xref: /linux/kernel/fork.c (revision 19f2e267a5d0d26282a64f8f788c482852c95324)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rtmutex.h>
25 #include <linux/init.h>
26 #include <linux/unistd.h>
27 #include <linux/module.h>
28 #include <linux/vmalloc.h>
29 #include <linux/completion.h>
30 #include <linux/personality.h>
31 #include <linux/mempolicy.h>
32 #include <linux/sem.h>
33 #include <linux/file.h>
34 #include <linux/fdtable.h>
35 #include <linux/iocontext.h>
36 #include <linux/key.h>
37 #include <linux/binfmts.h>
38 #include <linux/mman.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/hmm.h>
41 #include <linux/fs.h>
42 #include <linux/mm.h>
43 #include <linux/vmacache.h>
44 #include <linux/nsproxy.h>
45 #include <linux/capability.h>
46 #include <linux/cpu.h>
47 #include <linux/cgroup.h>
48 #include <linux/security.h>
49 #include <linux/hugetlb.h>
50 #include <linux/seccomp.h>
51 #include <linux/swap.h>
52 #include <linux/syscalls.h>
53 #include <linux/jiffies.h>
54 #include <linux/futex.h>
55 #include <linux/compat.h>
56 #include <linux/kthread.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/rcupdate.h>
59 #include <linux/ptrace.h>
60 #include <linux/mount.h>
61 #include <linux/audit.h>
62 #include <linux/memcontrol.h>
63 #include <linux/ftrace.h>
64 #include <linux/proc_fs.h>
65 #include <linux/profile.h>
66 #include <linux/rmap.h>
67 #include <linux/ksm.h>
68 #include <linux/acct.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/tsacct_kern.h>
71 #include <linux/cn_proc.h>
72 #include <linux/freezer.h>
73 #include <linux/delayacct.h>
74 #include <linux/taskstats_kern.h>
75 #include <linux/random.h>
76 #include <linux/tty.h>
77 #include <linux/blkdev.h>
78 #include <linux/fs_struct.h>
79 #include <linux/magic.h>
80 #include <linux/sched/mm.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94 #include <linux/stackleak.h>
95 
96 #include <asm/pgtable.h>
97 #include <asm/pgalloc.h>
98 #include <linux/uaccess.h>
99 #include <asm/mmu_context.h>
100 #include <asm/cacheflush.h>
101 #include <asm/tlbflush.h>
102 
103 #include <trace/events/sched.h>
104 
105 #define CREATE_TRACE_POINTS
106 #include <trace/events/task.h>
107 
108 /*
109  * Minimum number of threads to boot the kernel
110  */
111 #define MIN_THREADS 20
112 
113 /*
114  * Maximum number of threads
115  */
116 #define MAX_THREADS FUTEX_TID_MASK
117 
118 /*
119  * Protected counters by write_lock_irq(&tasklist_lock)
120  */
121 unsigned long total_forks;	/* Handle normal Linux uptimes. */
122 int nr_threads;			/* The idle threads do not count.. */
123 
124 int max_threads;		/* tunable limit on nr_threads */
125 
126 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
127 
128 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
129 
130 #ifdef CONFIG_PROVE_RCU
131 int lockdep_tasklist_lock_is_held(void)
132 {
133 	return lockdep_is_held(&tasklist_lock);
134 }
135 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
136 #endif /* #ifdef CONFIG_PROVE_RCU */
137 
138 int nr_processes(void)
139 {
140 	int cpu;
141 	int total = 0;
142 
143 	for_each_possible_cpu(cpu)
144 		total += per_cpu(process_counts, cpu);
145 
146 	return total;
147 }
148 
149 void __weak arch_release_task_struct(struct task_struct *tsk)
150 {
151 }
152 
153 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
154 static struct kmem_cache *task_struct_cachep;
155 
156 static inline struct task_struct *alloc_task_struct_node(int node)
157 {
158 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
159 }
160 
161 static inline void free_task_struct(struct task_struct *tsk)
162 {
163 	kmem_cache_free(task_struct_cachep, tsk);
164 }
165 #endif
166 
167 void __weak arch_release_thread_stack(unsigned long *stack)
168 {
169 }
170 
171 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
172 
173 /*
174  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
175  * kmemcache based allocator.
176  */
177 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
178 
179 #ifdef CONFIG_VMAP_STACK
180 /*
181  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
182  * flush.  Try to minimize the number of calls by caching stacks.
183  */
184 #define NR_CACHED_STACKS 2
185 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
186 
187 static int free_vm_stack_cache(unsigned int cpu)
188 {
189 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
190 	int i;
191 
192 	for (i = 0; i < NR_CACHED_STACKS; i++) {
193 		struct vm_struct *vm_stack = cached_vm_stacks[i];
194 
195 		if (!vm_stack)
196 			continue;
197 
198 		vfree(vm_stack->addr);
199 		cached_vm_stacks[i] = NULL;
200 	}
201 
202 	return 0;
203 }
204 #endif
205 
206 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
207 {
208 #ifdef CONFIG_VMAP_STACK
209 	void *stack;
210 	int i;
211 
212 	for (i = 0; i < NR_CACHED_STACKS; i++) {
213 		struct vm_struct *s;
214 
215 		s = this_cpu_xchg(cached_stacks[i], NULL);
216 
217 		if (!s)
218 			continue;
219 
220 		/* Clear stale pointers from reused stack. */
221 		memset(s->addr, 0, THREAD_SIZE);
222 
223 		tsk->stack_vm_area = s;
224 		return s->addr;
225 	}
226 
227 	/*
228 	 * Allocated stacks are cached and later reused by new threads,
229 	 * so memcg accounting is performed manually on assigning/releasing
230 	 * stacks to tasks. Drop __GFP_ACCOUNT.
231 	 */
232 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
233 				     VMALLOC_START, VMALLOC_END,
234 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
235 				     PAGE_KERNEL,
236 				     0, node, __builtin_return_address(0));
237 
238 	/*
239 	 * We can't call find_vm_area() in interrupt context, and
240 	 * free_thread_stack() can be called in interrupt context,
241 	 * so cache the vm_struct.
242 	 */
243 	if (stack) {
244 		tsk->stack_vm_area = find_vm_area(stack);
245 		tsk->stack = stack;
246 	}
247 	return stack;
248 #else
249 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
250 					     THREAD_SIZE_ORDER);
251 
252 	return page ? page_address(page) : NULL;
253 #endif
254 }
255 
256 static inline void free_thread_stack(struct task_struct *tsk)
257 {
258 #ifdef CONFIG_VMAP_STACK
259 	struct vm_struct *vm = task_stack_vm_area(tsk);
260 
261 	if (vm) {
262 		int i;
263 
264 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
265 			mod_memcg_page_state(vm->pages[i],
266 					     MEMCG_KERNEL_STACK_KB,
267 					     -(int)(PAGE_SIZE / 1024));
268 
269 			memcg_kmem_uncharge(vm->pages[i], 0);
270 		}
271 
272 		for (i = 0; i < NR_CACHED_STACKS; i++) {
273 			if (this_cpu_cmpxchg(cached_stacks[i],
274 					NULL, tsk->stack_vm_area) != NULL)
275 				continue;
276 
277 			return;
278 		}
279 
280 		vfree_atomic(tsk->stack);
281 		return;
282 	}
283 #endif
284 
285 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
286 }
287 # else
288 static struct kmem_cache *thread_stack_cache;
289 
290 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
291 						  int node)
292 {
293 	unsigned long *stack;
294 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
295 	tsk->stack = stack;
296 	return stack;
297 }
298 
299 static void free_thread_stack(struct task_struct *tsk)
300 {
301 	kmem_cache_free(thread_stack_cache, tsk->stack);
302 }
303 
304 void thread_stack_cache_init(void)
305 {
306 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
307 					THREAD_SIZE, THREAD_SIZE, 0, 0,
308 					THREAD_SIZE, NULL);
309 	BUG_ON(thread_stack_cache == NULL);
310 }
311 # endif
312 #endif
313 
314 /* SLAB cache for signal_struct structures (tsk->signal) */
315 static struct kmem_cache *signal_cachep;
316 
317 /* SLAB cache for sighand_struct structures (tsk->sighand) */
318 struct kmem_cache *sighand_cachep;
319 
320 /* SLAB cache for files_struct structures (tsk->files) */
321 struct kmem_cache *files_cachep;
322 
323 /* SLAB cache for fs_struct structures (tsk->fs) */
324 struct kmem_cache *fs_cachep;
325 
326 /* SLAB cache for vm_area_struct structures */
327 static struct kmem_cache *vm_area_cachep;
328 
329 /* SLAB cache for mm_struct structures (tsk->mm) */
330 static struct kmem_cache *mm_cachep;
331 
332 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
333 {
334 	struct vm_area_struct *vma;
335 
336 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
337 	if (vma)
338 		vma_init(vma, mm);
339 	return vma;
340 }
341 
342 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
343 {
344 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
345 
346 	if (new) {
347 		*new = *orig;
348 		INIT_LIST_HEAD(&new->anon_vma_chain);
349 	}
350 	return new;
351 }
352 
353 void vm_area_free(struct vm_area_struct *vma)
354 {
355 	kmem_cache_free(vm_area_cachep, vma);
356 }
357 
358 static void account_kernel_stack(struct task_struct *tsk, int account)
359 {
360 	void *stack = task_stack_page(tsk);
361 	struct vm_struct *vm = task_stack_vm_area(tsk);
362 
363 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
364 
365 	if (vm) {
366 		int i;
367 
368 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
369 
370 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
371 			mod_zone_page_state(page_zone(vm->pages[i]),
372 					    NR_KERNEL_STACK_KB,
373 					    PAGE_SIZE / 1024 * account);
374 		}
375 	} else {
376 		/*
377 		 * All stack pages are in the same zone and belong to the
378 		 * same memcg.
379 		 */
380 		struct page *first_page = virt_to_page(stack);
381 
382 		mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
383 				    THREAD_SIZE / 1024 * account);
384 
385 		mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
386 				     account * (THREAD_SIZE / 1024));
387 	}
388 }
389 
390 static int memcg_charge_kernel_stack(struct task_struct *tsk)
391 {
392 #ifdef CONFIG_VMAP_STACK
393 	struct vm_struct *vm = task_stack_vm_area(tsk);
394 	int ret;
395 
396 	if (vm) {
397 		int i;
398 
399 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
400 			/*
401 			 * If memcg_kmem_charge() fails, page->mem_cgroup
402 			 * pointer is NULL, and both memcg_kmem_uncharge()
403 			 * and mod_memcg_page_state() in free_thread_stack()
404 			 * will ignore this page. So it's safe.
405 			 */
406 			ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0);
407 			if (ret)
408 				return ret;
409 
410 			mod_memcg_page_state(vm->pages[i],
411 					     MEMCG_KERNEL_STACK_KB,
412 					     PAGE_SIZE / 1024);
413 		}
414 	}
415 #endif
416 	return 0;
417 }
418 
419 static void release_task_stack(struct task_struct *tsk)
420 {
421 	if (WARN_ON(tsk->state != TASK_DEAD))
422 		return;  /* Better to leak the stack than to free prematurely */
423 
424 	account_kernel_stack(tsk, -1);
425 	arch_release_thread_stack(tsk->stack);
426 	free_thread_stack(tsk);
427 	tsk->stack = NULL;
428 #ifdef CONFIG_VMAP_STACK
429 	tsk->stack_vm_area = NULL;
430 #endif
431 }
432 
433 #ifdef CONFIG_THREAD_INFO_IN_TASK
434 void put_task_stack(struct task_struct *tsk)
435 {
436 	if (atomic_dec_and_test(&tsk->stack_refcount))
437 		release_task_stack(tsk);
438 }
439 #endif
440 
441 void free_task(struct task_struct *tsk)
442 {
443 #ifndef CONFIG_THREAD_INFO_IN_TASK
444 	/*
445 	 * The task is finally done with both the stack and thread_info,
446 	 * so free both.
447 	 */
448 	release_task_stack(tsk);
449 #else
450 	/*
451 	 * If the task had a separate stack allocation, it should be gone
452 	 * by now.
453 	 */
454 	WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
455 #endif
456 	rt_mutex_debug_task_free(tsk);
457 	ftrace_graph_exit_task(tsk);
458 	put_seccomp_filter(tsk);
459 	arch_release_task_struct(tsk);
460 	if (tsk->flags & PF_KTHREAD)
461 		free_kthread_struct(tsk);
462 	free_task_struct(tsk);
463 }
464 EXPORT_SYMBOL(free_task);
465 
466 #ifdef CONFIG_MMU
467 static __latent_entropy int dup_mmap(struct mm_struct *mm,
468 					struct mm_struct *oldmm)
469 {
470 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
471 	struct rb_node **rb_link, *rb_parent;
472 	int retval;
473 	unsigned long charge;
474 	LIST_HEAD(uf);
475 
476 	uprobe_start_dup_mmap();
477 	if (down_write_killable(&oldmm->mmap_sem)) {
478 		retval = -EINTR;
479 		goto fail_uprobe_end;
480 	}
481 	flush_cache_dup_mm(oldmm);
482 	uprobe_dup_mmap(oldmm, mm);
483 	/*
484 	 * Not linked in yet - no deadlock potential:
485 	 */
486 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
487 
488 	/* No ordering required: file already has been exposed. */
489 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
490 
491 	mm->total_vm = oldmm->total_vm;
492 	mm->data_vm = oldmm->data_vm;
493 	mm->exec_vm = oldmm->exec_vm;
494 	mm->stack_vm = oldmm->stack_vm;
495 
496 	rb_link = &mm->mm_rb.rb_node;
497 	rb_parent = NULL;
498 	pprev = &mm->mmap;
499 	retval = ksm_fork(mm, oldmm);
500 	if (retval)
501 		goto out;
502 	retval = khugepaged_fork(mm, oldmm);
503 	if (retval)
504 		goto out;
505 
506 	prev = NULL;
507 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
508 		struct file *file;
509 
510 		if (mpnt->vm_flags & VM_DONTCOPY) {
511 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
512 			continue;
513 		}
514 		charge = 0;
515 		/*
516 		 * Don't duplicate many vmas if we've been oom-killed (for
517 		 * example)
518 		 */
519 		if (fatal_signal_pending(current)) {
520 			retval = -EINTR;
521 			goto out;
522 		}
523 		if (mpnt->vm_flags & VM_ACCOUNT) {
524 			unsigned long len = vma_pages(mpnt);
525 
526 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
527 				goto fail_nomem;
528 			charge = len;
529 		}
530 		tmp = vm_area_dup(mpnt);
531 		if (!tmp)
532 			goto fail_nomem;
533 		retval = vma_dup_policy(mpnt, tmp);
534 		if (retval)
535 			goto fail_nomem_policy;
536 		tmp->vm_mm = mm;
537 		retval = dup_userfaultfd(tmp, &uf);
538 		if (retval)
539 			goto fail_nomem_anon_vma_fork;
540 		if (tmp->vm_flags & VM_WIPEONFORK) {
541 			/* VM_WIPEONFORK gets a clean slate in the child. */
542 			tmp->anon_vma = NULL;
543 			if (anon_vma_prepare(tmp))
544 				goto fail_nomem_anon_vma_fork;
545 		} else if (anon_vma_fork(tmp, mpnt))
546 			goto fail_nomem_anon_vma_fork;
547 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
548 		tmp->vm_next = tmp->vm_prev = NULL;
549 		file = tmp->vm_file;
550 		if (file) {
551 			struct inode *inode = file_inode(file);
552 			struct address_space *mapping = file->f_mapping;
553 
554 			get_file(file);
555 			if (tmp->vm_flags & VM_DENYWRITE)
556 				atomic_dec(&inode->i_writecount);
557 			i_mmap_lock_write(mapping);
558 			if (tmp->vm_flags & VM_SHARED)
559 				atomic_inc(&mapping->i_mmap_writable);
560 			flush_dcache_mmap_lock(mapping);
561 			/* insert tmp into the share list, just after mpnt */
562 			vma_interval_tree_insert_after(tmp, mpnt,
563 					&mapping->i_mmap);
564 			flush_dcache_mmap_unlock(mapping);
565 			i_mmap_unlock_write(mapping);
566 		}
567 
568 		/*
569 		 * Clear hugetlb-related page reserves for children. This only
570 		 * affects MAP_PRIVATE mappings. Faults generated by the child
571 		 * are not guaranteed to succeed, even if read-only
572 		 */
573 		if (is_vm_hugetlb_page(tmp))
574 			reset_vma_resv_huge_pages(tmp);
575 
576 		/*
577 		 * Link in the new vma and copy the page table entries.
578 		 */
579 		*pprev = tmp;
580 		pprev = &tmp->vm_next;
581 		tmp->vm_prev = prev;
582 		prev = tmp;
583 
584 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
585 		rb_link = &tmp->vm_rb.rb_right;
586 		rb_parent = &tmp->vm_rb;
587 
588 		mm->map_count++;
589 		if (!(tmp->vm_flags & VM_WIPEONFORK))
590 			retval = copy_page_range(mm, oldmm, mpnt);
591 
592 		if (tmp->vm_ops && tmp->vm_ops->open)
593 			tmp->vm_ops->open(tmp);
594 
595 		if (retval)
596 			goto out;
597 	}
598 	/* a new mm has just been created */
599 	retval = arch_dup_mmap(oldmm, mm);
600 out:
601 	up_write(&mm->mmap_sem);
602 	flush_tlb_mm(oldmm);
603 	up_write(&oldmm->mmap_sem);
604 	dup_userfaultfd_complete(&uf);
605 fail_uprobe_end:
606 	uprobe_end_dup_mmap();
607 	return retval;
608 fail_nomem_anon_vma_fork:
609 	mpol_put(vma_policy(tmp));
610 fail_nomem_policy:
611 	vm_area_free(tmp);
612 fail_nomem:
613 	retval = -ENOMEM;
614 	vm_unacct_memory(charge);
615 	goto out;
616 }
617 
618 static inline int mm_alloc_pgd(struct mm_struct *mm)
619 {
620 	mm->pgd = pgd_alloc(mm);
621 	if (unlikely(!mm->pgd))
622 		return -ENOMEM;
623 	return 0;
624 }
625 
626 static inline void mm_free_pgd(struct mm_struct *mm)
627 {
628 	pgd_free(mm, mm->pgd);
629 }
630 #else
631 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
632 {
633 	down_write(&oldmm->mmap_sem);
634 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
635 	up_write(&oldmm->mmap_sem);
636 	return 0;
637 }
638 #define mm_alloc_pgd(mm)	(0)
639 #define mm_free_pgd(mm)
640 #endif /* CONFIG_MMU */
641 
642 static void check_mm(struct mm_struct *mm)
643 {
644 	int i;
645 
646 	for (i = 0; i < NR_MM_COUNTERS; i++) {
647 		long x = atomic_long_read(&mm->rss_stat.count[i]);
648 
649 		if (unlikely(x))
650 			printk(KERN_ALERT "BUG: Bad rss-counter state "
651 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
652 	}
653 
654 	if (mm_pgtables_bytes(mm))
655 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
656 				mm_pgtables_bytes(mm));
657 
658 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
659 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
660 #endif
661 }
662 
663 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
664 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
665 
666 /*
667  * Called when the last reference to the mm
668  * is dropped: either by a lazy thread or by
669  * mmput. Free the page directory and the mm.
670  */
671 void __mmdrop(struct mm_struct *mm)
672 {
673 	BUG_ON(mm == &init_mm);
674 	WARN_ON_ONCE(mm == current->mm);
675 	WARN_ON_ONCE(mm == current->active_mm);
676 	mm_free_pgd(mm);
677 	destroy_context(mm);
678 	hmm_mm_destroy(mm);
679 	mmu_notifier_mm_destroy(mm);
680 	check_mm(mm);
681 	put_user_ns(mm->user_ns);
682 	free_mm(mm);
683 }
684 EXPORT_SYMBOL_GPL(__mmdrop);
685 
686 static void mmdrop_async_fn(struct work_struct *work)
687 {
688 	struct mm_struct *mm;
689 
690 	mm = container_of(work, struct mm_struct, async_put_work);
691 	__mmdrop(mm);
692 }
693 
694 static void mmdrop_async(struct mm_struct *mm)
695 {
696 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
697 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
698 		schedule_work(&mm->async_put_work);
699 	}
700 }
701 
702 static inline void free_signal_struct(struct signal_struct *sig)
703 {
704 	taskstats_tgid_free(sig);
705 	sched_autogroup_exit(sig);
706 	/*
707 	 * __mmdrop is not safe to call from softirq context on x86 due to
708 	 * pgd_dtor so postpone it to the async context
709 	 */
710 	if (sig->oom_mm)
711 		mmdrop_async(sig->oom_mm);
712 	kmem_cache_free(signal_cachep, sig);
713 }
714 
715 static inline void put_signal_struct(struct signal_struct *sig)
716 {
717 	if (atomic_dec_and_test(&sig->sigcnt))
718 		free_signal_struct(sig);
719 }
720 
721 void __put_task_struct(struct task_struct *tsk)
722 {
723 	WARN_ON(!tsk->exit_state);
724 	WARN_ON(atomic_read(&tsk->usage));
725 	WARN_ON(tsk == current);
726 
727 	cgroup_free(tsk);
728 	task_numa_free(tsk);
729 	security_task_free(tsk);
730 	exit_creds(tsk);
731 	delayacct_tsk_free(tsk);
732 	put_signal_struct(tsk->signal);
733 
734 	if (!profile_handoff_task(tsk))
735 		free_task(tsk);
736 }
737 EXPORT_SYMBOL_GPL(__put_task_struct);
738 
739 void __init __weak arch_task_cache_init(void) { }
740 
741 /*
742  * set_max_threads
743  */
744 static void set_max_threads(unsigned int max_threads_suggested)
745 {
746 	u64 threads;
747 	unsigned long nr_pages = totalram_pages();
748 
749 	/*
750 	 * The number of threads shall be limited such that the thread
751 	 * structures may only consume a small part of the available memory.
752 	 */
753 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
754 		threads = MAX_THREADS;
755 	else
756 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
757 				    (u64) THREAD_SIZE * 8UL);
758 
759 	if (threads > max_threads_suggested)
760 		threads = max_threads_suggested;
761 
762 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
763 }
764 
765 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
766 /* Initialized by the architecture: */
767 int arch_task_struct_size __read_mostly;
768 #endif
769 
770 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
771 {
772 	/* Fetch thread_struct whitelist for the architecture. */
773 	arch_thread_struct_whitelist(offset, size);
774 
775 	/*
776 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
777 	 * adjust offset to position of thread_struct in task_struct.
778 	 */
779 	if (unlikely(*size == 0))
780 		*offset = 0;
781 	else
782 		*offset += offsetof(struct task_struct, thread);
783 }
784 
785 void __init fork_init(void)
786 {
787 	int i;
788 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
789 #ifndef ARCH_MIN_TASKALIGN
790 #define ARCH_MIN_TASKALIGN	0
791 #endif
792 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
793 	unsigned long useroffset, usersize;
794 
795 	/* create a slab on which task_structs can be allocated */
796 	task_struct_whitelist(&useroffset, &usersize);
797 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
798 			arch_task_struct_size, align,
799 			SLAB_PANIC|SLAB_ACCOUNT,
800 			useroffset, usersize, NULL);
801 #endif
802 
803 	/* do the arch specific task caches init */
804 	arch_task_cache_init();
805 
806 	set_max_threads(MAX_THREADS);
807 
808 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
809 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
810 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
811 		init_task.signal->rlim[RLIMIT_NPROC];
812 
813 	for (i = 0; i < UCOUNT_COUNTS; i++) {
814 		init_user_ns.ucount_max[i] = max_threads/2;
815 	}
816 
817 #ifdef CONFIG_VMAP_STACK
818 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
819 			  NULL, free_vm_stack_cache);
820 #endif
821 
822 	lockdep_init_task(&init_task);
823 }
824 
825 int __weak arch_dup_task_struct(struct task_struct *dst,
826 					       struct task_struct *src)
827 {
828 	*dst = *src;
829 	return 0;
830 }
831 
832 void set_task_stack_end_magic(struct task_struct *tsk)
833 {
834 	unsigned long *stackend;
835 
836 	stackend = end_of_stack(tsk);
837 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
838 }
839 
840 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
841 {
842 	struct task_struct *tsk;
843 	unsigned long *stack;
844 	struct vm_struct *stack_vm_area __maybe_unused;
845 	int err;
846 
847 	if (node == NUMA_NO_NODE)
848 		node = tsk_fork_get_node(orig);
849 	tsk = alloc_task_struct_node(node);
850 	if (!tsk)
851 		return NULL;
852 
853 	stack = alloc_thread_stack_node(tsk, node);
854 	if (!stack)
855 		goto free_tsk;
856 
857 	if (memcg_charge_kernel_stack(tsk))
858 		goto free_stack;
859 
860 	stack_vm_area = task_stack_vm_area(tsk);
861 
862 	err = arch_dup_task_struct(tsk, orig);
863 
864 	/*
865 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
866 	 * sure they're properly initialized before using any stack-related
867 	 * functions again.
868 	 */
869 	tsk->stack = stack;
870 #ifdef CONFIG_VMAP_STACK
871 	tsk->stack_vm_area = stack_vm_area;
872 #endif
873 #ifdef CONFIG_THREAD_INFO_IN_TASK
874 	atomic_set(&tsk->stack_refcount, 1);
875 #endif
876 
877 	if (err)
878 		goto free_stack;
879 
880 #ifdef CONFIG_SECCOMP
881 	/*
882 	 * We must handle setting up seccomp filters once we're under
883 	 * the sighand lock in case orig has changed between now and
884 	 * then. Until then, filter must be NULL to avoid messing up
885 	 * the usage counts on the error path calling free_task.
886 	 */
887 	tsk->seccomp.filter = NULL;
888 #endif
889 
890 	setup_thread_stack(tsk, orig);
891 	clear_user_return_notifier(tsk);
892 	clear_tsk_need_resched(tsk);
893 	set_task_stack_end_magic(tsk);
894 
895 #ifdef CONFIG_STACKPROTECTOR
896 	tsk->stack_canary = get_random_canary();
897 #endif
898 
899 	/*
900 	 * One for us, one for whoever does the "release_task()" (usually
901 	 * parent)
902 	 */
903 	atomic_set(&tsk->usage, 2);
904 #ifdef CONFIG_BLK_DEV_IO_TRACE
905 	tsk->btrace_seq = 0;
906 #endif
907 	tsk->splice_pipe = NULL;
908 	tsk->task_frag.page = NULL;
909 	tsk->wake_q.next = NULL;
910 
911 	account_kernel_stack(tsk, 1);
912 
913 	kcov_task_init(tsk);
914 
915 #ifdef CONFIG_FAULT_INJECTION
916 	tsk->fail_nth = 0;
917 #endif
918 
919 #ifdef CONFIG_BLK_CGROUP
920 	tsk->throttle_queue = NULL;
921 	tsk->use_memdelay = 0;
922 #endif
923 
924 #ifdef CONFIG_MEMCG
925 	tsk->active_memcg = NULL;
926 #endif
927 	return tsk;
928 
929 free_stack:
930 	free_thread_stack(tsk);
931 free_tsk:
932 	free_task_struct(tsk);
933 	return NULL;
934 }
935 
936 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
937 
938 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
939 
940 static int __init coredump_filter_setup(char *s)
941 {
942 	default_dump_filter =
943 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
944 		MMF_DUMP_FILTER_MASK;
945 	return 1;
946 }
947 
948 __setup("coredump_filter=", coredump_filter_setup);
949 
950 #include <linux/init_task.h>
951 
952 static void mm_init_aio(struct mm_struct *mm)
953 {
954 #ifdef CONFIG_AIO
955 	spin_lock_init(&mm->ioctx_lock);
956 	mm->ioctx_table = NULL;
957 #endif
958 }
959 
960 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
961 {
962 #ifdef CONFIG_MEMCG
963 	mm->owner = p;
964 #endif
965 }
966 
967 static void mm_init_uprobes_state(struct mm_struct *mm)
968 {
969 #ifdef CONFIG_UPROBES
970 	mm->uprobes_state.xol_area = NULL;
971 #endif
972 }
973 
974 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
975 	struct user_namespace *user_ns)
976 {
977 	mm->mmap = NULL;
978 	mm->mm_rb = RB_ROOT;
979 	mm->vmacache_seqnum = 0;
980 	atomic_set(&mm->mm_users, 1);
981 	atomic_set(&mm->mm_count, 1);
982 	init_rwsem(&mm->mmap_sem);
983 	INIT_LIST_HEAD(&mm->mmlist);
984 	mm->core_state = NULL;
985 	mm_pgtables_bytes_init(mm);
986 	mm->map_count = 0;
987 	mm->locked_vm = 0;
988 	mm->pinned_vm = 0;
989 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
990 	spin_lock_init(&mm->page_table_lock);
991 	spin_lock_init(&mm->arg_lock);
992 	mm_init_cpumask(mm);
993 	mm_init_aio(mm);
994 	mm_init_owner(mm, p);
995 	RCU_INIT_POINTER(mm->exe_file, NULL);
996 	mmu_notifier_mm_init(mm);
997 	hmm_mm_init(mm);
998 	init_tlb_flush_pending(mm);
999 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1000 	mm->pmd_huge_pte = NULL;
1001 #endif
1002 	mm_init_uprobes_state(mm);
1003 
1004 	if (current->mm) {
1005 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1006 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1007 	} else {
1008 		mm->flags = default_dump_filter;
1009 		mm->def_flags = 0;
1010 	}
1011 
1012 	if (mm_alloc_pgd(mm))
1013 		goto fail_nopgd;
1014 
1015 	if (init_new_context(p, mm))
1016 		goto fail_nocontext;
1017 
1018 	mm->user_ns = get_user_ns(user_ns);
1019 	return mm;
1020 
1021 fail_nocontext:
1022 	mm_free_pgd(mm);
1023 fail_nopgd:
1024 	free_mm(mm);
1025 	return NULL;
1026 }
1027 
1028 /*
1029  * Allocate and initialize an mm_struct.
1030  */
1031 struct mm_struct *mm_alloc(void)
1032 {
1033 	struct mm_struct *mm;
1034 
1035 	mm = allocate_mm();
1036 	if (!mm)
1037 		return NULL;
1038 
1039 	memset(mm, 0, sizeof(*mm));
1040 	return mm_init(mm, current, current_user_ns());
1041 }
1042 
1043 static inline void __mmput(struct mm_struct *mm)
1044 {
1045 	VM_BUG_ON(atomic_read(&mm->mm_users));
1046 
1047 	uprobe_clear_state(mm);
1048 	exit_aio(mm);
1049 	ksm_exit(mm);
1050 	khugepaged_exit(mm); /* must run before exit_mmap */
1051 	exit_mmap(mm);
1052 	mm_put_huge_zero_page(mm);
1053 	set_mm_exe_file(mm, NULL);
1054 	if (!list_empty(&mm->mmlist)) {
1055 		spin_lock(&mmlist_lock);
1056 		list_del(&mm->mmlist);
1057 		spin_unlock(&mmlist_lock);
1058 	}
1059 	if (mm->binfmt)
1060 		module_put(mm->binfmt->module);
1061 	mmdrop(mm);
1062 }
1063 
1064 /*
1065  * Decrement the use count and release all resources for an mm.
1066  */
1067 void mmput(struct mm_struct *mm)
1068 {
1069 	might_sleep();
1070 
1071 	if (atomic_dec_and_test(&mm->mm_users))
1072 		__mmput(mm);
1073 }
1074 EXPORT_SYMBOL_GPL(mmput);
1075 
1076 #ifdef CONFIG_MMU
1077 static void mmput_async_fn(struct work_struct *work)
1078 {
1079 	struct mm_struct *mm = container_of(work, struct mm_struct,
1080 					    async_put_work);
1081 
1082 	__mmput(mm);
1083 }
1084 
1085 void mmput_async(struct mm_struct *mm)
1086 {
1087 	if (atomic_dec_and_test(&mm->mm_users)) {
1088 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1089 		schedule_work(&mm->async_put_work);
1090 	}
1091 }
1092 #endif
1093 
1094 /**
1095  * set_mm_exe_file - change a reference to the mm's executable file
1096  *
1097  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1098  *
1099  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1100  * invocations: in mmput() nobody alive left, in execve task is single
1101  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1102  * mm->exe_file, but does so without using set_mm_exe_file() in order
1103  * to do avoid the need for any locks.
1104  */
1105 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1106 {
1107 	struct file *old_exe_file;
1108 
1109 	/*
1110 	 * It is safe to dereference the exe_file without RCU as
1111 	 * this function is only called if nobody else can access
1112 	 * this mm -- see comment above for justification.
1113 	 */
1114 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1115 
1116 	if (new_exe_file)
1117 		get_file(new_exe_file);
1118 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1119 	if (old_exe_file)
1120 		fput(old_exe_file);
1121 }
1122 
1123 /**
1124  * get_mm_exe_file - acquire a reference to the mm's executable file
1125  *
1126  * Returns %NULL if mm has no associated executable file.
1127  * User must release file via fput().
1128  */
1129 struct file *get_mm_exe_file(struct mm_struct *mm)
1130 {
1131 	struct file *exe_file;
1132 
1133 	rcu_read_lock();
1134 	exe_file = rcu_dereference(mm->exe_file);
1135 	if (exe_file && !get_file_rcu(exe_file))
1136 		exe_file = NULL;
1137 	rcu_read_unlock();
1138 	return exe_file;
1139 }
1140 EXPORT_SYMBOL(get_mm_exe_file);
1141 
1142 /**
1143  * get_task_exe_file - acquire a reference to the task's executable file
1144  *
1145  * Returns %NULL if task's mm (if any) has no associated executable file or
1146  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1147  * User must release file via fput().
1148  */
1149 struct file *get_task_exe_file(struct task_struct *task)
1150 {
1151 	struct file *exe_file = NULL;
1152 	struct mm_struct *mm;
1153 
1154 	task_lock(task);
1155 	mm = task->mm;
1156 	if (mm) {
1157 		if (!(task->flags & PF_KTHREAD))
1158 			exe_file = get_mm_exe_file(mm);
1159 	}
1160 	task_unlock(task);
1161 	return exe_file;
1162 }
1163 EXPORT_SYMBOL(get_task_exe_file);
1164 
1165 /**
1166  * get_task_mm - acquire a reference to the task's mm
1167  *
1168  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1169  * this kernel workthread has transiently adopted a user mm with use_mm,
1170  * to do its AIO) is not set and if so returns a reference to it, after
1171  * bumping up the use count.  User must release the mm via mmput()
1172  * after use.  Typically used by /proc and ptrace.
1173  */
1174 struct mm_struct *get_task_mm(struct task_struct *task)
1175 {
1176 	struct mm_struct *mm;
1177 
1178 	task_lock(task);
1179 	mm = task->mm;
1180 	if (mm) {
1181 		if (task->flags & PF_KTHREAD)
1182 			mm = NULL;
1183 		else
1184 			mmget(mm);
1185 	}
1186 	task_unlock(task);
1187 	return mm;
1188 }
1189 EXPORT_SYMBOL_GPL(get_task_mm);
1190 
1191 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1192 {
1193 	struct mm_struct *mm;
1194 	int err;
1195 
1196 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1197 	if (err)
1198 		return ERR_PTR(err);
1199 
1200 	mm = get_task_mm(task);
1201 	if (mm && mm != current->mm &&
1202 			!ptrace_may_access(task, mode)) {
1203 		mmput(mm);
1204 		mm = ERR_PTR(-EACCES);
1205 	}
1206 	mutex_unlock(&task->signal->cred_guard_mutex);
1207 
1208 	return mm;
1209 }
1210 
1211 static void complete_vfork_done(struct task_struct *tsk)
1212 {
1213 	struct completion *vfork;
1214 
1215 	task_lock(tsk);
1216 	vfork = tsk->vfork_done;
1217 	if (likely(vfork)) {
1218 		tsk->vfork_done = NULL;
1219 		complete(vfork);
1220 	}
1221 	task_unlock(tsk);
1222 }
1223 
1224 static int wait_for_vfork_done(struct task_struct *child,
1225 				struct completion *vfork)
1226 {
1227 	int killed;
1228 
1229 	freezer_do_not_count();
1230 	killed = wait_for_completion_killable(vfork);
1231 	freezer_count();
1232 
1233 	if (killed) {
1234 		task_lock(child);
1235 		child->vfork_done = NULL;
1236 		task_unlock(child);
1237 	}
1238 
1239 	put_task_struct(child);
1240 	return killed;
1241 }
1242 
1243 /* Please note the differences between mmput and mm_release.
1244  * mmput is called whenever we stop holding onto a mm_struct,
1245  * error success whatever.
1246  *
1247  * mm_release is called after a mm_struct has been removed
1248  * from the current process.
1249  *
1250  * This difference is important for error handling, when we
1251  * only half set up a mm_struct for a new process and need to restore
1252  * the old one.  Because we mmput the new mm_struct before
1253  * restoring the old one. . .
1254  * Eric Biederman 10 January 1998
1255  */
1256 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1257 {
1258 	/* Get rid of any futexes when releasing the mm */
1259 #ifdef CONFIG_FUTEX
1260 	if (unlikely(tsk->robust_list)) {
1261 		exit_robust_list(tsk);
1262 		tsk->robust_list = NULL;
1263 	}
1264 #ifdef CONFIG_COMPAT
1265 	if (unlikely(tsk->compat_robust_list)) {
1266 		compat_exit_robust_list(tsk);
1267 		tsk->compat_robust_list = NULL;
1268 	}
1269 #endif
1270 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1271 		exit_pi_state_list(tsk);
1272 #endif
1273 
1274 	uprobe_free_utask(tsk);
1275 
1276 	/* Get rid of any cached register state */
1277 	deactivate_mm(tsk, mm);
1278 
1279 	/*
1280 	 * Signal userspace if we're not exiting with a core dump
1281 	 * because we want to leave the value intact for debugging
1282 	 * purposes.
1283 	 */
1284 	if (tsk->clear_child_tid) {
1285 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1286 		    atomic_read(&mm->mm_users) > 1) {
1287 			/*
1288 			 * We don't check the error code - if userspace has
1289 			 * not set up a proper pointer then tough luck.
1290 			 */
1291 			put_user(0, tsk->clear_child_tid);
1292 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1293 					1, NULL, NULL, 0, 0);
1294 		}
1295 		tsk->clear_child_tid = NULL;
1296 	}
1297 
1298 	/*
1299 	 * All done, finally we can wake up parent and return this mm to him.
1300 	 * Also kthread_stop() uses this completion for synchronization.
1301 	 */
1302 	if (tsk->vfork_done)
1303 		complete_vfork_done(tsk);
1304 }
1305 
1306 /*
1307  * Allocate a new mm structure and copy contents from the
1308  * mm structure of the passed in task structure.
1309  */
1310 static struct mm_struct *dup_mm(struct task_struct *tsk)
1311 {
1312 	struct mm_struct *mm, *oldmm = current->mm;
1313 	int err;
1314 
1315 	mm = allocate_mm();
1316 	if (!mm)
1317 		goto fail_nomem;
1318 
1319 	memcpy(mm, oldmm, sizeof(*mm));
1320 
1321 	if (!mm_init(mm, tsk, mm->user_ns))
1322 		goto fail_nomem;
1323 
1324 	err = dup_mmap(mm, oldmm);
1325 	if (err)
1326 		goto free_pt;
1327 
1328 	mm->hiwater_rss = get_mm_rss(mm);
1329 	mm->hiwater_vm = mm->total_vm;
1330 
1331 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1332 		goto free_pt;
1333 
1334 	return mm;
1335 
1336 free_pt:
1337 	/* don't put binfmt in mmput, we haven't got module yet */
1338 	mm->binfmt = NULL;
1339 	mmput(mm);
1340 
1341 fail_nomem:
1342 	return NULL;
1343 }
1344 
1345 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1346 {
1347 	struct mm_struct *mm, *oldmm;
1348 	int retval;
1349 
1350 	tsk->min_flt = tsk->maj_flt = 0;
1351 	tsk->nvcsw = tsk->nivcsw = 0;
1352 #ifdef CONFIG_DETECT_HUNG_TASK
1353 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1354 	tsk->last_switch_time = 0;
1355 #endif
1356 
1357 	tsk->mm = NULL;
1358 	tsk->active_mm = NULL;
1359 
1360 	/*
1361 	 * Are we cloning a kernel thread?
1362 	 *
1363 	 * We need to steal a active VM for that..
1364 	 */
1365 	oldmm = current->mm;
1366 	if (!oldmm)
1367 		return 0;
1368 
1369 	/* initialize the new vmacache entries */
1370 	vmacache_flush(tsk);
1371 
1372 	if (clone_flags & CLONE_VM) {
1373 		mmget(oldmm);
1374 		mm = oldmm;
1375 		goto good_mm;
1376 	}
1377 
1378 	retval = -ENOMEM;
1379 	mm = dup_mm(tsk);
1380 	if (!mm)
1381 		goto fail_nomem;
1382 
1383 good_mm:
1384 	tsk->mm = mm;
1385 	tsk->active_mm = mm;
1386 	return 0;
1387 
1388 fail_nomem:
1389 	return retval;
1390 }
1391 
1392 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1393 {
1394 	struct fs_struct *fs = current->fs;
1395 	if (clone_flags & CLONE_FS) {
1396 		/* tsk->fs is already what we want */
1397 		spin_lock(&fs->lock);
1398 		if (fs->in_exec) {
1399 			spin_unlock(&fs->lock);
1400 			return -EAGAIN;
1401 		}
1402 		fs->users++;
1403 		spin_unlock(&fs->lock);
1404 		return 0;
1405 	}
1406 	tsk->fs = copy_fs_struct(fs);
1407 	if (!tsk->fs)
1408 		return -ENOMEM;
1409 	return 0;
1410 }
1411 
1412 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1413 {
1414 	struct files_struct *oldf, *newf;
1415 	int error = 0;
1416 
1417 	/*
1418 	 * A background process may not have any files ...
1419 	 */
1420 	oldf = current->files;
1421 	if (!oldf)
1422 		goto out;
1423 
1424 	if (clone_flags & CLONE_FILES) {
1425 		atomic_inc(&oldf->count);
1426 		goto out;
1427 	}
1428 
1429 	newf = dup_fd(oldf, &error);
1430 	if (!newf)
1431 		goto out;
1432 
1433 	tsk->files = newf;
1434 	error = 0;
1435 out:
1436 	return error;
1437 }
1438 
1439 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1440 {
1441 #ifdef CONFIG_BLOCK
1442 	struct io_context *ioc = current->io_context;
1443 	struct io_context *new_ioc;
1444 
1445 	if (!ioc)
1446 		return 0;
1447 	/*
1448 	 * Share io context with parent, if CLONE_IO is set
1449 	 */
1450 	if (clone_flags & CLONE_IO) {
1451 		ioc_task_link(ioc);
1452 		tsk->io_context = ioc;
1453 	} else if (ioprio_valid(ioc->ioprio)) {
1454 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1455 		if (unlikely(!new_ioc))
1456 			return -ENOMEM;
1457 
1458 		new_ioc->ioprio = ioc->ioprio;
1459 		put_io_context(new_ioc);
1460 	}
1461 #endif
1462 	return 0;
1463 }
1464 
1465 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1466 {
1467 	struct sighand_struct *sig;
1468 
1469 	if (clone_flags & CLONE_SIGHAND) {
1470 		atomic_inc(&current->sighand->count);
1471 		return 0;
1472 	}
1473 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1474 	rcu_assign_pointer(tsk->sighand, sig);
1475 	if (!sig)
1476 		return -ENOMEM;
1477 
1478 	atomic_set(&sig->count, 1);
1479 	spin_lock_irq(&current->sighand->siglock);
1480 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1481 	spin_unlock_irq(&current->sighand->siglock);
1482 	return 0;
1483 }
1484 
1485 void __cleanup_sighand(struct sighand_struct *sighand)
1486 {
1487 	if (atomic_dec_and_test(&sighand->count)) {
1488 		signalfd_cleanup(sighand);
1489 		/*
1490 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1491 		 * without an RCU grace period, see __lock_task_sighand().
1492 		 */
1493 		kmem_cache_free(sighand_cachep, sighand);
1494 	}
1495 }
1496 
1497 #ifdef CONFIG_POSIX_TIMERS
1498 /*
1499  * Initialize POSIX timer handling for a thread group.
1500  */
1501 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1502 {
1503 	unsigned long cpu_limit;
1504 
1505 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1506 	if (cpu_limit != RLIM_INFINITY) {
1507 		sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1508 		sig->cputimer.running = true;
1509 	}
1510 
1511 	/* The timer lists. */
1512 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1513 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1514 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1515 }
1516 #else
1517 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1518 #endif
1519 
1520 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1521 {
1522 	struct signal_struct *sig;
1523 
1524 	if (clone_flags & CLONE_THREAD)
1525 		return 0;
1526 
1527 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1528 	tsk->signal = sig;
1529 	if (!sig)
1530 		return -ENOMEM;
1531 
1532 	sig->nr_threads = 1;
1533 	atomic_set(&sig->live, 1);
1534 	atomic_set(&sig->sigcnt, 1);
1535 
1536 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1537 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1538 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1539 
1540 	init_waitqueue_head(&sig->wait_chldexit);
1541 	sig->curr_target = tsk;
1542 	init_sigpending(&sig->shared_pending);
1543 	INIT_HLIST_HEAD(&sig->multiprocess);
1544 	seqlock_init(&sig->stats_lock);
1545 	prev_cputime_init(&sig->prev_cputime);
1546 
1547 #ifdef CONFIG_POSIX_TIMERS
1548 	INIT_LIST_HEAD(&sig->posix_timers);
1549 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1550 	sig->real_timer.function = it_real_fn;
1551 #endif
1552 
1553 	task_lock(current->group_leader);
1554 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1555 	task_unlock(current->group_leader);
1556 
1557 	posix_cpu_timers_init_group(sig);
1558 
1559 	tty_audit_fork(sig);
1560 	sched_autogroup_fork(sig);
1561 
1562 	sig->oom_score_adj = current->signal->oom_score_adj;
1563 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1564 
1565 	mutex_init(&sig->cred_guard_mutex);
1566 
1567 	return 0;
1568 }
1569 
1570 static void copy_seccomp(struct task_struct *p)
1571 {
1572 #ifdef CONFIG_SECCOMP
1573 	/*
1574 	 * Must be called with sighand->lock held, which is common to
1575 	 * all threads in the group. Holding cred_guard_mutex is not
1576 	 * needed because this new task is not yet running and cannot
1577 	 * be racing exec.
1578 	 */
1579 	assert_spin_locked(&current->sighand->siglock);
1580 
1581 	/* Ref-count the new filter user, and assign it. */
1582 	get_seccomp_filter(current);
1583 	p->seccomp = current->seccomp;
1584 
1585 	/*
1586 	 * Explicitly enable no_new_privs here in case it got set
1587 	 * between the task_struct being duplicated and holding the
1588 	 * sighand lock. The seccomp state and nnp must be in sync.
1589 	 */
1590 	if (task_no_new_privs(current))
1591 		task_set_no_new_privs(p);
1592 
1593 	/*
1594 	 * If the parent gained a seccomp mode after copying thread
1595 	 * flags and between before we held the sighand lock, we have
1596 	 * to manually enable the seccomp thread flag here.
1597 	 */
1598 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1599 		set_tsk_thread_flag(p, TIF_SECCOMP);
1600 #endif
1601 }
1602 
1603 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1604 {
1605 	current->clear_child_tid = tidptr;
1606 
1607 	return task_pid_vnr(current);
1608 }
1609 
1610 static void rt_mutex_init_task(struct task_struct *p)
1611 {
1612 	raw_spin_lock_init(&p->pi_lock);
1613 #ifdef CONFIG_RT_MUTEXES
1614 	p->pi_waiters = RB_ROOT_CACHED;
1615 	p->pi_top_task = NULL;
1616 	p->pi_blocked_on = NULL;
1617 #endif
1618 }
1619 
1620 #ifdef CONFIG_POSIX_TIMERS
1621 /*
1622  * Initialize POSIX timer handling for a single task.
1623  */
1624 static void posix_cpu_timers_init(struct task_struct *tsk)
1625 {
1626 	tsk->cputime_expires.prof_exp = 0;
1627 	tsk->cputime_expires.virt_exp = 0;
1628 	tsk->cputime_expires.sched_exp = 0;
1629 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1630 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1631 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1632 }
1633 #else
1634 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1635 #endif
1636 
1637 static inline void init_task_pid_links(struct task_struct *task)
1638 {
1639 	enum pid_type type;
1640 
1641 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1642 		INIT_HLIST_NODE(&task->pid_links[type]);
1643 	}
1644 }
1645 
1646 static inline void
1647 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1648 {
1649 	if (type == PIDTYPE_PID)
1650 		task->thread_pid = pid;
1651 	else
1652 		task->signal->pids[type] = pid;
1653 }
1654 
1655 static inline void rcu_copy_process(struct task_struct *p)
1656 {
1657 #ifdef CONFIG_PREEMPT_RCU
1658 	p->rcu_read_lock_nesting = 0;
1659 	p->rcu_read_unlock_special.s = 0;
1660 	p->rcu_blocked_node = NULL;
1661 	INIT_LIST_HEAD(&p->rcu_node_entry);
1662 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1663 #ifdef CONFIG_TASKS_RCU
1664 	p->rcu_tasks_holdout = false;
1665 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1666 	p->rcu_tasks_idle_cpu = -1;
1667 #endif /* #ifdef CONFIG_TASKS_RCU */
1668 }
1669 
1670 /*
1671  * This creates a new process as a copy of the old one,
1672  * but does not actually start it yet.
1673  *
1674  * It copies the registers, and all the appropriate
1675  * parts of the process environment (as per the clone
1676  * flags). The actual kick-off is left to the caller.
1677  */
1678 static __latent_entropy struct task_struct *copy_process(
1679 					unsigned long clone_flags,
1680 					unsigned long stack_start,
1681 					unsigned long stack_size,
1682 					int __user *child_tidptr,
1683 					struct pid *pid,
1684 					int trace,
1685 					unsigned long tls,
1686 					int node)
1687 {
1688 	int retval;
1689 	struct task_struct *p;
1690 	struct multiprocess_signals delayed;
1691 
1692 	/*
1693 	 * Don't allow sharing the root directory with processes in a different
1694 	 * namespace
1695 	 */
1696 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1697 		return ERR_PTR(-EINVAL);
1698 
1699 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1700 		return ERR_PTR(-EINVAL);
1701 
1702 	/*
1703 	 * Thread groups must share signals as well, and detached threads
1704 	 * can only be started up within the thread group.
1705 	 */
1706 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1707 		return ERR_PTR(-EINVAL);
1708 
1709 	/*
1710 	 * Shared signal handlers imply shared VM. By way of the above,
1711 	 * thread groups also imply shared VM. Blocking this case allows
1712 	 * for various simplifications in other code.
1713 	 */
1714 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1715 		return ERR_PTR(-EINVAL);
1716 
1717 	/*
1718 	 * Siblings of global init remain as zombies on exit since they are
1719 	 * not reaped by their parent (swapper). To solve this and to avoid
1720 	 * multi-rooted process trees, prevent global and container-inits
1721 	 * from creating siblings.
1722 	 */
1723 	if ((clone_flags & CLONE_PARENT) &&
1724 				current->signal->flags & SIGNAL_UNKILLABLE)
1725 		return ERR_PTR(-EINVAL);
1726 
1727 	/*
1728 	 * If the new process will be in a different pid or user namespace
1729 	 * do not allow it to share a thread group with the forking task.
1730 	 */
1731 	if (clone_flags & CLONE_THREAD) {
1732 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1733 		    (task_active_pid_ns(current) !=
1734 				current->nsproxy->pid_ns_for_children))
1735 			return ERR_PTR(-EINVAL);
1736 	}
1737 
1738 	/*
1739 	 * Force any signals received before this point to be delivered
1740 	 * before the fork happens.  Collect up signals sent to multiple
1741 	 * processes that happen during the fork and delay them so that
1742 	 * they appear to happen after the fork.
1743 	 */
1744 	sigemptyset(&delayed.signal);
1745 	INIT_HLIST_NODE(&delayed.node);
1746 
1747 	spin_lock_irq(&current->sighand->siglock);
1748 	if (!(clone_flags & CLONE_THREAD))
1749 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
1750 	recalc_sigpending();
1751 	spin_unlock_irq(&current->sighand->siglock);
1752 	retval = -ERESTARTNOINTR;
1753 	if (signal_pending(current))
1754 		goto fork_out;
1755 
1756 	retval = -ENOMEM;
1757 	p = dup_task_struct(current, node);
1758 	if (!p)
1759 		goto fork_out;
1760 
1761 	/*
1762 	 * This _must_ happen before we call free_task(), i.e. before we jump
1763 	 * to any of the bad_fork_* labels. This is to avoid freeing
1764 	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1765 	 * kernel threads (PF_KTHREAD).
1766 	 */
1767 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1768 	/*
1769 	 * Clear TID on mm_release()?
1770 	 */
1771 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1772 
1773 	ftrace_graph_init_task(p);
1774 
1775 	rt_mutex_init_task(p);
1776 
1777 #ifdef CONFIG_PROVE_LOCKING
1778 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1779 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1780 #endif
1781 	retval = -EAGAIN;
1782 	if (atomic_read(&p->real_cred->user->processes) >=
1783 			task_rlimit(p, RLIMIT_NPROC)) {
1784 		if (p->real_cred->user != INIT_USER &&
1785 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1786 			goto bad_fork_free;
1787 	}
1788 	current->flags &= ~PF_NPROC_EXCEEDED;
1789 
1790 	retval = copy_creds(p, clone_flags);
1791 	if (retval < 0)
1792 		goto bad_fork_free;
1793 
1794 	/*
1795 	 * If multiple threads are within copy_process(), then this check
1796 	 * triggers too late. This doesn't hurt, the check is only there
1797 	 * to stop root fork bombs.
1798 	 */
1799 	retval = -EAGAIN;
1800 	if (nr_threads >= max_threads)
1801 		goto bad_fork_cleanup_count;
1802 
1803 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1804 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1805 	p->flags |= PF_FORKNOEXEC;
1806 	INIT_LIST_HEAD(&p->children);
1807 	INIT_LIST_HEAD(&p->sibling);
1808 	rcu_copy_process(p);
1809 	p->vfork_done = NULL;
1810 	spin_lock_init(&p->alloc_lock);
1811 
1812 	init_sigpending(&p->pending);
1813 
1814 	p->utime = p->stime = p->gtime = 0;
1815 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1816 	p->utimescaled = p->stimescaled = 0;
1817 #endif
1818 	prev_cputime_init(&p->prev_cputime);
1819 
1820 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1821 	seqcount_init(&p->vtime.seqcount);
1822 	p->vtime.starttime = 0;
1823 	p->vtime.state = VTIME_INACTIVE;
1824 #endif
1825 
1826 #if defined(SPLIT_RSS_COUNTING)
1827 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1828 #endif
1829 
1830 	p->default_timer_slack_ns = current->timer_slack_ns;
1831 
1832 #ifdef CONFIG_PSI
1833 	p->psi_flags = 0;
1834 #endif
1835 
1836 	task_io_accounting_init(&p->ioac);
1837 	acct_clear_integrals(p);
1838 
1839 	posix_cpu_timers_init(p);
1840 
1841 	p->start_time = ktime_get_ns();
1842 	p->real_start_time = ktime_get_boot_ns();
1843 	p->io_context = NULL;
1844 	audit_set_context(p, NULL);
1845 	cgroup_fork(p);
1846 #ifdef CONFIG_NUMA
1847 	p->mempolicy = mpol_dup(p->mempolicy);
1848 	if (IS_ERR(p->mempolicy)) {
1849 		retval = PTR_ERR(p->mempolicy);
1850 		p->mempolicy = NULL;
1851 		goto bad_fork_cleanup_threadgroup_lock;
1852 	}
1853 #endif
1854 #ifdef CONFIG_CPUSETS
1855 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1856 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1857 	seqcount_init(&p->mems_allowed_seq);
1858 #endif
1859 #ifdef CONFIG_TRACE_IRQFLAGS
1860 	p->irq_events = 0;
1861 	p->hardirqs_enabled = 0;
1862 	p->hardirq_enable_ip = 0;
1863 	p->hardirq_enable_event = 0;
1864 	p->hardirq_disable_ip = _THIS_IP_;
1865 	p->hardirq_disable_event = 0;
1866 	p->softirqs_enabled = 1;
1867 	p->softirq_enable_ip = _THIS_IP_;
1868 	p->softirq_enable_event = 0;
1869 	p->softirq_disable_ip = 0;
1870 	p->softirq_disable_event = 0;
1871 	p->hardirq_context = 0;
1872 	p->softirq_context = 0;
1873 #endif
1874 
1875 	p->pagefault_disabled = 0;
1876 
1877 #ifdef CONFIG_LOCKDEP
1878 	p->lockdep_depth = 0; /* no locks held yet */
1879 	p->curr_chain_key = 0;
1880 	p->lockdep_recursion = 0;
1881 	lockdep_init_task(p);
1882 #endif
1883 
1884 #ifdef CONFIG_DEBUG_MUTEXES
1885 	p->blocked_on = NULL; /* not blocked yet */
1886 #endif
1887 #ifdef CONFIG_BCACHE
1888 	p->sequential_io	= 0;
1889 	p->sequential_io_avg	= 0;
1890 #endif
1891 
1892 	/* Perform scheduler related setup. Assign this task to a CPU. */
1893 	retval = sched_fork(clone_flags, p);
1894 	if (retval)
1895 		goto bad_fork_cleanup_policy;
1896 
1897 	retval = perf_event_init_task(p);
1898 	if (retval)
1899 		goto bad_fork_cleanup_policy;
1900 	retval = audit_alloc(p);
1901 	if (retval)
1902 		goto bad_fork_cleanup_perf;
1903 	/* copy all the process information */
1904 	shm_init_task(p);
1905 	retval = security_task_alloc(p, clone_flags);
1906 	if (retval)
1907 		goto bad_fork_cleanup_audit;
1908 	retval = copy_semundo(clone_flags, p);
1909 	if (retval)
1910 		goto bad_fork_cleanup_security;
1911 	retval = copy_files(clone_flags, p);
1912 	if (retval)
1913 		goto bad_fork_cleanup_semundo;
1914 	retval = copy_fs(clone_flags, p);
1915 	if (retval)
1916 		goto bad_fork_cleanup_files;
1917 	retval = copy_sighand(clone_flags, p);
1918 	if (retval)
1919 		goto bad_fork_cleanup_fs;
1920 	retval = copy_signal(clone_flags, p);
1921 	if (retval)
1922 		goto bad_fork_cleanup_sighand;
1923 	retval = copy_mm(clone_flags, p);
1924 	if (retval)
1925 		goto bad_fork_cleanup_signal;
1926 	retval = copy_namespaces(clone_flags, p);
1927 	if (retval)
1928 		goto bad_fork_cleanup_mm;
1929 	retval = copy_io(clone_flags, p);
1930 	if (retval)
1931 		goto bad_fork_cleanup_namespaces;
1932 	retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1933 	if (retval)
1934 		goto bad_fork_cleanup_io;
1935 
1936 	stackleak_task_init(p);
1937 
1938 	if (pid != &init_struct_pid) {
1939 		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1940 		if (IS_ERR(pid)) {
1941 			retval = PTR_ERR(pid);
1942 			goto bad_fork_cleanup_thread;
1943 		}
1944 	}
1945 
1946 #ifdef CONFIG_BLOCK
1947 	p->plug = NULL;
1948 #endif
1949 #ifdef CONFIG_FUTEX
1950 	p->robust_list = NULL;
1951 #ifdef CONFIG_COMPAT
1952 	p->compat_robust_list = NULL;
1953 #endif
1954 	INIT_LIST_HEAD(&p->pi_state_list);
1955 	p->pi_state_cache = NULL;
1956 #endif
1957 	/*
1958 	 * sigaltstack should be cleared when sharing the same VM
1959 	 */
1960 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1961 		sas_ss_reset(p);
1962 
1963 	/*
1964 	 * Syscall tracing and stepping should be turned off in the
1965 	 * child regardless of CLONE_PTRACE.
1966 	 */
1967 	user_disable_single_step(p);
1968 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1969 #ifdef TIF_SYSCALL_EMU
1970 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1971 #endif
1972 	clear_all_latency_tracing(p);
1973 
1974 	/* ok, now we should be set up.. */
1975 	p->pid = pid_nr(pid);
1976 	if (clone_flags & CLONE_THREAD) {
1977 		p->exit_signal = -1;
1978 		p->group_leader = current->group_leader;
1979 		p->tgid = current->tgid;
1980 	} else {
1981 		if (clone_flags & CLONE_PARENT)
1982 			p->exit_signal = current->group_leader->exit_signal;
1983 		else
1984 			p->exit_signal = (clone_flags & CSIGNAL);
1985 		p->group_leader = p;
1986 		p->tgid = p->pid;
1987 	}
1988 
1989 	p->nr_dirtied = 0;
1990 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1991 	p->dirty_paused_when = 0;
1992 
1993 	p->pdeath_signal = 0;
1994 	INIT_LIST_HEAD(&p->thread_group);
1995 	p->task_works = NULL;
1996 
1997 	cgroup_threadgroup_change_begin(current);
1998 	/*
1999 	 * Ensure that the cgroup subsystem policies allow the new process to be
2000 	 * forked. It should be noted the the new process's css_set can be changed
2001 	 * between here and cgroup_post_fork() if an organisation operation is in
2002 	 * progress.
2003 	 */
2004 	retval = cgroup_can_fork(p);
2005 	if (retval)
2006 		goto bad_fork_free_pid;
2007 
2008 	/*
2009 	 * Make it visible to the rest of the system, but dont wake it up yet.
2010 	 * Need tasklist lock for parent etc handling!
2011 	 */
2012 	write_lock_irq(&tasklist_lock);
2013 
2014 	/* CLONE_PARENT re-uses the old parent */
2015 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2016 		p->real_parent = current->real_parent;
2017 		p->parent_exec_id = current->parent_exec_id;
2018 	} else {
2019 		p->real_parent = current;
2020 		p->parent_exec_id = current->self_exec_id;
2021 	}
2022 
2023 	klp_copy_process(p);
2024 
2025 	spin_lock(&current->sighand->siglock);
2026 
2027 	/*
2028 	 * Copy seccomp details explicitly here, in case they were changed
2029 	 * before holding sighand lock.
2030 	 */
2031 	copy_seccomp(p);
2032 
2033 	rseq_fork(p, clone_flags);
2034 
2035 	/* Don't start children in a dying pid namespace */
2036 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2037 		retval = -ENOMEM;
2038 		goto bad_fork_cancel_cgroup;
2039 	}
2040 
2041 	/* Let kill terminate clone/fork in the middle */
2042 	if (fatal_signal_pending(current)) {
2043 		retval = -EINTR;
2044 		goto bad_fork_cancel_cgroup;
2045 	}
2046 
2047 
2048 	init_task_pid_links(p);
2049 	if (likely(p->pid)) {
2050 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2051 
2052 		init_task_pid(p, PIDTYPE_PID, pid);
2053 		if (thread_group_leader(p)) {
2054 			init_task_pid(p, PIDTYPE_TGID, pid);
2055 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2056 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2057 
2058 			if (is_child_reaper(pid)) {
2059 				ns_of_pid(pid)->child_reaper = p;
2060 				p->signal->flags |= SIGNAL_UNKILLABLE;
2061 			}
2062 			p->signal->shared_pending.signal = delayed.signal;
2063 			p->signal->tty = tty_kref_get(current->signal->tty);
2064 			/*
2065 			 * Inherit has_child_subreaper flag under the same
2066 			 * tasklist_lock with adding child to the process tree
2067 			 * for propagate_has_child_subreaper optimization.
2068 			 */
2069 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2070 							 p->real_parent->signal->is_child_subreaper;
2071 			list_add_tail(&p->sibling, &p->real_parent->children);
2072 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2073 			attach_pid(p, PIDTYPE_TGID);
2074 			attach_pid(p, PIDTYPE_PGID);
2075 			attach_pid(p, PIDTYPE_SID);
2076 			__this_cpu_inc(process_counts);
2077 		} else {
2078 			current->signal->nr_threads++;
2079 			atomic_inc(&current->signal->live);
2080 			atomic_inc(&current->signal->sigcnt);
2081 			task_join_group_stop(p);
2082 			list_add_tail_rcu(&p->thread_group,
2083 					  &p->group_leader->thread_group);
2084 			list_add_tail_rcu(&p->thread_node,
2085 					  &p->signal->thread_head);
2086 		}
2087 		attach_pid(p, PIDTYPE_PID);
2088 		nr_threads++;
2089 	}
2090 	total_forks++;
2091 	hlist_del_init(&delayed.node);
2092 	spin_unlock(&current->sighand->siglock);
2093 	syscall_tracepoint_update(p);
2094 	write_unlock_irq(&tasklist_lock);
2095 
2096 	proc_fork_connector(p);
2097 	cgroup_post_fork(p);
2098 	cgroup_threadgroup_change_end(current);
2099 	perf_event_fork(p);
2100 
2101 	trace_task_newtask(p, clone_flags);
2102 	uprobe_copy_process(p, clone_flags);
2103 
2104 	return p;
2105 
2106 bad_fork_cancel_cgroup:
2107 	spin_unlock(&current->sighand->siglock);
2108 	write_unlock_irq(&tasklist_lock);
2109 	cgroup_cancel_fork(p);
2110 bad_fork_free_pid:
2111 	cgroup_threadgroup_change_end(current);
2112 	if (pid != &init_struct_pid)
2113 		free_pid(pid);
2114 bad_fork_cleanup_thread:
2115 	exit_thread(p);
2116 bad_fork_cleanup_io:
2117 	if (p->io_context)
2118 		exit_io_context(p);
2119 bad_fork_cleanup_namespaces:
2120 	exit_task_namespaces(p);
2121 bad_fork_cleanup_mm:
2122 	if (p->mm)
2123 		mmput(p->mm);
2124 bad_fork_cleanup_signal:
2125 	if (!(clone_flags & CLONE_THREAD))
2126 		free_signal_struct(p->signal);
2127 bad_fork_cleanup_sighand:
2128 	__cleanup_sighand(p->sighand);
2129 bad_fork_cleanup_fs:
2130 	exit_fs(p); /* blocking */
2131 bad_fork_cleanup_files:
2132 	exit_files(p); /* blocking */
2133 bad_fork_cleanup_semundo:
2134 	exit_sem(p);
2135 bad_fork_cleanup_security:
2136 	security_task_free(p);
2137 bad_fork_cleanup_audit:
2138 	audit_free(p);
2139 bad_fork_cleanup_perf:
2140 	perf_event_free_task(p);
2141 bad_fork_cleanup_policy:
2142 	lockdep_free_task(p);
2143 #ifdef CONFIG_NUMA
2144 	mpol_put(p->mempolicy);
2145 bad_fork_cleanup_threadgroup_lock:
2146 #endif
2147 	delayacct_tsk_free(p);
2148 bad_fork_cleanup_count:
2149 	atomic_dec(&p->cred->user->processes);
2150 	exit_creds(p);
2151 bad_fork_free:
2152 	p->state = TASK_DEAD;
2153 	put_task_stack(p);
2154 	free_task(p);
2155 fork_out:
2156 	spin_lock_irq(&current->sighand->siglock);
2157 	hlist_del_init(&delayed.node);
2158 	spin_unlock_irq(&current->sighand->siglock);
2159 	return ERR_PTR(retval);
2160 }
2161 
2162 static inline void init_idle_pids(struct task_struct *idle)
2163 {
2164 	enum pid_type type;
2165 
2166 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2167 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2168 		init_task_pid(idle, type, &init_struct_pid);
2169 	}
2170 }
2171 
2172 struct task_struct *fork_idle(int cpu)
2173 {
2174 	struct task_struct *task;
2175 	task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
2176 			    cpu_to_node(cpu));
2177 	if (!IS_ERR(task)) {
2178 		init_idle_pids(task);
2179 		init_idle(task, cpu);
2180 	}
2181 
2182 	return task;
2183 }
2184 
2185 /*
2186  *  Ok, this is the main fork-routine.
2187  *
2188  * It copies the process, and if successful kick-starts
2189  * it and waits for it to finish using the VM if required.
2190  */
2191 long _do_fork(unsigned long clone_flags,
2192 	      unsigned long stack_start,
2193 	      unsigned long stack_size,
2194 	      int __user *parent_tidptr,
2195 	      int __user *child_tidptr,
2196 	      unsigned long tls)
2197 {
2198 	struct completion vfork;
2199 	struct pid *pid;
2200 	struct task_struct *p;
2201 	int trace = 0;
2202 	long nr;
2203 
2204 	/*
2205 	 * Determine whether and which event to report to ptracer.  When
2206 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2207 	 * requested, no event is reported; otherwise, report if the event
2208 	 * for the type of forking is enabled.
2209 	 */
2210 	if (!(clone_flags & CLONE_UNTRACED)) {
2211 		if (clone_flags & CLONE_VFORK)
2212 			trace = PTRACE_EVENT_VFORK;
2213 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
2214 			trace = PTRACE_EVENT_CLONE;
2215 		else
2216 			trace = PTRACE_EVENT_FORK;
2217 
2218 		if (likely(!ptrace_event_enabled(current, trace)))
2219 			trace = 0;
2220 	}
2221 
2222 	p = copy_process(clone_flags, stack_start, stack_size,
2223 			 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2224 	add_latent_entropy();
2225 
2226 	if (IS_ERR(p))
2227 		return PTR_ERR(p);
2228 
2229 	/*
2230 	 * Do this prior waking up the new thread - the thread pointer
2231 	 * might get invalid after that point, if the thread exits quickly.
2232 	 */
2233 	trace_sched_process_fork(current, p);
2234 
2235 	pid = get_task_pid(p, PIDTYPE_PID);
2236 	nr = pid_vnr(pid);
2237 
2238 	if (clone_flags & CLONE_PARENT_SETTID)
2239 		put_user(nr, parent_tidptr);
2240 
2241 	if (clone_flags & CLONE_VFORK) {
2242 		p->vfork_done = &vfork;
2243 		init_completion(&vfork);
2244 		get_task_struct(p);
2245 	}
2246 
2247 	wake_up_new_task(p);
2248 
2249 	/* forking complete and child started to run, tell ptracer */
2250 	if (unlikely(trace))
2251 		ptrace_event_pid(trace, pid);
2252 
2253 	if (clone_flags & CLONE_VFORK) {
2254 		if (!wait_for_vfork_done(p, &vfork))
2255 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2256 	}
2257 
2258 	put_pid(pid);
2259 	return nr;
2260 }
2261 
2262 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2263 /* For compatibility with architectures that call do_fork directly rather than
2264  * using the syscall entry points below. */
2265 long do_fork(unsigned long clone_flags,
2266 	      unsigned long stack_start,
2267 	      unsigned long stack_size,
2268 	      int __user *parent_tidptr,
2269 	      int __user *child_tidptr)
2270 {
2271 	return _do_fork(clone_flags, stack_start, stack_size,
2272 			parent_tidptr, child_tidptr, 0);
2273 }
2274 #endif
2275 
2276 /*
2277  * Create a kernel thread.
2278  */
2279 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2280 {
2281 	return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2282 		(unsigned long)arg, NULL, NULL, 0);
2283 }
2284 
2285 #ifdef __ARCH_WANT_SYS_FORK
2286 SYSCALL_DEFINE0(fork)
2287 {
2288 #ifdef CONFIG_MMU
2289 	return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2290 #else
2291 	/* can not support in nommu mode */
2292 	return -EINVAL;
2293 #endif
2294 }
2295 #endif
2296 
2297 #ifdef __ARCH_WANT_SYS_VFORK
2298 SYSCALL_DEFINE0(vfork)
2299 {
2300 	return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2301 			0, NULL, NULL, 0);
2302 }
2303 #endif
2304 
2305 #ifdef __ARCH_WANT_SYS_CLONE
2306 #ifdef CONFIG_CLONE_BACKWARDS
2307 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2308 		 int __user *, parent_tidptr,
2309 		 unsigned long, tls,
2310 		 int __user *, child_tidptr)
2311 #elif defined(CONFIG_CLONE_BACKWARDS2)
2312 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2313 		 int __user *, parent_tidptr,
2314 		 int __user *, child_tidptr,
2315 		 unsigned long, tls)
2316 #elif defined(CONFIG_CLONE_BACKWARDS3)
2317 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2318 		int, stack_size,
2319 		int __user *, parent_tidptr,
2320 		int __user *, child_tidptr,
2321 		unsigned long, tls)
2322 #else
2323 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2324 		 int __user *, parent_tidptr,
2325 		 int __user *, child_tidptr,
2326 		 unsigned long, tls)
2327 #endif
2328 {
2329 	return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2330 }
2331 #endif
2332 
2333 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2334 {
2335 	struct task_struct *leader, *parent, *child;
2336 	int res;
2337 
2338 	read_lock(&tasklist_lock);
2339 	leader = top = top->group_leader;
2340 down:
2341 	for_each_thread(leader, parent) {
2342 		list_for_each_entry(child, &parent->children, sibling) {
2343 			res = visitor(child, data);
2344 			if (res) {
2345 				if (res < 0)
2346 					goto out;
2347 				leader = child;
2348 				goto down;
2349 			}
2350 up:
2351 			;
2352 		}
2353 	}
2354 
2355 	if (leader != top) {
2356 		child = leader;
2357 		parent = child->real_parent;
2358 		leader = parent->group_leader;
2359 		goto up;
2360 	}
2361 out:
2362 	read_unlock(&tasklist_lock);
2363 }
2364 
2365 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2366 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2367 #endif
2368 
2369 static void sighand_ctor(void *data)
2370 {
2371 	struct sighand_struct *sighand = data;
2372 
2373 	spin_lock_init(&sighand->siglock);
2374 	init_waitqueue_head(&sighand->signalfd_wqh);
2375 }
2376 
2377 void __init proc_caches_init(void)
2378 {
2379 	unsigned int mm_size;
2380 
2381 	sighand_cachep = kmem_cache_create("sighand_cache",
2382 			sizeof(struct sighand_struct), 0,
2383 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2384 			SLAB_ACCOUNT, sighand_ctor);
2385 	signal_cachep = kmem_cache_create("signal_cache",
2386 			sizeof(struct signal_struct), 0,
2387 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2388 			NULL);
2389 	files_cachep = kmem_cache_create("files_cache",
2390 			sizeof(struct files_struct), 0,
2391 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2392 			NULL);
2393 	fs_cachep = kmem_cache_create("fs_cache",
2394 			sizeof(struct fs_struct), 0,
2395 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2396 			NULL);
2397 
2398 	/*
2399 	 * The mm_cpumask is located at the end of mm_struct, and is
2400 	 * dynamically sized based on the maximum CPU number this system
2401 	 * can have, taking hotplug into account (nr_cpu_ids).
2402 	 */
2403 	mm_size = sizeof(struct mm_struct) + cpumask_size();
2404 
2405 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2406 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2407 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2408 			offsetof(struct mm_struct, saved_auxv),
2409 			sizeof_field(struct mm_struct, saved_auxv),
2410 			NULL);
2411 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2412 	mmap_init();
2413 	nsproxy_cache_init();
2414 }
2415 
2416 /*
2417  * Check constraints on flags passed to the unshare system call.
2418  */
2419 static int check_unshare_flags(unsigned long unshare_flags)
2420 {
2421 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2422 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2423 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2424 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2425 		return -EINVAL;
2426 	/*
2427 	 * Not implemented, but pretend it works if there is nothing
2428 	 * to unshare.  Note that unsharing the address space or the
2429 	 * signal handlers also need to unshare the signal queues (aka
2430 	 * CLONE_THREAD).
2431 	 */
2432 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2433 		if (!thread_group_empty(current))
2434 			return -EINVAL;
2435 	}
2436 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2437 		if (atomic_read(&current->sighand->count) > 1)
2438 			return -EINVAL;
2439 	}
2440 	if (unshare_flags & CLONE_VM) {
2441 		if (!current_is_single_threaded())
2442 			return -EINVAL;
2443 	}
2444 
2445 	return 0;
2446 }
2447 
2448 /*
2449  * Unshare the filesystem structure if it is being shared
2450  */
2451 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2452 {
2453 	struct fs_struct *fs = current->fs;
2454 
2455 	if (!(unshare_flags & CLONE_FS) || !fs)
2456 		return 0;
2457 
2458 	/* don't need lock here; in the worst case we'll do useless copy */
2459 	if (fs->users == 1)
2460 		return 0;
2461 
2462 	*new_fsp = copy_fs_struct(fs);
2463 	if (!*new_fsp)
2464 		return -ENOMEM;
2465 
2466 	return 0;
2467 }
2468 
2469 /*
2470  * Unshare file descriptor table if it is being shared
2471  */
2472 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2473 {
2474 	struct files_struct *fd = current->files;
2475 	int error = 0;
2476 
2477 	if ((unshare_flags & CLONE_FILES) &&
2478 	    (fd && atomic_read(&fd->count) > 1)) {
2479 		*new_fdp = dup_fd(fd, &error);
2480 		if (!*new_fdp)
2481 			return error;
2482 	}
2483 
2484 	return 0;
2485 }
2486 
2487 /*
2488  * unshare allows a process to 'unshare' part of the process
2489  * context which was originally shared using clone.  copy_*
2490  * functions used by do_fork() cannot be used here directly
2491  * because they modify an inactive task_struct that is being
2492  * constructed. Here we are modifying the current, active,
2493  * task_struct.
2494  */
2495 int ksys_unshare(unsigned long unshare_flags)
2496 {
2497 	struct fs_struct *fs, *new_fs = NULL;
2498 	struct files_struct *fd, *new_fd = NULL;
2499 	struct cred *new_cred = NULL;
2500 	struct nsproxy *new_nsproxy = NULL;
2501 	int do_sysvsem = 0;
2502 	int err;
2503 
2504 	/*
2505 	 * If unsharing a user namespace must also unshare the thread group
2506 	 * and unshare the filesystem root and working directories.
2507 	 */
2508 	if (unshare_flags & CLONE_NEWUSER)
2509 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2510 	/*
2511 	 * If unsharing vm, must also unshare signal handlers.
2512 	 */
2513 	if (unshare_flags & CLONE_VM)
2514 		unshare_flags |= CLONE_SIGHAND;
2515 	/*
2516 	 * If unsharing a signal handlers, must also unshare the signal queues.
2517 	 */
2518 	if (unshare_flags & CLONE_SIGHAND)
2519 		unshare_flags |= CLONE_THREAD;
2520 	/*
2521 	 * If unsharing namespace, must also unshare filesystem information.
2522 	 */
2523 	if (unshare_flags & CLONE_NEWNS)
2524 		unshare_flags |= CLONE_FS;
2525 
2526 	err = check_unshare_flags(unshare_flags);
2527 	if (err)
2528 		goto bad_unshare_out;
2529 	/*
2530 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2531 	 * to a new ipc namespace, the semaphore arrays from the old
2532 	 * namespace are unreachable.
2533 	 */
2534 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2535 		do_sysvsem = 1;
2536 	err = unshare_fs(unshare_flags, &new_fs);
2537 	if (err)
2538 		goto bad_unshare_out;
2539 	err = unshare_fd(unshare_flags, &new_fd);
2540 	if (err)
2541 		goto bad_unshare_cleanup_fs;
2542 	err = unshare_userns(unshare_flags, &new_cred);
2543 	if (err)
2544 		goto bad_unshare_cleanup_fd;
2545 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2546 					 new_cred, new_fs);
2547 	if (err)
2548 		goto bad_unshare_cleanup_cred;
2549 
2550 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2551 		if (do_sysvsem) {
2552 			/*
2553 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2554 			 */
2555 			exit_sem(current);
2556 		}
2557 		if (unshare_flags & CLONE_NEWIPC) {
2558 			/* Orphan segments in old ns (see sem above). */
2559 			exit_shm(current);
2560 			shm_init_task(current);
2561 		}
2562 
2563 		if (new_nsproxy)
2564 			switch_task_namespaces(current, new_nsproxy);
2565 
2566 		task_lock(current);
2567 
2568 		if (new_fs) {
2569 			fs = current->fs;
2570 			spin_lock(&fs->lock);
2571 			current->fs = new_fs;
2572 			if (--fs->users)
2573 				new_fs = NULL;
2574 			else
2575 				new_fs = fs;
2576 			spin_unlock(&fs->lock);
2577 		}
2578 
2579 		if (new_fd) {
2580 			fd = current->files;
2581 			current->files = new_fd;
2582 			new_fd = fd;
2583 		}
2584 
2585 		task_unlock(current);
2586 
2587 		if (new_cred) {
2588 			/* Install the new user namespace */
2589 			commit_creds(new_cred);
2590 			new_cred = NULL;
2591 		}
2592 	}
2593 
2594 	perf_event_namespaces(current);
2595 
2596 bad_unshare_cleanup_cred:
2597 	if (new_cred)
2598 		put_cred(new_cred);
2599 bad_unshare_cleanup_fd:
2600 	if (new_fd)
2601 		put_files_struct(new_fd);
2602 
2603 bad_unshare_cleanup_fs:
2604 	if (new_fs)
2605 		free_fs_struct(new_fs);
2606 
2607 bad_unshare_out:
2608 	return err;
2609 }
2610 
2611 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2612 {
2613 	return ksys_unshare(unshare_flags);
2614 }
2615 
2616 /*
2617  *	Helper to unshare the files of the current task.
2618  *	We don't want to expose copy_files internals to
2619  *	the exec layer of the kernel.
2620  */
2621 
2622 int unshare_files(struct files_struct **displaced)
2623 {
2624 	struct task_struct *task = current;
2625 	struct files_struct *copy = NULL;
2626 	int error;
2627 
2628 	error = unshare_fd(CLONE_FILES, &copy);
2629 	if (error || !copy) {
2630 		*displaced = NULL;
2631 		return error;
2632 	}
2633 	*displaced = task->files;
2634 	task_lock(task);
2635 	task->files = copy;
2636 	task_unlock(task);
2637 	return 0;
2638 }
2639 
2640 int sysctl_max_threads(struct ctl_table *table, int write,
2641 		       void __user *buffer, size_t *lenp, loff_t *ppos)
2642 {
2643 	struct ctl_table t;
2644 	int ret;
2645 	int threads = max_threads;
2646 	int min = MIN_THREADS;
2647 	int max = MAX_THREADS;
2648 
2649 	t = *table;
2650 	t.data = &threads;
2651 	t.extra1 = &min;
2652 	t.extra2 = &max;
2653 
2654 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2655 	if (ret || !write)
2656 		return ret;
2657 
2658 	set_max_threads(threads);
2659 
2660 	return 0;
2661 }
2662