1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/binfmts.h> 41 #include <linux/mman.h> 42 #include <linux/mmu_notifier.h> 43 #include <linux/fs.h> 44 #include <linux/mm.h> 45 #include <linux/mm_inline.h> 46 #include <linux/vmacache.h> 47 #include <linux/nsproxy.h> 48 #include <linux/capability.h> 49 #include <linux/cpu.h> 50 #include <linux/cgroup.h> 51 #include <linux/security.h> 52 #include <linux/hugetlb.h> 53 #include <linux/seccomp.h> 54 #include <linux/swap.h> 55 #include <linux/syscalls.h> 56 #include <linux/jiffies.h> 57 #include <linux/futex.h> 58 #include <linux/compat.h> 59 #include <linux/kthread.h> 60 #include <linux/task_io_accounting_ops.h> 61 #include <linux/rcupdate.h> 62 #include <linux/ptrace.h> 63 #include <linux/mount.h> 64 #include <linux/audit.h> 65 #include <linux/memcontrol.h> 66 #include <linux/ftrace.h> 67 #include <linux/proc_fs.h> 68 #include <linux/profile.h> 69 #include <linux/rmap.h> 70 #include <linux/ksm.h> 71 #include <linux/acct.h> 72 #include <linux/userfaultfd_k.h> 73 #include <linux/tsacct_kern.h> 74 #include <linux/cn_proc.h> 75 #include <linux/freezer.h> 76 #include <linux/delayacct.h> 77 #include <linux/taskstats_kern.h> 78 #include <linux/random.h> 79 #include <linux/tty.h> 80 #include <linux/fs_struct.h> 81 #include <linux/magic.h> 82 #include <linux/perf_event.h> 83 #include <linux/posix-timers.h> 84 #include <linux/user-return-notifier.h> 85 #include <linux/oom.h> 86 #include <linux/khugepaged.h> 87 #include <linux/signalfd.h> 88 #include <linux/uprobes.h> 89 #include <linux/aio.h> 90 #include <linux/compiler.h> 91 #include <linux/sysctl.h> 92 #include <linux/kcov.h> 93 #include <linux/livepatch.h> 94 #include <linux/thread_info.h> 95 #include <linux/stackleak.h> 96 #include <linux/kasan.h> 97 #include <linux/scs.h> 98 #include <linux/io_uring.h> 99 #include <linux/bpf.h> 100 #include <linux/sched/mm.h> 101 102 #include <asm/pgalloc.h> 103 #include <linux/uaccess.h> 104 #include <asm/mmu_context.h> 105 #include <asm/cacheflush.h> 106 #include <asm/tlbflush.h> 107 108 #include <trace/events/sched.h> 109 110 #define CREATE_TRACE_POINTS 111 #include <trace/events/task.h> 112 113 /* 114 * Minimum number of threads to boot the kernel 115 */ 116 #define MIN_THREADS 20 117 118 /* 119 * Maximum number of threads 120 */ 121 #define MAX_THREADS FUTEX_TID_MASK 122 123 /* 124 * Protected counters by write_lock_irq(&tasklist_lock) 125 */ 126 unsigned long total_forks; /* Handle normal Linux uptimes. */ 127 int nr_threads; /* The idle threads do not count.. */ 128 129 static int max_threads; /* tunable limit on nr_threads */ 130 131 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 132 133 static const char * const resident_page_types[] = { 134 NAMED_ARRAY_INDEX(MM_FILEPAGES), 135 NAMED_ARRAY_INDEX(MM_ANONPAGES), 136 NAMED_ARRAY_INDEX(MM_SWAPENTS), 137 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 138 }; 139 140 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 141 142 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 143 144 #ifdef CONFIG_PROVE_RCU 145 int lockdep_tasklist_lock_is_held(void) 146 { 147 return lockdep_is_held(&tasklist_lock); 148 } 149 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 150 #endif /* #ifdef CONFIG_PROVE_RCU */ 151 152 int nr_processes(void) 153 { 154 int cpu; 155 int total = 0; 156 157 for_each_possible_cpu(cpu) 158 total += per_cpu(process_counts, cpu); 159 160 return total; 161 } 162 163 void __weak arch_release_task_struct(struct task_struct *tsk) 164 { 165 } 166 167 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 168 static struct kmem_cache *task_struct_cachep; 169 170 static inline struct task_struct *alloc_task_struct_node(int node) 171 { 172 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 173 } 174 175 static inline void free_task_struct(struct task_struct *tsk) 176 { 177 kmem_cache_free(task_struct_cachep, tsk); 178 } 179 #endif 180 181 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 182 183 /* 184 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 185 * kmemcache based allocator. 186 */ 187 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 188 189 # ifdef CONFIG_VMAP_STACK 190 /* 191 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 192 * flush. Try to minimize the number of calls by caching stacks. 193 */ 194 #define NR_CACHED_STACKS 2 195 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 196 197 struct vm_stack { 198 struct rcu_head rcu; 199 struct vm_struct *stack_vm_area; 200 }; 201 202 static bool try_release_thread_stack_to_cache(struct vm_struct *vm) 203 { 204 unsigned int i; 205 206 for (i = 0; i < NR_CACHED_STACKS; i++) { 207 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL) 208 continue; 209 return true; 210 } 211 return false; 212 } 213 214 static void thread_stack_free_rcu(struct rcu_head *rh) 215 { 216 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 217 218 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 219 return; 220 221 vfree(vm_stack); 222 } 223 224 static void thread_stack_delayed_free(struct task_struct *tsk) 225 { 226 struct vm_stack *vm_stack = tsk->stack; 227 228 vm_stack->stack_vm_area = tsk->stack_vm_area; 229 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 230 } 231 232 static int free_vm_stack_cache(unsigned int cpu) 233 { 234 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 235 int i; 236 237 for (i = 0; i < NR_CACHED_STACKS; i++) { 238 struct vm_struct *vm_stack = cached_vm_stacks[i]; 239 240 if (!vm_stack) 241 continue; 242 243 vfree(vm_stack->addr); 244 cached_vm_stacks[i] = NULL; 245 } 246 247 return 0; 248 } 249 250 static int memcg_charge_kernel_stack(struct vm_struct *vm) 251 { 252 int i; 253 int ret; 254 255 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 256 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 257 258 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 259 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0); 260 if (ret) 261 goto err; 262 } 263 return 0; 264 err: 265 /* 266 * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is 267 * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will 268 * ignore this page. 269 */ 270 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 271 memcg_kmem_uncharge_page(vm->pages[i], 0); 272 return ret; 273 } 274 275 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 276 { 277 struct vm_struct *vm; 278 void *stack; 279 int i; 280 281 for (i = 0; i < NR_CACHED_STACKS; i++) { 282 struct vm_struct *s; 283 284 s = this_cpu_xchg(cached_stacks[i], NULL); 285 286 if (!s) 287 continue; 288 289 /* Mark stack accessible for KASAN. */ 290 kasan_unpoison_range(s->addr, THREAD_SIZE); 291 292 /* Clear stale pointers from reused stack. */ 293 memset(s->addr, 0, THREAD_SIZE); 294 295 if (memcg_charge_kernel_stack(s)) { 296 vfree(s->addr); 297 return -ENOMEM; 298 } 299 300 tsk->stack_vm_area = s; 301 tsk->stack = s->addr; 302 return 0; 303 } 304 305 /* 306 * Allocated stacks are cached and later reused by new threads, 307 * so memcg accounting is performed manually on assigning/releasing 308 * stacks to tasks. Drop __GFP_ACCOUNT. 309 */ 310 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 311 VMALLOC_START, VMALLOC_END, 312 THREADINFO_GFP & ~__GFP_ACCOUNT, 313 PAGE_KERNEL, 314 0, node, __builtin_return_address(0)); 315 if (!stack) 316 return -ENOMEM; 317 318 vm = find_vm_area(stack); 319 if (memcg_charge_kernel_stack(vm)) { 320 vfree(stack); 321 return -ENOMEM; 322 } 323 /* 324 * We can't call find_vm_area() in interrupt context, and 325 * free_thread_stack() can be called in interrupt context, 326 * so cache the vm_struct. 327 */ 328 tsk->stack_vm_area = vm; 329 tsk->stack = stack; 330 return 0; 331 } 332 333 static void free_thread_stack(struct task_struct *tsk) 334 { 335 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 336 thread_stack_delayed_free(tsk); 337 338 tsk->stack = NULL; 339 tsk->stack_vm_area = NULL; 340 } 341 342 # else /* !CONFIG_VMAP_STACK */ 343 344 static void thread_stack_free_rcu(struct rcu_head *rh) 345 { 346 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 347 } 348 349 static void thread_stack_delayed_free(struct task_struct *tsk) 350 { 351 struct rcu_head *rh = tsk->stack; 352 353 call_rcu(rh, thread_stack_free_rcu); 354 } 355 356 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 357 { 358 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 359 THREAD_SIZE_ORDER); 360 361 if (likely(page)) { 362 tsk->stack = kasan_reset_tag(page_address(page)); 363 return 0; 364 } 365 return -ENOMEM; 366 } 367 368 static void free_thread_stack(struct task_struct *tsk) 369 { 370 thread_stack_delayed_free(tsk); 371 tsk->stack = NULL; 372 } 373 374 # endif /* CONFIG_VMAP_STACK */ 375 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */ 376 377 static struct kmem_cache *thread_stack_cache; 378 379 static void thread_stack_free_rcu(struct rcu_head *rh) 380 { 381 kmem_cache_free(thread_stack_cache, rh); 382 } 383 384 static void thread_stack_delayed_free(struct task_struct *tsk) 385 { 386 struct rcu_head *rh = tsk->stack; 387 388 call_rcu(rh, thread_stack_free_rcu); 389 } 390 391 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 392 { 393 unsigned long *stack; 394 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 395 stack = kasan_reset_tag(stack); 396 tsk->stack = stack; 397 return stack ? 0 : -ENOMEM; 398 } 399 400 static void free_thread_stack(struct task_struct *tsk) 401 { 402 thread_stack_delayed_free(tsk); 403 tsk->stack = NULL; 404 } 405 406 void thread_stack_cache_init(void) 407 { 408 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 409 THREAD_SIZE, THREAD_SIZE, 0, 0, 410 THREAD_SIZE, NULL); 411 BUG_ON(thread_stack_cache == NULL); 412 } 413 414 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */ 415 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ 416 417 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 418 { 419 unsigned long *stack; 420 421 stack = arch_alloc_thread_stack_node(tsk, node); 422 tsk->stack = stack; 423 return stack ? 0 : -ENOMEM; 424 } 425 426 static void free_thread_stack(struct task_struct *tsk) 427 { 428 arch_free_thread_stack(tsk); 429 tsk->stack = NULL; 430 } 431 432 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ 433 434 /* SLAB cache for signal_struct structures (tsk->signal) */ 435 static struct kmem_cache *signal_cachep; 436 437 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 438 struct kmem_cache *sighand_cachep; 439 440 /* SLAB cache for files_struct structures (tsk->files) */ 441 struct kmem_cache *files_cachep; 442 443 /* SLAB cache for fs_struct structures (tsk->fs) */ 444 struct kmem_cache *fs_cachep; 445 446 /* SLAB cache for vm_area_struct structures */ 447 static struct kmem_cache *vm_area_cachep; 448 449 /* SLAB cache for mm_struct structures (tsk->mm) */ 450 static struct kmem_cache *mm_cachep; 451 452 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 453 { 454 struct vm_area_struct *vma; 455 456 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 457 if (vma) 458 vma_init(vma, mm); 459 return vma; 460 } 461 462 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 463 { 464 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 465 466 if (new) { 467 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 468 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 469 /* 470 * orig->shared.rb may be modified concurrently, but the clone 471 * will be reinitialized. 472 */ 473 *new = data_race(*orig); 474 INIT_LIST_HEAD(&new->anon_vma_chain); 475 new->vm_next = new->vm_prev = NULL; 476 dup_anon_vma_name(orig, new); 477 } 478 return new; 479 } 480 481 void vm_area_free(struct vm_area_struct *vma) 482 { 483 free_anon_vma_name(vma); 484 kmem_cache_free(vm_area_cachep, vma); 485 } 486 487 static void account_kernel_stack(struct task_struct *tsk, int account) 488 { 489 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 490 struct vm_struct *vm = task_stack_vm_area(tsk); 491 int i; 492 493 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 494 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 495 account * (PAGE_SIZE / 1024)); 496 } else { 497 void *stack = task_stack_page(tsk); 498 499 /* All stack pages are in the same node. */ 500 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 501 account * (THREAD_SIZE / 1024)); 502 } 503 } 504 505 void exit_task_stack_account(struct task_struct *tsk) 506 { 507 account_kernel_stack(tsk, -1); 508 509 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 510 struct vm_struct *vm; 511 int i; 512 513 vm = task_stack_vm_area(tsk); 514 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 515 memcg_kmem_uncharge_page(vm->pages[i], 0); 516 } 517 } 518 519 static void release_task_stack(struct task_struct *tsk) 520 { 521 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 522 return; /* Better to leak the stack than to free prematurely */ 523 524 free_thread_stack(tsk); 525 } 526 527 #ifdef CONFIG_THREAD_INFO_IN_TASK 528 void put_task_stack(struct task_struct *tsk) 529 { 530 if (refcount_dec_and_test(&tsk->stack_refcount)) 531 release_task_stack(tsk); 532 } 533 #endif 534 535 void free_task(struct task_struct *tsk) 536 { 537 release_user_cpus_ptr(tsk); 538 scs_release(tsk); 539 540 #ifndef CONFIG_THREAD_INFO_IN_TASK 541 /* 542 * The task is finally done with both the stack and thread_info, 543 * so free both. 544 */ 545 release_task_stack(tsk); 546 #else 547 /* 548 * If the task had a separate stack allocation, it should be gone 549 * by now. 550 */ 551 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 552 #endif 553 rt_mutex_debug_task_free(tsk); 554 ftrace_graph_exit_task(tsk); 555 arch_release_task_struct(tsk); 556 if (tsk->flags & PF_KTHREAD) 557 free_kthread_struct(tsk); 558 free_task_struct(tsk); 559 } 560 EXPORT_SYMBOL(free_task); 561 562 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 563 { 564 struct file *exe_file; 565 566 exe_file = get_mm_exe_file(oldmm); 567 RCU_INIT_POINTER(mm->exe_file, exe_file); 568 /* 569 * We depend on the oldmm having properly denied write access to the 570 * exe_file already. 571 */ 572 if (exe_file && deny_write_access(exe_file)) 573 pr_warn_once("deny_write_access() failed in %s\n", __func__); 574 } 575 576 #ifdef CONFIG_MMU 577 static __latent_entropy int dup_mmap(struct mm_struct *mm, 578 struct mm_struct *oldmm) 579 { 580 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 581 struct rb_node **rb_link, *rb_parent; 582 int retval; 583 unsigned long charge; 584 LIST_HEAD(uf); 585 586 uprobe_start_dup_mmap(); 587 if (mmap_write_lock_killable(oldmm)) { 588 retval = -EINTR; 589 goto fail_uprobe_end; 590 } 591 flush_cache_dup_mm(oldmm); 592 uprobe_dup_mmap(oldmm, mm); 593 /* 594 * Not linked in yet - no deadlock potential: 595 */ 596 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 597 598 /* No ordering required: file already has been exposed. */ 599 dup_mm_exe_file(mm, oldmm); 600 601 mm->total_vm = oldmm->total_vm; 602 mm->data_vm = oldmm->data_vm; 603 mm->exec_vm = oldmm->exec_vm; 604 mm->stack_vm = oldmm->stack_vm; 605 606 rb_link = &mm->mm_rb.rb_node; 607 rb_parent = NULL; 608 pprev = &mm->mmap; 609 retval = ksm_fork(mm, oldmm); 610 if (retval) 611 goto out; 612 retval = khugepaged_fork(mm, oldmm); 613 if (retval) 614 goto out; 615 616 prev = NULL; 617 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 618 struct file *file; 619 620 if (mpnt->vm_flags & VM_DONTCOPY) { 621 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 622 continue; 623 } 624 charge = 0; 625 /* 626 * Don't duplicate many vmas if we've been oom-killed (for 627 * example) 628 */ 629 if (fatal_signal_pending(current)) { 630 retval = -EINTR; 631 goto out; 632 } 633 if (mpnt->vm_flags & VM_ACCOUNT) { 634 unsigned long len = vma_pages(mpnt); 635 636 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 637 goto fail_nomem; 638 charge = len; 639 } 640 tmp = vm_area_dup(mpnt); 641 if (!tmp) 642 goto fail_nomem; 643 retval = vma_dup_policy(mpnt, tmp); 644 if (retval) 645 goto fail_nomem_policy; 646 tmp->vm_mm = mm; 647 retval = dup_userfaultfd(tmp, &uf); 648 if (retval) 649 goto fail_nomem_anon_vma_fork; 650 if (tmp->vm_flags & VM_WIPEONFORK) { 651 /* 652 * VM_WIPEONFORK gets a clean slate in the child. 653 * Don't prepare anon_vma until fault since we don't 654 * copy page for current vma. 655 */ 656 tmp->anon_vma = NULL; 657 } else if (anon_vma_fork(tmp, mpnt)) 658 goto fail_nomem_anon_vma_fork; 659 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT); 660 file = tmp->vm_file; 661 if (file) { 662 struct address_space *mapping = file->f_mapping; 663 664 get_file(file); 665 i_mmap_lock_write(mapping); 666 if (tmp->vm_flags & VM_SHARED) 667 mapping_allow_writable(mapping); 668 flush_dcache_mmap_lock(mapping); 669 /* insert tmp into the share list, just after mpnt */ 670 vma_interval_tree_insert_after(tmp, mpnt, 671 &mapping->i_mmap); 672 flush_dcache_mmap_unlock(mapping); 673 i_mmap_unlock_write(mapping); 674 } 675 676 /* 677 * Clear hugetlb-related page reserves for children. This only 678 * affects MAP_PRIVATE mappings. Faults generated by the child 679 * are not guaranteed to succeed, even if read-only 680 */ 681 if (is_vm_hugetlb_page(tmp)) 682 reset_vma_resv_huge_pages(tmp); 683 684 /* 685 * Link in the new vma and copy the page table entries. 686 */ 687 *pprev = tmp; 688 pprev = &tmp->vm_next; 689 tmp->vm_prev = prev; 690 prev = tmp; 691 692 __vma_link_rb(mm, tmp, rb_link, rb_parent); 693 rb_link = &tmp->vm_rb.rb_right; 694 rb_parent = &tmp->vm_rb; 695 696 mm->map_count++; 697 if (!(tmp->vm_flags & VM_WIPEONFORK)) 698 retval = copy_page_range(tmp, mpnt); 699 700 if (tmp->vm_ops && tmp->vm_ops->open) 701 tmp->vm_ops->open(tmp); 702 703 if (retval) 704 goto out; 705 } 706 /* a new mm has just been created */ 707 retval = arch_dup_mmap(oldmm, mm); 708 out: 709 mmap_write_unlock(mm); 710 flush_tlb_mm(oldmm); 711 mmap_write_unlock(oldmm); 712 dup_userfaultfd_complete(&uf); 713 fail_uprobe_end: 714 uprobe_end_dup_mmap(); 715 return retval; 716 fail_nomem_anon_vma_fork: 717 mpol_put(vma_policy(tmp)); 718 fail_nomem_policy: 719 vm_area_free(tmp); 720 fail_nomem: 721 retval = -ENOMEM; 722 vm_unacct_memory(charge); 723 goto out; 724 } 725 726 static inline int mm_alloc_pgd(struct mm_struct *mm) 727 { 728 mm->pgd = pgd_alloc(mm); 729 if (unlikely(!mm->pgd)) 730 return -ENOMEM; 731 return 0; 732 } 733 734 static inline void mm_free_pgd(struct mm_struct *mm) 735 { 736 pgd_free(mm, mm->pgd); 737 } 738 #else 739 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 740 { 741 mmap_write_lock(oldmm); 742 dup_mm_exe_file(mm, oldmm); 743 mmap_write_unlock(oldmm); 744 return 0; 745 } 746 #define mm_alloc_pgd(mm) (0) 747 #define mm_free_pgd(mm) 748 #endif /* CONFIG_MMU */ 749 750 static void check_mm(struct mm_struct *mm) 751 { 752 int i; 753 754 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 755 "Please make sure 'struct resident_page_types[]' is updated as well"); 756 757 for (i = 0; i < NR_MM_COUNTERS; i++) { 758 long x = atomic_long_read(&mm->rss_stat.count[i]); 759 760 if (unlikely(x)) 761 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 762 mm, resident_page_types[i], x); 763 } 764 765 if (mm_pgtables_bytes(mm)) 766 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 767 mm_pgtables_bytes(mm)); 768 769 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 770 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 771 #endif 772 } 773 774 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 775 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 776 777 /* 778 * Called when the last reference to the mm 779 * is dropped: either by a lazy thread or by 780 * mmput. Free the page directory and the mm. 781 */ 782 void __mmdrop(struct mm_struct *mm) 783 { 784 BUG_ON(mm == &init_mm); 785 WARN_ON_ONCE(mm == current->mm); 786 WARN_ON_ONCE(mm == current->active_mm); 787 mm_free_pgd(mm); 788 destroy_context(mm); 789 mmu_notifier_subscriptions_destroy(mm); 790 check_mm(mm); 791 put_user_ns(mm->user_ns); 792 free_mm(mm); 793 } 794 EXPORT_SYMBOL_GPL(__mmdrop); 795 796 static void mmdrop_async_fn(struct work_struct *work) 797 { 798 struct mm_struct *mm; 799 800 mm = container_of(work, struct mm_struct, async_put_work); 801 __mmdrop(mm); 802 } 803 804 static void mmdrop_async(struct mm_struct *mm) 805 { 806 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 807 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 808 schedule_work(&mm->async_put_work); 809 } 810 } 811 812 static inline void free_signal_struct(struct signal_struct *sig) 813 { 814 taskstats_tgid_free(sig); 815 sched_autogroup_exit(sig); 816 /* 817 * __mmdrop is not safe to call from softirq context on x86 due to 818 * pgd_dtor so postpone it to the async context 819 */ 820 if (sig->oom_mm) 821 mmdrop_async(sig->oom_mm); 822 kmem_cache_free(signal_cachep, sig); 823 } 824 825 static inline void put_signal_struct(struct signal_struct *sig) 826 { 827 if (refcount_dec_and_test(&sig->sigcnt)) 828 free_signal_struct(sig); 829 } 830 831 void __put_task_struct(struct task_struct *tsk) 832 { 833 WARN_ON(!tsk->exit_state); 834 WARN_ON(refcount_read(&tsk->usage)); 835 WARN_ON(tsk == current); 836 837 io_uring_free(tsk); 838 cgroup_free(tsk); 839 task_numa_free(tsk, true); 840 security_task_free(tsk); 841 bpf_task_storage_free(tsk); 842 exit_creds(tsk); 843 delayacct_tsk_free(tsk); 844 put_signal_struct(tsk->signal); 845 sched_core_free(tsk); 846 free_task(tsk); 847 } 848 EXPORT_SYMBOL_GPL(__put_task_struct); 849 850 void __init __weak arch_task_cache_init(void) { } 851 852 /* 853 * set_max_threads 854 */ 855 static void set_max_threads(unsigned int max_threads_suggested) 856 { 857 u64 threads; 858 unsigned long nr_pages = totalram_pages(); 859 860 /* 861 * The number of threads shall be limited such that the thread 862 * structures may only consume a small part of the available memory. 863 */ 864 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 865 threads = MAX_THREADS; 866 else 867 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 868 (u64) THREAD_SIZE * 8UL); 869 870 if (threads > max_threads_suggested) 871 threads = max_threads_suggested; 872 873 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 874 } 875 876 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 877 /* Initialized by the architecture: */ 878 int arch_task_struct_size __read_mostly; 879 #endif 880 881 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 882 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 883 { 884 /* Fetch thread_struct whitelist for the architecture. */ 885 arch_thread_struct_whitelist(offset, size); 886 887 /* 888 * Handle zero-sized whitelist or empty thread_struct, otherwise 889 * adjust offset to position of thread_struct in task_struct. 890 */ 891 if (unlikely(*size == 0)) 892 *offset = 0; 893 else 894 *offset += offsetof(struct task_struct, thread); 895 } 896 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 897 898 void __init fork_init(void) 899 { 900 int i; 901 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 902 #ifndef ARCH_MIN_TASKALIGN 903 #define ARCH_MIN_TASKALIGN 0 904 #endif 905 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 906 unsigned long useroffset, usersize; 907 908 /* create a slab on which task_structs can be allocated */ 909 task_struct_whitelist(&useroffset, &usersize); 910 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 911 arch_task_struct_size, align, 912 SLAB_PANIC|SLAB_ACCOUNT, 913 useroffset, usersize, NULL); 914 #endif 915 916 /* do the arch specific task caches init */ 917 arch_task_cache_init(); 918 919 set_max_threads(MAX_THREADS); 920 921 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 922 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 923 init_task.signal->rlim[RLIMIT_SIGPENDING] = 924 init_task.signal->rlim[RLIMIT_NPROC]; 925 926 for (i = 0; i < MAX_PER_NAMESPACE_UCOUNTS; i++) 927 init_user_ns.ucount_max[i] = max_threads/2; 928 929 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 930 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 931 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 932 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 933 934 #ifdef CONFIG_VMAP_STACK 935 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 936 NULL, free_vm_stack_cache); 937 #endif 938 939 scs_init(); 940 941 lockdep_init_task(&init_task); 942 uprobes_init(); 943 } 944 945 int __weak arch_dup_task_struct(struct task_struct *dst, 946 struct task_struct *src) 947 { 948 *dst = *src; 949 return 0; 950 } 951 952 void set_task_stack_end_magic(struct task_struct *tsk) 953 { 954 unsigned long *stackend; 955 956 stackend = end_of_stack(tsk); 957 *stackend = STACK_END_MAGIC; /* for overflow detection */ 958 } 959 960 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 961 { 962 struct task_struct *tsk; 963 int err; 964 965 if (node == NUMA_NO_NODE) 966 node = tsk_fork_get_node(orig); 967 tsk = alloc_task_struct_node(node); 968 if (!tsk) 969 return NULL; 970 971 err = arch_dup_task_struct(tsk, orig); 972 if (err) 973 goto free_tsk; 974 975 err = alloc_thread_stack_node(tsk, node); 976 if (err) 977 goto free_tsk; 978 979 #ifdef CONFIG_THREAD_INFO_IN_TASK 980 refcount_set(&tsk->stack_refcount, 1); 981 #endif 982 account_kernel_stack(tsk, 1); 983 984 err = scs_prepare(tsk, node); 985 if (err) 986 goto free_stack; 987 988 #ifdef CONFIG_SECCOMP 989 /* 990 * We must handle setting up seccomp filters once we're under 991 * the sighand lock in case orig has changed between now and 992 * then. Until then, filter must be NULL to avoid messing up 993 * the usage counts on the error path calling free_task. 994 */ 995 tsk->seccomp.filter = NULL; 996 #endif 997 998 setup_thread_stack(tsk, orig); 999 clear_user_return_notifier(tsk); 1000 clear_tsk_need_resched(tsk); 1001 set_task_stack_end_magic(tsk); 1002 clear_syscall_work_syscall_user_dispatch(tsk); 1003 1004 #ifdef CONFIG_STACKPROTECTOR 1005 tsk->stack_canary = get_random_canary(); 1006 #endif 1007 if (orig->cpus_ptr == &orig->cpus_mask) 1008 tsk->cpus_ptr = &tsk->cpus_mask; 1009 dup_user_cpus_ptr(tsk, orig, node); 1010 1011 /* 1012 * One for the user space visible state that goes away when reaped. 1013 * One for the scheduler. 1014 */ 1015 refcount_set(&tsk->rcu_users, 2); 1016 /* One for the rcu users */ 1017 refcount_set(&tsk->usage, 1); 1018 #ifdef CONFIG_BLK_DEV_IO_TRACE 1019 tsk->btrace_seq = 0; 1020 #endif 1021 tsk->splice_pipe = NULL; 1022 tsk->task_frag.page = NULL; 1023 tsk->wake_q.next = NULL; 1024 tsk->worker_private = NULL; 1025 1026 kcov_task_init(tsk); 1027 kmap_local_fork(tsk); 1028 1029 #ifdef CONFIG_FAULT_INJECTION 1030 tsk->fail_nth = 0; 1031 #endif 1032 1033 #ifdef CONFIG_BLK_CGROUP 1034 tsk->throttle_queue = NULL; 1035 tsk->use_memdelay = 0; 1036 #endif 1037 1038 #ifdef CONFIG_IOMMU_SVA 1039 tsk->pasid_activated = 0; 1040 #endif 1041 1042 #ifdef CONFIG_MEMCG 1043 tsk->active_memcg = NULL; 1044 #endif 1045 return tsk; 1046 1047 free_stack: 1048 exit_task_stack_account(tsk); 1049 free_thread_stack(tsk); 1050 free_tsk: 1051 free_task_struct(tsk); 1052 return NULL; 1053 } 1054 1055 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 1056 1057 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 1058 1059 static int __init coredump_filter_setup(char *s) 1060 { 1061 default_dump_filter = 1062 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 1063 MMF_DUMP_FILTER_MASK; 1064 return 1; 1065 } 1066 1067 __setup("coredump_filter=", coredump_filter_setup); 1068 1069 #include <linux/init_task.h> 1070 1071 static void mm_init_aio(struct mm_struct *mm) 1072 { 1073 #ifdef CONFIG_AIO 1074 spin_lock_init(&mm->ioctx_lock); 1075 mm->ioctx_table = NULL; 1076 #endif 1077 } 1078 1079 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1080 struct task_struct *p) 1081 { 1082 #ifdef CONFIG_MEMCG 1083 if (mm->owner == p) 1084 WRITE_ONCE(mm->owner, NULL); 1085 #endif 1086 } 1087 1088 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1089 { 1090 #ifdef CONFIG_MEMCG 1091 mm->owner = p; 1092 #endif 1093 } 1094 1095 static void mm_init_uprobes_state(struct mm_struct *mm) 1096 { 1097 #ifdef CONFIG_UPROBES 1098 mm->uprobes_state.xol_area = NULL; 1099 #endif 1100 } 1101 1102 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1103 struct user_namespace *user_ns) 1104 { 1105 mm->mmap = NULL; 1106 mm->mm_rb = RB_ROOT; 1107 mm->vmacache_seqnum = 0; 1108 atomic_set(&mm->mm_users, 1); 1109 atomic_set(&mm->mm_count, 1); 1110 seqcount_init(&mm->write_protect_seq); 1111 mmap_init_lock(mm); 1112 INIT_LIST_HEAD(&mm->mmlist); 1113 mm_pgtables_bytes_init(mm); 1114 mm->map_count = 0; 1115 mm->locked_vm = 0; 1116 atomic64_set(&mm->pinned_vm, 0); 1117 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1118 spin_lock_init(&mm->page_table_lock); 1119 spin_lock_init(&mm->arg_lock); 1120 mm_init_cpumask(mm); 1121 mm_init_aio(mm); 1122 mm_init_owner(mm, p); 1123 mm_pasid_init(mm); 1124 RCU_INIT_POINTER(mm->exe_file, NULL); 1125 mmu_notifier_subscriptions_init(mm); 1126 init_tlb_flush_pending(mm); 1127 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1128 mm->pmd_huge_pte = NULL; 1129 #endif 1130 mm_init_uprobes_state(mm); 1131 hugetlb_count_init(mm); 1132 1133 if (current->mm) { 1134 mm->flags = current->mm->flags & MMF_INIT_MASK; 1135 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1136 } else { 1137 mm->flags = default_dump_filter; 1138 mm->def_flags = 0; 1139 } 1140 1141 if (mm_alloc_pgd(mm)) 1142 goto fail_nopgd; 1143 1144 if (init_new_context(p, mm)) 1145 goto fail_nocontext; 1146 1147 mm->user_ns = get_user_ns(user_ns); 1148 return mm; 1149 1150 fail_nocontext: 1151 mm_free_pgd(mm); 1152 fail_nopgd: 1153 free_mm(mm); 1154 return NULL; 1155 } 1156 1157 /* 1158 * Allocate and initialize an mm_struct. 1159 */ 1160 struct mm_struct *mm_alloc(void) 1161 { 1162 struct mm_struct *mm; 1163 1164 mm = allocate_mm(); 1165 if (!mm) 1166 return NULL; 1167 1168 memset(mm, 0, sizeof(*mm)); 1169 return mm_init(mm, current, current_user_ns()); 1170 } 1171 1172 static inline void __mmput(struct mm_struct *mm) 1173 { 1174 VM_BUG_ON(atomic_read(&mm->mm_users)); 1175 1176 uprobe_clear_state(mm); 1177 exit_aio(mm); 1178 ksm_exit(mm); 1179 khugepaged_exit(mm); /* must run before exit_mmap */ 1180 exit_mmap(mm); 1181 mm_put_huge_zero_page(mm); 1182 set_mm_exe_file(mm, NULL); 1183 if (!list_empty(&mm->mmlist)) { 1184 spin_lock(&mmlist_lock); 1185 list_del(&mm->mmlist); 1186 spin_unlock(&mmlist_lock); 1187 } 1188 if (mm->binfmt) 1189 module_put(mm->binfmt->module); 1190 mm_pasid_drop(mm); 1191 mmdrop(mm); 1192 } 1193 1194 /* 1195 * Decrement the use count and release all resources for an mm. 1196 */ 1197 void mmput(struct mm_struct *mm) 1198 { 1199 might_sleep(); 1200 1201 if (atomic_dec_and_test(&mm->mm_users)) 1202 __mmput(mm); 1203 } 1204 EXPORT_SYMBOL_GPL(mmput); 1205 1206 #ifdef CONFIG_MMU 1207 static void mmput_async_fn(struct work_struct *work) 1208 { 1209 struct mm_struct *mm = container_of(work, struct mm_struct, 1210 async_put_work); 1211 1212 __mmput(mm); 1213 } 1214 1215 void mmput_async(struct mm_struct *mm) 1216 { 1217 if (atomic_dec_and_test(&mm->mm_users)) { 1218 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1219 schedule_work(&mm->async_put_work); 1220 } 1221 } 1222 #endif 1223 1224 /** 1225 * set_mm_exe_file - change a reference to the mm's executable file 1226 * 1227 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1228 * 1229 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1230 * invocations: in mmput() nobody alive left, in execve task is single 1231 * threaded. 1232 * 1233 * Can only fail if new_exe_file != NULL. 1234 */ 1235 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1236 { 1237 struct file *old_exe_file; 1238 1239 /* 1240 * It is safe to dereference the exe_file without RCU as 1241 * this function is only called if nobody else can access 1242 * this mm -- see comment above for justification. 1243 */ 1244 old_exe_file = rcu_dereference_raw(mm->exe_file); 1245 1246 if (new_exe_file) { 1247 /* 1248 * We expect the caller (i.e., sys_execve) to already denied 1249 * write access, so this is unlikely to fail. 1250 */ 1251 if (unlikely(deny_write_access(new_exe_file))) 1252 return -EACCES; 1253 get_file(new_exe_file); 1254 } 1255 rcu_assign_pointer(mm->exe_file, new_exe_file); 1256 if (old_exe_file) { 1257 allow_write_access(old_exe_file); 1258 fput(old_exe_file); 1259 } 1260 return 0; 1261 } 1262 1263 /** 1264 * replace_mm_exe_file - replace a reference to the mm's executable file 1265 * 1266 * This changes mm's executable file (shown as symlink /proc/[pid]/exe), 1267 * dealing with concurrent invocation and without grabbing the mmap lock in 1268 * write mode. 1269 * 1270 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1271 */ 1272 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1273 { 1274 struct vm_area_struct *vma; 1275 struct file *old_exe_file; 1276 int ret = 0; 1277 1278 /* Forbid mm->exe_file change if old file still mapped. */ 1279 old_exe_file = get_mm_exe_file(mm); 1280 if (old_exe_file) { 1281 mmap_read_lock(mm); 1282 for (vma = mm->mmap; vma && !ret; vma = vma->vm_next) { 1283 if (!vma->vm_file) 1284 continue; 1285 if (path_equal(&vma->vm_file->f_path, 1286 &old_exe_file->f_path)) 1287 ret = -EBUSY; 1288 } 1289 mmap_read_unlock(mm); 1290 fput(old_exe_file); 1291 if (ret) 1292 return ret; 1293 } 1294 1295 /* set the new file, lockless */ 1296 ret = deny_write_access(new_exe_file); 1297 if (ret) 1298 return -EACCES; 1299 get_file(new_exe_file); 1300 1301 old_exe_file = xchg(&mm->exe_file, new_exe_file); 1302 if (old_exe_file) { 1303 /* 1304 * Don't race with dup_mmap() getting the file and disallowing 1305 * write access while someone might open the file writable. 1306 */ 1307 mmap_read_lock(mm); 1308 allow_write_access(old_exe_file); 1309 fput(old_exe_file); 1310 mmap_read_unlock(mm); 1311 } 1312 return 0; 1313 } 1314 1315 /** 1316 * get_mm_exe_file - acquire a reference to the mm's executable file 1317 * 1318 * Returns %NULL if mm has no associated executable file. 1319 * User must release file via fput(). 1320 */ 1321 struct file *get_mm_exe_file(struct mm_struct *mm) 1322 { 1323 struct file *exe_file; 1324 1325 rcu_read_lock(); 1326 exe_file = rcu_dereference(mm->exe_file); 1327 if (exe_file && !get_file_rcu(exe_file)) 1328 exe_file = NULL; 1329 rcu_read_unlock(); 1330 return exe_file; 1331 } 1332 1333 /** 1334 * get_task_exe_file - acquire a reference to the task's executable file 1335 * 1336 * Returns %NULL if task's mm (if any) has no associated executable file or 1337 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1338 * User must release file via fput(). 1339 */ 1340 struct file *get_task_exe_file(struct task_struct *task) 1341 { 1342 struct file *exe_file = NULL; 1343 struct mm_struct *mm; 1344 1345 task_lock(task); 1346 mm = task->mm; 1347 if (mm) { 1348 if (!(task->flags & PF_KTHREAD)) 1349 exe_file = get_mm_exe_file(mm); 1350 } 1351 task_unlock(task); 1352 return exe_file; 1353 } 1354 1355 /** 1356 * get_task_mm - acquire a reference to the task's mm 1357 * 1358 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1359 * this kernel workthread has transiently adopted a user mm with use_mm, 1360 * to do its AIO) is not set and if so returns a reference to it, after 1361 * bumping up the use count. User must release the mm via mmput() 1362 * after use. Typically used by /proc and ptrace. 1363 */ 1364 struct mm_struct *get_task_mm(struct task_struct *task) 1365 { 1366 struct mm_struct *mm; 1367 1368 task_lock(task); 1369 mm = task->mm; 1370 if (mm) { 1371 if (task->flags & PF_KTHREAD) 1372 mm = NULL; 1373 else 1374 mmget(mm); 1375 } 1376 task_unlock(task); 1377 return mm; 1378 } 1379 EXPORT_SYMBOL_GPL(get_task_mm); 1380 1381 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1382 { 1383 struct mm_struct *mm; 1384 int err; 1385 1386 err = down_read_killable(&task->signal->exec_update_lock); 1387 if (err) 1388 return ERR_PTR(err); 1389 1390 mm = get_task_mm(task); 1391 if (mm && mm != current->mm && 1392 !ptrace_may_access(task, mode)) { 1393 mmput(mm); 1394 mm = ERR_PTR(-EACCES); 1395 } 1396 up_read(&task->signal->exec_update_lock); 1397 1398 return mm; 1399 } 1400 1401 static void complete_vfork_done(struct task_struct *tsk) 1402 { 1403 struct completion *vfork; 1404 1405 task_lock(tsk); 1406 vfork = tsk->vfork_done; 1407 if (likely(vfork)) { 1408 tsk->vfork_done = NULL; 1409 complete(vfork); 1410 } 1411 task_unlock(tsk); 1412 } 1413 1414 static int wait_for_vfork_done(struct task_struct *child, 1415 struct completion *vfork) 1416 { 1417 int killed; 1418 1419 freezer_do_not_count(); 1420 cgroup_enter_frozen(); 1421 killed = wait_for_completion_killable(vfork); 1422 cgroup_leave_frozen(false); 1423 freezer_count(); 1424 1425 if (killed) { 1426 task_lock(child); 1427 child->vfork_done = NULL; 1428 task_unlock(child); 1429 } 1430 1431 put_task_struct(child); 1432 return killed; 1433 } 1434 1435 /* Please note the differences between mmput and mm_release. 1436 * mmput is called whenever we stop holding onto a mm_struct, 1437 * error success whatever. 1438 * 1439 * mm_release is called after a mm_struct has been removed 1440 * from the current process. 1441 * 1442 * This difference is important for error handling, when we 1443 * only half set up a mm_struct for a new process and need to restore 1444 * the old one. Because we mmput the new mm_struct before 1445 * restoring the old one. . . 1446 * Eric Biederman 10 January 1998 1447 */ 1448 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1449 { 1450 uprobe_free_utask(tsk); 1451 1452 /* Get rid of any cached register state */ 1453 deactivate_mm(tsk, mm); 1454 1455 /* 1456 * Signal userspace if we're not exiting with a core dump 1457 * because we want to leave the value intact for debugging 1458 * purposes. 1459 */ 1460 if (tsk->clear_child_tid) { 1461 if (atomic_read(&mm->mm_users) > 1) { 1462 /* 1463 * We don't check the error code - if userspace has 1464 * not set up a proper pointer then tough luck. 1465 */ 1466 put_user(0, tsk->clear_child_tid); 1467 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1468 1, NULL, NULL, 0, 0); 1469 } 1470 tsk->clear_child_tid = NULL; 1471 } 1472 1473 /* 1474 * All done, finally we can wake up parent and return this mm to him. 1475 * Also kthread_stop() uses this completion for synchronization. 1476 */ 1477 if (tsk->vfork_done) 1478 complete_vfork_done(tsk); 1479 } 1480 1481 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1482 { 1483 futex_exit_release(tsk); 1484 mm_release(tsk, mm); 1485 } 1486 1487 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1488 { 1489 futex_exec_release(tsk); 1490 mm_release(tsk, mm); 1491 } 1492 1493 /** 1494 * dup_mm() - duplicates an existing mm structure 1495 * @tsk: the task_struct with which the new mm will be associated. 1496 * @oldmm: the mm to duplicate. 1497 * 1498 * Allocates a new mm structure and duplicates the provided @oldmm structure 1499 * content into it. 1500 * 1501 * Return: the duplicated mm or NULL on failure. 1502 */ 1503 static struct mm_struct *dup_mm(struct task_struct *tsk, 1504 struct mm_struct *oldmm) 1505 { 1506 struct mm_struct *mm; 1507 int err; 1508 1509 mm = allocate_mm(); 1510 if (!mm) 1511 goto fail_nomem; 1512 1513 memcpy(mm, oldmm, sizeof(*mm)); 1514 1515 if (!mm_init(mm, tsk, mm->user_ns)) 1516 goto fail_nomem; 1517 1518 err = dup_mmap(mm, oldmm); 1519 if (err) 1520 goto free_pt; 1521 1522 mm->hiwater_rss = get_mm_rss(mm); 1523 mm->hiwater_vm = mm->total_vm; 1524 1525 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1526 goto free_pt; 1527 1528 return mm; 1529 1530 free_pt: 1531 /* don't put binfmt in mmput, we haven't got module yet */ 1532 mm->binfmt = NULL; 1533 mm_init_owner(mm, NULL); 1534 mmput(mm); 1535 1536 fail_nomem: 1537 return NULL; 1538 } 1539 1540 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1541 { 1542 struct mm_struct *mm, *oldmm; 1543 1544 tsk->min_flt = tsk->maj_flt = 0; 1545 tsk->nvcsw = tsk->nivcsw = 0; 1546 #ifdef CONFIG_DETECT_HUNG_TASK 1547 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1548 tsk->last_switch_time = 0; 1549 #endif 1550 1551 tsk->mm = NULL; 1552 tsk->active_mm = NULL; 1553 1554 /* 1555 * Are we cloning a kernel thread? 1556 * 1557 * We need to steal a active VM for that.. 1558 */ 1559 oldmm = current->mm; 1560 if (!oldmm) 1561 return 0; 1562 1563 /* initialize the new vmacache entries */ 1564 vmacache_flush(tsk); 1565 1566 if (clone_flags & CLONE_VM) { 1567 mmget(oldmm); 1568 mm = oldmm; 1569 } else { 1570 mm = dup_mm(tsk, current->mm); 1571 if (!mm) 1572 return -ENOMEM; 1573 } 1574 1575 tsk->mm = mm; 1576 tsk->active_mm = mm; 1577 return 0; 1578 } 1579 1580 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1581 { 1582 struct fs_struct *fs = current->fs; 1583 if (clone_flags & CLONE_FS) { 1584 /* tsk->fs is already what we want */ 1585 spin_lock(&fs->lock); 1586 if (fs->in_exec) { 1587 spin_unlock(&fs->lock); 1588 return -EAGAIN; 1589 } 1590 fs->users++; 1591 spin_unlock(&fs->lock); 1592 return 0; 1593 } 1594 tsk->fs = copy_fs_struct(fs); 1595 if (!tsk->fs) 1596 return -ENOMEM; 1597 return 0; 1598 } 1599 1600 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1601 { 1602 struct files_struct *oldf, *newf; 1603 int error = 0; 1604 1605 /* 1606 * A background process may not have any files ... 1607 */ 1608 oldf = current->files; 1609 if (!oldf) 1610 goto out; 1611 1612 if (clone_flags & CLONE_FILES) { 1613 atomic_inc(&oldf->count); 1614 goto out; 1615 } 1616 1617 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1618 if (!newf) 1619 goto out; 1620 1621 tsk->files = newf; 1622 error = 0; 1623 out: 1624 return error; 1625 } 1626 1627 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1628 { 1629 struct sighand_struct *sig; 1630 1631 if (clone_flags & CLONE_SIGHAND) { 1632 refcount_inc(¤t->sighand->count); 1633 return 0; 1634 } 1635 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1636 RCU_INIT_POINTER(tsk->sighand, sig); 1637 if (!sig) 1638 return -ENOMEM; 1639 1640 refcount_set(&sig->count, 1); 1641 spin_lock_irq(¤t->sighand->siglock); 1642 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1643 spin_unlock_irq(¤t->sighand->siglock); 1644 1645 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1646 if (clone_flags & CLONE_CLEAR_SIGHAND) 1647 flush_signal_handlers(tsk, 0); 1648 1649 return 0; 1650 } 1651 1652 void __cleanup_sighand(struct sighand_struct *sighand) 1653 { 1654 if (refcount_dec_and_test(&sighand->count)) { 1655 signalfd_cleanup(sighand); 1656 /* 1657 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1658 * without an RCU grace period, see __lock_task_sighand(). 1659 */ 1660 kmem_cache_free(sighand_cachep, sighand); 1661 } 1662 } 1663 1664 /* 1665 * Initialize POSIX timer handling for a thread group. 1666 */ 1667 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1668 { 1669 struct posix_cputimers *pct = &sig->posix_cputimers; 1670 unsigned long cpu_limit; 1671 1672 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1673 posix_cputimers_group_init(pct, cpu_limit); 1674 } 1675 1676 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1677 { 1678 struct signal_struct *sig; 1679 1680 if (clone_flags & CLONE_THREAD) 1681 return 0; 1682 1683 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1684 tsk->signal = sig; 1685 if (!sig) 1686 return -ENOMEM; 1687 1688 sig->nr_threads = 1; 1689 atomic_set(&sig->live, 1); 1690 refcount_set(&sig->sigcnt, 1); 1691 1692 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1693 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1694 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1695 1696 init_waitqueue_head(&sig->wait_chldexit); 1697 sig->curr_target = tsk; 1698 init_sigpending(&sig->shared_pending); 1699 INIT_HLIST_HEAD(&sig->multiprocess); 1700 seqlock_init(&sig->stats_lock); 1701 prev_cputime_init(&sig->prev_cputime); 1702 1703 #ifdef CONFIG_POSIX_TIMERS 1704 INIT_LIST_HEAD(&sig->posix_timers); 1705 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1706 sig->real_timer.function = it_real_fn; 1707 #endif 1708 1709 task_lock(current->group_leader); 1710 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1711 task_unlock(current->group_leader); 1712 1713 posix_cpu_timers_init_group(sig); 1714 1715 tty_audit_fork(sig); 1716 sched_autogroup_fork(sig); 1717 1718 sig->oom_score_adj = current->signal->oom_score_adj; 1719 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1720 1721 mutex_init(&sig->cred_guard_mutex); 1722 init_rwsem(&sig->exec_update_lock); 1723 1724 return 0; 1725 } 1726 1727 static void copy_seccomp(struct task_struct *p) 1728 { 1729 #ifdef CONFIG_SECCOMP 1730 /* 1731 * Must be called with sighand->lock held, which is common to 1732 * all threads in the group. Holding cred_guard_mutex is not 1733 * needed because this new task is not yet running and cannot 1734 * be racing exec. 1735 */ 1736 assert_spin_locked(¤t->sighand->siglock); 1737 1738 /* Ref-count the new filter user, and assign it. */ 1739 get_seccomp_filter(current); 1740 p->seccomp = current->seccomp; 1741 1742 /* 1743 * Explicitly enable no_new_privs here in case it got set 1744 * between the task_struct being duplicated and holding the 1745 * sighand lock. The seccomp state and nnp must be in sync. 1746 */ 1747 if (task_no_new_privs(current)) 1748 task_set_no_new_privs(p); 1749 1750 /* 1751 * If the parent gained a seccomp mode after copying thread 1752 * flags and between before we held the sighand lock, we have 1753 * to manually enable the seccomp thread flag here. 1754 */ 1755 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1756 set_task_syscall_work(p, SECCOMP); 1757 #endif 1758 } 1759 1760 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1761 { 1762 current->clear_child_tid = tidptr; 1763 1764 return task_pid_vnr(current); 1765 } 1766 1767 static void rt_mutex_init_task(struct task_struct *p) 1768 { 1769 raw_spin_lock_init(&p->pi_lock); 1770 #ifdef CONFIG_RT_MUTEXES 1771 p->pi_waiters = RB_ROOT_CACHED; 1772 p->pi_top_task = NULL; 1773 p->pi_blocked_on = NULL; 1774 #endif 1775 } 1776 1777 static inline void init_task_pid_links(struct task_struct *task) 1778 { 1779 enum pid_type type; 1780 1781 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1782 INIT_HLIST_NODE(&task->pid_links[type]); 1783 } 1784 1785 static inline void 1786 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1787 { 1788 if (type == PIDTYPE_PID) 1789 task->thread_pid = pid; 1790 else 1791 task->signal->pids[type] = pid; 1792 } 1793 1794 static inline void rcu_copy_process(struct task_struct *p) 1795 { 1796 #ifdef CONFIG_PREEMPT_RCU 1797 p->rcu_read_lock_nesting = 0; 1798 p->rcu_read_unlock_special.s = 0; 1799 p->rcu_blocked_node = NULL; 1800 INIT_LIST_HEAD(&p->rcu_node_entry); 1801 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1802 #ifdef CONFIG_TASKS_RCU 1803 p->rcu_tasks_holdout = false; 1804 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1805 p->rcu_tasks_idle_cpu = -1; 1806 #endif /* #ifdef CONFIG_TASKS_RCU */ 1807 #ifdef CONFIG_TASKS_TRACE_RCU 1808 p->trc_reader_nesting = 0; 1809 p->trc_reader_special.s = 0; 1810 INIT_LIST_HEAD(&p->trc_holdout_list); 1811 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1812 } 1813 1814 struct pid *pidfd_pid(const struct file *file) 1815 { 1816 if (file->f_op == &pidfd_fops) 1817 return file->private_data; 1818 1819 return ERR_PTR(-EBADF); 1820 } 1821 1822 static int pidfd_release(struct inode *inode, struct file *file) 1823 { 1824 struct pid *pid = file->private_data; 1825 1826 file->private_data = NULL; 1827 put_pid(pid); 1828 return 0; 1829 } 1830 1831 #ifdef CONFIG_PROC_FS 1832 /** 1833 * pidfd_show_fdinfo - print information about a pidfd 1834 * @m: proc fdinfo file 1835 * @f: file referencing a pidfd 1836 * 1837 * Pid: 1838 * This function will print the pid that a given pidfd refers to in the 1839 * pid namespace of the procfs instance. 1840 * If the pid namespace of the process is not a descendant of the pid 1841 * namespace of the procfs instance 0 will be shown as its pid. This is 1842 * similar to calling getppid() on a process whose parent is outside of 1843 * its pid namespace. 1844 * 1845 * NSpid: 1846 * If pid namespaces are supported then this function will also print 1847 * the pid of a given pidfd refers to for all descendant pid namespaces 1848 * starting from the current pid namespace of the instance, i.e. the 1849 * Pid field and the first entry in the NSpid field will be identical. 1850 * If the pid namespace of the process is not a descendant of the pid 1851 * namespace of the procfs instance 0 will be shown as its first NSpid 1852 * entry and no others will be shown. 1853 * Note that this differs from the Pid and NSpid fields in 1854 * /proc/<pid>/status where Pid and NSpid are always shown relative to 1855 * the pid namespace of the procfs instance. The difference becomes 1856 * obvious when sending around a pidfd between pid namespaces from a 1857 * different branch of the tree, i.e. where no ancestral relation is 1858 * present between the pid namespaces: 1859 * - create two new pid namespaces ns1 and ns2 in the initial pid 1860 * namespace (also take care to create new mount namespaces in the 1861 * new pid namespace and mount procfs) 1862 * - create a process with a pidfd in ns1 1863 * - send pidfd from ns1 to ns2 1864 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 1865 * have exactly one entry, which is 0 1866 */ 1867 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 1868 { 1869 struct pid *pid = f->private_data; 1870 struct pid_namespace *ns; 1871 pid_t nr = -1; 1872 1873 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 1874 ns = proc_pid_ns(file_inode(m->file)->i_sb); 1875 nr = pid_nr_ns(pid, ns); 1876 } 1877 1878 seq_put_decimal_ll(m, "Pid:\t", nr); 1879 1880 #ifdef CONFIG_PID_NS 1881 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 1882 if (nr > 0) { 1883 int i; 1884 1885 /* If nr is non-zero it means that 'pid' is valid and that 1886 * ns, i.e. the pid namespace associated with the procfs 1887 * instance, is in the pid namespace hierarchy of pid. 1888 * Start at one below the already printed level. 1889 */ 1890 for (i = ns->level + 1; i <= pid->level; i++) 1891 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 1892 } 1893 #endif 1894 seq_putc(m, '\n'); 1895 } 1896 #endif 1897 1898 /* 1899 * Poll support for process exit notification. 1900 */ 1901 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 1902 { 1903 struct pid *pid = file->private_data; 1904 __poll_t poll_flags = 0; 1905 1906 poll_wait(file, &pid->wait_pidfd, pts); 1907 1908 /* 1909 * Inform pollers only when the whole thread group exits. 1910 * If the thread group leader exits before all other threads in the 1911 * group, then poll(2) should block, similar to the wait(2) family. 1912 */ 1913 if (thread_group_exited(pid)) 1914 poll_flags = EPOLLIN | EPOLLRDNORM; 1915 1916 return poll_flags; 1917 } 1918 1919 const struct file_operations pidfd_fops = { 1920 .release = pidfd_release, 1921 .poll = pidfd_poll, 1922 #ifdef CONFIG_PROC_FS 1923 .show_fdinfo = pidfd_show_fdinfo, 1924 #endif 1925 }; 1926 1927 static void __delayed_free_task(struct rcu_head *rhp) 1928 { 1929 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1930 1931 free_task(tsk); 1932 } 1933 1934 static __always_inline void delayed_free_task(struct task_struct *tsk) 1935 { 1936 if (IS_ENABLED(CONFIG_MEMCG)) 1937 call_rcu(&tsk->rcu, __delayed_free_task); 1938 else 1939 free_task(tsk); 1940 } 1941 1942 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 1943 { 1944 /* Skip if kernel thread */ 1945 if (!tsk->mm) 1946 return; 1947 1948 /* Skip if spawning a thread or using vfork */ 1949 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 1950 return; 1951 1952 /* We need to synchronize with __set_oom_adj */ 1953 mutex_lock(&oom_adj_mutex); 1954 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 1955 /* Update the values in case they were changed after copy_signal */ 1956 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 1957 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 1958 mutex_unlock(&oom_adj_mutex); 1959 } 1960 1961 /* 1962 * This creates a new process as a copy of the old one, 1963 * but does not actually start it yet. 1964 * 1965 * It copies the registers, and all the appropriate 1966 * parts of the process environment (as per the clone 1967 * flags). The actual kick-off is left to the caller. 1968 */ 1969 static __latent_entropy struct task_struct *copy_process( 1970 struct pid *pid, 1971 int trace, 1972 int node, 1973 struct kernel_clone_args *args) 1974 { 1975 int pidfd = -1, retval; 1976 struct task_struct *p; 1977 struct multiprocess_signals delayed; 1978 struct file *pidfile = NULL; 1979 u64 clone_flags = args->flags; 1980 struct nsproxy *nsp = current->nsproxy; 1981 1982 /* 1983 * Don't allow sharing the root directory with processes in a different 1984 * namespace 1985 */ 1986 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1987 return ERR_PTR(-EINVAL); 1988 1989 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1990 return ERR_PTR(-EINVAL); 1991 1992 /* 1993 * Thread groups must share signals as well, and detached threads 1994 * can only be started up within the thread group. 1995 */ 1996 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1997 return ERR_PTR(-EINVAL); 1998 1999 /* 2000 * Shared signal handlers imply shared VM. By way of the above, 2001 * thread groups also imply shared VM. Blocking this case allows 2002 * for various simplifications in other code. 2003 */ 2004 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 2005 return ERR_PTR(-EINVAL); 2006 2007 /* 2008 * Siblings of global init remain as zombies on exit since they are 2009 * not reaped by their parent (swapper). To solve this and to avoid 2010 * multi-rooted process trees, prevent global and container-inits 2011 * from creating siblings. 2012 */ 2013 if ((clone_flags & CLONE_PARENT) && 2014 current->signal->flags & SIGNAL_UNKILLABLE) 2015 return ERR_PTR(-EINVAL); 2016 2017 /* 2018 * If the new process will be in a different pid or user namespace 2019 * do not allow it to share a thread group with the forking task. 2020 */ 2021 if (clone_flags & CLONE_THREAD) { 2022 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 2023 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 2024 return ERR_PTR(-EINVAL); 2025 } 2026 2027 /* 2028 * If the new process will be in a different time namespace 2029 * do not allow it to share VM or a thread group with the forking task. 2030 */ 2031 if (clone_flags & (CLONE_THREAD | CLONE_VM)) { 2032 if (nsp->time_ns != nsp->time_ns_for_children) 2033 return ERR_PTR(-EINVAL); 2034 } 2035 2036 if (clone_flags & CLONE_PIDFD) { 2037 /* 2038 * - CLONE_DETACHED is blocked so that we can potentially 2039 * reuse it later for CLONE_PIDFD. 2040 * - CLONE_THREAD is blocked until someone really needs it. 2041 */ 2042 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 2043 return ERR_PTR(-EINVAL); 2044 } 2045 2046 /* 2047 * Force any signals received before this point to be delivered 2048 * before the fork happens. Collect up signals sent to multiple 2049 * processes that happen during the fork and delay them so that 2050 * they appear to happen after the fork. 2051 */ 2052 sigemptyset(&delayed.signal); 2053 INIT_HLIST_NODE(&delayed.node); 2054 2055 spin_lock_irq(¤t->sighand->siglock); 2056 if (!(clone_flags & CLONE_THREAD)) 2057 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2058 recalc_sigpending(); 2059 spin_unlock_irq(¤t->sighand->siglock); 2060 retval = -ERESTARTNOINTR; 2061 if (task_sigpending(current)) 2062 goto fork_out; 2063 2064 retval = -ENOMEM; 2065 p = dup_task_struct(current, node); 2066 if (!p) 2067 goto fork_out; 2068 if (args->io_thread) { 2069 /* 2070 * Mark us an IO worker, and block any signal that isn't 2071 * fatal or STOP 2072 */ 2073 p->flags |= PF_IO_WORKER; 2074 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2075 } 2076 2077 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2078 /* 2079 * Clear TID on mm_release()? 2080 */ 2081 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2082 2083 ftrace_graph_init_task(p); 2084 2085 rt_mutex_init_task(p); 2086 2087 lockdep_assert_irqs_enabled(); 2088 #ifdef CONFIG_PROVE_LOCKING 2089 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2090 #endif 2091 retval = copy_creds(p, clone_flags); 2092 if (retval < 0) 2093 goto bad_fork_free; 2094 2095 retval = -EAGAIN; 2096 if (is_ucounts_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2097 if (p->real_cred->user != INIT_USER && 2098 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2099 goto bad_fork_cleanup_count; 2100 } 2101 current->flags &= ~PF_NPROC_EXCEEDED; 2102 2103 /* 2104 * If multiple threads are within copy_process(), then this check 2105 * triggers too late. This doesn't hurt, the check is only there 2106 * to stop root fork bombs. 2107 */ 2108 retval = -EAGAIN; 2109 if (data_race(nr_threads >= max_threads)) 2110 goto bad_fork_cleanup_count; 2111 2112 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2113 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2114 p->flags |= PF_FORKNOEXEC; 2115 INIT_LIST_HEAD(&p->children); 2116 INIT_LIST_HEAD(&p->sibling); 2117 rcu_copy_process(p); 2118 p->vfork_done = NULL; 2119 spin_lock_init(&p->alloc_lock); 2120 2121 init_sigpending(&p->pending); 2122 2123 p->utime = p->stime = p->gtime = 0; 2124 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2125 p->utimescaled = p->stimescaled = 0; 2126 #endif 2127 prev_cputime_init(&p->prev_cputime); 2128 2129 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2130 seqcount_init(&p->vtime.seqcount); 2131 p->vtime.starttime = 0; 2132 p->vtime.state = VTIME_INACTIVE; 2133 #endif 2134 2135 #ifdef CONFIG_IO_URING 2136 p->io_uring = NULL; 2137 #endif 2138 2139 #if defined(SPLIT_RSS_COUNTING) 2140 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 2141 #endif 2142 2143 p->default_timer_slack_ns = current->timer_slack_ns; 2144 2145 #ifdef CONFIG_PSI 2146 p->psi_flags = 0; 2147 #endif 2148 2149 task_io_accounting_init(&p->ioac); 2150 acct_clear_integrals(p); 2151 2152 posix_cputimers_init(&p->posix_cputimers); 2153 2154 p->io_context = NULL; 2155 audit_set_context(p, NULL); 2156 cgroup_fork(p); 2157 if (p->flags & PF_KTHREAD) { 2158 if (!set_kthread_struct(p)) 2159 goto bad_fork_cleanup_delayacct; 2160 } 2161 #ifdef CONFIG_NUMA 2162 p->mempolicy = mpol_dup(p->mempolicy); 2163 if (IS_ERR(p->mempolicy)) { 2164 retval = PTR_ERR(p->mempolicy); 2165 p->mempolicy = NULL; 2166 goto bad_fork_cleanup_delayacct; 2167 } 2168 #endif 2169 #ifdef CONFIG_CPUSETS 2170 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2171 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2172 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2173 #endif 2174 #ifdef CONFIG_TRACE_IRQFLAGS 2175 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2176 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2177 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2178 p->softirqs_enabled = 1; 2179 p->softirq_context = 0; 2180 #endif 2181 2182 p->pagefault_disabled = 0; 2183 2184 #ifdef CONFIG_LOCKDEP 2185 lockdep_init_task(p); 2186 #endif 2187 2188 #ifdef CONFIG_DEBUG_MUTEXES 2189 p->blocked_on = NULL; /* not blocked yet */ 2190 #endif 2191 #ifdef CONFIG_BCACHE 2192 p->sequential_io = 0; 2193 p->sequential_io_avg = 0; 2194 #endif 2195 #ifdef CONFIG_BPF_SYSCALL 2196 RCU_INIT_POINTER(p->bpf_storage, NULL); 2197 p->bpf_ctx = NULL; 2198 #endif 2199 2200 /* Perform scheduler related setup. Assign this task to a CPU. */ 2201 retval = sched_fork(clone_flags, p); 2202 if (retval) 2203 goto bad_fork_cleanup_policy; 2204 2205 retval = perf_event_init_task(p, clone_flags); 2206 if (retval) 2207 goto bad_fork_cleanup_policy; 2208 retval = audit_alloc(p); 2209 if (retval) 2210 goto bad_fork_cleanup_perf; 2211 /* copy all the process information */ 2212 shm_init_task(p); 2213 retval = security_task_alloc(p, clone_flags); 2214 if (retval) 2215 goto bad_fork_cleanup_audit; 2216 retval = copy_semundo(clone_flags, p); 2217 if (retval) 2218 goto bad_fork_cleanup_security; 2219 retval = copy_files(clone_flags, p); 2220 if (retval) 2221 goto bad_fork_cleanup_semundo; 2222 retval = copy_fs(clone_flags, p); 2223 if (retval) 2224 goto bad_fork_cleanup_files; 2225 retval = copy_sighand(clone_flags, p); 2226 if (retval) 2227 goto bad_fork_cleanup_fs; 2228 retval = copy_signal(clone_flags, p); 2229 if (retval) 2230 goto bad_fork_cleanup_sighand; 2231 retval = copy_mm(clone_flags, p); 2232 if (retval) 2233 goto bad_fork_cleanup_signal; 2234 retval = copy_namespaces(clone_flags, p); 2235 if (retval) 2236 goto bad_fork_cleanup_mm; 2237 retval = copy_io(clone_flags, p); 2238 if (retval) 2239 goto bad_fork_cleanup_namespaces; 2240 retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls); 2241 if (retval) 2242 goto bad_fork_cleanup_io; 2243 2244 stackleak_task_init(p); 2245 2246 if (pid != &init_struct_pid) { 2247 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2248 args->set_tid_size); 2249 if (IS_ERR(pid)) { 2250 retval = PTR_ERR(pid); 2251 goto bad_fork_cleanup_thread; 2252 } 2253 } 2254 2255 /* 2256 * This has to happen after we've potentially unshared the file 2257 * descriptor table (so that the pidfd doesn't leak into the child 2258 * if the fd table isn't shared). 2259 */ 2260 if (clone_flags & CLONE_PIDFD) { 2261 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2262 if (retval < 0) 2263 goto bad_fork_free_pid; 2264 2265 pidfd = retval; 2266 2267 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2268 O_RDWR | O_CLOEXEC); 2269 if (IS_ERR(pidfile)) { 2270 put_unused_fd(pidfd); 2271 retval = PTR_ERR(pidfile); 2272 goto bad_fork_free_pid; 2273 } 2274 get_pid(pid); /* held by pidfile now */ 2275 2276 retval = put_user(pidfd, args->pidfd); 2277 if (retval) 2278 goto bad_fork_put_pidfd; 2279 } 2280 2281 #ifdef CONFIG_BLOCK 2282 p->plug = NULL; 2283 #endif 2284 futex_init_task(p); 2285 2286 /* 2287 * sigaltstack should be cleared when sharing the same VM 2288 */ 2289 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2290 sas_ss_reset(p); 2291 2292 /* 2293 * Syscall tracing and stepping should be turned off in the 2294 * child regardless of CLONE_PTRACE. 2295 */ 2296 user_disable_single_step(p); 2297 clear_task_syscall_work(p, SYSCALL_TRACE); 2298 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2299 clear_task_syscall_work(p, SYSCALL_EMU); 2300 #endif 2301 clear_tsk_latency_tracing(p); 2302 2303 /* ok, now we should be set up.. */ 2304 p->pid = pid_nr(pid); 2305 if (clone_flags & CLONE_THREAD) { 2306 p->group_leader = current->group_leader; 2307 p->tgid = current->tgid; 2308 } else { 2309 p->group_leader = p; 2310 p->tgid = p->pid; 2311 } 2312 2313 p->nr_dirtied = 0; 2314 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2315 p->dirty_paused_when = 0; 2316 2317 p->pdeath_signal = 0; 2318 INIT_LIST_HEAD(&p->thread_group); 2319 p->task_works = NULL; 2320 clear_posix_cputimers_work(p); 2321 2322 #ifdef CONFIG_KRETPROBES 2323 p->kretprobe_instances.first = NULL; 2324 #endif 2325 #ifdef CONFIG_RETHOOK 2326 p->rethooks.first = NULL; 2327 #endif 2328 2329 /* 2330 * Ensure that the cgroup subsystem policies allow the new process to be 2331 * forked. It should be noted that the new process's css_set can be changed 2332 * between here and cgroup_post_fork() if an organisation operation is in 2333 * progress. 2334 */ 2335 retval = cgroup_can_fork(p, args); 2336 if (retval) 2337 goto bad_fork_put_pidfd; 2338 2339 /* 2340 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2341 * the new task on the correct runqueue. All this *before* the task 2342 * becomes visible. 2343 * 2344 * This isn't part of ->can_fork() because while the re-cloning is 2345 * cgroup specific, it unconditionally needs to place the task on a 2346 * runqueue. 2347 */ 2348 sched_cgroup_fork(p, args); 2349 2350 /* 2351 * From this point on we must avoid any synchronous user-space 2352 * communication until we take the tasklist-lock. In particular, we do 2353 * not want user-space to be able to predict the process start-time by 2354 * stalling fork(2) after we recorded the start_time but before it is 2355 * visible to the system. 2356 */ 2357 2358 p->start_time = ktime_get_ns(); 2359 p->start_boottime = ktime_get_boottime_ns(); 2360 2361 /* 2362 * Make it visible to the rest of the system, but dont wake it up yet. 2363 * Need tasklist lock for parent etc handling! 2364 */ 2365 write_lock_irq(&tasklist_lock); 2366 2367 /* CLONE_PARENT re-uses the old parent */ 2368 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2369 p->real_parent = current->real_parent; 2370 p->parent_exec_id = current->parent_exec_id; 2371 if (clone_flags & CLONE_THREAD) 2372 p->exit_signal = -1; 2373 else 2374 p->exit_signal = current->group_leader->exit_signal; 2375 } else { 2376 p->real_parent = current; 2377 p->parent_exec_id = current->self_exec_id; 2378 p->exit_signal = args->exit_signal; 2379 } 2380 2381 klp_copy_process(p); 2382 2383 sched_core_fork(p); 2384 2385 spin_lock(¤t->sighand->siglock); 2386 2387 /* 2388 * Copy seccomp details explicitly here, in case they were changed 2389 * before holding sighand lock. 2390 */ 2391 copy_seccomp(p); 2392 2393 rseq_fork(p, clone_flags); 2394 2395 /* Don't start children in a dying pid namespace */ 2396 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2397 retval = -ENOMEM; 2398 goto bad_fork_cancel_cgroup; 2399 } 2400 2401 /* Let kill terminate clone/fork in the middle */ 2402 if (fatal_signal_pending(current)) { 2403 retval = -EINTR; 2404 goto bad_fork_cancel_cgroup; 2405 } 2406 2407 init_task_pid_links(p); 2408 if (likely(p->pid)) { 2409 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2410 2411 init_task_pid(p, PIDTYPE_PID, pid); 2412 if (thread_group_leader(p)) { 2413 init_task_pid(p, PIDTYPE_TGID, pid); 2414 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2415 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2416 2417 if (is_child_reaper(pid)) { 2418 ns_of_pid(pid)->child_reaper = p; 2419 p->signal->flags |= SIGNAL_UNKILLABLE; 2420 } 2421 p->signal->shared_pending.signal = delayed.signal; 2422 p->signal->tty = tty_kref_get(current->signal->tty); 2423 /* 2424 * Inherit has_child_subreaper flag under the same 2425 * tasklist_lock with adding child to the process tree 2426 * for propagate_has_child_subreaper optimization. 2427 */ 2428 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2429 p->real_parent->signal->is_child_subreaper; 2430 list_add_tail(&p->sibling, &p->real_parent->children); 2431 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2432 attach_pid(p, PIDTYPE_TGID); 2433 attach_pid(p, PIDTYPE_PGID); 2434 attach_pid(p, PIDTYPE_SID); 2435 __this_cpu_inc(process_counts); 2436 } else { 2437 current->signal->nr_threads++; 2438 atomic_inc(¤t->signal->live); 2439 refcount_inc(¤t->signal->sigcnt); 2440 task_join_group_stop(p); 2441 list_add_tail_rcu(&p->thread_group, 2442 &p->group_leader->thread_group); 2443 list_add_tail_rcu(&p->thread_node, 2444 &p->signal->thread_head); 2445 } 2446 attach_pid(p, PIDTYPE_PID); 2447 nr_threads++; 2448 } 2449 total_forks++; 2450 hlist_del_init(&delayed.node); 2451 spin_unlock(¤t->sighand->siglock); 2452 syscall_tracepoint_update(p); 2453 write_unlock_irq(&tasklist_lock); 2454 2455 if (pidfile) 2456 fd_install(pidfd, pidfile); 2457 2458 proc_fork_connector(p); 2459 sched_post_fork(p); 2460 cgroup_post_fork(p, args); 2461 perf_event_fork(p); 2462 2463 trace_task_newtask(p, clone_flags); 2464 uprobe_copy_process(p, clone_flags); 2465 2466 copy_oom_score_adj(clone_flags, p); 2467 2468 return p; 2469 2470 bad_fork_cancel_cgroup: 2471 sched_core_free(p); 2472 spin_unlock(¤t->sighand->siglock); 2473 write_unlock_irq(&tasklist_lock); 2474 cgroup_cancel_fork(p, args); 2475 bad_fork_put_pidfd: 2476 if (clone_flags & CLONE_PIDFD) { 2477 fput(pidfile); 2478 put_unused_fd(pidfd); 2479 } 2480 bad_fork_free_pid: 2481 if (pid != &init_struct_pid) 2482 free_pid(pid); 2483 bad_fork_cleanup_thread: 2484 exit_thread(p); 2485 bad_fork_cleanup_io: 2486 if (p->io_context) 2487 exit_io_context(p); 2488 bad_fork_cleanup_namespaces: 2489 exit_task_namespaces(p); 2490 bad_fork_cleanup_mm: 2491 if (p->mm) { 2492 mm_clear_owner(p->mm, p); 2493 mmput(p->mm); 2494 } 2495 bad_fork_cleanup_signal: 2496 if (!(clone_flags & CLONE_THREAD)) 2497 free_signal_struct(p->signal); 2498 bad_fork_cleanup_sighand: 2499 __cleanup_sighand(p->sighand); 2500 bad_fork_cleanup_fs: 2501 exit_fs(p); /* blocking */ 2502 bad_fork_cleanup_files: 2503 exit_files(p); /* blocking */ 2504 bad_fork_cleanup_semundo: 2505 exit_sem(p); 2506 bad_fork_cleanup_security: 2507 security_task_free(p); 2508 bad_fork_cleanup_audit: 2509 audit_free(p); 2510 bad_fork_cleanup_perf: 2511 perf_event_free_task(p); 2512 bad_fork_cleanup_policy: 2513 lockdep_free_task(p); 2514 #ifdef CONFIG_NUMA 2515 mpol_put(p->mempolicy); 2516 #endif 2517 bad_fork_cleanup_delayacct: 2518 delayacct_tsk_free(p); 2519 bad_fork_cleanup_count: 2520 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2521 exit_creds(p); 2522 bad_fork_free: 2523 WRITE_ONCE(p->__state, TASK_DEAD); 2524 exit_task_stack_account(p); 2525 put_task_stack(p); 2526 delayed_free_task(p); 2527 fork_out: 2528 spin_lock_irq(¤t->sighand->siglock); 2529 hlist_del_init(&delayed.node); 2530 spin_unlock_irq(¤t->sighand->siglock); 2531 return ERR_PTR(retval); 2532 } 2533 2534 static inline void init_idle_pids(struct task_struct *idle) 2535 { 2536 enum pid_type type; 2537 2538 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2539 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2540 init_task_pid(idle, type, &init_struct_pid); 2541 } 2542 } 2543 2544 struct task_struct * __init fork_idle(int cpu) 2545 { 2546 struct task_struct *task; 2547 struct kernel_clone_args args = { 2548 .flags = CLONE_VM, 2549 }; 2550 2551 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2552 if (!IS_ERR(task)) { 2553 init_idle_pids(task); 2554 init_idle(task, cpu); 2555 } 2556 2557 return task; 2558 } 2559 2560 struct mm_struct *copy_init_mm(void) 2561 { 2562 return dup_mm(NULL, &init_mm); 2563 } 2564 2565 /* 2566 * This is like kernel_clone(), but shaved down and tailored to just 2567 * creating io_uring workers. It returns a created task, or an error pointer. 2568 * The returned task is inactive, and the caller must fire it up through 2569 * wake_up_new_task(p). All signals are blocked in the created task. 2570 */ 2571 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2572 { 2573 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2574 CLONE_IO; 2575 struct kernel_clone_args args = { 2576 .flags = ((lower_32_bits(flags) | CLONE_VM | 2577 CLONE_UNTRACED) & ~CSIGNAL), 2578 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2579 .stack = (unsigned long)fn, 2580 .stack_size = (unsigned long)arg, 2581 .io_thread = 1, 2582 }; 2583 2584 return copy_process(NULL, 0, node, &args); 2585 } 2586 2587 /* 2588 * Ok, this is the main fork-routine. 2589 * 2590 * It copies the process, and if successful kick-starts 2591 * it and waits for it to finish using the VM if required. 2592 * 2593 * args->exit_signal is expected to be checked for sanity by the caller. 2594 */ 2595 pid_t kernel_clone(struct kernel_clone_args *args) 2596 { 2597 u64 clone_flags = args->flags; 2598 struct completion vfork; 2599 struct pid *pid; 2600 struct task_struct *p; 2601 int trace = 0; 2602 pid_t nr; 2603 2604 /* 2605 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2606 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2607 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2608 * field in struct clone_args and it still doesn't make sense to have 2609 * them both point at the same memory location. Performing this check 2610 * here has the advantage that we don't need to have a separate helper 2611 * to check for legacy clone(). 2612 */ 2613 if ((args->flags & CLONE_PIDFD) && 2614 (args->flags & CLONE_PARENT_SETTID) && 2615 (args->pidfd == args->parent_tid)) 2616 return -EINVAL; 2617 2618 /* 2619 * Determine whether and which event to report to ptracer. When 2620 * called from kernel_thread or CLONE_UNTRACED is explicitly 2621 * requested, no event is reported; otherwise, report if the event 2622 * for the type of forking is enabled. 2623 */ 2624 if (!(clone_flags & CLONE_UNTRACED)) { 2625 if (clone_flags & CLONE_VFORK) 2626 trace = PTRACE_EVENT_VFORK; 2627 else if (args->exit_signal != SIGCHLD) 2628 trace = PTRACE_EVENT_CLONE; 2629 else 2630 trace = PTRACE_EVENT_FORK; 2631 2632 if (likely(!ptrace_event_enabled(current, trace))) 2633 trace = 0; 2634 } 2635 2636 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2637 add_latent_entropy(); 2638 2639 if (IS_ERR(p)) 2640 return PTR_ERR(p); 2641 2642 /* 2643 * Do this prior waking up the new thread - the thread pointer 2644 * might get invalid after that point, if the thread exits quickly. 2645 */ 2646 trace_sched_process_fork(current, p); 2647 2648 pid = get_task_pid(p, PIDTYPE_PID); 2649 nr = pid_vnr(pid); 2650 2651 if (clone_flags & CLONE_PARENT_SETTID) 2652 put_user(nr, args->parent_tid); 2653 2654 if (clone_flags & CLONE_VFORK) { 2655 p->vfork_done = &vfork; 2656 init_completion(&vfork); 2657 get_task_struct(p); 2658 } 2659 2660 wake_up_new_task(p); 2661 2662 /* forking complete and child started to run, tell ptracer */ 2663 if (unlikely(trace)) 2664 ptrace_event_pid(trace, pid); 2665 2666 if (clone_flags & CLONE_VFORK) { 2667 if (!wait_for_vfork_done(p, &vfork)) 2668 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2669 } 2670 2671 put_pid(pid); 2672 return nr; 2673 } 2674 2675 /* 2676 * Create a kernel thread. 2677 */ 2678 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 2679 { 2680 struct kernel_clone_args args = { 2681 .flags = ((lower_32_bits(flags) | CLONE_VM | 2682 CLONE_UNTRACED) & ~CSIGNAL), 2683 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2684 .stack = (unsigned long)fn, 2685 .stack_size = (unsigned long)arg, 2686 }; 2687 2688 return kernel_clone(&args); 2689 } 2690 2691 #ifdef __ARCH_WANT_SYS_FORK 2692 SYSCALL_DEFINE0(fork) 2693 { 2694 #ifdef CONFIG_MMU 2695 struct kernel_clone_args args = { 2696 .exit_signal = SIGCHLD, 2697 }; 2698 2699 return kernel_clone(&args); 2700 #else 2701 /* can not support in nommu mode */ 2702 return -EINVAL; 2703 #endif 2704 } 2705 #endif 2706 2707 #ifdef __ARCH_WANT_SYS_VFORK 2708 SYSCALL_DEFINE0(vfork) 2709 { 2710 struct kernel_clone_args args = { 2711 .flags = CLONE_VFORK | CLONE_VM, 2712 .exit_signal = SIGCHLD, 2713 }; 2714 2715 return kernel_clone(&args); 2716 } 2717 #endif 2718 2719 #ifdef __ARCH_WANT_SYS_CLONE 2720 #ifdef CONFIG_CLONE_BACKWARDS 2721 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2722 int __user *, parent_tidptr, 2723 unsigned long, tls, 2724 int __user *, child_tidptr) 2725 #elif defined(CONFIG_CLONE_BACKWARDS2) 2726 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2727 int __user *, parent_tidptr, 2728 int __user *, child_tidptr, 2729 unsigned long, tls) 2730 #elif defined(CONFIG_CLONE_BACKWARDS3) 2731 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2732 int, stack_size, 2733 int __user *, parent_tidptr, 2734 int __user *, child_tidptr, 2735 unsigned long, tls) 2736 #else 2737 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2738 int __user *, parent_tidptr, 2739 int __user *, child_tidptr, 2740 unsigned long, tls) 2741 #endif 2742 { 2743 struct kernel_clone_args args = { 2744 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2745 .pidfd = parent_tidptr, 2746 .child_tid = child_tidptr, 2747 .parent_tid = parent_tidptr, 2748 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2749 .stack = newsp, 2750 .tls = tls, 2751 }; 2752 2753 return kernel_clone(&args); 2754 } 2755 #endif 2756 2757 #ifdef __ARCH_WANT_SYS_CLONE3 2758 2759 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2760 struct clone_args __user *uargs, 2761 size_t usize) 2762 { 2763 int err; 2764 struct clone_args args; 2765 pid_t *kset_tid = kargs->set_tid; 2766 2767 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2768 CLONE_ARGS_SIZE_VER0); 2769 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2770 CLONE_ARGS_SIZE_VER1); 2771 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2772 CLONE_ARGS_SIZE_VER2); 2773 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2774 2775 if (unlikely(usize > PAGE_SIZE)) 2776 return -E2BIG; 2777 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2778 return -EINVAL; 2779 2780 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2781 if (err) 2782 return err; 2783 2784 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2785 return -EINVAL; 2786 2787 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2788 return -EINVAL; 2789 2790 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2791 return -EINVAL; 2792 2793 /* 2794 * Verify that higher 32bits of exit_signal are unset and that 2795 * it is a valid signal 2796 */ 2797 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2798 !valid_signal(args.exit_signal))) 2799 return -EINVAL; 2800 2801 if ((args.flags & CLONE_INTO_CGROUP) && 2802 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2803 return -EINVAL; 2804 2805 *kargs = (struct kernel_clone_args){ 2806 .flags = args.flags, 2807 .pidfd = u64_to_user_ptr(args.pidfd), 2808 .child_tid = u64_to_user_ptr(args.child_tid), 2809 .parent_tid = u64_to_user_ptr(args.parent_tid), 2810 .exit_signal = args.exit_signal, 2811 .stack = args.stack, 2812 .stack_size = args.stack_size, 2813 .tls = args.tls, 2814 .set_tid_size = args.set_tid_size, 2815 .cgroup = args.cgroup, 2816 }; 2817 2818 if (args.set_tid && 2819 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2820 (kargs->set_tid_size * sizeof(pid_t)))) 2821 return -EFAULT; 2822 2823 kargs->set_tid = kset_tid; 2824 2825 return 0; 2826 } 2827 2828 /** 2829 * clone3_stack_valid - check and prepare stack 2830 * @kargs: kernel clone args 2831 * 2832 * Verify that the stack arguments userspace gave us are sane. 2833 * In addition, set the stack direction for userspace since it's easy for us to 2834 * determine. 2835 */ 2836 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 2837 { 2838 if (kargs->stack == 0) { 2839 if (kargs->stack_size > 0) 2840 return false; 2841 } else { 2842 if (kargs->stack_size == 0) 2843 return false; 2844 2845 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 2846 return false; 2847 2848 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64) 2849 kargs->stack += kargs->stack_size; 2850 #endif 2851 } 2852 2853 return true; 2854 } 2855 2856 static bool clone3_args_valid(struct kernel_clone_args *kargs) 2857 { 2858 /* Verify that no unknown flags are passed along. */ 2859 if (kargs->flags & 2860 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 2861 return false; 2862 2863 /* 2864 * - make the CLONE_DETACHED bit reusable for clone3 2865 * - make the CSIGNAL bits reusable for clone3 2866 */ 2867 if (kargs->flags & (CLONE_DETACHED | CSIGNAL)) 2868 return false; 2869 2870 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 2871 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 2872 return false; 2873 2874 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 2875 kargs->exit_signal) 2876 return false; 2877 2878 if (!clone3_stack_valid(kargs)) 2879 return false; 2880 2881 return true; 2882 } 2883 2884 /** 2885 * clone3 - create a new process with specific properties 2886 * @uargs: argument structure 2887 * @size: size of @uargs 2888 * 2889 * clone3() is the extensible successor to clone()/clone2(). 2890 * It takes a struct as argument that is versioned by its size. 2891 * 2892 * Return: On success, a positive PID for the child process. 2893 * On error, a negative errno number. 2894 */ 2895 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 2896 { 2897 int err; 2898 2899 struct kernel_clone_args kargs; 2900 pid_t set_tid[MAX_PID_NS_LEVEL]; 2901 2902 kargs.set_tid = set_tid; 2903 2904 err = copy_clone_args_from_user(&kargs, uargs, size); 2905 if (err) 2906 return err; 2907 2908 if (!clone3_args_valid(&kargs)) 2909 return -EINVAL; 2910 2911 return kernel_clone(&kargs); 2912 } 2913 #endif 2914 2915 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2916 { 2917 struct task_struct *leader, *parent, *child; 2918 int res; 2919 2920 read_lock(&tasklist_lock); 2921 leader = top = top->group_leader; 2922 down: 2923 for_each_thread(leader, parent) { 2924 list_for_each_entry(child, &parent->children, sibling) { 2925 res = visitor(child, data); 2926 if (res) { 2927 if (res < 0) 2928 goto out; 2929 leader = child; 2930 goto down; 2931 } 2932 up: 2933 ; 2934 } 2935 } 2936 2937 if (leader != top) { 2938 child = leader; 2939 parent = child->real_parent; 2940 leader = parent->group_leader; 2941 goto up; 2942 } 2943 out: 2944 read_unlock(&tasklist_lock); 2945 } 2946 2947 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 2948 #define ARCH_MIN_MMSTRUCT_ALIGN 0 2949 #endif 2950 2951 static void sighand_ctor(void *data) 2952 { 2953 struct sighand_struct *sighand = data; 2954 2955 spin_lock_init(&sighand->siglock); 2956 init_waitqueue_head(&sighand->signalfd_wqh); 2957 } 2958 2959 void __init proc_caches_init(void) 2960 { 2961 unsigned int mm_size; 2962 2963 sighand_cachep = kmem_cache_create("sighand_cache", 2964 sizeof(struct sighand_struct), 0, 2965 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 2966 SLAB_ACCOUNT, sighand_ctor); 2967 signal_cachep = kmem_cache_create("signal_cache", 2968 sizeof(struct signal_struct), 0, 2969 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2970 NULL); 2971 files_cachep = kmem_cache_create("files_cache", 2972 sizeof(struct files_struct), 0, 2973 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2974 NULL); 2975 fs_cachep = kmem_cache_create("fs_cache", 2976 sizeof(struct fs_struct), 0, 2977 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2978 NULL); 2979 2980 /* 2981 * The mm_cpumask is located at the end of mm_struct, and is 2982 * dynamically sized based on the maximum CPU number this system 2983 * can have, taking hotplug into account (nr_cpu_ids). 2984 */ 2985 mm_size = sizeof(struct mm_struct) + cpumask_size(); 2986 2987 mm_cachep = kmem_cache_create_usercopy("mm_struct", 2988 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 2989 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2990 offsetof(struct mm_struct, saved_auxv), 2991 sizeof_field(struct mm_struct, saved_auxv), 2992 NULL); 2993 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 2994 mmap_init(); 2995 nsproxy_cache_init(); 2996 } 2997 2998 /* 2999 * Check constraints on flags passed to the unshare system call. 3000 */ 3001 static int check_unshare_flags(unsigned long unshare_flags) 3002 { 3003 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 3004 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 3005 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 3006 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 3007 CLONE_NEWTIME)) 3008 return -EINVAL; 3009 /* 3010 * Not implemented, but pretend it works if there is nothing 3011 * to unshare. Note that unsharing the address space or the 3012 * signal handlers also need to unshare the signal queues (aka 3013 * CLONE_THREAD). 3014 */ 3015 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3016 if (!thread_group_empty(current)) 3017 return -EINVAL; 3018 } 3019 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3020 if (refcount_read(¤t->sighand->count) > 1) 3021 return -EINVAL; 3022 } 3023 if (unshare_flags & CLONE_VM) { 3024 if (!current_is_single_threaded()) 3025 return -EINVAL; 3026 } 3027 3028 return 0; 3029 } 3030 3031 /* 3032 * Unshare the filesystem structure if it is being shared 3033 */ 3034 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3035 { 3036 struct fs_struct *fs = current->fs; 3037 3038 if (!(unshare_flags & CLONE_FS) || !fs) 3039 return 0; 3040 3041 /* don't need lock here; in the worst case we'll do useless copy */ 3042 if (fs->users == 1) 3043 return 0; 3044 3045 *new_fsp = copy_fs_struct(fs); 3046 if (!*new_fsp) 3047 return -ENOMEM; 3048 3049 return 0; 3050 } 3051 3052 /* 3053 * Unshare file descriptor table if it is being shared 3054 */ 3055 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 3056 struct files_struct **new_fdp) 3057 { 3058 struct files_struct *fd = current->files; 3059 int error = 0; 3060 3061 if ((unshare_flags & CLONE_FILES) && 3062 (fd && atomic_read(&fd->count) > 1)) { 3063 *new_fdp = dup_fd(fd, max_fds, &error); 3064 if (!*new_fdp) 3065 return error; 3066 } 3067 3068 return 0; 3069 } 3070 3071 /* 3072 * unshare allows a process to 'unshare' part of the process 3073 * context which was originally shared using clone. copy_* 3074 * functions used by kernel_clone() cannot be used here directly 3075 * because they modify an inactive task_struct that is being 3076 * constructed. Here we are modifying the current, active, 3077 * task_struct. 3078 */ 3079 int ksys_unshare(unsigned long unshare_flags) 3080 { 3081 struct fs_struct *fs, *new_fs = NULL; 3082 struct files_struct *new_fd = NULL; 3083 struct cred *new_cred = NULL; 3084 struct nsproxy *new_nsproxy = NULL; 3085 int do_sysvsem = 0; 3086 int err; 3087 3088 /* 3089 * If unsharing a user namespace must also unshare the thread group 3090 * and unshare the filesystem root and working directories. 3091 */ 3092 if (unshare_flags & CLONE_NEWUSER) 3093 unshare_flags |= CLONE_THREAD | CLONE_FS; 3094 /* 3095 * If unsharing vm, must also unshare signal handlers. 3096 */ 3097 if (unshare_flags & CLONE_VM) 3098 unshare_flags |= CLONE_SIGHAND; 3099 /* 3100 * If unsharing a signal handlers, must also unshare the signal queues. 3101 */ 3102 if (unshare_flags & CLONE_SIGHAND) 3103 unshare_flags |= CLONE_THREAD; 3104 /* 3105 * If unsharing namespace, must also unshare filesystem information. 3106 */ 3107 if (unshare_flags & CLONE_NEWNS) 3108 unshare_flags |= CLONE_FS; 3109 3110 err = check_unshare_flags(unshare_flags); 3111 if (err) 3112 goto bad_unshare_out; 3113 /* 3114 * CLONE_NEWIPC must also detach from the undolist: after switching 3115 * to a new ipc namespace, the semaphore arrays from the old 3116 * namespace are unreachable. 3117 */ 3118 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3119 do_sysvsem = 1; 3120 err = unshare_fs(unshare_flags, &new_fs); 3121 if (err) 3122 goto bad_unshare_out; 3123 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 3124 if (err) 3125 goto bad_unshare_cleanup_fs; 3126 err = unshare_userns(unshare_flags, &new_cred); 3127 if (err) 3128 goto bad_unshare_cleanup_fd; 3129 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3130 new_cred, new_fs); 3131 if (err) 3132 goto bad_unshare_cleanup_cred; 3133 3134 if (new_cred) { 3135 err = set_cred_ucounts(new_cred); 3136 if (err) 3137 goto bad_unshare_cleanup_cred; 3138 } 3139 3140 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3141 if (do_sysvsem) { 3142 /* 3143 * CLONE_SYSVSEM is equivalent to sys_exit(). 3144 */ 3145 exit_sem(current); 3146 } 3147 if (unshare_flags & CLONE_NEWIPC) { 3148 /* Orphan segments in old ns (see sem above). */ 3149 exit_shm(current); 3150 shm_init_task(current); 3151 } 3152 3153 if (new_nsproxy) 3154 switch_task_namespaces(current, new_nsproxy); 3155 3156 task_lock(current); 3157 3158 if (new_fs) { 3159 fs = current->fs; 3160 spin_lock(&fs->lock); 3161 current->fs = new_fs; 3162 if (--fs->users) 3163 new_fs = NULL; 3164 else 3165 new_fs = fs; 3166 spin_unlock(&fs->lock); 3167 } 3168 3169 if (new_fd) 3170 swap(current->files, new_fd); 3171 3172 task_unlock(current); 3173 3174 if (new_cred) { 3175 /* Install the new user namespace */ 3176 commit_creds(new_cred); 3177 new_cred = NULL; 3178 } 3179 } 3180 3181 perf_event_namespaces(current); 3182 3183 bad_unshare_cleanup_cred: 3184 if (new_cred) 3185 put_cred(new_cred); 3186 bad_unshare_cleanup_fd: 3187 if (new_fd) 3188 put_files_struct(new_fd); 3189 3190 bad_unshare_cleanup_fs: 3191 if (new_fs) 3192 free_fs_struct(new_fs); 3193 3194 bad_unshare_out: 3195 return err; 3196 } 3197 3198 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3199 { 3200 return ksys_unshare(unshare_flags); 3201 } 3202 3203 /* 3204 * Helper to unshare the files of the current task. 3205 * We don't want to expose copy_files internals to 3206 * the exec layer of the kernel. 3207 */ 3208 3209 int unshare_files(void) 3210 { 3211 struct task_struct *task = current; 3212 struct files_struct *old, *copy = NULL; 3213 int error; 3214 3215 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3216 if (error || !copy) 3217 return error; 3218 3219 old = task->files; 3220 task_lock(task); 3221 task->files = copy; 3222 task_unlock(task); 3223 put_files_struct(old); 3224 return 0; 3225 } 3226 3227 int sysctl_max_threads(struct ctl_table *table, int write, 3228 void *buffer, size_t *lenp, loff_t *ppos) 3229 { 3230 struct ctl_table t; 3231 int ret; 3232 int threads = max_threads; 3233 int min = 1; 3234 int max = MAX_THREADS; 3235 3236 t = *table; 3237 t.data = &threads; 3238 t.extra1 = &min; 3239 t.extra2 = &max; 3240 3241 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3242 if (ret || !write) 3243 return ret; 3244 3245 max_threads = threads; 3246 3247 return 0; 3248 } 3249