2732 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) 2733 { 2734 struct kernel_clone_args args = { 2735 .flags = ((lower_32_bits(flags) | CLONE_VM | 2736 CLONE_UNTRACED) & ~CSIGNAL), 2737 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2738 .fn = fn, 2739 .fn_arg = arg, 2740 }; 2741 2742 return kernel_clone(&args); 2743 } 2744 2745 #ifdef __ARCH_WANT_SYS_FORK 2746 SYSCALL_DEFINE0(fork) 2747 { 2748 #ifdef CONFIG_MMU 2749 struct kernel_clone_args args = { 2750 .exit_signal = SIGCHLD, 2751 }; 2752 2753 return kernel_clone(&args); 2754 #else 2755 /* can not support in nommu mode */ 2756 return -EINVAL; 2757 #endif 2758 } 2759 #endif 2760 2761 #ifdef __ARCH_WANT_SYS_VFORK 2762 SYSCALL_DEFINE0(vfork) 2763 { 2764 struct kernel_clone_args args = { 2765 .flags = CLONE_VFORK | CLONE_VM, 2766 .exit_signal = SIGCHLD, 2767 }; 2768 2769 return kernel_clone(&args); 2770 } 2771 #endif 2772 2773 #ifdef __ARCH_WANT_SYS_CLONE 2774 #ifdef CONFIG_CLONE_BACKWARDS 2775 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2776 int __user *, parent_tidptr, 2777 unsigned long, tls, 2778 int __user *, child_tidptr) 2779 #elif defined(CONFIG_CLONE_BACKWARDS2) 2780 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2781 int __user *, parent_tidptr, 2782 int __user *, child_tidptr, 2783 unsigned long, tls) 2784 #elif defined(CONFIG_CLONE_BACKWARDS3) 2785 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2786 int, stack_size, 2787 int __user *, parent_tidptr, 2788 int __user *, child_tidptr, 2789 unsigned long, tls) 2790 #else 2791 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2792 int __user *, parent_tidptr, 2793 int __user *, child_tidptr, 2794 unsigned long, tls) 2795 #endif 2796 { 2797 struct kernel_clone_args args = { 2798 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2799 .pidfd = parent_tidptr, 2800 .child_tid = child_tidptr, 2801 .parent_tid = parent_tidptr, 2802 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2803 .stack = newsp, 2804 .tls = tls, 2805 }; 2806 2807 return kernel_clone(&args); 2808 } 2809 #endif 2810 2811 #ifdef __ARCH_WANT_SYS_CLONE3 2812 2813 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2814 struct clone_args __user *uargs, 2815 size_t usize) 2816 { 2817 int err; 2818 struct clone_args args; 2819 pid_t *kset_tid = kargs->set_tid; 2820 2821 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2822 CLONE_ARGS_SIZE_VER0); 2823 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2824 CLONE_ARGS_SIZE_VER1); 2825 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2826 CLONE_ARGS_SIZE_VER2); 2827 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2828 2829 if (unlikely(usize > PAGE_SIZE)) 2830 return -E2BIG; 2831 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2832 return -EINVAL; 2833 2834 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2835 if (err) 2836 return err; 2837 2838 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2839 return -EINVAL; 2840 2841 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2842 return -EINVAL; 2843 2844 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2845 return -EINVAL; 2846 2847 /* 2848 * Verify that higher 32bits of exit_signal are unset and that 2849 * it is a valid signal 2850 */ 2851 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2852 !valid_signal(args.exit_signal))) 2853 return -EINVAL; 2854 2855 if ((args.flags & CLONE_INTO_CGROUP) && 2856 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2857 return -EINVAL; 2858 2859 *kargs = (struct kernel_clone_args){ 2860 .flags = args.flags, 2861 .pidfd = u64_to_user_ptr(args.pidfd), 2862 .child_tid = u64_to_user_ptr(args.child_tid), 2863 .parent_tid = u64_to_user_ptr(args.parent_tid), 2864 .exit_signal = args.exit_signal, 2865 .stack = args.stack, 2866 .stack_size = args.stack_size, 2867 .tls = args.tls, 2868 .set_tid_size = args.set_tid_size, 2869 .cgroup = args.cgroup, 2870 }; 2871 2872 if (args.set_tid && 2873 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2874 (kargs->set_tid_size * sizeof(pid_t)))) 2875 return -EFAULT; 2876 2877 kargs->set_tid = kset_tid; 2878 2879 return 0; 2880 } 2881 2882 /** 2883 * clone3_stack_valid - check and prepare stack 2884 * @kargs: kernel clone args 2885 * 2886 * Verify that the stack arguments userspace gave us are sane. 2887 * In addition, set the stack direction for userspace since it's easy for us to 2888 * determine. 2889 */ 2890 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 2891 { 2892 if (kargs->stack == 0) { 2893 if (kargs->stack_size > 0) 2894 return false; 2895 } else { 2896 if (kargs->stack_size == 0) 2897 return false; 2898 2899 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 2900 return false; 2901 2902 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64) 2903 kargs->stack += kargs->stack_size; 2904 #endif 2905 } 2906 2907 return true; 2908 } 2909 2910 static bool clone3_args_valid(struct kernel_clone_args *kargs) 2911 { 2912 /* Verify that no unknown flags are passed along. */ 2913 if (kargs->flags & 2914 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 2915 return false; 2916 2917 /* 2918 * - make the CLONE_DETACHED bit reusable for clone3 2919 * - make the CSIGNAL bits reusable for clone3 2920 */ 2921 if (kargs->flags & (CLONE_DETACHED | CSIGNAL)) 2922 return false; 2923 2924 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 2925 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 2926 return false; 2927 2928 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 2929 kargs->exit_signal) 2930 return false; 2931 2932 if (!clone3_stack_valid(kargs)) 2933 return false; 2934 2935 return true; 2936 } 2937 2938 /** 2939 * clone3 - create a new process with specific properties 2940 * @uargs: argument structure 2941 * @size: size of @uargs 2942 * 2943 * clone3() is the extensible successor to clone()/clone2(). 2944 * It takes a struct as argument that is versioned by its size. 2945 * 2946 * Return: On success, a positive PID for the child process. 2947 * On error, a negative errno number. 2948 */ 2949 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 2950 { 2951 int err; 2952 2953 struct kernel_clone_args kargs; 2954 pid_t set_tid[MAX_PID_NS_LEVEL]; 2955 2956 kargs.set_tid = set_tid; 2957 2958 err = copy_clone_args_from_user(&kargs, uargs, size); 2959 if (err) 2960 return err; 2961 2962 if (!clone3_args_valid(&kargs)) 2963 return -EINVAL; 2964 2965 return kernel_clone(&kargs); 2966 } 2967 #endif 2968 2969 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2970 { 2971 struct task_struct *leader, *parent, *child; 2972 int res; 2973 2974 read_lock(&tasklist_lock); 2975 leader = top = top->group_leader; 2976 down: 2977 for_each_thread(leader, parent) { 2978 list_for_each_entry(child, &parent->children, sibling) { 2979 res = visitor(child, data); 2980 if (res) { 2981 if (res < 0) 2982 goto out; 2983 leader = child; 2984 goto down; 2985 } 2986 up: 2987 ; 2988 } 2989 } 2990 2991 if (leader != top) { 2992 child = leader; 2993 parent = child->real_parent; 2994 leader = parent->group_leader; 2995 goto up; 2996 } 2997 out: 2998 read_unlock(&tasklist_lock); 2999 } 3000 3001 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 3002 #define ARCH_MIN_MMSTRUCT_ALIGN 0 3003 #endif 3004 3005 static void sighand_ctor(void *data) 3006 { 3007 struct sighand_struct *sighand = data; 3008 3009 spin_lock_init(&sighand->siglock); 3010 init_waitqueue_head(&sighand->signalfd_wqh); 3011 } 3012 3013 void __init proc_caches_init(void) 3014 { 3015 unsigned int mm_size; 3016 3017 sighand_cachep = kmem_cache_create("sighand_cache", 3018 sizeof(struct sighand_struct), 0, 3019 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 3020 SLAB_ACCOUNT, sighand_ctor); 3021 signal_cachep = kmem_cache_create("signal_cache", 3022 sizeof(struct signal_struct), 0, 3023 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3024 NULL); 3025 files_cachep = kmem_cache_create("files_cache", 3026 sizeof(struct files_struct), 0, 3027 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3028 NULL); 3029 fs_cachep = kmem_cache_create("fs_cache", 3030 sizeof(struct fs_struct), 0, 3031 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3032 NULL); 3033 3034 /* 3035 * The mm_cpumask is located at the end of mm_struct, and is 3036 * dynamically sized based on the maximum CPU number this system 3037 * can have, taking hotplug into account (nr_cpu_ids). 3038 */ 3039 mm_size = sizeof(struct mm_struct) + cpumask_size(); 3040 3041 mm_cachep = kmem_cache_create_usercopy("mm_struct", 3042 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 3043 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3044 offsetof(struct mm_struct, saved_auxv), 3045 sizeof_field(struct mm_struct, saved_auxv), 3046 NULL); 3047 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 3048 mmap_init(); 3049 nsproxy_cache_init(); 3050 } 3051 3052 /* 3053 * Check constraints on flags passed to the unshare system call. 3054 */ 3055 static int check_unshare_flags(unsigned long unshare_flags) 3056 { 3057 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 3058 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 3059 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 3060 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 3061 CLONE_NEWTIME)) 3062 return -EINVAL; 3063 /* 3064 * Not implemented, but pretend it works if there is nothing 3065 * to unshare. Note that unsharing the address space or the 3066 * signal handlers also need to unshare the signal queues (aka 3067 * CLONE_THREAD). 3068 */ 3069 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3070 if (!thread_group_empty(current)) 3071 return -EINVAL; 3072 } 3073 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3074 if (refcount_read(¤t->sighand->count) > 1) 3075 return -EINVAL; 3076 } 3077 if (unshare_flags & CLONE_VM) { 3078 if (!current_is_single_threaded()) 3079 return -EINVAL; 3080 } 3081 3082 return 0; 3083 } 3084 3085 /* 3086 * Unshare the filesystem structure if it is being shared 3087 */ 3088 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3089 { 3090 struct fs_struct *fs = current->fs; 3091 3092 if (!(unshare_flags & CLONE_FS) || !fs) 3093 return 0; 3094 3095 /* don't need lock here; in the worst case we'll do useless copy */ 3096 if (fs->users == 1) 3097 return 0; 3098 3099 *new_fsp = copy_fs_struct(fs); 3100 if (!*new_fsp) 3101 return -ENOMEM; 3102 3103 return 0; 3104 } 3105 3106 /* 3107 * Unshare file descriptor table if it is being shared 3108 */ 3109 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 3110 struct files_struct **new_fdp) 3111 { 3112 struct files_struct *fd = current->files; 3113 int error = 0; 3114 3115 if ((unshare_flags & CLONE_FILES) && 3116 (fd && atomic_read(&fd->count) > 1)) { 3117 *new_fdp = dup_fd(fd, max_fds, &error); 3118 if (!*new_fdp) 3119 return error; 3120 } 3121 3122 return 0; 3123 } 3124 3125 /* 3126 * unshare allows a process to 'unshare' part of the process 3127 * context which was originally shared using clone. copy_* 3128 * functions used by kernel_clone() cannot be used here directly 3129 * because they modify an inactive task_struct that is being 3130 * constructed. Here we are modifying the current, active, 3131 * task_struct. 3132 */ 3133 int ksys_unshare(unsigned long unshare_flags) 3134 { 3135 struct fs_struct *fs, *new_fs = NULL; 3136 struct files_struct *new_fd = NULL; 3137 struct cred *new_cred = NULL; 3138 struct nsproxy *new_nsproxy = NULL; 3139 int do_sysvsem = 0; 3140 int err; 3141 3142 /* 3143 * If unsharing a user namespace must also unshare the thread group 3144 * and unshare the filesystem root and working directories. 3145 */ 3146 if (unshare_flags & CLONE_NEWUSER) 3147 unshare_flags |= CLONE_THREAD | CLONE_FS; 3148 /* 3149 * If unsharing vm, must also unshare signal handlers. 3150 */ 3151 if (unshare_flags & CLONE_VM) 3152 unshare_flags |= CLONE_SIGHAND; 3153 /* 3154 * If unsharing a signal handlers, must also unshare the signal queues. 3155 */ 3156 if (unshare_flags & CLONE_SIGHAND) 3157 unshare_flags |= CLONE_THREAD; 3158 /* 3159 * If unsharing namespace, must also unshare filesystem information. 3160 */ 3161 if (unshare_flags & CLONE_NEWNS) 3162 unshare_flags |= CLONE_FS; 3163 3164 err = check_unshare_flags(unshare_flags); 3165 if (err) 3166 goto bad_unshare_out; 3167 /* 3168 * CLONE_NEWIPC must also detach from the undolist: after switching 3169 * to a new ipc namespace, the semaphore arrays from the old 3170 * namespace are unreachable. 3171 */ 3172 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3173 do_sysvsem = 1; 3174 err = unshare_fs(unshare_flags, &new_fs); 3175 if (err) 3176 goto bad_unshare_out; 3177 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 3178 if (err) 3179 goto bad_unshare_cleanup_fs; 3180 err = unshare_userns(unshare_flags, &new_cred); 3181 if (err) 3182 goto bad_unshare_cleanup_fd; 3183 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3184 new_cred, new_fs); 3185 if (err) 3186 goto bad_unshare_cleanup_cred; 3187 3188 if (new_cred) { 3189 err = set_cred_ucounts(new_cred); 3190 if (err) 3191 goto bad_unshare_cleanup_cred; 3192 } 3193 3194 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3195 if (do_sysvsem) { 3196 /* 3197 * CLONE_SYSVSEM is equivalent to sys_exit(). 3198 */ 3199 exit_sem(current); 3200 } 3201 if (unshare_flags & CLONE_NEWIPC) { 3202 /* Orphan segments in old ns (see sem above). */ 3203 exit_shm(current); 3204 shm_init_task(current); 3205 } 3206 3207 if (new_nsproxy) 3208 switch_task_namespaces(current, new_nsproxy); 3209 3210 task_lock(current); 3211 3212 if (new_fs) { 3213 fs = current->fs; 3214 spin_lock(&fs->lock); 3215 current->fs = new_fs; 3216 if (--fs->users) 3217 new_fs = NULL; 3218 else 3219 new_fs = fs; 3220 spin_unlock(&fs->lock); 3221 } 3222 3223 if (new_fd) 3224 swap(current->files, new_fd); 3225 3226 task_unlock(current); 3227 3228 if (new_cred) { 3229 /* Install the new user namespace */ 3230 commit_creds(new_cred); 3231 new_cred = NULL; 3232 } 3233 } 3234 3235 perf_event_namespaces(current); 3236 3237 bad_unshare_cleanup_cred: 3238 if (new_cred) 3239 put_cred(new_cred); 3240 bad_unshare_cleanup_fd: 3241 if (new_fd) 3242 put_files_struct(new_fd); 3243 3244 bad_unshare_cleanup_fs: 3245 if (new_fs) 3246 free_fs_struct(new_fs); 3247 3248 bad_unshare_out: 3249 return err; 3250 } 3251 3252 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3253 { 3254 return ksys_unshare(unshare_flags); 3255 } 3256 3257 /* 3258 * Helper to unshare the files of the current task. 3259 * We don't want to expose copy_files internals to 3260 * the exec layer of the kernel. 3261 */ 3262 3263 int unshare_files(void) 3264 { 3265 struct task_struct *task = current; 3266 struct files_struct *old, *copy = NULL; 3267 int error; 3268 3269 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3270 if (error || !copy) 3271 return error; 3272 3273 old = task->files; 3274 task_lock(task); 3275 task->files = copy; 3276 task_unlock(task); 3277 put_files_struct(old); 3278 return 0; 3279 } 3280 3281 int sysctl_max_threads(struct ctl_table *table, int write, 3282 void *buffer, size_t *lenp, loff_t *ppos) 3283 { 3284 struct ctl_table t; 3285 int ret; 3286 int threads = max_threads; 3287 int min = 1; 3288 int max = MAX_THREADS; 3289 3290 t = *table; 3291 t.data = &threads; 3292 t.extra1 = &min; 3293 t.extra2 = &max; 3294 3295 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3296 if (ret || !write) 3297 return ret; 3298 3299 max_threads = threads; 3300 3301 return 0; 3302 } 3303