xref: /linux/kernel/fork.c (revision 1bc191051dca28fa6d20fd1dc34a1903e7d4fb62)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/fs.h>
44 #include <linux/mm.h>
45 #include <linux/mm_inline.h>
46 #include <linux/vmacache.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/random.h>
79 #include <linux/tty.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 #include <linux/scs.h>
98 #include <linux/io_uring.h>
99 #include <linux/bpf.h>
100 #include <linux/sched/mm.h>
101 
102 #include <asm/pgalloc.h>
103 #include <linux/uaccess.h>
104 #include <asm/mmu_context.h>
105 #include <asm/cacheflush.h>
106 #include <asm/tlbflush.h>
107 
108 #include <trace/events/sched.h>
109 
110 #define CREATE_TRACE_POINTS
111 #include <trace/events/task.h>
112 
113 /*
114  * Minimum number of threads to boot the kernel
115  */
116 #define MIN_THREADS 20
117 
118 /*
119  * Maximum number of threads
120  */
121 #define MAX_THREADS FUTEX_TID_MASK
122 
123 /*
124  * Protected counters by write_lock_irq(&tasklist_lock)
125  */
126 unsigned long total_forks;	/* Handle normal Linux uptimes. */
127 int nr_threads;			/* The idle threads do not count.. */
128 
129 static int max_threads;		/* tunable limit on nr_threads */
130 
131 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
132 
133 static const char * const resident_page_types[] = {
134 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
135 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
136 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
137 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
138 };
139 
140 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
141 
142 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
143 
144 #ifdef CONFIG_PROVE_RCU
145 int lockdep_tasklist_lock_is_held(void)
146 {
147 	return lockdep_is_held(&tasklist_lock);
148 }
149 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
150 #endif /* #ifdef CONFIG_PROVE_RCU */
151 
152 int nr_processes(void)
153 {
154 	int cpu;
155 	int total = 0;
156 
157 	for_each_possible_cpu(cpu)
158 		total += per_cpu(process_counts, cpu);
159 
160 	return total;
161 }
162 
163 void __weak arch_release_task_struct(struct task_struct *tsk)
164 {
165 }
166 
167 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
168 static struct kmem_cache *task_struct_cachep;
169 
170 static inline struct task_struct *alloc_task_struct_node(int node)
171 {
172 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
173 }
174 
175 static inline void free_task_struct(struct task_struct *tsk)
176 {
177 	kmem_cache_free(task_struct_cachep, tsk);
178 }
179 #endif
180 
181 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
182 
183 /*
184  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
185  * kmemcache based allocator.
186  */
187 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
188 
189 #  ifdef CONFIG_VMAP_STACK
190 /*
191  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
192  * flush.  Try to minimize the number of calls by caching stacks.
193  */
194 #define NR_CACHED_STACKS 2
195 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
196 
197 struct vm_stack {
198 	struct rcu_head rcu;
199 	struct vm_struct *stack_vm_area;
200 };
201 
202 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
203 {
204 	unsigned int i;
205 
206 	for (i = 0; i < NR_CACHED_STACKS; i++) {
207 		if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
208 			continue;
209 		return true;
210 	}
211 	return false;
212 }
213 
214 static void thread_stack_free_rcu(struct rcu_head *rh)
215 {
216 	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
217 
218 	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
219 		return;
220 
221 	vfree(vm_stack);
222 }
223 
224 static void thread_stack_delayed_free(struct task_struct *tsk)
225 {
226 	struct vm_stack *vm_stack = tsk->stack;
227 
228 	vm_stack->stack_vm_area = tsk->stack_vm_area;
229 	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
230 }
231 
232 static int free_vm_stack_cache(unsigned int cpu)
233 {
234 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
235 	int i;
236 
237 	for (i = 0; i < NR_CACHED_STACKS; i++) {
238 		struct vm_struct *vm_stack = cached_vm_stacks[i];
239 
240 		if (!vm_stack)
241 			continue;
242 
243 		vfree(vm_stack->addr);
244 		cached_vm_stacks[i] = NULL;
245 	}
246 
247 	return 0;
248 }
249 
250 static int memcg_charge_kernel_stack(struct vm_struct *vm)
251 {
252 	int i;
253 	int ret;
254 
255 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
256 	BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
257 
258 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
259 		ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
260 		if (ret)
261 			goto err;
262 	}
263 	return 0;
264 err:
265 	/*
266 	 * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is
267 	 * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will
268 	 * ignore this page.
269 	 */
270 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
271 		memcg_kmem_uncharge_page(vm->pages[i], 0);
272 	return ret;
273 }
274 
275 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
276 {
277 	struct vm_struct *vm;
278 	void *stack;
279 	int i;
280 
281 	for (i = 0; i < NR_CACHED_STACKS; i++) {
282 		struct vm_struct *s;
283 
284 		s = this_cpu_xchg(cached_stacks[i], NULL);
285 
286 		if (!s)
287 			continue;
288 
289 		/* Mark stack accessible for KASAN. */
290 		kasan_unpoison_range(s->addr, THREAD_SIZE);
291 
292 		/* Clear stale pointers from reused stack. */
293 		memset(s->addr, 0, THREAD_SIZE);
294 
295 		if (memcg_charge_kernel_stack(s)) {
296 			vfree(s->addr);
297 			return -ENOMEM;
298 		}
299 
300 		tsk->stack_vm_area = s;
301 		tsk->stack = s->addr;
302 		return 0;
303 	}
304 
305 	/*
306 	 * Allocated stacks are cached and later reused by new threads,
307 	 * so memcg accounting is performed manually on assigning/releasing
308 	 * stacks to tasks. Drop __GFP_ACCOUNT.
309 	 */
310 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
311 				     VMALLOC_START, VMALLOC_END,
312 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
313 				     PAGE_KERNEL,
314 				     0, node, __builtin_return_address(0));
315 	if (!stack)
316 		return -ENOMEM;
317 
318 	vm = find_vm_area(stack);
319 	if (memcg_charge_kernel_stack(vm)) {
320 		vfree(stack);
321 		return -ENOMEM;
322 	}
323 	/*
324 	 * We can't call find_vm_area() in interrupt context, and
325 	 * free_thread_stack() can be called in interrupt context,
326 	 * so cache the vm_struct.
327 	 */
328 	tsk->stack_vm_area = vm;
329 	tsk->stack = stack;
330 	return 0;
331 }
332 
333 static void free_thread_stack(struct task_struct *tsk)
334 {
335 	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
336 		thread_stack_delayed_free(tsk);
337 
338 	tsk->stack = NULL;
339 	tsk->stack_vm_area = NULL;
340 }
341 
342 #  else /* !CONFIG_VMAP_STACK */
343 
344 static void thread_stack_free_rcu(struct rcu_head *rh)
345 {
346 	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
347 }
348 
349 static void thread_stack_delayed_free(struct task_struct *tsk)
350 {
351 	struct rcu_head *rh = tsk->stack;
352 
353 	call_rcu(rh, thread_stack_free_rcu);
354 }
355 
356 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
357 {
358 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
359 					     THREAD_SIZE_ORDER);
360 
361 	if (likely(page)) {
362 		tsk->stack = kasan_reset_tag(page_address(page));
363 		return 0;
364 	}
365 	return -ENOMEM;
366 }
367 
368 static void free_thread_stack(struct task_struct *tsk)
369 {
370 	thread_stack_delayed_free(tsk);
371 	tsk->stack = NULL;
372 }
373 
374 #  endif /* CONFIG_VMAP_STACK */
375 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
376 
377 static struct kmem_cache *thread_stack_cache;
378 
379 static void thread_stack_free_rcu(struct rcu_head *rh)
380 {
381 	kmem_cache_free(thread_stack_cache, rh);
382 }
383 
384 static void thread_stack_delayed_free(struct task_struct *tsk)
385 {
386 	struct rcu_head *rh = tsk->stack;
387 
388 	call_rcu(rh, thread_stack_free_rcu);
389 }
390 
391 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
392 {
393 	unsigned long *stack;
394 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
395 	stack = kasan_reset_tag(stack);
396 	tsk->stack = stack;
397 	return stack ? 0 : -ENOMEM;
398 }
399 
400 static void free_thread_stack(struct task_struct *tsk)
401 {
402 	thread_stack_delayed_free(tsk);
403 	tsk->stack = NULL;
404 }
405 
406 void thread_stack_cache_init(void)
407 {
408 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
409 					THREAD_SIZE, THREAD_SIZE, 0, 0,
410 					THREAD_SIZE, NULL);
411 	BUG_ON(thread_stack_cache == NULL);
412 }
413 
414 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
415 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
416 
417 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
418 {
419 	unsigned long *stack;
420 
421 	stack = arch_alloc_thread_stack_node(tsk, node);
422 	tsk->stack = stack;
423 	return stack ? 0 : -ENOMEM;
424 }
425 
426 static void free_thread_stack(struct task_struct *tsk)
427 {
428 	arch_free_thread_stack(tsk);
429 	tsk->stack = NULL;
430 }
431 
432 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
433 
434 /* SLAB cache for signal_struct structures (tsk->signal) */
435 static struct kmem_cache *signal_cachep;
436 
437 /* SLAB cache for sighand_struct structures (tsk->sighand) */
438 struct kmem_cache *sighand_cachep;
439 
440 /* SLAB cache for files_struct structures (tsk->files) */
441 struct kmem_cache *files_cachep;
442 
443 /* SLAB cache for fs_struct structures (tsk->fs) */
444 struct kmem_cache *fs_cachep;
445 
446 /* SLAB cache for vm_area_struct structures */
447 static struct kmem_cache *vm_area_cachep;
448 
449 /* SLAB cache for mm_struct structures (tsk->mm) */
450 static struct kmem_cache *mm_cachep;
451 
452 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
453 {
454 	struct vm_area_struct *vma;
455 
456 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
457 	if (vma)
458 		vma_init(vma, mm);
459 	return vma;
460 }
461 
462 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
463 {
464 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
465 
466 	if (new) {
467 		ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
468 		ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
469 		/*
470 		 * orig->shared.rb may be modified concurrently, but the clone
471 		 * will be reinitialized.
472 		 */
473 		*new = data_race(*orig);
474 		INIT_LIST_HEAD(&new->anon_vma_chain);
475 		new->vm_next = new->vm_prev = NULL;
476 		dup_anon_vma_name(orig, new);
477 	}
478 	return new;
479 }
480 
481 void vm_area_free(struct vm_area_struct *vma)
482 {
483 	free_anon_vma_name(vma);
484 	kmem_cache_free(vm_area_cachep, vma);
485 }
486 
487 static void account_kernel_stack(struct task_struct *tsk, int account)
488 {
489 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
490 		struct vm_struct *vm = task_stack_vm_area(tsk);
491 		int i;
492 
493 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
494 			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
495 					      account * (PAGE_SIZE / 1024));
496 	} else {
497 		void *stack = task_stack_page(tsk);
498 
499 		/* All stack pages are in the same node. */
500 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
501 				      account * (THREAD_SIZE / 1024));
502 	}
503 }
504 
505 void exit_task_stack_account(struct task_struct *tsk)
506 {
507 	account_kernel_stack(tsk, -1);
508 
509 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
510 		struct vm_struct *vm;
511 		int i;
512 
513 		vm = task_stack_vm_area(tsk);
514 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
515 			memcg_kmem_uncharge_page(vm->pages[i], 0);
516 	}
517 }
518 
519 static void release_task_stack(struct task_struct *tsk)
520 {
521 	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
522 		return;  /* Better to leak the stack than to free prematurely */
523 
524 	free_thread_stack(tsk);
525 }
526 
527 #ifdef CONFIG_THREAD_INFO_IN_TASK
528 void put_task_stack(struct task_struct *tsk)
529 {
530 	if (refcount_dec_and_test(&tsk->stack_refcount))
531 		release_task_stack(tsk);
532 }
533 #endif
534 
535 void free_task(struct task_struct *tsk)
536 {
537 	release_user_cpus_ptr(tsk);
538 	scs_release(tsk);
539 
540 #ifndef CONFIG_THREAD_INFO_IN_TASK
541 	/*
542 	 * The task is finally done with both the stack and thread_info,
543 	 * so free both.
544 	 */
545 	release_task_stack(tsk);
546 #else
547 	/*
548 	 * If the task had a separate stack allocation, it should be gone
549 	 * by now.
550 	 */
551 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
552 #endif
553 	rt_mutex_debug_task_free(tsk);
554 	ftrace_graph_exit_task(tsk);
555 	arch_release_task_struct(tsk);
556 	if (tsk->flags & PF_KTHREAD)
557 		free_kthread_struct(tsk);
558 	free_task_struct(tsk);
559 }
560 EXPORT_SYMBOL(free_task);
561 
562 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
563 {
564 	struct file *exe_file;
565 
566 	exe_file = get_mm_exe_file(oldmm);
567 	RCU_INIT_POINTER(mm->exe_file, exe_file);
568 	/*
569 	 * We depend on the oldmm having properly denied write access to the
570 	 * exe_file already.
571 	 */
572 	if (exe_file && deny_write_access(exe_file))
573 		pr_warn_once("deny_write_access() failed in %s\n", __func__);
574 }
575 
576 #ifdef CONFIG_MMU
577 static __latent_entropy int dup_mmap(struct mm_struct *mm,
578 					struct mm_struct *oldmm)
579 {
580 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
581 	struct rb_node **rb_link, *rb_parent;
582 	int retval;
583 	unsigned long charge;
584 	LIST_HEAD(uf);
585 
586 	uprobe_start_dup_mmap();
587 	if (mmap_write_lock_killable(oldmm)) {
588 		retval = -EINTR;
589 		goto fail_uprobe_end;
590 	}
591 	flush_cache_dup_mm(oldmm);
592 	uprobe_dup_mmap(oldmm, mm);
593 	/*
594 	 * Not linked in yet - no deadlock potential:
595 	 */
596 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
597 
598 	/* No ordering required: file already has been exposed. */
599 	dup_mm_exe_file(mm, oldmm);
600 
601 	mm->total_vm = oldmm->total_vm;
602 	mm->data_vm = oldmm->data_vm;
603 	mm->exec_vm = oldmm->exec_vm;
604 	mm->stack_vm = oldmm->stack_vm;
605 
606 	rb_link = &mm->mm_rb.rb_node;
607 	rb_parent = NULL;
608 	pprev = &mm->mmap;
609 	retval = ksm_fork(mm, oldmm);
610 	if (retval)
611 		goto out;
612 	retval = khugepaged_fork(mm, oldmm);
613 	if (retval)
614 		goto out;
615 
616 	prev = NULL;
617 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
618 		struct file *file;
619 
620 		if (mpnt->vm_flags & VM_DONTCOPY) {
621 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
622 			continue;
623 		}
624 		charge = 0;
625 		/*
626 		 * Don't duplicate many vmas if we've been oom-killed (for
627 		 * example)
628 		 */
629 		if (fatal_signal_pending(current)) {
630 			retval = -EINTR;
631 			goto out;
632 		}
633 		if (mpnt->vm_flags & VM_ACCOUNT) {
634 			unsigned long len = vma_pages(mpnt);
635 
636 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
637 				goto fail_nomem;
638 			charge = len;
639 		}
640 		tmp = vm_area_dup(mpnt);
641 		if (!tmp)
642 			goto fail_nomem;
643 		retval = vma_dup_policy(mpnt, tmp);
644 		if (retval)
645 			goto fail_nomem_policy;
646 		tmp->vm_mm = mm;
647 		retval = dup_userfaultfd(tmp, &uf);
648 		if (retval)
649 			goto fail_nomem_anon_vma_fork;
650 		if (tmp->vm_flags & VM_WIPEONFORK) {
651 			/*
652 			 * VM_WIPEONFORK gets a clean slate in the child.
653 			 * Don't prepare anon_vma until fault since we don't
654 			 * copy page for current vma.
655 			 */
656 			tmp->anon_vma = NULL;
657 		} else if (anon_vma_fork(tmp, mpnt))
658 			goto fail_nomem_anon_vma_fork;
659 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
660 		file = tmp->vm_file;
661 		if (file) {
662 			struct address_space *mapping = file->f_mapping;
663 
664 			get_file(file);
665 			i_mmap_lock_write(mapping);
666 			if (tmp->vm_flags & VM_SHARED)
667 				mapping_allow_writable(mapping);
668 			flush_dcache_mmap_lock(mapping);
669 			/* insert tmp into the share list, just after mpnt */
670 			vma_interval_tree_insert_after(tmp, mpnt,
671 					&mapping->i_mmap);
672 			flush_dcache_mmap_unlock(mapping);
673 			i_mmap_unlock_write(mapping);
674 		}
675 
676 		/*
677 		 * Clear hugetlb-related page reserves for children. This only
678 		 * affects MAP_PRIVATE mappings. Faults generated by the child
679 		 * are not guaranteed to succeed, even if read-only
680 		 */
681 		if (is_vm_hugetlb_page(tmp))
682 			reset_vma_resv_huge_pages(tmp);
683 
684 		/*
685 		 * Link in the new vma and copy the page table entries.
686 		 */
687 		*pprev = tmp;
688 		pprev = &tmp->vm_next;
689 		tmp->vm_prev = prev;
690 		prev = tmp;
691 
692 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
693 		rb_link = &tmp->vm_rb.rb_right;
694 		rb_parent = &tmp->vm_rb;
695 
696 		mm->map_count++;
697 		if (!(tmp->vm_flags & VM_WIPEONFORK))
698 			retval = copy_page_range(tmp, mpnt);
699 
700 		if (tmp->vm_ops && tmp->vm_ops->open)
701 			tmp->vm_ops->open(tmp);
702 
703 		if (retval)
704 			goto out;
705 	}
706 	/* a new mm has just been created */
707 	retval = arch_dup_mmap(oldmm, mm);
708 out:
709 	mmap_write_unlock(mm);
710 	flush_tlb_mm(oldmm);
711 	mmap_write_unlock(oldmm);
712 	dup_userfaultfd_complete(&uf);
713 fail_uprobe_end:
714 	uprobe_end_dup_mmap();
715 	return retval;
716 fail_nomem_anon_vma_fork:
717 	mpol_put(vma_policy(tmp));
718 fail_nomem_policy:
719 	vm_area_free(tmp);
720 fail_nomem:
721 	retval = -ENOMEM;
722 	vm_unacct_memory(charge);
723 	goto out;
724 }
725 
726 static inline int mm_alloc_pgd(struct mm_struct *mm)
727 {
728 	mm->pgd = pgd_alloc(mm);
729 	if (unlikely(!mm->pgd))
730 		return -ENOMEM;
731 	return 0;
732 }
733 
734 static inline void mm_free_pgd(struct mm_struct *mm)
735 {
736 	pgd_free(mm, mm->pgd);
737 }
738 #else
739 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
740 {
741 	mmap_write_lock(oldmm);
742 	dup_mm_exe_file(mm, oldmm);
743 	mmap_write_unlock(oldmm);
744 	return 0;
745 }
746 #define mm_alloc_pgd(mm)	(0)
747 #define mm_free_pgd(mm)
748 #endif /* CONFIG_MMU */
749 
750 static void check_mm(struct mm_struct *mm)
751 {
752 	int i;
753 
754 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
755 			 "Please make sure 'struct resident_page_types[]' is updated as well");
756 
757 	for (i = 0; i < NR_MM_COUNTERS; i++) {
758 		long x = atomic_long_read(&mm->rss_stat.count[i]);
759 
760 		if (unlikely(x))
761 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
762 				 mm, resident_page_types[i], x);
763 	}
764 
765 	if (mm_pgtables_bytes(mm))
766 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
767 				mm_pgtables_bytes(mm));
768 
769 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
770 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
771 #endif
772 }
773 
774 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
775 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
776 
777 /*
778  * Called when the last reference to the mm
779  * is dropped: either by a lazy thread or by
780  * mmput. Free the page directory and the mm.
781  */
782 void __mmdrop(struct mm_struct *mm)
783 {
784 	BUG_ON(mm == &init_mm);
785 	WARN_ON_ONCE(mm == current->mm);
786 	WARN_ON_ONCE(mm == current->active_mm);
787 	mm_free_pgd(mm);
788 	destroy_context(mm);
789 	mmu_notifier_subscriptions_destroy(mm);
790 	check_mm(mm);
791 	put_user_ns(mm->user_ns);
792 	free_mm(mm);
793 }
794 EXPORT_SYMBOL_GPL(__mmdrop);
795 
796 static void mmdrop_async_fn(struct work_struct *work)
797 {
798 	struct mm_struct *mm;
799 
800 	mm = container_of(work, struct mm_struct, async_put_work);
801 	__mmdrop(mm);
802 }
803 
804 static void mmdrop_async(struct mm_struct *mm)
805 {
806 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
807 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
808 		schedule_work(&mm->async_put_work);
809 	}
810 }
811 
812 static inline void free_signal_struct(struct signal_struct *sig)
813 {
814 	taskstats_tgid_free(sig);
815 	sched_autogroup_exit(sig);
816 	/*
817 	 * __mmdrop is not safe to call from softirq context on x86 due to
818 	 * pgd_dtor so postpone it to the async context
819 	 */
820 	if (sig->oom_mm)
821 		mmdrop_async(sig->oom_mm);
822 	kmem_cache_free(signal_cachep, sig);
823 }
824 
825 static inline void put_signal_struct(struct signal_struct *sig)
826 {
827 	if (refcount_dec_and_test(&sig->sigcnt))
828 		free_signal_struct(sig);
829 }
830 
831 void __put_task_struct(struct task_struct *tsk)
832 {
833 	WARN_ON(!tsk->exit_state);
834 	WARN_ON(refcount_read(&tsk->usage));
835 	WARN_ON(tsk == current);
836 
837 	io_uring_free(tsk);
838 	cgroup_free(tsk);
839 	task_numa_free(tsk, true);
840 	security_task_free(tsk);
841 	bpf_task_storage_free(tsk);
842 	exit_creds(tsk);
843 	delayacct_tsk_free(tsk);
844 	put_signal_struct(tsk->signal);
845 	sched_core_free(tsk);
846 	free_task(tsk);
847 }
848 EXPORT_SYMBOL_GPL(__put_task_struct);
849 
850 void __init __weak arch_task_cache_init(void) { }
851 
852 /*
853  * set_max_threads
854  */
855 static void set_max_threads(unsigned int max_threads_suggested)
856 {
857 	u64 threads;
858 	unsigned long nr_pages = totalram_pages();
859 
860 	/*
861 	 * The number of threads shall be limited such that the thread
862 	 * structures may only consume a small part of the available memory.
863 	 */
864 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
865 		threads = MAX_THREADS;
866 	else
867 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
868 				    (u64) THREAD_SIZE * 8UL);
869 
870 	if (threads > max_threads_suggested)
871 		threads = max_threads_suggested;
872 
873 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
874 }
875 
876 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
877 /* Initialized by the architecture: */
878 int arch_task_struct_size __read_mostly;
879 #endif
880 
881 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
882 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
883 {
884 	/* Fetch thread_struct whitelist for the architecture. */
885 	arch_thread_struct_whitelist(offset, size);
886 
887 	/*
888 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
889 	 * adjust offset to position of thread_struct in task_struct.
890 	 */
891 	if (unlikely(*size == 0))
892 		*offset = 0;
893 	else
894 		*offset += offsetof(struct task_struct, thread);
895 }
896 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
897 
898 void __init fork_init(void)
899 {
900 	int i;
901 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
902 #ifndef ARCH_MIN_TASKALIGN
903 #define ARCH_MIN_TASKALIGN	0
904 #endif
905 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
906 	unsigned long useroffset, usersize;
907 
908 	/* create a slab on which task_structs can be allocated */
909 	task_struct_whitelist(&useroffset, &usersize);
910 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
911 			arch_task_struct_size, align,
912 			SLAB_PANIC|SLAB_ACCOUNT,
913 			useroffset, usersize, NULL);
914 #endif
915 
916 	/* do the arch specific task caches init */
917 	arch_task_cache_init();
918 
919 	set_max_threads(MAX_THREADS);
920 
921 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
922 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
923 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
924 		init_task.signal->rlim[RLIMIT_NPROC];
925 
926 	for (i = 0; i < MAX_PER_NAMESPACE_UCOUNTS; i++)
927 		init_user_ns.ucount_max[i] = max_threads/2;
928 
929 	set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
930 	set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
931 	set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
932 	set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
933 
934 #ifdef CONFIG_VMAP_STACK
935 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
936 			  NULL, free_vm_stack_cache);
937 #endif
938 
939 	scs_init();
940 
941 	lockdep_init_task(&init_task);
942 	uprobes_init();
943 }
944 
945 int __weak arch_dup_task_struct(struct task_struct *dst,
946 					       struct task_struct *src)
947 {
948 	*dst = *src;
949 	return 0;
950 }
951 
952 void set_task_stack_end_magic(struct task_struct *tsk)
953 {
954 	unsigned long *stackend;
955 
956 	stackend = end_of_stack(tsk);
957 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
958 }
959 
960 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
961 {
962 	struct task_struct *tsk;
963 	int err;
964 
965 	if (node == NUMA_NO_NODE)
966 		node = tsk_fork_get_node(orig);
967 	tsk = alloc_task_struct_node(node);
968 	if (!tsk)
969 		return NULL;
970 
971 	err = arch_dup_task_struct(tsk, orig);
972 	if (err)
973 		goto free_tsk;
974 
975 	err = alloc_thread_stack_node(tsk, node);
976 	if (err)
977 		goto free_tsk;
978 
979 #ifdef CONFIG_THREAD_INFO_IN_TASK
980 	refcount_set(&tsk->stack_refcount, 1);
981 #endif
982 	account_kernel_stack(tsk, 1);
983 
984 	err = scs_prepare(tsk, node);
985 	if (err)
986 		goto free_stack;
987 
988 #ifdef CONFIG_SECCOMP
989 	/*
990 	 * We must handle setting up seccomp filters once we're under
991 	 * the sighand lock in case orig has changed between now and
992 	 * then. Until then, filter must be NULL to avoid messing up
993 	 * the usage counts on the error path calling free_task.
994 	 */
995 	tsk->seccomp.filter = NULL;
996 #endif
997 
998 	setup_thread_stack(tsk, orig);
999 	clear_user_return_notifier(tsk);
1000 	clear_tsk_need_resched(tsk);
1001 	set_task_stack_end_magic(tsk);
1002 	clear_syscall_work_syscall_user_dispatch(tsk);
1003 
1004 #ifdef CONFIG_STACKPROTECTOR
1005 	tsk->stack_canary = get_random_canary();
1006 #endif
1007 	if (orig->cpus_ptr == &orig->cpus_mask)
1008 		tsk->cpus_ptr = &tsk->cpus_mask;
1009 	dup_user_cpus_ptr(tsk, orig, node);
1010 
1011 	/*
1012 	 * One for the user space visible state that goes away when reaped.
1013 	 * One for the scheduler.
1014 	 */
1015 	refcount_set(&tsk->rcu_users, 2);
1016 	/* One for the rcu users */
1017 	refcount_set(&tsk->usage, 1);
1018 #ifdef CONFIG_BLK_DEV_IO_TRACE
1019 	tsk->btrace_seq = 0;
1020 #endif
1021 	tsk->splice_pipe = NULL;
1022 	tsk->task_frag.page = NULL;
1023 	tsk->wake_q.next = NULL;
1024 	tsk->worker_private = NULL;
1025 
1026 	kcov_task_init(tsk);
1027 	kmap_local_fork(tsk);
1028 
1029 #ifdef CONFIG_FAULT_INJECTION
1030 	tsk->fail_nth = 0;
1031 #endif
1032 
1033 #ifdef CONFIG_BLK_CGROUP
1034 	tsk->throttle_queue = NULL;
1035 	tsk->use_memdelay = 0;
1036 #endif
1037 
1038 #ifdef CONFIG_IOMMU_SVA
1039 	tsk->pasid_activated = 0;
1040 #endif
1041 
1042 #ifdef CONFIG_MEMCG
1043 	tsk->active_memcg = NULL;
1044 #endif
1045 	return tsk;
1046 
1047 free_stack:
1048 	exit_task_stack_account(tsk);
1049 	free_thread_stack(tsk);
1050 free_tsk:
1051 	free_task_struct(tsk);
1052 	return NULL;
1053 }
1054 
1055 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1056 
1057 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1058 
1059 static int __init coredump_filter_setup(char *s)
1060 {
1061 	default_dump_filter =
1062 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1063 		MMF_DUMP_FILTER_MASK;
1064 	return 1;
1065 }
1066 
1067 __setup("coredump_filter=", coredump_filter_setup);
1068 
1069 #include <linux/init_task.h>
1070 
1071 static void mm_init_aio(struct mm_struct *mm)
1072 {
1073 #ifdef CONFIG_AIO
1074 	spin_lock_init(&mm->ioctx_lock);
1075 	mm->ioctx_table = NULL;
1076 #endif
1077 }
1078 
1079 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1080 					   struct task_struct *p)
1081 {
1082 #ifdef CONFIG_MEMCG
1083 	if (mm->owner == p)
1084 		WRITE_ONCE(mm->owner, NULL);
1085 #endif
1086 }
1087 
1088 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1089 {
1090 #ifdef CONFIG_MEMCG
1091 	mm->owner = p;
1092 #endif
1093 }
1094 
1095 static void mm_init_uprobes_state(struct mm_struct *mm)
1096 {
1097 #ifdef CONFIG_UPROBES
1098 	mm->uprobes_state.xol_area = NULL;
1099 #endif
1100 }
1101 
1102 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1103 	struct user_namespace *user_ns)
1104 {
1105 	mm->mmap = NULL;
1106 	mm->mm_rb = RB_ROOT;
1107 	mm->vmacache_seqnum = 0;
1108 	atomic_set(&mm->mm_users, 1);
1109 	atomic_set(&mm->mm_count, 1);
1110 	seqcount_init(&mm->write_protect_seq);
1111 	mmap_init_lock(mm);
1112 	INIT_LIST_HEAD(&mm->mmlist);
1113 	mm_pgtables_bytes_init(mm);
1114 	mm->map_count = 0;
1115 	mm->locked_vm = 0;
1116 	atomic64_set(&mm->pinned_vm, 0);
1117 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1118 	spin_lock_init(&mm->page_table_lock);
1119 	spin_lock_init(&mm->arg_lock);
1120 	mm_init_cpumask(mm);
1121 	mm_init_aio(mm);
1122 	mm_init_owner(mm, p);
1123 	mm_pasid_init(mm);
1124 	RCU_INIT_POINTER(mm->exe_file, NULL);
1125 	mmu_notifier_subscriptions_init(mm);
1126 	init_tlb_flush_pending(mm);
1127 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1128 	mm->pmd_huge_pte = NULL;
1129 #endif
1130 	mm_init_uprobes_state(mm);
1131 	hugetlb_count_init(mm);
1132 
1133 	if (current->mm) {
1134 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1135 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1136 	} else {
1137 		mm->flags = default_dump_filter;
1138 		mm->def_flags = 0;
1139 	}
1140 
1141 	if (mm_alloc_pgd(mm))
1142 		goto fail_nopgd;
1143 
1144 	if (init_new_context(p, mm))
1145 		goto fail_nocontext;
1146 
1147 	mm->user_ns = get_user_ns(user_ns);
1148 	return mm;
1149 
1150 fail_nocontext:
1151 	mm_free_pgd(mm);
1152 fail_nopgd:
1153 	free_mm(mm);
1154 	return NULL;
1155 }
1156 
1157 /*
1158  * Allocate and initialize an mm_struct.
1159  */
1160 struct mm_struct *mm_alloc(void)
1161 {
1162 	struct mm_struct *mm;
1163 
1164 	mm = allocate_mm();
1165 	if (!mm)
1166 		return NULL;
1167 
1168 	memset(mm, 0, sizeof(*mm));
1169 	return mm_init(mm, current, current_user_ns());
1170 }
1171 
1172 static inline void __mmput(struct mm_struct *mm)
1173 {
1174 	VM_BUG_ON(atomic_read(&mm->mm_users));
1175 
1176 	uprobe_clear_state(mm);
1177 	exit_aio(mm);
1178 	ksm_exit(mm);
1179 	khugepaged_exit(mm); /* must run before exit_mmap */
1180 	exit_mmap(mm);
1181 	mm_put_huge_zero_page(mm);
1182 	set_mm_exe_file(mm, NULL);
1183 	if (!list_empty(&mm->mmlist)) {
1184 		spin_lock(&mmlist_lock);
1185 		list_del(&mm->mmlist);
1186 		spin_unlock(&mmlist_lock);
1187 	}
1188 	if (mm->binfmt)
1189 		module_put(mm->binfmt->module);
1190 	mm_pasid_drop(mm);
1191 	mmdrop(mm);
1192 }
1193 
1194 /*
1195  * Decrement the use count and release all resources for an mm.
1196  */
1197 void mmput(struct mm_struct *mm)
1198 {
1199 	might_sleep();
1200 
1201 	if (atomic_dec_and_test(&mm->mm_users))
1202 		__mmput(mm);
1203 }
1204 EXPORT_SYMBOL_GPL(mmput);
1205 
1206 #ifdef CONFIG_MMU
1207 static void mmput_async_fn(struct work_struct *work)
1208 {
1209 	struct mm_struct *mm = container_of(work, struct mm_struct,
1210 					    async_put_work);
1211 
1212 	__mmput(mm);
1213 }
1214 
1215 void mmput_async(struct mm_struct *mm)
1216 {
1217 	if (atomic_dec_and_test(&mm->mm_users)) {
1218 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1219 		schedule_work(&mm->async_put_work);
1220 	}
1221 }
1222 #endif
1223 
1224 /**
1225  * set_mm_exe_file - change a reference to the mm's executable file
1226  *
1227  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1228  *
1229  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1230  * invocations: in mmput() nobody alive left, in execve task is single
1231  * threaded.
1232  *
1233  * Can only fail if new_exe_file != NULL.
1234  */
1235 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1236 {
1237 	struct file *old_exe_file;
1238 
1239 	/*
1240 	 * It is safe to dereference the exe_file without RCU as
1241 	 * this function is only called if nobody else can access
1242 	 * this mm -- see comment above for justification.
1243 	 */
1244 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1245 
1246 	if (new_exe_file) {
1247 		/*
1248 		 * We expect the caller (i.e., sys_execve) to already denied
1249 		 * write access, so this is unlikely to fail.
1250 		 */
1251 		if (unlikely(deny_write_access(new_exe_file)))
1252 			return -EACCES;
1253 		get_file(new_exe_file);
1254 	}
1255 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1256 	if (old_exe_file) {
1257 		allow_write_access(old_exe_file);
1258 		fput(old_exe_file);
1259 	}
1260 	return 0;
1261 }
1262 
1263 /**
1264  * replace_mm_exe_file - replace a reference to the mm's executable file
1265  *
1266  * This changes mm's executable file (shown as symlink /proc/[pid]/exe),
1267  * dealing with concurrent invocation and without grabbing the mmap lock in
1268  * write mode.
1269  *
1270  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1271  */
1272 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1273 {
1274 	struct vm_area_struct *vma;
1275 	struct file *old_exe_file;
1276 	int ret = 0;
1277 
1278 	/* Forbid mm->exe_file change if old file still mapped. */
1279 	old_exe_file = get_mm_exe_file(mm);
1280 	if (old_exe_file) {
1281 		mmap_read_lock(mm);
1282 		for (vma = mm->mmap; vma && !ret; vma = vma->vm_next) {
1283 			if (!vma->vm_file)
1284 				continue;
1285 			if (path_equal(&vma->vm_file->f_path,
1286 				       &old_exe_file->f_path))
1287 				ret = -EBUSY;
1288 		}
1289 		mmap_read_unlock(mm);
1290 		fput(old_exe_file);
1291 		if (ret)
1292 			return ret;
1293 	}
1294 
1295 	/* set the new file, lockless */
1296 	ret = deny_write_access(new_exe_file);
1297 	if (ret)
1298 		return -EACCES;
1299 	get_file(new_exe_file);
1300 
1301 	old_exe_file = xchg(&mm->exe_file, new_exe_file);
1302 	if (old_exe_file) {
1303 		/*
1304 		 * Don't race with dup_mmap() getting the file and disallowing
1305 		 * write access while someone might open the file writable.
1306 		 */
1307 		mmap_read_lock(mm);
1308 		allow_write_access(old_exe_file);
1309 		fput(old_exe_file);
1310 		mmap_read_unlock(mm);
1311 	}
1312 	return 0;
1313 }
1314 
1315 /**
1316  * get_mm_exe_file - acquire a reference to the mm's executable file
1317  *
1318  * Returns %NULL if mm has no associated executable file.
1319  * User must release file via fput().
1320  */
1321 struct file *get_mm_exe_file(struct mm_struct *mm)
1322 {
1323 	struct file *exe_file;
1324 
1325 	rcu_read_lock();
1326 	exe_file = rcu_dereference(mm->exe_file);
1327 	if (exe_file && !get_file_rcu(exe_file))
1328 		exe_file = NULL;
1329 	rcu_read_unlock();
1330 	return exe_file;
1331 }
1332 
1333 /**
1334  * get_task_exe_file - acquire a reference to the task's executable file
1335  *
1336  * Returns %NULL if task's mm (if any) has no associated executable file or
1337  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1338  * User must release file via fput().
1339  */
1340 struct file *get_task_exe_file(struct task_struct *task)
1341 {
1342 	struct file *exe_file = NULL;
1343 	struct mm_struct *mm;
1344 
1345 	task_lock(task);
1346 	mm = task->mm;
1347 	if (mm) {
1348 		if (!(task->flags & PF_KTHREAD))
1349 			exe_file = get_mm_exe_file(mm);
1350 	}
1351 	task_unlock(task);
1352 	return exe_file;
1353 }
1354 
1355 /**
1356  * get_task_mm - acquire a reference to the task's mm
1357  *
1358  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1359  * this kernel workthread has transiently adopted a user mm with use_mm,
1360  * to do its AIO) is not set and if so returns a reference to it, after
1361  * bumping up the use count.  User must release the mm via mmput()
1362  * after use.  Typically used by /proc and ptrace.
1363  */
1364 struct mm_struct *get_task_mm(struct task_struct *task)
1365 {
1366 	struct mm_struct *mm;
1367 
1368 	task_lock(task);
1369 	mm = task->mm;
1370 	if (mm) {
1371 		if (task->flags & PF_KTHREAD)
1372 			mm = NULL;
1373 		else
1374 			mmget(mm);
1375 	}
1376 	task_unlock(task);
1377 	return mm;
1378 }
1379 EXPORT_SYMBOL_GPL(get_task_mm);
1380 
1381 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1382 {
1383 	struct mm_struct *mm;
1384 	int err;
1385 
1386 	err =  down_read_killable(&task->signal->exec_update_lock);
1387 	if (err)
1388 		return ERR_PTR(err);
1389 
1390 	mm = get_task_mm(task);
1391 	if (mm && mm != current->mm &&
1392 			!ptrace_may_access(task, mode)) {
1393 		mmput(mm);
1394 		mm = ERR_PTR(-EACCES);
1395 	}
1396 	up_read(&task->signal->exec_update_lock);
1397 
1398 	return mm;
1399 }
1400 
1401 static void complete_vfork_done(struct task_struct *tsk)
1402 {
1403 	struct completion *vfork;
1404 
1405 	task_lock(tsk);
1406 	vfork = tsk->vfork_done;
1407 	if (likely(vfork)) {
1408 		tsk->vfork_done = NULL;
1409 		complete(vfork);
1410 	}
1411 	task_unlock(tsk);
1412 }
1413 
1414 static int wait_for_vfork_done(struct task_struct *child,
1415 				struct completion *vfork)
1416 {
1417 	int killed;
1418 
1419 	freezer_do_not_count();
1420 	cgroup_enter_frozen();
1421 	killed = wait_for_completion_killable(vfork);
1422 	cgroup_leave_frozen(false);
1423 	freezer_count();
1424 
1425 	if (killed) {
1426 		task_lock(child);
1427 		child->vfork_done = NULL;
1428 		task_unlock(child);
1429 	}
1430 
1431 	put_task_struct(child);
1432 	return killed;
1433 }
1434 
1435 /* Please note the differences between mmput and mm_release.
1436  * mmput is called whenever we stop holding onto a mm_struct,
1437  * error success whatever.
1438  *
1439  * mm_release is called after a mm_struct has been removed
1440  * from the current process.
1441  *
1442  * This difference is important for error handling, when we
1443  * only half set up a mm_struct for a new process and need to restore
1444  * the old one.  Because we mmput the new mm_struct before
1445  * restoring the old one. . .
1446  * Eric Biederman 10 January 1998
1447  */
1448 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1449 {
1450 	uprobe_free_utask(tsk);
1451 
1452 	/* Get rid of any cached register state */
1453 	deactivate_mm(tsk, mm);
1454 
1455 	/*
1456 	 * Signal userspace if we're not exiting with a core dump
1457 	 * because we want to leave the value intact for debugging
1458 	 * purposes.
1459 	 */
1460 	if (tsk->clear_child_tid) {
1461 		if (atomic_read(&mm->mm_users) > 1) {
1462 			/*
1463 			 * We don't check the error code - if userspace has
1464 			 * not set up a proper pointer then tough luck.
1465 			 */
1466 			put_user(0, tsk->clear_child_tid);
1467 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1468 					1, NULL, NULL, 0, 0);
1469 		}
1470 		tsk->clear_child_tid = NULL;
1471 	}
1472 
1473 	/*
1474 	 * All done, finally we can wake up parent and return this mm to him.
1475 	 * Also kthread_stop() uses this completion for synchronization.
1476 	 */
1477 	if (tsk->vfork_done)
1478 		complete_vfork_done(tsk);
1479 }
1480 
1481 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1482 {
1483 	futex_exit_release(tsk);
1484 	mm_release(tsk, mm);
1485 }
1486 
1487 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1488 {
1489 	futex_exec_release(tsk);
1490 	mm_release(tsk, mm);
1491 }
1492 
1493 /**
1494  * dup_mm() - duplicates an existing mm structure
1495  * @tsk: the task_struct with which the new mm will be associated.
1496  * @oldmm: the mm to duplicate.
1497  *
1498  * Allocates a new mm structure and duplicates the provided @oldmm structure
1499  * content into it.
1500  *
1501  * Return: the duplicated mm or NULL on failure.
1502  */
1503 static struct mm_struct *dup_mm(struct task_struct *tsk,
1504 				struct mm_struct *oldmm)
1505 {
1506 	struct mm_struct *mm;
1507 	int err;
1508 
1509 	mm = allocate_mm();
1510 	if (!mm)
1511 		goto fail_nomem;
1512 
1513 	memcpy(mm, oldmm, sizeof(*mm));
1514 
1515 	if (!mm_init(mm, tsk, mm->user_ns))
1516 		goto fail_nomem;
1517 
1518 	err = dup_mmap(mm, oldmm);
1519 	if (err)
1520 		goto free_pt;
1521 
1522 	mm->hiwater_rss = get_mm_rss(mm);
1523 	mm->hiwater_vm = mm->total_vm;
1524 
1525 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1526 		goto free_pt;
1527 
1528 	return mm;
1529 
1530 free_pt:
1531 	/* don't put binfmt in mmput, we haven't got module yet */
1532 	mm->binfmt = NULL;
1533 	mm_init_owner(mm, NULL);
1534 	mmput(mm);
1535 
1536 fail_nomem:
1537 	return NULL;
1538 }
1539 
1540 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1541 {
1542 	struct mm_struct *mm, *oldmm;
1543 
1544 	tsk->min_flt = tsk->maj_flt = 0;
1545 	tsk->nvcsw = tsk->nivcsw = 0;
1546 #ifdef CONFIG_DETECT_HUNG_TASK
1547 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1548 	tsk->last_switch_time = 0;
1549 #endif
1550 
1551 	tsk->mm = NULL;
1552 	tsk->active_mm = NULL;
1553 
1554 	/*
1555 	 * Are we cloning a kernel thread?
1556 	 *
1557 	 * We need to steal a active VM for that..
1558 	 */
1559 	oldmm = current->mm;
1560 	if (!oldmm)
1561 		return 0;
1562 
1563 	/* initialize the new vmacache entries */
1564 	vmacache_flush(tsk);
1565 
1566 	if (clone_flags & CLONE_VM) {
1567 		mmget(oldmm);
1568 		mm = oldmm;
1569 	} else {
1570 		mm = dup_mm(tsk, current->mm);
1571 		if (!mm)
1572 			return -ENOMEM;
1573 	}
1574 
1575 	tsk->mm = mm;
1576 	tsk->active_mm = mm;
1577 	return 0;
1578 }
1579 
1580 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1581 {
1582 	struct fs_struct *fs = current->fs;
1583 	if (clone_flags & CLONE_FS) {
1584 		/* tsk->fs is already what we want */
1585 		spin_lock(&fs->lock);
1586 		if (fs->in_exec) {
1587 			spin_unlock(&fs->lock);
1588 			return -EAGAIN;
1589 		}
1590 		fs->users++;
1591 		spin_unlock(&fs->lock);
1592 		return 0;
1593 	}
1594 	tsk->fs = copy_fs_struct(fs);
1595 	if (!tsk->fs)
1596 		return -ENOMEM;
1597 	return 0;
1598 }
1599 
1600 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1601 {
1602 	struct files_struct *oldf, *newf;
1603 	int error = 0;
1604 
1605 	/*
1606 	 * A background process may not have any files ...
1607 	 */
1608 	oldf = current->files;
1609 	if (!oldf)
1610 		goto out;
1611 
1612 	if (clone_flags & CLONE_FILES) {
1613 		atomic_inc(&oldf->count);
1614 		goto out;
1615 	}
1616 
1617 	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1618 	if (!newf)
1619 		goto out;
1620 
1621 	tsk->files = newf;
1622 	error = 0;
1623 out:
1624 	return error;
1625 }
1626 
1627 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1628 {
1629 	struct sighand_struct *sig;
1630 
1631 	if (clone_flags & CLONE_SIGHAND) {
1632 		refcount_inc(&current->sighand->count);
1633 		return 0;
1634 	}
1635 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1636 	RCU_INIT_POINTER(tsk->sighand, sig);
1637 	if (!sig)
1638 		return -ENOMEM;
1639 
1640 	refcount_set(&sig->count, 1);
1641 	spin_lock_irq(&current->sighand->siglock);
1642 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1643 	spin_unlock_irq(&current->sighand->siglock);
1644 
1645 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1646 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1647 		flush_signal_handlers(tsk, 0);
1648 
1649 	return 0;
1650 }
1651 
1652 void __cleanup_sighand(struct sighand_struct *sighand)
1653 {
1654 	if (refcount_dec_and_test(&sighand->count)) {
1655 		signalfd_cleanup(sighand);
1656 		/*
1657 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1658 		 * without an RCU grace period, see __lock_task_sighand().
1659 		 */
1660 		kmem_cache_free(sighand_cachep, sighand);
1661 	}
1662 }
1663 
1664 /*
1665  * Initialize POSIX timer handling for a thread group.
1666  */
1667 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1668 {
1669 	struct posix_cputimers *pct = &sig->posix_cputimers;
1670 	unsigned long cpu_limit;
1671 
1672 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1673 	posix_cputimers_group_init(pct, cpu_limit);
1674 }
1675 
1676 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1677 {
1678 	struct signal_struct *sig;
1679 
1680 	if (clone_flags & CLONE_THREAD)
1681 		return 0;
1682 
1683 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1684 	tsk->signal = sig;
1685 	if (!sig)
1686 		return -ENOMEM;
1687 
1688 	sig->nr_threads = 1;
1689 	atomic_set(&sig->live, 1);
1690 	refcount_set(&sig->sigcnt, 1);
1691 
1692 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1693 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1694 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1695 
1696 	init_waitqueue_head(&sig->wait_chldexit);
1697 	sig->curr_target = tsk;
1698 	init_sigpending(&sig->shared_pending);
1699 	INIT_HLIST_HEAD(&sig->multiprocess);
1700 	seqlock_init(&sig->stats_lock);
1701 	prev_cputime_init(&sig->prev_cputime);
1702 
1703 #ifdef CONFIG_POSIX_TIMERS
1704 	INIT_LIST_HEAD(&sig->posix_timers);
1705 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1706 	sig->real_timer.function = it_real_fn;
1707 #endif
1708 
1709 	task_lock(current->group_leader);
1710 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1711 	task_unlock(current->group_leader);
1712 
1713 	posix_cpu_timers_init_group(sig);
1714 
1715 	tty_audit_fork(sig);
1716 	sched_autogroup_fork(sig);
1717 
1718 	sig->oom_score_adj = current->signal->oom_score_adj;
1719 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1720 
1721 	mutex_init(&sig->cred_guard_mutex);
1722 	init_rwsem(&sig->exec_update_lock);
1723 
1724 	return 0;
1725 }
1726 
1727 static void copy_seccomp(struct task_struct *p)
1728 {
1729 #ifdef CONFIG_SECCOMP
1730 	/*
1731 	 * Must be called with sighand->lock held, which is common to
1732 	 * all threads in the group. Holding cred_guard_mutex is not
1733 	 * needed because this new task is not yet running and cannot
1734 	 * be racing exec.
1735 	 */
1736 	assert_spin_locked(&current->sighand->siglock);
1737 
1738 	/* Ref-count the new filter user, and assign it. */
1739 	get_seccomp_filter(current);
1740 	p->seccomp = current->seccomp;
1741 
1742 	/*
1743 	 * Explicitly enable no_new_privs here in case it got set
1744 	 * between the task_struct being duplicated and holding the
1745 	 * sighand lock. The seccomp state and nnp must be in sync.
1746 	 */
1747 	if (task_no_new_privs(current))
1748 		task_set_no_new_privs(p);
1749 
1750 	/*
1751 	 * If the parent gained a seccomp mode after copying thread
1752 	 * flags and between before we held the sighand lock, we have
1753 	 * to manually enable the seccomp thread flag here.
1754 	 */
1755 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1756 		set_task_syscall_work(p, SECCOMP);
1757 #endif
1758 }
1759 
1760 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1761 {
1762 	current->clear_child_tid = tidptr;
1763 
1764 	return task_pid_vnr(current);
1765 }
1766 
1767 static void rt_mutex_init_task(struct task_struct *p)
1768 {
1769 	raw_spin_lock_init(&p->pi_lock);
1770 #ifdef CONFIG_RT_MUTEXES
1771 	p->pi_waiters = RB_ROOT_CACHED;
1772 	p->pi_top_task = NULL;
1773 	p->pi_blocked_on = NULL;
1774 #endif
1775 }
1776 
1777 static inline void init_task_pid_links(struct task_struct *task)
1778 {
1779 	enum pid_type type;
1780 
1781 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1782 		INIT_HLIST_NODE(&task->pid_links[type]);
1783 }
1784 
1785 static inline void
1786 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1787 {
1788 	if (type == PIDTYPE_PID)
1789 		task->thread_pid = pid;
1790 	else
1791 		task->signal->pids[type] = pid;
1792 }
1793 
1794 static inline void rcu_copy_process(struct task_struct *p)
1795 {
1796 #ifdef CONFIG_PREEMPT_RCU
1797 	p->rcu_read_lock_nesting = 0;
1798 	p->rcu_read_unlock_special.s = 0;
1799 	p->rcu_blocked_node = NULL;
1800 	INIT_LIST_HEAD(&p->rcu_node_entry);
1801 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1802 #ifdef CONFIG_TASKS_RCU
1803 	p->rcu_tasks_holdout = false;
1804 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1805 	p->rcu_tasks_idle_cpu = -1;
1806 #endif /* #ifdef CONFIG_TASKS_RCU */
1807 #ifdef CONFIG_TASKS_TRACE_RCU
1808 	p->trc_reader_nesting = 0;
1809 	p->trc_reader_special.s = 0;
1810 	INIT_LIST_HEAD(&p->trc_holdout_list);
1811 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1812 }
1813 
1814 struct pid *pidfd_pid(const struct file *file)
1815 {
1816 	if (file->f_op == &pidfd_fops)
1817 		return file->private_data;
1818 
1819 	return ERR_PTR(-EBADF);
1820 }
1821 
1822 static int pidfd_release(struct inode *inode, struct file *file)
1823 {
1824 	struct pid *pid = file->private_data;
1825 
1826 	file->private_data = NULL;
1827 	put_pid(pid);
1828 	return 0;
1829 }
1830 
1831 #ifdef CONFIG_PROC_FS
1832 /**
1833  * pidfd_show_fdinfo - print information about a pidfd
1834  * @m: proc fdinfo file
1835  * @f: file referencing a pidfd
1836  *
1837  * Pid:
1838  * This function will print the pid that a given pidfd refers to in the
1839  * pid namespace of the procfs instance.
1840  * If the pid namespace of the process is not a descendant of the pid
1841  * namespace of the procfs instance 0 will be shown as its pid. This is
1842  * similar to calling getppid() on a process whose parent is outside of
1843  * its pid namespace.
1844  *
1845  * NSpid:
1846  * If pid namespaces are supported then this function will also print
1847  * the pid of a given pidfd refers to for all descendant pid namespaces
1848  * starting from the current pid namespace of the instance, i.e. the
1849  * Pid field and the first entry in the NSpid field will be identical.
1850  * If the pid namespace of the process is not a descendant of the pid
1851  * namespace of the procfs instance 0 will be shown as its first NSpid
1852  * entry and no others will be shown.
1853  * Note that this differs from the Pid and NSpid fields in
1854  * /proc/<pid>/status where Pid and NSpid are always shown relative to
1855  * the  pid namespace of the procfs instance. The difference becomes
1856  * obvious when sending around a pidfd between pid namespaces from a
1857  * different branch of the tree, i.e. where no ancestral relation is
1858  * present between the pid namespaces:
1859  * - create two new pid namespaces ns1 and ns2 in the initial pid
1860  *   namespace (also take care to create new mount namespaces in the
1861  *   new pid namespace and mount procfs)
1862  * - create a process with a pidfd in ns1
1863  * - send pidfd from ns1 to ns2
1864  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1865  *   have exactly one entry, which is 0
1866  */
1867 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1868 {
1869 	struct pid *pid = f->private_data;
1870 	struct pid_namespace *ns;
1871 	pid_t nr = -1;
1872 
1873 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1874 		ns = proc_pid_ns(file_inode(m->file)->i_sb);
1875 		nr = pid_nr_ns(pid, ns);
1876 	}
1877 
1878 	seq_put_decimal_ll(m, "Pid:\t", nr);
1879 
1880 #ifdef CONFIG_PID_NS
1881 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1882 	if (nr > 0) {
1883 		int i;
1884 
1885 		/* If nr is non-zero it means that 'pid' is valid and that
1886 		 * ns, i.e. the pid namespace associated with the procfs
1887 		 * instance, is in the pid namespace hierarchy of pid.
1888 		 * Start at one below the already printed level.
1889 		 */
1890 		for (i = ns->level + 1; i <= pid->level; i++)
1891 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1892 	}
1893 #endif
1894 	seq_putc(m, '\n');
1895 }
1896 #endif
1897 
1898 /*
1899  * Poll support for process exit notification.
1900  */
1901 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1902 {
1903 	struct pid *pid = file->private_data;
1904 	__poll_t poll_flags = 0;
1905 
1906 	poll_wait(file, &pid->wait_pidfd, pts);
1907 
1908 	/*
1909 	 * Inform pollers only when the whole thread group exits.
1910 	 * If the thread group leader exits before all other threads in the
1911 	 * group, then poll(2) should block, similar to the wait(2) family.
1912 	 */
1913 	if (thread_group_exited(pid))
1914 		poll_flags = EPOLLIN | EPOLLRDNORM;
1915 
1916 	return poll_flags;
1917 }
1918 
1919 const struct file_operations pidfd_fops = {
1920 	.release = pidfd_release,
1921 	.poll = pidfd_poll,
1922 #ifdef CONFIG_PROC_FS
1923 	.show_fdinfo = pidfd_show_fdinfo,
1924 #endif
1925 };
1926 
1927 static void __delayed_free_task(struct rcu_head *rhp)
1928 {
1929 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1930 
1931 	free_task(tsk);
1932 }
1933 
1934 static __always_inline void delayed_free_task(struct task_struct *tsk)
1935 {
1936 	if (IS_ENABLED(CONFIG_MEMCG))
1937 		call_rcu(&tsk->rcu, __delayed_free_task);
1938 	else
1939 		free_task(tsk);
1940 }
1941 
1942 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1943 {
1944 	/* Skip if kernel thread */
1945 	if (!tsk->mm)
1946 		return;
1947 
1948 	/* Skip if spawning a thread or using vfork */
1949 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1950 		return;
1951 
1952 	/* We need to synchronize with __set_oom_adj */
1953 	mutex_lock(&oom_adj_mutex);
1954 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1955 	/* Update the values in case they were changed after copy_signal */
1956 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1957 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1958 	mutex_unlock(&oom_adj_mutex);
1959 }
1960 
1961 /*
1962  * This creates a new process as a copy of the old one,
1963  * but does not actually start it yet.
1964  *
1965  * It copies the registers, and all the appropriate
1966  * parts of the process environment (as per the clone
1967  * flags). The actual kick-off is left to the caller.
1968  */
1969 static __latent_entropy struct task_struct *copy_process(
1970 					struct pid *pid,
1971 					int trace,
1972 					int node,
1973 					struct kernel_clone_args *args)
1974 {
1975 	int pidfd = -1, retval;
1976 	struct task_struct *p;
1977 	struct multiprocess_signals delayed;
1978 	struct file *pidfile = NULL;
1979 	u64 clone_flags = args->flags;
1980 	struct nsproxy *nsp = current->nsproxy;
1981 
1982 	/*
1983 	 * Don't allow sharing the root directory with processes in a different
1984 	 * namespace
1985 	 */
1986 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1987 		return ERR_PTR(-EINVAL);
1988 
1989 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1990 		return ERR_PTR(-EINVAL);
1991 
1992 	/*
1993 	 * Thread groups must share signals as well, and detached threads
1994 	 * can only be started up within the thread group.
1995 	 */
1996 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1997 		return ERR_PTR(-EINVAL);
1998 
1999 	/*
2000 	 * Shared signal handlers imply shared VM. By way of the above,
2001 	 * thread groups also imply shared VM. Blocking this case allows
2002 	 * for various simplifications in other code.
2003 	 */
2004 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2005 		return ERR_PTR(-EINVAL);
2006 
2007 	/*
2008 	 * Siblings of global init remain as zombies on exit since they are
2009 	 * not reaped by their parent (swapper). To solve this and to avoid
2010 	 * multi-rooted process trees, prevent global and container-inits
2011 	 * from creating siblings.
2012 	 */
2013 	if ((clone_flags & CLONE_PARENT) &&
2014 				current->signal->flags & SIGNAL_UNKILLABLE)
2015 		return ERR_PTR(-EINVAL);
2016 
2017 	/*
2018 	 * If the new process will be in a different pid or user namespace
2019 	 * do not allow it to share a thread group with the forking task.
2020 	 */
2021 	if (clone_flags & CLONE_THREAD) {
2022 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2023 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2024 			return ERR_PTR(-EINVAL);
2025 	}
2026 
2027 	/*
2028 	 * If the new process will be in a different time namespace
2029 	 * do not allow it to share VM or a thread group with the forking task.
2030 	 */
2031 	if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
2032 		if (nsp->time_ns != nsp->time_ns_for_children)
2033 			return ERR_PTR(-EINVAL);
2034 	}
2035 
2036 	if (clone_flags & CLONE_PIDFD) {
2037 		/*
2038 		 * - CLONE_DETACHED is blocked so that we can potentially
2039 		 *   reuse it later for CLONE_PIDFD.
2040 		 * - CLONE_THREAD is blocked until someone really needs it.
2041 		 */
2042 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2043 			return ERR_PTR(-EINVAL);
2044 	}
2045 
2046 	/*
2047 	 * Force any signals received before this point to be delivered
2048 	 * before the fork happens.  Collect up signals sent to multiple
2049 	 * processes that happen during the fork and delay them so that
2050 	 * they appear to happen after the fork.
2051 	 */
2052 	sigemptyset(&delayed.signal);
2053 	INIT_HLIST_NODE(&delayed.node);
2054 
2055 	spin_lock_irq(&current->sighand->siglock);
2056 	if (!(clone_flags & CLONE_THREAD))
2057 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2058 	recalc_sigpending();
2059 	spin_unlock_irq(&current->sighand->siglock);
2060 	retval = -ERESTARTNOINTR;
2061 	if (task_sigpending(current))
2062 		goto fork_out;
2063 
2064 	retval = -ENOMEM;
2065 	p = dup_task_struct(current, node);
2066 	if (!p)
2067 		goto fork_out;
2068 	if (args->io_thread) {
2069 		/*
2070 		 * Mark us an IO worker, and block any signal that isn't
2071 		 * fatal or STOP
2072 		 */
2073 		p->flags |= PF_IO_WORKER;
2074 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2075 	}
2076 
2077 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2078 	/*
2079 	 * Clear TID on mm_release()?
2080 	 */
2081 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2082 
2083 	ftrace_graph_init_task(p);
2084 
2085 	rt_mutex_init_task(p);
2086 
2087 	lockdep_assert_irqs_enabled();
2088 #ifdef CONFIG_PROVE_LOCKING
2089 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2090 #endif
2091 	retval = copy_creds(p, clone_flags);
2092 	if (retval < 0)
2093 		goto bad_fork_free;
2094 
2095 	retval = -EAGAIN;
2096 	if (is_ucounts_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2097 		if (p->real_cred->user != INIT_USER &&
2098 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2099 			goto bad_fork_cleanup_count;
2100 	}
2101 	current->flags &= ~PF_NPROC_EXCEEDED;
2102 
2103 	/*
2104 	 * If multiple threads are within copy_process(), then this check
2105 	 * triggers too late. This doesn't hurt, the check is only there
2106 	 * to stop root fork bombs.
2107 	 */
2108 	retval = -EAGAIN;
2109 	if (data_race(nr_threads >= max_threads))
2110 		goto bad_fork_cleanup_count;
2111 
2112 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2113 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2114 	p->flags |= PF_FORKNOEXEC;
2115 	INIT_LIST_HEAD(&p->children);
2116 	INIT_LIST_HEAD(&p->sibling);
2117 	rcu_copy_process(p);
2118 	p->vfork_done = NULL;
2119 	spin_lock_init(&p->alloc_lock);
2120 
2121 	init_sigpending(&p->pending);
2122 
2123 	p->utime = p->stime = p->gtime = 0;
2124 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2125 	p->utimescaled = p->stimescaled = 0;
2126 #endif
2127 	prev_cputime_init(&p->prev_cputime);
2128 
2129 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2130 	seqcount_init(&p->vtime.seqcount);
2131 	p->vtime.starttime = 0;
2132 	p->vtime.state = VTIME_INACTIVE;
2133 #endif
2134 
2135 #ifdef CONFIG_IO_URING
2136 	p->io_uring = NULL;
2137 #endif
2138 
2139 #if defined(SPLIT_RSS_COUNTING)
2140 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2141 #endif
2142 
2143 	p->default_timer_slack_ns = current->timer_slack_ns;
2144 
2145 #ifdef CONFIG_PSI
2146 	p->psi_flags = 0;
2147 #endif
2148 
2149 	task_io_accounting_init(&p->ioac);
2150 	acct_clear_integrals(p);
2151 
2152 	posix_cputimers_init(&p->posix_cputimers);
2153 
2154 	p->io_context = NULL;
2155 	audit_set_context(p, NULL);
2156 	cgroup_fork(p);
2157 	if (p->flags & PF_KTHREAD) {
2158 		if (!set_kthread_struct(p))
2159 			goto bad_fork_cleanup_delayacct;
2160 	}
2161 #ifdef CONFIG_NUMA
2162 	p->mempolicy = mpol_dup(p->mempolicy);
2163 	if (IS_ERR(p->mempolicy)) {
2164 		retval = PTR_ERR(p->mempolicy);
2165 		p->mempolicy = NULL;
2166 		goto bad_fork_cleanup_delayacct;
2167 	}
2168 #endif
2169 #ifdef CONFIG_CPUSETS
2170 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2171 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2172 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2173 #endif
2174 #ifdef CONFIG_TRACE_IRQFLAGS
2175 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2176 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2177 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2178 	p->softirqs_enabled		= 1;
2179 	p->softirq_context		= 0;
2180 #endif
2181 
2182 	p->pagefault_disabled = 0;
2183 
2184 #ifdef CONFIG_LOCKDEP
2185 	lockdep_init_task(p);
2186 #endif
2187 
2188 #ifdef CONFIG_DEBUG_MUTEXES
2189 	p->blocked_on = NULL; /* not blocked yet */
2190 #endif
2191 #ifdef CONFIG_BCACHE
2192 	p->sequential_io	= 0;
2193 	p->sequential_io_avg	= 0;
2194 #endif
2195 #ifdef CONFIG_BPF_SYSCALL
2196 	RCU_INIT_POINTER(p->bpf_storage, NULL);
2197 	p->bpf_ctx = NULL;
2198 #endif
2199 
2200 	/* Perform scheduler related setup. Assign this task to a CPU. */
2201 	retval = sched_fork(clone_flags, p);
2202 	if (retval)
2203 		goto bad_fork_cleanup_policy;
2204 
2205 	retval = perf_event_init_task(p, clone_flags);
2206 	if (retval)
2207 		goto bad_fork_cleanup_policy;
2208 	retval = audit_alloc(p);
2209 	if (retval)
2210 		goto bad_fork_cleanup_perf;
2211 	/* copy all the process information */
2212 	shm_init_task(p);
2213 	retval = security_task_alloc(p, clone_flags);
2214 	if (retval)
2215 		goto bad_fork_cleanup_audit;
2216 	retval = copy_semundo(clone_flags, p);
2217 	if (retval)
2218 		goto bad_fork_cleanup_security;
2219 	retval = copy_files(clone_flags, p);
2220 	if (retval)
2221 		goto bad_fork_cleanup_semundo;
2222 	retval = copy_fs(clone_flags, p);
2223 	if (retval)
2224 		goto bad_fork_cleanup_files;
2225 	retval = copy_sighand(clone_flags, p);
2226 	if (retval)
2227 		goto bad_fork_cleanup_fs;
2228 	retval = copy_signal(clone_flags, p);
2229 	if (retval)
2230 		goto bad_fork_cleanup_sighand;
2231 	retval = copy_mm(clone_flags, p);
2232 	if (retval)
2233 		goto bad_fork_cleanup_signal;
2234 	retval = copy_namespaces(clone_flags, p);
2235 	if (retval)
2236 		goto bad_fork_cleanup_mm;
2237 	retval = copy_io(clone_flags, p);
2238 	if (retval)
2239 		goto bad_fork_cleanup_namespaces;
2240 	retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
2241 	if (retval)
2242 		goto bad_fork_cleanup_io;
2243 
2244 	stackleak_task_init(p);
2245 
2246 	if (pid != &init_struct_pid) {
2247 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2248 				args->set_tid_size);
2249 		if (IS_ERR(pid)) {
2250 			retval = PTR_ERR(pid);
2251 			goto bad_fork_cleanup_thread;
2252 		}
2253 	}
2254 
2255 	/*
2256 	 * This has to happen after we've potentially unshared the file
2257 	 * descriptor table (so that the pidfd doesn't leak into the child
2258 	 * if the fd table isn't shared).
2259 	 */
2260 	if (clone_flags & CLONE_PIDFD) {
2261 		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2262 		if (retval < 0)
2263 			goto bad_fork_free_pid;
2264 
2265 		pidfd = retval;
2266 
2267 		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2268 					      O_RDWR | O_CLOEXEC);
2269 		if (IS_ERR(pidfile)) {
2270 			put_unused_fd(pidfd);
2271 			retval = PTR_ERR(pidfile);
2272 			goto bad_fork_free_pid;
2273 		}
2274 		get_pid(pid);	/* held by pidfile now */
2275 
2276 		retval = put_user(pidfd, args->pidfd);
2277 		if (retval)
2278 			goto bad_fork_put_pidfd;
2279 	}
2280 
2281 #ifdef CONFIG_BLOCK
2282 	p->plug = NULL;
2283 #endif
2284 	futex_init_task(p);
2285 
2286 	/*
2287 	 * sigaltstack should be cleared when sharing the same VM
2288 	 */
2289 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2290 		sas_ss_reset(p);
2291 
2292 	/*
2293 	 * Syscall tracing and stepping should be turned off in the
2294 	 * child regardless of CLONE_PTRACE.
2295 	 */
2296 	user_disable_single_step(p);
2297 	clear_task_syscall_work(p, SYSCALL_TRACE);
2298 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2299 	clear_task_syscall_work(p, SYSCALL_EMU);
2300 #endif
2301 	clear_tsk_latency_tracing(p);
2302 
2303 	/* ok, now we should be set up.. */
2304 	p->pid = pid_nr(pid);
2305 	if (clone_flags & CLONE_THREAD) {
2306 		p->group_leader = current->group_leader;
2307 		p->tgid = current->tgid;
2308 	} else {
2309 		p->group_leader = p;
2310 		p->tgid = p->pid;
2311 	}
2312 
2313 	p->nr_dirtied = 0;
2314 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2315 	p->dirty_paused_when = 0;
2316 
2317 	p->pdeath_signal = 0;
2318 	INIT_LIST_HEAD(&p->thread_group);
2319 	p->task_works = NULL;
2320 	clear_posix_cputimers_work(p);
2321 
2322 #ifdef CONFIG_KRETPROBES
2323 	p->kretprobe_instances.first = NULL;
2324 #endif
2325 
2326 	/*
2327 	 * Ensure that the cgroup subsystem policies allow the new process to be
2328 	 * forked. It should be noted that the new process's css_set can be changed
2329 	 * between here and cgroup_post_fork() if an organisation operation is in
2330 	 * progress.
2331 	 */
2332 	retval = cgroup_can_fork(p, args);
2333 	if (retval)
2334 		goto bad_fork_put_pidfd;
2335 
2336 	/*
2337 	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2338 	 * the new task on the correct runqueue. All this *before* the task
2339 	 * becomes visible.
2340 	 *
2341 	 * This isn't part of ->can_fork() because while the re-cloning is
2342 	 * cgroup specific, it unconditionally needs to place the task on a
2343 	 * runqueue.
2344 	 */
2345 	sched_cgroup_fork(p, args);
2346 
2347 	/*
2348 	 * From this point on we must avoid any synchronous user-space
2349 	 * communication until we take the tasklist-lock. In particular, we do
2350 	 * not want user-space to be able to predict the process start-time by
2351 	 * stalling fork(2) after we recorded the start_time but before it is
2352 	 * visible to the system.
2353 	 */
2354 
2355 	p->start_time = ktime_get_ns();
2356 	p->start_boottime = ktime_get_boottime_ns();
2357 
2358 	/*
2359 	 * Make it visible to the rest of the system, but dont wake it up yet.
2360 	 * Need tasklist lock for parent etc handling!
2361 	 */
2362 	write_lock_irq(&tasklist_lock);
2363 
2364 	/* CLONE_PARENT re-uses the old parent */
2365 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2366 		p->real_parent = current->real_parent;
2367 		p->parent_exec_id = current->parent_exec_id;
2368 		if (clone_flags & CLONE_THREAD)
2369 			p->exit_signal = -1;
2370 		else
2371 			p->exit_signal = current->group_leader->exit_signal;
2372 	} else {
2373 		p->real_parent = current;
2374 		p->parent_exec_id = current->self_exec_id;
2375 		p->exit_signal = args->exit_signal;
2376 	}
2377 
2378 	klp_copy_process(p);
2379 
2380 	sched_core_fork(p);
2381 
2382 	spin_lock(&current->sighand->siglock);
2383 
2384 	/*
2385 	 * Copy seccomp details explicitly here, in case they were changed
2386 	 * before holding sighand lock.
2387 	 */
2388 	copy_seccomp(p);
2389 
2390 	rseq_fork(p, clone_flags);
2391 
2392 	/* Don't start children in a dying pid namespace */
2393 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2394 		retval = -ENOMEM;
2395 		goto bad_fork_cancel_cgroup;
2396 	}
2397 
2398 	/* Let kill terminate clone/fork in the middle */
2399 	if (fatal_signal_pending(current)) {
2400 		retval = -EINTR;
2401 		goto bad_fork_cancel_cgroup;
2402 	}
2403 
2404 	init_task_pid_links(p);
2405 	if (likely(p->pid)) {
2406 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2407 
2408 		init_task_pid(p, PIDTYPE_PID, pid);
2409 		if (thread_group_leader(p)) {
2410 			init_task_pid(p, PIDTYPE_TGID, pid);
2411 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2412 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2413 
2414 			if (is_child_reaper(pid)) {
2415 				ns_of_pid(pid)->child_reaper = p;
2416 				p->signal->flags |= SIGNAL_UNKILLABLE;
2417 			}
2418 			p->signal->shared_pending.signal = delayed.signal;
2419 			p->signal->tty = tty_kref_get(current->signal->tty);
2420 			/*
2421 			 * Inherit has_child_subreaper flag under the same
2422 			 * tasklist_lock with adding child to the process tree
2423 			 * for propagate_has_child_subreaper optimization.
2424 			 */
2425 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2426 							 p->real_parent->signal->is_child_subreaper;
2427 			list_add_tail(&p->sibling, &p->real_parent->children);
2428 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2429 			attach_pid(p, PIDTYPE_TGID);
2430 			attach_pid(p, PIDTYPE_PGID);
2431 			attach_pid(p, PIDTYPE_SID);
2432 			__this_cpu_inc(process_counts);
2433 		} else {
2434 			current->signal->nr_threads++;
2435 			atomic_inc(&current->signal->live);
2436 			refcount_inc(&current->signal->sigcnt);
2437 			task_join_group_stop(p);
2438 			list_add_tail_rcu(&p->thread_group,
2439 					  &p->group_leader->thread_group);
2440 			list_add_tail_rcu(&p->thread_node,
2441 					  &p->signal->thread_head);
2442 		}
2443 		attach_pid(p, PIDTYPE_PID);
2444 		nr_threads++;
2445 	}
2446 	total_forks++;
2447 	hlist_del_init(&delayed.node);
2448 	spin_unlock(&current->sighand->siglock);
2449 	syscall_tracepoint_update(p);
2450 	write_unlock_irq(&tasklist_lock);
2451 
2452 	if (pidfile)
2453 		fd_install(pidfd, pidfile);
2454 
2455 	proc_fork_connector(p);
2456 	sched_post_fork(p);
2457 	cgroup_post_fork(p, args);
2458 	perf_event_fork(p);
2459 
2460 	trace_task_newtask(p, clone_flags);
2461 	uprobe_copy_process(p, clone_flags);
2462 
2463 	copy_oom_score_adj(clone_flags, p);
2464 
2465 	return p;
2466 
2467 bad_fork_cancel_cgroup:
2468 	sched_core_free(p);
2469 	spin_unlock(&current->sighand->siglock);
2470 	write_unlock_irq(&tasklist_lock);
2471 	cgroup_cancel_fork(p, args);
2472 bad_fork_put_pidfd:
2473 	if (clone_flags & CLONE_PIDFD) {
2474 		fput(pidfile);
2475 		put_unused_fd(pidfd);
2476 	}
2477 bad_fork_free_pid:
2478 	if (pid != &init_struct_pid)
2479 		free_pid(pid);
2480 bad_fork_cleanup_thread:
2481 	exit_thread(p);
2482 bad_fork_cleanup_io:
2483 	if (p->io_context)
2484 		exit_io_context(p);
2485 bad_fork_cleanup_namespaces:
2486 	exit_task_namespaces(p);
2487 bad_fork_cleanup_mm:
2488 	if (p->mm) {
2489 		mm_clear_owner(p->mm, p);
2490 		mmput(p->mm);
2491 	}
2492 bad_fork_cleanup_signal:
2493 	if (!(clone_flags & CLONE_THREAD))
2494 		free_signal_struct(p->signal);
2495 bad_fork_cleanup_sighand:
2496 	__cleanup_sighand(p->sighand);
2497 bad_fork_cleanup_fs:
2498 	exit_fs(p); /* blocking */
2499 bad_fork_cleanup_files:
2500 	exit_files(p); /* blocking */
2501 bad_fork_cleanup_semundo:
2502 	exit_sem(p);
2503 bad_fork_cleanup_security:
2504 	security_task_free(p);
2505 bad_fork_cleanup_audit:
2506 	audit_free(p);
2507 bad_fork_cleanup_perf:
2508 	perf_event_free_task(p);
2509 bad_fork_cleanup_policy:
2510 	lockdep_free_task(p);
2511 #ifdef CONFIG_NUMA
2512 	mpol_put(p->mempolicy);
2513 #endif
2514 bad_fork_cleanup_delayacct:
2515 	delayacct_tsk_free(p);
2516 bad_fork_cleanup_count:
2517 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2518 	exit_creds(p);
2519 bad_fork_free:
2520 	WRITE_ONCE(p->__state, TASK_DEAD);
2521 	exit_task_stack_account(p);
2522 	put_task_stack(p);
2523 	delayed_free_task(p);
2524 fork_out:
2525 	spin_lock_irq(&current->sighand->siglock);
2526 	hlist_del_init(&delayed.node);
2527 	spin_unlock_irq(&current->sighand->siglock);
2528 	return ERR_PTR(retval);
2529 }
2530 
2531 static inline void init_idle_pids(struct task_struct *idle)
2532 {
2533 	enum pid_type type;
2534 
2535 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2536 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2537 		init_task_pid(idle, type, &init_struct_pid);
2538 	}
2539 }
2540 
2541 struct task_struct * __init fork_idle(int cpu)
2542 {
2543 	struct task_struct *task;
2544 	struct kernel_clone_args args = {
2545 		.flags = CLONE_VM,
2546 	};
2547 
2548 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2549 	if (!IS_ERR(task)) {
2550 		init_idle_pids(task);
2551 		init_idle(task, cpu);
2552 	}
2553 
2554 	return task;
2555 }
2556 
2557 struct mm_struct *copy_init_mm(void)
2558 {
2559 	return dup_mm(NULL, &init_mm);
2560 }
2561 
2562 /*
2563  * This is like kernel_clone(), but shaved down and tailored to just
2564  * creating io_uring workers. It returns a created task, or an error pointer.
2565  * The returned task is inactive, and the caller must fire it up through
2566  * wake_up_new_task(p). All signals are blocked in the created task.
2567  */
2568 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2569 {
2570 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2571 				CLONE_IO;
2572 	struct kernel_clone_args args = {
2573 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2574 				    CLONE_UNTRACED) & ~CSIGNAL),
2575 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2576 		.stack		= (unsigned long)fn,
2577 		.stack_size	= (unsigned long)arg,
2578 		.io_thread	= 1,
2579 	};
2580 
2581 	return copy_process(NULL, 0, node, &args);
2582 }
2583 
2584 /*
2585  *  Ok, this is the main fork-routine.
2586  *
2587  * It copies the process, and if successful kick-starts
2588  * it and waits for it to finish using the VM if required.
2589  *
2590  * args->exit_signal is expected to be checked for sanity by the caller.
2591  */
2592 pid_t kernel_clone(struct kernel_clone_args *args)
2593 {
2594 	u64 clone_flags = args->flags;
2595 	struct completion vfork;
2596 	struct pid *pid;
2597 	struct task_struct *p;
2598 	int trace = 0;
2599 	pid_t nr;
2600 
2601 	/*
2602 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2603 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2604 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2605 	 * field in struct clone_args and it still doesn't make sense to have
2606 	 * them both point at the same memory location. Performing this check
2607 	 * here has the advantage that we don't need to have a separate helper
2608 	 * to check for legacy clone().
2609 	 */
2610 	if ((args->flags & CLONE_PIDFD) &&
2611 	    (args->flags & CLONE_PARENT_SETTID) &&
2612 	    (args->pidfd == args->parent_tid))
2613 		return -EINVAL;
2614 
2615 	/*
2616 	 * Determine whether and which event to report to ptracer.  When
2617 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2618 	 * requested, no event is reported; otherwise, report if the event
2619 	 * for the type of forking is enabled.
2620 	 */
2621 	if (!(clone_flags & CLONE_UNTRACED)) {
2622 		if (clone_flags & CLONE_VFORK)
2623 			trace = PTRACE_EVENT_VFORK;
2624 		else if (args->exit_signal != SIGCHLD)
2625 			trace = PTRACE_EVENT_CLONE;
2626 		else
2627 			trace = PTRACE_EVENT_FORK;
2628 
2629 		if (likely(!ptrace_event_enabled(current, trace)))
2630 			trace = 0;
2631 	}
2632 
2633 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2634 	add_latent_entropy();
2635 
2636 	if (IS_ERR(p))
2637 		return PTR_ERR(p);
2638 
2639 	/*
2640 	 * Do this prior waking up the new thread - the thread pointer
2641 	 * might get invalid after that point, if the thread exits quickly.
2642 	 */
2643 	trace_sched_process_fork(current, p);
2644 
2645 	pid = get_task_pid(p, PIDTYPE_PID);
2646 	nr = pid_vnr(pid);
2647 
2648 	if (clone_flags & CLONE_PARENT_SETTID)
2649 		put_user(nr, args->parent_tid);
2650 
2651 	if (clone_flags & CLONE_VFORK) {
2652 		p->vfork_done = &vfork;
2653 		init_completion(&vfork);
2654 		get_task_struct(p);
2655 	}
2656 
2657 	wake_up_new_task(p);
2658 
2659 	/* forking complete and child started to run, tell ptracer */
2660 	if (unlikely(trace))
2661 		ptrace_event_pid(trace, pid);
2662 
2663 	if (clone_flags & CLONE_VFORK) {
2664 		if (!wait_for_vfork_done(p, &vfork))
2665 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2666 	}
2667 
2668 	put_pid(pid);
2669 	return nr;
2670 }
2671 
2672 /*
2673  * Create a kernel thread.
2674  */
2675 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2676 {
2677 	struct kernel_clone_args args = {
2678 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2679 				    CLONE_UNTRACED) & ~CSIGNAL),
2680 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2681 		.stack		= (unsigned long)fn,
2682 		.stack_size	= (unsigned long)arg,
2683 	};
2684 
2685 	return kernel_clone(&args);
2686 }
2687 
2688 #ifdef __ARCH_WANT_SYS_FORK
2689 SYSCALL_DEFINE0(fork)
2690 {
2691 #ifdef CONFIG_MMU
2692 	struct kernel_clone_args args = {
2693 		.exit_signal = SIGCHLD,
2694 	};
2695 
2696 	return kernel_clone(&args);
2697 #else
2698 	/* can not support in nommu mode */
2699 	return -EINVAL;
2700 #endif
2701 }
2702 #endif
2703 
2704 #ifdef __ARCH_WANT_SYS_VFORK
2705 SYSCALL_DEFINE0(vfork)
2706 {
2707 	struct kernel_clone_args args = {
2708 		.flags		= CLONE_VFORK | CLONE_VM,
2709 		.exit_signal	= SIGCHLD,
2710 	};
2711 
2712 	return kernel_clone(&args);
2713 }
2714 #endif
2715 
2716 #ifdef __ARCH_WANT_SYS_CLONE
2717 #ifdef CONFIG_CLONE_BACKWARDS
2718 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2719 		 int __user *, parent_tidptr,
2720 		 unsigned long, tls,
2721 		 int __user *, child_tidptr)
2722 #elif defined(CONFIG_CLONE_BACKWARDS2)
2723 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2724 		 int __user *, parent_tidptr,
2725 		 int __user *, child_tidptr,
2726 		 unsigned long, tls)
2727 #elif defined(CONFIG_CLONE_BACKWARDS3)
2728 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2729 		int, stack_size,
2730 		int __user *, parent_tidptr,
2731 		int __user *, child_tidptr,
2732 		unsigned long, tls)
2733 #else
2734 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2735 		 int __user *, parent_tidptr,
2736 		 int __user *, child_tidptr,
2737 		 unsigned long, tls)
2738 #endif
2739 {
2740 	struct kernel_clone_args args = {
2741 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2742 		.pidfd		= parent_tidptr,
2743 		.child_tid	= child_tidptr,
2744 		.parent_tid	= parent_tidptr,
2745 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2746 		.stack		= newsp,
2747 		.tls		= tls,
2748 	};
2749 
2750 	return kernel_clone(&args);
2751 }
2752 #endif
2753 
2754 #ifdef __ARCH_WANT_SYS_CLONE3
2755 
2756 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2757 					      struct clone_args __user *uargs,
2758 					      size_t usize)
2759 {
2760 	int err;
2761 	struct clone_args args;
2762 	pid_t *kset_tid = kargs->set_tid;
2763 
2764 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2765 		     CLONE_ARGS_SIZE_VER0);
2766 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2767 		     CLONE_ARGS_SIZE_VER1);
2768 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2769 		     CLONE_ARGS_SIZE_VER2);
2770 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2771 
2772 	if (unlikely(usize > PAGE_SIZE))
2773 		return -E2BIG;
2774 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2775 		return -EINVAL;
2776 
2777 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2778 	if (err)
2779 		return err;
2780 
2781 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2782 		return -EINVAL;
2783 
2784 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2785 		return -EINVAL;
2786 
2787 	if (unlikely(args.set_tid && args.set_tid_size == 0))
2788 		return -EINVAL;
2789 
2790 	/*
2791 	 * Verify that higher 32bits of exit_signal are unset and that
2792 	 * it is a valid signal
2793 	 */
2794 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2795 		     !valid_signal(args.exit_signal)))
2796 		return -EINVAL;
2797 
2798 	if ((args.flags & CLONE_INTO_CGROUP) &&
2799 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2800 		return -EINVAL;
2801 
2802 	*kargs = (struct kernel_clone_args){
2803 		.flags		= args.flags,
2804 		.pidfd		= u64_to_user_ptr(args.pidfd),
2805 		.child_tid	= u64_to_user_ptr(args.child_tid),
2806 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2807 		.exit_signal	= args.exit_signal,
2808 		.stack		= args.stack,
2809 		.stack_size	= args.stack_size,
2810 		.tls		= args.tls,
2811 		.set_tid_size	= args.set_tid_size,
2812 		.cgroup		= args.cgroup,
2813 	};
2814 
2815 	if (args.set_tid &&
2816 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2817 			(kargs->set_tid_size * sizeof(pid_t))))
2818 		return -EFAULT;
2819 
2820 	kargs->set_tid = kset_tid;
2821 
2822 	return 0;
2823 }
2824 
2825 /**
2826  * clone3_stack_valid - check and prepare stack
2827  * @kargs: kernel clone args
2828  *
2829  * Verify that the stack arguments userspace gave us are sane.
2830  * In addition, set the stack direction for userspace since it's easy for us to
2831  * determine.
2832  */
2833 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2834 {
2835 	if (kargs->stack == 0) {
2836 		if (kargs->stack_size > 0)
2837 			return false;
2838 	} else {
2839 		if (kargs->stack_size == 0)
2840 			return false;
2841 
2842 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2843 			return false;
2844 
2845 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2846 		kargs->stack += kargs->stack_size;
2847 #endif
2848 	}
2849 
2850 	return true;
2851 }
2852 
2853 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2854 {
2855 	/* Verify that no unknown flags are passed along. */
2856 	if (kargs->flags &
2857 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2858 		return false;
2859 
2860 	/*
2861 	 * - make the CLONE_DETACHED bit reusable for clone3
2862 	 * - make the CSIGNAL bits reusable for clone3
2863 	 */
2864 	if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2865 		return false;
2866 
2867 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2868 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2869 		return false;
2870 
2871 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2872 	    kargs->exit_signal)
2873 		return false;
2874 
2875 	if (!clone3_stack_valid(kargs))
2876 		return false;
2877 
2878 	return true;
2879 }
2880 
2881 /**
2882  * clone3 - create a new process with specific properties
2883  * @uargs: argument structure
2884  * @size:  size of @uargs
2885  *
2886  * clone3() is the extensible successor to clone()/clone2().
2887  * It takes a struct as argument that is versioned by its size.
2888  *
2889  * Return: On success, a positive PID for the child process.
2890  *         On error, a negative errno number.
2891  */
2892 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2893 {
2894 	int err;
2895 
2896 	struct kernel_clone_args kargs;
2897 	pid_t set_tid[MAX_PID_NS_LEVEL];
2898 
2899 	kargs.set_tid = set_tid;
2900 
2901 	err = copy_clone_args_from_user(&kargs, uargs, size);
2902 	if (err)
2903 		return err;
2904 
2905 	if (!clone3_args_valid(&kargs))
2906 		return -EINVAL;
2907 
2908 	return kernel_clone(&kargs);
2909 }
2910 #endif
2911 
2912 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2913 {
2914 	struct task_struct *leader, *parent, *child;
2915 	int res;
2916 
2917 	read_lock(&tasklist_lock);
2918 	leader = top = top->group_leader;
2919 down:
2920 	for_each_thread(leader, parent) {
2921 		list_for_each_entry(child, &parent->children, sibling) {
2922 			res = visitor(child, data);
2923 			if (res) {
2924 				if (res < 0)
2925 					goto out;
2926 				leader = child;
2927 				goto down;
2928 			}
2929 up:
2930 			;
2931 		}
2932 	}
2933 
2934 	if (leader != top) {
2935 		child = leader;
2936 		parent = child->real_parent;
2937 		leader = parent->group_leader;
2938 		goto up;
2939 	}
2940 out:
2941 	read_unlock(&tasklist_lock);
2942 }
2943 
2944 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2945 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2946 #endif
2947 
2948 static void sighand_ctor(void *data)
2949 {
2950 	struct sighand_struct *sighand = data;
2951 
2952 	spin_lock_init(&sighand->siglock);
2953 	init_waitqueue_head(&sighand->signalfd_wqh);
2954 }
2955 
2956 void __init proc_caches_init(void)
2957 {
2958 	unsigned int mm_size;
2959 
2960 	sighand_cachep = kmem_cache_create("sighand_cache",
2961 			sizeof(struct sighand_struct), 0,
2962 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2963 			SLAB_ACCOUNT, sighand_ctor);
2964 	signal_cachep = kmem_cache_create("signal_cache",
2965 			sizeof(struct signal_struct), 0,
2966 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2967 			NULL);
2968 	files_cachep = kmem_cache_create("files_cache",
2969 			sizeof(struct files_struct), 0,
2970 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2971 			NULL);
2972 	fs_cachep = kmem_cache_create("fs_cache",
2973 			sizeof(struct fs_struct), 0,
2974 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2975 			NULL);
2976 
2977 	/*
2978 	 * The mm_cpumask is located at the end of mm_struct, and is
2979 	 * dynamically sized based on the maximum CPU number this system
2980 	 * can have, taking hotplug into account (nr_cpu_ids).
2981 	 */
2982 	mm_size = sizeof(struct mm_struct) + cpumask_size();
2983 
2984 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2985 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2986 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2987 			offsetof(struct mm_struct, saved_auxv),
2988 			sizeof_field(struct mm_struct, saved_auxv),
2989 			NULL);
2990 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2991 	mmap_init();
2992 	nsproxy_cache_init();
2993 }
2994 
2995 /*
2996  * Check constraints on flags passed to the unshare system call.
2997  */
2998 static int check_unshare_flags(unsigned long unshare_flags)
2999 {
3000 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3001 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3002 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3003 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3004 				CLONE_NEWTIME))
3005 		return -EINVAL;
3006 	/*
3007 	 * Not implemented, but pretend it works if there is nothing
3008 	 * to unshare.  Note that unsharing the address space or the
3009 	 * signal handlers also need to unshare the signal queues (aka
3010 	 * CLONE_THREAD).
3011 	 */
3012 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3013 		if (!thread_group_empty(current))
3014 			return -EINVAL;
3015 	}
3016 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3017 		if (refcount_read(&current->sighand->count) > 1)
3018 			return -EINVAL;
3019 	}
3020 	if (unshare_flags & CLONE_VM) {
3021 		if (!current_is_single_threaded())
3022 			return -EINVAL;
3023 	}
3024 
3025 	return 0;
3026 }
3027 
3028 /*
3029  * Unshare the filesystem structure if it is being shared
3030  */
3031 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3032 {
3033 	struct fs_struct *fs = current->fs;
3034 
3035 	if (!(unshare_flags & CLONE_FS) || !fs)
3036 		return 0;
3037 
3038 	/* don't need lock here; in the worst case we'll do useless copy */
3039 	if (fs->users == 1)
3040 		return 0;
3041 
3042 	*new_fsp = copy_fs_struct(fs);
3043 	if (!*new_fsp)
3044 		return -ENOMEM;
3045 
3046 	return 0;
3047 }
3048 
3049 /*
3050  * Unshare file descriptor table if it is being shared
3051  */
3052 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3053 	       struct files_struct **new_fdp)
3054 {
3055 	struct files_struct *fd = current->files;
3056 	int error = 0;
3057 
3058 	if ((unshare_flags & CLONE_FILES) &&
3059 	    (fd && atomic_read(&fd->count) > 1)) {
3060 		*new_fdp = dup_fd(fd, max_fds, &error);
3061 		if (!*new_fdp)
3062 			return error;
3063 	}
3064 
3065 	return 0;
3066 }
3067 
3068 /*
3069  * unshare allows a process to 'unshare' part of the process
3070  * context which was originally shared using clone.  copy_*
3071  * functions used by kernel_clone() cannot be used here directly
3072  * because they modify an inactive task_struct that is being
3073  * constructed. Here we are modifying the current, active,
3074  * task_struct.
3075  */
3076 int ksys_unshare(unsigned long unshare_flags)
3077 {
3078 	struct fs_struct *fs, *new_fs = NULL;
3079 	struct files_struct *new_fd = NULL;
3080 	struct cred *new_cred = NULL;
3081 	struct nsproxy *new_nsproxy = NULL;
3082 	int do_sysvsem = 0;
3083 	int err;
3084 
3085 	/*
3086 	 * If unsharing a user namespace must also unshare the thread group
3087 	 * and unshare the filesystem root and working directories.
3088 	 */
3089 	if (unshare_flags & CLONE_NEWUSER)
3090 		unshare_flags |= CLONE_THREAD | CLONE_FS;
3091 	/*
3092 	 * If unsharing vm, must also unshare signal handlers.
3093 	 */
3094 	if (unshare_flags & CLONE_VM)
3095 		unshare_flags |= CLONE_SIGHAND;
3096 	/*
3097 	 * If unsharing a signal handlers, must also unshare the signal queues.
3098 	 */
3099 	if (unshare_flags & CLONE_SIGHAND)
3100 		unshare_flags |= CLONE_THREAD;
3101 	/*
3102 	 * If unsharing namespace, must also unshare filesystem information.
3103 	 */
3104 	if (unshare_flags & CLONE_NEWNS)
3105 		unshare_flags |= CLONE_FS;
3106 
3107 	err = check_unshare_flags(unshare_flags);
3108 	if (err)
3109 		goto bad_unshare_out;
3110 	/*
3111 	 * CLONE_NEWIPC must also detach from the undolist: after switching
3112 	 * to a new ipc namespace, the semaphore arrays from the old
3113 	 * namespace are unreachable.
3114 	 */
3115 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3116 		do_sysvsem = 1;
3117 	err = unshare_fs(unshare_flags, &new_fs);
3118 	if (err)
3119 		goto bad_unshare_out;
3120 	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3121 	if (err)
3122 		goto bad_unshare_cleanup_fs;
3123 	err = unshare_userns(unshare_flags, &new_cred);
3124 	if (err)
3125 		goto bad_unshare_cleanup_fd;
3126 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3127 					 new_cred, new_fs);
3128 	if (err)
3129 		goto bad_unshare_cleanup_cred;
3130 
3131 	if (new_cred) {
3132 		err = set_cred_ucounts(new_cred);
3133 		if (err)
3134 			goto bad_unshare_cleanup_cred;
3135 	}
3136 
3137 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3138 		if (do_sysvsem) {
3139 			/*
3140 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3141 			 */
3142 			exit_sem(current);
3143 		}
3144 		if (unshare_flags & CLONE_NEWIPC) {
3145 			/* Orphan segments in old ns (see sem above). */
3146 			exit_shm(current);
3147 			shm_init_task(current);
3148 		}
3149 
3150 		if (new_nsproxy)
3151 			switch_task_namespaces(current, new_nsproxy);
3152 
3153 		task_lock(current);
3154 
3155 		if (new_fs) {
3156 			fs = current->fs;
3157 			spin_lock(&fs->lock);
3158 			current->fs = new_fs;
3159 			if (--fs->users)
3160 				new_fs = NULL;
3161 			else
3162 				new_fs = fs;
3163 			spin_unlock(&fs->lock);
3164 		}
3165 
3166 		if (new_fd)
3167 			swap(current->files, new_fd);
3168 
3169 		task_unlock(current);
3170 
3171 		if (new_cred) {
3172 			/* Install the new user namespace */
3173 			commit_creds(new_cred);
3174 			new_cred = NULL;
3175 		}
3176 	}
3177 
3178 	perf_event_namespaces(current);
3179 
3180 bad_unshare_cleanup_cred:
3181 	if (new_cred)
3182 		put_cred(new_cred);
3183 bad_unshare_cleanup_fd:
3184 	if (new_fd)
3185 		put_files_struct(new_fd);
3186 
3187 bad_unshare_cleanup_fs:
3188 	if (new_fs)
3189 		free_fs_struct(new_fs);
3190 
3191 bad_unshare_out:
3192 	return err;
3193 }
3194 
3195 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3196 {
3197 	return ksys_unshare(unshare_flags);
3198 }
3199 
3200 /*
3201  *	Helper to unshare the files of the current task.
3202  *	We don't want to expose copy_files internals to
3203  *	the exec layer of the kernel.
3204  */
3205 
3206 int unshare_files(void)
3207 {
3208 	struct task_struct *task = current;
3209 	struct files_struct *old, *copy = NULL;
3210 	int error;
3211 
3212 	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3213 	if (error || !copy)
3214 		return error;
3215 
3216 	old = task->files;
3217 	task_lock(task);
3218 	task->files = copy;
3219 	task_unlock(task);
3220 	put_files_struct(old);
3221 	return 0;
3222 }
3223 
3224 int sysctl_max_threads(struct ctl_table *table, int write,
3225 		       void *buffer, size_t *lenp, loff_t *ppos)
3226 {
3227 	struct ctl_table t;
3228 	int ret;
3229 	int threads = max_threads;
3230 	int min = 1;
3231 	int max = MAX_THREADS;
3232 
3233 	t = *table;
3234 	t.data = &threads;
3235 	t.extra1 = &min;
3236 	t.extra2 = &max;
3237 
3238 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3239 	if (ret || !write)
3240 		return ret;
3241 
3242 	max_threads = threads;
3243 
3244 	return 0;
3245 }
3246