xref: /linux/kernel/fork.c (revision 1c9f8dff62d85ce00b0e99f774a84bd783af7cac)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/tty.h>
79 #include <linux/fs_struct.h>
80 #include <linux/magic.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94 #include <linux/stackleak.h>
95 #include <linux/kasan.h>
96 #include <linux/scs.h>
97 #include <linux/io_uring.h>
98 #include <linux/bpf.h>
99 #include <linux/stackprotector.h>
100 #include <linux/user_events.h>
101 #include <linux/iommu.h>
102 
103 #include <asm/pgalloc.h>
104 #include <linux/uaccess.h>
105 #include <asm/mmu_context.h>
106 #include <asm/cacheflush.h>
107 #include <asm/tlbflush.h>
108 
109 #include <trace/events/sched.h>
110 
111 #define CREATE_TRACE_POINTS
112 #include <trace/events/task.h>
113 
114 /*
115  * Minimum number of threads to boot the kernel
116  */
117 #define MIN_THREADS 20
118 
119 /*
120  * Maximum number of threads
121  */
122 #define MAX_THREADS FUTEX_TID_MASK
123 
124 /*
125  * Protected counters by write_lock_irq(&tasklist_lock)
126  */
127 unsigned long total_forks;	/* Handle normal Linux uptimes. */
128 int nr_threads;			/* The idle threads do not count.. */
129 
130 static int max_threads;		/* tunable limit on nr_threads */
131 
132 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
133 
134 static const char * const resident_page_types[] = {
135 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
136 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
137 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
138 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
139 };
140 
141 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
142 
143 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
144 
145 #ifdef CONFIG_PROVE_RCU
146 int lockdep_tasklist_lock_is_held(void)
147 {
148 	return lockdep_is_held(&tasklist_lock);
149 }
150 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
151 #endif /* #ifdef CONFIG_PROVE_RCU */
152 
153 int nr_processes(void)
154 {
155 	int cpu;
156 	int total = 0;
157 
158 	for_each_possible_cpu(cpu)
159 		total += per_cpu(process_counts, cpu);
160 
161 	return total;
162 }
163 
164 void __weak arch_release_task_struct(struct task_struct *tsk)
165 {
166 }
167 
168 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
169 static struct kmem_cache *task_struct_cachep;
170 
171 static inline struct task_struct *alloc_task_struct_node(int node)
172 {
173 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
174 }
175 
176 static inline void free_task_struct(struct task_struct *tsk)
177 {
178 	kmem_cache_free(task_struct_cachep, tsk);
179 }
180 #endif
181 
182 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
183 
184 /*
185  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
186  * kmemcache based allocator.
187  */
188 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
189 
190 #  ifdef CONFIG_VMAP_STACK
191 /*
192  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
193  * flush.  Try to minimize the number of calls by caching stacks.
194  */
195 #define NR_CACHED_STACKS 2
196 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
197 
198 struct vm_stack {
199 	struct rcu_head rcu;
200 	struct vm_struct *stack_vm_area;
201 };
202 
203 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
204 {
205 	unsigned int i;
206 
207 	for (i = 0; i < NR_CACHED_STACKS; i++) {
208 		if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
209 			continue;
210 		return true;
211 	}
212 	return false;
213 }
214 
215 static void thread_stack_free_rcu(struct rcu_head *rh)
216 {
217 	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
218 
219 	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
220 		return;
221 
222 	vfree(vm_stack);
223 }
224 
225 static void thread_stack_delayed_free(struct task_struct *tsk)
226 {
227 	struct vm_stack *vm_stack = tsk->stack;
228 
229 	vm_stack->stack_vm_area = tsk->stack_vm_area;
230 	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
231 }
232 
233 static int free_vm_stack_cache(unsigned int cpu)
234 {
235 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
236 	int i;
237 
238 	for (i = 0; i < NR_CACHED_STACKS; i++) {
239 		struct vm_struct *vm_stack = cached_vm_stacks[i];
240 
241 		if (!vm_stack)
242 			continue;
243 
244 		vfree(vm_stack->addr);
245 		cached_vm_stacks[i] = NULL;
246 	}
247 
248 	return 0;
249 }
250 
251 static int memcg_charge_kernel_stack(struct vm_struct *vm)
252 {
253 	int i;
254 	int ret;
255 	int nr_charged = 0;
256 
257 	BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
258 
259 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
260 		ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
261 		if (ret)
262 			goto err;
263 		nr_charged++;
264 	}
265 	return 0;
266 err:
267 	for (i = 0; i < nr_charged; i++)
268 		memcg_kmem_uncharge_page(vm->pages[i], 0);
269 	return ret;
270 }
271 
272 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
273 {
274 	struct vm_struct *vm;
275 	void *stack;
276 	int i;
277 
278 	for (i = 0; i < NR_CACHED_STACKS; i++) {
279 		struct vm_struct *s;
280 
281 		s = this_cpu_xchg(cached_stacks[i], NULL);
282 
283 		if (!s)
284 			continue;
285 
286 		/* Reset stack metadata. */
287 		kasan_unpoison_range(s->addr, THREAD_SIZE);
288 
289 		stack = kasan_reset_tag(s->addr);
290 
291 		/* Clear stale pointers from reused stack. */
292 		memset(stack, 0, THREAD_SIZE);
293 
294 		if (memcg_charge_kernel_stack(s)) {
295 			vfree(s->addr);
296 			return -ENOMEM;
297 		}
298 
299 		tsk->stack_vm_area = s;
300 		tsk->stack = stack;
301 		return 0;
302 	}
303 
304 	/*
305 	 * Allocated stacks are cached and later reused by new threads,
306 	 * so memcg accounting is performed manually on assigning/releasing
307 	 * stacks to tasks. Drop __GFP_ACCOUNT.
308 	 */
309 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
310 				     VMALLOC_START, VMALLOC_END,
311 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
312 				     PAGE_KERNEL,
313 				     0, node, __builtin_return_address(0));
314 	if (!stack)
315 		return -ENOMEM;
316 
317 	vm = find_vm_area(stack);
318 	if (memcg_charge_kernel_stack(vm)) {
319 		vfree(stack);
320 		return -ENOMEM;
321 	}
322 	/*
323 	 * We can't call find_vm_area() in interrupt context, and
324 	 * free_thread_stack() can be called in interrupt context,
325 	 * so cache the vm_struct.
326 	 */
327 	tsk->stack_vm_area = vm;
328 	stack = kasan_reset_tag(stack);
329 	tsk->stack = stack;
330 	return 0;
331 }
332 
333 static void free_thread_stack(struct task_struct *tsk)
334 {
335 	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
336 		thread_stack_delayed_free(tsk);
337 
338 	tsk->stack = NULL;
339 	tsk->stack_vm_area = NULL;
340 }
341 
342 #  else /* !CONFIG_VMAP_STACK */
343 
344 static void thread_stack_free_rcu(struct rcu_head *rh)
345 {
346 	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
347 }
348 
349 static void thread_stack_delayed_free(struct task_struct *tsk)
350 {
351 	struct rcu_head *rh = tsk->stack;
352 
353 	call_rcu(rh, thread_stack_free_rcu);
354 }
355 
356 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
357 {
358 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
359 					     THREAD_SIZE_ORDER);
360 
361 	if (likely(page)) {
362 		tsk->stack = kasan_reset_tag(page_address(page));
363 		return 0;
364 	}
365 	return -ENOMEM;
366 }
367 
368 static void free_thread_stack(struct task_struct *tsk)
369 {
370 	thread_stack_delayed_free(tsk);
371 	tsk->stack = NULL;
372 }
373 
374 #  endif /* CONFIG_VMAP_STACK */
375 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
376 
377 static struct kmem_cache *thread_stack_cache;
378 
379 static void thread_stack_free_rcu(struct rcu_head *rh)
380 {
381 	kmem_cache_free(thread_stack_cache, rh);
382 }
383 
384 static void thread_stack_delayed_free(struct task_struct *tsk)
385 {
386 	struct rcu_head *rh = tsk->stack;
387 
388 	call_rcu(rh, thread_stack_free_rcu);
389 }
390 
391 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
392 {
393 	unsigned long *stack;
394 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
395 	stack = kasan_reset_tag(stack);
396 	tsk->stack = stack;
397 	return stack ? 0 : -ENOMEM;
398 }
399 
400 static void free_thread_stack(struct task_struct *tsk)
401 {
402 	thread_stack_delayed_free(tsk);
403 	tsk->stack = NULL;
404 }
405 
406 void thread_stack_cache_init(void)
407 {
408 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
409 					THREAD_SIZE, THREAD_SIZE, 0, 0,
410 					THREAD_SIZE, NULL);
411 	BUG_ON(thread_stack_cache == NULL);
412 }
413 
414 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
415 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
416 
417 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
418 {
419 	unsigned long *stack;
420 
421 	stack = arch_alloc_thread_stack_node(tsk, node);
422 	tsk->stack = stack;
423 	return stack ? 0 : -ENOMEM;
424 }
425 
426 static void free_thread_stack(struct task_struct *tsk)
427 {
428 	arch_free_thread_stack(tsk);
429 	tsk->stack = NULL;
430 }
431 
432 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
433 
434 /* SLAB cache for signal_struct structures (tsk->signal) */
435 static struct kmem_cache *signal_cachep;
436 
437 /* SLAB cache for sighand_struct structures (tsk->sighand) */
438 struct kmem_cache *sighand_cachep;
439 
440 /* SLAB cache for files_struct structures (tsk->files) */
441 struct kmem_cache *files_cachep;
442 
443 /* SLAB cache for fs_struct structures (tsk->fs) */
444 struct kmem_cache *fs_cachep;
445 
446 /* SLAB cache for vm_area_struct structures */
447 static struct kmem_cache *vm_area_cachep;
448 
449 /* SLAB cache for mm_struct structures (tsk->mm) */
450 static struct kmem_cache *mm_cachep;
451 
452 #ifdef CONFIG_PER_VMA_LOCK
453 
454 /* SLAB cache for vm_area_struct.lock */
455 static struct kmem_cache *vma_lock_cachep;
456 
457 static bool vma_lock_alloc(struct vm_area_struct *vma)
458 {
459 	vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
460 	if (!vma->vm_lock)
461 		return false;
462 
463 	init_rwsem(&vma->vm_lock->lock);
464 	vma->vm_lock_seq = -1;
465 
466 	return true;
467 }
468 
469 static inline void vma_lock_free(struct vm_area_struct *vma)
470 {
471 	kmem_cache_free(vma_lock_cachep, vma->vm_lock);
472 }
473 
474 #else /* CONFIG_PER_VMA_LOCK */
475 
476 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
477 static inline void vma_lock_free(struct vm_area_struct *vma) {}
478 
479 #endif /* CONFIG_PER_VMA_LOCK */
480 
481 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
482 {
483 	struct vm_area_struct *vma;
484 
485 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
486 	if (!vma)
487 		return NULL;
488 
489 	vma_init(vma, mm);
490 	if (!vma_lock_alloc(vma)) {
491 		kmem_cache_free(vm_area_cachep, vma);
492 		return NULL;
493 	}
494 
495 	return vma;
496 }
497 
498 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
499 {
500 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
501 
502 	if (!new)
503 		return NULL;
504 
505 	ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
506 	ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
507 	/*
508 	 * orig->shared.rb may be modified concurrently, but the clone
509 	 * will be reinitialized.
510 	 */
511 	data_race(memcpy(new, orig, sizeof(*new)));
512 	if (!vma_lock_alloc(new)) {
513 		kmem_cache_free(vm_area_cachep, new);
514 		return NULL;
515 	}
516 	INIT_LIST_HEAD(&new->anon_vma_chain);
517 	vma_numab_state_init(new);
518 	dup_anon_vma_name(orig, new);
519 
520 	return new;
521 }
522 
523 void __vm_area_free(struct vm_area_struct *vma)
524 {
525 	vma_numab_state_free(vma);
526 	free_anon_vma_name(vma);
527 	vma_lock_free(vma);
528 	kmem_cache_free(vm_area_cachep, vma);
529 }
530 
531 #ifdef CONFIG_PER_VMA_LOCK
532 static void vm_area_free_rcu_cb(struct rcu_head *head)
533 {
534 	struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
535 						  vm_rcu);
536 
537 	/* The vma should not be locked while being destroyed. */
538 	VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
539 	__vm_area_free(vma);
540 }
541 #endif
542 
543 void vm_area_free(struct vm_area_struct *vma)
544 {
545 #ifdef CONFIG_PER_VMA_LOCK
546 	call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
547 #else
548 	__vm_area_free(vma);
549 #endif
550 }
551 
552 static void account_kernel_stack(struct task_struct *tsk, int account)
553 {
554 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
555 		struct vm_struct *vm = task_stack_vm_area(tsk);
556 		int i;
557 
558 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
559 			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
560 					      account * (PAGE_SIZE / 1024));
561 	} else {
562 		void *stack = task_stack_page(tsk);
563 
564 		/* All stack pages are in the same node. */
565 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
566 				      account * (THREAD_SIZE / 1024));
567 	}
568 }
569 
570 void exit_task_stack_account(struct task_struct *tsk)
571 {
572 	account_kernel_stack(tsk, -1);
573 
574 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
575 		struct vm_struct *vm;
576 		int i;
577 
578 		vm = task_stack_vm_area(tsk);
579 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
580 			memcg_kmem_uncharge_page(vm->pages[i], 0);
581 	}
582 }
583 
584 static void release_task_stack(struct task_struct *tsk)
585 {
586 	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
587 		return;  /* Better to leak the stack than to free prematurely */
588 
589 	free_thread_stack(tsk);
590 }
591 
592 #ifdef CONFIG_THREAD_INFO_IN_TASK
593 void put_task_stack(struct task_struct *tsk)
594 {
595 	if (refcount_dec_and_test(&tsk->stack_refcount))
596 		release_task_stack(tsk);
597 }
598 #endif
599 
600 void free_task(struct task_struct *tsk)
601 {
602 #ifdef CONFIG_SECCOMP
603 	WARN_ON_ONCE(tsk->seccomp.filter);
604 #endif
605 	release_user_cpus_ptr(tsk);
606 	scs_release(tsk);
607 
608 #ifndef CONFIG_THREAD_INFO_IN_TASK
609 	/*
610 	 * The task is finally done with both the stack and thread_info,
611 	 * so free both.
612 	 */
613 	release_task_stack(tsk);
614 #else
615 	/*
616 	 * If the task had a separate stack allocation, it should be gone
617 	 * by now.
618 	 */
619 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
620 #endif
621 	rt_mutex_debug_task_free(tsk);
622 	ftrace_graph_exit_task(tsk);
623 	arch_release_task_struct(tsk);
624 	if (tsk->flags & PF_KTHREAD)
625 		free_kthread_struct(tsk);
626 	bpf_task_storage_free(tsk);
627 	free_task_struct(tsk);
628 }
629 EXPORT_SYMBOL(free_task);
630 
631 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
632 {
633 	struct file *exe_file;
634 
635 	exe_file = get_mm_exe_file(oldmm);
636 	RCU_INIT_POINTER(mm->exe_file, exe_file);
637 	/*
638 	 * We depend on the oldmm having properly denied write access to the
639 	 * exe_file already.
640 	 */
641 	if (exe_file && deny_write_access(exe_file))
642 		pr_warn_once("deny_write_access() failed in %s\n", __func__);
643 }
644 
645 #ifdef CONFIG_MMU
646 static __latent_entropy int dup_mmap(struct mm_struct *mm,
647 					struct mm_struct *oldmm)
648 {
649 	struct vm_area_struct *mpnt, *tmp;
650 	int retval;
651 	unsigned long charge = 0;
652 	LIST_HEAD(uf);
653 	VMA_ITERATOR(old_vmi, oldmm, 0);
654 	VMA_ITERATOR(vmi, mm, 0);
655 
656 	uprobe_start_dup_mmap();
657 	if (mmap_write_lock_killable(oldmm)) {
658 		retval = -EINTR;
659 		goto fail_uprobe_end;
660 	}
661 	flush_cache_dup_mm(oldmm);
662 	uprobe_dup_mmap(oldmm, mm);
663 	/*
664 	 * Not linked in yet - no deadlock potential:
665 	 */
666 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
667 
668 	/* No ordering required: file already has been exposed. */
669 	dup_mm_exe_file(mm, oldmm);
670 
671 	mm->total_vm = oldmm->total_vm;
672 	mm->data_vm = oldmm->data_vm;
673 	mm->exec_vm = oldmm->exec_vm;
674 	mm->stack_vm = oldmm->stack_vm;
675 
676 	retval = ksm_fork(mm, oldmm);
677 	if (retval)
678 		goto out;
679 	khugepaged_fork(mm, oldmm);
680 
681 	retval = vma_iter_bulk_alloc(&vmi, oldmm->map_count);
682 	if (retval)
683 		goto out;
684 
685 	mt_clear_in_rcu(vmi.mas.tree);
686 	for_each_vma(old_vmi, mpnt) {
687 		struct file *file;
688 
689 		vma_start_write(mpnt);
690 		if (mpnt->vm_flags & VM_DONTCOPY) {
691 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
692 			continue;
693 		}
694 		charge = 0;
695 		/*
696 		 * Don't duplicate many vmas if we've been oom-killed (for
697 		 * example)
698 		 */
699 		if (fatal_signal_pending(current)) {
700 			retval = -EINTR;
701 			goto loop_out;
702 		}
703 		if (mpnt->vm_flags & VM_ACCOUNT) {
704 			unsigned long len = vma_pages(mpnt);
705 
706 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
707 				goto fail_nomem;
708 			charge = len;
709 		}
710 		tmp = vm_area_dup(mpnt);
711 		if (!tmp)
712 			goto fail_nomem;
713 		retval = vma_dup_policy(mpnt, tmp);
714 		if (retval)
715 			goto fail_nomem_policy;
716 		tmp->vm_mm = mm;
717 		retval = dup_userfaultfd(tmp, &uf);
718 		if (retval)
719 			goto fail_nomem_anon_vma_fork;
720 		if (tmp->vm_flags & VM_WIPEONFORK) {
721 			/*
722 			 * VM_WIPEONFORK gets a clean slate in the child.
723 			 * Don't prepare anon_vma until fault since we don't
724 			 * copy page for current vma.
725 			 */
726 			tmp->anon_vma = NULL;
727 		} else if (anon_vma_fork(tmp, mpnt))
728 			goto fail_nomem_anon_vma_fork;
729 		vm_flags_clear(tmp, VM_LOCKED_MASK);
730 		file = tmp->vm_file;
731 		if (file) {
732 			struct address_space *mapping = file->f_mapping;
733 
734 			get_file(file);
735 			i_mmap_lock_write(mapping);
736 			if (tmp->vm_flags & VM_SHARED)
737 				mapping_allow_writable(mapping);
738 			flush_dcache_mmap_lock(mapping);
739 			/* insert tmp into the share list, just after mpnt */
740 			vma_interval_tree_insert_after(tmp, mpnt,
741 					&mapping->i_mmap);
742 			flush_dcache_mmap_unlock(mapping);
743 			i_mmap_unlock_write(mapping);
744 		}
745 
746 		/*
747 		 * Copy/update hugetlb private vma information.
748 		 */
749 		if (is_vm_hugetlb_page(tmp))
750 			hugetlb_dup_vma_private(tmp);
751 
752 		/* Link the vma into the MT */
753 		if (vma_iter_bulk_store(&vmi, tmp))
754 			goto fail_nomem_vmi_store;
755 
756 		mm->map_count++;
757 		if (!(tmp->vm_flags & VM_WIPEONFORK))
758 			retval = copy_page_range(tmp, mpnt);
759 
760 		if (tmp->vm_ops && tmp->vm_ops->open)
761 			tmp->vm_ops->open(tmp);
762 
763 		if (retval)
764 			goto loop_out;
765 	}
766 	/* a new mm has just been created */
767 	retval = arch_dup_mmap(oldmm, mm);
768 loop_out:
769 	vma_iter_free(&vmi);
770 	if (!retval)
771 		mt_set_in_rcu(vmi.mas.tree);
772 out:
773 	mmap_write_unlock(mm);
774 	flush_tlb_mm(oldmm);
775 	mmap_write_unlock(oldmm);
776 	dup_userfaultfd_complete(&uf);
777 fail_uprobe_end:
778 	uprobe_end_dup_mmap();
779 	return retval;
780 
781 fail_nomem_vmi_store:
782 	unlink_anon_vmas(tmp);
783 fail_nomem_anon_vma_fork:
784 	mpol_put(vma_policy(tmp));
785 fail_nomem_policy:
786 	vm_area_free(tmp);
787 fail_nomem:
788 	retval = -ENOMEM;
789 	vm_unacct_memory(charge);
790 	goto loop_out;
791 }
792 
793 static inline int mm_alloc_pgd(struct mm_struct *mm)
794 {
795 	mm->pgd = pgd_alloc(mm);
796 	if (unlikely(!mm->pgd))
797 		return -ENOMEM;
798 	return 0;
799 }
800 
801 static inline void mm_free_pgd(struct mm_struct *mm)
802 {
803 	pgd_free(mm, mm->pgd);
804 }
805 #else
806 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
807 {
808 	mmap_write_lock(oldmm);
809 	dup_mm_exe_file(mm, oldmm);
810 	mmap_write_unlock(oldmm);
811 	return 0;
812 }
813 #define mm_alloc_pgd(mm)	(0)
814 #define mm_free_pgd(mm)
815 #endif /* CONFIG_MMU */
816 
817 static void check_mm(struct mm_struct *mm)
818 {
819 	int i;
820 
821 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
822 			 "Please make sure 'struct resident_page_types[]' is updated as well");
823 
824 	for (i = 0; i < NR_MM_COUNTERS; i++) {
825 		long x = percpu_counter_sum(&mm->rss_stat[i]);
826 
827 		if (unlikely(x))
828 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
829 				 mm, resident_page_types[i], x);
830 	}
831 
832 	if (mm_pgtables_bytes(mm))
833 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
834 				mm_pgtables_bytes(mm));
835 
836 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
837 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
838 #endif
839 }
840 
841 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
842 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
843 
844 static void do_check_lazy_tlb(void *arg)
845 {
846 	struct mm_struct *mm = arg;
847 
848 	WARN_ON_ONCE(current->active_mm == mm);
849 }
850 
851 static void do_shoot_lazy_tlb(void *arg)
852 {
853 	struct mm_struct *mm = arg;
854 
855 	if (current->active_mm == mm) {
856 		WARN_ON_ONCE(current->mm);
857 		current->active_mm = &init_mm;
858 		switch_mm(mm, &init_mm, current);
859 	}
860 }
861 
862 static void cleanup_lazy_tlbs(struct mm_struct *mm)
863 {
864 	if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
865 		/*
866 		 * In this case, lazy tlb mms are refounted and would not reach
867 		 * __mmdrop until all CPUs have switched away and mmdrop()ed.
868 		 */
869 		return;
870 	}
871 
872 	/*
873 	 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
874 	 * requires lazy mm users to switch to another mm when the refcount
875 	 * drops to zero, before the mm is freed. This requires IPIs here to
876 	 * switch kernel threads to init_mm.
877 	 *
878 	 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
879 	 * switch with the final userspace teardown TLB flush which leaves the
880 	 * mm lazy on this CPU but no others, reducing the need for additional
881 	 * IPIs here. There are cases where a final IPI is still required here,
882 	 * such as the final mmdrop being performed on a different CPU than the
883 	 * one exiting, or kernel threads using the mm when userspace exits.
884 	 *
885 	 * IPI overheads have not found to be expensive, but they could be
886 	 * reduced in a number of possible ways, for example (roughly
887 	 * increasing order of complexity):
888 	 * - The last lazy reference created by exit_mm() could instead switch
889 	 *   to init_mm, however it's probable this will run on the same CPU
890 	 *   immediately afterwards, so this may not reduce IPIs much.
891 	 * - A batch of mms requiring IPIs could be gathered and freed at once.
892 	 * - CPUs store active_mm where it can be remotely checked without a
893 	 *   lock, to filter out false-positives in the cpumask.
894 	 * - After mm_users or mm_count reaches zero, switching away from the
895 	 *   mm could clear mm_cpumask to reduce some IPIs, perhaps together
896 	 *   with some batching or delaying of the final IPIs.
897 	 * - A delayed freeing and RCU-like quiescing sequence based on mm
898 	 *   switching to avoid IPIs completely.
899 	 */
900 	on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
901 	if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
902 		on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
903 }
904 
905 /*
906  * Called when the last reference to the mm
907  * is dropped: either by a lazy thread or by
908  * mmput. Free the page directory and the mm.
909  */
910 void __mmdrop(struct mm_struct *mm)
911 {
912 	int i;
913 
914 	BUG_ON(mm == &init_mm);
915 	WARN_ON_ONCE(mm == current->mm);
916 
917 	/* Ensure no CPUs are using this as their lazy tlb mm */
918 	cleanup_lazy_tlbs(mm);
919 
920 	WARN_ON_ONCE(mm == current->active_mm);
921 	mm_free_pgd(mm);
922 	destroy_context(mm);
923 	mmu_notifier_subscriptions_destroy(mm);
924 	check_mm(mm);
925 	put_user_ns(mm->user_ns);
926 	mm_pasid_drop(mm);
927 	mm_destroy_cid(mm);
928 
929 	for (i = 0; i < NR_MM_COUNTERS; i++)
930 		percpu_counter_destroy(&mm->rss_stat[i]);
931 	free_mm(mm);
932 }
933 EXPORT_SYMBOL_GPL(__mmdrop);
934 
935 static void mmdrop_async_fn(struct work_struct *work)
936 {
937 	struct mm_struct *mm;
938 
939 	mm = container_of(work, struct mm_struct, async_put_work);
940 	__mmdrop(mm);
941 }
942 
943 static void mmdrop_async(struct mm_struct *mm)
944 {
945 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
946 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
947 		schedule_work(&mm->async_put_work);
948 	}
949 }
950 
951 static inline void free_signal_struct(struct signal_struct *sig)
952 {
953 	taskstats_tgid_free(sig);
954 	sched_autogroup_exit(sig);
955 	/*
956 	 * __mmdrop is not safe to call from softirq context on x86 due to
957 	 * pgd_dtor so postpone it to the async context
958 	 */
959 	if (sig->oom_mm)
960 		mmdrop_async(sig->oom_mm);
961 	kmem_cache_free(signal_cachep, sig);
962 }
963 
964 static inline void put_signal_struct(struct signal_struct *sig)
965 {
966 	if (refcount_dec_and_test(&sig->sigcnt))
967 		free_signal_struct(sig);
968 }
969 
970 void __put_task_struct(struct task_struct *tsk)
971 {
972 	WARN_ON(!tsk->exit_state);
973 	WARN_ON(refcount_read(&tsk->usage));
974 	WARN_ON(tsk == current);
975 
976 	io_uring_free(tsk);
977 	cgroup_free(tsk);
978 	task_numa_free(tsk, true);
979 	security_task_free(tsk);
980 	exit_creds(tsk);
981 	delayacct_tsk_free(tsk);
982 	put_signal_struct(tsk->signal);
983 	sched_core_free(tsk);
984 	free_task(tsk);
985 }
986 EXPORT_SYMBOL_GPL(__put_task_struct);
987 
988 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
989 {
990 	struct task_struct *task = container_of(rhp, struct task_struct, rcu);
991 
992 	__put_task_struct(task);
993 }
994 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
995 
996 void __init __weak arch_task_cache_init(void) { }
997 
998 /*
999  * set_max_threads
1000  */
1001 static void set_max_threads(unsigned int max_threads_suggested)
1002 {
1003 	u64 threads;
1004 	unsigned long nr_pages = totalram_pages();
1005 
1006 	/*
1007 	 * The number of threads shall be limited such that the thread
1008 	 * structures may only consume a small part of the available memory.
1009 	 */
1010 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
1011 		threads = MAX_THREADS;
1012 	else
1013 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
1014 				    (u64) THREAD_SIZE * 8UL);
1015 
1016 	if (threads > max_threads_suggested)
1017 		threads = max_threads_suggested;
1018 
1019 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
1020 }
1021 
1022 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1023 /* Initialized by the architecture: */
1024 int arch_task_struct_size __read_mostly;
1025 #endif
1026 
1027 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
1028 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
1029 {
1030 	/* Fetch thread_struct whitelist for the architecture. */
1031 	arch_thread_struct_whitelist(offset, size);
1032 
1033 	/*
1034 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
1035 	 * adjust offset to position of thread_struct in task_struct.
1036 	 */
1037 	if (unlikely(*size == 0))
1038 		*offset = 0;
1039 	else
1040 		*offset += offsetof(struct task_struct, thread);
1041 }
1042 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
1043 
1044 void __init fork_init(void)
1045 {
1046 	int i;
1047 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
1048 #ifndef ARCH_MIN_TASKALIGN
1049 #define ARCH_MIN_TASKALIGN	0
1050 #endif
1051 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1052 	unsigned long useroffset, usersize;
1053 
1054 	/* create a slab on which task_structs can be allocated */
1055 	task_struct_whitelist(&useroffset, &usersize);
1056 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1057 			arch_task_struct_size, align,
1058 			SLAB_PANIC|SLAB_ACCOUNT,
1059 			useroffset, usersize, NULL);
1060 #endif
1061 
1062 	/* do the arch specific task caches init */
1063 	arch_task_cache_init();
1064 
1065 	set_max_threads(MAX_THREADS);
1066 
1067 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1068 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1069 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
1070 		init_task.signal->rlim[RLIMIT_NPROC];
1071 
1072 	for (i = 0; i < UCOUNT_COUNTS; i++)
1073 		init_user_ns.ucount_max[i] = max_threads/2;
1074 
1075 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
1076 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
1077 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1078 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
1079 
1080 #ifdef CONFIG_VMAP_STACK
1081 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1082 			  NULL, free_vm_stack_cache);
1083 #endif
1084 
1085 	scs_init();
1086 
1087 	lockdep_init_task(&init_task);
1088 	uprobes_init();
1089 }
1090 
1091 int __weak arch_dup_task_struct(struct task_struct *dst,
1092 					       struct task_struct *src)
1093 {
1094 	*dst = *src;
1095 	return 0;
1096 }
1097 
1098 void set_task_stack_end_magic(struct task_struct *tsk)
1099 {
1100 	unsigned long *stackend;
1101 
1102 	stackend = end_of_stack(tsk);
1103 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
1104 }
1105 
1106 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1107 {
1108 	struct task_struct *tsk;
1109 	int err;
1110 
1111 	if (node == NUMA_NO_NODE)
1112 		node = tsk_fork_get_node(orig);
1113 	tsk = alloc_task_struct_node(node);
1114 	if (!tsk)
1115 		return NULL;
1116 
1117 	err = arch_dup_task_struct(tsk, orig);
1118 	if (err)
1119 		goto free_tsk;
1120 
1121 	err = alloc_thread_stack_node(tsk, node);
1122 	if (err)
1123 		goto free_tsk;
1124 
1125 #ifdef CONFIG_THREAD_INFO_IN_TASK
1126 	refcount_set(&tsk->stack_refcount, 1);
1127 #endif
1128 	account_kernel_stack(tsk, 1);
1129 
1130 	err = scs_prepare(tsk, node);
1131 	if (err)
1132 		goto free_stack;
1133 
1134 #ifdef CONFIG_SECCOMP
1135 	/*
1136 	 * We must handle setting up seccomp filters once we're under
1137 	 * the sighand lock in case orig has changed between now and
1138 	 * then. Until then, filter must be NULL to avoid messing up
1139 	 * the usage counts on the error path calling free_task.
1140 	 */
1141 	tsk->seccomp.filter = NULL;
1142 #endif
1143 
1144 	setup_thread_stack(tsk, orig);
1145 	clear_user_return_notifier(tsk);
1146 	clear_tsk_need_resched(tsk);
1147 	set_task_stack_end_magic(tsk);
1148 	clear_syscall_work_syscall_user_dispatch(tsk);
1149 
1150 #ifdef CONFIG_STACKPROTECTOR
1151 	tsk->stack_canary = get_random_canary();
1152 #endif
1153 	if (orig->cpus_ptr == &orig->cpus_mask)
1154 		tsk->cpus_ptr = &tsk->cpus_mask;
1155 	dup_user_cpus_ptr(tsk, orig, node);
1156 
1157 	/*
1158 	 * One for the user space visible state that goes away when reaped.
1159 	 * One for the scheduler.
1160 	 */
1161 	refcount_set(&tsk->rcu_users, 2);
1162 	/* One for the rcu users */
1163 	refcount_set(&tsk->usage, 1);
1164 #ifdef CONFIG_BLK_DEV_IO_TRACE
1165 	tsk->btrace_seq = 0;
1166 #endif
1167 	tsk->splice_pipe = NULL;
1168 	tsk->task_frag.page = NULL;
1169 	tsk->wake_q.next = NULL;
1170 	tsk->worker_private = NULL;
1171 
1172 	kcov_task_init(tsk);
1173 	kmsan_task_create(tsk);
1174 	kmap_local_fork(tsk);
1175 
1176 #ifdef CONFIG_FAULT_INJECTION
1177 	tsk->fail_nth = 0;
1178 #endif
1179 
1180 #ifdef CONFIG_BLK_CGROUP
1181 	tsk->throttle_disk = NULL;
1182 	tsk->use_memdelay = 0;
1183 #endif
1184 
1185 #ifdef CONFIG_IOMMU_SVA
1186 	tsk->pasid_activated = 0;
1187 #endif
1188 
1189 #ifdef CONFIG_MEMCG
1190 	tsk->active_memcg = NULL;
1191 #endif
1192 
1193 #ifdef CONFIG_CPU_SUP_INTEL
1194 	tsk->reported_split_lock = 0;
1195 #endif
1196 
1197 #ifdef CONFIG_SCHED_MM_CID
1198 	tsk->mm_cid = -1;
1199 	tsk->last_mm_cid = -1;
1200 	tsk->mm_cid_active = 0;
1201 	tsk->migrate_from_cpu = -1;
1202 #endif
1203 	return tsk;
1204 
1205 free_stack:
1206 	exit_task_stack_account(tsk);
1207 	free_thread_stack(tsk);
1208 free_tsk:
1209 	free_task_struct(tsk);
1210 	return NULL;
1211 }
1212 
1213 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1214 
1215 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1216 
1217 static int __init coredump_filter_setup(char *s)
1218 {
1219 	default_dump_filter =
1220 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1221 		MMF_DUMP_FILTER_MASK;
1222 	return 1;
1223 }
1224 
1225 __setup("coredump_filter=", coredump_filter_setup);
1226 
1227 #include <linux/init_task.h>
1228 
1229 static void mm_init_aio(struct mm_struct *mm)
1230 {
1231 #ifdef CONFIG_AIO
1232 	spin_lock_init(&mm->ioctx_lock);
1233 	mm->ioctx_table = NULL;
1234 #endif
1235 }
1236 
1237 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1238 					   struct task_struct *p)
1239 {
1240 #ifdef CONFIG_MEMCG
1241 	if (mm->owner == p)
1242 		WRITE_ONCE(mm->owner, NULL);
1243 #endif
1244 }
1245 
1246 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1247 {
1248 #ifdef CONFIG_MEMCG
1249 	mm->owner = p;
1250 #endif
1251 }
1252 
1253 static void mm_init_uprobes_state(struct mm_struct *mm)
1254 {
1255 #ifdef CONFIG_UPROBES
1256 	mm->uprobes_state.xol_area = NULL;
1257 #endif
1258 }
1259 
1260 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1261 	struct user_namespace *user_ns)
1262 {
1263 	int i;
1264 
1265 	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1266 	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1267 	atomic_set(&mm->mm_users, 1);
1268 	atomic_set(&mm->mm_count, 1);
1269 	seqcount_init(&mm->write_protect_seq);
1270 	mmap_init_lock(mm);
1271 	INIT_LIST_HEAD(&mm->mmlist);
1272 #ifdef CONFIG_PER_VMA_LOCK
1273 	mm->mm_lock_seq = 0;
1274 #endif
1275 	mm_pgtables_bytes_init(mm);
1276 	mm->map_count = 0;
1277 	mm->locked_vm = 0;
1278 	atomic64_set(&mm->pinned_vm, 0);
1279 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1280 	spin_lock_init(&mm->page_table_lock);
1281 	spin_lock_init(&mm->arg_lock);
1282 	mm_init_cpumask(mm);
1283 	mm_init_aio(mm);
1284 	mm_init_owner(mm, p);
1285 	mm_pasid_init(mm);
1286 	RCU_INIT_POINTER(mm->exe_file, NULL);
1287 	mmu_notifier_subscriptions_init(mm);
1288 	init_tlb_flush_pending(mm);
1289 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1290 	mm->pmd_huge_pte = NULL;
1291 #endif
1292 	mm_init_uprobes_state(mm);
1293 	hugetlb_count_init(mm);
1294 
1295 	if (current->mm) {
1296 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1297 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1298 	} else {
1299 		mm->flags = default_dump_filter;
1300 		mm->def_flags = 0;
1301 	}
1302 
1303 	if (mm_alloc_pgd(mm))
1304 		goto fail_nopgd;
1305 
1306 	if (init_new_context(p, mm))
1307 		goto fail_nocontext;
1308 
1309 	if (mm_alloc_cid(mm))
1310 		goto fail_cid;
1311 
1312 	for (i = 0; i < NR_MM_COUNTERS; i++)
1313 		if (percpu_counter_init(&mm->rss_stat[i], 0, GFP_KERNEL_ACCOUNT))
1314 			goto fail_pcpu;
1315 
1316 	mm->user_ns = get_user_ns(user_ns);
1317 	lru_gen_init_mm(mm);
1318 	return mm;
1319 
1320 fail_pcpu:
1321 	while (i > 0)
1322 		percpu_counter_destroy(&mm->rss_stat[--i]);
1323 	mm_destroy_cid(mm);
1324 fail_cid:
1325 	destroy_context(mm);
1326 fail_nocontext:
1327 	mm_free_pgd(mm);
1328 fail_nopgd:
1329 	free_mm(mm);
1330 	return NULL;
1331 }
1332 
1333 /*
1334  * Allocate and initialize an mm_struct.
1335  */
1336 struct mm_struct *mm_alloc(void)
1337 {
1338 	struct mm_struct *mm;
1339 
1340 	mm = allocate_mm();
1341 	if (!mm)
1342 		return NULL;
1343 
1344 	memset(mm, 0, sizeof(*mm));
1345 	return mm_init(mm, current, current_user_ns());
1346 }
1347 
1348 static inline void __mmput(struct mm_struct *mm)
1349 {
1350 	VM_BUG_ON(atomic_read(&mm->mm_users));
1351 
1352 	uprobe_clear_state(mm);
1353 	exit_aio(mm);
1354 	ksm_exit(mm);
1355 	khugepaged_exit(mm); /* must run before exit_mmap */
1356 	exit_mmap(mm);
1357 	mm_put_huge_zero_page(mm);
1358 	set_mm_exe_file(mm, NULL);
1359 	if (!list_empty(&mm->mmlist)) {
1360 		spin_lock(&mmlist_lock);
1361 		list_del(&mm->mmlist);
1362 		spin_unlock(&mmlist_lock);
1363 	}
1364 	if (mm->binfmt)
1365 		module_put(mm->binfmt->module);
1366 	lru_gen_del_mm(mm);
1367 	mmdrop(mm);
1368 }
1369 
1370 /*
1371  * Decrement the use count and release all resources for an mm.
1372  */
1373 void mmput(struct mm_struct *mm)
1374 {
1375 	might_sleep();
1376 
1377 	if (atomic_dec_and_test(&mm->mm_users))
1378 		__mmput(mm);
1379 }
1380 EXPORT_SYMBOL_GPL(mmput);
1381 
1382 #ifdef CONFIG_MMU
1383 static void mmput_async_fn(struct work_struct *work)
1384 {
1385 	struct mm_struct *mm = container_of(work, struct mm_struct,
1386 					    async_put_work);
1387 
1388 	__mmput(mm);
1389 }
1390 
1391 void mmput_async(struct mm_struct *mm)
1392 {
1393 	if (atomic_dec_and_test(&mm->mm_users)) {
1394 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1395 		schedule_work(&mm->async_put_work);
1396 	}
1397 }
1398 EXPORT_SYMBOL_GPL(mmput_async);
1399 #endif
1400 
1401 /**
1402  * set_mm_exe_file - change a reference to the mm's executable file
1403  *
1404  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1405  *
1406  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1407  * invocations: in mmput() nobody alive left, in execve it happens before
1408  * the new mm is made visible to anyone.
1409  *
1410  * Can only fail if new_exe_file != NULL.
1411  */
1412 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1413 {
1414 	struct file *old_exe_file;
1415 
1416 	/*
1417 	 * It is safe to dereference the exe_file without RCU as
1418 	 * this function is only called if nobody else can access
1419 	 * this mm -- see comment above for justification.
1420 	 */
1421 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1422 
1423 	if (new_exe_file) {
1424 		/*
1425 		 * We expect the caller (i.e., sys_execve) to already denied
1426 		 * write access, so this is unlikely to fail.
1427 		 */
1428 		if (unlikely(deny_write_access(new_exe_file)))
1429 			return -EACCES;
1430 		get_file(new_exe_file);
1431 	}
1432 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1433 	if (old_exe_file) {
1434 		allow_write_access(old_exe_file);
1435 		fput(old_exe_file);
1436 	}
1437 	return 0;
1438 }
1439 
1440 /**
1441  * replace_mm_exe_file - replace a reference to the mm's executable file
1442  *
1443  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1444  *
1445  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1446  */
1447 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1448 {
1449 	struct vm_area_struct *vma;
1450 	struct file *old_exe_file;
1451 	int ret = 0;
1452 
1453 	/* Forbid mm->exe_file change if old file still mapped. */
1454 	old_exe_file = get_mm_exe_file(mm);
1455 	if (old_exe_file) {
1456 		VMA_ITERATOR(vmi, mm, 0);
1457 		mmap_read_lock(mm);
1458 		for_each_vma(vmi, vma) {
1459 			if (!vma->vm_file)
1460 				continue;
1461 			if (path_equal(&vma->vm_file->f_path,
1462 				       &old_exe_file->f_path)) {
1463 				ret = -EBUSY;
1464 				break;
1465 			}
1466 		}
1467 		mmap_read_unlock(mm);
1468 		fput(old_exe_file);
1469 		if (ret)
1470 			return ret;
1471 	}
1472 
1473 	ret = deny_write_access(new_exe_file);
1474 	if (ret)
1475 		return -EACCES;
1476 	get_file(new_exe_file);
1477 
1478 	/* set the new file */
1479 	mmap_write_lock(mm);
1480 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1481 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1482 	mmap_write_unlock(mm);
1483 
1484 	if (old_exe_file) {
1485 		allow_write_access(old_exe_file);
1486 		fput(old_exe_file);
1487 	}
1488 	return 0;
1489 }
1490 
1491 /**
1492  * get_mm_exe_file - acquire a reference to the mm's executable file
1493  *
1494  * Returns %NULL if mm has no associated executable file.
1495  * User must release file via fput().
1496  */
1497 struct file *get_mm_exe_file(struct mm_struct *mm)
1498 {
1499 	struct file *exe_file;
1500 
1501 	rcu_read_lock();
1502 	exe_file = rcu_dereference(mm->exe_file);
1503 	if (exe_file && !get_file_rcu(exe_file))
1504 		exe_file = NULL;
1505 	rcu_read_unlock();
1506 	return exe_file;
1507 }
1508 
1509 /**
1510  * get_task_exe_file - acquire a reference to the task's executable file
1511  *
1512  * Returns %NULL if task's mm (if any) has no associated executable file or
1513  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1514  * User must release file via fput().
1515  */
1516 struct file *get_task_exe_file(struct task_struct *task)
1517 {
1518 	struct file *exe_file = NULL;
1519 	struct mm_struct *mm;
1520 
1521 	task_lock(task);
1522 	mm = task->mm;
1523 	if (mm) {
1524 		if (!(task->flags & PF_KTHREAD))
1525 			exe_file = get_mm_exe_file(mm);
1526 	}
1527 	task_unlock(task);
1528 	return exe_file;
1529 }
1530 
1531 /**
1532  * get_task_mm - acquire a reference to the task's mm
1533  *
1534  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1535  * this kernel workthread has transiently adopted a user mm with use_mm,
1536  * to do its AIO) is not set and if so returns a reference to it, after
1537  * bumping up the use count.  User must release the mm via mmput()
1538  * after use.  Typically used by /proc and ptrace.
1539  */
1540 struct mm_struct *get_task_mm(struct task_struct *task)
1541 {
1542 	struct mm_struct *mm;
1543 
1544 	task_lock(task);
1545 	mm = task->mm;
1546 	if (mm) {
1547 		if (task->flags & PF_KTHREAD)
1548 			mm = NULL;
1549 		else
1550 			mmget(mm);
1551 	}
1552 	task_unlock(task);
1553 	return mm;
1554 }
1555 EXPORT_SYMBOL_GPL(get_task_mm);
1556 
1557 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1558 {
1559 	struct mm_struct *mm;
1560 	int err;
1561 
1562 	err =  down_read_killable(&task->signal->exec_update_lock);
1563 	if (err)
1564 		return ERR_PTR(err);
1565 
1566 	mm = get_task_mm(task);
1567 	if (mm && mm != current->mm &&
1568 			!ptrace_may_access(task, mode)) {
1569 		mmput(mm);
1570 		mm = ERR_PTR(-EACCES);
1571 	}
1572 	up_read(&task->signal->exec_update_lock);
1573 
1574 	return mm;
1575 }
1576 
1577 static void complete_vfork_done(struct task_struct *tsk)
1578 {
1579 	struct completion *vfork;
1580 
1581 	task_lock(tsk);
1582 	vfork = tsk->vfork_done;
1583 	if (likely(vfork)) {
1584 		tsk->vfork_done = NULL;
1585 		complete(vfork);
1586 	}
1587 	task_unlock(tsk);
1588 }
1589 
1590 static int wait_for_vfork_done(struct task_struct *child,
1591 				struct completion *vfork)
1592 {
1593 	unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE;
1594 	int killed;
1595 
1596 	cgroup_enter_frozen();
1597 	killed = wait_for_completion_state(vfork, state);
1598 	cgroup_leave_frozen(false);
1599 
1600 	if (killed) {
1601 		task_lock(child);
1602 		child->vfork_done = NULL;
1603 		task_unlock(child);
1604 	}
1605 
1606 	put_task_struct(child);
1607 	return killed;
1608 }
1609 
1610 /* Please note the differences between mmput and mm_release.
1611  * mmput is called whenever we stop holding onto a mm_struct,
1612  * error success whatever.
1613  *
1614  * mm_release is called after a mm_struct has been removed
1615  * from the current process.
1616  *
1617  * This difference is important for error handling, when we
1618  * only half set up a mm_struct for a new process and need to restore
1619  * the old one.  Because we mmput the new mm_struct before
1620  * restoring the old one. . .
1621  * Eric Biederman 10 January 1998
1622  */
1623 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1624 {
1625 	uprobe_free_utask(tsk);
1626 
1627 	/* Get rid of any cached register state */
1628 	deactivate_mm(tsk, mm);
1629 
1630 	/*
1631 	 * Signal userspace if we're not exiting with a core dump
1632 	 * because we want to leave the value intact for debugging
1633 	 * purposes.
1634 	 */
1635 	if (tsk->clear_child_tid) {
1636 		if (atomic_read(&mm->mm_users) > 1) {
1637 			/*
1638 			 * We don't check the error code - if userspace has
1639 			 * not set up a proper pointer then tough luck.
1640 			 */
1641 			put_user(0, tsk->clear_child_tid);
1642 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1643 					1, NULL, NULL, 0, 0);
1644 		}
1645 		tsk->clear_child_tid = NULL;
1646 	}
1647 
1648 	/*
1649 	 * All done, finally we can wake up parent and return this mm to him.
1650 	 * Also kthread_stop() uses this completion for synchronization.
1651 	 */
1652 	if (tsk->vfork_done)
1653 		complete_vfork_done(tsk);
1654 }
1655 
1656 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1657 {
1658 	futex_exit_release(tsk);
1659 	mm_release(tsk, mm);
1660 }
1661 
1662 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1663 {
1664 	futex_exec_release(tsk);
1665 	mm_release(tsk, mm);
1666 }
1667 
1668 /**
1669  * dup_mm() - duplicates an existing mm structure
1670  * @tsk: the task_struct with which the new mm will be associated.
1671  * @oldmm: the mm to duplicate.
1672  *
1673  * Allocates a new mm structure and duplicates the provided @oldmm structure
1674  * content into it.
1675  *
1676  * Return: the duplicated mm or NULL on failure.
1677  */
1678 static struct mm_struct *dup_mm(struct task_struct *tsk,
1679 				struct mm_struct *oldmm)
1680 {
1681 	struct mm_struct *mm;
1682 	int err;
1683 
1684 	mm = allocate_mm();
1685 	if (!mm)
1686 		goto fail_nomem;
1687 
1688 	memcpy(mm, oldmm, sizeof(*mm));
1689 
1690 	if (!mm_init(mm, tsk, mm->user_ns))
1691 		goto fail_nomem;
1692 
1693 	err = dup_mmap(mm, oldmm);
1694 	if (err)
1695 		goto free_pt;
1696 
1697 	mm->hiwater_rss = get_mm_rss(mm);
1698 	mm->hiwater_vm = mm->total_vm;
1699 
1700 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1701 		goto free_pt;
1702 
1703 	return mm;
1704 
1705 free_pt:
1706 	/* don't put binfmt in mmput, we haven't got module yet */
1707 	mm->binfmt = NULL;
1708 	mm_init_owner(mm, NULL);
1709 	mmput(mm);
1710 
1711 fail_nomem:
1712 	return NULL;
1713 }
1714 
1715 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1716 {
1717 	struct mm_struct *mm, *oldmm;
1718 
1719 	tsk->min_flt = tsk->maj_flt = 0;
1720 	tsk->nvcsw = tsk->nivcsw = 0;
1721 #ifdef CONFIG_DETECT_HUNG_TASK
1722 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1723 	tsk->last_switch_time = 0;
1724 #endif
1725 
1726 	tsk->mm = NULL;
1727 	tsk->active_mm = NULL;
1728 
1729 	/*
1730 	 * Are we cloning a kernel thread?
1731 	 *
1732 	 * We need to steal a active VM for that..
1733 	 */
1734 	oldmm = current->mm;
1735 	if (!oldmm)
1736 		return 0;
1737 
1738 	if (clone_flags & CLONE_VM) {
1739 		mmget(oldmm);
1740 		mm = oldmm;
1741 	} else {
1742 		mm = dup_mm(tsk, current->mm);
1743 		if (!mm)
1744 			return -ENOMEM;
1745 	}
1746 
1747 	tsk->mm = mm;
1748 	tsk->active_mm = mm;
1749 	sched_mm_cid_fork(tsk);
1750 	return 0;
1751 }
1752 
1753 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1754 {
1755 	struct fs_struct *fs = current->fs;
1756 	if (clone_flags & CLONE_FS) {
1757 		/* tsk->fs is already what we want */
1758 		spin_lock(&fs->lock);
1759 		if (fs->in_exec) {
1760 			spin_unlock(&fs->lock);
1761 			return -EAGAIN;
1762 		}
1763 		fs->users++;
1764 		spin_unlock(&fs->lock);
1765 		return 0;
1766 	}
1767 	tsk->fs = copy_fs_struct(fs);
1768 	if (!tsk->fs)
1769 		return -ENOMEM;
1770 	return 0;
1771 }
1772 
1773 static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1774 		      int no_files)
1775 {
1776 	struct files_struct *oldf, *newf;
1777 	int error = 0;
1778 
1779 	/*
1780 	 * A background process may not have any files ...
1781 	 */
1782 	oldf = current->files;
1783 	if (!oldf)
1784 		goto out;
1785 
1786 	if (no_files) {
1787 		tsk->files = NULL;
1788 		goto out;
1789 	}
1790 
1791 	if (clone_flags & CLONE_FILES) {
1792 		atomic_inc(&oldf->count);
1793 		goto out;
1794 	}
1795 
1796 	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1797 	if (!newf)
1798 		goto out;
1799 
1800 	tsk->files = newf;
1801 	error = 0;
1802 out:
1803 	return error;
1804 }
1805 
1806 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1807 {
1808 	struct sighand_struct *sig;
1809 
1810 	if (clone_flags & CLONE_SIGHAND) {
1811 		refcount_inc(&current->sighand->count);
1812 		return 0;
1813 	}
1814 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1815 	RCU_INIT_POINTER(tsk->sighand, sig);
1816 	if (!sig)
1817 		return -ENOMEM;
1818 
1819 	refcount_set(&sig->count, 1);
1820 	spin_lock_irq(&current->sighand->siglock);
1821 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1822 	spin_unlock_irq(&current->sighand->siglock);
1823 
1824 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1825 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1826 		flush_signal_handlers(tsk, 0);
1827 
1828 	return 0;
1829 }
1830 
1831 void __cleanup_sighand(struct sighand_struct *sighand)
1832 {
1833 	if (refcount_dec_and_test(&sighand->count)) {
1834 		signalfd_cleanup(sighand);
1835 		/*
1836 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1837 		 * without an RCU grace period, see __lock_task_sighand().
1838 		 */
1839 		kmem_cache_free(sighand_cachep, sighand);
1840 	}
1841 }
1842 
1843 /*
1844  * Initialize POSIX timer handling for a thread group.
1845  */
1846 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1847 {
1848 	struct posix_cputimers *pct = &sig->posix_cputimers;
1849 	unsigned long cpu_limit;
1850 
1851 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1852 	posix_cputimers_group_init(pct, cpu_limit);
1853 }
1854 
1855 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1856 {
1857 	struct signal_struct *sig;
1858 
1859 	if (clone_flags & CLONE_THREAD)
1860 		return 0;
1861 
1862 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1863 	tsk->signal = sig;
1864 	if (!sig)
1865 		return -ENOMEM;
1866 
1867 	sig->nr_threads = 1;
1868 	sig->quick_threads = 1;
1869 	atomic_set(&sig->live, 1);
1870 	refcount_set(&sig->sigcnt, 1);
1871 
1872 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1873 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1874 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1875 
1876 	init_waitqueue_head(&sig->wait_chldexit);
1877 	sig->curr_target = tsk;
1878 	init_sigpending(&sig->shared_pending);
1879 	INIT_HLIST_HEAD(&sig->multiprocess);
1880 	seqlock_init(&sig->stats_lock);
1881 	prev_cputime_init(&sig->prev_cputime);
1882 
1883 #ifdef CONFIG_POSIX_TIMERS
1884 	INIT_LIST_HEAD(&sig->posix_timers);
1885 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1886 	sig->real_timer.function = it_real_fn;
1887 #endif
1888 
1889 	task_lock(current->group_leader);
1890 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1891 	task_unlock(current->group_leader);
1892 
1893 	posix_cpu_timers_init_group(sig);
1894 
1895 	tty_audit_fork(sig);
1896 	sched_autogroup_fork(sig);
1897 
1898 	sig->oom_score_adj = current->signal->oom_score_adj;
1899 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1900 
1901 	mutex_init(&sig->cred_guard_mutex);
1902 	init_rwsem(&sig->exec_update_lock);
1903 
1904 	return 0;
1905 }
1906 
1907 static void copy_seccomp(struct task_struct *p)
1908 {
1909 #ifdef CONFIG_SECCOMP
1910 	/*
1911 	 * Must be called with sighand->lock held, which is common to
1912 	 * all threads in the group. Holding cred_guard_mutex is not
1913 	 * needed because this new task is not yet running and cannot
1914 	 * be racing exec.
1915 	 */
1916 	assert_spin_locked(&current->sighand->siglock);
1917 
1918 	/* Ref-count the new filter user, and assign it. */
1919 	get_seccomp_filter(current);
1920 	p->seccomp = current->seccomp;
1921 
1922 	/*
1923 	 * Explicitly enable no_new_privs here in case it got set
1924 	 * between the task_struct being duplicated and holding the
1925 	 * sighand lock. The seccomp state and nnp must be in sync.
1926 	 */
1927 	if (task_no_new_privs(current))
1928 		task_set_no_new_privs(p);
1929 
1930 	/*
1931 	 * If the parent gained a seccomp mode after copying thread
1932 	 * flags and between before we held the sighand lock, we have
1933 	 * to manually enable the seccomp thread flag here.
1934 	 */
1935 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1936 		set_task_syscall_work(p, SECCOMP);
1937 #endif
1938 }
1939 
1940 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1941 {
1942 	current->clear_child_tid = tidptr;
1943 
1944 	return task_pid_vnr(current);
1945 }
1946 
1947 static void rt_mutex_init_task(struct task_struct *p)
1948 {
1949 	raw_spin_lock_init(&p->pi_lock);
1950 #ifdef CONFIG_RT_MUTEXES
1951 	p->pi_waiters = RB_ROOT_CACHED;
1952 	p->pi_top_task = NULL;
1953 	p->pi_blocked_on = NULL;
1954 #endif
1955 }
1956 
1957 static inline void init_task_pid_links(struct task_struct *task)
1958 {
1959 	enum pid_type type;
1960 
1961 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1962 		INIT_HLIST_NODE(&task->pid_links[type]);
1963 }
1964 
1965 static inline void
1966 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1967 {
1968 	if (type == PIDTYPE_PID)
1969 		task->thread_pid = pid;
1970 	else
1971 		task->signal->pids[type] = pid;
1972 }
1973 
1974 static inline void rcu_copy_process(struct task_struct *p)
1975 {
1976 #ifdef CONFIG_PREEMPT_RCU
1977 	p->rcu_read_lock_nesting = 0;
1978 	p->rcu_read_unlock_special.s = 0;
1979 	p->rcu_blocked_node = NULL;
1980 	INIT_LIST_HEAD(&p->rcu_node_entry);
1981 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1982 #ifdef CONFIG_TASKS_RCU
1983 	p->rcu_tasks_holdout = false;
1984 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1985 	p->rcu_tasks_idle_cpu = -1;
1986 #endif /* #ifdef CONFIG_TASKS_RCU */
1987 #ifdef CONFIG_TASKS_TRACE_RCU
1988 	p->trc_reader_nesting = 0;
1989 	p->trc_reader_special.s = 0;
1990 	INIT_LIST_HEAD(&p->trc_holdout_list);
1991 	INIT_LIST_HEAD(&p->trc_blkd_node);
1992 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1993 }
1994 
1995 struct pid *pidfd_pid(const struct file *file)
1996 {
1997 	if (file->f_op == &pidfd_fops)
1998 		return file->private_data;
1999 
2000 	return ERR_PTR(-EBADF);
2001 }
2002 
2003 static int pidfd_release(struct inode *inode, struct file *file)
2004 {
2005 	struct pid *pid = file->private_data;
2006 
2007 	file->private_data = NULL;
2008 	put_pid(pid);
2009 	return 0;
2010 }
2011 
2012 #ifdef CONFIG_PROC_FS
2013 /**
2014  * pidfd_show_fdinfo - print information about a pidfd
2015  * @m: proc fdinfo file
2016  * @f: file referencing a pidfd
2017  *
2018  * Pid:
2019  * This function will print the pid that a given pidfd refers to in the
2020  * pid namespace of the procfs instance.
2021  * If the pid namespace of the process is not a descendant of the pid
2022  * namespace of the procfs instance 0 will be shown as its pid. This is
2023  * similar to calling getppid() on a process whose parent is outside of
2024  * its pid namespace.
2025  *
2026  * NSpid:
2027  * If pid namespaces are supported then this function will also print
2028  * the pid of a given pidfd refers to for all descendant pid namespaces
2029  * starting from the current pid namespace of the instance, i.e. the
2030  * Pid field and the first entry in the NSpid field will be identical.
2031  * If the pid namespace of the process is not a descendant of the pid
2032  * namespace of the procfs instance 0 will be shown as its first NSpid
2033  * entry and no others will be shown.
2034  * Note that this differs from the Pid and NSpid fields in
2035  * /proc/<pid>/status where Pid and NSpid are always shown relative to
2036  * the  pid namespace of the procfs instance. The difference becomes
2037  * obvious when sending around a pidfd between pid namespaces from a
2038  * different branch of the tree, i.e. where no ancestral relation is
2039  * present between the pid namespaces:
2040  * - create two new pid namespaces ns1 and ns2 in the initial pid
2041  *   namespace (also take care to create new mount namespaces in the
2042  *   new pid namespace and mount procfs)
2043  * - create a process with a pidfd in ns1
2044  * - send pidfd from ns1 to ns2
2045  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
2046  *   have exactly one entry, which is 0
2047  */
2048 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
2049 {
2050 	struct pid *pid = f->private_data;
2051 	struct pid_namespace *ns;
2052 	pid_t nr = -1;
2053 
2054 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
2055 		ns = proc_pid_ns(file_inode(m->file)->i_sb);
2056 		nr = pid_nr_ns(pid, ns);
2057 	}
2058 
2059 	seq_put_decimal_ll(m, "Pid:\t", nr);
2060 
2061 #ifdef CONFIG_PID_NS
2062 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
2063 	if (nr > 0) {
2064 		int i;
2065 
2066 		/* If nr is non-zero it means that 'pid' is valid and that
2067 		 * ns, i.e. the pid namespace associated with the procfs
2068 		 * instance, is in the pid namespace hierarchy of pid.
2069 		 * Start at one below the already printed level.
2070 		 */
2071 		for (i = ns->level + 1; i <= pid->level; i++)
2072 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
2073 	}
2074 #endif
2075 	seq_putc(m, '\n');
2076 }
2077 #endif
2078 
2079 /*
2080  * Poll support for process exit notification.
2081  */
2082 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
2083 {
2084 	struct pid *pid = file->private_data;
2085 	__poll_t poll_flags = 0;
2086 
2087 	poll_wait(file, &pid->wait_pidfd, pts);
2088 
2089 	/*
2090 	 * Inform pollers only when the whole thread group exits.
2091 	 * If the thread group leader exits before all other threads in the
2092 	 * group, then poll(2) should block, similar to the wait(2) family.
2093 	 */
2094 	if (thread_group_exited(pid))
2095 		poll_flags = EPOLLIN | EPOLLRDNORM;
2096 
2097 	return poll_flags;
2098 }
2099 
2100 const struct file_operations pidfd_fops = {
2101 	.release = pidfd_release,
2102 	.poll = pidfd_poll,
2103 #ifdef CONFIG_PROC_FS
2104 	.show_fdinfo = pidfd_show_fdinfo,
2105 #endif
2106 };
2107 
2108 /**
2109  * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2110  * @pid:   the struct pid for which to create a pidfd
2111  * @flags: flags of the new @pidfd
2112  * @pidfd: the pidfd to return
2113  *
2114  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2115  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2116 
2117  * The helper doesn't perform checks on @pid which makes it useful for pidfds
2118  * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
2119  * pidfd file are prepared.
2120  *
2121  * If this function returns successfully the caller is responsible to either
2122  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2123  * order to install the pidfd into its file descriptor table or they must use
2124  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2125  * respectively.
2126  *
2127  * This function is useful when a pidfd must already be reserved but there
2128  * might still be points of failure afterwards and the caller wants to ensure
2129  * that no pidfd is leaked into its file descriptor table.
2130  *
2131  * Return: On success, a reserved pidfd is returned from the function and a new
2132  *         pidfd file is returned in the last argument to the function. On
2133  *         error, a negative error code is returned from the function and the
2134  *         last argument remains unchanged.
2135  */
2136 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2137 {
2138 	int pidfd;
2139 	struct file *pidfd_file;
2140 
2141 	if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC))
2142 		return -EINVAL;
2143 
2144 	pidfd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2145 	if (pidfd < 0)
2146 		return pidfd;
2147 
2148 	pidfd_file = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2149 					flags | O_RDWR | O_CLOEXEC);
2150 	if (IS_ERR(pidfd_file)) {
2151 		put_unused_fd(pidfd);
2152 		return PTR_ERR(pidfd_file);
2153 	}
2154 	get_pid(pid); /* held by pidfd_file now */
2155 	*ret = pidfd_file;
2156 	return pidfd;
2157 }
2158 
2159 /**
2160  * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2161  * @pid:   the struct pid for which to create a pidfd
2162  * @flags: flags of the new @pidfd
2163  * @pidfd: the pidfd to return
2164  *
2165  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2166  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2167  *
2168  * The helper verifies that @pid is used as a thread group leader.
2169  *
2170  * If this function returns successfully the caller is responsible to either
2171  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2172  * order to install the pidfd into its file descriptor table or they must use
2173  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2174  * respectively.
2175  *
2176  * This function is useful when a pidfd must already be reserved but there
2177  * might still be points of failure afterwards and the caller wants to ensure
2178  * that no pidfd is leaked into its file descriptor table.
2179  *
2180  * Return: On success, a reserved pidfd is returned from the function and a new
2181  *         pidfd file is returned in the last argument to the function. On
2182  *         error, a negative error code is returned from the function and the
2183  *         last argument remains unchanged.
2184  */
2185 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2186 {
2187 	if (!pid || !pid_has_task(pid, PIDTYPE_TGID))
2188 		return -EINVAL;
2189 
2190 	return __pidfd_prepare(pid, flags, ret);
2191 }
2192 
2193 static void __delayed_free_task(struct rcu_head *rhp)
2194 {
2195 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2196 
2197 	free_task(tsk);
2198 }
2199 
2200 static __always_inline void delayed_free_task(struct task_struct *tsk)
2201 {
2202 	if (IS_ENABLED(CONFIG_MEMCG))
2203 		call_rcu(&tsk->rcu, __delayed_free_task);
2204 	else
2205 		free_task(tsk);
2206 }
2207 
2208 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2209 {
2210 	/* Skip if kernel thread */
2211 	if (!tsk->mm)
2212 		return;
2213 
2214 	/* Skip if spawning a thread or using vfork */
2215 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2216 		return;
2217 
2218 	/* We need to synchronize with __set_oom_adj */
2219 	mutex_lock(&oom_adj_mutex);
2220 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2221 	/* Update the values in case they were changed after copy_signal */
2222 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2223 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2224 	mutex_unlock(&oom_adj_mutex);
2225 }
2226 
2227 #ifdef CONFIG_RV
2228 static void rv_task_fork(struct task_struct *p)
2229 {
2230 	int i;
2231 
2232 	for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2233 		p->rv[i].da_mon.monitoring = false;
2234 }
2235 #else
2236 #define rv_task_fork(p) do {} while (0)
2237 #endif
2238 
2239 /*
2240  * This creates a new process as a copy of the old one,
2241  * but does not actually start it yet.
2242  *
2243  * It copies the registers, and all the appropriate
2244  * parts of the process environment (as per the clone
2245  * flags). The actual kick-off is left to the caller.
2246  */
2247 __latent_entropy struct task_struct *copy_process(
2248 					struct pid *pid,
2249 					int trace,
2250 					int node,
2251 					struct kernel_clone_args *args)
2252 {
2253 	int pidfd = -1, retval;
2254 	struct task_struct *p;
2255 	struct multiprocess_signals delayed;
2256 	struct file *pidfile = NULL;
2257 	const u64 clone_flags = args->flags;
2258 	struct nsproxy *nsp = current->nsproxy;
2259 
2260 	/*
2261 	 * Don't allow sharing the root directory with processes in a different
2262 	 * namespace
2263 	 */
2264 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2265 		return ERR_PTR(-EINVAL);
2266 
2267 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2268 		return ERR_PTR(-EINVAL);
2269 
2270 	/*
2271 	 * Thread groups must share signals as well, and detached threads
2272 	 * can only be started up within the thread group.
2273 	 */
2274 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2275 		return ERR_PTR(-EINVAL);
2276 
2277 	/*
2278 	 * Shared signal handlers imply shared VM. By way of the above,
2279 	 * thread groups also imply shared VM. Blocking this case allows
2280 	 * for various simplifications in other code.
2281 	 */
2282 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2283 		return ERR_PTR(-EINVAL);
2284 
2285 	/*
2286 	 * Siblings of global init remain as zombies on exit since they are
2287 	 * not reaped by their parent (swapper). To solve this and to avoid
2288 	 * multi-rooted process trees, prevent global and container-inits
2289 	 * from creating siblings.
2290 	 */
2291 	if ((clone_flags & CLONE_PARENT) &&
2292 				current->signal->flags & SIGNAL_UNKILLABLE)
2293 		return ERR_PTR(-EINVAL);
2294 
2295 	/*
2296 	 * If the new process will be in a different pid or user namespace
2297 	 * do not allow it to share a thread group with the forking task.
2298 	 */
2299 	if (clone_flags & CLONE_THREAD) {
2300 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2301 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2302 			return ERR_PTR(-EINVAL);
2303 	}
2304 
2305 	if (clone_flags & CLONE_PIDFD) {
2306 		/*
2307 		 * - CLONE_DETACHED is blocked so that we can potentially
2308 		 *   reuse it later for CLONE_PIDFD.
2309 		 * - CLONE_THREAD is blocked until someone really needs it.
2310 		 */
2311 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2312 			return ERR_PTR(-EINVAL);
2313 	}
2314 
2315 	/*
2316 	 * Force any signals received before this point to be delivered
2317 	 * before the fork happens.  Collect up signals sent to multiple
2318 	 * processes that happen during the fork and delay them so that
2319 	 * they appear to happen after the fork.
2320 	 */
2321 	sigemptyset(&delayed.signal);
2322 	INIT_HLIST_NODE(&delayed.node);
2323 
2324 	spin_lock_irq(&current->sighand->siglock);
2325 	if (!(clone_flags & CLONE_THREAD))
2326 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2327 	recalc_sigpending();
2328 	spin_unlock_irq(&current->sighand->siglock);
2329 	retval = -ERESTARTNOINTR;
2330 	if (task_sigpending(current))
2331 		goto fork_out;
2332 
2333 	retval = -ENOMEM;
2334 	p = dup_task_struct(current, node);
2335 	if (!p)
2336 		goto fork_out;
2337 	p->flags &= ~PF_KTHREAD;
2338 	if (args->kthread)
2339 		p->flags |= PF_KTHREAD;
2340 	if (args->user_worker) {
2341 		/*
2342 		 * Mark us a user worker, and block any signal that isn't
2343 		 * fatal or STOP
2344 		 */
2345 		p->flags |= PF_USER_WORKER;
2346 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2347 	}
2348 	if (args->io_thread)
2349 		p->flags |= PF_IO_WORKER;
2350 
2351 	if (args->name)
2352 		strscpy_pad(p->comm, args->name, sizeof(p->comm));
2353 
2354 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2355 	/*
2356 	 * Clear TID on mm_release()?
2357 	 */
2358 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2359 
2360 	ftrace_graph_init_task(p);
2361 
2362 	rt_mutex_init_task(p);
2363 
2364 	lockdep_assert_irqs_enabled();
2365 #ifdef CONFIG_PROVE_LOCKING
2366 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2367 #endif
2368 	retval = copy_creds(p, clone_flags);
2369 	if (retval < 0)
2370 		goto bad_fork_free;
2371 
2372 	retval = -EAGAIN;
2373 	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2374 		if (p->real_cred->user != INIT_USER &&
2375 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2376 			goto bad_fork_cleanup_count;
2377 	}
2378 	current->flags &= ~PF_NPROC_EXCEEDED;
2379 
2380 	/*
2381 	 * If multiple threads are within copy_process(), then this check
2382 	 * triggers too late. This doesn't hurt, the check is only there
2383 	 * to stop root fork bombs.
2384 	 */
2385 	retval = -EAGAIN;
2386 	if (data_race(nr_threads >= max_threads))
2387 		goto bad_fork_cleanup_count;
2388 
2389 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2390 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2391 	p->flags |= PF_FORKNOEXEC;
2392 	INIT_LIST_HEAD(&p->children);
2393 	INIT_LIST_HEAD(&p->sibling);
2394 	rcu_copy_process(p);
2395 	p->vfork_done = NULL;
2396 	spin_lock_init(&p->alloc_lock);
2397 
2398 	init_sigpending(&p->pending);
2399 
2400 	p->utime = p->stime = p->gtime = 0;
2401 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2402 	p->utimescaled = p->stimescaled = 0;
2403 #endif
2404 	prev_cputime_init(&p->prev_cputime);
2405 
2406 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2407 	seqcount_init(&p->vtime.seqcount);
2408 	p->vtime.starttime = 0;
2409 	p->vtime.state = VTIME_INACTIVE;
2410 #endif
2411 
2412 #ifdef CONFIG_IO_URING
2413 	p->io_uring = NULL;
2414 #endif
2415 
2416 #if defined(SPLIT_RSS_COUNTING)
2417 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2418 #endif
2419 
2420 	p->default_timer_slack_ns = current->timer_slack_ns;
2421 
2422 #ifdef CONFIG_PSI
2423 	p->psi_flags = 0;
2424 #endif
2425 
2426 	task_io_accounting_init(&p->ioac);
2427 	acct_clear_integrals(p);
2428 
2429 	posix_cputimers_init(&p->posix_cputimers);
2430 
2431 	p->io_context = NULL;
2432 	audit_set_context(p, NULL);
2433 	cgroup_fork(p);
2434 	if (args->kthread) {
2435 		if (!set_kthread_struct(p))
2436 			goto bad_fork_cleanup_delayacct;
2437 	}
2438 #ifdef CONFIG_NUMA
2439 	p->mempolicy = mpol_dup(p->mempolicy);
2440 	if (IS_ERR(p->mempolicy)) {
2441 		retval = PTR_ERR(p->mempolicy);
2442 		p->mempolicy = NULL;
2443 		goto bad_fork_cleanup_delayacct;
2444 	}
2445 #endif
2446 #ifdef CONFIG_CPUSETS
2447 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2448 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2449 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2450 #endif
2451 #ifdef CONFIG_TRACE_IRQFLAGS
2452 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2453 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2454 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2455 	p->softirqs_enabled		= 1;
2456 	p->softirq_context		= 0;
2457 #endif
2458 
2459 	p->pagefault_disabled = 0;
2460 
2461 #ifdef CONFIG_LOCKDEP
2462 	lockdep_init_task(p);
2463 #endif
2464 
2465 #ifdef CONFIG_DEBUG_MUTEXES
2466 	p->blocked_on = NULL; /* not blocked yet */
2467 #endif
2468 #ifdef CONFIG_BCACHE
2469 	p->sequential_io	= 0;
2470 	p->sequential_io_avg	= 0;
2471 #endif
2472 #ifdef CONFIG_BPF_SYSCALL
2473 	RCU_INIT_POINTER(p->bpf_storage, NULL);
2474 	p->bpf_ctx = NULL;
2475 #endif
2476 
2477 	/* Perform scheduler related setup. Assign this task to a CPU. */
2478 	retval = sched_fork(clone_flags, p);
2479 	if (retval)
2480 		goto bad_fork_cleanup_policy;
2481 
2482 	retval = perf_event_init_task(p, clone_flags);
2483 	if (retval)
2484 		goto bad_fork_cleanup_policy;
2485 	retval = audit_alloc(p);
2486 	if (retval)
2487 		goto bad_fork_cleanup_perf;
2488 	/* copy all the process information */
2489 	shm_init_task(p);
2490 	retval = security_task_alloc(p, clone_flags);
2491 	if (retval)
2492 		goto bad_fork_cleanup_audit;
2493 	retval = copy_semundo(clone_flags, p);
2494 	if (retval)
2495 		goto bad_fork_cleanup_security;
2496 	retval = copy_files(clone_flags, p, args->no_files);
2497 	if (retval)
2498 		goto bad_fork_cleanup_semundo;
2499 	retval = copy_fs(clone_flags, p);
2500 	if (retval)
2501 		goto bad_fork_cleanup_files;
2502 	retval = copy_sighand(clone_flags, p);
2503 	if (retval)
2504 		goto bad_fork_cleanup_fs;
2505 	retval = copy_signal(clone_flags, p);
2506 	if (retval)
2507 		goto bad_fork_cleanup_sighand;
2508 	retval = copy_mm(clone_flags, p);
2509 	if (retval)
2510 		goto bad_fork_cleanup_signal;
2511 	retval = copy_namespaces(clone_flags, p);
2512 	if (retval)
2513 		goto bad_fork_cleanup_mm;
2514 	retval = copy_io(clone_flags, p);
2515 	if (retval)
2516 		goto bad_fork_cleanup_namespaces;
2517 	retval = copy_thread(p, args);
2518 	if (retval)
2519 		goto bad_fork_cleanup_io;
2520 
2521 	stackleak_task_init(p);
2522 
2523 	if (pid != &init_struct_pid) {
2524 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2525 				args->set_tid_size);
2526 		if (IS_ERR(pid)) {
2527 			retval = PTR_ERR(pid);
2528 			goto bad_fork_cleanup_thread;
2529 		}
2530 	}
2531 
2532 	/*
2533 	 * This has to happen after we've potentially unshared the file
2534 	 * descriptor table (so that the pidfd doesn't leak into the child
2535 	 * if the fd table isn't shared).
2536 	 */
2537 	if (clone_flags & CLONE_PIDFD) {
2538 		/* Note that no task has been attached to @pid yet. */
2539 		retval = __pidfd_prepare(pid, O_RDWR | O_CLOEXEC, &pidfile);
2540 		if (retval < 0)
2541 			goto bad_fork_free_pid;
2542 		pidfd = retval;
2543 
2544 		retval = put_user(pidfd, args->pidfd);
2545 		if (retval)
2546 			goto bad_fork_put_pidfd;
2547 	}
2548 
2549 #ifdef CONFIG_BLOCK
2550 	p->plug = NULL;
2551 #endif
2552 	futex_init_task(p);
2553 
2554 	/*
2555 	 * sigaltstack should be cleared when sharing the same VM
2556 	 */
2557 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2558 		sas_ss_reset(p);
2559 
2560 	/*
2561 	 * Syscall tracing and stepping should be turned off in the
2562 	 * child regardless of CLONE_PTRACE.
2563 	 */
2564 	user_disable_single_step(p);
2565 	clear_task_syscall_work(p, SYSCALL_TRACE);
2566 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2567 	clear_task_syscall_work(p, SYSCALL_EMU);
2568 #endif
2569 	clear_tsk_latency_tracing(p);
2570 
2571 	/* ok, now we should be set up.. */
2572 	p->pid = pid_nr(pid);
2573 	if (clone_flags & CLONE_THREAD) {
2574 		p->group_leader = current->group_leader;
2575 		p->tgid = current->tgid;
2576 	} else {
2577 		p->group_leader = p;
2578 		p->tgid = p->pid;
2579 	}
2580 
2581 	p->nr_dirtied = 0;
2582 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2583 	p->dirty_paused_when = 0;
2584 
2585 	p->pdeath_signal = 0;
2586 	INIT_LIST_HEAD(&p->thread_group);
2587 	p->task_works = NULL;
2588 	clear_posix_cputimers_work(p);
2589 
2590 #ifdef CONFIG_KRETPROBES
2591 	p->kretprobe_instances.first = NULL;
2592 #endif
2593 #ifdef CONFIG_RETHOOK
2594 	p->rethooks.first = NULL;
2595 #endif
2596 
2597 	/*
2598 	 * Ensure that the cgroup subsystem policies allow the new process to be
2599 	 * forked. It should be noted that the new process's css_set can be changed
2600 	 * between here and cgroup_post_fork() if an organisation operation is in
2601 	 * progress.
2602 	 */
2603 	retval = cgroup_can_fork(p, args);
2604 	if (retval)
2605 		goto bad_fork_put_pidfd;
2606 
2607 	/*
2608 	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2609 	 * the new task on the correct runqueue. All this *before* the task
2610 	 * becomes visible.
2611 	 *
2612 	 * This isn't part of ->can_fork() because while the re-cloning is
2613 	 * cgroup specific, it unconditionally needs to place the task on a
2614 	 * runqueue.
2615 	 */
2616 	sched_cgroup_fork(p, args);
2617 
2618 	/*
2619 	 * From this point on we must avoid any synchronous user-space
2620 	 * communication until we take the tasklist-lock. In particular, we do
2621 	 * not want user-space to be able to predict the process start-time by
2622 	 * stalling fork(2) after we recorded the start_time but before it is
2623 	 * visible to the system.
2624 	 */
2625 
2626 	p->start_time = ktime_get_ns();
2627 	p->start_boottime = ktime_get_boottime_ns();
2628 
2629 	/*
2630 	 * Make it visible to the rest of the system, but dont wake it up yet.
2631 	 * Need tasklist lock for parent etc handling!
2632 	 */
2633 	write_lock_irq(&tasklist_lock);
2634 
2635 	/* CLONE_PARENT re-uses the old parent */
2636 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2637 		p->real_parent = current->real_parent;
2638 		p->parent_exec_id = current->parent_exec_id;
2639 		if (clone_flags & CLONE_THREAD)
2640 			p->exit_signal = -1;
2641 		else
2642 			p->exit_signal = current->group_leader->exit_signal;
2643 	} else {
2644 		p->real_parent = current;
2645 		p->parent_exec_id = current->self_exec_id;
2646 		p->exit_signal = args->exit_signal;
2647 	}
2648 
2649 	klp_copy_process(p);
2650 
2651 	sched_core_fork(p);
2652 
2653 	spin_lock(&current->sighand->siglock);
2654 
2655 	rv_task_fork(p);
2656 
2657 	rseq_fork(p, clone_flags);
2658 
2659 	/* Don't start children in a dying pid namespace */
2660 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2661 		retval = -ENOMEM;
2662 		goto bad_fork_cancel_cgroup;
2663 	}
2664 
2665 	/* Let kill terminate clone/fork in the middle */
2666 	if (fatal_signal_pending(current)) {
2667 		retval = -EINTR;
2668 		goto bad_fork_cancel_cgroup;
2669 	}
2670 
2671 	/* No more failure paths after this point. */
2672 
2673 	/*
2674 	 * Copy seccomp details explicitly here, in case they were changed
2675 	 * before holding sighand lock.
2676 	 */
2677 	copy_seccomp(p);
2678 
2679 	init_task_pid_links(p);
2680 	if (likely(p->pid)) {
2681 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2682 
2683 		init_task_pid(p, PIDTYPE_PID, pid);
2684 		if (thread_group_leader(p)) {
2685 			init_task_pid(p, PIDTYPE_TGID, pid);
2686 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2687 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2688 
2689 			if (is_child_reaper(pid)) {
2690 				ns_of_pid(pid)->child_reaper = p;
2691 				p->signal->flags |= SIGNAL_UNKILLABLE;
2692 			}
2693 			p->signal->shared_pending.signal = delayed.signal;
2694 			p->signal->tty = tty_kref_get(current->signal->tty);
2695 			/*
2696 			 * Inherit has_child_subreaper flag under the same
2697 			 * tasklist_lock with adding child to the process tree
2698 			 * for propagate_has_child_subreaper optimization.
2699 			 */
2700 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2701 							 p->real_parent->signal->is_child_subreaper;
2702 			list_add_tail(&p->sibling, &p->real_parent->children);
2703 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2704 			attach_pid(p, PIDTYPE_TGID);
2705 			attach_pid(p, PIDTYPE_PGID);
2706 			attach_pid(p, PIDTYPE_SID);
2707 			__this_cpu_inc(process_counts);
2708 		} else {
2709 			current->signal->nr_threads++;
2710 			current->signal->quick_threads++;
2711 			atomic_inc(&current->signal->live);
2712 			refcount_inc(&current->signal->sigcnt);
2713 			task_join_group_stop(p);
2714 			list_add_tail_rcu(&p->thread_group,
2715 					  &p->group_leader->thread_group);
2716 			list_add_tail_rcu(&p->thread_node,
2717 					  &p->signal->thread_head);
2718 		}
2719 		attach_pid(p, PIDTYPE_PID);
2720 		nr_threads++;
2721 	}
2722 	total_forks++;
2723 	hlist_del_init(&delayed.node);
2724 	spin_unlock(&current->sighand->siglock);
2725 	syscall_tracepoint_update(p);
2726 	write_unlock_irq(&tasklist_lock);
2727 
2728 	if (pidfile)
2729 		fd_install(pidfd, pidfile);
2730 
2731 	proc_fork_connector(p);
2732 	sched_post_fork(p);
2733 	cgroup_post_fork(p, args);
2734 	perf_event_fork(p);
2735 
2736 	trace_task_newtask(p, clone_flags);
2737 	uprobe_copy_process(p, clone_flags);
2738 	user_events_fork(p, clone_flags);
2739 
2740 	copy_oom_score_adj(clone_flags, p);
2741 
2742 	return p;
2743 
2744 bad_fork_cancel_cgroup:
2745 	sched_core_free(p);
2746 	spin_unlock(&current->sighand->siglock);
2747 	write_unlock_irq(&tasklist_lock);
2748 	cgroup_cancel_fork(p, args);
2749 bad_fork_put_pidfd:
2750 	if (clone_flags & CLONE_PIDFD) {
2751 		fput(pidfile);
2752 		put_unused_fd(pidfd);
2753 	}
2754 bad_fork_free_pid:
2755 	if (pid != &init_struct_pid)
2756 		free_pid(pid);
2757 bad_fork_cleanup_thread:
2758 	exit_thread(p);
2759 bad_fork_cleanup_io:
2760 	if (p->io_context)
2761 		exit_io_context(p);
2762 bad_fork_cleanup_namespaces:
2763 	exit_task_namespaces(p);
2764 bad_fork_cleanup_mm:
2765 	if (p->mm) {
2766 		mm_clear_owner(p->mm, p);
2767 		mmput(p->mm);
2768 	}
2769 bad_fork_cleanup_signal:
2770 	if (!(clone_flags & CLONE_THREAD))
2771 		free_signal_struct(p->signal);
2772 bad_fork_cleanup_sighand:
2773 	__cleanup_sighand(p->sighand);
2774 bad_fork_cleanup_fs:
2775 	exit_fs(p); /* blocking */
2776 bad_fork_cleanup_files:
2777 	exit_files(p); /* blocking */
2778 bad_fork_cleanup_semundo:
2779 	exit_sem(p);
2780 bad_fork_cleanup_security:
2781 	security_task_free(p);
2782 bad_fork_cleanup_audit:
2783 	audit_free(p);
2784 bad_fork_cleanup_perf:
2785 	perf_event_free_task(p);
2786 bad_fork_cleanup_policy:
2787 	lockdep_free_task(p);
2788 #ifdef CONFIG_NUMA
2789 	mpol_put(p->mempolicy);
2790 #endif
2791 bad_fork_cleanup_delayacct:
2792 	delayacct_tsk_free(p);
2793 bad_fork_cleanup_count:
2794 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2795 	exit_creds(p);
2796 bad_fork_free:
2797 	WRITE_ONCE(p->__state, TASK_DEAD);
2798 	exit_task_stack_account(p);
2799 	put_task_stack(p);
2800 	delayed_free_task(p);
2801 fork_out:
2802 	spin_lock_irq(&current->sighand->siglock);
2803 	hlist_del_init(&delayed.node);
2804 	spin_unlock_irq(&current->sighand->siglock);
2805 	return ERR_PTR(retval);
2806 }
2807 
2808 static inline void init_idle_pids(struct task_struct *idle)
2809 {
2810 	enum pid_type type;
2811 
2812 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2813 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2814 		init_task_pid(idle, type, &init_struct_pid);
2815 	}
2816 }
2817 
2818 static int idle_dummy(void *dummy)
2819 {
2820 	/* This function is never called */
2821 	return 0;
2822 }
2823 
2824 struct task_struct * __init fork_idle(int cpu)
2825 {
2826 	struct task_struct *task;
2827 	struct kernel_clone_args args = {
2828 		.flags		= CLONE_VM,
2829 		.fn		= &idle_dummy,
2830 		.fn_arg		= NULL,
2831 		.kthread	= 1,
2832 		.idle		= 1,
2833 	};
2834 
2835 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2836 	if (!IS_ERR(task)) {
2837 		init_idle_pids(task);
2838 		init_idle(task, cpu);
2839 	}
2840 
2841 	return task;
2842 }
2843 
2844 /*
2845  * This is like kernel_clone(), but shaved down and tailored to just
2846  * creating io_uring workers. It returns a created task, or an error pointer.
2847  * The returned task is inactive, and the caller must fire it up through
2848  * wake_up_new_task(p). All signals are blocked in the created task.
2849  */
2850 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2851 {
2852 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2853 				CLONE_IO;
2854 	struct kernel_clone_args args = {
2855 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2856 				    CLONE_UNTRACED) & ~CSIGNAL),
2857 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2858 		.fn		= fn,
2859 		.fn_arg		= arg,
2860 		.io_thread	= 1,
2861 		.user_worker	= 1,
2862 	};
2863 
2864 	return copy_process(NULL, 0, node, &args);
2865 }
2866 
2867 /*
2868  *  Ok, this is the main fork-routine.
2869  *
2870  * It copies the process, and if successful kick-starts
2871  * it and waits for it to finish using the VM if required.
2872  *
2873  * args->exit_signal is expected to be checked for sanity by the caller.
2874  */
2875 pid_t kernel_clone(struct kernel_clone_args *args)
2876 {
2877 	u64 clone_flags = args->flags;
2878 	struct completion vfork;
2879 	struct pid *pid;
2880 	struct task_struct *p;
2881 	int trace = 0;
2882 	pid_t nr;
2883 
2884 	/*
2885 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2886 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2887 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2888 	 * field in struct clone_args and it still doesn't make sense to have
2889 	 * them both point at the same memory location. Performing this check
2890 	 * here has the advantage that we don't need to have a separate helper
2891 	 * to check for legacy clone().
2892 	 */
2893 	if ((args->flags & CLONE_PIDFD) &&
2894 	    (args->flags & CLONE_PARENT_SETTID) &&
2895 	    (args->pidfd == args->parent_tid))
2896 		return -EINVAL;
2897 
2898 	/*
2899 	 * Determine whether and which event to report to ptracer.  When
2900 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2901 	 * requested, no event is reported; otherwise, report if the event
2902 	 * for the type of forking is enabled.
2903 	 */
2904 	if (!(clone_flags & CLONE_UNTRACED)) {
2905 		if (clone_flags & CLONE_VFORK)
2906 			trace = PTRACE_EVENT_VFORK;
2907 		else if (args->exit_signal != SIGCHLD)
2908 			trace = PTRACE_EVENT_CLONE;
2909 		else
2910 			trace = PTRACE_EVENT_FORK;
2911 
2912 		if (likely(!ptrace_event_enabled(current, trace)))
2913 			trace = 0;
2914 	}
2915 
2916 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2917 	add_latent_entropy();
2918 
2919 	if (IS_ERR(p))
2920 		return PTR_ERR(p);
2921 
2922 	/*
2923 	 * Do this prior waking up the new thread - the thread pointer
2924 	 * might get invalid after that point, if the thread exits quickly.
2925 	 */
2926 	trace_sched_process_fork(current, p);
2927 
2928 	pid = get_task_pid(p, PIDTYPE_PID);
2929 	nr = pid_vnr(pid);
2930 
2931 	if (clone_flags & CLONE_PARENT_SETTID)
2932 		put_user(nr, args->parent_tid);
2933 
2934 	if (clone_flags & CLONE_VFORK) {
2935 		p->vfork_done = &vfork;
2936 		init_completion(&vfork);
2937 		get_task_struct(p);
2938 	}
2939 
2940 	if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) {
2941 		/* lock the task to synchronize with memcg migration */
2942 		task_lock(p);
2943 		lru_gen_add_mm(p->mm);
2944 		task_unlock(p);
2945 	}
2946 
2947 	wake_up_new_task(p);
2948 
2949 	/* forking complete and child started to run, tell ptracer */
2950 	if (unlikely(trace))
2951 		ptrace_event_pid(trace, pid);
2952 
2953 	if (clone_flags & CLONE_VFORK) {
2954 		if (!wait_for_vfork_done(p, &vfork))
2955 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2956 	}
2957 
2958 	put_pid(pid);
2959 	return nr;
2960 }
2961 
2962 /*
2963  * Create a kernel thread.
2964  */
2965 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2966 		    unsigned long flags)
2967 {
2968 	struct kernel_clone_args args = {
2969 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2970 				    CLONE_UNTRACED) & ~CSIGNAL),
2971 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2972 		.fn		= fn,
2973 		.fn_arg		= arg,
2974 		.name		= name,
2975 		.kthread	= 1,
2976 	};
2977 
2978 	return kernel_clone(&args);
2979 }
2980 
2981 /*
2982  * Create a user mode thread.
2983  */
2984 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2985 {
2986 	struct kernel_clone_args args = {
2987 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2988 				    CLONE_UNTRACED) & ~CSIGNAL),
2989 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2990 		.fn		= fn,
2991 		.fn_arg		= arg,
2992 	};
2993 
2994 	return kernel_clone(&args);
2995 }
2996 
2997 #ifdef __ARCH_WANT_SYS_FORK
2998 SYSCALL_DEFINE0(fork)
2999 {
3000 #ifdef CONFIG_MMU
3001 	struct kernel_clone_args args = {
3002 		.exit_signal = SIGCHLD,
3003 	};
3004 
3005 	return kernel_clone(&args);
3006 #else
3007 	/* can not support in nommu mode */
3008 	return -EINVAL;
3009 #endif
3010 }
3011 #endif
3012 
3013 #ifdef __ARCH_WANT_SYS_VFORK
3014 SYSCALL_DEFINE0(vfork)
3015 {
3016 	struct kernel_clone_args args = {
3017 		.flags		= CLONE_VFORK | CLONE_VM,
3018 		.exit_signal	= SIGCHLD,
3019 	};
3020 
3021 	return kernel_clone(&args);
3022 }
3023 #endif
3024 
3025 #ifdef __ARCH_WANT_SYS_CLONE
3026 #ifdef CONFIG_CLONE_BACKWARDS
3027 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3028 		 int __user *, parent_tidptr,
3029 		 unsigned long, tls,
3030 		 int __user *, child_tidptr)
3031 #elif defined(CONFIG_CLONE_BACKWARDS2)
3032 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
3033 		 int __user *, parent_tidptr,
3034 		 int __user *, child_tidptr,
3035 		 unsigned long, tls)
3036 #elif defined(CONFIG_CLONE_BACKWARDS3)
3037 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
3038 		int, stack_size,
3039 		int __user *, parent_tidptr,
3040 		int __user *, child_tidptr,
3041 		unsigned long, tls)
3042 #else
3043 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3044 		 int __user *, parent_tidptr,
3045 		 int __user *, child_tidptr,
3046 		 unsigned long, tls)
3047 #endif
3048 {
3049 	struct kernel_clone_args args = {
3050 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
3051 		.pidfd		= parent_tidptr,
3052 		.child_tid	= child_tidptr,
3053 		.parent_tid	= parent_tidptr,
3054 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
3055 		.stack		= newsp,
3056 		.tls		= tls,
3057 	};
3058 
3059 	return kernel_clone(&args);
3060 }
3061 #endif
3062 
3063 #ifdef __ARCH_WANT_SYS_CLONE3
3064 
3065 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
3066 					      struct clone_args __user *uargs,
3067 					      size_t usize)
3068 {
3069 	int err;
3070 	struct clone_args args;
3071 	pid_t *kset_tid = kargs->set_tid;
3072 
3073 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
3074 		     CLONE_ARGS_SIZE_VER0);
3075 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
3076 		     CLONE_ARGS_SIZE_VER1);
3077 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
3078 		     CLONE_ARGS_SIZE_VER2);
3079 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
3080 
3081 	if (unlikely(usize > PAGE_SIZE))
3082 		return -E2BIG;
3083 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
3084 		return -EINVAL;
3085 
3086 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
3087 	if (err)
3088 		return err;
3089 
3090 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
3091 		return -EINVAL;
3092 
3093 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
3094 		return -EINVAL;
3095 
3096 	if (unlikely(args.set_tid && args.set_tid_size == 0))
3097 		return -EINVAL;
3098 
3099 	/*
3100 	 * Verify that higher 32bits of exit_signal are unset and that
3101 	 * it is a valid signal
3102 	 */
3103 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
3104 		     !valid_signal(args.exit_signal)))
3105 		return -EINVAL;
3106 
3107 	if ((args.flags & CLONE_INTO_CGROUP) &&
3108 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
3109 		return -EINVAL;
3110 
3111 	*kargs = (struct kernel_clone_args){
3112 		.flags		= args.flags,
3113 		.pidfd		= u64_to_user_ptr(args.pidfd),
3114 		.child_tid	= u64_to_user_ptr(args.child_tid),
3115 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
3116 		.exit_signal	= args.exit_signal,
3117 		.stack		= args.stack,
3118 		.stack_size	= args.stack_size,
3119 		.tls		= args.tls,
3120 		.set_tid_size	= args.set_tid_size,
3121 		.cgroup		= args.cgroup,
3122 	};
3123 
3124 	if (args.set_tid &&
3125 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
3126 			(kargs->set_tid_size * sizeof(pid_t))))
3127 		return -EFAULT;
3128 
3129 	kargs->set_tid = kset_tid;
3130 
3131 	return 0;
3132 }
3133 
3134 /**
3135  * clone3_stack_valid - check and prepare stack
3136  * @kargs: kernel clone args
3137  *
3138  * Verify that the stack arguments userspace gave us are sane.
3139  * In addition, set the stack direction for userspace since it's easy for us to
3140  * determine.
3141  */
3142 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3143 {
3144 	if (kargs->stack == 0) {
3145 		if (kargs->stack_size > 0)
3146 			return false;
3147 	} else {
3148 		if (kargs->stack_size == 0)
3149 			return false;
3150 
3151 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3152 			return false;
3153 
3154 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
3155 		kargs->stack += kargs->stack_size;
3156 #endif
3157 	}
3158 
3159 	return true;
3160 }
3161 
3162 static bool clone3_args_valid(struct kernel_clone_args *kargs)
3163 {
3164 	/* Verify that no unknown flags are passed along. */
3165 	if (kargs->flags &
3166 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3167 		return false;
3168 
3169 	/*
3170 	 * - make the CLONE_DETACHED bit reusable for clone3
3171 	 * - make the CSIGNAL bits reusable for clone3
3172 	 */
3173 	if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3174 		return false;
3175 
3176 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3177 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3178 		return false;
3179 
3180 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3181 	    kargs->exit_signal)
3182 		return false;
3183 
3184 	if (!clone3_stack_valid(kargs))
3185 		return false;
3186 
3187 	return true;
3188 }
3189 
3190 /**
3191  * clone3 - create a new process with specific properties
3192  * @uargs: argument structure
3193  * @size:  size of @uargs
3194  *
3195  * clone3() is the extensible successor to clone()/clone2().
3196  * It takes a struct as argument that is versioned by its size.
3197  *
3198  * Return: On success, a positive PID for the child process.
3199  *         On error, a negative errno number.
3200  */
3201 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3202 {
3203 	int err;
3204 
3205 	struct kernel_clone_args kargs;
3206 	pid_t set_tid[MAX_PID_NS_LEVEL];
3207 
3208 	kargs.set_tid = set_tid;
3209 
3210 	err = copy_clone_args_from_user(&kargs, uargs, size);
3211 	if (err)
3212 		return err;
3213 
3214 	if (!clone3_args_valid(&kargs))
3215 		return -EINVAL;
3216 
3217 	return kernel_clone(&kargs);
3218 }
3219 #endif
3220 
3221 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3222 {
3223 	struct task_struct *leader, *parent, *child;
3224 	int res;
3225 
3226 	read_lock(&tasklist_lock);
3227 	leader = top = top->group_leader;
3228 down:
3229 	for_each_thread(leader, parent) {
3230 		list_for_each_entry(child, &parent->children, sibling) {
3231 			res = visitor(child, data);
3232 			if (res) {
3233 				if (res < 0)
3234 					goto out;
3235 				leader = child;
3236 				goto down;
3237 			}
3238 up:
3239 			;
3240 		}
3241 	}
3242 
3243 	if (leader != top) {
3244 		child = leader;
3245 		parent = child->real_parent;
3246 		leader = parent->group_leader;
3247 		goto up;
3248 	}
3249 out:
3250 	read_unlock(&tasklist_lock);
3251 }
3252 
3253 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3254 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3255 #endif
3256 
3257 static void sighand_ctor(void *data)
3258 {
3259 	struct sighand_struct *sighand = data;
3260 
3261 	spin_lock_init(&sighand->siglock);
3262 	init_waitqueue_head(&sighand->signalfd_wqh);
3263 }
3264 
3265 void __init mm_cache_init(void)
3266 {
3267 	unsigned int mm_size;
3268 
3269 	/*
3270 	 * The mm_cpumask is located at the end of mm_struct, and is
3271 	 * dynamically sized based on the maximum CPU number this system
3272 	 * can have, taking hotplug into account (nr_cpu_ids).
3273 	 */
3274 	mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3275 
3276 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
3277 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3278 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3279 			offsetof(struct mm_struct, saved_auxv),
3280 			sizeof_field(struct mm_struct, saved_auxv),
3281 			NULL);
3282 }
3283 
3284 void __init proc_caches_init(void)
3285 {
3286 	sighand_cachep = kmem_cache_create("sighand_cache",
3287 			sizeof(struct sighand_struct), 0,
3288 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3289 			SLAB_ACCOUNT, sighand_ctor);
3290 	signal_cachep = kmem_cache_create("signal_cache",
3291 			sizeof(struct signal_struct), 0,
3292 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3293 			NULL);
3294 	files_cachep = kmem_cache_create("files_cache",
3295 			sizeof(struct files_struct), 0,
3296 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3297 			NULL);
3298 	fs_cachep = kmem_cache_create("fs_cache",
3299 			sizeof(struct fs_struct), 0,
3300 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3301 			NULL);
3302 
3303 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3304 #ifdef CONFIG_PER_VMA_LOCK
3305 	vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3306 #endif
3307 	mmap_init();
3308 	nsproxy_cache_init();
3309 }
3310 
3311 /*
3312  * Check constraints on flags passed to the unshare system call.
3313  */
3314 static int check_unshare_flags(unsigned long unshare_flags)
3315 {
3316 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3317 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3318 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3319 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3320 				CLONE_NEWTIME))
3321 		return -EINVAL;
3322 	/*
3323 	 * Not implemented, but pretend it works if there is nothing
3324 	 * to unshare.  Note that unsharing the address space or the
3325 	 * signal handlers also need to unshare the signal queues (aka
3326 	 * CLONE_THREAD).
3327 	 */
3328 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3329 		if (!thread_group_empty(current))
3330 			return -EINVAL;
3331 	}
3332 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3333 		if (refcount_read(&current->sighand->count) > 1)
3334 			return -EINVAL;
3335 	}
3336 	if (unshare_flags & CLONE_VM) {
3337 		if (!current_is_single_threaded())
3338 			return -EINVAL;
3339 	}
3340 
3341 	return 0;
3342 }
3343 
3344 /*
3345  * Unshare the filesystem structure if it is being shared
3346  */
3347 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3348 {
3349 	struct fs_struct *fs = current->fs;
3350 
3351 	if (!(unshare_flags & CLONE_FS) || !fs)
3352 		return 0;
3353 
3354 	/* don't need lock here; in the worst case we'll do useless copy */
3355 	if (fs->users == 1)
3356 		return 0;
3357 
3358 	*new_fsp = copy_fs_struct(fs);
3359 	if (!*new_fsp)
3360 		return -ENOMEM;
3361 
3362 	return 0;
3363 }
3364 
3365 /*
3366  * Unshare file descriptor table if it is being shared
3367  */
3368 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3369 	       struct files_struct **new_fdp)
3370 {
3371 	struct files_struct *fd = current->files;
3372 	int error = 0;
3373 
3374 	if ((unshare_flags & CLONE_FILES) &&
3375 	    (fd && atomic_read(&fd->count) > 1)) {
3376 		*new_fdp = dup_fd(fd, max_fds, &error);
3377 		if (!*new_fdp)
3378 			return error;
3379 	}
3380 
3381 	return 0;
3382 }
3383 
3384 /*
3385  * unshare allows a process to 'unshare' part of the process
3386  * context which was originally shared using clone.  copy_*
3387  * functions used by kernel_clone() cannot be used here directly
3388  * because they modify an inactive task_struct that is being
3389  * constructed. Here we are modifying the current, active,
3390  * task_struct.
3391  */
3392 int ksys_unshare(unsigned long unshare_flags)
3393 {
3394 	struct fs_struct *fs, *new_fs = NULL;
3395 	struct files_struct *new_fd = NULL;
3396 	struct cred *new_cred = NULL;
3397 	struct nsproxy *new_nsproxy = NULL;
3398 	int do_sysvsem = 0;
3399 	int err;
3400 
3401 	/*
3402 	 * If unsharing a user namespace must also unshare the thread group
3403 	 * and unshare the filesystem root and working directories.
3404 	 */
3405 	if (unshare_flags & CLONE_NEWUSER)
3406 		unshare_flags |= CLONE_THREAD | CLONE_FS;
3407 	/*
3408 	 * If unsharing vm, must also unshare signal handlers.
3409 	 */
3410 	if (unshare_flags & CLONE_VM)
3411 		unshare_flags |= CLONE_SIGHAND;
3412 	/*
3413 	 * If unsharing a signal handlers, must also unshare the signal queues.
3414 	 */
3415 	if (unshare_flags & CLONE_SIGHAND)
3416 		unshare_flags |= CLONE_THREAD;
3417 	/*
3418 	 * If unsharing namespace, must also unshare filesystem information.
3419 	 */
3420 	if (unshare_flags & CLONE_NEWNS)
3421 		unshare_flags |= CLONE_FS;
3422 
3423 	err = check_unshare_flags(unshare_flags);
3424 	if (err)
3425 		goto bad_unshare_out;
3426 	/*
3427 	 * CLONE_NEWIPC must also detach from the undolist: after switching
3428 	 * to a new ipc namespace, the semaphore arrays from the old
3429 	 * namespace are unreachable.
3430 	 */
3431 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3432 		do_sysvsem = 1;
3433 	err = unshare_fs(unshare_flags, &new_fs);
3434 	if (err)
3435 		goto bad_unshare_out;
3436 	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3437 	if (err)
3438 		goto bad_unshare_cleanup_fs;
3439 	err = unshare_userns(unshare_flags, &new_cred);
3440 	if (err)
3441 		goto bad_unshare_cleanup_fd;
3442 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3443 					 new_cred, new_fs);
3444 	if (err)
3445 		goto bad_unshare_cleanup_cred;
3446 
3447 	if (new_cred) {
3448 		err = set_cred_ucounts(new_cred);
3449 		if (err)
3450 			goto bad_unshare_cleanup_cred;
3451 	}
3452 
3453 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3454 		if (do_sysvsem) {
3455 			/*
3456 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3457 			 */
3458 			exit_sem(current);
3459 		}
3460 		if (unshare_flags & CLONE_NEWIPC) {
3461 			/* Orphan segments in old ns (see sem above). */
3462 			exit_shm(current);
3463 			shm_init_task(current);
3464 		}
3465 
3466 		if (new_nsproxy)
3467 			switch_task_namespaces(current, new_nsproxy);
3468 
3469 		task_lock(current);
3470 
3471 		if (new_fs) {
3472 			fs = current->fs;
3473 			spin_lock(&fs->lock);
3474 			current->fs = new_fs;
3475 			if (--fs->users)
3476 				new_fs = NULL;
3477 			else
3478 				new_fs = fs;
3479 			spin_unlock(&fs->lock);
3480 		}
3481 
3482 		if (new_fd)
3483 			swap(current->files, new_fd);
3484 
3485 		task_unlock(current);
3486 
3487 		if (new_cred) {
3488 			/* Install the new user namespace */
3489 			commit_creds(new_cred);
3490 			new_cred = NULL;
3491 		}
3492 	}
3493 
3494 	perf_event_namespaces(current);
3495 
3496 bad_unshare_cleanup_cred:
3497 	if (new_cred)
3498 		put_cred(new_cred);
3499 bad_unshare_cleanup_fd:
3500 	if (new_fd)
3501 		put_files_struct(new_fd);
3502 
3503 bad_unshare_cleanup_fs:
3504 	if (new_fs)
3505 		free_fs_struct(new_fs);
3506 
3507 bad_unshare_out:
3508 	return err;
3509 }
3510 
3511 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3512 {
3513 	return ksys_unshare(unshare_flags);
3514 }
3515 
3516 /*
3517  *	Helper to unshare the files of the current task.
3518  *	We don't want to expose copy_files internals to
3519  *	the exec layer of the kernel.
3520  */
3521 
3522 int unshare_files(void)
3523 {
3524 	struct task_struct *task = current;
3525 	struct files_struct *old, *copy = NULL;
3526 	int error;
3527 
3528 	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3529 	if (error || !copy)
3530 		return error;
3531 
3532 	old = task->files;
3533 	task_lock(task);
3534 	task->files = copy;
3535 	task_unlock(task);
3536 	put_files_struct(old);
3537 	return 0;
3538 }
3539 
3540 int sysctl_max_threads(struct ctl_table *table, int write,
3541 		       void *buffer, size_t *lenp, loff_t *ppos)
3542 {
3543 	struct ctl_table t;
3544 	int ret;
3545 	int threads = max_threads;
3546 	int min = 1;
3547 	int max = MAX_THREADS;
3548 
3549 	t = *table;
3550 	t.data = &threads;
3551 	t.extra1 = &min;
3552 	t.extra2 = &max;
3553 
3554 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3555 	if (ret || !write)
3556 		return ret;
3557 
3558 	max_threads = threads;
3559 
3560 	return 0;
3561 }
3562