1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/kmsan.h> 41 #include <linux/binfmts.h> 42 #include <linux/mman.h> 43 #include <linux/mmu_notifier.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/mm_inline.h> 47 #include <linux/nsproxy.h> 48 #include <linux/capability.h> 49 #include <linux/cpu.h> 50 #include <linux/cgroup.h> 51 #include <linux/security.h> 52 #include <linux/hugetlb.h> 53 #include <linux/seccomp.h> 54 #include <linux/swap.h> 55 #include <linux/syscalls.h> 56 #include <linux/jiffies.h> 57 #include <linux/futex.h> 58 #include <linux/compat.h> 59 #include <linux/kthread.h> 60 #include <linux/task_io_accounting_ops.h> 61 #include <linux/rcupdate.h> 62 #include <linux/ptrace.h> 63 #include <linux/mount.h> 64 #include <linux/audit.h> 65 #include <linux/memcontrol.h> 66 #include <linux/ftrace.h> 67 #include <linux/proc_fs.h> 68 #include <linux/profile.h> 69 #include <linux/rmap.h> 70 #include <linux/ksm.h> 71 #include <linux/acct.h> 72 #include <linux/userfaultfd_k.h> 73 #include <linux/tsacct_kern.h> 74 #include <linux/cn_proc.h> 75 #include <linux/freezer.h> 76 #include <linux/delayacct.h> 77 #include <linux/taskstats_kern.h> 78 #include <linux/tty.h> 79 #include <linux/fs_struct.h> 80 #include <linux/magic.h> 81 #include <linux/perf_event.h> 82 #include <linux/posix-timers.h> 83 #include <linux/user-return-notifier.h> 84 #include <linux/oom.h> 85 #include <linux/khugepaged.h> 86 #include <linux/signalfd.h> 87 #include <linux/uprobes.h> 88 #include <linux/aio.h> 89 #include <linux/compiler.h> 90 #include <linux/sysctl.h> 91 #include <linux/kcov.h> 92 #include <linux/livepatch.h> 93 #include <linux/thread_info.h> 94 #include <linux/stackleak.h> 95 #include <linux/kasan.h> 96 #include <linux/scs.h> 97 #include <linux/io_uring.h> 98 #include <linux/bpf.h> 99 #include <linux/stackprotector.h> 100 #include <linux/user_events.h> 101 #include <linux/iommu.h> 102 103 #include <asm/pgalloc.h> 104 #include <linux/uaccess.h> 105 #include <asm/mmu_context.h> 106 #include <asm/cacheflush.h> 107 #include <asm/tlbflush.h> 108 109 #include <trace/events/sched.h> 110 111 #define CREATE_TRACE_POINTS 112 #include <trace/events/task.h> 113 114 /* 115 * Minimum number of threads to boot the kernel 116 */ 117 #define MIN_THREADS 20 118 119 /* 120 * Maximum number of threads 121 */ 122 #define MAX_THREADS FUTEX_TID_MASK 123 124 /* 125 * Protected counters by write_lock_irq(&tasklist_lock) 126 */ 127 unsigned long total_forks; /* Handle normal Linux uptimes. */ 128 int nr_threads; /* The idle threads do not count.. */ 129 130 static int max_threads; /* tunable limit on nr_threads */ 131 132 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 133 134 static const char * const resident_page_types[] = { 135 NAMED_ARRAY_INDEX(MM_FILEPAGES), 136 NAMED_ARRAY_INDEX(MM_ANONPAGES), 137 NAMED_ARRAY_INDEX(MM_SWAPENTS), 138 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 139 }; 140 141 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 142 143 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 144 145 #ifdef CONFIG_PROVE_RCU 146 int lockdep_tasklist_lock_is_held(void) 147 { 148 return lockdep_is_held(&tasklist_lock); 149 } 150 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 151 #endif /* #ifdef CONFIG_PROVE_RCU */ 152 153 int nr_processes(void) 154 { 155 int cpu; 156 int total = 0; 157 158 for_each_possible_cpu(cpu) 159 total += per_cpu(process_counts, cpu); 160 161 return total; 162 } 163 164 void __weak arch_release_task_struct(struct task_struct *tsk) 165 { 166 } 167 168 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 169 static struct kmem_cache *task_struct_cachep; 170 171 static inline struct task_struct *alloc_task_struct_node(int node) 172 { 173 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 174 } 175 176 static inline void free_task_struct(struct task_struct *tsk) 177 { 178 kmem_cache_free(task_struct_cachep, tsk); 179 } 180 #endif 181 182 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 183 184 /* 185 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 186 * kmemcache based allocator. 187 */ 188 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 189 190 # ifdef CONFIG_VMAP_STACK 191 /* 192 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 193 * flush. Try to minimize the number of calls by caching stacks. 194 */ 195 #define NR_CACHED_STACKS 2 196 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 197 198 struct vm_stack { 199 struct rcu_head rcu; 200 struct vm_struct *stack_vm_area; 201 }; 202 203 static bool try_release_thread_stack_to_cache(struct vm_struct *vm) 204 { 205 unsigned int i; 206 207 for (i = 0; i < NR_CACHED_STACKS; i++) { 208 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL) 209 continue; 210 return true; 211 } 212 return false; 213 } 214 215 static void thread_stack_free_rcu(struct rcu_head *rh) 216 { 217 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 218 219 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 220 return; 221 222 vfree(vm_stack); 223 } 224 225 static void thread_stack_delayed_free(struct task_struct *tsk) 226 { 227 struct vm_stack *vm_stack = tsk->stack; 228 229 vm_stack->stack_vm_area = tsk->stack_vm_area; 230 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 231 } 232 233 static int free_vm_stack_cache(unsigned int cpu) 234 { 235 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 236 int i; 237 238 for (i = 0; i < NR_CACHED_STACKS; i++) { 239 struct vm_struct *vm_stack = cached_vm_stacks[i]; 240 241 if (!vm_stack) 242 continue; 243 244 vfree(vm_stack->addr); 245 cached_vm_stacks[i] = NULL; 246 } 247 248 return 0; 249 } 250 251 static int memcg_charge_kernel_stack(struct vm_struct *vm) 252 { 253 int i; 254 int ret; 255 int nr_charged = 0; 256 257 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 258 259 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 260 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0); 261 if (ret) 262 goto err; 263 nr_charged++; 264 } 265 return 0; 266 err: 267 for (i = 0; i < nr_charged; i++) 268 memcg_kmem_uncharge_page(vm->pages[i], 0); 269 return ret; 270 } 271 272 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 273 { 274 struct vm_struct *vm; 275 void *stack; 276 int i; 277 278 for (i = 0; i < NR_CACHED_STACKS; i++) { 279 struct vm_struct *s; 280 281 s = this_cpu_xchg(cached_stacks[i], NULL); 282 283 if (!s) 284 continue; 285 286 /* Reset stack metadata. */ 287 kasan_unpoison_range(s->addr, THREAD_SIZE); 288 289 stack = kasan_reset_tag(s->addr); 290 291 /* Clear stale pointers from reused stack. */ 292 memset(stack, 0, THREAD_SIZE); 293 294 if (memcg_charge_kernel_stack(s)) { 295 vfree(s->addr); 296 return -ENOMEM; 297 } 298 299 tsk->stack_vm_area = s; 300 tsk->stack = stack; 301 return 0; 302 } 303 304 /* 305 * Allocated stacks are cached and later reused by new threads, 306 * so memcg accounting is performed manually on assigning/releasing 307 * stacks to tasks. Drop __GFP_ACCOUNT. 308 */ 309 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 310 VMALLOC_START, VMALLOC_END, 311 THREADINFO_GFP & ~__GFP_ACCOUNT, 312 PAGE_KERNEL, 313 0, node, __builtin_return_address(0)); 314 if (!stack) 315 return -ENOMEM; 316 317 vm = find_vm_area(stack); 318 if (memcg_charge_kernel_stack(vm)) { 319 vfree(stack); 320 return -ENOMEM; 321 } 322 /* 323 * We can't call find_vm_area() in interrupt context, and 324 * free_thread_stack() can be called in interrupt context, 325 * so cache the vm_struct. 326 */ 327 tsk->stack_vm_area = vm; 328 stack = kasan_reset_tag(stack); 329 tsk->stack = stack; 330 return 0; 331 } 332 333 static void free_thread_stack(struct task_struct *tsk) 334 { 335 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 336 thread_stack_delayed_free(tsk); 337 338 tsk->stack = NULL; 339 tsk->stack_vm_area = NULL; 340 } 341 342 # else /* !CONFIG_VMAP_STACK */ 343 344 static void thread_stack_free_rcu(struct rcu_head *rh) 345 { 346 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 347 } 348 349 static void thread_stack_delayed_free(struct task_struct *tsk) 350 { 351 struct rcu_head *rh = tsk->stack; 352 353 call_rcu(rh, thread_stack_free_rcu); 354 } 355 356 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 357 { 358 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 359 THREAD_SIZE_ORDER); 360 361 if (likely(page)) { 362 tsk->stack = kasan_reset_tag(page_address(page)); 363 return 0; 364 } 365 return -ENOMEM; 366 } 367 368 static void free_thread_stack(struct task_struct *tsk) 369 { 370 thread_stack_delayed_free(tsk); 371 tsk->stack = NULL; 372 } 373 374 # endif /* CONFIG_VMAP_STACK */ 375 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */ 376 377 static struct kmem_cache *thread_stack_cache; 378 379 static void thread_stack_free_rcu(struct rcu_head *rh) 380 { 381 kmem_cache_free(thread_stack_cache, rh); 382 } 383 384 static void thread_stack_delayed_free(struct task_struct *tsk) 385 { 386 struct rcu_head *rh = tsk->stack; 387 388 call_rcu(rh, thread_stack_free_rcu); 389 } 390 391 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 392 { 393 unsigned long *stack; 394 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 395 stack = kasan_reset_tag(stack); 396 tsk->stack = stack; 397 return stack ? 0 : -ENOMEM; 398 } 399 400 static void free_thread_stack(struct task_struct *tsk) 401 { 402 thread_stack_delayed_free(tsk); 403 tsk->stack = NULL; 404 } 405 406 void thread_stack_cache_init(void) 407 { 408 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 409 THREAD_SIZE, THREAD_SIZE, 0, 0, 410 THREAD_SIZE, NULL); 411 BUG_ON(thread_stack_cache == NULL); 412 } 413 414 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */ 415 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ 416 417 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 418 { 419 unsigned long *stack; 420 421 stack = arch_alloc_thread_stack_node(tsk, node); 422 tsk->stack = stack; 423 return stack ? 0 : -ENOMEM; 424 } 425 426 static void free_thread_stack(struct task_struct *tsk) 427 { 428 arch_free_thread_stack(tsk); 429 tsk->stack = NULL; 430 } 431 432 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ 433 434 /* SLAB cache for signal_struct structures (tsk->signal) */ 435 static struct kmem_cache *signal_cachep; 436 437 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 438 struct kmem_cache *sighand_cachep; 439 440 /* SLAB cache for files_struct structures (tsk->files) */ 441 struct kmem_cache *files_cachep; 442 443 /* SLAB cache for fs_struct structures (tsk->fs) */ 444 struct kmem_cache *fs_cachep; 445 446 /* SLAB cache for vm_area_struct structures */ 447 static struct kmem_cache *vm_area_cachep; 448 449 /* SLAB cache for mm_struct structures (tsk->mm) */ 450 static struct kmem_cache *mm_cachep; 451 452 #ifdef CONFIG_PER_VMA_LOCK 453 454 /* SLAB cache for vm_area_struct.lock */ 455 static struct kmem_cache *vma_lock_cachep; 456 457 static bool vma_lock_alloc(struct vm_area_struct *vma) 458 { 459 vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL); 460 if (!vma->vm_lock) 461 return false; 462 463 init_rwsem(&vma->vm_lock->lock); 464 vma->vm_lock_seq = -1; 465 466 return true; 467 } 468 469 static inline void vma_lock_free(struct vm_area_struct *vma) 470 { 471 kmem_cache_free(vma_lock_cachep, vma->vm_lock); 472 } 473 474 #else /* CONFIG_PER_VMA_LOCK */ 475 476 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; } 477 static inline void vma_lock_free(struct vm_area_struct *vma) {} 478 479 #endif /* CONFIG_PER_VMA_LOCK */ 480 481 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 482 { 483 struct vm_area_struct *vma; 484 485 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 486 if (!vma) 487 return NULL; 488 489 vma_init(vma, mm); 490 if (!vma_lock_alloc(vma)) { 491 kmem_cache_free(vm_area_cachep, vma); 492 return NULL; 493 } 494 495 return vma; 496 } 497 498 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 499 { 500 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 501 502 if (!new) 503 return NULL; 504 505 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 506 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 507 /* 508 * orig->shared.rb may be modified concurrently, but the clone 509 * will be reinitialized. 510 */ 511 data_race(memcpy(new, orig, sizeof(*new))); 512 if (!vma_lock_alloc(new)) { 513 kmem_cache_free(vm_area_cachep, new); 514 return NULL; 515 } 516 INIT_LIST_HEAD(&new->anon_vma_chain); 517 vma_numab_state_init(new); 518 dup_anon_vma_name(orig, new); 519 520 return new; 521 } 522 523 void __vm_area_free(struct vm_area_struct *vma) 524 { 525 vma_numab_state_free(vma); 526 free_anon_vma_name(vma); 527 vma_lock_free(vma); 528 kmem_cache_free(vm_area_cachep, vma); 529 } 530 531 #ifdef CONFIG_PER_VMA_LOCK 532 static void vm_area_free_rcu_cb(struct rcu_head *head) 533 { 534 struct vm_area_struct *vma = container_of(head, struct vm_area_struct, 535 vm_rcu); 536 537 /* The vma should not be locked while being destroyed. */ 538 VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma); 539 __vm_area_free(vma); 540 } 541 #endif 542 543 void vm_area_free(struct vm_area_struct *vma) 544 { 545 #ifdef CONFIG_PER_VMA_LOCK 546 call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb); 547 #else 548 __vm_area_free(vma); 549 #endif 550 } 551 552 static void account_kernel_stack(struct task_struct *tsk, int account) 553 { 554 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 555 struct vm_struct *vm = task_stack_vm_area(tsk); 556 int i; 557 558 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 559 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 560 account * (PAGE_SIZE / 1024)); 561 } else { 562 void *stack = task_stack_page(tsk); 563 564 /* All stack pages are in the same node. */ 565 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 566 account * (THREAD_SIZE / 1024)); 567 } 568 } 569 570 void exit_task_stack_account(struct task_struct *tsk) 571 { 572 account_kernel_stack(tsk, -1); 573 574 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 575 struct vm_struct *vm; 576 int i; 577 578 vm = task_stack_vm_area(tsk); 579 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 580 memcg_kmem_uncharge_page(vm->pages[i], 0); 581 } 582 } 583 584 static void release_task_stack(struct task_struct *tsk) 585 { 586 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 587 return; /* Better to leak the stack than to free prematurely */ 588 589 free_thread_stack(tsk); 590 } 591 592 #ifdef CONFIG_THREAD_INFO_IN_TASK 593 void put_task_stack(struct task_struct *tsk) 594 { 595 if (refcount_dec_and_test(&tsk->stack_refcount)) 596 release_task_stack(tsk); 597 } 598 #endif 599 600 void free_task(struct task_struct *tsk) 601 { 602 #ifdef CONFIG_SECCOMP 603 WARN_ON_ONCE(tsk->seccomp.filter); 604 #endif 605 release_user_cpus_ptr(tsk); 606 scs_release(tsk); 607 608 #ifndef CONFIG_THREAD_INFO_IN_TASK 609 /* 610 * The task is finally done with both the stack and thread_info, 611 * so free both. 612 */ 613 release_task_stack(tsk); 614 #else 615 /* 616 * If the task had a separate stack allocation, it should be gone 617 * by now. 618 */ 619 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 620 #endif 621 rt_mutex_debug_task_free(tsk); 622 ftrace_graph_exit_task(tsk); 623 arch_release_task_struct(tsk); 624 if (tsk->flags & PF_KTHREAD) 625 free_kthread_struct(tsk); 626 bpf_task_storage_free(tsk); 627 free_task_struct(tsk); 628 } 629 EXPORT_SYMBOL(free_task); 630 631 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 632 { 633 struct file *exe_file; 634 635 exe_file = get_mm_exe_file(oldmm); 636 RCU_INIT_POINTER(mm->exe_file, exe_file); 637 /* 638 * We depend on the oldmm having properly denied write access to the 639 * exe_file already. 640 */ 641 if (exe_file && deny_write_access(exe_file)) 642 pr_warn_once("deny_write_access() failed in %s\n", __func__); 643 } 644 645 #ifdef CONFIG_MMU 646 static __latent_entropy int dup_mmap(struct mm_struct *mm, 647 struct mm_struct *oldmm) 648 { 649 struct vm_area_struct *mpnt, *tmp; 650 int retval; 651 unsigned long charge = 0; 652 LIST_HEAD(uf); 653 VMA_ITERATOR(old_vmi, oldmm, 0); 654 VMA_ITERATOR(vmi, mm, 0); 655 656 uprobe_start_dup_mmap(); 657 if (mmap_write_lock_killable(oldmm)) { 658 retval = -EINTR; 659 goto fail_uprobe_end; 660 } 661 flush_cache_dup_mm(oldmm); 662 uprobe_dup_mmap(oldmm, mm); 663 /* 664 * Not linked in yet - no deadlock potential: 665 */ 666 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 667 668 /* No ordering required: file already has been exposed. */ 669 dup_mm_exe_file(mm, oldmm); 670 671 mm->total_vm = oldmm->total_vm; 672 mm->data_vm = oldmm->data_vm; 673 mm->exec_vm = oldmm->exec_vm; 674 mm->stack_vm = oldmm->stack_vm; 675 676 retval = ksm_fork(mm, oldmm); 677 if (retval) 678 goto out; 679 khugepaged_fork(mm, oldmm); 680 681 retval = vma_iter_bulk_alloc(&vmi, oldmm->map_count); 682 if (retval) 683 goto out; 684 685 mt_clear_in_rcu(vmi.mas.tree); 686 for_each_vma(old_vmi, mpnt) { 687 struct file *file; 688 689 vma_start_write(mpnt); 690 if (mpnt->vm_flags & VM_DONTCOPY) { 691 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 692 continue; 693 } 694 charge = 0; 695 /* 696 * Don't duplicate many vmas if we've been oom-killed (for 697 * example) 698 */ 699 if (fatal_signal_pending(current)) { 700 retval = -EINTR; 701 goto loop_out; 702 } 703 if (mpnt->vm_flags & VM_ACCOUNT) { 704 unsigned long len = vma_pages(mpnt); 705 706 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 707 goto fail_nomem; 708 charge = len; 709 } 710 tmp = vm_area_dup(mpnt); 711 if (!tmp) 712 goto fail_nomem; 713 retval = vma_dup_policy(mpnt, tmp); 714 if (retval) 715 goto fail_nomem_policy; 716 tmp->vm_mm = mm; 717 retval = dup_userfaultfd(tmp, &uf); 718 if (retval) 719 goto fail_nomem_anon_vma_fork; 720 if (tmp->vm_flags & VM_WIPEONFORK) { 721 /* 722 * VM_WIPEONFORK gets a clean slate in the child. 723 * Don't prepare anon_vma until fault since we don't 724 * copy page for current vma. 725 */ 726 tmp->anon_vma = NULL; 727 } else if (anon_vma_fork(tmp, mpnt)) 728 goto fail_nomem_anon_vma_fork; 729 vm_flags_clear(tmp, VM_LOCKED_MASK); 730 file = tmp->vm_file; 731 if (file) { 732 struct address_space *mapping = file->f_mapping; 733 734 get_file(file); 735 i_mmap_lock_write(mapping); 736 if (tmp->vm_flags & VM_SHARED) 737 mapping_allow_writable(mapping); 738 flush_dcache_mmap_lock(mapping); 739 /* insert tmp into the share list, just after mpnt */ 740 vma_interval_tree_insert_after(tmp, mpnt, 741 &mapping->i_mmap); 742 flush_dcache_mmap_unlock(mapping); 743 i_mmap_unlock_write(mapping); 744 } 745 746 /* 747 * Copy/update hugetlb private vma information. 748 */ 749 if (is_vm_hugetlb_page(tmp)) 750 hugetlb_dup_vma_private(tmp); 751 752 /* Link the vma into the MT */ 753 if (vma_iter_bulk_store(&vmi, tmp)) 754 goto fail_nomem_vmi_store; 755 756 mm->map_count++; 757 if (!(tmp->vm_flags & VM_WIPEONFORK)) 758 retval = copy_page_range(tmp, mpnt); 759 760 if (tmp->vm_ops && tmp->vm_ops->open) 761 tmp->vm_ops->open(tmp); 762 763 if (retval) 764 goto loop_out; 765 } 766 /* a new mm has just been created */ 767 retval = arch_dup_mmap(oldmm, mm); 768 loop_out: 769 vma_iter_free(&vmi); 770 if (!retval) 771 mt_set_in_rcu(vmi.mas.tree); 772 out: 773 mmap_write_unlock(mm); 774 flush_tlb_mm(oldmm); 775 mmap_write_unlock(oldmm); 776 dup_userfaultfd_complete(&uf); 777 fail_uprobe_end: 778 uprobe_end_dup_mmap(); 779 return retval; 780 781 fail_nomem_vmi_store: 782 unlink_anon_vmas(tmp); 783 fail_nomem_anon_vma_fork: 784 mpol_put(vma_policy(tmp)); 785 fail_nomem_policy: 786 vm_area_free(tmp); 787 fail_nomem: 788 retval = -ENOMEM; 789 vm_unacct_memory(charge); 790 goto loop_out; 791 } 792 793 static inline int mm_alloc_pgd(struct mm_struct *mm) 794 { 795 mm->pgd = pgd_alloc(mm); 796 if (unlikely(!mm->pgd)) 797 return -ENOMEM; 798 return 0; 799 } 800 801 static inline void mm_free_pgd(struct mm_struct *mm) 802 { 803 pgd_free(mm, mm->pgd); 804 } 805 #else 806 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 807 { 808 mmap_write_lock(oldmm); 809 dup_mm_exe_file(mm, oldmm); 810 mmap_write_unlock(oldmm); 811 return 0; 812 } 813 #define mm_alloc_pgd(mm) (0) 814 #define mm_free_pgd(mm) 815 #endif /* CONFIG_MMU */ 816 817 static void check_mm(struct mm_struct *mm) 818 { 819 int i; 820 821 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 822 "Please make sure 'struct resident_page_types[]' is updated as well"); 823 824 for (i = 0; i < NR_MM_COUNTERS; i++) { 825 long x = percpu_counter_sum(&mm->rss_stat[i]); 826 827 if (unlikely(x)) 828 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 829 mm, resident_page_types[i], x); 830 } 831 832 if (mm_pgtables_bytes(mm)) 833 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 834 mm_pgtables_bytes(mm)); 835 836 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 837 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 838 #endif 839 } 840 841 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 842 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 843 844 static void do_check_lazy_tlb(void *arg) 845 { 846 struct mm_struct *mm = arg; 847 848 WARN_ON_ONCE(current->active_mm == mm); 849 } 850 851 static void do_shoot_lazy_tlb(void *arg) 852 { 853 struct mm_struct *mm = arg; 854 855 if (current->active_mm == mm) { 856 WARN_ON_ONCE(current->mm); 857 current->active_mm = &init_mm; 858 switch_mm(mm, &init_mm, current); 859 } 860 } 861 862 static void cleanup_lazy_tlbs(struct mm_struct *mm) 863 { 864 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) { 865 /* 866 * In this case, lazy tlb mms are refounted and would not reach 867 * __mmdrop until all CPUs have switched away and mmdrop()ed. 868 */ 869 return; 870 } 871 872 /* 873 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it 874 * requires lazy mm users to switch to another mm when the refcount 875 * drops to zero, before the mm is freed. This requires IPIs here to 876 * switch kernel threads to init_mm. 877 * 878 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm 879 * switch with the final userspace teardown TLB flush which leaves the 880 * mm lazy on this CPU but no others, reducing the need for additional 881 * IPIs here. There are cases where a final IPI is still required here, 882 * such as the final mmdrop being performed on a different CPU than the 883 * one exiting, or kernel threads using the mm when userspace exits. 884 * 885 * IPI overheads have not found to be expensive, but they could be 886 * reduced in a number of possible ways, for example (roughly 887 * increasing order of complexity): 888 * - The last lazy reference created by exit_mm() could instead switch 889 * to init_mm, however it's probable this will run on the same CPU 890 * immediately afterwards, so this may not reduce IPIs much. 891 * - A batch of mms requiring IPIs could be gathered and freed at once. 892 * - CPUs store active_mm where it can be remotely checked without a 893 * lock, to filter out false-positives in the cpumask. 894 * - After mm_users or mm_count reaches zero, switching away from the 895 * mm could clear mm_cpumask to reduce some IPIs, perhaps together 896 * with some batching or delaying of the final IPIs. 897 * - A delayed freeing and RCU-like quiescing sequence based on mm 898 * switching to avoid IPIs completely. 899 */ 900 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1); 901 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES)) 902 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1); 903 } 904 905 /* 906 * Called when the last reference to the mm 907 * is dropped: either by a lazy thread or by 908 * mmput. Free the page directory and the mm. 909 */ 910 void __mmdrop(struct mm_struct *mm) 911 { 912 int i; 913 914 BUG_ON(mm == &init_mm); 915 WARN_ON_ONCE(mm == current->mm); 916 917 /* Ensure no CPUs are using this as their lazy tlb mm */ 918 cleanup_lazy_tlbs(mm); 919 920 WARN_ON_ONCE(mm == current->active_mm); 921 mm_free_pgd(mm); 922 destroy_context(mm); 923 mmu_notifier_subscriptions_destroy(mm); 924 check_mm(mm); 925 put_user_ns(mm->user_ns); 926 mm_pasid_drop(mm); 927 mm_destroy_cid(mm); 928 929 for (i = 0; i < NR_MM_COUNTERS; i++) 930 percpu_counter_destroy(&mm->rss_stat[i]); 931 free_mm(mm); 932 } 933 EXPORT_SYMBOL_GPL(__mmdrop); 934 935 static void mmdrop_async_fn(struct work_struct *work) 936 { 937 struct mm_struct *mm; 938 939 mm = container_of(work, struct mm_struct, async_put_work); 940 __mmdrop(mm); 941 } 942 943 static void mmdrop_async(struct mm_struct *mm) 944 { 945 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 946 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 947 schedule_work(&mm->async_put_work); 948 } 949 } 950 951 static inline void free_signal_struct(struct signal_struct *sig) 952 { 953 taskstats_tgid_free(sig); 954 sched_autogroup_exit(sig); 955 /* 956 * __mmdrop is not safe to call from softirq context on x86 due to 957 * pgd_dtor so postpone it to the async context 958 */ 959 if (sig->oom_mm) 960 mmdrop_async(sig->oom_mm); 961 kmem_cache_free(signal_cachep, sig); 962 } 963 964 static inline void put_signal_struct(struct signal_struct *sig) 965 { 966 if (refcount_dec_and_test(&sig->sigcnt)) 967 free_signal_struct(sig); 968 } 969 970 void __put_task_struct(struct task_struct *tsk) 971 { 972 WARN_ON(!tsk->exit_state); 973 WARN_ON(refcount_read(&tsk->usage)); 974 WARN_ON(tsk == current); 975 976 io_uring_free(tsk); 977 cgroup_free(tsk); 978 task_numa_free(tsk, true); 979 security_task_free(tsk); 980 exit_creds(tsk); 981 delayacct_tsk_free(tsk); 982 put_signal_struct(tsk->signal); 983 sched_core_free(tsk); 984 free_task(tsk); 985 } 986 EXPORT_SYMBOL_GPL(__put_task_struct); 987 988 void __init __weak arch_task_cache_init(void) { } 989 990 /* 991 * set_max_threads 992 */ 993 static void set_max_threads(unsigned int max_threads_suggested) 994 { 995 u64 threads; 996 unsigned long nr_pages = totalram_pages(); 997 998 /* 999 * The number of threads shall be limited such that the thread 1000 * structures may only consume a small part of the available memory. 1001 */ 1002 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 1003 threads = MAX_THREADS; 1004 else 1005 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 1006 (u64) THREAD_SIZE * 8UL); 1007 1008 if (threads > max_threads_suggested) 1009 threads = max_threads_suggested; 1010 1011 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 1012 } 1013 1014 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 1015 /* Initialized by the architecture: */ 1016 int arch_task_struct_size __read_mostly; 1017 #endif 1018 1019 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 1020 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 1021 { 1022 /* Fetch thread_struct whitelist for the architecture. */ 1023 arch_thread_struct_whitelist(offset, size); 1024 1025 /* 1026 * Handle zero-sized whitelist or empty thread_struct, otherwise 1027 * adjust offset to position of thread_struct in task_struct. 1028 */ 1029 if (unlikely(*size == 0)) 1030 *offset = 0; 1031 else 1032 *offset += offsetof(struct task_struct, thread); 1033 } 1034 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 1035 1036 void __init fork_init(void) 1037 { 1038 int i; 1039 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 1040 #ifndef ARCH_MIN_TASKALIGN 1041 #define ARCH_MIN_TASKALIGN 0 1042 #endif 1043 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 1044 unsigned long useroffset, usersize; 1045 1046 /* create a slab on which task_structs can be allocated */ 1047 task_struct_whitelist(&useroffset, &usersize); 1048 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 1049 arch_task_struct_size, align, 1050 SLAB_PANIC|SLAB_ACCOUNT, 1051 useroffset, usersize, NULL); 1052 #endif 1053 1054 /* do the arch specific task caches init */ 1055 arch_task_cache_init(); 1056 1057 set_max_threads(MAX_THREADS); 1058 1059 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 1060 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 1061 init_task.signal->rlim[RLIMIT_SIGPENDING] = 1062 init_task.signal->rlim[RLIMIT_NPROC]; 1063 1064 for (i = 0; i < UCOUNT_COUNTS; i++) 1065 init_user_ns.ucount_max[i] = max_threads/2; 1066 1067 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 1068 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 1069 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 1070 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 1071 1072 #ifdef CONFIG_VMAP_STACK 1073 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 1074 NULL, free_vm_stack_cache); 1075 #endif 1076 1077 scs_init(); 1078 1079 lockdep_init_task(&init_task); 1080 uprobes_init(); 1081 } 1082 1083 int __weak arch_dup_task_struct(struct task_struct *dst, 1084 struct task_struct *src) 1085 { 1086 *dst = *src; 1087 return 0; 1088 } 1089 1090 void set_task_stack_end_magic(struct task_struct *tsk) 1091 { 1092 unsigned long *stackend; 1093 1094 stackend = end_of_stack(tsk); 1095 *stackend = STACK_END_MAGIC; /* for overflow detection */ 1096 } 1097 1098 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 1099 { 1100 struct task_struct *tsk; 1101 int err; 1102 1103 if (node == NUMA_NO_NODE) 1104 node = tsk_fork_get_node(orig); 1105 tsk = alloc_task_struct_node(node); 1106 if (!tsk) 1107 return NULL; 1108 1109 err = arch_dup_task_struct(tsk, orig); 1110 if (err) 1111 goto free_tsk; 1112 1113 err = alloc_thread_stack_node(tsk, node); 1114 if (err) 1115 goto free_tsk; 1116 1117 #ifdef CONFIG_THREAD_INFO_IN_TASK 1118 refcount_set(&tsk->stack_refcount, 1); 1119 #endif 1120 account_kernel_stack(tsk, 1); 1121 1122 err = scs_prepare(tsk, node); 1123 if (err) 1124 goto free_stack; 1125 1126 #ifdef CONFIG_SECCOMP 1127 /* 1128 * We must handle setting up seccomp filters once we're under 1129 * the sighand lock in case orig has changed between now and 1130 * then. Until then, filter must be NULL to avoid messing up 1131 * the usage counts on the error path calling free_task. 1132 */ 1133 tsk->seccomp.filter = NULL; 1134 #endif 1135 1136 setup_thread_stack(tsk, orig); 1137 clear_user_return_notifier(tsk); 1138 clear_tsk_need_resched(tsk); 1139 set_task_stack_end_magic(tsk); 1140 clear_syscall_work_syscall_user_dispatch(tsk); 1141 1142 #ifdef CONFIG_STACKPROTECTOR 1143 tsk->stack_canary = get_random_canary(); 1144 #endif 1145 if (orig->cpus_ptr == &orig->cpus_mask) 1146 tsk->cpus_ptr = &tsk->cpus_mask; 1147 dup_user_cpus_ptr(tsk, orig, node); 1148 1149 /* 1150 * One for the user space visible state that goes away when reaped. 1151 * One for the scheduler. 1152 */ 1153 refcount_set(&tsk->rcu_users, 2); 1154 /* One for the rcu users */ 1155 refcount_set(&tsk->usage, 1); 1156 #ifdef CONFIG_BLK_DEV_IO_TRACE 1157 tsk->btrace_seq = 0; 1158 #endif 1159 tsk->splice_pipe = NULL; 1160 tsk->task_frag.page = NULL; 1161 tsk->wake_q.next = NULL; 1162 tsk->worker_private = NULL; 1163 1164 kcov_task_init(tsk); 1165 kmsan_task_create(tsk); 1166 kmap_local_fork(tsk); 1167 1168 #ifdef CONFIG_FAULT_INJECTION 1169 tsk->fail_nth = 0; 1170 #endif 1171 1172 #ifdef CONFIG_BLK_CGROUP 1173 tsk->throttle_disk = NULL; 1174 tsk->use_memdelay = 0; 1175 #endif 1176 1177 #ifdef CONFIG_IOMMU_SVA 1178 tsk->pasid_activated = 0; 1179 #endif 1180 1181 #ifdef CONFIG_MEMCG 1182 tsk->active_memcg = NULL; 1183 #endif 1184 1185 #ifdef CONFIG_CPU_SUP_INTEL 1186 tsk->reported_split_lock = 0; 1187 #endif 1188 1189 #ifdef CONFIG_SCHED_MM_CID 1190 tsk->mm_cid = -1; 1191 tsk->last_mm_cid = -1; 1192 tsk->mm_cid_active = 0; 1193 tsk->migrate_from_cpu = -1; 1194 #endif 1195 return tsk; 1196 1197 free_stack: 1198 exit_task_stack_account(tsk); 1199 free_thread_stack(tsk); 1200 free_tsk: 1201 free_task_struct(tsk); 1202 return NULL; 1203 } 1204 1205 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 1206 1207 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 1208 1209 static int __init coredump_filter_setup(char *s) 1210 { 1211 default_dump_filter = 1212 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 1213 MMF_DUMP_FILTER_MASK; 1214 return 1; 1215 } 1216 1217 __setup("coredump_filter=", coredump_filter_setup); 1218 1219 #include <linux/init_task.h> 1220 1221 static void mm_init_aio(struct mm_struct *mm) 1222 { 1223 #ifdef CONFIG_AIO 1224 spin_lock_init(&mm->ioctx_lock); 1225 mm->ioctx_table = NULL; 1226 #endif 1227 } 1228 1229 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1230 struct task_struct *p) 1231 { 1232 #ifdef CONFIG_MEMCG 1233 if (mm->owner == p) 1234 WRITE_ONCE(mm->owner, NULL); 1235 #endif 1236 } 1237 1238 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1239 { 1240 #ifdef CONFIG_MEMCG 1241 mm->owner = p; 1242 #endif 1243 } 1244 1245 static void mm_init_uprobes_state(struct mm_struct *mm) 1246 { 1247 #ifdef CONFIG_UPROBES 1248 mm->uprobes_state.xol_area = NULL; 1249 #endif 1250 } 1251 1252 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1253 struct user_namespace *user_ns) 1254 { 1255 int i; 1256 1257 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); 1258 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); 1259 atomic_set(&mm->mm_users, 1); 1260 atomic_set(&mm->mm_count, 1); 1261 seqcount_init(&mm->write_protect_seq); 1262 mmap_init_lock(mm); 1263 INIT_LIST_HEAD(&mm->mmlist); 1264 #ifdef CONFIG_PER_VMA_LOCK 1265 mm->mm_lock_seq = 0; 1266 #endif 1267 mm_pgtables_bytes_init(mm); 1268 mm->map_count = 0; 1269 mm->locked_vm = 0; 1270 atomic64_set(&mm->pinned_vm, 0); 1271 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1272 spin_lock_init(&mm->page_table_lock); 1273 spin_lock_init(&mm->arg_lock); 1274 mm_init_cpumask(mm); 1275 mm_init_aio(mm); 1276 mm_init_owner(mm, p); 1277 mm_pasid_init(mm); 1278 RCU_INIT_POINTER(mm->exe_file, NULL); 1279 mmu_notifier_subscriptions_init(mm); 1280 init_tlb_flush_pending(mm); 1281 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1282 mm->pmd_huge_pte = NULL; 1283 #endif 1284 mm_init_uprobes_state(mm); 1285 hugetlb_count_init(mm); 1286 1287 if (current->mm) { 1288 mm->flags = current->mm->flags & MMF_INIT_MASK; 1289 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1290 } else { 1291 mm->flags = default_dump_filter; 1292 mm->def_flags = 0; 1293 } 1294 1295 if (mm_alloc_pgd(mm)) 1296 goto fail_nopgd; 1297 1298 if (init_new_context(p, mm)) 1299 goto fail_nocontext; 1300 1301 if (mm_alloc_cid(mm)) 1302 goto fail_cid; 1303 1304 for (i = 0; i < NR_MM_COUNTERS; i++) 1305 if (percpu_counter_init(&mm->rss_stat[i], 0, GFP_KERNEL_ACCOUNT)) 1306 goto fail_pcpu; 1307 1308 mm->user_ns = get_user_ns(user_ns); 1309 lru_gen_init_mm(mm); 1310 return mm; 1311 1312 fail_pcpu: 1313 while (i > 0) 1314 percpu_counter_destroy(&mm->rss_stat[--i]); 1315 mm_destroy_cid(mm); 1316 fail_cid: 1317 destroy_context(mm); 1318 fail_nocontext: 1319 mm_free_pgd(mm); 1320 fail_nopgd: 1321 free_mm(mm); 1322 return NULL; 1323 } 1324 1325 /* 1326 * Allocate and initialize an mm_struct. 1327 */ 1328 struct mm_struct *mm_alloc(void) 1329 { 1330 struct mm_struct *mm; 1331 1332 mm = allocate_mm(); 1333 if (!mm) 1334 return NULL; 1335 1336 memset(mm, 0, sizeof(*mm)); 1337 return mm_init(mm, current, current_user_ns()); 1338 } 1339 1340 static inline void __mmput(struct mm_struct *mm) 1341 { 1342 VM_BUG_ON(atomic_read(&mm->mm_users)); 1343 1344 uprobe_clear_state(mm); 1345 exit_aio(mm); 1346 ksm_exit(mm); 1347 khugepaged_exit(mm); /* must run before exit_mmap */ 1348 exit_mmap(mm); 1349 mm_put_huge_zero_page(mm); 1350 set_mm_exe_file(mm, NULL); 1351 if (!list_empty(&mm->mmlist)) { 1352 spin_lock(&mmlist_lock); 1353 list_del(&mm->mmlist); 1354 spin_unlock(&mmlist_lock); 1355 } 1356 if (mm->binfmt) 1357 module_put(mm->binfmt->module); 1358 lru_gen_del_mm(mm); 1359 mmdrop(mm); 1360 } 1361 1362 /* 1363 * Decrement the use count and release all resources for an mm. 1364 */ 1365 void mmput(struct mm_struct *mm) 1366 { 1367 might_sleep(); 1368 1369 if (atomic_dec_and_test(&mm->mm_users)) 1370 __mmput(mm); 1371 } 1372 EXPORT_SYMBOL_GPL(mmput); 1373 1374 #ifdef CONFIG_MMU 1375 static void mmput_async_fn(struct work_struct *work) 1376 { 1377 struct mm_struct *mm = container_of(work, struct mm_struct, 1378 async_put_work); 1379 1380 __mmput(mm); 1381 } 1382 1383 void mmput_async(struct mm_struct *mm) 1384 { 1385 if (atomic_dec_and_test(&mm->mm_users)) { 1386 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1387 schedule_work(&mm->async_put_work); 1388 } 1389 } 1390 EXPORT_SYMBOL_GPL(mmput_async); 1391 #endif 1392 1393 /** 1394 * set_mm_exe_file - change a reference to the mm's executable file 1395 * 1396 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1397 * 1398 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1399 * invocations: in mmput() nobody alive left, in execve task is single 1400 * threaded. 1401 * 1402 * Can only fail if new_exe_file != NULL. 1403 */ 1404 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1405 { 1406 struct file *old_exe_file; 1407 1408 /* 1409 * It is safe to dereference the exe_file without RCU as 1410 * this function is only called if nobody else can access 1411 * this mm -- see comment above for justification. 1412 */ 1413 old_exe_file = rcu_dereference_raw(mm->exe_file); 1414 1415 if (new_exe_file) { 1416 /* 1417 * We expect the caller (i.e., sys_execve) to already denied 1418 * write access, so this is unlikely to fail. 1419 */ 1420 if (unlikely(deny_write_access(new_exe_file))) 1421 return -EACCES; 1422 get_file(new_exe_file); 1423 } 1424 rcu_assign_pointer(mm->exe_file, new_exe_file); 1425 if (old_exe_file) { 1426 allow_write_access(old_exe_file); 1427 fput(old_exe_file); 1428 } 1429 return 0; 1430 } 1431 1432 /** 1433 * replace_mm_exe_file - replace a reference to the mm's executable file 1434 * 1435 * This changes mm's executable file (shown as symlink /proc/[pid]/exe), 1436 * dealing with concurrent invocation and without grabbing the mmap lock in 1437 * write mode. 1438 * 1439 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1440 */ 1441 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1442 { 1443 struct vm_area_struct *vma; 1444 struct file *old_exe_file; 1445 int ret = 0; 1446 1447 /* Forbid mm->exe_file change if old file still mapped. */ 1448 old_exe_file = get_mm_exe_file(mm); 1449 if (old_exe_file) { 1450 VMA_ITERATOR(vmi, mm, 0); 1451 mmap_read_lock(mm); 1452 for_each_vma(vmi, vma) { 1453 if (!vma->vm_file) 1454 continue; 1455 if (path_equal(&vma->vm_file->f_path, 1456 &old_exe_file->f_path)) { 1457 ret = -EBUSY; 1458 break; 1459 } 1460 } 1461 mmap_read_unlock(mm); 1462 fput(old_exe_file); 1463 if (ret) 1464 return ret; 1465 } 1466 1467 /* set the new file, lockless */ 1468 ret = deny_write_access(new_exe_file); 1469 if (ret) 1470 return -EACCES; 1471 get_file(new_exe_file); 1472 1473 old_exe_file = xchg(&mm->exe_file, new_exe_file); 1474 if (old_exe_file) { 1475 /* 1476 * Don't race with dup_mmap() getting the file and disallowing 1477 * write access while someone might open the file writable. 1478 */ 1479 mmap_read_lock(mm); 1480 allow_write_access(old_exe_file); 1481 fput(old_exe_file); 1482 mmap_read_unlock(mm); 1483 } 1484 return 0; 1485 } 1486 1487 /** 1488 * get_mm_exe_file - acquire a reference to the mm's executable file 1489 * 1490 * Returns %NULL if mm has no associated executable file. 1491 * User must release file via fput(). 1492 */ 1493 struct file *get_mm_exe_file(struct mm_struct *mm) 1494 { 1495 struct file *exe_file; 1496 1497 rcu_read_lock(); 1498 exe_file = rcu_dereference(mm->exe_file); 1499 if (exe_file && !get_file_rcu(exe_file)) 1500 exe_file = NULL; 1501 rcu_read_unlock(); 1502 return exe_file; 1503 } 1504 1505 /** 1506 * get_task_exe_file - acquire a reference to the task's executable file 1507 * 1508 * Returns %NULL if task's mm (if any) has no associated executable file or 1509 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1510 * User must release file via fput(). 1511 */ 1512 struct file *get_task_exe_file(struct task_struct *task) 1513 { 1514 struct file *exe_file = NULL; 1515 struct mm_struct *mm; 1516 1517 task_lock(task); 1518 mm = task->mm; 1519 if (mm) { 1520 if (!(task->flags & PF_KTHREAD)) 1521 exe_file = get_mm_exe_file(mm); 1522 } 1523 task_unlock(task); 1524 return exe_file; 1525 } 1526 1527 /** 1528 * get_task_mm - acquire a reference to the task's mm 1529 * 1530 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1531 * this kernel workthread has transiently adopted a user mm with use_mm, 1532 * to do its AIO) is not set and if so returns a reference to it, after 1533 * bumping up the use count. User must release the mm via mmput() 1534 * after use. Typically used by /proc and ptrace. 1535 */ 1536 struct mm_struct *get_task_mm(struct task_struct *task) 1537 { 1538 struct mm_struct *mm; 1539 1540 task_lock(task); 1541 mm = task->mm; 1542 if (mm) { 1543 if (task->flags & PF_KTHREAD) 1544 mm = NULL; 1545 else 1546 mmget(mm); 1547 } 1548 task_unlock(task); 1549 return mm; 1550 } 1551 EXPORT_SYMBOL_GPL(get_task_mm); 1552 1553 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1554 { 1555 struct mm_struct *mm; 1556 int err; 1557 1558 err = down_read_killable(&task->signal->exec_update_lock); 1559 if (err) 1560 return ERR_PTR(err); 1561 1562 mm = get_task_mm(task); 1563 if (mm && mm != current->mm && 1564 !ptrace_may_access(task, mode)) { 1565 mmput(mm); 1566 mm = ERR_PTR(-EACCES); 1567 } 1568 up_read(&task->signal->exec_update_lock); 1569 1570 return mm; 1571 } 1572 1573 static void complete_vfork_done(struct task_struct *tsk) 1574 { 1575 struct completion *vfork; 1576 1577 task_lock(tsk); 1578 vfork = tsk->vfork_done; 1579 if (likely(vfork)) { 1580 tsk->vfork_done = NULL; 1581 complete(vfork); 1582 } 1583 task_unlock(tsk); 1584 } 1585 1586 static int wait_for_vfork_done(struct task_struct *child, 1587 struct completion *vfork) 1588 { 1589 unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE; 1590 int killed; 1591 1592 cgroup_enter_frozen(); 1593 killed = wait_for_completion_state(vfork, state); 1594 cgroup_leave_frozen(false); 1595 1596 if (killed) { 1597 task_lock(child); 1598 child->vfork_done = NULL; 1599 task_unlock(child); 1600 } 1601 1602 put_task_struct(child); 1603 return killed; 1604 } 1605 1606 /* Please note the differences between mmput and mm_release. 1607 * mmput is called whenever we stop holding onto a mm_struct, 1608 * error success whatever. 1609 * 1610 * mm_release is called after a mm_struct has been removed 1611 * from the current process. 1612 * 1613 * This difference is important for error handling, when we 1614 * only half set up a mm_struct for a new process and need to restore 1615 * the old one. Because we mmput the new mm_struct before 1616 * restoring the old one. . . 1617 * Eric Biederman 10 January 1998 1618 */ 1619 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1620 { 1621 uprobe_free_utask(tsk); 1622 1623 /* Get rid of any cached register state */ 1624 deactivate_mm(tsk, mm); 1625 1626 /* 1627 * Signal userspace if we're not exiting with a core dump 1628 * because we want to leave the value intact for debugging 1629 * purposes. 1630 */ 1631 if (tsk->clear_child_tid) { 1632 if (atomic_read(&mm->mm_users) > 1) { 1633 /* 1634 * We don't check the error code - if userspace has 1635 * not set up a proper pointer then tough luck. 1636 */ 1637 put_user(0, tsk->clear_child_tid); 1638 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1639 1, NULL, NULL, 0, 0); 1640 } 1641 tsk->clear_child_tid = NULL; 1642 } 1643 1644 /* 1645 * All done, finally we can wake up parent and return this mm to him. 1646 * Also kthread_stop() uses this completion for synchronization. 1647 */ 1648 if (tsk->vfork_done) 1649 complete_vfork_done(tsk); 1650 } 1651 1652 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1653 { 1654 futex_exit_release(tsk); 1655 mm_release(tsk, mm); 1656 } 1657 1658 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1659 { 1660 futex_exec_release(tsk); 1661 mm_release(tsk, mm); 1662 } 1663 1664 /** 1665 * dup_mm() - duplicates an existing mm structure 1666 * @tsk: the task_struct with which the new mm will be associated. 1667 * @oldmm: the mm to duplicate. 1668 * 1669 * Allocates a new mm structure and duplicates the provided @oldmm structure 1670 * content into it. 1671 * 1672 * Return: the duplicated mm or NULL on failure. 1673 */ 1674 static struct mm_struct *dup_mm(struct task_struct *tsk, 1675 struct mm_struct *oldmm) 1676 { 1677 struct mm_struct *mm; 1678 int err; 1679 1680 mm = allocate_mm(); 1681 if (!mm) 1682 goto fail_nomem; 1683 1684 memcpy(mm, oldmm, sizeof(*mm)); 1685 1686 if (!mm_init(mm, tsk, mm->user_ns)) 1687 goto fail_nomem; 1688 1689 err = dup_mmap(mm, oldmm); 1690 if (err) 1691 goto free_pt; 1692 1693 mm->hiwater_rss = get_mm_rss(mm); 1694 mm->hiwater_vm = mm->total_vm; 1695 1696 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1697 goto free_pt; 1698 1699 return mm; 1700 1701 free_pt: 1702 /* don't put binfmt in mmput, we haven't got module yet */ 1703 mm->binfmt = NULL; 1704 mm_init_owner(mm, NULL); 1705 mmput(mm); 1706 1707 fail_nomem: 1708 return NULL; 1709 } 1710 1711 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1712 { 1713 struct mm_struct *mm, *oldmm; 1714 1715 tsk->min_flt = tsk->maj_flt = 0; 1716 tsk->nvcsw = tsk->nivcsw = 0; 1717 #ifdef CONFIG_DETECT_HUNG_TASK 1718 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1719 tsk->last_switch_time = 0; 1720 #endif 1721 1722 tsk->mm = NULL; 1723 tsk->active_mm = NULL; 1724 1725 /* 1726 * Are we cloning a kernel thread? 1727 * 1728 * We need to steal a active VM for that.. 1729 */ 1730 oldmm = current->mm; 1731 if (!oldmm) 1732 return 0; 1733 1734 if (clone_flags & CLONE_VM) { 1735 mmget(oldmm); 1736 mm = oldmm; 1737 } else { 1738 mm = dup_mm(tsk, current->mm); 1739 if (!mm) 1740 return -ENOMEM; 1741 } 1742 1743 tsk->mm = mm; 1744 tsk->active_mm = mm; 1745 sched_mm_cid_fork(tsk); 1746 return 0; 1747 } 1748 1749 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1750 { 1751 struct fs_struct *fs = current->fs; 1752 if (clone_flags & CLONE_FS) { 1753 /* tsk->fs is already what we want */ 1754 spin_lock(&fs->lock); 1755 if (fs->in_exec) { 1756 spin_unlock(&fs->lock); 1757 return -EAGAIN; 1758 } 1759 fs->users++; 1760 spin_unlock(&fs->lock); 1761 return 0; 1762 } 1763 tsk->fs = copy_fs_struct(fs); 1764 if (!tsk->fs) 1765 return -ENOMEM; 1766 return 0; 1767 } 1768 1769 static int copy_files(unsigned long clone_flags, struct task_struct *tsk, 1770 int no_files) 1771 { 1772 struct files_struct *oldf, *newf; 1773 int error = 0; 1774 1775 /* 1776 * A background process may not have any files ... 1777 */ 1778 oldf = current->files; 1779 if (!oldf) 1780 goto out; 1781 1782 if (no_files) { 1783 tsk->files = NULL; 1784 goto out; 1785 } 1786 1787 if (clone_flags & CLONE_FILES) { 1788 atomic_inc(&oldf->count); 1789 goto out; 1790 } 1791 1792 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1793 if (!newf) 1794 goto out; 1795 1796 tsk->files = newf; 1797 error = 0; 1798 out: 1799 return error; 1800 } 1801 1802 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1803 { 1804 struct sighand_struct *sig; 1805 1806 if (clone_flags & CLONE_SIGHAND) { 1807 refcount_inc(¤t->sighand->count); 1808 return 0; 1809 } 1810 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1811 RCU_INIT_POINTER(tsk->sighand, sig); 1812 if (!sig) 1813 return -ENOMEM; 1814 1815 refcount_set(&sig->count, 1); 1816 spin_lock_irq(¤t->sighand->siglock); 1817 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1818 spin_unlock_irq(¤t->sighand->siglock); 1819 1820 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1821 if (clone_flags & CLONE_CLEAR_SIGHAND) 1822 flush_signal_handlers(tsk, 0); 1823 1824 return 0; 1825 } 1826 1827 void __cleanup_sighand(struct sighand_struct *sighand) 1828 { 1829 if (refcount_dec_and_test(&sighand->count)) { 1830 signalfd_cleanup(sighand); 1831 /* 1832 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1833 * without an RCU grace period, see __lock_task_sighand(). 1834 */ 1835 kmem_cache_free(sighand_cachep, sighand); 1836 } 1837 } 1838 1839 /* 1840 * Initialize POSIX timer handling for a thread group. 1841 */ 1842 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1843 { 1844 struct posix_cputimers *pct = &sig->posix_cputimers; 1845 unsigned long cpu_limit; 1846 1847 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1848 posix_cputimers_group_init(pct, cpu_limit); 1849 } 1850 1851 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1852 { 1853 struct signal_struct *sig; 1854 1855 if (clone_flags & CLONE_THREAD) 1856 return 0; 1857 1858 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1859 tsk->signal = sig; 1860 if (!sig) 1861 return -ENOMEM; 1862 1863 sig->nr_threads = 1; 1864 sig->quick_threads = 1; 1865 atomic_set(&sig->live, 1); 1866 refcount_set(&sig->sigcnt, 1); 1867 1868 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1869 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1870 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1871 1872 init_waitqueue_head(&sig->wait_chldexit); 1873 sig->curr_target = tsk; 1874 init_sigpending(&sig->shared_pending); 1875 INIT_HLIST_HEAD(&sig->multiprocess); 1876 seqlock_init(&sig->stats_lock); 1877 prev_cputime_init(&sig->prev_cputime); 1878 1879 #ifdef CONFIG_POSIX_TIMERS 1880 INIT_LIST_HEAD(&sig->posix_timers); 1881 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1882 sig->real_timer.function = it_real_fn; 1883 #endif 1884 1885 task_lock(current->group_leader); 1886 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1887 task_unlock(current->group_leader); 1888 1889 posix_cpu_timers_init_group(sig); 1890 1891 tty_audit_fork(sig); 1892 sched_autogroup_fork(sig); 1893 1894 sig->oom_score_adj = current->signal->oom_score_adj; 1895 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1896 1897 mutex_init(&sig->cred_guard_mutex); 1898 init_rwsem(&sig->exec_update_lock); 1899 1900 return 0; 1901 } 1902 1903 static void copy_seccomp(struct task_struct *p) 1904 { 1905 #ifdef CONFIG_SECCOMP 1906 /* 1907 * Must be called with sighand->lock held, which is common to 1908 * all threads in the group. Holding cred_guard_mutex is not 1909 * needed because this new task is not yet running and cannot 1910 * be racing exec. 1911 */ 1912 assert_spin_locked(¤t->sighand->siglock); 1913 1914 /* Ref-count the new filter user, and assign it. */ 1915 get_seccomp_filter(current); 1916 p->seccomp = current->seccomp; 1917 1918 /* 1919 * Explicitly enable no_new_privs here in case it got set 1920 * between the task_struct being duplicated and holding the 1921 * sighand lock. The seccomp state and nnp must be in sync. 1922 */ 1923 if (task_no_new_privs(current)) 1924 task_set_no_new_privs(p); 1925 1926 /* 1927 * If the parent gained a seccomp mode after copying thread 1928 * flags and between before we held the sighand lock, we have 1929 * to manually enable the seccomp thread flag here. 1930 */ 1931 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1932 set_task_syscall_work(p, SECCOMP); 1933 #endif 1934 } 1935 1936 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1937 { 1938 current->clear_child_tid = tidptr; 1939 1940 return task_pid_vnr(current); 1941 } 1942 1943 static void rt_mutex_init_task(struct task_struct *p) 1944 { 1945 raw_spin_lock_init(&p->pi_lock); 1946 #ifdef CONFIG_RT_MUTEXES 1947 p->pi_waiters = RB_ROOT_CACHED; 1948 p->pi_top_task = NULL; 1949 p->pi_blocked_on = NULL; 1950 #endif 1951 } 1952 1953 static inline void init_task_pid_links(struct task_struct *task) 1954 { 1955 enum pid_type type; 1956 1957 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1958 INIT_HLIST_NODE(&task->pid_links[type]); 1959 } 1960 1961 static inline void 1962 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1963 { 1964 if (type == PIDTYPE_PID) 1965 task->thread_pid = pid; 1966 else 1967 task->signal->pids[type] = pid; 1968 } 1969 1970 static inline void rcu_copy_process(struct task_struct *p) 1971 { 1972 #ifdef CONFIG_PREEMPT_RCU 1973 p->rcu_read_lock_nesting = 0; 1974 p->rcu_read_unlock_special.s = 0; 1975 p->rcu_blocked_node = NULL; 1976 INIT_LIST_HEAD(&p->rcu_node_entry); 1977 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1978 #ifdef CONFIG_TASKS_RCU 1979 p->rcu_tasks_holdout = false; 1980 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1981 p->rcu_tasks_idle_cpu = -1; 1982 #endif /* #ifdef CONFIG_TASKS_RCU */ 1983 #ifdef CONFIG_TASKS_TRACE_RCU 1984 p->trc_reader_nesting = 0; 1985 p->trc_reader_special.s = 0; 1986 INIT_LIST_HEAD(&p->trc_holdout_list); 1987 INIT_LIST_HEAD(&p->trc_blkd_node); 1988 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1989 } 1990 1991 struct pid *pidfd_pid(const struct file *file) 1992 { 1993 if (file->f_op == &pidfd_fops) 1994 return file->private_data; 1995 1996 return ERR_PTR(-EBADF); 1997 } 1998 1999 static int pidfd_release(struct inode *inode, struct file *file) 2000 { 2001 struct pid *pid = file->private_data; 2002 2003 file->private_data = NULL; 2004 put_pid(pid); 2005 return 0; 2006 } 2007 2008 #ifdef CONFIG_PROC_FS 2009 /** 2010 * pidfd_show_fdinfo - print information about a pidfd 2011 * @m: proc fdinfo file 2012 * @f: file referencing a pidfd 2013 * 2014 * Pid: 2015 * This function will print the pid that a given pidfd refers to in the 2016 * pid namespace of the procfs instance. 2017 * If the pid namespace of the process is not a descendant of the pid 2018 * namespace of the procfs instance 0 will be shown as its pid. This is 2019 * similar to calling getppid() on a process whose parent is outside of 2020 * its pid namespace. 2021 * 2022 * NSpid: 2023 * If pid namespaces are supported then this function will also print 2024 * the pid of a given pidfd refers to for all descendant pid namespaces 2025 * starting from the current pid namespace of the instance, i.e. the 2026 * Pid field and the first entry in the NSpid field will be identical. 2027 * If the pid namespace of the process is not a descendant of the pid 2028 * namespace of the procfs instance 0 will be shown as its first NSpid 2029 * entry and no others will be shown. 2030 * Note that this differs from the Pid and NSpid fields in 2031 * /proc/<pid>/status where Pid and NSpid are always shown relative to 2032 * the pid namespace of the procfs instance. The difference becomes 2033 * obvious when sending around a pidfd between pid namespaces from a 2034 * different branch of the tree, i.e. where no ancestral relation is 2035 * present between the pid namespaces: 2036 * - create two new pid namespaces ns1 and ns2 in the initial pid 2037 * namespace (also take care to create new mount namespaces in the 2038 * new pid namespace and mount procfs) 2039 * - create a process with a pidfd in ns1 2040 * - send pidfd from ns1 to ns2 2041 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 2042 * have exactly one entry, which is 0 2043 */ 2044 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 2045 { 2046 struct pid *pid = f->private_data; 2047 struct pid_namespace *ns; 2048 pid_t nr = -1; 2049 2050 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 2051 ns = proc_pid_ns(file_inode(m->file)->i_sb); 2052 nr = pid_nr_ns(pid, ns); 2053 } 2054 2055 seq_put_decimal_ll(m, "Pid:\t", nr); 2056 2057 #ifdef CONFIG_PID_NS 2058 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 2059 if (nr > 0) { 2060 int i; 2061 2062 /* If nr is non-zero it means that 'pid' is valid and that 2063 * ns, i.e. the pid namespace associated with the procfs 2064 * instance, is in the pid namespace hierarchy of pid. 2065 * Start at one below the already printed level. 2066 */ 2067 for (i = ns->level + 1; i <= pid->level; i++) 2068 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 2069 } 2070 #endif 2071 seq_putc(m, '\n'); 2072 } 2073 #endif 2074 2075 /* 2076 * Poll support for process exit notification. 2077 */ 2078 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 2079 { 2080 struct pid *pid = file->private_data; 2081 __poll_t poll_flags = 0; 2082 2083 poll_wait(file, &pid->wait_pidfd, pts); 2084 2085 /* 2086 * Inform pollers only when the whole thread group exits. 2087 * If the thread group leader exits before all other threads in the 2088 * group, then poll(2) should block, similar to the wait(2) family. 2089 */ 2090 if (thread_group_exited(pid)) 2091 poll_flags = EPOLLIN | EPOLLRDNORM; 2092 2093 return poll_flags; 2094 } 2095 2096 const struct file_operations pidfd_fops = { 2097 .release = pidfd_release, 2098 .poll = pidfd_poll, 2099 #ifdef CONFIG_PROC_FS 2100 .show_fdinfo = pidfd_show_fdinfo, 2101 #endif 2102 }; 2103 2104 /** 2105 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 2106 * @pid: the struct pid for which to create a pidfd 2107 * @flags: flags of the new @pidfd 2108 * @pidfd: the pidfd to return 2109 * 2110 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2111 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2112 2113 * The helper doesn't perform checks on @pid which makes it useful for pidfds 2114 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and 2115 * pidfd file are prepared. 2116 * 2117 * If this function returns successfully the caller is responsible to either 2118 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2119 * order to install the pidfd into its file descriptor table or they must use 2120 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2121 * respectively. 2122 * 2123 * This function is useful when a pidfd must already be reserved but there 2124 * might still be points of failure afterwards and the caller wants to ensure 2125 * that no pidfd is leaked into its file descriptor table. 2126 * 2127 * Return: On success, a reserved pidfd is returned from the function and a new 2128 * pidfd file is returned in the last argument to the function. On 2129 * error, a negative error code is returned from the function and the 2130 * last argument remains unchanged. 2131 */ 2132 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2133 { 2134 int pidfd; 2135 struct file *pidfd_file; 2136 2137 if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC)) 2138 return -EINVAL; 2139 2140 pidfd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2141 if (pidfd < 0) 2142 return pidfd; 2143 2144 pidfd_file = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2145 flags | O_RDWR | O_CLOEXEC); 2146 if (IS_ERR(pidfd_file)) { 2147 put_unused_fd(pidfd); 2148 return PTR_ERR(pidfd_file); 2149 } 2150 get_pid(pid); /* held by pidfd_file now */ 2151 *ret = pidfd_file; 2152 return pidfd; 2153 } 2154 2155 /** 2156 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 2157 * @pid: the struct pid for which to create a pidfd 2158 * @flags: flags of the new @pidfd 2159 * @pidfd: the pidfd to return 2160 * 2161 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2162 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2163 * 2164 * The helper verifies that @pid is used as a thread group leader. 2165 * 2166 * If this function returns successfully the caller is responsible to either 2167 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2168 * order to install the pidfd into its file descriptor table or they must use 2169 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2170 * respectively. 2171 * 2172 * This function is useful when a pidfd must already be reserved but there 2173 * might still be points of failure afterwards and the caller wants to ensure 2174 * that no pidfd is leaked into its file descriptor table. 2175 * 2176 * Return: On success, a reserved pidfd is returned from the function and a new 2177 * pidfd file is returned in the last argument to the function. On 2178 * error, a negative error code is returned from the function and the 2179 * last argument remains unchanged. 2180 */ 2181 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2182 { 2183 if (!pid || !pid_has_task(pid, PIDTYPE_TGID)) 2184 return -EINVAL; 2185 2186 return __pidfd_prepare(pid, flags, ret); 2187 } 2188 2189 static void __delayed_free_task(struct rcu_head *rhp) 2190 { 2191 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 2192 2193 free_task(tsk); 2194 } 2195 2196 static __always_inline void delayed_free_task(struct task_struct *tsk) 2197 { 2198 if (IS_ENABLED(CONFIG_MEMCG)) 2199 call_rcu(&tsk->rcu, __delayed_free_task); 2200 else 2201 free_task(tsk); 2202 } 2203 2204 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 2205 { 2206 /* Skip if kernel thread */ 2207 if (!tsk->mm) 2208 return; 2209 2210 /* Skip if spawning a thread or using vfork */ 2211 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 2212 return; 2213 2214 /* We need to synchronize with __set_oom_adj */ 2215 mutex_lock(&oom_adj_mutex); 2216 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 2217 /* Update the values in case they were changed after copy_signal */ 2218 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 2219 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 2220 mutex_unlock(&oom_adj_mutex); 2221 } 2222 2223 #ifdef CONFIG_RV 2224 static void rv_task_fork(struct task_struct *p) 2225 { 2226 int i; 2227 2228 for (i = 0; i < RV_PER_TASK_MONITORS; i++) 2229 p->rv[i].da_mon.monitoring = false; 2230 } 2231 #else 2232 #define rv_task_fork(p) do {} while (0) 2233 #endif 2234 2235 /* 2236 * This creates a new process as a copy of the old one, 2237 * but does not actually start it yet. 2238 * 2239 * It copies the registers, and all the appropriate 2240 * parts of the process environment (as per the clone 2241 * flags). The actual kick-off is left to the caller. 2242 */ 2243 __latent_entropy struct task_struct *copy_process( 2244 struct pid *pid, 2245 int trace, 2246 int node, 2247 struct kernel_clone_args *args) 2248 { 2249 int pidfd = -1, retval; 2250 struct task_struct *p; 2251 struct multiprocess_signals delayed; 2252 struct file *pidfile = NULL; 2253 const u64 clone_flags = args->flags; 2254 struct nsproxy *nsp = current->nsproxy; 2255 2256 /* 2257 * Don't allow sharing the root directory with processes in a different 2258 * namespace 2259 */ 2260 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 2261 return ERR_PTR(-EINVAL); 2262 2263 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 2264 return ERR_PTR(-EINVAL); 2265 2266 /* 2267 * Thread groups must share signals as well, and detached threads 2268 * can only be started up within the thread group. 2269 */ 2270 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 2271 return ERR_PTR(-EINVAL); 2272 2273 /* 2274 * Shared signal handlers imply shared VM. By way of the above, 2275 * thread groups also imply shared VM. Blocking this case allows 2276 * for various simplifications in other code. 2277 */ 2278 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 2279 return ERR_PTR(-EINVAL); 2280 2281 /* 2282 * Siblings of global init remain as zombies on exit since they are 2283 * not reaped by their parent (swapper). To solve this and to avoid 2284 * multi-rooted process trees, prevent global and container-inits 2285 * from creating siblings. 2286 */ 2287 if ((clone_flags & CLONE_PARENT) && 2288 current->signal->flags & SIGNAL_UNKILLABLE) 2289 return ERR_PTR(-EINVAL); 2290 2291 /* 2292 * If the new process will be in a different pid or user namespace 2293 * do not allow it to share a thread group with the forking task. 2294 */ 2295 if (clone_flags & CLONE_THREAD) { 2296 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 2297 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 2298 return ERR_PTR(-EINVAL); 2299 } 2300 2301 if (clone_flags & CLONE_PIDFD) { 2302 /* 2303 * - CLONE_DETACHED is blocked so that we can potentially 2304 * reuse it later for CLONE_PIDFD. 2305 * - CLONE_THREAD is blocked until someone really needs it. 2306 */ 2307 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 2308 return ERR_PTR(-EINVAL); 2309 } 2310 2311 /* 2312 * Force any signals received before this point to be delivered 2313 * before the fork happens. Collect up signals sent to multiple 2314 * processes that happen during the fork and delay them so that 2315 * they appear to happen after the fork. 2316 */ 2317 sigemptyset(&delayed.signal); 2318 INIT_HLIST_NODE(&delayed.node); 2319 2320 spin_lock_irq(¤t->sighand->siglock); 2321 if (!(clone_flags & CLONE_THREAD)) 2322 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2323 recalc_sigpending(); 2324 spin_unlock_irq(¤t->sighand->siglock); 2325 retval = -ERESTARTNOINTR; 2326 if (task_sigpending(current)) 2327 goto fork_out; 2328 2329 retval = -ENOMEM; 2330 p = dup_task_struct(current, node); 2331 if (!p) 2332 goto fork_out; 2333 p->flags &= ~PF_KTHREAD; 2334 if (args->kthread) 2335 p->flags |= PF_KTHREAD; 2336 if (args->user_worker) { 2337 /* 2338 * Mark us a user worker, and block any signal that isn't 2339 * fatal or STOP 2340 */ 2341 p->flags |= PF_USER_WORKER; 2342 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2343 } 2344 if (args->io_thread) 2345 p->flags |= PF_IO_WORKER; 2346 2347 if (args->name) 2348 strscpy_pad(p->comm, args->name, sizeof(p->comm)); 2349 2350 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2351 /* 2352 * Clear TID on mm_release()? 2353 */ 2354 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2355 2356 ftrace_graph_init_task(p); 2357 2358 rt_mutex_init_task(p); 2359 2360 lockdep_assert_irqs_enabled(); 2361 #ifdef CONFIG_PROVE_LOCKING 2362 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2363 #endif 2364 retval = copy_creds(p, clone_flags); 2365 if (retval < 0) 2366 goto bad_fork_free; 2367 2368 retval = -EAGAIN; 2369 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2370 if (p->real_cred->user != INIT_USER && 2371 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2372 goto bad_fork_cleanup_count; 2373 } 2374 current->flags &= ~PF_NPROC_EXCEEDED; 2375 2376 /* 2377 * If multiple threads are within copy_process(), then this check 2378 * triggers too late. This doesn't hurt, the check is only there 2379 * to stop root fork bombs. 2380 */ 2381 retval = -EAGAIN; 2382 if (data_race(nr_threads >= max_threads)) 2383 goto bad_fork_cleanup_count; 2384 2385 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2386 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2387 p->flags |= PF_FORKNOEXEC; 2388 INIT_LIST_HEAD(&p->children); 2389 INIT_LIST_HEAD(&p->sibling); 2390 rcu_copy_process(p); 2391 p->vfork_done = NULL; 2392 spin_lock_init(&p->alloc_lock); 2393 2394 init_sigpending(&p->pending); 2395 2396 p->utime = p->stime = p->gtime = 0; 2397 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2398 p->utimescaled = p->stimescaled = 0; 2399 #endif 2400 prev_cputime_init(&p->prev_cputime); 2401 2402 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2403 seqcount_init(&p->vtime.seqcount); 2404 p->vtime.starttime = 0; 2405 p->vtime.state = VTIME_INACTIVE; 2406 #endif 2407 2408 #ifdef CONFIG_IO_URING 2409 p->io_uring = NULL; 2410 #endif 2411 2412 #if defined(SPLIT_RSS_COUNTING) 2413 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 2414 #endif 2415 2416 p->default_timer_slack_ns = current->timer_slack_ns; 2417 2418 #ifdef CONFIG_PSI 2419 p->psi_flags = 0; 2420 #endif 2421 2422 task_io_accounting_init(&p->ioac); 2423 acct_clear_integrals(p); 2424 2425 posix_cputimers_init(&p->posix_cputimers); 2426 2427 p->io_context = NULL; 2428 audit_set_context(p, NULL); 2429 cgroup_fork(p); 2430 if (args->kthread) { 2431 if (!set_kthread_struct(p)) 2432 goto bad_fork_cleanup_delayacct; 2433 } 2434 #ifdef CONFIG_NUMA 2435 p->mempolicy = mpol_dup(p->mempolicy); 2436 if (IS_ERR(p->mempolicy)) { 2437 retval = PTR_ERR(p->mempolicy); 2438 p->mempolicy = NULL; 2439 goto bad_fork_cleanup_delayacct; 2440 } 2441 #endif 2442 #ifdef CONFIG_CPUSETS 2443 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2444 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2445 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2446 #endif 2447 #ifdef CONFIG_TRACE_IRQFLAGS 2448 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2449 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2450 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2451 p->softirqs_enabled = 1; 2452 p->softirq_context = 0; 2453 #endif 2454 2455 p->pagefault_disabled = 0; 2456 2457 #ifdef CONFIG_LOCKDEP 2458 lockdep_init_task(p); 2459 #endif 2460 2461 #ifdef CONFIG_DEBUG_MUTEXES 2462 p->blocked_on = NULL; /* not blocked yet */ 2463 #endif 2464 #ifdef CONFIG_BCACHE 2465 p->sequential_io = 0; 2466 p->sequential_io_avg = 0; 2467 #endif 2468 #ifdef CONFIG_BPF_SYSCALL 2469 RCU_INIT_POINTER(p->bpf_storage, NULL); 2470 p->bpf_ctx = NULL; 2471 #endif 2472 2473 /* Perform scheduler related setup. Assign this task to a CPU. */ 2474 retval = sched_fork(clone_flags, p); 2475 if (retval) 2476 goto bad_fork_cleanup_policy; 2477 2478 retval = perf_event_init_task(p, clone_flags); 2479 if (retval) 2480 goto bad_fork_cleanup_policy; 2481 retval = audit_alloc(p); 2482 if (retval) 2483 goto bad_fork_cleanup_perf; 2484 /* copy all the process information */ 2485 shm_init_task(p); 2486 retval = security_task_alloc(p, clone_flags); 2487 if (retval) 2488 goto bad_fork_cleanup_audit; 2489 retval = copy_semundo(clone_flags, p); 2490 if (retval) 2491 goto bad_fork_cleanup_security; 2492 retval = copy_files(clone_flags, p, args->no_files); 2493 if (retval) 2494 goto bad_fork_cleanup_semundo; 2495 retval = copy_fs(clone_flags, p); 2496 if (retval) 2497 goto bad_fork_cleanup_files; 2498 retval = copy_sighand(clone_flags, p); 2499 if (retval) 2500 goto bad_fork_cleanup_fs; 2501 retval = copy_signal(clone_flags, p); 2502 if (retval) 2503 goto bad_fork_cleanup_sighand; 2504 retval = copy_mm(clone_flags, p); 2505 if (retval) 2506 goto bad_fork_cleanup_signal; 2507 retval = copy_namespaces(clone_flags, p); 2508 if (retval) 2509 goto bad_fork_cleanup_mm; 2510 retval = copy_io(clone_flags, p); 2511 if (retval) 2512 goto bad_fork_cleanup_namespaces; 2513 retval = copy_thread(p, args); 2514 if (retval) 2515 goto bad_fork_cleanup_io; 2516 2517 stackleak_task_init(p); 2518 2519 if (pid != &init_struct_pid) { 2520 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2521 args->set_tid_size); 2522 if (IS_ERR(pid)) { 2523 retval = PTR_ERR(pid); 2524 goto bad_fork_cleanup_thread; 2525 } 2526 } 2527 2528 /* 2529 * This has to happen after we've potentially unshared the file 2530 * descriptor table (so that the pidfd doesn't leak into the child 2531 * if the fd table isn't shared). 2532 */ 2533 if (clone_flags & CLONE_PIDFD) { 2534 /* Note that no task has been attached to @pid yet. */ 2535 retval = __pidfd_prepare(pid, O_RDWR | O_CLOEXEC, &pidfile); 2536 if (retval < 0) 2537 goto bad_fork_free_pid; 2538 pidfd = retval; 2539 2540 retval = put_user(pidfd, args->pidfd); 2541 if (retval) 2542 goto bad_fork_put_pidfd; 2543 } 2544 2545 #ifdef CONFIG_BLOCK 2546 p->plug = NULL; 2547 #endif 2548 futex_init_task(p); 2549 2550 /* 2551 * sigaltstack should be cleared when sharing the same VM 2552 */ 2553 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2554 sas_ss_reset(p); 2555 2556 /* 2557 * Syscall tracing and stepping should be turned off in the 2558 * child regardless of CLONE_PTRACE. 2559 */ 2560 user_disable_single_step(p); 2561 clear_task_syscall_work(p, SYSCALL_TRACE); 2562 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2563 clear_task_syscall_work(p, SYSCALL_EMU); 2564 #endif 2565 clear_tsk_latency_tracing(p); 2566 2567 /* ok, now we should be set up.. */ 2568 p->pid = pid_nr(pid); 2569 if (clone_flags & CLONE_THREAD) { 2570 p->group_leader = current->group_leader; 2571 p->tgid = current->tgid; 2572 } else { 2573 p->group_leader = p; 2574 p->tgid = p->pid; 2575 } 2576 2577 p->nr_dirtied = 0; 2578 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2579 p->dirty_paused_when = 0; 2580 2581 p->pdeath_signal = 0; 2582 INIT_LIST_HEAD(&p->thread_group); 2583 p->task_works = NULL; 2584 clear_posix_cputimers_work(p); 2585 2586 #ifdef CONFIG_KRETPROBES 2587 p->kretprobe_instances.first = NULL; 2588 #endif 2589 #ifdef CONFIG_RETHOOK 2590 p->rethooks.first = NULL; 2591 #endif 2592 2593 /* 2594 * Ensure that the cgroup subsystem policies allow the new process to be 2595 * forked. It should be noted that the new process's css_set can be changed 2596 * between here and cgroup_post_fork() if an organisation operation is in 2597 * progress. 2598 */ 2599 retval = cgroup_can_fork(p, args); 2600 if (retval) 2601 goto bad_fork_put_pidfd; 2602 2603 /* 2604 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2605 * the new task on the correct runqueue. All this *before* the task 2606 * becomes visible. 2607 * 2608 * This isn't part of ->can_fork() because while the re-cloning is 2609 * cgroup specific, it unconditionally needs to place the task on a 2610 * runqueue. 2611 */ 2612 sched_cgroup_fork(p, args); 2613 2614 /* 2615 * From this point on we must avoid any synchronous user-space 2616 * communication until we take the tasklist-lock. In particular, we do 2617 * not want user-space to be able to predict the process start-time by 2618 * stalling fork(2) after we recorded the start_time but before it is 2619 * visible to the system. 2620 */ 2621 2622 p->start_time = ktime_get_ns(); 2623 p->start_boottime = ktime_get_boottime_ns(); 2624 2625 /* 2626 * Make it visible to the rest of the system, but dont wake it up yet. 2627 * Need tasklist lock for parent etc handling! 2628 */ 2629 write_lock_irq(&tasklist_lock); 2630 2631 /* CLONE_PARENT re-uses the old parent */ 2632 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2633 p->real_parent = current->real_parent; 2634 p->parent_exec_id = current->parent_exec_id; 2635 if (clone_flags & CLONE_THREAD) 2636 p->exit_signal = -1; 2637 else 2638 p->exit_signal = current->group_leader->exit_signal; 2639 } else { 2640 p->real_parent = current; 2641 p->parent_exec_id = current->self_exec_id; 2642 p->exit_signal = args->exit_signal; 2643 } 2644 2645 klp_copy_process(p); 2646 2647 sched_core_fork(p); 2648 2649 spin_lock(¤t->sighand->siglock); 2650 2651 rv_task_fork(p); 2652 2653 rseq_fork(p, clone_flags); 2654 2655 /* Don't start children in a dying pid namespace */ 2656 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2657 retval = -ENOMEM; 2658 goto bad_fork_cancel_cgroup; 2659 } 2660 2661 /* Let kill terminate clone/fork in the middle */ 2662 if (fatal_signal_pending(current)) { 2663 retval = -EINTR; 2664 goto bad_fork_cancel_cgroup; 2665 } 2666 2667 /* No more failure paths after this point. */ 2668 2669 /* 2670 * Copy seccomp details explicitly here, in case they were changed 2671 * before holding sighand lock. 2672 */ 2673 copy_seccomp(p); 2674 2675 init_task_pid_links(p); 2676 if (likely(p->pid)) { 2677 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2678 2679 init_task_pid(p, PIDTYPE_PID, pid); 2680 if (thread_group_leader(p)) { 2681 init_task_pid(p, PIDTYPE_TGID, pid); 2682 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2683 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2684 2685 if (is_child_reaper(pid)) { 2686 ns_of_pid(pid)->child_reaper = p; 2687 p->signal->flags |= SIGNAL_UNKILLABLE; 2688 } 2689 p->signal->shared_pending.signal = delayed.signal; 2690 p->signal->tty = tty_kref_get(current->signal->tty); 2691 /* 2692 * Inherit has_child_subreaper flag under the same 2693 * tasklist_lock with adding child to the process tree 2694 * for propagate_has_child_subreaper optimization. 2695 */ 2696 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2697 p->real_parent->signal->is_child_subreaper; 2698 list_add_tail(&p->sibling, &p->real_parent->children); 2699 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2700 attach_pid(p, PIDTYPE_TGID); 2701 attach_pid(p, PIDTYPE_PGID); 2702 attach_pid(p, PIDTYPE_SID); 2703 __this_cpu_inc(process_counts); 2704 } else { 2705 current->signal->nr_threads++; 2706 current->signal->quick_threads++; 2707 atomic_inc(¤t->signal->live); 2708 refcount_inc(¤t->signal->sigcnt); 2709 task_join_group_stop(p); 2710 list_add_tail_rcu(&p->thread_group, 2711 &p->group_leader->thread_group); 2712 list_add_tail_rcu(&p->thread_node, 2713 &p->signal->thread_head); 2714 } 2715 attach_pid(p, PIDTYPE_PID); 2716 nr_threads++; 2717 } 2718 total_forks++; 2719 hlist_del_init(&delayed.node); 2720 spin_unlock(¤t->sighand->siglock); 2721 syscall_tracepoint_update(p); 2722 write_unlock_irq(&tasklist_lock); 2723 2724 if (pidfile) 2725 fd_install(pidfd, pidfile); 2726 2727 proc_fork_connector(p); 2728 sched_post_fork(p); 2729 cgroup_post_fork(p, args); 2730 perf_event_fork(p); 2731 2732 trace_task_newtask(p, clone_flags); 2733 uprobe_copy_process(p, clone_flags); 2734 user_events_fork(p, clone_flags); 2735 2736 copy_oom_score_adj(clone_flags, p); 2737 2738 return p; 2739 2740 bad_fork_cancel_cgroup: 2741 sched_core_free(p); 2742 spin_unlock(¤t->sighand->siglock); 2743 write_unlock_irq(&tasklist_lock); 2744 cgroup_cancel_fork(p, args); 2745 bad_fork_put_pidfd: 2746 if (clone_flags & CLONE_PIDFD) { 2747 fput(pidfile); 2748 put_unused_fd(pidfd); 2749 } 2750 bad_fork_free_pid: 2751 if (pid != &init_struct_pid) 2752 free_pid(pid); 2753 bad_fork_cleanup_thread: 2754 exit_thread(p); 2755 bad_fork_cleanup_io: 2756 if (p->io_context) 2757 exit_io_context(p); 2758 bad_fork_cleanup_namespaces: 2759 exit_task_namespaces(p); 2760 bad_fork_cleanup_mm: 2761 if (p->mm) { 2762 mm_clear_owner(p->mm, p); 2763 mmput(p->mm); 2764 } 2765 bad_fork_cleanup_signal: 2766 if (!(clone_flags & CLONE_THREAD)) 2767 free_signal_struct(p->signal); 2768 bad_fork_cleanup_sighand: 2769 __cleanup_sighand(p->sighand); 2770 bad_fork_cleanup_fs: 2771 exit_fs(p); /* blocking */ 2772 bad_fork_cleanup_files: 2773 exit_files(p); /* blocking */ 2774 bad_fork_cleanup_semundo: 2775 exit_sem(p); 2776 bad_fork_cleanup_security: 2777 security_task_free(p); 2778 bad_fork_cleanup_audit: 2779 audit_free(p); 2780 bad_fork_cleanup_perf: 2781 perf_event_free_task(p); 2782 bad_fork_cleanup_policy: 2783 lockdep_free_task(p); 2784 #ifdef CONFIG_NUMA 2785 mpol_put(p->mempolicy); 2786 #endif 2787 bad_fork_cleanup_delayacct: 2788 delayacct_tsk_free(p); 2789 bad_fork_cleanup_count: 2790 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2791 exit_creds(p); 2792 bad_fork_free: 2793 WRITE_ONCE(p->__state, TASK_DEAD); 2794 exit_task_stack_account(p); 2795 put_task_stack(p); 2796 delayed_free_task(p); 2797 fork_out: 2798 spin_lock_irq(¤t->sighand->siglock); 2799 hlist_del_init(&delayed.node); 2800 spin_unlock_irq(¤t->sighand->siglock); 2801 return ERR_PTR(retval); 2802 } 2803 2804 static inline void init_idle_pids(struct task_struct *idle) 2805 { 2806 enum pid_type type; 2807 2808 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2809 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2810 init_task_pid(idle, type, &init_struct_pid); 2811 } 2812 } 2813 2814 static int idle_dummy(void *dummy) 2815 { 2816 /* This function is never called */ 2817 return 0; 2818 } 2819 2820 struct task_struct * __init fork_idle(int cpu) 2821 { 2822 struct task_struct *task; 2823 struct kernel_clone_args args = { 2824 .flags = CLONE_VM, 2825 .fn = &idle_dummy, 2826 .fn_arg = NULL, 2827 .kthread = 1, 2828 .idle = 1, 2829 }; 2830 2831 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2832 if (!IS_ERR(task)) { 2833 init_idle_pids(task); 2834 init_idle(task, cpu); 2835 } 2836 2837 return task; 2838 } 2839 2840 /* 2841 * This is like kernel_clone(), but shaved down and tailored to just 2842 * creating io_uring workers. It returns a created task, or an error pointer. 2843 * The returned task is inactive, and the caller must fire it up through 2844 * wake_up_new_task(p). All signals are blocked in the created task. 2845 */ 2846 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2847 { 2848 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2849 CLONE_IO; 2850 struct kernel_clone_args args = { 2851 .flags = ((lower_32_bits(flags) | CLONE_VM | 2852 CLONE_UNTRACED) & ~CSIGNAL), 2853 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2854 .fn = fn, 2855 .fn_arg = arg, 2856 .io_thread = 1, 2857 .user_worker = 1, 2858 }; 2859 2860 return copy_process(NULL, 0, node, &args); 2861 } 2862 2863 /* 2864 * Ok, this is the main fork-routine. 2865 * 2866 * It copies the process, and if successful kick-starts 2867 * it and waits for it to finish using the VM if required. 2868 * 2869 * args->exit_signal is expected to be checked for sanity by the caller. 2870 */ 2871 pid_t kernel_clone(struct kernel_clone_args *args) 2872 { 2873 u64 clone_flags = args->flags; 2874 struct completion vfork; 2875 struct pid *pid; 2876 struct task_struct *p; 2877 int trace = 0; 2878 pid_t nr; 2879 2880 /* 2881 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2882 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2883 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2884 * field in struct clone_args and it still doesn't make sense to have 2885 * them both point at the same memory location. Performing this check 2886 * here has the advantage that we don't need to have a separate helper 2887 * to check for legacy clone(). 2888 */ 2889 if ((args->flags & CLONE_PIDFD) && 2890 (args->flags & CLONE_PARENT_SETTID) && 2891 (args->pidfd == args->parent_tid)) 2892 return -EINVAL; 2893 2894 /* 2895 * Determine whether and which event to report to ptracer. When 2896 * called from kernel_thread or CLONE_UNTRACED is explicitly 2897 * requested, no event is reported; otherwise, report if the event 2898 * for the type of forking is enabled. 2899 */ 2900 if (!(clone_flags & CLONE_UNTRACED)) { 2901 if (clone_flags & CLONE_VFORK) 2902 trace = PTRACE_EVENT_VFORK; 2903 else if (args->exit_signal != SIGCHLD) 2904 trace = PTRACE_EVENT_CLONE; 2905 else 2906 trace = PTRACE_EVENT_FORK; 2907 2908 if (likely(!ptrace_event_enabled(current, trace))) 2909 trace = 0; 2910 } 2911 2912 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2913 add_latent_entropy(); 2914 2915 if (IS_ERR(p)) 2916 return PTR_ERR(p); 2917 2918 /* 2919 * Do this prior waking up the new thread - the thread pointer 2920 * might get invalid after that point, if the thread exits quickly. 2921 */ 2922 trace_sched_process_fork(current, p); 2923 2924 pid = get_task_pid(p, PIDTYPE_PID); 2925 nr = pid_vnr(pid); 2926 2927 if (clone_flags & CLONE_PARENT_SETTID) 2928 put_user(nr, args->parent_tid); 2929 2930 if (clone_flags & CLONE_VFORK) { 2931 p->vfork_done = &vfork; 2932 init_completion(&vfork); 2933 get_task_struct(p); 2934 } 2935 2936 if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) { 2937 /* lock the task to synchronize with memcg migration */ 2938 task_lock(p); 2939 lru_gen_add_mm(p->mm); 2940 task_unlock(p); 2941 } 2942 2943 wake_up_new_task(p); 2944 2945 /* forking complete and child started to run, tell ptracer */ 2946 if (unlikely(trace)) 2947 ptrace_event_pid(trace, pid); 2948 2949 if (clone_flags & CLONE_VFORK) { 2950 if (!wait_for_vfork_done(p, &vfork)) 2951 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2952 } 2953 2954 put_pid(pid); 2955 return nr; 2956 } 2957 2958 /* 2959 * Create a kernel thread. 2960 */ 2961 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name, 2962 unsigned long flags) 2963 { 2964 struct kernel_clone_args args = { 2965 .flags = ((lower_32_bits(flags) | CLONE_VM | 2966 CLONE_UNTRACED) & ~CSIGNAL), 2967 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2968 .fn = fn, 2969 .fn_arg = arg, 2970 .name = name, 2971 .kthread = 1, 2972 }; 2973 2974 return kernel_clone(&args); 2975 } 2976 2977 /* 2978 * Create a user mode thread. 2979 */ 2980 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) 2981 { 2982 struct kernel_clone_args args = { 2983 .flags = ((lower_32_bits(flags) | CLONE_VM | 2984 CLONE_UNTRACED) & ~CSIGNAL), 2985 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2986 .fn = fn, 2987 .fn_arg = arg, 2988 }; 2989 2990 return kernel_clone(&args); 2991 } 2992 2993 #ifdef __ARCH_WANT_SYS_FORK 2994 SYSCALL_DEFINE0(fork) 2995 { 2996 #ifdef CONFIG_MMU 2997 struct kernel_clone_args args = { 2998 .exit_signal = SIGCHLD, 2999 }; 3000 3001 return kernel_clone(&args); 3002 #else 3003 /* can not support in nommu mode */ 3004 return -EINVAL; 3005 #endif 3006 } 3007 #endif 3008 3009 #ifdef __ARCH_WANT_SYS_VFORK 3010 SYSCALL_DEFINE0(vfork) 3011 { 3012 struct kernel_clone_args args = { 3013 .flags = CLONE_VFORK | CLONE_VM, 3014 .exit_signal = SIGCHLD, 3015 }; 3016 3017 return kernel_clone(&args); 3018 } 3019 #endif 3020 3021 #ifdef __ARCH_WANT_SYS_CLONE 3022 #ifdef CONFIG_CLONE_BACKWARDS 3023 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 3024 int __user *, parent_tidptr, 3025 unsigned long, tls, 3026 int __user *, child_tidptr) 3027 #elif defined(CONFIG_CLONE_BACKWARDS2) 3028 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 3029 int __user *, parent_tidptr, 3030 int __user *, child_tidptr, 3031 unsigned long, tls) 3032 #elif defined(CONFIG_CLONE_BACKWARDS3) 3033 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 3034 int, stack_size, 3035 int __user *, parent_tidptr, 3036 int __user *, child_tidptr, 3037 unsigned long, tls) 3038 #else 3039 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 3040 int __user *, parent_tidptr, 3041 int __user *, child_tidptr, 3042 unsigned long, tls) 3043 #endif 3044 { 3045 struct kernel_clone_args args = { 3046 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 3047 .pidfd = parent_tidptr, 3048 .child_tid = child_tidptr, 3049 .parent_tid = parent_tidptr, 3050 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 3051 .stack = newsp, 3052 .tls = tls, 3053 }; 3054 3055 return kernel_clone(&args); 3056 } 3057 #endif 3058 3059 #ifdef __ARCH_WANT_SYS_CLONE3 3060 3061 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 3062 struct clone_args __user *uargs, 3063 size_t usize) 3064 { 3065 int err; 3066 struct clone_args args; 3067 pid_t *kset_tid = kargs->set_tid; 3068 3069 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 3070 CLONE_ARGS_SIZE_VER0); 3071 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 3072 CLONE_ARGS_SIZE_VER1); 3073 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 3074 CLONE_ARGS_SIZE_VER2); 3075 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 3076 3077 if (unlikely(usize > PAGE_SIZE)) 3078 return -E2BIG; 3079 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 3080 return -EINVAL; 3081 3082 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 3083 if (err) 3084 return err; 3085 3086 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 3087 return -EINVAL; 3088 3089 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 3090 return -EINVAL; 3091 3092 if (unlikely(args.set_tid && args.set_tid_size == 0)) 3093 return -EINVAL; 3094 3095 /* 3096 * Verify that higher 32bits of exit_signal are unset and that 3097 * it is a valid signal 3098 */ 3099 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 3100 !valid_signal(args.exit_signal))) 3101 return -EINVAL; 3102 3103 if ((args.flags & CLONE_INTO_CGROUP) && 3104 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 3105 return -EINVAL; 3106 3107 *kargs = (struct kernel_clone_args){ 3108 .flags = args.flags, 3109 .pidfd = u64_to_user_ptr(args.pidfd), 3110 .child_tid = u64_to_user_ptr(args.child_tid), 3111 .parent_tid = u64_to_user_ptr(args.parent_tid), 3112 .exit_signal = args.exit_signal, 3113 .stack = args.stack, 3114 .stack_size = args.stack_size, 3115 .tls = args.tls, 3116 .set_tid_size = args.set_tid_size, 3117 .cgroup = args.cgroup, 3118 }; 3119 3120 if (args.set_tid && 3121 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 3122 (kargs->set_tid_size * sizeof(pid_t)))) 3123 return -EFAULT; 3124 3125 kargs->set_tid = kset_tid; 3126 3127 return 0; 3128 } 3129 3130 /** 3131 * clone3_stack_valid - check and prepare stack 3132 * @kargs: kernel clone args 3133 * 3134 * Verify that the stack arguments userspace gave us are sane. 3135 * In addition, set the stack direction for userspace since it's easy for us to 3136 * determine. 3137 */ 3138 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 3139 { 3140 if (kargs->stack == 0) { 3141 if (kargs->stack_size > 0) 3142 return false; 3143 } else { 3144 if (kargs->stack_size == 0) 3145 return false; 3146 3147 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 3148 return false; 3149 3150 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64) 3151 kargs->stack += kargs->stack_size; 3152 #endif 3153 } 3154 3155 return true; 3156 } 3157 3158 static bool clone3_args_valid(struct kernel_clone_args *kargs) 3159 { 3160 /* Verify that no unknown flags are passed along. */ 3161 if (kargs->flags & 3162 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 3163 return false; 3164 3165 /* 3166 * - make the CLONE_DETACHED bit reusable for clone3 3167 * - make the CSIGNAL bits reusable for clone3 3168 */ 3169 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME)))) 3170 return false; 3171 3172 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 3173 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 3174 return false; 3175 3176 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 3177 kargs->exit_signal) 3178 return false; 3179 3180 if (!clone3_stack_valid(kargs)) 3181 return false; 3182 3183 return true; 3184 } 3185 3186 /** 3187 * clone3 - create a new process with specific properties 3188 * @uargs: argument structure 3189 * @size: size of @uargs 3190 * 3191 * clone3() is the extensible successor to clone()/clone2(). 3192 * It takes a struct as argument that is versioned by its size. 3193 * 3194 * Return: On success, a positive PID for the child process. 3195 * On error, a negative errno number. 3196 */ 3197 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 3198 { 3199 int err; 3200 3201 struct kernel_clone_args kargs; 3202 pid_t set_tid[MAX_PID_NS_LEVEL]; 3203 3204 kargs.set_tid = set_tid; 3205 3206 err = copy_clone_args_from_user(&kargs, uargs, size); 3207 if (err) 3208 return err; 3209 3210 if (!clone3_args_valid(&kargs)) 3211 return -EINVAL; 3212 3213 return kernel_clone(&kargs); 3214 } 3215 #endif 3216 3217 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 3218 { 3219 struct task_struct *leader, *parent, *child; 3220 int res; 3221 3222 read_lock(&tasklist_lock); 3223 leader = top = top->group_leader; 3224 down: 3225 for_each_thread(leader, parent) { 3226 list_for_each_entry(child, &parent->children, sibling) { 3227 res = visitor(child, data); 3228 if (res) { 3229 if (res < 0) 3230 goto out; 3231 leader = child; 3232 goto down; 3233 } 3234 up: 3235 ; 3236 } 3237 } 3238 3239 if (leader != top) { 3240 child = leader; 3241 parent = child->real_parent; 3242 leader = parent->group_leader; 3243 goto up; 3244 } 3245 out: 3246 read_unlock(&tasklist_lock); 3247 } 3248 3249 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 3250 #define ARCH_MIN_MMSTRUCT_ALIGN 0 3251 #endif 3252 3253 static void sighand_ctor(void *data) 3254 { 3255 struct sighand_struct *sighand = data; 3256 3257 spin_lock_init(&sighand->siglock); 3258 init_waitqueue_head(&sighand->signalfd_wqh); 3259 } 3260 3261 void __init mm_cache_init(void) 3262 { 3263 unsigned int mm_size; 3264 3265 /* 3266 * The mm_cpumask is located at the end of mm_struct, and is 3267 * dynamically sized based on the maximum CPU number this system 3268 * can have, taking hotplug into account (nr_cpu_ids). 3269 */ 3270 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size(); 3271 3272 mm_cachep = kmem_cache_create_usercopy("mm_struct", 3273 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 3274 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3275 offsetof(struct mm_struct, saved_auxv), 3276 sizeof_field(struct mm_struct, saved_auxv), 3277 NULL); 3278 } 3279 3280 void __init proc_caches_init(void) 3281 { 3282 sighand_cachep = kmem_cache_create("sighand_cache", 3283 sizeof(struct sighand_struct), 0, 3284 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 3285 SLAB_ACCOUNT, sighand_ctor); 3286 signal_cachep = kmem_cache_create("signal_cache", 3287 sizeof(struct signal_struct), 0, 3288 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3289 NULL); 3290 files_cachep = kmem_cache_create("files_cache", 3291 sizeof(struct files_struct), 0, 3292 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3293 NULL); 3294 fs_cachep = kmem_cache_create("fs_cache", 3295 sizeof(struct fs_struct), 0, 3296 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3297 NULL); 3298 3299 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 3300 #ifdef CONFIG_PER_VMA_LOCK 3301 vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT); 3302 #endif 3303 mmap_init(); 3304 nsproxy_cache_init(); 3305 } 3306 3307 /* 3308 * Check constraints on flags passed to the unshare system call. 3309 */ 3310 static int check_unshare_flags(unsigned long unshare_flags) 3311 { 3312 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 3313 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 3314 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 3315 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 3316 CLONE_NEWTIME)) 3317 return -EINVAL; 3318 /* 3319 * Not implemented, but pretend it works if there is nothing 3320 * to unshare. Note that unsharing the address space or the 3321 * signal handlers also need to unshare the signal queues (aka 3322 * CLONE_THREAD). 3323 */ 3324 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3325 if (!thread_group_empty(current)) 3326 return -EINVAL; 3327 } 3328 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3329 if (refcount_read(¤t->sighand->count) > 1) 3330 return -EINVAL; 3331 } 3332 if (unshare_flags & CLONE_VM) { 3333 if (!current_is_single_threaded()) 3334 return -EINVAL; 3335 } 3336 3337 return 0; 3338 } 3339 3340 /* 3341 * Unshare the filesystem structure if it is being shared 3342 */ 3343 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3344 { 3345 struct fs_struct *fs = current->fs; 3346 3347 if (!(unshare_flags & CLONE_FS) || !fs) 3348 return 0; 3349 3350 /* don't need lock here; in the worst case we'll do useless copy */ 3351 if (fs->users == 1) 3352 return 0; 3353 3354 *new_fsp = copy_fs_struct(fs); 3355 if (!*new_fsp) 3356 return -ENOMEM; 3357 3358 return 0; 3359 } 3360 3361 /* 3362 * Unshare file descriptor table if it is being shared 3363 */ 3364 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 3365 struct files_struct **new_fdp) 3366 { 3367 struct files_struct *fd = current->files; 3368 int error = 0; 3369 3370 if ((unshare_flags & CLONE_FILES) && 3371 (fd && atomic_read(&fd->count) > 1)) { 3372 *new_fdp = dup_fd(fd, max_fds, &error); 3373 if (!*new_fdp) 3374 return error; 3375 } 3376 3377 return 0; 3378 } 3379 3380 /* 3381 * unshare allows a process to 'unshare' part of the process 3382 * context which was originally shared using clone. copy_* 3383 * functions used by kernel_clone() cannot be used here directly 3384 * because they modify an inactive task_struct that is being 3385 * constructed. Here we are modifying the current, active, 3386 * task_struct. 3387 */ 3388 int ksys_unshare(unsigned long unshare_flags) 3389 { 3390 struct fs_struct *fs, *new_fs = NULL; 3391 struct files_struct *new_fd = NULL; 3392 struct cred *new_cred = NULL; 3393 struct nsproxy *new_nsproxy = NULL; 3394 int do_sysvsem = 0; 3395 int err; 3396 3397 /* 3398 * If unsharing a user namespace must also unshare the thread group 3399 * and unshare the filesystem root and working directories. 3400 */ 3401 if (unshare_flags & CLONE_NEWUSER) 3402 unshare_flags |= CLONE_THREAD | CLONE_FS; 3403 /* 3404 * If unsharing vm, must also unshare signal handlers. 3405 */ 3406 if (unshare_flags & CLONE_VM) 3407 unshare_flags |= CLONE_SIGHAND; 3408 /* 3409 * If unsharing a signal handlers, must also unshare the signal queues. 3410 */ 3411 if (unshare_flags & CLONE_SIGHAND) 3412 unshare_flags |= CLONE_THREAD; 3413 /* 3414 * If unsharing namespace, must also unshare filesystem information. 3415 */ 3416 if (unshare_flags & CLONE_NEWNS) 3417 unshare_flags |= CLONE_FS; 3418 3419 err = check_unshare_flags(unshare_flags); 3420 if (err) 3421 goto bad_unshare_out; 3422 /* 3423 * CLONE_NEWIPC must also detach from the undolist: after switching 3424 * to a new ipc namespace, the semaphore arrays from the old 3425 * namespace are unreachable. 3426 */ 3427 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3428 do_sysvsem = 1; 3429 err = unshare_fs(unshare_flags, &new_fs); 3430 if (err) 3431 goto bad_unshare_out; 3432 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 3433 if (err) 3434 goto bad_unshare_cleanup_fs; 3435 err = unshare_userns(unshare_flags, &new_cred); 3436 if (err) 3437 goto bad_unshare_cleanup_fd; 3438 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3439 new_cred, new_fs); 3440 if (err) 3441 goto bad_unshare_cleanup_cred; 3442 3443 if (new_cred) { 3444 err = set_cred_ucounts(new_cred); 3445 if (err) 3446 goto bad_unshare_cleanup_cred; 3447 } 3448 3449 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3450 if (do_sysvsem) { 3451 /* 3452 * CLONE_SYSVSEM is equivalent to sys_exit(). 3453 */ 3454 exit_sem(current); 3455 } 3456 if (unshare_flags & CLONE_NEWIPC) { 3457 /* Orphan segments in old ns (see sem above). */ 3458 exit_shm(current); 3459 shm_init_task(current); 3460 } 3461 3462 if (new_nsproxy) 3463 switch_task_namespaces(current, new_nsproxy); 3464 3465 task_lock(current); 3466 3467 if (new_fs) { 3468 fs = current->fs; 3469 spin_lock(&fs->lock); 3470 current->fs = new_fs; 3471 if (--fs->users) 3472 new_fs = NULL; 3473 else 3474 new_fs = fs; 3475 spin_unlock(&fs->lock); 3476 } 3477 3478 if (new_fd) 3479 swap(current->files, new_fd); 3480 3481 task_unlock(current); 3482 3483 if (new_cred) { 3484 /* Install the new user namespace */ 3485 commit_creds(new_cred); 3486 new_cred = NULL; 3487 } 3488 } 3489 3490 perf_event_namespaces(current); 3491 3492 bad_unshare_cleanup_cred: 3493 if (new_cred) 3494 put_cred(new_cred); 3495 bad_unshare_cleanup_fd: 3496 if (new_fd) 3497 put_files_struct(new_fd); 3498 3499 bad_unshare_cleanup_fs: 3500 if (new_fs) 3501 free_fs_struct(new_fs); 3502 3503 bad_unshare_out: 3504 return err; 3505 } 3506 3507 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3508 { 3509 return ksys_unshare(unshare_flags); 3510 } 3511 3512 /* 3513 * Helper to unshare the files of the current task. 3514 * We don't want to expose copy_files internals to 3515 * the exec layer of the kernel. 3516 */ 3517 3518 int unshare_files(void) 3519 { 3520 struct task_struct *task = current; 3521 struct files_struct *old, *copy = NULL; 3522 int error; 3523 3524 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3525 if (error || !copy) 3526 return error; 3527 3528 old = task->files; 3529 task_lock(task); 3530 task->files = copy; 3531 task_unlock(task); 3532 put_files_struct(old); 3533 return 0; 3534 } 3535 3536 int sysctl_max_threads(struct ctl_table *table, int write, 3537 void *buffer, size_t *lenp, loff_t *ppos) 3538 { 3539 struct ctl_table t; 3540 int ret; 3541 int threads = max_threads; 3542 int min = 1; 3543 int max = MAX_THREADS; 3544 3545 t = *table; 3546 t.data = &threads; 3547 t.extra1 = &min; 3548 t.extra2 = &max; 3549 3550 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3551 if (ret || !write) 3552 return ret; 3553 3554 max_threads = threads; 3555 3556 return 0; 3557 } 3558