xref: /linux/kernel/fork.c (revision 19a4ff534bb09686f53800564cb977bad2177c00)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/hmm.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/vmacache.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/random.h>
79 #include <linux/tty.h>
80 #include <linux/blkdev.h>
81 #include <linux/fs_struct.h>
82 #include <linux/magic.h>
83 #include <linux/perf_event.h>
84 #include <linux/posix-timers.h>
85 #include <linux/user-return-notifier.h>
86 #include <linux/oom.h>
87 #include <linux/khugepaged.h>
88 #include <linux/signalfd.h>
89 #include <linux/uprobes.h>
90 #include <linux/aio.h>
91 #include <linux/compiler.h>
92 #include <linux/sysctl.h>
93 #include <linux/kcov.h>
94 #include <linux/livepatch.h>
95 #include <linux/thread_info.h>
96 #include <linux/stackleak.h>
97 
98 #include <asm/pgtable.h>
99 #include <asm/pgalloc.h>
100 #include <linux/uaccess.h>
101 #include <asm/mmu_context.h>
102 #include <asm/cacheflush.h>
103 #include <asm/tlbflush.h>
104 
105 #include <trace/events/sched.h>
106 
107 #define CREATE_TRACE_POINTS
108 #include <trace/events/task.h>
109 
110 /*
111  * Minimum number of threads to boot the kernel
112  */
113 #define MIN_THREADS 20
114 
115 /*
116  * Maximum number of threads
117  */
118 #define MAX_THREADS FUTEX_TID_MASK
119 
120 /*
121  * Protected counters by write_lock_irq(&tasklist_lock)
122  */
123 unsigned long total_forks;	/* Handle normal Linux uptimes. */
124 int nr_threads;			/* The idle threads do not count.. */
125 
126 static int max_threads;		/* tunable limit on nr_threads */
127 
128 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
129 
130 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
131 
132 #ifdef CONFIG_PROVE_RCU
133 int lockdep_tasklist_lock_is_held(void)
134 {
135 	return lockdep_is_held(&tasklist_lock);
136 }
137 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
138 #endif /* #ifdef CONFIG_PROVE_RCU */
139 
140 int nr_processes(void)
141 {
142 	int cpu;
143 	int total = 0;
144 
145 	for_each_possible_cpu(cpu)
146 		total += per_cpu(process_counts, cpu);
147 
148 	return total;
149 }
150 
151 void __weak arch_release_task_struct(struct task_struct *tsk)
152 {
153 }
154 
155 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
156 static struct kmem_cache *task_struct_cachep;
157 
158 static inline struct task_struct *alloc_task_struct_node(int node)
159 {
160 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
161 }
162 
163 static inline void free_task_struct(struct task_struct *tsk)
164 {
165 	kmem_cache_free(task_struct_cachep, tsk);
166 }
167 #endif
168 
169 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
170 
171 /*
172  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
173  * kmemcache based allocator.
174  */
175 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
176 
177 #ifdef CONFIG_VMAP_STACK
178 /*
179  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
180  * flush.  Try to minimize the number of calls by caching stacks.
181  */
182 #define NR_CACHED_STACKS 2
183 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
184 
185 static int free_vm_stack_cache(unsigned int cpu)
186 {
187 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
188 	int i;
189 
190 	for (i = 0; i < NR_CACHED_STACKS; i++) {
191 		struct vm_struct *vm_stack = cached_vm_stacks[i];
192 
193 		if (!vm_stack)
194 			continue;
195 
196 		vfree(vm_stack->addr);
197 		cached_vm_stacks[i] = NULL;
198 	}
199 
200 	return 0;
201 }
202 #endif
203 
204 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
205 {
206 #ifdef CONFIG_VMAP_STACK
207 	void *stack;
208 	int i;
209 
210 	for (i = 0; i < NR_CACHED_STACKS; i++) {
211 		struct vm_struct *s;
212 
213 		s = this_cpu_xchg(cached_stacks[i], NULL);
214 
215 		if (!s)
216 			continue;
217 
218 		/* Clear stale pointers from reused stack. */
219 		memset(s->addr, 0, THREAD_SIZE);
220 
221 		tsk->stack_vm_area = s;
222 		tsk->stack = s->addr;
223 		return s->addr;
224 	}
225 
226 	/*
227 	 * Allocated stacks are cached and later reused by new threads,
228 	 * so memcg accounting is performed manually on assigning/releasing
229 	 * stacks to tasks. Drop __GFP_ACCOUNT.
230 	 */
231 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
232 				     VMALLOC_START, VMALLOC_END,
233 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
234 				     PAGE_KERNEL,
235 				     0, node, __builtin_return_address(0));
236 
237 	/*
238 	 * We can't call find_vm_area() in interrupt context, and
239 	 * free_thread_stack() can be called in interrupt context,
240 	 * so cache the vm_struct.
241 	 */
242 	if (stack) {
243 		tsk->stack_vm_area = find_vm_area(stack);
244 		tsk->stack = stack;
245 	}
246 	return stack;
247 #else
248 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
249 					     THREAD_SIZE_ORDER);
250 
251 	if (likely(page)) {
252 		tsk->stack = page_address(page);
253 		return tsk->stack;
254 	}
255 	return NULL;
256 #endif
257 }
258 
259 static inline void free_thread_stack(struct task_struct *tsk)
260 {
261 #ifdef CONFIG_VMAP_STACK
262 	struct vm_struct *vm = task_stack_vm_area(tsk);
263 
264 	if (vm) {
265 		int i;
266 
267 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
268 			mod_memcg_page_state(vm->pages[i],
269 					     MEMCG_KERNEL_STACK_KB,
270 					     -(int)(PAGE_SIZE / 1024));
271 
272 			memcg_kmem_uncharge(vm->pages[i], 0);
273 		}
274 
275 		for (i = 0; i < NR_CACHED_STACKS; i++) {
276 			if (this_cpu_cmpxchg(cached_stacks[i],
277 					NULL, tsk->stack_vm_area) != NULL)
278 				continue;
279 
280 			return;
281 		}
282 
283 		vfree_atomic(tsk->stack);
284 		return;
285 	}
286 #endif
287 
288 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
289 }
290 # else
291 static struct kmem_cache *thread_stack_cache;
292 
293 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
294 						  int node)
295 {
296 	unsigned long *stack;
297 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
298 	tsk->stack = stack;
299 	return stack;
300 }
301 
302 static void free_thread_stack(struct task_struct *tsk)
303 {
304 	kmem_cache_free(thread_stack_cache, tsk->stack);
305 }
306 
307 void thread_stack_cache_init(void)
308 {
309 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
310 					THREAD_SIZE, THREAD_SIZE, 0, 0,
311 					THREAD_SIZE, NULL);
312 	BUG_ON(thread_stack_cache == NULL);
313 }
314 # endif
315 #endif
316 
317 /* SLAB cache for signal_struct structures (tsk->signal) */
318 static struct kmem_cache *signal_cachep;
319 
320 /* SLAB cache for sighand_struct structures (tsk->sighand) */
321 struct kmem_cache *sighand_cachep;
322 
323 /* SLAB cache for files_struct structures (tsk->files) */
324 struct kmem_cache *files_cachep;
325 
326 /* SLAB cache for fs_struct structures (tsk->fs) */
327 struct kmem_cache *fs_cachep;
328 
329 /* SLAB cache for vm_area_struct structures */
330 static struct kmem_cache *vm_area_cachep;
331 
332 /* SLAB cache for mm_struct structures (tsk->mm) */
333 static struct kmem_cache *mm_cachep;
334 
335 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
336 {
337 	struct vm_area_struct *vma;
338 
339 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
340 	if (vma)
341 		vma_init(vma, mm);
342 	return vma;
343 }
344 
345 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
346 {
347 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
348 
349 	if (new) {
350 		*new = *orig;
351 		INIT_LIST_HEAD(&new->anon_vma_chain);
352 	}
353 	return new;
354 }
355 
356 void vm_area_free(struct vm_area_struct *vma)
357 {
358 	kmem_cache_free(vm_area_cachep, vma);
359 }
360 
361 static void account_kernel_stack(struct task_struct *tsk, int account)
362 {
363 	void *stack = task_stack_page(tsk);
364 	struct vm_struct *vm = task_stack_vm_area(tsk);
365 
366 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
367 
368 	if (vm) {
369 		int i;
370 
371 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
372 
373 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
374 			mod_zone_page_state(page_zone(vm->pages[i]),
375 					    NR_KERNEL_STACK_KB,
376 					    PAGE_SIZE / 1024 * account);
377 		}
378 	} else {
379 		/*
380 		 * All stack pages are in the same zone and belong to the
381 		 * same memcg.
382 		 */
383 		struct page *first_page = virt_to_page(stack);
384 
385 		mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
386 				    THREAD_SIZE / 1024 * account);
387 
388 		mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
389 				     account * (THREAD_SIZE / 1024));
390 	}
391 }
392 
393 static int memcg_charge_kernel_stack(struct task_struct *tsk)
394 {
395 #ifdef CONFIG_VMAP_STACK
396 	struct vm_struct *vm = task_stack_vm_area(tsk);
397 	int ret;
398 
399 	if (vm) {
400 		int i;
401 
402 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
403 			/*
404 			 * If memcg_kmem_charge() fails, page->mem_cgroup
405 			 * pointer is NULL, and both memcg_kmem_uncharge()
406 			 * and mod_memcg_page_state() in free_thread_stack()
407 			 * will ignore this page. So it's safe.
408 			 */
409 			ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0);
410 			if (ret)
411 				return ret;
412 
413 			mod_memcg_page_state(vm->pages[i],
414 					     MEMCG_KERNEL_STACK_KB,
415 					     PAGE_SIZE / 1024);
416 		}
417 	}
418 #endif
419 	return 0;
420 }
421 
422 static void release_task_stack(struct task_struct *tsk)
423 {
424 	if (WARN_ON(tsk->state != TASK_DEAD))
425 		return;  /* Better to leak the stack than to free prematurely */
426 
427 	account_kernel_stack(tsk, -1);
428 	free_thread_stack(tsk);
429 	tsk->stack = NULL;
430 #ifdef CONFIG_VMAP_STACK
431 	tsk->stack_vm_area = NULL;
432 #endif
433 }
434 
435 #ifdef CONFIG_THREAD_INFO_IN_TASK
436 void put_task_stack(struct task_struct *tsk)
437 {
438 	if (refcount_dec_and_test(&tsk->stack_refcount))
439 		release_task_stack(tsk);
440 }
441 #endif
442 
443 void free_task(struct task_struct *tsk)
444 {
445 #ifndef CONFIG_THREAD_INFO_IN_TASK
446 	/*
447 	 * The task is finally done with both the stack and thread_info,
448 	 * so free both.
449 	 */
450 	release_task_stack(tsk);
451 #else
452 	/*
453 	 * If the task had a separate stack allocation, it should be gone
454 	 * by now.
455 	 */
456 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
457 #endif
458 	rt_mutex_debug_task_free(tsk);
459 	ftrace_graph_exit_task(tsk);
460 	put_seccomp_filter(tsk);
461 	arch_release_task_struct(tsk);
462 	if (tsk->flags & PF_KTHREAD)
463 		free_kthread_struct(tsk);
464 	free_task_struct(tsk);
465 }
466 EXPORT_SYMBOL(free_task);
467 
468 #ifdef CONFIG_MMU
469 static __latent_entropy int dup_mmap(struct mm_struct *mm,
470 					struct mm_struct *oldmm)
471 {
472 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
473 	struct rb_node **rb_link, *rb_parent;
474 	int retval;
475 	unsigned long charge;
476 	LIST_HEAD(uf);
477 
478 	uprobe_start_dup_mmap();
479 	if (down_write_killable(&oldmm->mmap_sem)) {
480 		retval = -EINTR;
481 		goto fail_uprobe_end;
482 	}
483 	flush_cache_dup_mm(oldmm);
484 	uprobe_dup_mmap(oldmm, mm);
485 	/*
486 	 * Not linked in yet - no deadlock potential:
487 	 */
488 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
489 
490 	/* No ordering required: file already has been exposed. */
491 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
492 
493 	mm->total_vm = oldmm->total_vm;
494 	mm->data_vm = oldmm->data_vm;
495 	mm->exec_vm = oldmm->exec_vm;
496 	mm->stack_vm = oldmm->stack_vm;
497 
498 	rb_link = &mm->mm_rb.rb_node;
499 	rb_parent = NULL;
500 	pprev = &mm->mmap;
501 	retval = ksm_fork(mm, oldmm);
502 	if (retval)
503 		goto out;
504 	retval = khugepaged_fork(mm, oldmm);
505 	if (retval)
506 		goto out;
507 
508 	prev = NULL;
509 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
510 		struct file *file;
511 
512 		if (mpnt->vm_flags & VM_DONTCOPY) {
513 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
514 			continue;
515 		}
516 		charge = 0;
517 		/*
518 		 * Don't duplicate many vmas if we've been oom-killed (for
519 		 * example)
520 		 */
521 		if (fatal_signal_pending(current)) {
522 			retval = -EINTR;
523 			goto out;
524 		}
525 		if (mpnt->vm_flags & VM_ACCOUNT) {
526 			unsigned long len = vma_pages(mpnt);
527 
528 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
529 				goto fail_nomem;
530 			charge = len;
531 		}
532 		tmp = vm_area_dup(mpnt);
533 		if (!tmp)
534 			goto fail_nomem;
535 		retval = vma_dup_policy(mpnt, tmp);
536 		if (retval)
537 			goto fail_nomem_policy;
538 		tmp->vm_mm = mm;
539 		retval = dup_userfaultfd(tmp, &uf);
540 		if (retval)
541 			goto fail_nomem_anon_vma_fork;
542 		if (tmp->vm_flags & VM_WIPEONFORK) {
543 			/* VM_WIPEONFORK gets a clean slate in the child. */
544 			tmp->anon_vma = NULL;
545 			if (anon_vma_prepare(tmp))
546 				goto fail_nomem_anon_vma_fork;
547 		} else if (anon_vma_fork(tmp, mpnt))
548 			goto fail_nomem_anon_vma_fork;
549 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
550 		tmp->vm_next = tmp->vm_prev = NULL;
551 		file = tmp->vm_file;
552 		if (file) {
553 			struct inode *inode = file_inode(file);
554 			struct address_space *mapping = file->f_mapping;
555 
556 			get_file(file);
557 			if (tmp->vm_flags & VM_DENYWRITE)
558 				atomic_dec(&inode->i_writecount);
559 			i_mmap_lock_write(mapping);
560 			if (tmp->vm_flags & VM_SHARED)
561 				atomic_inc(&mapping->i_mmap_writable);
562 			flush_dcache_mmap_lock(mapping);
563 			/* insert tmp into the share list, just after mpnt */
564 			vma_interval_tree_insert_after(tmp, mpnt,
565 					&mapping->i_mmap);
566 			flush_dcache_mmap_unlock(mapping);
567 			i_mmap_unlock_write(mapping);
568 		}
569 
570 		/*
571 		 * Clear hugetlb-related page reserves for children. This only
572 		 * affects MAP_PRIVATE mappings. Faults generated by the child
573 		 * are not guaranteed to succeed, even if read-only
574 		 */
575 		if (is_vm_hugetlb_page(tmp))
576 			reset_vma_resv_huge_pages(tmp);
577 
578 		/*
579 		 * Link in the new vma and copy the page table entries.
580 		 */
581 		*pprev = tmp;
582 		pprev = &tmp->vm_next;
583 		tmp->vm_prev = prev;
584 		prev = tmp;
585 
586 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
587 		rb_link = &tmp->vm_rb.rb_right;
588 		rb_parent = &tmp->vm_rb;
589 
590 		mm->map_count++;
591 		if (!(tmp->vm_flags & VM_WIPEONFORK))
592 			retval = copy_page_range(mm, oldmm, mpnt);
593 
594 		if (tmp->vm_ops && tmp->vm_ops->open)
595 			tmp->vm_ops->open(tmp);
596 
597 		if (retval)
598 			goto out;
599 	}
600 	/* a new mm has just been created */
601 	retval = arch_dup_mmap(oldmm, mm);
602 out:
603 	up_write(&mm->mmap_sem);
604 	flush_tlb_mm(oldmm);
605 	up_write(&oldmm->mmap_sem);
606 	dup_userfaultfd_complete(&uf);
607 fail_uprobe_end:
608 	uprobe_end_dup_mmap();
609 	return retval;
610 fail_nomem_anon_vma_fork:
611 	mpol_put(vma_policy(tmp));
612 fail_nomem_policy:
613 	vm_area_free(tmp);
614 fail_nomem:
615 	retval = -ENOMEM;
616 	vm_unacct_memory(charge);
617 	goto out;
618 }
619 
620 static inline int mm_alloc_pgd(struct mm_struct *mm)
621 {
622 	mm->pgd = pgd_alloc(mm);
623 	if (unlikely(!mm->pgd))
624 		return -ENOMEM;
625 	return 0;
626 }
627 
628 static inline void mm_free_pgd(struct mm_struct *mm)
629 {
630 	pgd_free(mm, mm->pgd);
631 }
632 #else
633 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
634 {
635 	down_write(&oldmm->mmap_sem);
636 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
637 	up_write(&oldmm->mmap_sem);
638 	return 0;
639 }
640 #define mm_alloc_pgd(mm)	(0)
641 #define mm_free_pgd(mm)
642 #endif /* CONFIG_MMU */
643 
644 static void check_mm(struct mm_struct *mm)
645 {
646 	int i;
647 
648 	for (i = 0; i < NR_MM_COUNTERS; i++) {
649 		long x = atomic_long_read(&mm->rss_stat.count[i]);
650 
651 		if (unlikely(x))
652 			printk(KERN_ALERT "BUG: Bad rss-counter state "
653 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
654 	}
655 
656 	if (mm_pgtables_bytes(mm))
657 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
658 				mm_pgtables_bytes(mm));
659 
660 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
661 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
662 #endif
663 }
664 
665 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
666 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
667 
668 /*
669  * Called when the last reference to the mm
670  * is dropped: either by a lazy thread or by
671  * mmput. Free the page directory and the mm.
672  */
673 void __mmdrop(struct mm_struct *mm)
674 {
675 	BUG_ON(mm == &init_mm);
676 	WARN_ON_ONCE(mm == current->mm);
677 	WARN_ON_ONCE(mm == current->active_mm);
678 	mm_free_pgd(mm);
679 	destroy_context(mm);
680 	mmu_notifier_mm_destroy(mm);
681 	check_mm(mm);
682 	put_user_ns(mm->user_ns);
683 	free_mm(mm);
684 }
685 EXPORT_SYMBOL_GPL(__mmdrop);
686 
687 static void mmdrop_async_fn(struct work_struct *work)
688 {
689 	struct mm_struct *mm;
690 
691 	mm = container_of(work, struct mm_struct, async_put_work);
692 	__mmdrop(mm);
693 }
694 
695 static void mmdrop_async(struct mm_struct *mm)
696 {
697 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
698 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
699 		schedule_work(&mm->async_put_work);
700 	}
701 }
702 
703 static inline void free_signal_struct(struct signal_struct *sig)
704 {
705 	taskstats_tgid_free(sig);
706 	sched_autogroup_exit(sig);
707 	/*
708 	 * __mmdrop is not safe to call from softirq context on x86 due to
709 	 * pgd_dtor so postpone it to the async context
710 	 */
711 	if (sig->oom_mm)
712 		mmdrop_async(sig->oom_mm);
713 	kmem_cache_free(signal_cachep, sig);
714 }
715 
716 static inline void put_signal_struct(struct signal_struct *sig)
717 {
718 	if (refcount_dec_and_test(&sig->sigcnt))
719 		free_signal_struct(sig);
720 }
721 
722 void __put_task_struct(struct task_struct *tsk)
723 {
724 	WARN_ON(!tsk->exit_state);
725 	WARN_ON(refcount_read(&tsk->usage));
726 	WARN_ON(tsk == current);
727 
728 	cgroup_free(tsk);
729 	task_numa_free(tsk, true);
730 	security_task_free(tsk);
731 	exit_creds(tsk);
732 	delayacct_tsk_free(tsk);
733 	put_signal_struct(tsk->signal);
734 
735 	if (!profile_handoff_task(tsk))
736 		free_task(tsk);
737 }
738 EXPORT_SYMBOL_GPL(__put_task_struct);
739 
740 void __init __weak arch_task_cache_init(void) { }
741 
742 /*
743  * set_max_threads
744  */
745 static void set_max_threads(unsigned int max_threads_suggested)
746 {
747 	u64 threads;
748 	unsigned long nr_pages = totalram_pages();
749 
750 	/*
751 	 * The number of threads shall be limited such that the thread
752 	 * structures may only consume a small part of the available memory.
753 	 */
754 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
755 		threads = MAX_THREADS;
756 	else
757 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
758 				    (u64) THREAD_SIZE * 8UL);
759 
760 	if (threads > max_threads_suggested)
761 		threads = max_threads_suggested;
762 
763 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
764 }
765 
766 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
767 /* Initialized by the architecture: */
768 int arch_task_struct_size __read_mostly;
769 #endif
770 
771 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
772 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
773 {
774 	/* Fetch thread_struct whitelist for the architecture. */
775 	arch_thread_struct_whitelist(offset, size);
776 
777 	/*
778 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
779 	 * adjust offset to position of thread_struct in task_struct.
780 	 */
781 	if (unlikely(*size == 0))
782 		*offset = 0;
783 	else
784 		*offset += offsetof(struct task_struct, thread);
785 }
786 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
787 
788 void __init fork_init(void)
789 {
790 	int i;
791 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
792 #ifndef ARCH_MIN_TASKALIGN
793 #define ARCH_MIN_TASKALIGN	0
794 #endif
795 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
796 	unsigned long useroffset, usersize;
797 
798 	/* create a slab on which task_structs can be allocated */
799 	task_struct_whitelist(&useroffset, &usersize);
800 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
801 			arch_task_struct_size, align,
802 			SLAB_PANIC|SLAB_ACCOUNT,
803 			useroffset, usersize, NULL);
804 #endif
805 
806 	/* do the arch specific task caches init */
807 	arch_task_cache_init();
808 
809 	set_max_threads(MAX_THREADS);
810 
811 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
812 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
813 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
814 		init_task.signal->rlim[RLIMIT_NPROC];
815 
816 	for (i = 0; i < UCOUNT_COUNTS; i++) {
817 		init_user_ns.ucount_max[i] = max_threads/2;
818 	}
819 
820 #ifdef CONFIG_VMAP_STACK
821 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
822 			  NULL, free_vm_stack_cache);
823 #endif
824 
825 	lockdep_init_task(&init_task);
826 	uprobes_init();
827 }
828 
829 int __weak arch_dup_task_struct(struct task_struct *dst,
830 					       struct task_struct *src)
831 {
832 	*dst = *src;
833 	return 0;
834 }
835 
836 void set_task_stack_end_magic(struct task_struct *tsk)
837 {
838 	unsigned long *stackend;
839 
840 	stackend = end_of_stack(tsk);
841 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
842 }
843 
844 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
845 {
846 	struct task_struct *tsk;
847 	unsigned long *stack;
848 	struct vm_struct *stack_vm_area __maybe_unused;
849 	int err;
850 
851 	if (node == NUMA_NO_NODE)
852 		node = tsk_fork_get_node(orig);
853 	tsk = alloc_task_struct_node(node);
854 	if (!tsk)
855 		return NULL;
856 
857 	stack = alloc_thread_stack_node(tsk, node);
858 	if (!stack)
859 		goto free_tsk;
860 
861 	if (memcg_charge_kernel_stack(tsk))
862 		goto free_stack;
863 
864 	stack_vm_area = task_stack_vm_area(tsk);
865 
866 	err = arch_dup_task_struct(tsk, orig);
867 
868 	/*
869 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
870 	 * sure they're properly initialized before using any stack-related
871 	 * functions again.
872 	 */
873 	tsk->stack = stack;
874 #ifdef CONFIG_VMAP_STACK
875 	tsk->stack_vm_area = stack_vm_area;
876 #endif
877 #ifdef CONFIG_THREAD_INFO_IN_TASK
878 	refcount_set(&tsk->stack_refcount, 1);
879 #endif
880 
881 	if (err)
882 		goto free_stack;
883 
884 #ifdef CONFIG_SECCOMP
885 	/*
886 	 * We must handle setting up seccomp filters once we're under
887 	 * the sighand lock in case orig has changed between now and
888 	 * then. Until then, filter must be NULL to avoid messing up
889 	 * the usage counts on the error path calling free_task.
890 	 */
891 	tsk->seccomp.filter = NULL;
892 #endif
893 
894 	setup_thread_stack(tsk, orig);
895 	clear_user_return_notifier(tsk);
896 	clear_tsk_need_resched(tsk);
897 	set_task_stack_end_magic(tsk);
898 
899 #ifdef CONFIG_STACKPROTECTOR
900 	tsk->stack_canary = get_random_canary();
901 #endif
902 	if (orig->cpus_ptr == &orig->cpus_mask)
903 		tsk->cpus_ptr = &tsk->cpus_mask;
904 
905 	/*
906 	 * One for the user space visible state that goes away when reaped.
907 	 * One for the scheduler.
908 	 */
909 	refcount_set(&tsk->rcu_users, 2);
910 	/* One for the rcu users */
911 	refcount_set(&tsk->usage, 1);
912 #ifdef CONFIG_BLK_DEV_IO_TRACE
913 	tsk->btrace_seq = 0;
914 #endif
915 	tsk->splice_pipe = NULL;
916 	tsk->task_frag.page = NULL;
917 	tsk->wake_q.next = NULL;
918 
919 	account_kernel_stack(tsk, 1);
920 
921 	kcov_task_init(tsk);
922 
923 #ifdef CONFIG_FAULT_INJECTION
924 	tsk->fail_nth = 0;
925 #endif
926 
927 #ifdef CONFIG_BLK_CGROUP
928 	tsk->throttle_queue = NULL;
929 	tsk->use_memdelay = 0;
930 #endif
931 
932 #ifdef CONFIG_MEMCG
933 	tsk->active_memcg = NULL;
934 #endif
935 	return tsk;
936 
937 free_stack:
938 	free_thread_stack(tsk);
939 free_tsk:
940 	free_task_struct(tsk);
941 	return NULL;
942 }
943 
944 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
945 
946 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
947 
948 static int __init coredump_filter_setup(char *s)
949 {
950 	default_dump_filter =
951 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
952 		MMF_DUMP_FILTER_MASK;
953 	return 1;
954 }
955 
956 __setup("coredump_filter=", coredump_filter_setup);
957 
958 #include <linux/init_task.h>
959 
960 static void mm_init_aio(struct mm_struct *mm)
961 {
962 #ifdef CONFIG_AIO
963 	spin_lock_init(&mm->ioctx_lock);
964 	mm->ioctx_table = NULL;
965 #endif
966 }
967 
968 static __always_inline void mm_clear_owner(struct mm_struct *mm,
969 					   struct task_struct *p)
970 {
971 #ifdef CONFIG_MEMCG
972 	if (mm->owner == p)
973 		WRITE_ONCE(mm->owner, NULL);
974 #endif
975 }
976 
977 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
978 {
979 #ifdef CONFIG_MEMCG
980 	mm->owner = p;
981 #endif
982 }
983 
984 static void mm_init_uprobes_state(struct mm_struct *mm)
985 {
986 #ifdef CONFIG_UPROBES
987 	mm->uprobes_state.xol_area = NULL;
988 #endif
989 }
990 
991 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
992 	struct user_namespace *user_ns)
993 {
994 	mm->mmap = NULL;
995 	mm->mm_rb = RB_ROOT;
996 	mm->vmacache_seqnum = 0;
997 	atomic_set(&mm->mm_users, 1);
998 	atomic_set(&mm->mm_count, 1);
999 	init_rwsem(&mm->mmap_sem);
1000 	INIT_LIST_HEAD(&mm->mmlist);
1001 	mm->core_state = NULL;
1002 	mm_pgtables_bytes_init(mm);
1003 	mm->map_count = 0;
1004 	mm->locked_vm = 0;
1005 	atomic64_set(&mm->pinned_vm, 0);
1006 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1007 	spin_lock_init(&mm->page_table_lock);
1008 	spin_lock_init(&mm->arg_lock);
1009 	mm_init_cpumask(mm);
1010 	mm_init_aio(mm);
1011 	mm_init_owner(mm, p);
1012 	RCU_INIT_POINTER(mm->exe_file, NULL);
1013 	mmu_notifier_mm_init(mm);
1014 	hmm_mm_init(mm);
1015 	init_tlb_flush_pending(mm);
1016 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1017 	mm->pmd_huge_pte = NULL;
1018 #endif
1019 	mm_init_uprobes_state(mm);
1020 
1021 	if (current->mm) {
1022 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1023 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1024 	} else {
1025 		mm->flags = default_dump_filter;
1026 		mm->def_flags = 0;
1027 	}
1028 
1029 	if (mm_alloc_pgd(mm))
1030 		goto fail_nopgd;
1031 
1032 	if (init_new_context(p, mm))
1033 		goto fail_nocontext;
1034 
1035 	mm->user_ns = get_user_ns(user_ns);
1036 	return mm;
1037 
1038 fail_nocontext:
1039 	mm_free_pgd(mm);
1040 fail_nopgd:
1041 	free_mm(mm);
1042 	return NULL;
1043 }
1044 
1045 /*
1046  * Allocate and initialize an mm_struct.
1047  */
1048 struct mm_struct *mm_alloc(void)
1049 {
1050 	struct mm_struct *mm;
1051 
1052 	mm = allocate_mm();
1053 	if (!mm)
1054 		return NULL;
1055 
1056 	memset(mm, 0, sizeof(*mm));
1057 	return mm_init(mm, current, current_user_ns());
1058 }
1059 
1060 static inline void __mmput(struct mm_struct *mm)
1061 {
1062 	VM_BUG_ON(atomic_read(&mm->mm_users));
1063 
1064 	uprobe_clear_state(mm);
1065 	exit_aio(mm);
1066 	ksm_exit(mm);
1067 	khugepaged_exit(mm); /* must run before exit_mmap */
1068 	exit_mmap(mm);
1069 	mm_put_huge_zero_page(mm);
1070 	set_mm_exe_file(mm, NULL);
1071 	if (!list_empty(&mm->mmlist)) {
1072 		spin_lock(&mmlist_lock);
1073 		list_del(&mm->mmlist);
1074 		spin_unlock(&mmlist_lock);
1075 	}
1076 	if (mm->binfmt)
1077 		module_put(mm->binfmt->module);
1078 	mmdrop(mm);
1079 }
1080 
1081 /*
1082  * Decrement the use count and release all resources for an mm.
1083  */
1084 void mmput(struct mm_struct *mm)
1085 {
1086 	might_sleep();
1087 
1088 	if (atomic_dec_and_test(&mm->mm_users))
1089 		__mmput(mm);
1090 }
1091 EXPORT_SYMBOL_GPL(mmput);
1092 
1093 #ifdef CONFIG_MMU
1094 static void mmput_async_fn(struct work_struct *work)
1095 {
1096 	struct mm_struct *mm = container_of(work, struct mm_struct,
1097 					    async_put_work);
1098 
1099 	__mmput(mm);
1100 }
1101 
1102 void mmput_async(struct mm_struct *mm)
1103 {
1104 	if (atomic_dec_and_test(&mm->mm_users)) {
1105 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1106 		schedule_work(&mm->async_put_work);
1107 	}
1108 }
1109 #endif
1110 
1111 /**
1112  * set_mm_exe_file - change a reference to the mm's executable file
1113  *
1114  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1115  *
1116  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1117  * invocations: in mmput() nobody alive left, in execve task is single
1118  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1119  * mm->exe_file, but does so without using set_mm_exe_file() in order
1120  * to do avoid the need for any locks.
1121  */
1122 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1123 {
1124 	struct file *old_exe_file;
1125 
1126 	/*
1127 	 * It is safe to dereference the exe_file without RCU as
1128 	 * this function is only called if nobody else can access
1129 	 * this mm -- see comment above for justification.
1130 	 */
1131 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1132 
1133 	if (new_exe_file)
1134 		get_file(new_exe_file);
1135 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1136 	if (old_exe_file)
1137 		fput(old_exe_file);
1138 }
1139 
1140 /**
1141  * get_mm_exe_file - acquire a reference to the mm's executable file
1142  *
1143  * Returns %NULL if mm has no associated executable file.
1144  * User must release file via fput().
1145  */
1146 struct file *get_mm_exe_file(struct mm_struct *mm)
1147 {
1148 	struct file *exe_file;
1149 
1150 	rcu_read_lock();
1151 	exe_file = rcu_dereference(mm->exe_file);
1152 	if (exe_file && !get_file_rcu(exe_file))
1153 		exe_file = NULL;
1154 	rcu_read_unlock();
1155 	return exe_file;
1156 }
1157 EXPORT_SYMBOL(get_mm_exe_file);
1158 
1159 /**
1160  * get_task_exe_file - acquire a reference to the task's executable file
1161  *
1162  * Returns %NULL if task's mm (if any) has no associated executable file or
1163  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1164  * User must release file via fput().
1165  */
1166 struct file *get_task_exe_file(struct task_struct *task)
1167 {
1168 	struct file *exe_file = NULL;
1169 	struct mm_struct *mm;
1170 
1171 	task_lock(task);
1172 	mm = task->mm;
1173 	if (mm) {
1174 		if (!(task->flags & PF_KTHREAD))
1175 			exe_file = get_mm_exe_file(mm);
1176 	}
1177 	task_unlock(task);
1178 	return exe_file;
1179 }
1180 EXPORT_SYMBOL(get_task_exe_file);
1181 
1182 /**
1183  * get_task_mm - acquire a reference to the task's mm
1184  *
1185  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1186  * this kernel workthread has transiently adopted a user mm with use_mm,
1187  * to do its AIO) is not set and if so returns a reference to it, after
1188  * bumping up the use count.  User must release the mm via mmput()
1189  * after use.  Typically used by /proc and ptrace.
1190  */
1191 struct mm_struct *get_task_mm(struct task_struct *task)
1192 {
1193 	struct mm_struct *mm;
1194 
1195 	task_lock(task);
1196 	mm = task->mm;
1197 	if (mm) {
1198 		if (task->flags & PF_KTHREAD)
1199 			mm = NULL;
1200 		else
1201 			mmget(mm);
1202 	}
1203 	task_unlock(task);
1204 	return mm;
1205 }
1206 EXPORT_SYMBOL_GPL(get_task_mm);
1207 
1208 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1209 {
1210 	struct mm_struct *mm;
1211 	int err;
1212 
1213 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1214 	if (err)
1215 		return ERR_PTR(err);
1216 
1217 	mm = get_task_mm(task);
1218 	if (mm && mm != current->mm &&
1219 			!ptrace_may_access(task, mode)) {
1220 		mmput(mm);
1221 		mm = ERR_PTR(-EACCES);
1222 	}
1223 	mutex_unlock(&task->signal->cred_guard_mutex);
1224 
1225 	return mm;
1226 }
1227 
1228 static void complete_vfork_done(struct task_struct *tsk)
1229 {
1230 	struct completion *vfork;
1231 
1232 	task_lock(tsk);
1233 	vfork = tsk->vfork_done;
1234 	if (likely(vfork)) {
1235 		tsk->vfork_done = NULL;
1236 		complete(vfork);
1237 	}
1238 	task_unlock(tsk);
1239 }
1240 
1241 static int wait_for_vfork_done(struct task_struct *child,
1242 				struct completion *vfork)
1243 {
1244 	int killed;
1245 
1246 	freezer_do_not_count();
1247 	cgroup_enter_frozen();
1248 	killed = wait_for_completion_killable(vfork);
1249 	cgroup_leave_frozen(false);
1250 	freezer_count();
1251 
1252 	if (killed) {
1253 		task_lock(child);
1254 		child->vfork_done = NULL;
1255 		task_unlock(child);
1256 	}
1257 
1258 	put_task_struct(child);
1259 	return killed;
1260 }
1261 
1262 /* Please note the differences between mmput and mm_release.
1263  * mmput is called whenever we stop holding onto a mm_struct,
1264  * error success whatever.
1265  *
1266  * mm_release is called after a mm_struct has been removed
1267  * from the current process.
1268  *
1269  * This difference is important for error handling, when we
1270  * only half set up a mm_struct for a new process and need to restore
1271  * the old one.  Because we mmput the new mm_struct before
1272  * restoring the old one. . .
1273  * Eric Biederman 10 January 1998
1274  */
1275 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1276 {
1277 	/* Get rid of any futexes when releasing the mm */
1278 #ifdef CONFIG_FUTEX
1279 	if (unlikely(tsk->robust_list)) {
1280 		exit_robust_list(tsk);
1281 		tsk->robust_list = NULL;
1282 	}
1283 #ifdef CONFIG_COMPAT
1284 	if (unlikely(tsk->compat_robust_list)) {
1285 		compat_exit_robust_list(tsk);
1286 		tsk->compat_robust_list = NULL;
1287 	}
1288 #endif
1289 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1290 		exit_pi_state_list(tsk);
1291 #endif
1292 
1293 	uprobe_free_utask(tsk);
1294 
1295 	/* Get rid of any cached register state */
1296 	deactivate_mm(tsk, mm);
1297 
1298 	/*
1299 	 * Signal userspace if we're not exiting with a core dump
1300 	 * because we want to leave the value intact for debugging
1301 	 * purposes.
1302 	 */
1303 	if (tsk->clear_child_tid) {
1304 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1305 		    atomic_read(&mm->mm_users) > 1) {
1306 			/*
1307 			 * We don't check the error code - if userspace has
1308 			 * not set up a proper pointer then tough luck.
1309 			 */
1310 			put_user(0, tsk->clear_child_tid);
1311 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1312 					1, NULL, NULL, 0, 0);
1313 		}
1314 		tsk->clear_child_tid = NULL;
1315 	}
1316 
1317 	/*
1318 	 * All done, finally we can wake up parent and return this mm to him.
1319 	 * Also kthread_stop() uses this completion for synchronization.
1320 	 */
1321 	if (tsk->vfork_done)
1322 		complete_vfork_done(tsk);
1323 }
1324 
1325 /**
1326  * dup_mm() - duplicates an existing mm structure
1327  * @tsk: the task_struct with which the new mm will be associated.
1328  * @oldmm: the mm to duplicate.
1329  *
1330  * Allocates a new mm structure and duplicates the provided @oldmm structure
1331  * content into it.
1332  *
1333  * Return: the duplicated mm or NULL on failure.
1334  */
1335 static struct mm_struct *dup_mm(struct task_struct *tsk,
1336 				struct mm_struct *oldmm)
1337 {
1338 	struct mm_struct *mm;
1339 	int err;
1340 
1341 	mm = allocate_mm();
1342 	if (!mm)
1343 		goto fail_nomem;
1344 
1345 	memcpy(mm, oldmm, sizeof(*mm));
1346 
1347 	if (!mm_init(mm, tsk, mm->user_ns))
1348 		goto fail_nomem;
1349 
1350 	err = dup_mmap(mm, oldmm);
1351 	if (err)
1352 		goto free_pt;
1353 
1354 	mm->hiwater_rss = get_mm_rss(mm);
1355 	mm->hiwater_vm = mm->total_vm;
1356 
1357 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1358 		goto free_pt;
1359 
1360 	return mm;
1361 
1362 free_pt:
1363 	/* don't put binfmt in mmput, we haven't got module yet */
1364 	mm->binfmt = NULL;
1365 	mm_init_owner(mm, NULL);
1366 	mmput(mm);
1367 
1368 fail_nomem:
1369 	return NULL;
1370 }
1371 
1372 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1373 {
1374 	struct mm_struct *mm, *oldmm;
1375 	int retval;
1376 
1377 	tsk->min_flt = tsk->maj_flt = 0;
1378 	tsk->nvcsw = tsk->nivcsw = 0;
1379 #ifdef CONFIG_DETECT_HUNG_TASK
1380 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1381 	tsk->last_switch_time = 0;
1382 #endif
1383 
1384 	tsk->mm = NULL;
1385 	tsk->active_mm = NULL;
1386 
1387 	/*
1388 	 * Are we cloning a kernel thread?
1389 	 *
1390 	 * We need to steal a active VM for that..
1391 	 */
1392 	oldmm = current->mm;
1393 	if (!oldmm)
1394 		return 0;
1395 
1396 	/* initialize the new vmacache entries */
1397 	vmacache_flush(tsk);
1398 
1399 	if (clone_flags & CLONE_VM) {
1400 		mmget(oldmm);
1401 		mm = oldmm;
1402 		goto good_mm;
1403 	}
1404 
1405 	retval = -ENOMEM;
1406 	mm = dup_mm(tsk, current->mm);
1407 	if (!mm)
1408 		goto fail_nomem;
1409 
1410 good_mm:
1411 	tsk->mm = mm;
1412 	tsk->active_mm = mm;
1413 	return 0;
1414 
1415 fail_nomem:
1416 	return retval;
1417 }
1418 
1419 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1420 {
1421 	struct fs_struct *fs = current->fs;
1422 	if (clone_flags & CLONE_FS) {
1423 		/* tsk->fs is already what we want */
1424 		spin_lock(&fs->lock);
1425 		if (fs->in_exec) {
1426 			spin_unlock(&fs->lock);
1427 			return -EAGAIN;
1428 		}
1429 		fs->users++;
1430 		spin_unlock(&fs->lock);
1431 		return 0;
1432 	}
1433 	tsk->fs = copy_fs_struct(fs);
1434 	if (!tsk->fs)
1435 		return -ENOMEM;
1436 	return 0;
1437 }
1438 
1439 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1440 {
1441 	struct files_struct *oldf, *newf;
1442 	int error = 0;
1443 
1444 	/*
1445 	 * A background process may not have any files ...
1446 	 */
1447 	oldf = current->files;
1448 	if (!oldf)
1449 		goto out;
1450 
1451 	if (clone_flags & CLONE_FILES) {
1452 		atomic_inc(&oldf->count);
1453 		goto out;
1454 	}
1455 
1456 	newf = dup_fd(oldf, &error);
1457 	if (!newf)
1458 		goto out;
1459 
1460 	tsk->files = newf;
1461 	error = 0;
1462 out:
1463 	return error;
1464 }
1465 
1466 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1467 {
1468 #ifdef CONFIG_BLOCK
1469 	struct io_context *ioc = current->io_context;
1470 	struct io_context *new_ioc;
1471 
1472 	if (!ioc)
1473 		return 0;
1474 	/*
1475 	 * Share io context with parent, if CLONE_IO is set
1476 	 */
1477 	if (clone_flags & CLONE_IO) {
1478 		ioc_task_link(ioc);
1479 		tsk->io_context = ioc;
1480 	} else if (ioprio_valid(ioc->ioprio)) {
1481 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1482 		if (unlikely(!new_ioc))
1483 			return -ENOMEM;
1484 
1485 		new_ioc->ioprio = ioc->ioprio;
1486 		put_io_context(new_ioc);
1487 	}
1488 #endif
1489 	return 0;
1490 }
1491 
1492 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1493 {
1494 	struct sighand_struct *sig;
1495 
1496 	if (clone_flags & CLONE_SIGHAND) {
1497 		refcount_inc(&current->sighand->count);
1498 		return 0;
1499 	}
1500 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1501 	rcu_assign_pointer(tsk->sighand, sig);
1502 	if (!sig)
1503 		return -ENOMEM;
1504 
1505 	refcount_set(&sig->count, 1);
1506 	spin_lock_irq(&current->sighand->siglock);
1507 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1508 	spin_unlock_irq(&current->sighand->siglock);
1509 	return 0;
1510 }
1511 
1512 void __cleanup_sighand(struct sighand_struct *sighand)
1513 {
1514 	if (refcount_dec_and_test(&sighand->count)) {
1515 		signalfd_cleanup(sighand);
1516 		/*
1517 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1518 		 * without an RCU grace period, see __lock_task_sighand().
1519 		 */
1520 		kmem_cache_free(sighand_cachep, sighand);
1521 	}
1522 }
1523 
1524 #ifdef CONFIG_POSIX_TIMERS
1525 /*
1526  * Initialize POSIX timer handling for a thread group.
1527  */
1528 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1529 {
1530 	unsigned long cpu_limit;
1531 
1532 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1533 	if (cpu_limit != RLIM_INFINITY) {
1534 		sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1535 		sig->cputimer.running = true;
1536 	}
1537 
1538 	/* The timer lists. */
1539 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1540 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1541 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1542 }
1543 #else
1544 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1545 #endif
1546 
1547 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1548 {
1549 	struct signal_struct *sig;
1550 
1551 	if (clone_flags & CLONE_THREAD)
1552 		return 0;
1553 
1554 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1555 	tsk->signal = sig;
1556 	if (!sig)
1557 		return -ENOMEM;
1558 
1559 	sig->nr_threads = 1;
1560 	atomic_set(&sig->live, 1);
1561 	refcount_set(&sig->sigcnt, 1);
1562 
1563 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1564 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1565 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1566 
1567 	init_waitqueue_head(&sig->wait_chldexit);
1568 	sig->curr_target = tsk;
1569 	init_sigpending(&sig->shared_pending);
1570 	INIT_HLIST_HEAD(&sig->multiprocess);
1571 	seqlock_init(&sig->stats_lock);
1572 	prev_cputime_init(&sig->prev_cputime);
1573 
1574 #ifdef CONFIG_POSIX_TIMERS
1575 	INIT_LIST_HEAD(&sig->posix_timers);
1576 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1577 	sig->real_timer.function = it_real_fn;
1578 #endif
1579 
1580 	task_lock(current->group_leader);
1581 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1582 	task_unlock(current->group_leader);
1583 
1584 	posix_cpu_timers_init_group(sig);
1585 
1586 	tty_audit_fork(sig);
1587 	sched_autogroup_fork(sig);
1588 
1589 	sig->oom_score_adj = current->signal->oom_score_adj;
1590 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1591 
1592 	mutex_init(&sig->cred_guard_mutex);
1593 
1594 	return 0;
1595 }
1596 
1597 static void copy_seccomp(struct task_struct *p)
1598 {
1599 #ifdef CONFIG_SECCOMP
1600 	/*
1601 	 * Must be called with sighand->lock held, which is common to
1602 	 * all threads in the group. Holding cred_guard_mutex is not
1603 	 * needed because this new task is not yet running and cannot
1604 	 * be racing exec.
1605 	 */
1606 	assert_spin_locked(&current->sighand->siglock);
1607 
1608 	/* Ref-count the new filter user, and assign it. */
1609 	get_seccomp_filter(current);
1610 	p->seccomp = current->seccomp;
1611 
1612 	/*
1613 	 * Explicitly enable no_new_privs here in case it got set
1614 	 * between the task_struct being duplicated and holding the
1615 	 * sighand lock. The seccomp state and nnp must be in sync.
1616 	 */
1617 	if (task_no_new_privs(current))
1618 		task_set_no_new_privs(p);
1619 
1620 	/*
1621 	 * If the parent gained a seccomp mode after copying thread
1622 	 * flags and between before we held the sighand lock, we have
1623 	 * to manually enable the seccomp thread flag here.
1624 	 */
1625 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1626 		set_tsk_thread_flag(p, TIF_SECCOMP);
1627 #endif
1628 }
1629 
1630 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1631 {
1632 	current->clear_child_tid = tidptr;
1633 
1634 	return task_pid_vnr(current);
1635 }
1636 
1637 static void rt_mutex_init_task(struct task_struct *p)
1638 {
1639 	raw_spin_lock_init(&p->pi_lock);
1640 #ifdef CONFIG_RT_MUTEXES
1641 	p->pi_waiters = RB_ROOT_CACHED;
1642 	p->pi_top_task = NULL;
1643 	p->pi_blocked_on = NULL;
1644 #endif
1645 }
1646 
1647 #ifdef CONFIG_POSIX_TIMERS
1648 /*
1649  * Initialize POSIX timer handling for a single task.
1650  */
1651 static void posix_cpu_timers_init(struct task_struct *tsk)
1652 {
1653 	tsk->cputime_expires.prof_exp = 0;
1654 	tsk->cputime_expires.virt_exp = 0;
1655 	tsk->cputime_expires.sched_exp = 0;
1656 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1657 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1658 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1659 }
1660 #else
1661 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1662 #endif
1663 
1664 static inline void init_task_pid_links(struct task_struct *task)
1665 {
1666 	enum pid_type type;
1667 
1668 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1669 		INIT_HLIST_NODE(&task->pid_links[type]);
1670 	}
1671 }
1672 
1673 static inline void
1674 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1675 {
1676 	if (type == PIDTYPE_PID)
1677 		task->thread_pid = pid;
1678 	else
1679 		task->signal->pids[type] = pid;
1680 }
1681 
1682 static inline void rcu_copy_process(struct task_struct *p)
1683 {
1684 #ifdef CONFIG_PREEMPT_RCU
1685 	p->rcu_read_lock_nesting = 0;
1686 	p->rcu_read_unlock_special.s = 0;
1687 	p->rcu_blocked_node = NULL;
1688 	INIT_LIST_HEAD(&p->rcu_node_entry);
1689 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1690 #ifdef CONFIG_TASKS_RCU
1691 	p->rcu_tasks_holdout = false;
1692 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1693 	p->rcu_tasks_idle_cpu = -1;
1694 #endif /* #ifdef CONFIG_TASKS_RCU */
1695 }
1696 
1697 struct pid *pidfd_pid(const struct file *file)
1698 {
1699 	if (file->f_op == &pidfd_fops)
1700 		return file->private_data;
1701 
1702 	return ERR_PTR(-EBADF);
1703 }
1704 
1705 static int pidfd_release(struct inode *inode, struct file *file)
1706 {
1707 	struct pid *pid = file->private_data;
1708 
1709 	file->private_data = NULL;
1710 	put_pid(pid);
1711 	return 0;
1712 }
1713 
1714 #ifdef CONFIG_PROC_FS
1715 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1716 {
1717 	struct pid_namespace *ns = proc_pid_ns(file_inode(m->file));
1718 	struct pid *pid = f->private_data;
1719 
1720 	seq_put_decimal_ull(m, "Pid:\t", pid_nr_ns(pid, ns));
1721 	seq_putc(m, '\n');
1722 }
1723 #endif
1724 
1725 /*
1726  * Poll support for process exit notification.
1727  */
1728 static unsigned int pidfd_poll(struct file *file, struct poll_table_struct *pts)
1729 {
1730 	struct task_struct *task;
1731 	struct pid *pid = file->private_data;
1732 	int poll_flags = 0;
1733 
1734 	poll_wait(file, &pid->wait_pidfd, pts);
1735 
1736 	rcu_read_lock();
1737 	task = pid_task(pid, PIDTYPE_PID);
1738 	/*
1739 	 * Inform pollers only when the whole thread group exits.
1740 	 * If the thread group leader exits before all other threads in the
1741 	 * group, then poll(2) should block, similar to the wait(2) family.
1742 	 */
1743 	if (!task || (task->exit_state && thread_group_empty(task)))
1744 		poll_flags = POLLIN | POLLRDNORM;
1745 	rcu_read_unlock();
1746 
1747 	return poll_flags;
1748 }
1749 
1750 const struct file_operations pidfd_fops = {
1751 	.release = pidfd_release,
1752 	.poll = pidfd_poll,
1753 #ifdef CONFIG_PROC_FS
1754 	.show_fdinfo = pidfd_show_fdinfo,
1755 #endif
1756 };
1757 
1758 static void __delayed_free_task(struct rcu_head *rhp)
1759 {
1760 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1761 
1762 	free_task(tsk);
1763 }
1764 
1765 static __always_inline void delayed_free_task(struct task_struct *tsk)
1766 {
1767 	if (IS_ENABLED(CONFIG_MEMCG))
1768 		call_rcu(&tsk->rcu, __delayed_free_task);
1769 	else
1770 		free_task(tsk);
1771 }
1772 
1773 /*
1774  * This creates a new process as a copy of the old one,
1775  * but does not actually start it yet.
1776  *
1777  * It copies the registers, and all the appropriate
1778  * parts of the process environment (as per the clone
1779  * flags). The actual kick-off is left to the caller.
1780  */
1781 static __latent_entropy struct task_struct *copy_process(
1782 					struct pid *pid,
1783 					int trace,
1784 					int node,
1785 					struct kernel_clone_args *args)
1786 {
1787 	int pidfd = -1, retval;
1788 	struct task_struct *p;
1789 	struct multiprocess_signals delayed;
1790 	struct file *pidfile = NULL;
1791 	u64 clone_flags = args->flags;
1792 
1793 	/*
1794 	 * Don't allow sharing the root directory with processes in a different
1795 	 * namespace
1796 	 */
1797 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1798 		return ERR_PTR(-EINVAL);
1799 
1800 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1801 		return ERR_PTR(-EINVAL);
1802 
1803 	/*
1804 	 * Thread groups must share signals as well, and detached threads
1805 	 * can only be started up within the thread group.
1806 	 */
1807 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1808 		return ERR_PTR(-EINVAL);
1809 
1810 	/*
1811 	 * Shared signal handlers imply shared VM. By way of the above,
1812 	 * thread groups also imply shared VM. Blocking this case allows
1813 	 * for various simplifications in other code.
1814 	 */
1815 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1816 		return ERR_PTR(-EINVAL);
1817 
1818 	/*
1819 	 * Siblings of global init remain as zombies on exit since they are
1820 	 * not reaped by their parent (swapper). To solve this and to avoid
1821 	 * multi-rooted process trees, prevent global and container-inits
1822 	 * from creating siblings.
1823 	 */
1824 	if ((clone_flags & CLONE_PARENT) &&
1825 				current->signal->flags & SIGNAL_UNKILLABLE)
1826 		return ERR_PTR(-EINVAL);
1827 
1828 	/*
1829 	 * If the new process will be in a different pid or user namespace
1830 	 * do not allow it to share a thread group with the forking task.
1831 	 */
1832 	if (clone_flags & CLONE_THREAD) {
1833 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1834 		    (task_active_pid_ns(current) !=
1835 				current->nsproxy->pid_ns_for_children))
1836 			return ERR_PTR(-EINVAL);
1837 	}
1838 
1839 	if (clone_flags & CLONE_PIDFD) {
1840 		/*
1841 		 * - CLONE_DETACHED is blocked so that we can potentially
1842 		 *   reuse it later for CLONE_PIDFD.
1843 		 * - CLONE_THREAD is blocked until someone really needs it.
1844 		 */
1845 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1846 			return ERR_PTR(-EINVAL);
1847 	}
1848 
1849 	/*
1850 	 * Force any signals received before this point to be delivered
1851 	 * before the fork happens.  Collect up signals sent to multiple
1852 	 * processes that happen during the fork and delay them so that
1853 	 * they appear to happen after the fork.
1854 	 */
1855 	sigemptyset(&delayed.signal);
1856 	INIT_HLIST_NODE(&delayed.node);
1857 
1858 	spin_lock_irq(&current->sighand->siglock);
1859 	if (!(clone_flags & CLONE_THREAD))
1860 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
1861 	recalc_sigpending();
1862 	spin_unlock_irq(&current->sighand->siglock);
1863 	retval = -ERESTARTNOINTR;
1864 	if (signal_pending(current))
1865 		goto fork_out;
1866 
1867 	retval = -ENOMEM;
1868 	p = dup_task_struct(current, node);
1869 	if (!p)
1870 		goto fork_out;
1871 
1872 	/*
1873 	 * This _must_ happen before we call free_task(), i.e. before we jump
1874 	 * to any of the bad_fork_* labels. This is to avoid freeing
1875 	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1876 	 * kernel threads (PF_KTHREAD).
1877 	 */
1878 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1879 	/*
1880 	 * Clear TID on mm_release()?
1881 	 */
1882 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1883 
1884 	ftrace_graph_init_task(p);
1885 
1886 	rt_mutex_init_task(p);
1887 
1888 #ifdef CONFIG_PROVE_LOCKING
1889 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1890 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1891 #endif
1892 	retval = -EAGAIN;
1893 	if (atomic_read(&p->real_cred->user->processes) >=
1894 			task_rlimit(p, RLIMIT_NPROC)) {
1895 		if (p->real_cred->user != INIT_USER &&
1896 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1897 			goto bad_fork_free;
1898 	}
1899 	current->flags &= ~PF_NPROC_EXCEEDED;
1900 
1901 	retval = copy_creds(p, clone_flags);
1902 	if (retval < 0)
1903 		goto bad_fork_free;
1904 
1905 	/*
1906 	 * If multiple threads are within copy_process(), then this check
1907 	 * triggers too late. This doesn't hurt, the check is only there
1908 	 * to stop root fork bombs.
1909 	 */
1910 	retval = -EAGAIN;
1911 	if (nr_threads >= max_threads)
1912 		goto bad_fork_cleanup_count;
1913 
1914 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1915 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1916 	p->flags |= PF_FORKNOEXEC;
1917 	INIT_LIST_HEAD(&p->children);
1918 	INIT_LIST_HEAD(&p->sibling);
1919 	rcu_copy_process(p);
1920 	p->vfork_done = NULL;
1921 	spin_lock_init(&p->alloc_lock);
1922 
1923 	init_sigpending(&p->pending);
1924 
1925 	p->utime = p->stime = p->gtime = 0;
1926 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1927 	p->utimescaled = p->stimescaled = 0;
1928 #endif
1929 	prev_cputime_init(&p->prev_cputime);
1930 
1931 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1932 	seqcount_init(&p->vtime.seqcount);
1933 	p->vtime.starttime = 0;
1934 	p->vtime.state = VTIME_INACTIVE;
1935 #endif
1936 
1937 #if defined(SPLIT_RSS_COUNTING)
1938 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1939 #endif
1940 
1941 	p->default_timer_slack_ns = current->timer_slack_ns;
1942 
1943 #ifdef CONFIG_PSI
1944 	p->psi_flags = 0;
1945 #endif
1946 
1947 	task_io_accounting_init(&p->ioac);
1948 	acct_clear_integrals(p);
1949 
1950 	posix_cpu_timers_init(p);
1951 
1952 	p->io_context = NULL;
1953 	audit_set_context(p, NULL);
1954 	cgroup_fork(p);
1955 #ifdef CONFIG_NUMA
1956 	p->mempolicy = mpol_dup(p->mempolicy);
1957 	if (IS_ERR(p->mempolicy)) {
1958 		retval = PTR_ERR(p->mempolicy);
1959 		p->mempolicy = NULL;
1960 		goto bad_fork_cleanup_threadgroup_lock;
1961 	}
1962 #endif
1963 #ifdef CONFIG_CPUSETS
1964 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1965 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1966 	seqcount_init(&p->mems_allowed_seq);
1967 #endif
1968 #ifdef CONFIG_TRACE_IRQFLAGS
1969 	p->irq_events = 0;
1970 	p->hardirqs_enabled = 0;
1971 	p->hardirq_enable_ip = 0;
1972 	p->hardirq_enable_event = 0;
1973 	p->hardirq_disable_ip = _THIS_IP_;
1974 	p->hardirq_disable_event = 0;
1975 	p->softirqs_enabled = 1;
1976 	p->softirq_enable_ip = _THIS_IP_;
1977 	p->softirq_enable_event = 0;
1978 	p->softirq_disable_ip = 0;
1979 	p->softirq_disable_event = 0;
1980 	p->hardirq_context = 0;
1981 	p->softirq_context = 0;
1982 #endif
1983 
1984 	p->pagefault_disabled = 0;
1985 
1986 #ifdef CONFIG_LOCKDEP
1987 	lockdep_init_task(p);
1988 #endif
1989 
1990 #ifdef CONFIG_DEBUG_MUTEXES
1991 	p->blocked_on = NULL; /* not blocked yet */
1992 #endif
1993 #ifdef CONFIG_BCACHE
1994 	p->sequential_io	= 0;
1995 	p->sequential_io_avg	= 0;
1996 #endif
1997 
1998 	/* Perform scheduler related setup. Assign this task to a CPU. */
1999 	retval = sched_fork(clone_flags, p);
2000 	if (retval)
2001 		goto bad_fork_cleanup_policy;
2002 
2003 	retval = perf_event_init_task(p);
2004 	if (retval)
2005 		goto bad_fork_cleanup_policy;
2006 	retval = audit_alloc(p);
2007 	if (retval)
2008 		goto bad_fork_cleanup_perf;
2009 	/* copy all the process information */
2010 	shm_init_task(p);
2011 	retval = security_task_alloc(p, clone_flags);
2012 	if (retval)
2013 		goto bad_fork_cleanup_audit;
2014 	retval = copy_semundo(clone_flags, p);
2015 	if (retval)
2016 		goto bad_fork_cleanup_security;
2017 	retval = copy_files(clone_flags, p);
2018 	if (retval)
2019 		goto bad_fork_cleanup_semundo;
2020 	retval = copy_fs(clone_flags, p);
2021 	if (retval)
2022 		goto bad_fork_cleanup_files;
2023 	retval = copy_sighand(clone_flags, p);
2024 	if (retval)
2025 		goto bad_fork_cleanup_fs;
2026 	retval = copy_signal(clone_flags, p);
2027 	if (retval)
2028 		goto bad_fork_cleanup_sighand;
2029 	retval = copy_mm(clone_flags, p);
2030 	if (retval)
2031 		goto bad_fork_cleanup_signal;
2032 	retval = copy_namespaces(clone_flags, p);
2033 	if (retval)
2034 		goto bad_fork_cleanup_mm;
2035 	retval = copy_io(clone_flags, p);
2036 	if (retval)
2037 		goto bad_fork_cleanup_namespaces;
2038 	retval = copy_thread_tls(clone_flags, args->stack, args->stack_size, p,
2039 				 args->tls);
2040 	if (retval)
2041 		goto bad_fork_cleanup_io;
2042 
2043 	stackleak_task_init(p);
2044 
2045 	if (pid != &init_struct_pid) {
2046 		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
2047 		if (IS_ERR(pid)) {
2048 			retval = PTR_ERR(pid);
2049 			goto bad_fork_cleanup_thread;
2050 		}
2051 	}
2052 
2053 	/*
2054 	 * This has to happen after we've potentially unshared the file
2055 	 * descriptor table (so that the pidfd doesn't leak into the child
2056 	 * if the fd table isn't shared).
2057 	 */
2058 	if (clone_flags & CLONE_PIDFD) {
2059 		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2060 		if (retval < 0)
2061 			goto bad_fork_free_pid;
2062 
2063 		pidfd = retval;
2064 
2065 		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2066 					      O_RDWR | O_CLOEXEC);
2067 		if (IS_ERR(pidfile)) {
2068 			put_unused_fd(pidfd);
2069 			retval = PTR_ERR(pidfile);
2070 			goto bad_fork_free_pid;
2071 		}
2072 		get_pid(pid);	/* held by pidfile now */
2073 
2074 		retval = put_user(pidfd, args->pidfd);
2075 		if (retval)
2076 			goto bad_fork_put_pidfd;
2077 	}
2078 
2079 #ifdef CONFIG_BLOCK
2080 	p->plug = NULL;
2081 #endif
2082 #ifdef CONFIG_FUTEX
2083 	p->robust_list = NULL;
2084 #ifdef CONFIG_COMPAT
2085 	p->compat_robust_list = NULL;
2086 #endif
2087 	INIT_LIST_HEAD(&p->pi_state_list);
2088 	p->pi_state_cache = NULL;
2089 #endif
2090 	/*
2091 	 * sigaltstack should be cleared when sharing the same VM
2092 	 */
2093 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2094 		sas_ss_reset(p);
2095 
2096 	/*
2097 	 * Syscall tracing and stepping should be turned off in the
2098 	 * child regardless of CLONE_PTRACE.
2099 	 */
2100 	user_disable_single_step(p);
2101 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2102 #ifdef TIF_SYSCALL_EMU
2103 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2104 #endif
2105 	clear_tsk_latency_tracing(p);
2106 
2107 	/* ok, now we should be set up.. */
2108 	p->pid = pid_nr(pid);
2109 	if (clone_flags & CLONE_THREAD) {
2110 		p->exit_signal = -1;
2111 		p->group_leader = current->group_leader;
2112 		p->tgid = current->tgid;
2113 	} else {
2114 		if (clone_flags & CLONE_PARENT)
2115 			p->exit_signal = current->group_leader->exit_signal;
2116 		else
2117 			p->exit_signal = args->exit_signal;
2118 		p->group_leader = p;
2119 		p->tgid = p->pid;
2120 	}
2121 
2122 	p->nr_dirtied = 0;
2123 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2124 	p->dirty_paused_when = 0;
2125 
2126 	p->pdeath_signal = 0;
2127 	INIT_LIST_HEAD(&p->thread_group);
2128 	p->task_works = NULL;
2129 
2130 	cgroup_threadgroup_change_begin(current);
2131 	/*
2132 	 * Ensure that the cgroup subsystem policies allow the new process to be
2133 	 * forked. It should be noted the the new process's css_set can be changed
2134 	 * between here and cgroup_post_fork() if an organisation operation is in
2135 	 * progress.
2136 	 */
2137 	retval = cgroup_can_fork(p);
2138 	if (retval)
2139 		goto bad_fork_cgroup_threadgroup_change_end;
2140 
2141 	/*
2142 	 * From this point on we must avoid any synchronous user-space
2143 	 * communication until we take the tasklist-lock. In particular, we do
2144 	 * not want user-space to be able to predict the process start-time by
2145 	 * stalling fork(2) after we recorded the start_time but before it is
2146 	 * visible to the system.
2147 	 */
2148 
2149 	p->start_time = ktime_get_ns();
2150 	p->real_start_time = ktime_get_boottime_ns();
2151 
2152 	/*
2153 	 * Make it visible to the rest of the system, but dont wake it up yet.
2154 	 * Need tasklist lock for parent etc handling!
2155 	 */
2156 	write_lock_irq(&tasklist_lock);
2157 
2158 	/* CLONE_PARENT re-uses the old parent */
2159 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2160 		p->real_parent = current->real_parent;
2161 		p->parent_exec_id = current->parent_exec_id;
2162 	} else {
2163 		p->real_parent = current;
2164 		p->parent_exec_id = current->self_exec_id;
2165 	}
2166 
2167 	klp_copy_process(p);
2168 
2169 	spin_lock(&current->sighand->siglock);
2170 
2171 	/*
2172 	 * Copy seccomp details explicitly here, in case they were changed
2173 	 * before holding sighand lock.
2174 	 */
2175 	copy_seccomp(p);
2176 
2177 	rseq_fork(p, clone_flags);
2178 
2179 	/* Don't start children in a dying pid namespace */
2180 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2181 		retval = -ENOMEM;
2182 		goto bad_fork_cancel_cgroup;
2183 	}
2184 
2185 	/* Let kill terminate clone/fork in the middle */
2186 	if (fatal_signal_pending(current)) {
2187 		retval = -EINTR;
2188 		goto bad_fork_cancel_cgroup;
2189 	}
2190 
2191 	/* past the last point of failure */
2192 	if (pidfile)
2193 		fd_install(pidfd, pidfile);
2194 
2195 	init_task_pid_links(p);
2196 	if (likely(p->pid)) {
2197 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2198 
2199 		init_task_pid(p, PIDTYPE_PID, pid);
2200 		if (thread_group_leader(p)) {
2201 			init_task_pid(p, PIDTYPE_TGID, pid);
2202 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2203 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2204 
2205 			if (is_child_reaper(pid)) {
2206 				ns_of_pid(pid)->child_reaper = p;
2207 				p->signal->flags |= SIGNAL_UNKILLABLE;
2208 			}
2209 			p->signal->shared_pending.signal = delayed.signal;
2210 			p->signal->tty = tty_kref_get(current->signal->tty);
2211 			/*
2212 			 * Inherit has_child_subreaper flag under the same
2213 			 * tasklist_lock with adding child to the process tree
2214 			 * for propagate_has_child_subreaper optimization.
2215 			 */
2216 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2217 							 p->real_parent->signal->is_child_subreaper;
2218 			list_add_tail(&p->sibling, &p->real_parent->children);
2219 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2220 			attach_pid(p, PIDTYPE_TGID);
2221 			attach_pid(p, PIDTYPE_PGID);
2222 			attach_pid(p, PIDTYPE_SID);
2223 			__this_cpu_inc(process_counts);
2224 		} else {
2225 			current->signal->nr_threads++;
2226 			atomic_inc(&current->signal->live);
2227 			refcount_inc(&current->signal->sigcnt);
2228 			task_join_group_stop(p);
2229 			list_add_tail_rcu(&p->thread_group,
2230 					  &p->group_leader->thread_group);
2231 			list_add_tail_rcu(&p->thread_node,
2232 					  &p->signal->thread_head);
2233 		}
2234 		attach_pid(p, PIDTYPE_PID);
2235 		nr_threads++;
2236 	}
2237 	total_forks++;
2238 	hlist_del_init(&delayed.node);
2239 	spin_unlock(&current->sighand->siglock);
2240 	syscall_tracepoint_update(p);
2241 	write_unlock_irq(&tasklist_lock);
2242 
2243 	proc_fork_connector(p);
2244 	cgroup_post_fork(p);
2245 	cgroup_threadgroup_change_end(current);
2246 	perf_event_fork(p);
2247 
2248 	trace_task_newtask(p, clone_flags);
2249 	uprobe_copy_process(p, clone_flags);
2250 
2251 	return p;
2252 
2253 bad_fork_cancel_cgroup:
2254 	spin_unlock(&current->sighand->siglock);
2255 	write_unlock_irq(&tasklist_lock);
2256 	cgroup_cancel_fork(p);
2257 bad_fork_cgroup_threadgroup_change_end:
2258 	cgroup_threadgroup_change_end(current);
2259 bad_fork_put_pidfd:
2260 	if (clone_flags & CLONE_PIDFD) {
2261 		fput(pidfile);
2262 		put_unused_fd(pidfd);
2263 	}
2264 bad_fork_free_pid:
2265 	if (pid != &init_struct_pid)
2266 		free_pid(pid);
2267 bad_fork_cleanup_thread:
2268 	exit_thread(p);
2269 bad_fork_cleanup_io:
2270 	if (p->io_context)
2271 		exit_io_context(p);
2272 bad_fork_cleanup_namespaces:
2273 	exit_task_namespaces(p);
2274 bad_fork_cleanup_mm:
2275 	if (p->mm) {
2276 		mm_clear_owner(p->mm, p);
2277 		mmput(p->mm);
2278 	}
2279 bad_fork_cleanup_signal:
2280 	if (!(clone_flags & CLONE_THREAD))
2281 		free_signal_struct(p->signal);
2282 bad_fork_cleanup_sighand:
2283 	__cleanup_sighand(p->sighand);
2284 bad_fork_cleanup_fs:
2285 	exit_fs(p); /* blocking */
2286 bad_fork_cleanup_files:
2287 	exit_files(p); /* blocking */
2288 bad_fork_cleanup_semundo:
2289 	exit_sem(p);
2290 bad_fork_cleanup_security:
2291 	security_task_free(p);
2292 bad_fork_cleanup_audit:
2293 	audit_free(p);
2294 bad_fork_cleanup_perf:
2295 	perf_event_free_task(p);
2296 bad_fork_cleanup_policy:
2297 	lockdep_free_task(p);
2298 #ifdef CONFIG_NUMA
2299 	mpol_put(p->mempolicy);
2300 bad_fork_cleanup_threadgroup_lock:
2301 #endif
2302 	delayacct_tsk_free(p);
2303 bad_fork_cleanup_count:
2304 	atomic_dec(&p->cred->user->processes);
2305 	exit_creds(p);
2306 bad_fork_free:
2307 	p->state = TASK_DEAD;
2308 	put_task_stack(p);
2309 	delayed_free_task(p);
2310 fork_out:
2311 	spin_lock_irq(&current->sighand->siglock);
2312 	hlist_del_init(&delayed.node);
2313 	spin_unlock_irq(&current->sighand->siglock);
2314 	return ERR_PTR(retval);
2315 }
2316 
2317 static inline void init_idle_pids(struct task_struct *idle)
2318 {
2319 	enum pid_type type;
2320 
2321 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2322 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2323 		init_task_pid(idle, type, &init_struct_pid);
2324 	}
2325 }
2326 
2327 struct task_struct *fork_idle(int cpu)
2328 {
2329 	struct task_struct *task;
2330 	struct kernel_clone_args args = {
2331 		.flags = CLONE_VM,
2332 	};
2333 
2334 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2335 	if (!IS_ERR(task)) {
2336 		init_idle_pids(task);
2337 		init_idle(task, cpu);
2338 	}
2339 
2340 	return task;
2341 }
2342 
2343 struct mm_struct *copy_init_mm(void)
2344 {
2345 	return dup_mm(NULL, &init_mm);
2346 }
2347 
2348 /*
2349  *  Ok, this is the main fork-routine.
2350  *
2351  * It copies the process, and if successful kick-starts
2352  * it and waits for it to finish using the VM if required.
2353  *
2354  * args->exit_signal is expected to be checked for sanity by the caller.
2355  */
2356 long _do_fork(struct kernel_clone_args *args)
2357 {
2358 	u64 clone_flags = args->flags;
2359 	struct completion vfork;
2360 	struct pid *pid;
2361 	struct task_struct *p;
2362 	int trace = 0;
2363 	long nr;
2364 
2365 	/*
2366 	 * Determine whether and which event to report to ptracer.  When
2367 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2368 	 * requested, no event is reported; otherwise, report if the event
2369 	 * for the type of forking is enabled.
2370 	 */
2371 	if (!(clone_flags & CLONE_UNTRACED)) {
2372 		if (clone_flags & CLONE_VFORK)
2373 			trace = PTRACE_EVENT_VFORK;
2374 		else if (args->exit_signal != SIGCHLD)
2375 			trace = PTRACE_EVENT_CLONE;
2376 		else
2377 			trace = PTRACE_EVENT_FORK;
2378 
2379 		if (likely(!ptrace_event_enabled(current, trace)))
2380 			trace = 0;
2381 	}
2382 
2383 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2384 	add_latent_entropy();
2385 
2386 	if (IS_ERR(p))
2387 		return PTR_ERR(p);
2388 
2389 	/*
2390 	 * Do this prior waking up the new thread - the thread pointer
2391 	 * might get invalid after that point, if the thread exits quickly.
2392 	 */
2393 	trace_sched_process_fork(current, p);
2394 
2395 	pid = get_task_pid(p, PIDTYPE_PID);
2396 	nr = pid_vnr(pid);
2397 
2398 	if (clone_flags & CLONE_PARENT_SETTID)
2399 		put_user(nr, args->parent_tid);
2400 
2401 	if (clone_flags & CLONE_VFORK) {
2402 		p->vfork_done = &vfork;
2403 		init_completion(&vfork);
2404 		get_task_struct(p);
2405 	}
2406 
2407 	wake_up_new_task(p);
2408 
2409 	/* forking complete and child started to run, tell ptracer */
2410 	if (unlikely(trace))
2411 		ptrace_event_pid(trace, pid);
2412 
2413 	if (clone_flags & CLONE_VFORK) {
2414 		if (!wait_for_vfork_done(p, &vfork))
2415 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2416 	}
2417 
2418 	put_pid(pid);
2419 	return nr;
2420 }
2421 
2422 bool legacy_clone_args_valid(const struct kernel_clone_args *kargs)
2423 {
2424 	/* clone(CLONE_PIDFD) uses parent_tidptr to return a pidfd */
2425 	if ((kargs->flags & CLONE_PIDFD) &&
2426 	    (kargs->flags & CLONE_PARENT_SETTID))
2427 		return false;
2428 
2429 	return true;
2430 }
2431 
2432 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2433 /* For compatibility with architectures that call do_fork directly rather than
2434  * using the syscall entry points below. */
2435 long do_fork(unsigned long clone_flags,
2436 	      unsigned long stack_start,
2437 	      unsigned long stack_size,
2438 	      int __user *parent_tidptr,
2439 	      int __user *child_tidptr)
2440 {
2441 	struct kernel_clone_args args = {
2442 		.flags		= (clone_flags & ~CSIGNAL),
2443 		.pidfd		= parent_tidptr,
2444 		.child_tid	= child_tidptr,
2445 		.parent_tid	= parent_tidptr,
2446 		.exit_signal	= (clone_flags & CSIGNAL),
2447 		.stack		= stack_start,
2448 		.stack_size	= stack_size,
2449 	};
2450 
2451 	if (!legacy_clone_args_valid(&args))
2452 		return -EINVAL;
2453 
2454 	return _do_fork(&args);
2455 }
2456 #endif
2457 
2458 /*
2459  * Create a kernel thread.
2460  */
2461 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2462 {
2463 	struct kernel_clone_args args = {
2464 		.flags		= ((flags | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL),
2465 		.exit_signal	= (flags & CSIGNAL),
2466 		.stack		= (unsigned long)fn,
2467 		.stack_size	= (unsigned long)arg,
2468 	};
2469 
2470 	return _do_fork(&args);
2471 }
2472 
2473 #ifdef __ARCH_WANT_SYS_FORK
2474 SYSCALL_DEFINE0(fork)
2475 {
2476 #ifdef CONFIG_MMU
2477 	struct kernel_clone_args args = {
2478 		.exit_signal = SIGCHLD,
2479 	};
2480 
2481 	return _do_fork(&args);
2482 #else
2483 	/* can not support in nommu mode */
2484 	return -EINVAL;
2485 #endif
2486 }
2487 #endif
2488 
2489 #ifdef __ARCH_WANT_SYS_VFORK
2490 SYSCALL_DEFINE0(vfork)
2491 {
2492 	struct kernel_clone_args args = {
2493 		.flags		= CLONE_VFORK | CLONE_VM,
2494 		.exit_signal	= SIGCHLD,
2495 	};
2496 
2497 	return _do_fork(&args);
2498 }
2499 #endif
2500 
2501 #ifdef __ARCH_WANT_SYS_CLONE
2502 #ifdef CONFIG_CLONE_BACKWARDS
2503 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2504 		 int __user *, parent_tidptr,
2505 		 unsigned long, tls,
2506 		 int __user *, child_tidptr)
2507 #elif defined(CONFIG_CLONE_BACKWARDS2)
2508 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2509 		 int __user *, parent_tidptr,
2510 		 int __user *, child_tidptr,
2511 		 unsigned long, tls)
2512 #elif defined(CONFIG_CLONE_BACKWARDS3)
2513 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2514 		int, stack_size,
2515 		int __user *, parent_tidptr,
2516 		int __user *, child_tidptr,
2517 		unsigned long, tls)
2518 #else
2519 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2520 		 int __user *, parent_tidptr,
2521 		 int __user *, child_tidptr,
2522 		 unsigned long, tls)
2523 #endif
2524 {
2525 	struct kernel_clone_args args = {
2526 		.flags		= (clone_flags & ~CSIGNAL),
2527 		.pidfd		= parent_tidptr,
2528 		.child_tid	= child_tidptr,
2529 		.parent_tid	= parent_tidptr,
2530 		.exit_signal	= (clone_flags & CSIGNAL),
2531 		.stack		= newsp,
2532 		.tls		= tls,
2533 	};
2534 
2535 	if (!legacy_clone_args_valid(&args))
2536 		return -EINVAL;
2537 
2538 	return _do_fork(&args);
2539 }
2540 #endif
2541 
2542 #ifdef __ARCH_WANT_SYS_CLONE3
2543 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2544 					      struct clone_args __user *uargs,
2545 					      size_t size)
2546 {
2547 	struct clone_args args;
2548 
2549 	if (unlikely(size > PAGE_SIZE))
2550 		return -E2BIG;
2551 
2552 	if (unlikely(size < sizeof(struct clone_args)))
2553 		return -EINVAL;
2554 
2555 	if (unlikely(!access_ok(uargs, size)))
2556 		return -EFAULT;
2557 
2558 	if (size > sizeof(struct clone_args)) {
2559 		unsigned char __user *addr;
2560 		unsigned char __user *end;
2561 		unsigned char val;
2562 
2563 		addr = (void __user *)uargs + sizeof(struct clone_args);
2564 		end = (void __user *)uargs + size;
2565 
2566 		for (; addr < end; addr++) {
2567 			if (get_user(val, addr))
2568 				return -EFAULT;
2569 			if (val)
2570 				return -E2BIG;
2571 		}
2572 
2573 		size = sizeof(struct clone_args);
2574 	}
2575 
2576 	if (copy_from_user(&args, uargs, size))
2577 		return -EFAULT;
2578 
2579 	/*
2580 	 * Verify that higher 32bits of exit_signal are unset and that
2581 	 * it is a valid signal
2582 	 */
2583 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2584 		     !valid_signal(args.exit_signal)))
2585 		return -EINVAL;
2586 
2587 	*kargs = (struct kernel_clone_args){
2588 		.flags		= args.flags,
2589 		.pidfd		= u64_to_user_ptr(args.pidfd),
2590 		.child_tid	= u64_to_user_ptr(args.child_tid),
2591 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2592 		.exit_signal	= args.exit_signal,
2593 		.stack		= args.stack,
2594 		.stack_size	= args.stack_size,
2595 		.tls		= args.tls,
2596 	};
2597 
2598 	return 0;
2599 }
2600 
2601 static bool clone3_args_valid(const struct kernel_clone_args *kargs)
2602 {
2603 	/*
2604 	 * All lower bits of the flag word are taken.
2605 	 * Verify that no other unknown flags are passed along.
2606 	 */
2607 	if (kargs->flags & ~CLONE_LEGACY_FLAGS)
2608 		return false;
2609 
2610 	/*
2611 	 * - make the CLONE_DETACHED bit reuseable for clone3
2612 	 * - make the CSIGNAL bits reuseable for clone3
2613 	 */
2614 	if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2615 		return false;
2616 
2617 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2618 	    kargs->exit_signal)
2619 		return false;
2620 
2621 	return true;
2622 }
2623 
2624 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2625 {
2626 	int err;
2627 
2628 	struct kernel_clone_args kargs;
2629 
2630 	err = copy_clone_args_from_user(&kargs, uargs, size);
2631 	if (err)
2632 		return err;
2633 
2634 	if (!clone3_args_valid(&kargs))
2635 		return -EINVAL;
2636 
2637 	return _do_fork(&kargs);
2638 }
2639 #endif
2640 
2641 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2642 {
2643 	struct task_struct *leader, *parent, *child;
2644 	int res;
2645 
2646 	read_lock(&tasklist_lock);
2647 	leader = top = top->group_leader;
2648 down:
2649 	for_each_thread(leader, parent) {
2650 		list_for_each_entry(child, &parent->children, sibling) {
2651 			res = visitor(child, data);
2652 			if (res) {
2653 				if (res < 0)
2654 					goto out;
2655 				leader = child;
2656 				goto down;
2657 			}
2658 up:
2659 			;
2660 		}
2661 	}
2662 
2663 	if (leader != top) {
2664 		child = leader;
2665 		parent = child->real_parent;
2666 		leader = parent->group_leader;
2667 		goto up;
2668 	}
2669 out:
2670 	read_unlock(&tasklist_lock);
2671 }
2672 
2673 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2674 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2675 #endif
2676 
2677 static void sighand_ctor(void *data)
2678 {
2679 	struct sighand_struct *sighand = data;
2680 
2681 	spin_lock_init(&sighand->siglock);
2682 	init_waitqueue_head(&sighand->signalfd_wqh);
2683 }
2684 
2685 void __init proc_caches_init(void)
2686 {
2687 	unsigned int mm_size;
2688 
2689 	sighand_cachep = kmem_cache_create("sighand_cache",
2690 			sizeof(struct sighand_struct), 0,
2691 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2692 			SLAB_ACCOUNT, sighand_ctor);
2693 	signal_cachep = kmem_cache_create("signal_cache",
2694 			sizeof(struct signal_struct), 0,
2695 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2696 			NULL);
2697 	files_cachep = kmem_cache_create("files_cache",
2698 			sizeof(struct files_struct), 0,
2699 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2700 			NULL);
2701 	fs_cachep = kmem_cache_create("fs_cache",
2702 			sizeof(struct fs_struct), 0,
2703 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2704 			NULL);
2705 
2706 	/*
2707 	 * The mm_cpumask is located at the end of mm_struct, and is
2708 	 * dynamically sized based on the maximum CPU number this system
2709 	 * can have, taking hotplug into account (nr_cpu_ids).
2710 	 */
2711 	mm_size = sizeof(struct mm_struct) + cpumask_size();
2712 
2713 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2714 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2715 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2716 			offsetof(struct mm_struct, saved_auxv),
2717 			sizeof_field(struct mm_struct, saved_auxv),
2718 			NULL);
2719 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2720 	mmap_init();
2721 	nsproxy_cache_init();
2722 }
2723 
2724 /*
2725  * Check constraints on flags passed to the unshare system call.
2726  */
2727 static int check_unshare_flags(unsigned long unshare_flags)
2728 {
2729 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2730 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2731 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2732 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2733 		return -EINVAL;
2734 	/*
2735 	 * Not implemented, but pretend it works if there is nothing
2736 	 * to unshare.  Note that unsharing the address space or the
2737 	 * signal handlers also need to unshare the signal queues (aka
2738 	 * CLONE_THREAD).
2739 	 */
2740 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2741 		if (!thread_group_empty(current))
2742 			return -EINVAL;
2743 	}
2744 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2745 		if (refcount_read(&current->sighand->count) > 1)
2746 			return -EINVAL;
2747 	}
2748 	if (unshare_flags & CLONE_VM) {
2749 		if (!current_is_single_threaded())
2750 			return -EINVAL;
2751 	}
2752 
2753 	return 0;
2754 }
2755 
2756 /*
2757  * Unshare the filesystem structure if it is being shared
2758  */
2759 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2760 {
2761 	struct fs_struct *fs = current->fs;
2762 
2763 	if (!(unshare_flags & CLONE_FS) || !fs)
2764 		return 0;
2765 
2766 	/* don't need lock here; in the worst case we'll do useless copy */
2767 	if (fs->users == 1)
2768 		return 0;
2769 
2770 	*new_fsp = copy_fs_struct(fs);
2771 	if (!*new_fsp)
2772 		return -ENOMEM;
2773 
2774 	return 0;
2775 }
2776 
2777 /*
2778  * Unshare file descriptor table if it is being shared
2779  */
2780 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2781 {
2782 	struct files_struct *fd = current->files;
2783 	int error = 0;
2784 
2785 	if ((unshare_flags & CLONE_FILES) &&
2786 	    (fd && atomic_read(&fd->count) > 1)) {
2787 		*new_fdp = dup_fd(fd, &error);
2788 		if (!*new_fdp)
2789 			return error;
2790 	}
2791 
2792 	return 0;
2793 }
2794 
2795 /*
2796  * unshare allows a process to 'unshare' part of the process
2797  * context which was originally shared using clone.  copy_*
2798  * functions used by do_fork() cannot be used here directly
2799  * because they modify an inactive task_struct that is being
2800  * constructed. Here we are modifying the current, active,
2801  * task_struct.
2802  */
2803 int ksys_unshare(unsigned long unshare_flags)
2804 {
2805 	struct fs_struct *fs, *new_fs = NULL;
2806 	struct files_struct *fd, *new_fd = NULL;
2807 	struct cred *new_cred = NULL;
2808 	struct nsproxy *new_nsproxy = NULL;
2809 	int do_sysvsem = 0;
2810 	int err;
2811 
2812 	/*
2813 	 * If unsharing a user namespace must also unshare the thread group
2814 	 * and unshare the filesystem root and working directories.
2815 	 */
2816 	if (unshare_flags & CLONE_NEWUSER)
2817 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2818 	/*
2819 	 * If unsharing vm, must also unshare signal handlers.
2820 	 */
2821 	if (unshare_flags & CLONE_VM)
2822 		unshare_flags |= CLONE_SIGHAND;
2823 	/*
2824 	 * If unsharing a signal handlers, must also unshare the signal queues.
2825 	 */
2826 	if (unshare_flags & CLONE_SIGHAND)
2827 		unshare_flags |= CLONE_THREAD;
2828 	/*
2829 	 * If unsharing namespace, must also unshare filesystem information.
2830 	 */
2831 	if (unshare_flags & CLONE_NEWNS)
2832 		unshare_flags |= CLONE_FS;
2833 
2834 	err = check_unshare_flags(unshare_flags);
2835 	if (err)
2836 		goto bad_unshare_out;
2837 	/*
2838 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2839 	 * to a new ipc namespace, the semaphore arrays from the old
2840 	 * namespace are unreachable.
2841 	 */
2842 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2843 		do_sysvsem = 1;
2844 	err = unshare_fs(unshare_flags, &new_fs);
2845 	if (err)
2846 		goto bad_unshare_out;
2847 	err = unshare_fd(unshare_flags, &new_fd);
2848 	if (err)
2849 		goto bad_unshare_cleanup_fs;
2850 	err = unshare_userns(unshare_flags, &new_cred);
2851 	if (err)
2852 		goto bad_unshare_cleanup_fd;
2853 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2854 					 new_cred, new_fs);
2855 	if (err)
2856 		goto bad_unshare_cleanup_cred;
2857 
2858 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2859 		if (do_sysvsem) {
2860 			/*
2861 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2862 			 */
2863 			exit_sem(current);
2864 		}
2865 		if (unshare_flags & CLONE_NEWIPC) {
2866 			/* Orphan segments in old ns (see sem above). */
2867 			exit_shm(current);
2868 			shm_init_task(current);
2869 		}
2870 
2871 		if (new_nsproxy)
2872 			switch_task_namespaces(current, new_nsproxy);
2873 
2874 		task_lock(current);
2875 
2876 		if (new_fs) {
2877 			fs = current->fs;
2878 			spin_lock(&fs->lock);
2879 			current->fs = new_fs;
2880 			if (--fs->users)
2881 				new_fs = NULL;
2882 			else
2883 				new_fs = fs;
2884 			spin_unlock(&fs->lock);
2885 		}
2886 
2887 		if (new_fd) {
2888 			fd = current->files;
2889 			current->files = new_fd;
2890 			new_fd = fd;
2891 		}
2892 
2893 		task_unlock(current);
2894 
2895 		if (new_cred) {
2896 			/* Install the new user namespace */
2897 			commit_creds(new_cred);
2898 			new_cred = NULL;
2899 		}
2900 	}
2901 
2902 	perf_event_namespaces(current);
2903 
2904 bad_unshare_cleanup_cred:
2905 	if (new_cred)
2906 		put_cred(new_cred);
2907 bad_unshare_cleanup_fd:
2908 	if (new_fd)
2909 		put_files_struct(new_fd);
2910 
2911 bad_unshare_cleanup_fs:
2912 	if (new_fs)
2913 		free_fs_struct(new_fs);
2914 
2915 bad_unshare_out:
2916 	return err;
2917 }
2918 
2919 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2920 {
2921 	return ksys_unshare(unshare_flags);
2922 }
2923 
2924 /*
2925  *	Helper to unshare the files of the current task.
2926  *	We don't want to expose copy_files internals to
2927  *	the exec layer of the kernel.
2928  */
2929 
2930 int unshare_files(struct files_struct **displaced)
2931 {
2932 	struct task_struct *task = current;
2933 	struct files_struct *copy = NULL;
2934 	int error;
2935 
2936 	error = unshare_fd(CLONE_FILES, &copy);
2937 	if (error || !copy) {
2938 		*displaced = NULL;
2939 		return error;
2940 	}
2941 	*displaced = task->files;
2942 	task_lock(task);
2943 	task->files = copy;
2944 	task_unlock(task);
2945 	return 0;
2946 }
2947 
2948 int sysctl_max_threads(struct ctl_table *table, int write,
2949 		       void __user *buffer, size_t *lenp, loff_t *ppos)
2950 {
2951 	struct ctl_table t;
2952 	int ret;
2953 	int threads = max_threads;
2954 	int min = MIN_THREADS;
2955 	int max = MAX_THREADS;
2956 
2957 	t = *table;
2958 	t.data = &threads;
2959 	t.extra1 = &min;
2960 	t.extra2 = &max;
2961 
2962 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2963 	if (ret || !write)
2964 		return ret;
2965 
2966 	set_max_threads(threads);
2967 
2968 	return 0;
2969 }
2970