xref: /linux/kernel/fork.c (revision 16e5ac127d8d18adf85fe5ba847d77b58d1ed418)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/tty.h>
79 #include <linux/fs_struct.h>
80 #include <linux/magic.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94 #include <linux/stackleak.h>
95 #include <linux/kasan.h>
96 #include <linux/scs.h>
97 #include <linux/io_uring.h>
98 #include <linux/bpf.h>
99 #include <linux/stackprotector.h>
100 #include <linux/user_events.h>
101 #include <linux/iommu.h>
102 
103 #include <asm/pgalloc.h>
104 #include <linux/uaccess.h>
105 #include <asm/mmu_context.h>
106 #include <asm/cacheflush.h>
107 #include <asm/tlbflush.h>
108 
109 #include <trace/events/sched.h>
110 
111 #define CREATE_TRACE_POINTS
112 #include <trace/events/task.h>
113 
114 /*
115  * Minimum number of threads to boot the kernel
116  */
117 #define MIN_THREADS 20
118 
119 /*
120  * Maximum number of threads
121  */
122 #define MAX_THREADS FUTEX_TID_MASK
123 
124 /*
125  * Protected counters by write_lock_irq(&tasklist_lock)
126  */
127 unsigned long total_forks;	/* Handle normal Linux uptimes. */
128 int nr_threads;			/* The idle threads do not count.. */
129 
130 static int max_threads;		/* tunable limit on nr_threads */
131 
132 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
133 
134 static const char * const resident_page_types[] = {
135 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
136 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
137 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
138 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
139 };
140 
141 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
142 
143 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
144 
145 #ifdef CONFIG_PROVE_RCU
146 int lockdep_tasklist_lock_is_held(void)
147 {
148 	return lockdep_is_held(&tasklist_lock);
149 }
150 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
151 #endif /* #ifdef CONFIG_PROVE_RCU */
152 
153 int nr_processes(void)
154 {
155 	int cpu;
156 	int total = 0;
157 
158 	for_each_possible_cpu(cpu)
159 		total += per_cpu(process_counts, cpu);
160 
161 	return total;
162 }
163 
164 void __weak arch_release_task_struct(struct task_struct *tsk)
165 {
166 }
167 
168 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
169 static struct kmem_cache *task_struct_cachep;
170 
171 static inline struct task_struct *alloc_task_struct_node(int node)
172 {
173 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
174 }
175 
176 static inline void free_task_struct(struct task_struct *tsk)
177 {
178 	kmem_cache_free(task_struct_cachep, tsk);
179 }
180 #endif
181 
182 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
183 
184 /*
185  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
186  * kmemcache based allocator.
187  */
188 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
189 
190 #  ifdef CONFIG_VMAP_STACK
191 /*
192  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
193  * flush.  Try to minimize the number of calls by caching stacks.
194  */
195 #define NR_CACHED_STACKS 2
196 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
197 
198 struct vm_stack {
199 	struct rcu_head rcu;
200 	struct vm_struct *stack_vm_area;
201 };
202 
203 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
204 {
205 	unsigned int i;
206 
207 	for (i = 0; i < NR_CACHED_STACKS; i++) {
208 		if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
209 			continue;
210 		return true;
211 	}
212 	return false;
213 }
214 
215 static void thread_stack_free_rcu(struct rcu_head *rh)
216 {
217 	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
218 
219 	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
220 		return;
221 
222 	vfree(vm_stack);
223 }
224 
225 static void thread_stack_delayed_free(struct task_struct *tsk)
226 {
227 	struct vm_stack *vm_stack = tsk->stack;
228 
229 	vm_stack->stack_vm_area = tsk->stack_vm_area;
230 	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
231 }
232 
233 static int free_vm_stack_cache(unsigned int cpu)
234 {
235 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
236 	int i;
237 
238 	for (i = 0; i < NR_CACHED_STACKS; i++) {
239 		struct vm_struct *vm_stack = cached_vm_stacks[i];
240 
241 		if (!vm_stack)
242 			continue;
243 
244 		vfree(vm_stack->addr);
245 		cached_vm_stacks[i] = NULL;
246 	}
247 
248 	return 0;
249 }
250 
251 static int memcg_charge_kernel_stack(struct vm_struct *vm)
252 {
253 	int i;
254 	int ret;
255 	int nr_charged = 0;
256 
257 	BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
258 
259 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
260 		ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
261 		if (ret)
262 			goto err;
263 		nr_charged++;
264 	}
265 	return 0;
266 err:
267 	for (i = 0; i < nr_charged; i++)
268 		memcg_kmem_uncharge_page(vm->pages[i], 0);
269 	return ret;
270 }
271 
272 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
273 {
274 	struct vm_struct *vm;
275 	void *stack;
276 	int i;
277 
278 	for (i = 0; i < NR_CACHED_STACKS; i++) {
279 		struct vm_struct *s;
280 
281 		s = this_cpu_xchg(cached_stacks[i], NULL);
282 
283 		if (!s)
284 			continue;
285 
286 		/* Reset stack metadata. */
287 		kasan_unpoison_range(s->addr, THREAD_SIZE);
288 
289 		stack = kasan_reset_tag(s->addr);
290 
291 		/* Clear stale pointers from reused stack. */
292 		memset(stack, 0, THREAD_SIZE);
293 
294 		if (memcg_charge_kernel_stack(s)) {
295 			vfree(s->addr);
296 			return -ENOMEM;
297 		}
298 
299 		tsk->stack_vm_area = s;
300 		tsk->stack = stack;
301 		return 0;
302 	}
303 
304 	/*
305 	 * Allocated stacks are cached and later reused by new threads,
306 	 * so memcg accounting is performed manually on assigning/releasing
307 	 * stacks to tasks. Drop __GFP_ACCOUNT.
308 	 */
309 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
310 				     VMALLOC_START, VMALLOC_END,
311 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
312 				     PAGE_KERNEL,
313 				     0, node, __builtin_return_address(0));
314 	if (!stack)
315 		return -ENOMEM;
316 
317 	vm = find_vm_area(stack);
318 	if (memcg_charge_kernel_stack(vm)) {
319 		vfree(stack);
320 		return -ENOMEM;
321 	}
322 	/*
323 	 * We can't call find_vm_area() in interrupt context, and
324 	 * free_thread_stack() can be called in interrupt context,
325 	 * so cache the vm_struct.
326 	 */
327 	tsk->stack_vm_area = vm;
328 	stack = kasan_reset_tag(stack);
329 	tsk->stack = stack;
330 	return 0;
331 }
332 
333 static void free_thread_stack(struct task_struct *tsk)
334 {
335 	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
336 		thread_stack_delayed_free(tsk);
337 
338 	tsk->stack = NULL;
339 	tsk->stack_vm_area = NULL;
340 }
341 
342 #  else /* !CONFIG_VMAP_STACK */
343 
344 static void thread_stack_free_rcu(struct rcu_head *rh)
345 {
346 	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
347 }
348 
349 static void thread_stack_delayed_free(struct task_struct *tsk)
350 {
351 	struct rcu_head *rh = tsk->stack;
352 
353 	call_rcu(rh, thread_stack_free_rcu);
354 }
355 
356 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
357 {
358 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
359 					     THREAD_SIZE_ORDER);
360 
361 	if (likely(page)) {
362 		tsk->stack = kasan_reset_tag(page_address(page));
363 		return 0;
364 	}
365 	return -ENOMEM;
366 }
367 
368 static void free_thread_stack(struct task_struct *tsk)
369 {
370 	thread_stack_delayed_free(tsk);
371 	tsk->stack = NULL;
372 }
373 
374 #  endif /* CONFIG_VMAP_STACK */
375 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
376 
377 static struct kmem_cache *thread_stack_cache;
378 
379 static void thread_stack_free_rcu(struct rcu_head *rh)
380 {
381 	kmem_cache_free(thread_stack_cache, rh);
382 }
383 
384 static void thread_stack_delayed_free(struct task_struct *tsk)
385 {
386 	struct rcu_head *rh = tsk->stack;
387 
388 	call_rcu(rh, thread_stack_free_rcu);
389 }
390 
391 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
392 {
393 	unsigned long *stack;
394 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
395 	stack = kasan_reset_tag(stack);
396 	tsk->stack = stack;
397 	return stack ? 0 : -ENOMEM;
398 }
399 
400 static void free_thread_stack(struct task_struct *tsk)
401 {
402 	thread_stack_delayed_free(tsk);
403 	tsk->stack = NULL;
404 }
405 
406 void thread_stack_cache_init(void)
407 {
408 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
409 					THREAD_SIZE, THREAD_SIZE, 0, 0,
410 					THREAD_SIZE, NULL);
411 	BUG_ON(thread_stack_cache == NULL);
412 }
413 
414 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
415 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
416 
417 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
418 {
419 	unsigned long *stack;
420 
421 	stack = arch_alloc_thread_stack_node(tsk, node);
422 	tsk->stack = stack;
423 	return stack ? 0 : -ENOMEM;
424 }
425 
426 static void free_thread_stack(struct task_struct *tsk)
427 {
428 	arch_free_thread_stack(tsk);
429 	tsk->stack = NULL;
430 }
431 
432 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
433 
434 /* SLAB cache for signal_struct structures (tsk->signal) */
435 static struct kmem_cache *signal_cachep;
436 
437 /* SLAB cache for sighand_struct structures (tsk->sighand) */
438 struct kmem_cache *sighand_cachep;
439 
440 /* SLAB cache for files_struct structures (tsk->files) */
441 struct kmem_cache *files_cachep;
442 
443 /* SLAB cache for fs_struct structures (tsk->fs) */
444 struct kmem_cache *fs_cachep;
445 
446 /* SLAB cache for vm_area_struct structures */
447 static struct kmem_cache *vm_area_cachep;
448 
449 /* SLAB cache for mm_struct structures (tsk->mm) */
450 static struct kmem_cache *mm_cachep;
451 
452 #ifdef CONFIG_PER_VMA_LOCK
453 
454 /* SLAB cache for vm_area_struct.lock */
455 static struct kmem_cache *vma_lock_cachep;
456 
457 static bool vma_lock_alloc(struct vm_area_struct *vma)
458 {
459 	vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
460 	if (!vma->vm_lock)
461 		return false;
462 
463 	init_rwsem(&vma->vm_lock->lock);
464 	vma->vm_lock_seq = -1;
465 
466 	return true;
467 }
468 
469 static inline void vma_lock_free(struct vm_area_struct *vma)
470 {
471 	kmem_cache_free(vma_lock_cachep, vma->vm_lock);
472 }
473 
474 #else /* CONFIG_PER_VMA_LOCK */
475 
476 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
477 static inline void vma_lock_free(struct vm_area_struct *vma) {}
478 
479 #endif /* CONFIG_PER_VMA_LOCK */
480 
481 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
482 {
483 	struct vm_area_struct *vma;
484 
485 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
486 	if (!vma)
487 		return NULL;
488 
489 	vma_init(vma, mm);
490 	if (!vma_lock_alloc(vma)) {
491 		kmem_cache_free(vm_area_cachep, vma);
492 		return NULL;
493 	}
494 
495 	return vma;
496 }
497 
498 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
499 {
500 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
501 
502 	if (!new)
503 		return NULL;
504 
505 	ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
506 	ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
507 	/*
508 	 * orig->shared.rb may be modified concurrently, but the clone
509 	 * will be reinitialized.
510 	 */
511 	data_race(memcpy(new, orig, sizeof(*new)));
512 	if (!vma_lock_alloc(new)) {
513 		kmem_cache_free(vm_area_cachep, new);
514 		return NULL;
515 	}
516 	INIT_LIST_HEAD(&new->anon_vma_chain);
517 	vma_numab_state_init(new);
518 	dup_anon_vma_name(orig, new);
519 
520 	return new;
521 }
522 
523 void __vm_area_free(struct vm_area_struct *vma)
524 {
525 	vma_numab_state_free(vma);
526 	free_anon_vma_name(vma);
527 	vma_lock_free(vma);
528 	kmem_cache_free(vm_area_cachep, vma);
529 }
530 
531 #ifdef CONFIG_PER_VMA_LOCK
532 static void vm_area_free_rcu_cb(struct rcu_head *head)
533 {
534 	struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
535 						  vm_rcu);
536 
537 	/* The vma should not be locked while being destroyed. */
538 	VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
539 	__vm_area_free(vma);
540 }
541 #endif
542 
543 void vm_area_free(struct vm_area_struct *vma)
544 {
545 #ifdef CONFIG_PER_VMA_LOCK
546 	call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
547 #else
548 	__vm_area_free(vma);
549 #endif
550 }
551 
552 static void account_kernel_stack(struct task_struct *tsk, int account)
553 {
554 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
555 		struct vm_struct *vm = task_stack_vm_area(tsk);
556 		int i;
557 
558 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
559 			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
560 					      account * (PAGE_SIZE / 1024));
561 	} else {
562 		void *stack = task_stack_page(tsk);
563 
564 		/* All stack pages are in the same node. */
565 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
566 				      account * (THREAD_SIZE / 1024));
567 	}
568 }
569 
570 void exit_task_stack_account(struct task_struct *tsk)
571 {
572 	account_kernel_stack(tsk, -1);
573 
574 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
575 		struct vm_struct *vm;
576 		int i;
577 
578 		vm = task_stack_vm_area(tsk);
579 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
580 			memcg_kmem_uncharge_page(vm->pages[i], 0);
581 	}
582 }
583 
584 static void release_task_stack(struct task_struct *tsk)
585 {
586 	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
587 		return;  /* Better to leak the stack than to free prematurely */
588 
589 	free_thread_stack(tsk);
590 }
591 
592 #ifdef CONFIG_THREAD_INFO_IN_TASK
593 void put_task_stack(struct task_struct *tsk)
594 {
595 	if (refcount_dec_and_test(&tsk->stack_refcount))
596 		release_task_stack(tsk);
597 }
598 #endif
599 
600 void free_task(struct task_struct *tsk)
601 {
602 #ifdef CONFIG_SECCOMP
603 	WARN_ON_ONCE(tsk->seccomp.filter);
604 #endif
605 	release_user_cpus_ptr(tsk);
606 	scs_release(tsk);
607 
608 #ifndef CONFIG_THREAD_INFO_IN_TASK
609 	/*
610 	 * The task is finally done with both the stack and thread_info,
611 	 * so free both.
612 	 */
613 	release_task_stack(tsk);
614 #else
615 	/*
616 	 * If the task had a separate stack allocation, it should be gone
617 	 * by now.
618 	 */
619 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
620 #endif
621 	rt_mutex_debug_task_free(tsk);
622 	ftrace_graph_exit_task(tsk);
623 	arch_release_task_struct(tsk);
624 	if (tsk->flags & PF_KTHREAD)
625 		free_kthread_struct(tsk);
626 	bpf_task_storage_free(tsk);
627 	free_task_struct(tsk);
628 }
629 EXPORT_SYMBOL(free_task);
630 
631 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
632 {
633 	struct file *exe_file;
634 
635 	exe_file = get_mm_exe_file(oldmm);
636 	RCU_INIT_POINTER(mm->exe_file, exe_file);
637 	/*
638 	 * We depend on the oldmm having properly denied write access to the
639 	 * exe_file already.
640 	 */
641 	if (exe_file && deny_write_access(exe_file))
642 		pr_warn_once("deny_write_access() failed in %s\n", __func__);
643 }
644 
645 #ifdef CONFIG_MMU
646 static __latent_entropy int dup_mmap(struct mm_struct *mm,
647 					struct mm_struct *oldmm)
648 {
649 	struct vm_area_struct *mpnt, *tmp;
650 	int retval;
651 	unsigned long charge = 0;
652 	LIST_HEAD(uf);
653 	VMA_ITERATOR(old_vmi, oldmm, 0);
654 	VMA_ITERATOR(vmi, mm, 0);
655 
656 	uprobe_start_dup_mmap();
657 	if (mmap_write_lock_killable(oldmm)) {
658 		retval = -EINTR;
659 		goto fail_uprobe_end;
660 	}
661 	flush_cache_dup_mm(oldmm);
662 	uprobe_dup_mmap(oldmm, mm);
663 	/*
664 	 * Not linked in yet - no deadlock potential:
665 	 */
666 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
667 
668 	/* No ordering required: file already has been exposed. */
669 	dup_mm_exe_file(mm, oldmm);
670 
671 	mm->total_vm = oldmm->total_vm;
672 	mm->data_vm = oldmm->data_vm;
673 	mm->exec_vm = oldmm->exec_vm;
674 	mm->stack_vm = oldmm->stack_vm;
675 
676 	retval = ksm_fork(mm, oldmm);
677 	if (retval)
678 		goto out;
679 	khugepaged_fork(mm, oldmm);
680 
681 	retval = vma_iter_bulk_alloc(&vmi, oldmm->map_count);
682 	if (retval)
683 		goto out;
684 
685 	mt_clear_in_rcu(vmi.mas.tree);
686 	for_each_vma(old_vmi, mpnt) {
687 		struct file *file;
688 
689 		vma_start_write(mpnt);
690 		if (mpnt->vm_flags & VM_DONTCOPY) {
691 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
692 			continue;
693 		}
694 		charge = 0;
695 		/*
696 		 * Don't duplicate many vmas if we've been oom-killed (for
697 		 * example)
698 		 */
699 		if (fatal_signal_pending(current)) {
700 			retval = -EINTR;
701 			goto loop_out;
702 		}
703 		if (mpnt->vm_flags & VM_ACCOUNT) {
704 			unsigned long len = vma_pages(mpnt);
705 
706 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
707 				goto fail_nomem;
708 			charge = len;
709 		}
710 		tmp = vm_area_dup(mpnt);
711 		if (!tmp)
712 			goto fail_nomem;
713 		retval = vma_dup_policy(mpnt, tmp);
714 		if (retval)
715 			goto fail_nomem_policy;
716 		tmp->vm_mm = mm;
717 		retval = dup_userfaultfd(tmp, &uf);
718 		if (retval)
719 			goto fail_nomem_anon_vma_fork;
720 		if (tmp->vm_flags & VM_WIPEONFORK) {
721 			/*
722 			 * VM_WIPEONFORK gets a clean slate in the child.
723 			 * Don't prepare anon_vma until fault since we don't
724 			 * copy page for current vma.
725 			 */
726 			tmp->anon_vma = NULL;
727 		} else if (anon_vma_fork(tmp, mpnt))
728 			goto fail_nomem_anon_vma_fork;
729 		vm_flags_clear(tmp, VM_LOCKED_MASK);
730 		file = tmp->vm_file;
731 		if (file) {
732 			struct address_space *mapping = file->f_mapping;
733 
734 			get_file(file);
735 			i_mmap_lock_write(mapping);
736 			if (vma_is_shared_maywrite(tmp))
737 				mapping_allow_writable(mapping);
738 			flush_dcache_mmap_lock(mapping);
739 			/* insert tmp into the share list, just after mpnt */
740 			vma_interval_tree_insert_after(tmp, mpnt,
741 					&mapping->i_mmap);
742 			flush_dcache_mmap_unlock(mapping);
743 			i_mmap_unlock_write(mapping);
744 		}
745 
746 		/*
747 		 * Copy/update hugetlb private vma information.
748 		 */
749 		if (is_vm_hugetlb_page(tmp))
750 			hugetlb_dup_vma_private(tmp);
751 
752 		/* Link the vma into the MT */
753 		if (vma_iter_bulk_store(&vmi, tmp))
754 			goto fail_nomem_vmi_store;
755 
756 		mm->map_count++;
757 		if (!(tmp->vm_flags & VM_WIPEONFORK))
758 			retval = copy_page_range(tmp, mpnt);
759 
760 		if (tmp->vm_ops && tmp->vm_ops->open)
761 			tmp->vm_ops->open(tmp);
762 
763 		if (retval)
764 			goto loop_out;
765 	}
766 	/* a new mm has just been created */
767 	retval = arch_dup_mmap(oldmm, mm);
768 loop_out:
769 	vma_iter_free(&vmi);
770 	if (!retval)
771 		mt_set_in_rcu(vmi.mas.tree);
772 out:
773 	mmap_write_unlock(mm);
774 	flush_tlb_mm(oldmm);
775 	mmap_write_unlock(oldmm);
776 	dup_userfaultfd_complete(&uf);
777 fail_uprobe_end:
778 	uprobe_end_dup_mmap();
779 	return retval;
780 
781 fail_nomem_vmi_store:
782 	unlink_anon_vmas(tmp);
783 fail_nomem_anon_vma_fork:
784 	mpol_put(vma_policy(tmp));
785 fail_nomem_policy:
786 	vm_area_free(tmp);
787 fail_nomem:
788 	retval = -ENOMEM;
789 	vm_unacct_memory(charge);
790 	goto loop_out;
791 }
792 
793 static inline int mm_alloc_pgd(struct mm_struct *mm)
794 {
795 	mm->pgd = pgd_alloc(mm);
796 	if (unlikely(!mm->pgd))
797 		return -ENOMEM;
798 	return 0;
799 }
800 
801 static inline void mm_free_pgd(struct mm_struct *mm)
802 {
803 	pgd_free(mm, mm->pgd);
804 }
805 #else
806 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
807 {
808 	mmap_write_lock(oldmm);
809 	dup_mm_exe_file(mm, oldmm);
810 	mmap_write_unlock(oldmm);
811 	return 0;
812 }
813 #define mm_alloc_pgd(mm)	(0)
814 #define mm_free_pgd(mm)
815 #endif /* CONFIG_MMU */
816 
817 static void check_mm(struct mm_struct *mm)
818 {
819 	int i;
820 
821 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
822 			 "Please make sure 'struct resident_page_types[]' is updated as well");
823 
824 	for (i = 0; i < NR_MM_COUNTERS; i++) {
825 		long x = percpu_counter_sum(&mm->rss_stat[i]);
826 
827 		if (unlikely(x))
828 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
829 				 mm, resident_page_types[i], x);
830 	}
831 
832 	if (mm_pgtables_bytes(mm))
833 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
834 				mm_pgtables_bytes(mm));
835 
836 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
837 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
838 #endif
839 }
840 
841 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
842 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
843 
844 static void do_check_lazy_tlb(void *arg)
845 {
846 	struct mm_struct *mm = arg;
847 
848 	WARN_ON_ONCE(current->active_mm == mm);
849 }
850 
851 static void do_shoot_lazy_tlb(void *arg)
852 {
853 	struct mm_struct *mm = arg;
854 
855 	if (current->active_mm == mm) {
856 		WARN_ON_ONCE(current->mm);
857 		current->active_mm = &init_mm;
858 		switch_mm(mm, &init_mm, current);
859 	}
860 }
861 
862 static void cleanup_lazy_tlbs(struct mm_struct *mm)
863 {
864 	if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
865 		/*
866 		 * In this case, lazy tlb mms are refounted and would not reach
867 		 * __mmdrop until all CPUs have switched away and mmdrop()ed.
868 		 */
869 		return;
870 	}
871 
872 	/*
873 	 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
874 	 * requires lazy mm users to switch to another mm when the refcount
875 	 * drops to zero, before the mm is freed. This requires IPIs here to
876 	 * switch kernel threads to init_mm.
877 	 *
878 	 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
879 	 * switch with the final userspace teardown TLB flush which leaves the
880 	 * mm lazy on this CPU but no others, reducing the need for additional
881 	 * IPIs here. There are cases where a final IPI is still required here,
882 	 * such as the final mmdrop being performed on a different CPU than the
883 	 * one exiting, or kernel threads using the mm when userspace exits.
884 	 *
885 	 * IPI overheads have not found to be expensive, but they could be
886 	 * reduced in a number of possible ways, for example (roughly
887 	 * increasing order of complexity):
888 	 * - The last lazy reference created by exit_mm() could instead switch
889 	 *   to init_mm, however it's probable this will run on the same CPU
890 	 *   immediately afterwards, so this may not reduce IPIs much.
891 	 * - A batch of mms requiring IPIs could be gathered and freed at once.
892 	 * - CPUs store active_mm where it can be remotely checked without a
893 	 *   lock, to filter out false-positives in the cpumask.
894 	 * - After mm_users or mm_count reaches zero, switching away from the
895 	 *   mm could clear mm_cpumask to reduce some IPIs, perhaps together
896 	 *   with some batching or delaying of the final IPIs.
897 	 * - A delayed freeing and RCU-like quiescing sequence based on mm
898 	 *   switching to avoid IPIs completely.
899 	 */
900 	on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
901 	if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
902 		on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
903 }
904 
905 /*
906  * Called when the last reference to the mm
907  * is dropped: either by a lazy thread or by
908  * mmput. Free the page directory and the mm.
909  */
910 void __mmdrop(struct mm_struct *mm)
911 {
912 	BUG_ON(mm == &init_mm);
913 	WARN_ON_ONCE(mm == current->mm);
914 
915 	/* Ensure no CPUs are using this as their lazy tlb mm */
916 	cleanup_lazy_tlbs(mm);
917 
918 	WARN_ON_ONCE(mm == current->active_mm);
919 	mm_free_pgd(mm);
920 	destroy_context(mm);
921 	mmu_notifier_subscriptions_destroy(mm);
922 	check_mm(mm);
923 	put_user_ns(mm->user_ns);
924 	mm_pasid_drop(mm);
925 	mm_destroy_cid(mm);
926 	percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
927 
928 	free_mm(mm);
929 }
930 EXPORT_SYMBOL_GPL(__mmdrop);
931 
932 static void mmdrop_async_fn(struct work_struct *work)
933 {
934 	struct mm_struct *mm;
935 
936 	mm = container_of(work, struct mm_struct, async_put_work);
937 	__mmdrop(mm);
938 }
939 
940 static void mmdrop_async(struct mm_struct *mm)
941 {
942 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
943 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
944 		schedule_work(&mm->async_put_work);
945 	}
946 }
947 
948 static inline void free_signal_struct(struct signal_struct *sig)
949 {
950 	taskstats_tgid_free(sig);
951 	sched_autogroup_exit(sig);
952 	/*
953 	 * __mmdrop is not safe to call from softirq context on x86 due to
954 	 * pgd_dtor so postpone it to the async context
955 	 */
956 	if (sig->oom_mm)
957 		mmdrop_async(sig->oom_mm);
958 	kmem_cache_free(signal_cachep, sig);
959 }
960 
961 static inline void put_signal_struct(struct signal_struct *sig)
962 {
963 	if (refcount_dec_and_test(&sig->sigcnt))
964 		free_signal_struct(sig);
965 }
966 
967 void __put_task_struct(struct task_struct *tsk)
968 {
969 	WARN_ON(!tsk->exit_state);
970 	WARN_ON(refcount_read(&tsk->usage));
971 	WARN_ON(tsk == current);
972 
973 	io_uring_free(tsk);
974 	cgroup_free(tsk);
975 	task_numa_free(tsk, true);
976 	security_task_free(tsk);
977 	exit_creds(tsk);
978 	delayacct_tsk_free(tsk);
979 	put_signal_struct(tsk->signal);
980 	sched_core_free(tsk);
981 	free_task(tsk);
982 }
983 EXPORT_SYMBOL_GPL(__put_task_struct);
984 
985 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
986 {
987 	struct task_struct *task = container_of(rhp, struct task_struct, rcu);
988 
989 	__put_task_struct(task);
990 }
991 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
992 
993 void __init __weak arch_task_cache_init(void) { }
994 
995 /*
996  * set_max_threads
997  */
998 static void set_max_threads(unsigned int max_threads_suggested)
999 {
1000 	u64 threads;
1001 	unsigned long nr_pages = totalram_pages();
1002 
1003 	/*
1004 	 * The number of threads shall be limited such that the thread
1005 	 * structures may only consume a small part of the available memory.
1006 	 */
1007 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
1008 		threads = MAX_THREADS;
1009 	else
1010 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
1011 				    (u64) THREAD_SIZE * 8UL);
1012 
1013 	if (threads > max_threads_suggested)
1014 		threads = max_threads_suggested;
1015 
1016 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
1017 }
1018 
1019 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1020 /* Initialized by the architecture: */
1021 int arch_task_struct_size __read_mostly;
1022 #endif
1023 
1024 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
1025 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
1026 {
1027 	/* Fetch thread_struct whitelist for the architecture. */
1028 	arch_thread_struct_whitelist(offset, size);
1029 
1030 	/*
1031 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
1032 	 * adjust offset to position of thread_struct in task_struct.
1033 	 */
1034 	if (unlikely(*size == 0))
1035 		*offset = 0;
1036 	else
1037 		*offset += offsetof(struct task_struct, thread);
1038 }
1039 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
1040 
1041 void __init fork_init(void)
1042 {
1043 	int i;
1044 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
1045 #ifndef ARCH_MIN_TASKALIGN
1046 #define ARCH_MIN_TASKALIGN	0
1047 #endif
1048 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1049 	unsigned long useroffset, usersize;
1050 
1051 	/* create a slab on which task_structs can be allocated */
1052 	task_struct_whitelist(&useroffset, &usersize);
1053 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1054 			arch_task_struct_size, align,
1055 			SLAB_PANIC|SLAB_ACCOUNT,
1056 			useroffset, usersize, NULL);
1057 #endif
1058 
1059 	/* do the arch specific task caches init */
1060 	arch_task_cache_init();
1061 
1062 	set_max_threads(MAX_THREADS);
1063 
1064 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1065 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1066 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
1067 		init_task.signal->rlim[RLIMIT_NPROC];
1068 
1069 	for (i = 0; i < UCOUNT_COUNTS; i++)
1070 		init_user_ns.ucount_max[i] = max_threads/2;
1071 
1072 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
1073 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
1074 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1075 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
1076 
1077 #ifdef CONFIG_VMAP_STACK
1078 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1079 			  NULL, free_vm_stack_cache);
1080 #endif
1081 
1082 	scs_init();
1083 
1084 	lockdep_init_task(&init_task);
1085 	uprobes_init();
1086 }
1087 
1088 int __weak arch_dup_task_struct(struct task_struct *dst,
1089 					       struct task_struct *src)
1090 {
1091 	*dst = *src;
1092 	return 0;
1093 }
1094 
1095 void set_task_stack_end_magic(struct task_struct *tsk)
1096 {
1097 	unsigned long *stackend;
1098 
1099 	stackend = end_of_stack(tsk);
1100 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
1101 }
1102 
1103 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1104 {
1105 	struct task_struct *tsk;
1106 	int err;
1107 
1108 	if (node == NUMA_NO_NODE)
1109 		node = tsk_fork_get_node(orig);
1110 	tsk = alloc_task_struct_node(node);
1111 	if (!tsk)
1112 		return NULL;
1113 
1114 	err = arch_dup_task_struct(tsk, orig);
1115 	if (err)
1116 		goto free_tsk;
1117 
1118 	err = alloc_thread_stack_node(tsk, node);
1119 	if (err)
1120 		goto free_tsk;
1121 
1122 #ifdef CONFIG_THREAD_INFO_IN_TASK
1123 	refcount_set(&tsk->stack_refcount, 1);
1124 #endif
1125 	account_kernel_stack(tsk, 1);
1126 
1127 	err = scs_prepare(tsk, node);
1128 	if (err)
1129 		goto free_stack;
1130 
1131 #ifdef CONFIG_SECCOMP
1132 	/*
1133 	 * We must handle setting up seccomp filters once we're under
1134 	 * the sighand lock in case orig has changed between now and
1135 	 * then. Until then, filter must be NULL to avoid messing up
1136 	 * the usage counts on the error path calling free_task.
1137 	 */
1138 	tsk->seccomp.filter = NULL;
1139 #endif
1140 
1141 	setup_thread_stack(tsk, orig);
1142 	clear_user_return_notifier(tsk);
1143 	clear_tsk_need_resched(tsk);
1144 	set_task_stack_end_magic(tsk);
1145 	clear_syscall_work_syscall_user_dispatch(tsk);
1146 
1147 #ifdef CONFIG_STACKPROTECTOR
1148 	tsk->stack_canary = get_random_canary();
1149 #endif
1150 	if (orig->cpus_ptr == &orig->cpus_mask)
1151 		tsk->cpus_ptr = &tsk->cpus_mask;
1152 	dup_user_cpus_ptr(tsk, orig, node);
1153 
1154 	/*
1155 	 * One for the user space visible state that goes away when reaped.
1156 	 * One for the scheduler.
1157 	 */
1158 	refcount_set(&tsk->rcu_users, 2);
1159 	/* One for the rcu users */
1160 	refcount_set(&tsk->usage, 1);
1161 #ifdef CONFIG_BLK_DEV_IO_TRACE
1162 	tsk->btrace_seq = 0;
1163 #endif
1164 	tsk->splice_pipe = NULL;
1165 	tsk->task_frag.page = NULL;
1166 	tsk->wake_q.next = NULL;
1167 	tsk->worker_private = NULL;
1168 
1169 	kcov_task_init(tsk);
1170 	kmsan_task_create(tsk);
1171 	kmap_local_fork(tsk);
1172 
1173 #ifdef CONFIG_FAULT_INJECTION
1174 	tsk->fail_nth = 0;
1175 #endif
1176 
1177 #ifdef CONFIG_BLK_CGROUP
1178 	tsk->throttle_disk = NULL;
1179 	tsk->use_memdelay = 0;
1180 #endif
1181 
1182 #ifdef CONFIG_IOMMU_SVA
1183 	tsk->pasid_activated = 0;
1184 #endif
1185 
1186 #ifdef CONFIG_MEMCG
1187 	tsk->active_memcg = NULL;
1188 #endif
1189 
1190 #ifdef CONFIG_CPU_SUP_INTEL
1191 	tsk->reported_split_lock = 0;
1192 #endif
1193 
1194 #ifdef CONFIG_SCHED_MM_CID
1195 	tsk->mm_cid = -1;
1196 	tsk->last_mm_cid = -1;
1197 	tsk->mm_cid_active = 0;
1198 	tsk->migrate_from_cpu = -1;
1199 #endif
1200 	return tsk;
1201 
1202 free_stack:
1203 	exit_task_stack_account(tsk);
1204 	free_thread_stack(tsk);
1205 free_tsk:
1206 	free_task_struct(tsk);
1207 	return NULL;
1208 }
1209 
1210 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1211 
1212 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1213 
1214 static int __init coredump_filter_setup(char *s)
1215 {
1216 	default_dump_filter =
1217 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1218 		MMF_DUMP_FILTER_MASK;
1219 	return 1;
1220 }
1221 
1222 __setup("coredump_filter=", coredump_filter_setup);
1223 
1224 #include <linux/init_task.h>
1225 
1226 static void mm_init_aio(struct mm_struct *mm)
1227 {
1228 #ifdef CONFIG_AIO
1229 	spin_lock_init(&mm->ioctx_lock);
1230 	mm->ioctx_table = NULL;
1231 #endif
1232 }
1233 
1234 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1235 					   struct task_struct *p)
1236 {
1237 #ifdef CONFIG_MEMCG
1238 	if (mm->owner == p)
1239 		WRITE_ONCE(mm->owner, NULL);
1240 #endif
1241 }
1242 
1243 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1244 {
1245 #ifdef CONFIG_MEMCG
1246 	mm->owner = p;
1247 #endif
1248 }
1249 
1250 static void mm_init_uprobes_state(struct mm_struct *mm)
1251 {
1252 #ifdef CONFIG_UPROBES
1253 	mm->uprobes_state.xol_area = NULL;
1254 #endif
1255 }
1256 
1257 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1258 	struct user_namespace *user_ns)
1259 {
1260 	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1261 	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1262 	atomic_set(&mm->mm_users, 1);
1263 	atomic_set(&mm->mm_count, 1);
1264 	seqcount_init(&mm->write_protect_seq);
1265 	mmap_init_lock(mm);
1266 	INIT_LIST_HEAD(&mm->mmlist);
1267 #ifdef CONFIG_PER_VMA_LOCK
1268 	mm->mm_lock_seq = 0;
1269 #endif
1270 	mm_pgtables_bytes_init(mm);
1271 	mm->map_count = 0;
1272 	mm->locked_vm = 0;
1273 	atomic64_set(&mm->pinned_vm, 0);
1274 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1275 	spin_lock_init(&mm->page_table_lock);
1276 	spin_lock_init(&mm->arg_lock);
1277 	mm_init_cpumask(mm);
1278 	mm_init_aio(mm);
1279 	mm_init_owner(mm, p);
1280 	mm_pasid_init(mm);
1281 	RCU_INIT_POINTER(mm->exe_file, NULL);
1282 	mmu_notifier_subscriptions_init(mm);
1283 	init_tlb_flush_pending(mm);
1284 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1285 	mm->pmd_huge_pte = NULL;
1286 #endif
1287 	mm_init_uprobes_state(mm);
1288 	hugetlb_count_init(mm);
1289 
1290 	if (current->mm) {
1291 		mm->flags = mmf_init_flags(current->mm->flags);
1292 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1293 	} else {
1294 		mm->flags = default_dump_filter;
1295 		mm->def_flags = 0;
1296 	}
1297 
1298 	if (mm_alloc_pgd(mm))
1299 		goto fail_nopgd;
1300 
1301 	if (init_new_context(p, mm))
1302 		goto fail_nocontext;
1303 
1304 	if (mm_alloc_cid(mm))
1305 		goto fail_cid;
1306 
1307 	if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1308 				     NR_MM_COUNTERS))
1309 		goto fail_pcpu;
1310 
1311 	mm->user_ns = get_user_ns(user_ns);
1312 	lru_gen_init_mm(mm);
1313 	return mm;
1314 
1315 fail_pcpu:
1316 	mm_destroy_cid(mm);
1317 fail_cid:
1318 	destroy_context(mm);
1319 fail_nocontext:
1320 	mm_free_pgd(mm);
1321 fail_nopgd:
1322 	free_mm(mm);
1323 	return NULL;
1324 }
1325 
1326 /*
1327  * Allocate and initialize an mm_struct.
1328  */
1329 struct mm_struct *mm_alloc(void)
1330 {
1331 	struct mm_struct *mm;
1332 
1333 	mm = allocate_mm();
1334 	if (!mm)
1335 		return NULL;
1336 
1337 	memset(mm, 0, sizeof(*mm));
1338 	return mm_init(mm, current, current_user_ns());
1339 }
1340 
1341 static inline void __mmput(struct mm_struct *mm)
1342 {
1343 	VM_BUG_ON(atomic_read(&mm->mm_users));
1344 
1345 	uprobe_clear_state(mm);
1346 	exit_aio(mm);
1347 	ksm_exit(mm);
1348 	khugepaged_exit(mm); /* must run before exit_mmap */
1349 	exit_mmap(mm);
1350 	mm_put_huge_zero_page(mm);
1351 	set_mm_exe_file(mm, NULL);
1352 	if (!list_empty(&mm->mmlist)) {
1353 		spin_lock(&mmlist_lock);
1354 		list_del(&mm->mmlist);
1355 		spin_unlock(&mmlist_lock);
1356 	}
1357 	if (mm->binfmt)
1358 		module_put(mm->binfmt->module);
1359 	lru_gen_del_mm(mm);
1360 	mmdrop(mm);
1361 }
1362 
1363 /*
1364  * Decrement the use count and release all resources for an mm.
1365  */
1366 void mmput(struct mm_struct *mm)
1367 {
1368 	might_sleep();
1369 
1370 	if (atomic_dec_and_test(&mm->mm_users))
1371 		__mmput(mm);
1372 }
1373 EXPORT_SYMBOL_GPL(mmput);
1374 
1375 #ifdef CONFIG_MMU
1376 static void mmput_async_fn(struct work_struct *work)
1377 {
1378 	struct mm_struct *mm = container_of(work, struct mm_struct,
1379 					    async_put_work);
1380 
1381 	__mmput(mm);
1382 }
1383 
1384 void mmput_async(struct mm_struct *mm)
1385 {
1386 	if (atomic_dec_and_test(&mm->mm_users)) {
1387 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1388 		schedule_work(&mm->async_put_work);
1389 	}
1390 }
1391 EXPORT_SYMBOL_GPL(mmput_async);
1392 #endif
1393 
1394 /**
1395  * set_mm_exe_file - change a reference to the mm's executable file
1396  * @mm: The mm to change.
1397  * @new_exe_file: The new file to use.
1398  *
1399  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1400  *
1401  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1402  * invocations: in mmput() nobody alive left, in execve it happens before
1403  * the new mm is made visible to anyone.
1404  *
1405  * Can only fail if new_exe_file != NULL.
1406  */
1407 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1408 {
1409 	struct file *old_exe_file;
1410 
1411 	/*
1412 	 * It is safe to dereference the exe_file without RCU as
1413 	 * this function is only called if nobody else can access
1414 	 * this mm -- see comment above for justification.
1415 	 */
1416 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1417 
1418 	if (new_exe_file) {
1419 		/*
1420 		 * We expect the caller (i.e., sys_execve) to already denied
1421 		 * write access, so this is unlikely to fail.
1422 		 */
1423 		if (unlikely(deny_write_access(new_exe_file)))
1424 			return -EACCES;
1425 		get_file(new_exe_file);
1426 	}
1427 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1428 	if (old_exe_file) {
1429 		allow_write_access(old_exe_file);
1430 		fput(old_exe_file);
1431 	}
1432 	return 0;
1433 }
1434 
1435 /**
1436  * replace_mm_exe_file - replace a reference to the mm's executable file
1437  * @mm: The mm to change.
1438  * @new_exe_file: The new file to use.
1439  *
1440  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1441  *
1442  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1443  */
1444 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1445 {
1446 	struct vm_area_struct *vma;
1447 	struct file *old_exe_file;
1448 	int ret = 0;
1449 
1450 	/* Forbid mm->exe_file change if old file still mapped. */
1451 	old_exe_file = get_mm_exe_file(mm);
1452 	if (old_exe_file) {
1453 		VMA_ITERATOR(vmi, mm, 0);
1454 		mmap_read_lock(mm);
1455 		for_each_vma(vmi, vma) {
1456 			if (!vma->vm_file)
1457 				continue;
1458 			if (path_equal(&vma->vm_file->f_path,
1459 				       &old_exe_file->f_path)) {
1460 				ret = -EBUSY;
1461 				break;
1462 			}
1463 		}
1464 		mmap_read_unlock(mm);
1465 		fput(old_exe_file);
1466 		if (ret)
1467 			return ret;
1468 	}
1469 
1470 	ret = deny_write_access(new_exe_file);
1471 	if (ret)
1472 		return -EACCES;
1473 	get_file(new_exe_file);
1474 
1475 	/* set the new file */
1476 	mmap_write_lock(mm);
1477 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1478 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1479 	mmap_write_unlock(mm);
1480 
1481 	if (old_exe_file) {
1482 		allow_write_access(old_exe_file);
1483 		fput(old_exe_file);
1484 	}
1485 	return 0;
1486 }
1487 
1488 /**
1489  * get_mm_exe_file - acquire a reference to the mm's executable file
1490  * @mm: The mm of interest.
1491  *
1492  * Returns %NULL if mm has no associated executable file.
1493  * User must release file via fput().
1494  */
1495 struct file *get_mm_exe_file(struct mm_struct *mm)
1496 {
1497 	struct file *exe_file;
1498 
1499 	rcu_read_lock();
1500 	exe_file = get_file_rcu(&mm->exe_file);
1501 	rcu_read_unlock();
1502 	return exe_file;
1503 }
1504 
1505 /**
1506  * get_task_exe_file - acquire a reference to the task's executable file
1507  * @task: The task.
1508  *
1509  * Returns %NULL if task's mm (if any) has no associated executable file or
1510  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1511  * User must release file via fput().
1512  */
1513 struct file *get_task_exe_file(struct task_struct *task)
1514 {
1515 	struct file *exe_file = NULL;
1516 	struct mm_struct *mm;
1517 
1518 	task_lock(task);
1519 	mm = task->mm;
1520 	if (mm) {
1521 		if (!(task->flags & PF_KTHREAD))
1522 			exe_file = get_mm_exe_file(mm);
1523 	}
1524 	task_unlock(task);
1525 	return exe_file;
1526 }
1527 
1528 /**
1529  * get_task_mm - acquire a reference to the task's mm
1530  * @task: The task.
1531  *
1532  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1533  * this kernel workthread has transiently adopted a user mm with use_mm,
1534  * to do its AIO) is not set and if so returns a reference to it, after
1535  * bumping up the use count.  User must release the mm via mmput()
1536  * after use.  Typically used by /proc and ptrace.
1537  */
1538 struct mm_struct *get_task_mm(struct task_struct *task)
1539 {
1540 	struct mm_struct *mm;
1541 
1542 	task_lock(task);
1543 	mm = task->mm;
1544 	if (mm) {
1545 		if (task->flags & PF_KTHREAD)
1546 			mm = NULL;
1547 		else
1548 			mmget(mm);
1549 	}
1550 	task_unlock(task);
1551 	return mm;
1552 }
1553 EXPORT_SYMBOL_GPL(get_task_mm);
1554 
1555 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1556 {
1557 	struct mm_struct *mm;
1558 	int err;
1559 
1560 	err =  down_read_killable(&task->signal->exec_update_lock);
1561 	if (err)
1562 		return ERR_PTR(err);
1563 
1564 	mm = get_task_mm(task);
1565 	if (mm && mm != current->mm &&
1566 			!ptrace_may_access(task, mode)) {
1567 		mmput(mm);
1568 		mm = ERR_PTR(-EACCES);
1569 	}
1570 	up_read(&task->signal->exec_update_lock);
1571 
1572 	return mm;
1573 }
1574 
1575 static void complete_vfork_done(struct task_struct *tsk)
1576 {
1577 	struct completion *vfork;
1578 
1579 	task_lock(tsk);
1580 	vfork = tsk->vfork_done;
1581 	if (likely(vfork)) {
1582 		tsk->vfork_done = NULL;
1583 		complete(vfork);
1584 	}
1585 	task_unlock(tsk);
1586 }
1587 
1588 static int wait_for_vfork_done(struct task_struct *child,
1589 				struct completion *vfork)
1590 {
1591 	unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE;
1592 	int killed;
1593 
1594 	cgroup_enter_frozen();
1595 	killed = wait_for_completion_state(vfork, state);
1596 	cgroup_leave_frozen(false);
1597 
1598 	if (killed) {
1599 		task_lock(child);
1600 		child->vfork_done = NULL;
1601 		task_unlock(child);
1602 	}
1603 
1604 	put_task_struct(child);
1605 	return killed;
1606 }
1607 
1608 /* Please note the differences between mmput and mm_release.
1609  * mmput is called whenever we stop holding onto a mm_struct,
1610  * error success whatever.
1611  *
1612  * mm_release is called after a mm_struct has been removed
1613  * from the current process.
1614  *
1615  * This difference is important for error handling, when we
1616  * only half set up a mm_struct for a new process and need to restore
1617  * the old one.  Because we mmput the new mm_struct before
1618  * restoring the old one. . .
1619  * Eric Biederman 10 January 1998
1620  */
1621 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1622 {
1623 	uprobe_free_utask(tsk);
1624 
1625 	/* Get rid of any cached register state */
1626 	deactivate_mm(tsk, mm);
1627 
1628 	/*
1629 	 * Signal userspace if we're not exiting with a core dump
1630 	 * because we want to leave the value intact for debugging
1631 	 * purposes.
1632 	 */
1633 	if (tsk->clear_child_tid) {
1634 		if (atomic_read(&mm->mm_users) > 1) {
1635 			/*
1636 			 * We don't check the error code - if userspace has
1637 			 * not set up a proper pointer then tough luck.
1638 			 */
1639 			put_user(0, tsk->clear_child_tid);
1640 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1641 					1, NULL, NULL, 0, 0);
1642 		}
1643 		tsk->clear_child_tid = NULL;
1644 	}
1645 
1646 	/*
1647 	 * All done, finally we can wake up parent and return this mm to him.
1648 	 * Also kthread_stop() uses this completion for synchronization.
1649 	 */
1650 	if (tsk->vfork_done)
1651 		complete_vfork_done(tsk);
1652 }
1653 
1654 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1655 {
1656 	futex_exit_release(tsk);
1657 	mm_release(tsk, mm);
1658 }
1659 
1660 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1661 {
1662 	futex_exec_release(tsk);
1663 	mm_release(tsk, mm);
1664 }
1665 
1666 /**
1667  * dup_mm() - duplicates an existing mm structure
1668  * @tsk: the task_struct with which the new mm will be associated.
1669  * @oldmm: the mm to duplicate.
1670  *
1671  * Allocates a new mm structure and duplicates the provided @oldmm structure
1672  * content into it.
1673  *
1674  * Return: the duplicated mm or NULL on failure.
1675  */
1676 static struct mm_struct *dup_mm(struct task_struct *tsk,
1677 				struct mm_struct *oldmm)
1678 {
1679 	struct mm_struct *mm;
1680 	int err;
1681 
1682 	mm = allocate_mm();
1683 	if (!mm)
1684 		goto fail_nomem;
1685 
1686 	memcpy(mm, oldmm, sizeof(*mm));
1687 
1688 	if (!mm_init(mm, tsk, mm->user_ns))
1689 		goto fail_nomem;
1690 
1691 	err = dup_mmap(mm, oldmm);
1692 	if (err)
1693 		goto free_pt;
1694 
1695 	mm->hiwater_rss = get_mm_rss(mm);
1696 	mm->hiwater_vm = mm->total_vm;
1697 
1698 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1699 		goto free_pt;
1700 
1701 	return mm;
1702 
1703 free_pt:
1704 	/* don't put binfmt in mmput, we haven't got module yet */
1705 	mm->binfmt = NULL;
1706 	mm_init_owner(mm, NULL);
1707 	mmput(mm);
1708 
1709 fail_nomem:
1710 	return NULL;
1711 }
1712 
1713 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1714 {
1715 	struct mm_struct *mm, *oldmm;
1716 
1717 	tsk->min_flt = tsk->maj_flt = 0;
1718 	tsk->nvcsw = tsk->nivcsw = 0;
1719 #ifdef CONFIG_DETECT_HUNG_TASK
1720 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1721 	tsk->last_switch_time = 0;
1722 #endif
1723 
1724 	tsk->mm = NULL;
1725 	tsk->active_mm = NULL;
1726 
1727 	/*
1728 	 * Are we cloning a kernel thread?
1729 	 *
1730 	 * We need to steal a active VM for that..
1731 	 */
1732 	oldmm = current->mm;
1733 	if (!oldmm)
1734 		return 0;
1735 
1736 	if (clone_flags & CLONE_VM) {
1737 		mmget(oldmm);
1738 		mm = oldmm;
1739 	} else {
1740 		mm = dup_mm(tsk, current->mm);
1741 		if (!mm)
1742 			return -ENOMEM;
1743 	}
1744 
1745 	tsk->mm = mm;
1746 	tsk->active_mm = mm;
1747 	sched_mm_cid_fork(tsk);
1748 	return 0;
1749 }
1750 
1751 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1752 {
1753 	struct fs_struct *fs = current->fs;
1754 	if (clone_flags & CLONE_FS) {
1755 		/* tsk->fs is already what we want */
1756 		spin_lock(&fs->lock);
1757 		if (fs->in_exec) {
1758 			spin_unlock(&fs->lock);
1759 			return -EAGAIN;
1760 		}
1761 		fs->users++;
1762 		spin_unlock(&fs->lock);
1763 		return 0;
1764 	}
1765 	tsk->fs = copy_fs_struct(fs);
1766 	if (!tsk->fs)
1767 		return -ENOMEM;
1768 	return 0;
1769 }
1770 
1771 static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1772 		      int no_files)
1773 {
1774 	struct files_struct *oldf, *newf;
1775 	int error = 0;
1776 
1777 	/*
1778 	 * A background process may not have any files ...
1779 	 */
1780 	oldf = current->files;
1781 	if (!oldf)
1782 		goto out;
1783 
1784 	if (no_files) {
1785 		tsk->files = NULL;
1786 		goto out;
1787 	}
1788 
1789 	if (clone_flags & CLONE_FILES) {
1790 		atomic_inc(&oldf->count);
1791 		goto out;
1792 	}
1793 
1794 	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1795 	if (!newf)
1796 		goto out;
1797 
1798 	tsk->files = newf;
1799 	error = 0;
1800 out:
1801 	return error;
1802 }
1803 
1804 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1805 {
1806 	struct sighand_struct *sig;
1807 
1808 	if (clone_flags & CLONE_SIGHAND) {
1809 		refcount_inc(&current->sighand->count);
1810 		return 0;
1811 	}
1812 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1813 	RCU_INIT_POINTER(tsk->sighand, sig);
1814 	if (!sig)
1815 		return -ENOMEM;
1816 
1817 	refcount_set(&sig->count, 1);
1818 	spin_lock_irq(&current->sighand->siglock);
1819 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1820 	spin_unlock_irq(&current->sighand->siglock);
1821 
1822 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1823 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1824 		flush_signal_handlers(tsk, 0);
1825 
1826 	return 0;
1827 }
1828 
1829 void __cleanup_sighand(struct sighand_struct *sighand)
1830 {
1831 	if (refcount_dec_and_test(&sighand->count)) {
1832 		signalfd_cleanup(sighand);
1833 		/*
1834 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1835 		 * without an RCU grace period, see __lock_task_sighand().
1836 		 */
1837 		kmem_cache_free(sighand_cachep, sighand);
1838 	}
1839 }
1840 
1841 /*
1842  * Initialize POSIX timer handling for a thread group.
1843  */
1844 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1845 {
1846 	struct posix_cputimers *pct = &sig->posix_cputimers;
1847 	unsigned long cpu_limit;
1848 
1849 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1850 	posix_cputimers_group_init(pct, cpu_limit);
1851 }
1852 
1853 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1854 {
1855 	struct signal_struct *sig;
1856 
1857 	if (clone_flags & CLONE_THREAD)
1858 		return 0;
1859 
1860 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1861 	tsk->signal = sig;
1862 	if (!sig)
1863 		return -ENOMEM;
1864 
1865 	sig->nr_threads = 1;
1866 	sig->quick_threads = 1;
1867 	atomic_set(&sig->live, 1);
1868 	refcount_set(&sig->sigcnt, 1);
1869 
1870 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1871 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1872 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1873 
1874 	init_waitqueue_head(&sig->wait_chldexit);
1875 	sig->curr_target = tsk;
1876 	init_sigpending(&sig->shared_pending);
1877 	INIT_HLIST_HEAD(&sig->multiprocess);
1878 	seqlock_init(&sig->stats_lock);
1879 	prev_cputime_init(&sig->prev_cputime);
1880 
1881 #ifdef CONFIG_POSIX_TIMERS
1882 	INIT_LIST_HEAD(&sig->posix_timers);
1883 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1884 	sig->real_timer.function = it_real_fn;
1885 #endif
1886 
1887 	task_lock(current->group_leader);
1888 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1889 	task_unlock(current->group_leader);
1890 
1891 	posix_cpu_timers_init_group(sig);
1892 
1893 	tty_audit_fork(sig);
1894 	sched_autogroup_fork(sig);
1895 
1896 	sig->oom_score_adj = current->signal->oom_score_adj;
1897 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1898 
1899 	mutex_init(&sig->cred_guard_mutex);
1900 	init_rwsem(&sig->exec_update_lock);
1901 
1902 	return 0;
1903 }
1904 
1905 static void copy_seccomp(struct task_struct *p)
1906 {
1907 #ifdef CONFIG_SECCOMP
1908 	/*
1909 	 * Must be called with sighand->lock held, which is common to
1910 	 * all threads in the group. Holding cred_guard_mutex is not
1911 	 * needed because this new task is not yet running and cannot
1912 	 * be racing exec.
1913 	 */
1914 	assert_spin_locked(&current->sighand->siglock);
1915 
1916 	/* Ref-count the new filter user, and assign it. */
1917 	get_seccomp_filter(current);
1918 	p->seccomp = current->seccomp;
1919 
1920 	/*
1921 	 * Explicitly enable no_new_privs here in case it got set
1922 	 * between the task_struct being duplicated and holding the
1923 	 * sighand lock. The seccomp state and nnp must be in sync.
1924 	 */
1925 	if (task_no_new_privs(current))
1926 		task_set_no_new_privs(p);
1927 
1928 	/*
1929 	 * If the parent gained a seccomp mode after copying thread
1930 	 * flags and between before we held the sighand lock, we have
1931 	 * to manually enable the seccomp thread flag here.
1932 	 */
1933 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1934 		set_task_syscall_work(p, SECCOMP);
1935 #endif
1936 }
1937 
1938 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1939 {
1940 	current->clear_child_tid = tidptr;
1941 
1942 	return task_pid_vnr(current);
1943 }
1944 
1945 static void rt_mutex_init_task(struct task_struct *p)
1946 {
1947 	raw_spin_lock_init(&p->pi_lock);
1948 #ifdef CONFIG_RT_MUTEXES
1949 	p->pi_waiters = RB_ROOT_CACHED;
1950 	p->pi_top_task = NULL;
1951 	p->pi_blocked_on = NULL;
1952 #endif
1953 }
1954 
1955 static inline void init_task_pid_links(struct task_struct *task)
1956 {
1957 	enum pid_type type;
1958 
1959 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1960 		INIT_HLIST_NODE(&task->pid_links[type]);
1961 }
1962 
1963 static inline void
1964 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1965 {
1966 	if (type == PIDTYPE_PID)
1967 		task->thread_pid = pid;
1968 	else
1969 		task->signal->pids[type] = pid;
1970 }
1971 
1972 static inline void rcu_copy_process(struct task_struct *p)
1973 {
1974 #ifdef CONFIG_PREEMPT_RCU
1975 	p->rcu_read_lock_nesting = 0;
1976 	p->rcu_read_unlock_special.s = 0;
1977 	p->rcu_blocked_node = NULL;
1978 	INIT_LIST_HEAD(&p->rcu_node_entry);
1979 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1980 #ifdef CONFIG_TASKS_RCU
1981 	p->rcu_tasks_holdout = false;
1982 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1983 	p->rcu_tasks_idle_cpu = -1;
1984 #endif /* #ifdef CONFIG_TASKS_RCU */
1985 #ifdef CONFIG_TASKS_TRACE_RCU
1986 	p->trc_reader_nesting = 0;
1987 	p->trc_reader_special.s = 0;
1988 	INIT_LIST_HEAD(&p->trc_holdout_list);
1989 	INIT_LIST_HEAD(&p->trc_blkd_node);
1990 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1991 }
1992 
1993 struct pid *pidfd_pid(const struct file *file)
1994 {
1995 	if (file->f_op == &pidfd_fops)
1996 		return file->private_data;
1997 
1998 	return ERR_PTR(-EBADF);
1999 }
2000 
2001 static int pidfd_release(struct inode *inode, struct file *file)
2002 {
2003 	struct pid *pid = file->private_data;
2004 
2005 	file->private_data = NULL;
2006 	put_pid(pid);
2007 	return 0;
2008 }
2009 
2010 #ifdef CONFIG_PROC_FS
2011 /**
2012  * pidfd_show_fdinfo - print information about a pidfd
2013  * @m: proc fdinfo file
2014  * @f: file referencing a pidfd
2015  *
2016  * Pid:
2017  * This function will print the pid that a given pidfd refers to in the
2018  * pid namespace of the procfs instance.
2019  * If the pid namespace of the process is not a descendant of the pid
2020  * namespace of the procfs instance 0 will be shown as its pid. This is
2021  * similar to calling getppid() on a process whose parent is outside of
2022  * its pid namespace.
2023  *
2024  * NSpid:
2025  * If pid namespaces are supported then this function will also print
2026  * the pid of a given pidfd refers to for all descendant pid namespaces
2027  * starting from the current pid namespace of the instance, i.e. the
2028  * Pid field and the first entry in the NSpid field will be identical.
2029  * If the pid namespace of the process is not a descendant of the pid
2030  * namespace of the procfs instance 0 will be shown as its first NSpid
2031  * entry and no others will be shown.
2032  * Note that this differs from the Pid and NSpid fields in
2033  * /proc/<pid>/status where Pid and NSpid are always shown relative to
2034  * the  pid namespace of the procfs instance. The difference becomes
2035  * obvious when sending around a pidfd between pid namespaces from a
2036  * different branch of the tree, i.e. where no ancestral relation is
2037  * present between the pid namespaces:
2038  * - create two new pid namespaces ns1 and ns2 in the initial pid
2039  *   namespace (also take care to create new mount namespaces in the
2040  *   new pid namespace and mount procfs)
2041  * - create a process with a pidfd in ns1
2042  * - send pidfd from ns1 to ns2
2043  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
2044  *   have exactly one entry, which is 0
2045  */
2046 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
2047 {
2048 	struct pid *pid = f->private_data;
2049 	struct pid_namespace *ns;
2050 	pid_t nr = -1;
2051 
2052 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
2053 		ns = proc_pid_ns(file_inode(m->file)->i_sb);
2054 		nr = pid_nr_ns(pid, ns);
2055 	}
2056 
2057 	seq_put_decimal_ll(m, "Pid:\t", nr);
2058 
2059 #ifdef CONFIG_PID_NS
2060 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
2061 	if (nr > 0) {
2062 		int i;
2063 
2064 		/* If nr is non-zero it means that 'pid' is valid and that
2065 		 * ns, i.e. the pid namespace associated with the procfs
2066 		 * instance, is in the pid namespace hierarchy of pid.
2067 		 * Start at one below the already printed level.
2068 		 */
2069 		for (i = ns->level + 1; i <= pid->level; i++)
2070 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
2071 	}
2072 #endif
2073 	seq_putc(m, '\n');
2074 }
2075 #endif
2076 
2077 /*
2078  * Poll support for process exit notification.
2079  */
2080 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
2081 {
2082 	struct pid *pid = file->private_data;
2083 	__poll_t poll_flags = 0;
2084 
2085 	poll_wait(file, &pid->wait_pidfd, pts);
2086 
2087 	/*
2088 	 * Inform pollers only when the whole thread group exits.
2089 	 * If the thread group leader exits before all other threads in the
2090 	 * group, then poll(2) should block, similar to the wait(2) family.
2091 	 */
2092 	if (thread_group_exited(pid))
2093 		poll_flags = EPOLLIN | EPOLLRDNORM;
2094 
2095 	return poll_flags;
2096 }
2097 
2098 const struct file_operations pidfd_fops = {
2099 	.release = pidfd_release,
2100 	.poll = pidfd_poll,
2101 #ifdef CONFIG_PROC_FS
2102 	.show_fdinfo = pidfd_show_fdinfo,
2103 #endif
2104 };
2105 
2106 /**
2107  * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2108  * @pid:   the struct pid for which to create a pidfd
2109  * @flags: flags of the new @pidfd
2110  * @ret: Where to return the file for the pidfd.
2111  *
2112  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2113  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2114  *
2115  * The helper doesn't perform checks on @pid which makes it useful for pidfds
2116  * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
2117  * pidfd file are prepared.
2118  *
2119  * If this function returns successfully the caller is responsible to either
2120  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2121  * order to install the pidfd into its file descriptor table or they must use
2122  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2123  * respectively.
2124  *
2125  * This function is useful when a pidfd must already be reserved but there
2126  * might still be points of failure afterwards and the caller wants to ensure
2127  * that no pidfd is leaked into its file descriptor table.
2128  *
2129  * Return: On success, a reserved pidfd is returned from the function and a new
2130  *         pidfd file is returned in the last argument to the function. On
2131  *         error, a negative error code is returned from the function and the
2132  *         last argument remains unchanged.
2133  */
2134 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2135 {
2136 	int pidfd;
2137 	struct file *pidfd_file;
2138 
2139 	if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC))
2140 		return -EINVAL;
2141 
2142 	pidfd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2143 	if (pidfd < 0)
2144 		return pidfd;
2145 
2146 	pidfd_file = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2147 					flags | O_RDWR | O_CLOEXEC);
2148 	if (IS_ERR(pidfd_file)) {
2149 		put_unused_fd(pidfd);
2150 		return PTR_ERR(pidfd_file);
2151 	}
2152 	get_pid(pid); /* held by pidfd_file now */
2153 	*ret = pidfd_file;
2154 	return pidfd;
2155 }
2156 
2157 /**
2158  * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2159  * @pid:   the struct pid for which to create a pidfd
2160  * @flags: flags of the new @pidfd
2161  * @ret: Where to return the pidfd.
2162  *
2163  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2164  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2165  *
2166  * The helper verifies that @pid is used as a thread group leader.
2167  *
2168  * If this function returns successfully the caller is responsible to either
2169  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2170  * order to install the pidfd into its file descriptor table or they must use
2171  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2172  * respectively.
2173  *
2174  * This function is useful when a pidfd must already be reserved but there
2175  * might still be points of failure afterwards and the caller wants to ensure
2176  * that no pidfd is leaked into its file descriptor table.
2177  *
2178  * Return: On success, a reserved pidfd is returned from the function and a new
2179  *         pidfd file is returned in the last argument to the function. On
2180  *         error, a negative error code is returned from the function and the
2181  *         last argument remains unchanged.
2182  */
2183 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2184 {
2185 	if (!pid || !pid_has_task(pid, PIDTYPE_TGID))
2186 		return -EINVAL;
2187 
2188 	return __pidfd_prepare(pid, flags, ret);
2189 }
2190 
2191 static void __delayed_free_task(struct rcu_head *rhp)
2192 {
2193 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2194 
2195 	free_task(tsk);
2196 }
2197 
2198 static __always_inline void delayed_free_task(struct task_struct *tsk)
2199 {
2200 	if (IS_ENABLED(CONFIG_MEMCG))
2201 		call_rcu(&tsk->rcu, __delayed_free_task);
2202 	else
2203 		free_task(tsk);
2204 }
2205 
2206 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2207 {
2208 	/* Skip if kernel thread */
2209 	if (!tsk->mm)
2210 		return;
2211 
2212 	/* Skip if spawning a thread or using vfork */
2213 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2214 		return;
2215 
2216 	/* We need to synchronize with __set_oom_adj */
2217 	mutex_lock(&oom_adj_mutex);
2218 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2219 	/* Update the values in case they were changed after copy_signal */
2220 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2221 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2222 	mutex_unlock(&oom_adj_mutex);
2223 }
2224 
2225 #ifdef CONFIG_RV
2226 static void rv_task_fork(struct task_struct *p)
2227 {
2228 	int i;
2229 
2230 	for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2231 		p->rv[i].da_mon.monitoring = false;
2232 }
2233 #else
2234 #define rv_task_fork(p) do {} while (0)
2235 #endif
2236 
2237 /*
2238  * This creates a new process as a copy of the old one,
2239  * but does not actually start it yet.
2240  *
2241  * It copies the registers, and all the appropriate
2242  * parts of the process environment (as per the clone
2243  * flags). The actual kick-off is left to the caller.
2244  */
2245 __latent_entropy struct task_struct *copy_process(
2246 					struct pid *pid,
2247 					int trace,
2248 					int node,
2249 					struct kernel_clone_args *args)
2250 {
2251 	int pidfd = -1, retval;
2252 	struct task_struct *p;
2253 	struct multiprocess_signals delayed;
2254 	struct file *pidfile = NULL;
2255 	const u64 clone_flags = args->flags;
2256 	struct nsproxy *nsp = current->nsproxy;
2257 
2258 	/*
2259 	 * Don't allow sharing the root directory with processes in a different
2260 	 * namespace
2261 	 */
2262 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2263 		return ERR_PTR(-EINVAL);
2264 
2265 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2266 		return ERR_PTR(-EINVAL);
2267 
2268 	/*
2269 	 * Thread groups must share signals as well, and detached threads
2270 	 * can only be started up within the thread group.
2271 	 */
2272 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2273 		return ERR_PTR(-EINVAL);
2274 
2275 	/*
2276 	 * Shared signal handlers imply shared VM. By way of the above,
2277 	 * thread groups also imply shared VM. Blocking this case allows
2278 	 * for various simplifications in other code.
2279 	 */
2280 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2281 		return ERR_PTR(-EINVAL);
2282 
2283 	/*
2284 	 * Siblings of global init remain as zombies on exit since they are
2285 	 * not reaped by their parent (swapper). To solve this and to avoid
2286 	 * multi-rooted process trees, prevent global and container-inits
2287 	 * from creating siblings.
2288 	 */
2289 	if ((clone_flags & CLONE_PARENT) &&
2290 				current->signal->flags & SIGNAL_UNKILLABLE)
2291 		return ERR_PTR(-EINVAL);
2292 
2293 	/*
2294 	 * If the new process will be in a different pid or user namespace
2295 	 * do not allow it to share a thread group with the forking task.
2296 	 */
2297 	if (clone_flags & CLONE_THREAD) {
2298 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2299 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2300 			return ERR_PTR(-EINVAL);
2301 	}
2302 
2303 	if (clone_flags & CLONE_PIDFD) {
2304 		/*
2305 		 * - CLONE_DETACHED is blocked so that we can potentially
2306 		 *   reuse it later for CLONE_PIDFD.
2307 		 * - CLONE_THREAD is blocked until someone really needs it.
2308 		 */
2309 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2310 			return ERR_PTR(-EINVAL);
2311 	}
2312 
2313 	/*
2314 	 * Force any signals received before this point to be delivered
2315 	 * before the fork happens.  Collect up signals sent to multiple
2316 	 * processes that happen during the fork and delay them so that
2317 	 * they appear to happen after the fork.
2318 	 */
2319 	sigemptyset(&delayed.signal);
2320 	INIT_HLIST_NODE(&delayed.node);
2321 
2322 	spin_lock_irq(&current->sighand->siglock);
2323 	if (!(clone_flags & CLONE_THREAD))
2324 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2325 	recalc_sigpending();
2326 	spin_unlock_irq(&current->sighand->siglock);
2327 	retval = -ERESTARTNOINTR;
2328 	if (task_sigpending(current))
2329 		goto fork_out;
2330 
2331 	retval = -ENOMEM;
2332 	p = dup_task_struct(current, node);
2333 	if (!p)
2334 		goto fork_out;
2335 	p->flags &= ~PF_KTHREAD;
2336 	if (args->kthread)
2337 		p->flags |= PF_KTHREAD;
2338 	if (args->user_worker) {
2339 		/*
2340 		 * Mark us a user worker, and block any signal that isn't
2341 		 * fatal or STOP
2342 		 */
2343 		p->flags |= PF_USER_WORKER;
2344 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2345 	}
2346 	if (args->io_thread)
2347 		p->flags |= PF_IO_WORKER;
2348 
2349 	if (args->name)
2350 		strscpy_pad(p->comm, args->name, sizeof(p->comm));
2351 
2352 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2353 	/*
2354 	 * Clear TID on mm_release()?
2355 	 */
2356 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2357 
2358 	ftrace_graph_init_task(p);
2359 
2360 	rt_mutex_init_task(p);
2361 
2362 	lockdep_assert_irqs_enabled();
2363 #ifdef CONFIG_PROVE_LOCKING
2364 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2365 #endif
2366 	retval = copy_creds(p, clone_flags);
2367 	if (retval < 0)
2368 		goto bad_fork_free;
2369 
2370 	retval = -EAGAIN;
2371 	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2372 		if (p->real_cred->user != INIT_USER &&
2373 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2374 			goto bad_fork_cleanup_count;
2375 	}
2376 	current->flags &= ~PF_NPROC_EXCEEDED;
2377 
2378 	/*
2379 	 * If multiple threads are within copy_process(), then this check
2380 	 * triggers too late. This doesn't hurt, the check is only there
2381 	 * to stop root fork bombs.
2382 	 */
2383 	retval = -EAGAIN;
2384 	if (data_race(nr_threads >= max_threads))
2385 		goto bad_fork_cleanup_count;
2386 
2387 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2388 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2389 	p->flags |= PF_FORKNOEXEC;
2390 	INIT_LIST_HEAD(&p->children);
2391 	INIT_LIST_HEAD(&p->sibling);
2392 	rcu_copy_process(p);
2393 	p->vfork_done = NULL;
2394 	spin_lock_init(&p->alloc_lock);
2395 
2396 	init_sigpending(&p->pending);
2397 
2398 	p->utime = p->stime = p->gtime = 0;
2399 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2400 	p->utimescaled = p->stimescaled = 0;
2401 #endif
2402 	prev_cputime_init(&p->prev_cputime);
2403 
2404 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2405 	seqcount_init(&p->vtime.seqcount);
2406 	p->vtime.starttime = 0;
2407 	p->vtime.state = VTIME_INACTIVE;
2408 #endif
2409 
2410 #ifdef CONFIG_IO_URING
2411 	p->io_uring = NULL;
2412 #endif
2413 
2414 	p->default_timer_slack_ns = current->timer_slack_ns;
2415 
2416 #ifdef CONFIG_PSI
2417 	p->psi_flags = 0;
2418 #endif
2419 
2420 	task_io_accounting_init(&p->ioac);
2421 	acct_clear_integrals(p);
2422 
2423 	posix_cputimers_init(&p->posix_cputimers);
2424 
2425 	p->io_context = NULL;
2426 	audit_set_context(p, NULL);
2427 	cgroup_fork(p);
2428 	if (args->kthread) {
2429 		if (!set_kthread_struct(p))
2430 			goto bad_fork_cleanup_delayacct;
2431 	}
2432 #ifdef CONFIG_NUMA
2433 	p->mempolicy = mpol_dup(p->mempolicy);
2434 	if (IS_ERR(p->mempolicy)) {
2435 		retval = PTR_ERR(p->mempolicy);
2436 		p->mempolicy = NULL;
2437 		goto bad_fork_cleanup_delayacct;
2438 	}
2439 #endif
2440 #ifdef CONFIG_CPUSETS
2441 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2442 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2443 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2444 #endif
2445 #ifdef CONFIG_TRACE_IRQFLAGS
2446 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2447 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2448 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2449 	p->softirqs_enabled		= 1;
2450 	p->softirq_context		= 0;
2451 #endif
2452 
2453 	p->pagefault_disabled = 0;
2454 
2455 #ifdef CONFIG_LOCKDEP
2456 	lockdep_init_task(p);
2457 #endif
2458 
2459 #ifdef CONFIG_DEBUG_MUTEXES
2460 	p->blocked_on = NULL; /* not blocked yet */
2461 #endif
2462 #ifdef CONFIG_BCACHE
2463 	p->sequential_io	= 0;
2464 	p->sequential_io_avg	= 0;
2465 #endif
2466 #ifdef CONFIG_BPF_SYSCALL
2467 	RCU_INIT_POINTER(p->bpf_storage, NULL);
2468 	p->bpf_ctx = NULL;
2469 #endif
2470 
2471 	/* Perform scheduler related setup. Assign this task to a CPU. */
2472 	retval = sched_fork(clone_flags, p);
2473 	if (retval)
2474 		goto bad_fork_cleanup_policy;
2475 
2476 	retval = perf_event_init_task(p, clone_flags);
2477 	if (retval)
2478 		goto bad_fork_cleanup_policy;
2479 	retval = audit_alloc(p);
2480 	if (retval)
2481 		goto bad_fork_cleanup_perf;
2482 	/* copy all the process information */
2483 	shm_init_task(p);
2484 	retval = security_task_alloc(p, clone_flags);
2485 	if (retval)
2486 		goto bad_fork_cleanup_audit;
2487 	retval = copy_semundo(clone_flags, p);
2488 	if (retval)
2489 		goto bad_fork_cleanup_security;
2490 	retval = copy_files(clone_flags, p, args->no_files);
2491 	if (retval)
2492 		goto bad_fork_cleanup_semundo;
2493 	retval = copy_fs(clone_flags, p);
2494 	if (retval)
2495 		goto bad_fork_cleanup_files;
2496 	retval = copy_sighand(clone_flags, p);
2497 	if (retval)
2498 		goto bad_fork_cleanup_fs;
2499 	retval = copy_signal(clone_flags, p);
2500 	if (retval)
2501 		goto bad_fork_cleanup_sighand;
2502 	retval = copy_mm(clone_flags, p);
2503 	if (retval)
2504 		goto bad_fork_cleanup_signal;
2505 	retval = copy_namespaces(clone_flags, p);
2506 	if (retval)
2507 		goto bad_fork_cleanup_mm;
2508 	retval = copy_io(clone_flags, p);
2509 	if (retval)
2510 		goto bad_fork_cleanup_namespaces;
2511 	retval = copy_thread(p, args);
2512 	if (retval)
2513 		goto bad_fork_cleanup_io;
2514 
2515 	stackleak_task_init(p);
2516 
2517 	if (pid != &init_struct_pid) {
2518 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2519 				args->set_tid_size);
2520 		if (IS_ERR(pid)) {
2521 			retval = PTR_ERR(pid);
2522 			goto bad_fork_cleanup_thread;
2523 		}
2524 	}
2525 
2526 	/*
2527 	 * This has to happen after we've potentially unshared the file
2528 	 * descriptor table (so that the pidfd doesn't leak into the child
2529 	 * if the fd table isn't shared).
2530 	 */
2531 	if (clone_flags & CLONE_PIDFD) {
2532 		/* Note that no task has been attached to @pid yet. */
2533 		retval = __pidfd_prepare(pid, O_RDWR | O_CLOEXEC, &pidfile);
2534 		if (retval < 0)
2535 			goto bad_fork_free_pid;
2536 		pidfd = retval;
2537 
2538 		retval = put_user(pidfd, args->pidfd);
2539 		if (retval)
2540 			goto bad_fork_put_pidfd;
2541 	}
2542 
2543 #ifdef CONFIG_BLOCK
2544 	p->plug = NULL;
2545 #endif
2546 	futex_init_task(p);
2547 
2548 	/*
2549 	 * sigaltstack should be cleared when sharing the same VM
2550 	 */
2551 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2552 		sas_ss_reset(p);
2553 
2554 	/*
2555 	 * Syscall tracing and stepping should be turned off in the
2556 	 * child regardless of CLONE_PTRACE.
2557 	 */
2558 	user_disable_single_step(p);
2559 	clear_task_syscall_work(p, SYSCALL_TRACE);
2560 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2561 	clear_task_syscall_work(p, SYSCALL_EMU);
2562 #endif
2563 	clear_tsk_latency_tracing(p);
2564 
2565 	/* ok, now we should be set up.. */
2566 	p->pid = pid_nr(pid);
2567 	if (clone_flags & CLONE_THREAD) {
2568 		p->group_leader = current->group_leader;
2569 		p->tgid = current->tgid;
2570 	} else {
2571 		p->group_leader = p;
2572 		p->tgid = p->pid;
2573 	}
2574 
2575 	p->nr_dirtied = 0;
2576 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2577 	p->dirty_paused_when = 0;
2578 
2579 	p->pdeath_signal = 0;
2580 	p->task_works = NULL;
2581 	clear_posix_cputimers_work(p);
2582 
2583 #ifdef CONFIG_KRETPROBES
2584 	p->kretprobe_instances.first = NULL;
2585 #endif
2586 #ifdef CONFIG_RETHOOK
2587 	p->rethooks.first = NULL;
2588 #endif
2589 
2590 	/*
2591 	 * Ensure that the cgroup subsystem policies allow the new process to be
2592 	 * forked. It should be noted that the new process's css_set can be changed
2593 	 * between here and cgroup_post_fork() if an organisation operation is in
2594 	 * progress.
2595 	 */
2596 	retval = cgroup_can_fork(p, args);
2597 	if (retval)
2598 		goto bad_fork_put_pidfd;
2599 
2600 	/*
2601 	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2602 	 * the new task on the correct runqueue. All this *before* the task
2603 	 * becomes visible.
2604 	 *
2605 	 * This isn't part of ->can_fork() because while the re-cloning is
2606 	 * cgroup specific, it unconditionally needs to place the task on a
2607 	 * runqueue.
2608 	 */
2609 	sched_cgroup_fork(p, args);
2610 
2611 	/*
2612 	 * From this point on we must avoid any synchronous user-space
2613 	 * communication until we take the tasklist-lock. In particular, we do
2614 	 * not want user-space to be able to predict the process start-time by
2615 	 * stalling fork(2) after we recorded the start_time but before it is
2616 	 * visible to the system.
2617 	 */
2618 
2619 	p->start_time = ktime_get_ns();
2620 	p->start_boottime = ktime_get_boottime_ns();
2621 
2622 	/*
2623 	 * Make it visible to the rest of the system, but dont wake it up yet.
2624 	 * Need tasklist lock for parent etc handling!
2625 	 */
2626 	write_lock_irq(&tasklist_lock);
2627 
2628 	/* CLONE_PARENT re-uses the old parent */
2629 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2630 		p->real_parent = current->real_parent;
2631 		p->parent_exec_id = current->parent_exec_id;
2632 		if (clone_flags & CLONE_THREAD)
2633 			p->exit_signal = -1;
2634 		else
2635 			p->exit_signal = current->group_leader->exit_signal;
2636 	} else {
2637 		p->real_parent = current;
2638 		p->parent_exec_id = current->self_exec_id;
2639 		p->exit_signal = args->exit_signal;
2640 	}
2641 
2642 	klp_copy_process(p);
2643 
2644 	sched_core_fork(p);
2645 
2646 	spin_lock(&current->sighand->siglock);
2647 
2648 	rv_task_fork(p);
2649 
2650 	rseq_fork(p, clone_flags);
2651 
2652 	/* Don't start children in a dying pid namespace */
2653 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2654 		retval = -ENOMEM;
2655 		goto bad_fork_cancel_cgroup;
2656 	}
2657 
2658 	/* Let kill terminate clone/fork in the middle */
2659 	if (fatal_signal_pending(current)) {
2660 		retval = -EINTR;
2661 		goto bad_fork_cancel_cgroup;
2662 	}
2663 
2664 	/* No more failure paths after this point. */
2665 
2666 	/*
2667 	 * Copy seccomp details explicitly here, in case they were changed
2668 	 * before holding sighand lock.
2669 	 */
2670 	copy_seccomp(p);
2671 
2672 	init_task_pid_links(p);
2673 	if (likely(p->pid)) {
2674 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2675 
2676 		init_task_pid(p, PIDTYPE_PID, pid);
2677 		if (thread_group_leader(p)) {
2678 			init_task_pid(p, PIDTYPE_TGID, pid);
2679 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2680 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2681 
2682 			if (is_child_reaper(pid)) {
2683 				ns_of_pid(pid)->child_reaper = p;
2684 				p->signal->flags |= SIGNAL_UNKILLABLE;
2685 			}
2686 			p->signal->shared_pending.signal = delayed.signal;
2687 			p->signal->tty = tty_kref_get(current->signal->tty);
2688 			/*
2689 			 * Inherit has_child_subreaper flag under the same
2690 			 * tasklist_lock with adding child to the process tree
2691 			 * for propagate_has_child_subreaper optimization.
2692 			 */
2693 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2694 							 p->real_parent->signal->is_child_subreaper;
2695 			list_add_tail(&p->sibling, &p->real_parent->children);
2696 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2697 			attach_pid(p, PIDTYPE_TGID);
2698 			attach_pid(p, PIDTYPE_PGID);
2699 			attach_pid(p, PIDTYPE_SID);
2700 			__this_cpu_inc(process_counts);
2701 		} else {
2702 			current->signal->nr_threads++;
2703 			current->signal->quick_threads++;
2704 			atomic_inc(&current->signal->live);
2705 			refcount_inc(&current->signal->sigcnt);
2706 			task_join_group_stop(p);
2707 			list_add_tail_rcu(&p->thread_node,
2708 					  &p->signal->thread_head);
2709 		}
2710 		attach_pid(p, PIDTYPE_PID);
2711 		nr_threads++;
2712 	}
2713 	total_forks++;
2714 	hlist_del_init(&delayed.node);
2715 	spin_unlock(&current->sighand->siglock);
2716 	syscall_tracepoint_update(p);
2717 	write_unlock_irq(&tasklist_lock);
2718 
2719 	if (pidfile)
2720 		fd_install(pidfd, pidfile);
2721 
2722 	proc_fork_connector(p);
2723 	sched_post_fork(p);
2724 	cgroup_post_fork(p, args);
2725 	perf_event_fork(p);
2726 
2727 	trace_task_newtask(p, clone_flags);
2728 	uprobe_copy_process(p, clone_flags);
2729 	user_events_fork(p, clone_flags);
2730 
2731 	copy_oom_score_adj(clone_flags, p);
2732 
2733 	return p;
2734 
2735 bad_fork_cancel_cgroup:
2736 	sched_core_free(p);
2737 	spin_unlock(&current->sighand->siglock);
2738 	write_unlock_irq(&tasklist_lock);
2739 	cgroup_cancel_fork(p, args);
2740 bad_fork_put_pidfd:
2741 	if (clone_flags & CLONE_PIDFD) {
2742 		fput(pidfile);
2743 		put_unused_fd(pidfd);
2744 	}
2745 bad_fork_free_pid:
2746 	if (pid != &init_struct_pid)
2747 		free_pid(pid);
2748 bad_fork_cleanup_thread:
2749 	exit_thread(p);
2750 bad_fork_cleanup_io:
2751 	if (p->io_context)
2752 		exit_io_context(p);
2753 bad_fork_cleanup_namespaces:
2754 	exit_task_namespaces(p);
2755 bad_fork_cleanup_mm:
2756 	if (p->mm) {
2757 		mm_clear_owner(p->mm, p);
2758 		mmput(p->mm);
2759 	}
2760 bad_fork_cleanup_signal:
2761 	if (!(clone_flags & CLONE_THREAD))
2762 		free_signal_struct(p->signal);
2763 bad_fork_cleanup_sighand:
2764 	__cleanup_sighand(p->sighand);
2765 bad_fork_cleanup_fs:
2766 	exit_fs(p); /* blocking */
2767 bad_fork_cleanup_files:
2768 	exit_files(p); /* blocking */
2769 bad_fork_cleanup_semundo:
2770 	exit_sem(p);
2771 bad_fork_cleanup_security:
2772 	security_task_free(p);
2773 bad_fork_cleanup_audit:
2774 	audit_free(p);
2775 bad_fork_cleanup_perf:
2776 	perf_event_free_task(p);
2777 bad_fork_cleanup_policy:
2778 	lockdep_free_task(p);
2779 #ifdef CONFIG_NUMA
2780 	mpol_put(p->mempolicy);
2781 #endif
2782 bad_fork_cleanup_delayacct:
2783 	delayacct_tsk_free(p);
2784 bad_fork_cleanup_count:
2785 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2786 	exit_creds(p);
2787 bad_fork_free:
2788 	WRITE_ONCE(p->__state, TASK_DEAD);
2789 	exit_task_stack_account(p);
2790 	put_task_stack(p);
2791 	delayed_free_task(p);
2792 fork_out:
2793 	spin_lock_irq(&current->sighand->siglock);
2794 	hlist_del_init(&delayed.node);
2795 	spin_unlock_irq(&current->sighand->siglock);
2796 	return ERR_PTR(retval);
2797 }
2798 
2799 static inline void init_idle_pids(struct task_struct *idle)
2800 {
2801 	enum pid_type type;
2802 
2803 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2804 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2805 		init_task_pid(idle, type, &init_struct_pid);
2806 	}
2807 }
2808 
2809 static int idle_dummy(void *dummy)
2810 {
2811 	/* This function is never called */
2812 	return 0;
2813 }
2814 
2815 struct task_struct * __init fork_idle(int cpu)
2816 {
2817 	struct task_struct *task;
2818 	struct kernel_clone_args args = {
2819 		.flags		= CLONE_VM,
2820 		.fn		= &idle_dummy,
2821 		.fn_arg		= NULL,
2822 		.kthread	= 1,
2823 		.idle		= 1,
2824 	};
2825 
2826 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2827 	if (!IS_ERR(task)) {
2828 		init_idle_pids(task);
2829 		init_idle(task, cpu);
2830 	}
2831 
2832 	return task;
2833 }
2834 
2835 /*
2836  * This is like kernel_clone(), but shaved down and tailored to just
2837  * creating io_uring workers. It returns a created task, or an error pointer.
2838  * The returned task is inactive, and the caller must fire it up through
2839  * wake_up_new_task(p). All signals are blocked in the created task.
2840  */
2841 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2842 {
2843 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2844 				CLONE_IO;
2845 	struct kernel_clone_args args = {
2846 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2847 				    CLONE_UNTRACED) & ~CSIGNAL),
2848 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2849 		.fn		= fn,
2850 		.fn_arg		= arg,
2851 		.io_thread	= 1,
2852 		.user_worker	= 1,
2853 	};
2854 
2855 	return copy_process(NULL, 0, node, &args);
2856 }
2857 
2858 /*
2859  *  Ok, this is the main fork-routine.
2860  *
2861  * It copies the process, and if successful kick-starts
2862  * it and waits for it to finish using the VM if required.
2863  *
2864  * args->exit_signal is expected to be checked for sanity by the caller.
2865  */
2866 pid_t kernel_clone(struct kernel_clone_args *args)
2867 {
2868 	u64 clone_flags = args->flags;
2869 	struct completion vfork;
2870 	struct pid *pid;
2871 	struct task_struct *p;
2872 	int trace = 0;
2873 	pid_t nr;
2874 
2875 	/*
2876 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2877 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2878 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2879 	 * field in struct clone_args and it still doesn't make sense to have
2880 	 * them both point at the same memory location. Performing this check
2881 	 * here has the advantage that we don't need to have a separate helper
2882 	 * to check for legacy clone().
2883 	 */
2884 	if ((args->flags & CLONE_PIDFD) &&
2885 	    (args->flags & CLONE_PARENT_SETTID) &&
2886 	    (args->pidfd == args->parent_tid))
2887 		return -EINVAL;
2888 
2889 	/*
2890 	 * Determine whether and which event to report to ptracer.  When
2891 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2892 	 * requested, no event is reported; otherwise, report if the event
2893 	 * for the type of forking is enabled.
2894 	 */
2895 	if (!(clone_flags & CLONE_UNTRACED)) {
2896 		if (clone_flags & CLONE_VFORK)
2897 			trace = PTRACE_EVENT_VFORK;
2898 		else if (args->exit_signal != SIGCHLD)
2899 			trace = PTRACE_EVENT_CLONE;
2900 		else
2901 			trace = PTRACE_EVENT_FORK;
2902 
2903 		if (likely(!ptrace_event_enabled(current, trace)))
2904 			trace = 0;
2905 	}
2906 
2907 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2908 	add_latent_entropy();
2909 
2910 	if (IS_ERR(p))
2911 		return PTR_ERR(p);
2912 
2913 	/*
2914 	 * Do this prior waking up the new thread - the thread pointer
2915 	 * might get invalid after that point, if the thread exits quickly.
2916 	 */
2917 	trace_sched_process_fork(current, p);
2918 
2919 	pid = get_task_pid(p, PIDTYPE_PID);
2920 	nr = pid_vnr(pid);
2921 
2922 	if (clone_flags & CLONE_PARENT_SETTID)
2923 		put_user(nr, args->parent_tid);
2924 
2925 	if (clone_flags & CLONE_VFORK) {
2926 		p->vfork_done = &vfork;
2927 		init_completion(&vfork);
2928 		get_task_struct(p);
2929 	}
2930 
2931 	if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) {
2932 		/* lock the task to synchronize with memcg migration */
2933 		task_lock(p);
2934 		lru_gen_add_mm(p->mm);
2935 		task_unlock(p);
2936 	}
2937 
2938 	wake_up_new_task(p);
2939 
2940 	/* forking complete and child started to run, tell ptracer */
2941 	if (unlikely(trace))
2942 		ptrace_event_pid(trace, pid);
2943 
2944 	if (clone_flags & CLONE_VFORK) {
2945 		if (!wait_for_vfork_done(p, &vfork))
2946 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2947 	}
2948 
2949 	put_pid(pid);
2950 	return nr;
2951 }
2952 
2953 /*
2954  * Create a kernel thread.
2955  */
2956 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2957 		    unsigned long flags)
2958 {
2959 	struct kernel_clone_args args = {
2960 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2961 				    CLONE_UNTRACED) & ~CSIGNAL),
2962 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2963 		.fn		= fn,
2964 		.fn_arg		= arg,
2965 		.name		= name,
2966 		.kthread	= 1,
2967 	};
2968 
2969 	return kernel_clone(&args);
2970 }
2971 
2972 /*
2973  * Create a user mode thread.
2974  */
2975 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2976 {
2977 	struct kernel_clone_args args = {
2978 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2979 				    CLONE_UNTRACED) & ~CSIGNAL),
2980 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2981 		.fn		= fn,
2982 		.fn_arg		= arg,
2983 	};
2984 
2985 	return kernel_clone(&args);
2986 }
2987 
2988 #ifdef __ARCH_WANT_SYS_FORK
2989 SYSCALL_DEFINE0(fork)
2990 {
2991 #ifdef CONFIG_MMU
2992 	struct kernel_clone_args args = {
2993 		.exit_signal = SIGCHLD,
2994 	};
2995 
2996 	return kernel_clone(&args);
2997 #else
2998 	/* can not support in nommu mode */
2999 	return -EINVAL;
3000 #endif
3001 }
3002 #endif
3003 
3004 #ifdef __ARCH_WANT_SYS_VFORK
3005 SYSCALL_DEFINE0(vfork)
3006 {
3007 	struct kernel_clone_args args = {
3008 		.flags		= CLONE_VFORK | CLONE_VM,
3009 		.exit_signal	= SIGCHLD,
3010 	};
3011 
3012 	return kernel_clone(&args);
3013 }
3014 #endif
3015 
3016 #ifdef __ARCH_WANT_SYS_CLONE
3017 #ifdef CONFIG_CLONE_BACKWARDS
3018 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3019 		 int __user *, parent_tidptr,
3020 		 unsigned long, tls,
3021 		 int __user *, child_tidptr)
3022 #elif defined(CONFIG_CLONE_BACKWARDS2)
3023 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
3024 		 int __user *, parent_tidptr,
3025 		 int __user *, child_tidptr,
3026 		 unsigned long, tls)
3027 #elif defined(CONFIG_CLONE_BACKWARDS3)
3028 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
3029 		int, stack_size,
3030 		int __user *, parent_tidptr,
3031 		int __user *, child_tidptr,
3032 		unsigned long, tls)
3033 #else
3034 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3035 		 int __user *, parent_tidptr,
3036 		 int __user *, child_tidptr,
3037 		 unsigned long, tls)
3038 #endif
3039 {
3040 	struct kernel_clone_args args = {
3041 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
3042 		.pidfd		= parent_tidptr,
3043 		.child_tid	= child_tidptr,
3044 		.parent_tid	= parent_tidptr,
3045 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
3046 		.stack		= newsp,
3047 		.tls		= tls,
3048 	};
3049 
3050 	return kernel_clone(&args);
3051 }
3052 #endif
3053 
3054 #ifdef __ARCH_WANT_SYS_CLONE3
3055 
3056 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
3057 					      struct clone_args __user *uargs,
3058 					      size_t usize)
3059 {
3060 	int err;
3061 	struct clone_args args;
3062 	pid_t *kset_tid = kargs->set_tid;
3063 
3064 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
3065 		     CLONE_ARGS_SIZE_VER0);
3066 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
3067 		     CLONE_ARGS_SIZE_VER1);
3068 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
3069 		     CLONE_ARGS_SIZE_VER2);
3070 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
3071 
3072 	if (unlikely(usize > PAGE_SIZE))
3073 		return -E2BIG;
3074 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
3075 		return -EINVAL;
3076 
3077 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
3078 	if (err)
3079 		return err;
3080 
3081 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
3082 		return -EINVAL;
3083 
3084 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
3085 		return -EINVAL;
3086 
3087 	if (unlikely(args.set_tid && args.set_tid_size == 0))
3088 		return -EINVAL;
3089 
3090 	/*
3091 	 * Verify that higher 32bits of exit_signal are unset and that
3092 	 * it is a valid signal
3093 	 */
3094 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
3095 		     !valid_signal(args.exit_signal)))
3096 		return -EINVAL;
3097 
3098 	if ((args.flags & CLONE_INTO_CGROUP) &&
3099 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
3100 		return -EINVAL;
3101 
3102 	*kargs = (struct kernel_clone_args){
3103 		.flags		= args.flags,
3104 		.pidfd		= u64_to_user_ptr(args.pidfd),
3105 		.child_tid	= u64_to_user_ptr(args.child_tid),
3106 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
3107 		.exit_signal	= args.exit_signal,
3108 		.stack		= args.stack,
3109 		.stack_size	= args.stack_size,
3110 		.tls		= args.tls,
3111 		.set_tid_size	= args.set_tid_size,
3112 		.cgroup		= args.cgroup,
3113 	};
3114 
3115 	if (args.set_tid &&
3116 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
3117 			(kargs->set_tid_size * sizeof(pid_t))))
3118 		return -EFAULT;
3119 
3120 	kargs->set_tid = kset_tid;
3121 
3122 	return 0;
3123 }
3124 
3125 /**
3126  * clone3_stack_valid - check and prepare stack
3127  * @kargs: kernel clone args
3128  *
3129  * Verify that the stack arguments userspace gave us are sane.
3130  * In addition, set the stack direction for userspace since it's easy for us to
3131  * determine.
3132  */
3133 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3134 {
3135 	if (kargs->stack == 0) {
3136 		if (kargs->stack_size > 0)
3137 			return false;
3138 	} else {
3139 		if (kargs->stack_size == 0)
3140 			return false;
3141 
3142 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3143 			return false;
3144 
3145 #if !defined(CONFIG_STACK_GROWSUP)
3146 		kargs->stack += kargs->stack_size;
3147 #endif
3148 	}
3149 
3150 	return true;
3151 }
3152 
3153 static bool clone3_args_valid(struct kernel_clone_args *kargs)
3154 {
3155 	/* Verify that no unknown flags are passed along. */
3156 	if (kargs->flags &
3157 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3158 		return false;
3159 
3160 	/*
3161 	 * - make the CLONE_DETACHED bit reusable for clone3
3162 	 * - make the CSIGNAL bits reusable for clone3
3163 	 */
3164 	if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3165 		return false;
3166 
3167 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3168 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3169 		return false;
3170 
3171 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3172 	    kargs->exit_signal)
3173 		return false;
3174 
3175 	if (!clone3_stack_valid(kargs))
3176 		return false;
3177 
3178 	return true;
3179 }
3180 
3181 /**
3182  * sys_clone3 - create a new process with specific properties
3183  * @uargs: argument structure
3184  * @size:  size of @uargs
3185  *
3186  * clone3() is the extensible successor to clone()/clone2().
3187  * It takes a struct as argument that is versioned by its size.
3188  *
3189  * Return: On success, a positive PID for the child process.
3190  *         On error, a negative errno number.
3191  */
3192 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3193 {
3194 	int err;
3195 
3196 	struct kernel_clone_args kargs;
3197 	pid_t set_tid[MAX_PID_NS_LEVEL];
3198 
3199 	kargs.set_tid = set_tid;
3200 
3201 	err = copy_clone_args_from_user(&kargs, uargs, size);
3202 	if (err)
3203 		return err;
3204 
3205 	if (!clone3_args_valid(&kargs))
3206 		return -EINVAL;
3207 
3208 	return kernel_clone(&kargs);
3209 }
3210 #endif
3211 
3212 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3213 {
3214 	struct task_struct *leader, *parent, *child;
3215 	int res;
3216 
3217 	read_lock(&tasklist_lock);
3218 	leader = top = top->group_leader;
3219 down:
3220 	for_each_thread(leader, parent) {
3221 		list_for_each_entry(child, &parent->children, sibling) {
3222 			res = visitor(child, data);
3223 			if (res) {
3224 				if (res < 0)
3225 					goto out;
3226 				leader = child;
3227 				goto down;
3228 			}
3229 up:
3230 			;
3231 		}
3232 	}
3233 
3234 	if (leader != top) {
3235 		child = leader;
3236 		parent = child->real_parent;
3237 		leader = parent->group_leader;
3238 		goto up;
3239 	}
3240 out:
3241 	read_unlock(&tasklist_lock);
3242 }
3243 
3244 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3245 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3246 #endif
3247 
3248 static void sighand_ctor(void *data)
3249 {
3250 	struct sighand_struct *sighand = data;
3251 
3252 	spin_lock_init(&sighand->siglock);
3253 	init_waitqueue_head(&sighand->signalfd_wqh);
3254 }
3255 
3256 void __init mm_cache_init(void)
3257 {
3258 	unsigned int mm_size;
3259 
3260 	/*
3261 	 * The mm_cpumask is located at the end of mm_struct, and is
3262 	 * dynamically sized based on the maximum CPU number this system
3263 	 * can have, taking hotplug into account (nr_cpu_ids).
3264 	 */
3265 	mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3266 
3267 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
3268 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3269 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3270 			offsetof(struct mm_struct, saved_auxv),
3271 			sizeof_field(struct mm_struct, saved_auxv),
3272 			NULL);
3273 }
3274 
3275 void __init proc_caches_init(void)
3276 {
3277 	sighand_cachep = kmem_cache_create("sighand_cache",
3278 			sizeof(struct sighand_struct), 0,
3279 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3280 			SLAB_ACCOUNT, sighand_ctor);
3281 	signal_cachep = kmem_cache_create("signal_cache",
3282 			sizeof(struct signal_struct), 0,
3283 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3284 			NULL);
3285 	files_cachep = kmem_cache_create("files_cache",
3286 			sizeof(struct files_struct), 0,
3287 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3288 			NULL);
3289 	fs_cachep = kmem_cache_create("fs_cache",
3290 			sizeof(struct fs_struct), 0,
3291 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3292 			NULL);
3293 
3294 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3295 #ifdef CONFIG_PER_VMA_LOCK
3296 	vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3297 #endif
3298 	mmap_init();
3299 	nsproxy_cache_init();
3300 }
3301 
3302 /*
3303  * Check constraints on flags passed to the unshare system call.
3304  */
3305 static int check_unshare_flags(unsigned long unshare_flags)
3306 {
3307 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3308 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3309 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3310 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3311 				CLONE_NEWTIME))
3312 		return -EINVAL;
3313 	/*
3314 	 * Not implemented, but pretend it works if there is nothing
3315 	 * to unshare.  Note that unsharing the address space or the
3316 	 * signal handlers also need to unshare the signal queues (aka
3317 	 * CLONE_THREAD).
3318 	 */
3319 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3320 		if (!thread_group_empty(current))
3321 			return -EINVAL;
3322 	}
3323 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3324 		if (refcount_read(&current->sighand->count) > 1)
3325 			return -EINVAL;
3326 	}
3327 	if (unshare_flags & CLONE_VM) {
3328 		if (!current_is_single_threaded())
3329 			return -EINVAL;
3330 	}
3331 
3332 	return 0;
3333 }
3334 
3335 /*
3336  * Unshare the filesystem structure if it is being shared
3337  */
3338 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3339 {
3340 	struct fs_struct *fs = current->fs;
3341 
3342 	if (!(unshare_flags & CLONE_FS) || !fs)
3343 		return 0;
3344 
3345 	/* don't need lock here; in the worst case we'll do useless copy */
3346 	if (fs->users == 1)
3347 		return 0;
3348 
3349 	*new_fsp = copy_fs_struct(fs);
3350 	if (!*new_fsp)
3351 		return -ENOMEM;
3352 
3353 	return 0;
3354 }
3355 
3356 /*
3357  * Unshare file descriptor table if it is being shared
3358  */
3359 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3360 	       struct files_struct **new_fdp)
3361 {
3362 	struct files_struct *fd = current->files;
3363 	int error = 0;
3364 
3365 	if ((unshare_flags & CLONE_FILES) &&
3366 	    (fd && atomic_read(&fd->count) > 1)) {
3367 		*new_fdp = dup_fd(fd, max_fds, &error);
3368 		if (!*new_fdp)
3369 			return error;
3370 	}
3371 
3372 	return 0;
3373 }
3374 
3375 /*
3376  * unshare allows a process to 'unshare' part of the process
3377  * context which was originally shared using clone.  copy_*
3378  * functions used by kernel_clone() cannot be used here directly
3379  * because they modify an inactive task_struct that is being
3380  * constructed. Here we are modifying the current, active,
3381  * task_struct.
3382  */
3383 int ksys_unshare(unsigned long unshare_flags)
3384 {
3385 	struct fs_struct *fs, *new_fs = NULL;
3386 	struct files_struct *new_fd = NULL;
3387 	struct cred *new_cred = NULL;
3388 	struct nsproxy *new_nsproxy = NULL;
3389 	int do_sysvsem = 0;
3390 	int err;
3391 
3392 	/*
3393 	 * If unsharing a user namespace must also unshare the thread group
3394 	 * and unshare the filesystem root and working directories.
3395 	 */
3396 	if (unshare_flags & CLONE_NEWUSER)
3397 		unshare_flags |= CLONE_THREAD | CLONE_FS;
3398 	/*
3399 	 * If unsharing vm, must also unshare signal handlers.
3400 	 */
3401 	if (unshare_flags & CLONE_VM)
3402 		unshare_flags |= CLONE_SIGHAND;
3403 	/*
3404 	 * If unsharing a signal handlers, must also unshare the signal queues.
3405 	 */
3406 	if (unshare_flags & CLONE_SIGHAND)
3407 		unshare_flags |= CLONE_THREAD;
3408 	/*
3409 	 * If unsharing namespace, must also unshare filesystem information.
3410 	 */
3411 	if (unshare_flags & CLONE_NEWNS)
3412 		unshare_flags |= CLONE_FS;
3413 
3414 	err = check_unshare_flags(unshare_flags);
3415 	if (err)
3416 		goto bad_unshare_out;
3417 	/*
3418 	 * CLONE_NEWIPC must also detach from the undolist: after switching
3419 	 * to a new ipc namespace, the semaphore arrays from the old
3420 	 * namespace are unreachable.
3421 	 */
3422 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3423 		do_sysvsem = 1;
3424 	err = unshare_fs(unshare_flags, &new_fs);
3425 	if (err)
3426 		goto bad_unshare_out;
3427 	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3428 	if (err)
3429 		goto bad_unshare_cleanup_fs;
3430 	err = unshare_userns(unshare_flags, &new_cred);
3431 	if (err)
3432 		goto bad_unshare_cleanup_fd;
3433 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3434 					 new_cred, new_fs);
3435 	if (err)
3436 		goto bad_unshare_cleanup_cred;
3437 
3438 	if (new_cred) {
3439 		err = set_cred_ucounts(new_cred);
3440 		if (err)
3441 			goto bad_unshare_cleanup_cred;
3442 	}
3443 
3444 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3445 		if (do_sysvsem) {
3446 			/*
3447 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3448 			 */
3449 			exit_sem(current);
3450 		}
3451 		if (unshare_flags & CLONE_NEWIPC) {
3452 			/* Orphan segments in old ns (see sem above). */
3453 			exit_shm(current);
3454 			shm_init_task(current);
3455 		}
3456 
3457 		if (new_nsproxy)
3458 			switch_task_namespaces(current, new_nsproxy);
3459 
3460 		task_lock(current);
3461 
3462 		if (new_fs) {
3463 			fs = current->fs;
3464 			spin_lock(&fs->lock);
3465 			current->fs = new_fs;
3466 			if (--fs->users)
3467 				new_fs = NULL;
3468 			else
3469 				new_fs = fs;
3470 			spin_unlock(&fs->lock);
3471 		}
3472 
3473 		if (new_fd)
3474 			swap(current->files, new_fd);
3475 
3476 		task_unlock(current);
3477 
3478 		if (new_cred) {
3479 			/* Install the new user namespace */
3480 			commit_creds(new_cred);
3481 			new_cred = NULL;
3482 		}
3483 	}
3484 
3485 	perf_event_namespaces(current);
3486 
3487 bad_unshare_cleanup_cred:
3488 	if (new_cred)
3489 		put_cred(new_cred);
3490 bad_unshare_cleanup_fd:
3491 	if (new_fd)
3492 		put_files_struct(new_fd);
3493 
3494 bad_unshare_cleanup_fs:
3495 	if (new_fs)
3496 		free_fs_struct(new_fs);
3497 
3498 bad_unshare_out:
3499 	return err;
3500 }
3501 
3502 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3503 {
3504 	return ksys_unshare(unshare_flags);
3505 }
3506 
3507 /*
3508  *	Helper to unshare the files of the current task.
3509  *	We don't want to expose copy_files internals to
3510  *	the exec layer of the kernel.
3511  */
3512 
3513 int unshare_files(void)
3514 {
3515 	struct task_struct *task = current;
3516 	struct files_struct *old, *copy = NULL;
3517 	int error;
3518 
3519 	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3520 	if (error || !copy)
3521 		return error;
3522 
3523 	old = task->files;
3524 	task_lock(task);
3525 	task->files = copy;
3526 	task_unlock(task);
3527 	put_files_struct(old);
3528 	return 0;
3529 }
3530 
3531 int sysctl_max_threads(struct ctl_table *table, int write,
3532 		       void *buffer, size_t *lenp, loff_t *ppos)
3533 {
3534 	struct ctl_table t;
3535 	int ret;
3536 	int threads = max_threads;
3537 	int min = 1;
3538 	int max = MAX_THREADS;
3539 
3540 	t = *table;
3541 	t.data = &threads;
3542 	t.extra1 = &min;
3543 	t.extra2 = &max;
3544 
3545 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3546 	if (ret || !write)
3547 		return ret;
3548 
3549 	max_threads = threads;
3550 
3551 	return 0;
3552 }
3553