xref: /linux/kernel/fork.c (revision 1623bc27a85a93e82194c8d077eccc464efa67db)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/user.h>
20 #include <linux/sched/numa_balancing.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/sched/cputime.h>
25 #include <linux/sched/ext.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/memblock.h>
48 #include <linux/nsproxy.h>
49 #include <linux/capability.h>
50 #include <linux/cpu.h>
51 #include <linux/cgroup.h>
52 #include <linux/security.h>
53 #include <linux/hugetlb.h>
54 #include <linux/seccomp.h>
55 #include <linux/swap.h>
56 #include <linux/syscalls.h>
57 #include <linux/syscall_user_dispatch.h>
58 #include <linux/jiffies.h>
59 #include <linux/futex.h>
60 #include <linux/compat.h>
61 #include <linux/kthread.h>
62 #include <linux/task_io_accounting_ops.h>
63 #include <linux/rcupdate.h>
64 #include <linux/ptrace.h>
65 #include <linux/mount.h>
66 #include <linux/audit.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/proc_fs.h>
70 #include <linux/profile.h>
71 #include <linux/rmap.h>
72 #include <linux/ksm.h>
73 #include <linux/acct.h>
74 #include <linux/userfaultfd_k.h>
75 #include <linux/tsacct_kern.h>
76 #include <linux/cn_proc.h>
77 #include <linux/freezer.h>
78 #include <linux/delayacct.h>
79 #include <linux/taskstats_kern.h>
80 #include <linux/tty.h>
81 #include <linux/fs_struct.h>
82 #include <linux/magic.h>
83 #include <linux/perf_event.h>
84 #include <linux/posix-timers.h>
85 #include <linux/user-return-notifier.h>
86 #include <linux/oom.h>
87 #include <linux/khugepaged.h>
88 #include <linux/signalfd.h>
89 #include <linux/uprobes.h>
90 #include <linux/aio.h>
91 #include <linux/compiler.h>
92 #include <linux/sysctl.h>
93 #include <linux/kcov.h>
94 #include <linux/livepatch.h>
95 #include <linux/thread_info.h>
96 #include <linux/stackleak.h>
97 #include <linux/kasan.h>
98 #include <linux/scs.h>
99 #include <linux/io_uring.h>
100 #include <linux/bpf.h>
101 #include <linux/stackprotector.h>
102 #include <linux/user_events.h>
103 #include <linux/iommu.h>
104 #include <linux/rseq.h>
105 #include <uapi/linux/pidfd.h>
106 #include <linux/pidfs.h>
107 #include <linux/tick.h>
108 
109 #include <asm/pgalloc.h>
110 #include <linux/uaccess.h>
111 #include <asm/mmu_context.h>
112 #include <asm/cacheflush.h>
113 #include <asm/tlbflush.h>
114 
115 #include <trace/events/sched.h>
116 
117 #define CREATE_TRACE_POINTS
118 #include <trace/events/task.h>
119 
120 #include <kunit/visibility.h>
121 
122 /*
123  * Minimum number of threads to boot the kernel
124  */
125 #define MIN_THREADS 20
126 
127 /*
128  * Maximum number of threads
129  */
130 #define MAX_THREADS FUTEX_TID_MASK
131 
132 /*
133  * Protected counters by write_lock_irq(&tasklist_lock)
134  */
135 unsigned long total_forks;	/* Handle normal Linux uptimes. */
136 int nr_threads;			/* The idle threads do not count.. */
137 
138 static int max_threads;		/* tunable limit on nr_threads */
139 
140 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
141 
142 static const char * const resident_page_types[] = {
143 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
144 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
145 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
146 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
147 };
148 
149 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
150 
151 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
152 
153 #ifdef CONFIG_PROVE_RCU
154 int lockdep_tasklist_lock_is_held(void)
155 {
156 	return lockdep_is_held(&tasklist_lock);
157 }
158 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
159 #endif /* #ifdef CONFIG_PROVE_RCU */
160 
161 int nr_processes(void)
162 {
163 	int cpu;
164 	int total = 0;
165 
166 	for_each_possible_cpu(cpu)
167 		total += per_cpu(process_counts, cpu);
168 
169 	return total;
170 }
171 
172 void __weak arch_release_task_struct(struct task_struct *tsk)
173 {
174 }
175 
176 static struct kmem_cache *task_struct_cachep;
177 
178 static inline struct task_struct *alloc_task_struct_node(int node)
179 {
180 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
181 }
182 
183 static inline void free_task_struct(struct task_struct *tsk)
184 {
185 	kmem_cache_free(task_struct_cachep, tsk);
186 }
187 
188 /*
189  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
190  * kmemcache based allocator.
191  */
192 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
193 
194 #  ifdef CONFIG_VMAP_STACK
195 /*
196  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
197  * flush.  Try to minimize the number of calls by caching stacks.
198  */
199 #define NR_CACHED_STACKS 2
200 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
201 
202 struct vm_stack {
203 	struct rcu_head rcu;
204 	struct vm_struct *stack_vm_area;
205 };
206 
207 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
208 {
209 	unsigned int i;
210 
211 	for (i = 0; i < NR_CACHED_STACKS; i++) {
212 		struct vm_struct *tmp = NULL;
213 
214 		if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm))
215 			return true;
216 	}
217 	return false;
218 }
219 
220 static void thread_stack_free_rcu(struct rcu_head *rh)
221 {
222 	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
223 
224 	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
225 		return;
226 
227 	vfree(vm_stack);
228 }
229 
230 static void thread_stack_delayed_free(struct task_struct *tsk)
231 {
232 	struct vm_stack *vm_stack = tsk->stack;
233 
234 	vm_stack->stack_vm_area = tsk->stack_vm_area;
235 	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
236 }
237 
238 static int free_vm_stack_cache(unsigned int cpu)
239 {
240 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
241 	int i;
242 
243 	for (i = 0; i < NR_CACHED_STACKS; i++) {
244 		struct vm_struct *vm_stack = cached_vm_stacks[i];
245 
246 		if (!vm_stack)
247 			continue;
248 
249 		vfree(vm_stack->addr);
250 		cached_vm_stacks[i] = NULL;
251 	}
252 
253 	return 0;
254 }
255 
256 static int memcg_charge_kernel_stack(struct vm_struct *vm)
257 {
258 	int i;
259 	int ret;
260 	int nr_charged = 0;
261 
262 	BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
263 
264 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
265 		ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
266 		if (ret)
267 			goto err;
268 		nr_charged++;
269 	}
270 	return 0;
271 err:
272 	for (i = 0; i < nr_charged; i++)
273 		memcg_kmem_uncharge_page(vm->pages[i], 0);
274 	return ret;
275 }
276 
277 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
278 {
279 	struct vm_struct *vm;
280 	void *stack;
281 	int i;
282 
283 	for (i = 0; i < NR_CACHED_STACKS; i++) {
284 		struct vm_struct *s;
285 
286 		s = this_cpu_xchg(cached_stacks[i], NULL);
287 
288 		if (!s)
289 			continue;
290 
291 		/* Reset stack metadata. */
292 		kasan_unpoison_range(s->addr, THREAD_SIZE);
293 
294 		stack = kasan_reset_tag(s->addr);
295 
296 		/* Clear stale pointers from reused stack. */
297 		memset(stack, 0, THREAD_SIZE);
298 
299 		if (memcg_charge_kernel_stack(s)) {
300 			vfree(s->addr);
301 			return -ENOMEM;
302 		}
303 
304 		tsk->stack_vm_area = s;
305 		tsk->stack = stack;
306 		return 0;
307 	}
308 
309 	/*
310 	 * Allocated stacks are cached and later reused by new threads,
311 	 * so memcg accounting is performed manually on assigning/releasing
312 	 * stacks to tasks. Drop __GFP_ACCOUNT.
313 	 */
314 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
315 				     VMALLOC_START, VMALLOC_END,
316 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
317 				     PAGE_KERNEL,
318 				     0, node, __builtin_return_address(0));
319 	if (!stack)
320 		return -ENOMEM;
321 
322 	vm = find_vm_area(stack);
323 	if (memcg_charge_kernel_stack(vm)) {
324 		vfree(stack);
325 		return -ENOMEM;
326 	}
327 	/*
328 	 * We can't call find_vm_area() in interrupt context, and
329 	 * free_thread_stack() can be called in interrupt context,
330 	 * so cache the vm_struct.
331 	 */
332 	tsk->stack_vm_area = vm;
333 	stack = kasan_reset_tag(stack);
334 	tsk->stack = stack;
335 	return 0;
336 }
337 
338 static void free_thread_stack(struct task_struct *tsk)
339 {
340 	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
341 		thread_stack_delayed_free(tsk);
342 
343 	tsk->stack = NULL;
344 	tsk->stack_vm_area = NULL;
345 }
346 
347 #  else /* !CONFIG_VMAP_STACK */
348 
349 static void thread_stack_free_rcu(struct rcu_head *rh)
350 {
351 	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
352 }
353 
354 static void thread_stack_delayed_free(struct task_struct *tsk)
355 {
356 	struct rcu_head *rh = tsk->stack;
357 
358 	call_rcu(rh, thread_stack_free_rcu);
359 }
360 
361 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
362 {
363 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
364 					     THREAD_SIZE_ORDER);
365 
366 	if (likely(page)) {
367 		tsk->stack = kasan_reset_tag(page_address(page));
368 		return 0;
369 	}
370 	return -ENOMEM;
371 }
372 
373 static void free_thread_stack(struct task_struct *tsk)
374 {
375 	thread_stack_delayed_free(tsk);
376 	tsk->stack = NULL;
377 }
378 
379 #  endif /* CONFIG_VMAP_STACK */
380 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
381 
382 static struct kmem_cache *thread_stack_cache;
383 
384 static void thread_stack_free_rcu(struct rcu_head *rh)
385 {
386 	kmem_cache_free(thread_stack_cache, rh);
387 }
388 
389 static void thread_stack_delayed_free(struct task_struct *tsk)
390 {
391 	struct rcu_head *rh = tsk->stack;
392 
393 	call_rcu(rh, thread_stack_free_rcu);
394 }
395 
396 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
397 {
398 	unsigned long *stack;
399 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
400 	stack = kasan_reset_tag(stack);
401 	tsk->stack = stack;
402 	return stack ? 0 : -ENOMEM;
403 }
404 
405 static void free_thread_stack(struct task_struct *tsk)
406 {
407 	thread_stack_delayed_free(tsk);
408 	tsk->stack = NULL;
409 }
410 
411 void thread_stack_cache_init(void)
412 {
413 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
414 					THREAD_SIZE, THREAD_SIZE, 0, 0,
415 					THREAD_SIZE, NULL);
416 	BUG_ON(thread_stack_cache == NULL);
417 }
418 
419 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
420 
421 /* SLAB cache for signal_struct structures (tsk->signal) */
422 static struct kmem_cache *signal_cachep;
423 
424 /* SLAB cache for sighand_struct structures (tsk->sighand) */
425 struct kmem_cache *sighand_cachep;
426 
427 /* SLAB cache for files_struct structures (tsk->files) */
428 struct kmem_cache *files_cachep;
429 
430 /* SLAB cache for fs_struct structures (tsk->fs) */
431 struct kmem_cache *fs_cachep;
432 
433 /* SLAB cache for vm_area_struct structures */
434 static struct kmem_cache *vm_area_cachep;
435 
436 /* SLAB cache for mm_struct structures (tsk->mm) */
437 static struct kmem_cache *mm_cachep;
438 
439 #ifdef CONFIG_PER_VMA_LOCK
440 
441 /* SLAB cache for vm_area_struct.lock */
442 static struct kmem_cache *vma_lock_cachep;
443 
444 static bool vma_lock_alloc(struct vm_area_struct *vma)
445 {
446 	vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
447 	if (!vma->vm_lock)
448 		return false;
449 
450 	init_rwsem(&vma->vm_lock->lock);
451 	vma->vm_lock_seq = -1;
452 
453 	return true;
454 }
455 
456 static inline void vma_lock_free(struct vm_area_struct *vma)
457 {
458 	kmem_cache_free(vma_lock_cachep, vma->vm_lock);
459 }
460 
461 #else /* CONFIG_PER_VMA_LOCK */
462 
463 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
464 static inline void vma_lock_free(struct vm_area_struct *vma) {}
465 
466 #endif /* CONFIG_PER_VMA_LOCK */
467 
468 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
469 {
470 	struct vm_area_struct *vma;
471 
472 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
473 	if (!vma)
474 		return NULL;
475 
476 	vma_init(vma, mm);
477 	if (!vma_lock_alloc(vma)) {
478 		kmem_cache_free(vm_area_cachep, vma);
479 		return NULL;
480 	}
481 
482 	return vma;
483 }
484 
485 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
486 {
487 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
488 
489 	if (!new)
490 		return NULL;
491 
492 	ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
493 	ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
494 	/*
495 	 * orig->shared.rb may be modified concurrently, but the clone
496 	 * will be reinitialized.
497 	 */
498 	data_race(memcpy(new, orig, sizeof(*new)));
499 	if (!vma_lock_alloc(new)) {
500 		kmem_cache_free(vm_area_cachep, new);
501 		return NULL;
502 	}
503 	INIT_LIST_HEAD(&new->anon_vma_chain);
504 	vma_numab_state_init(new);
505 	dup_anon_vma_name(orig, new);
506 
507 	return new;
508 }
509 
510 void __vm_area_free(struct vm_area_struct *vma)
511 {
512 	vma_numab_state_free(vma);
513 	free_anon_vma_name(vma);
514 	vma_lock_free(vma);
515 	kmem_cache_free(vm_area_cachep, vma);
516 }
517 
518 #ifdef CONFIG_PER_VMA_LOCK
519 static void vm_area_free_rcu_cb(struct rcu_head *head)
520 {
521 	struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
522 						  vm_rcu);
523 
524 	/* The vma should not be locked while being destroyed. */
525 	VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
526 	__vm_area_free(vma);
527 }
528 #endif
529 
530 void vm_area_free(struct vm_area_struct *vma)
531 {
532 #ifdef CONFIG_PER_VMA_LOCK
533 	call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
534 #else
535 	__vm_area_free(vma);
536 #endif
537 }
538 
539 static void account_kernel_stack(struct task_struct *tsk, int account)
540 {
541 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
542 		struct vm_struct *vm = task_stack_vm_area(tsk);
543 		int i;
544 
545 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
546 			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
547 					      account * (PAGE_SIZE / 1024));
548 	} else {
549 		void *stack = task_stack_page(tsk);
550 
551 		/* All stack pages are in the same node. */
552 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
553 				      account * (THREAD_SIZE / 1024));
554 	}
555 }
556 
557 void exit_task_stack_account(struct task_struct *tsk)
558 {
559 	account_kernel_stack(tsk, -1);
560 
561 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
562 		struct vm_struct *vm;
563 		int i;
564 
565 		vm = task_stack_vm_area(tsk);
566 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
567 			memcg_kmem_uncharge_page(vm->pages[i], 0);
568 	}
569 }
570 
571 static void release_task_stack(struct task_struct *tsk)
572 {
573 	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
574 		return;  /* Better to leak the stack than to free prematurely */
575 
576 	free_thread_stack(tsk);
577 }
578 
579 #ifdef CONFIG_THREAD_INFO_IN_TASK
580 void put_task_stack(struct task_struct *tsk)
581 {
582 	if (refcount_dec_and_test(&tsk->stack_refcount))
583 		release_task_stack(tsk);
584 }
585 #endif
586 
587 void free_task(struct task_struct *tsk)
588 {
589 #ifdef CONFIG_SECCOMP
590 	WARN_ON_ONCE(tsk->seccomp.filter);
591 #endif
592 	release_user_cpus_ptr(tsk);
593 	scs_release(tsk);
594 
595 #ifndef CONFIG_THREAD_INFO_IN_TASK
596 	/*
597 	 * The task is finally done with both the stack and thread_info,
598 	 * so free both.
599 	 */
600 	release_task_stack(tsk);
601 #else
602 	/*
603 	 * If the task had a separate stack allocation, it should be gone
604 	 * by now.
605 	 */
606 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
607 #endif
608 	rt_mutex_debug_task_free(tsk);
609 	ftrace_graph_exit_task(tsk);
610 	arch_release_task_struct(tsk);
611 	if (tsk->flags & PF_KTHREAD)
612 		free_kthread_struct(tsk);
613 	bpf_task_storage_free(tsk);
614 	free_task_struct(tsk);
615 }
616 EXPORT_SYMBOL(free_task);
617 
618 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
619 {
620 	struct file *exe_file;
621 
622 	exe_file = get_mm_exe_file(oldmm);
623 	RCU_INIT_POINTER(mm->exe_file, exe_file);
624 	/*
625 	 * We depend on the oldmm having properly denied write access to the
626 	 * exe_file already.
627 	 */
628 	if (exe_file && deny_write_access(exe_file))
629 		pr_warn_once("deny_write_access() failed in %s\n", __func__);
630 }
631 
632 #ifdef CONFIG_MMU
633 static __latent_entropy int dup_mmap(struct mm_struct *mm,
634 					struct mm_struct *oldmm)
635 {
636 	struct vm_area_struct *mpnt, *tmp;
637 	int retval;
638 	unsigned long charge = 0;
639 	LIST_HEAD(uf);
640 	VMA_ITERATOR(vmi, mm, 0);
641 
642 	if (mmap_write_lock_killable(oldmm))
643 		return -EINTR;
644 	flush_cache_dup_mm(oldmm);
645 	uprobe_dup_mmap(oldmm, mm);
646 	/*
647 	 * Not linked in yet - no deadlock potential:
648 	 */
649 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
650 
651 	/* No ordering required: file already has been exposed. */
652 	dup_mm_exe_file(mm, oldmm);
653 
654 	mm->total_vm = oldmm->total_vm;
655 	mm->data_vm = oldmm->data_vm;
656 	mm->exec_vm = oldmm->exec_vm;
657 	mm->stack_vm = oldmm->stack_vm;
658 
659 	/* Use __mt_dup() to efficiently build an identical maple tree. */
660 	retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL);
661 	if (unlikely(retval))
662 		goto out;
663 
664 	mt_clear_in_rcu(vmi.mas.tree);
665 	for_each_vma(vmi, mpnt) {
666 		struct file *file;
667 
668 		vma_start_write(mpnt);
669 		if (mpnt->vm_flags & VM_DONTCOPY) {
670 			retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start,
671 						    mpnt->vm_end, GFP_KERNEL);
672 			if (retval)
673 				goto loop_out;
674 
675 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
676 			continue;
677 		}
678 		charge = 0;
679 		/*
680 		 * Don't duplicate many vmas if we've been oom-killed (for
681 		 * example)
682 		 */
683 		if (fatal_signal_pending(current)) {
684 			retval = -EINTR;
685 			goto loop_out;
686 		}
687 		if (mpnt->vm_flags & VM_ACCOUNT) {
688 			unsigned long len = vma_pages(mpnt);
689 
690 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
691 				goto fail_nomem;
692 			charge = len;
693 		}
694 		tmp = vm_area_dup(mpnt);
695 		if (!tmp)
696 			goto fail_nomem;
697 		retval = vma_dup_policy(mpnt, tmp);
698 		if (retval)
699 			goto fail_nomem_policy;
700 		tmp->vm_mm = mm;
701 		retval = dup_userfaultfd(tmp, &uf);
702 		if (retval)
703 			goto fail_nomem_anon_vma_fork;
704 		if (tmp->vm_flags & VM_WIPEONFORK) {
705 			/*
706 			 * VM_WIPEONFORK gets a clean slate in the child.
707 			 * Don't prepare anon_vma until fault since we don't
708 			 * copy page for current vma.
709 			 */
710 			tmp->anon_vma = NULL;
711 		} else if (anon_vma_fork(tmp, mpnt))
712 			goto fail_nomem_anon_vma_fork;
713 		vm_flags_clear(tmp, VM_LOCKED_MASK);
714 		/*
715 		 * Copy/update hugetlb private vma information.
716 		 */
717 		if (is_vm_hugetlb_page(tmp))
718 			hugetlb_dup_vma_private(tmp);
719 
720 		/*
721 		 * Link the vma into the MT. After using __mt_dup(), memory
722 		 * allocation is not necessary here, so it cannot fail.
723 		 */
724 		vma_iter_bulk_store(&vmi, tmp);
725 
726 		mm->map_count++;
727 
728 		if (tmp->vm_ops && tmp->vm_ops->open)
729 			tmp->vm_ops->open(tmp);
730 
731 		file = tmp->vm_file;
732 		if (file) {
733 			struct address_space *mapping = file->f_mapping;
734 
735 			get_file(file);
736 			i_mmap_lock_write(mapping);
737 			if (vma_is_shared_maywrite(tmp))
738 				mapping_allow_writable(mapping);
739 			flush_dcache_mmap_lock(mapping);
740 			/* insert tmp into the share list, just after mpnt */
741 			vma_interval_tree_insert_after(tmp, mpnt,
742 					&mapping->i_mmap);
743 			flush_dcache_mmap_unlock(mapping);
744 			i_mmap_unlock_write(mapping);
745 		}
746 
747 		if (!(tmp->vm_flags & VM_WIPEONFORK))
748 			retval = copy_page_range(tmp, mpnt);
749 
750 		if (retval) {
751 			mpnt = vma_next(&vmi);
752 			goto loop_out;
753 		}
754 	}
755 	/* a new mm has just been created */
756 	retval = arch_dup_mmap(oldmm, mm);
757 loop_out:
758 	vma_iter_free(&vmi);
759 	if (!retval) {
760 		mt_set_in_rcu(vmi.mas.tree);
761 		ksm_fork(mm, oldmm);
762 		khugepaged_fork(mm, oldmm);
763 	} else if (mpnt) {
764 		/*
765 		 * The entire maple tree has already been duplicated. If the
766 		 * mmap duplication fails, mark the failure point with
767 		 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered,
768 		 * stop releasing VMAs that have not been duplicated after this
769 		 * point.
770 		 */
771 		mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1);
772 		mas_store(&vmi.mas, XA_ZERO_ENTRY);
773 	}
774 out:
775 	mmap_write_unlock(mm);
776 	flush_tlb_mm(oldmm);
777 	mmap_write_unlock(oldmm);
778 	if (!retval)
779 		dup_userfaultfd_complete(&uf);
780 	else
781 		dup_userfaultfd_fail(&uf);
782 	return retval;
783 
784 fail_nomem_anon_vma_fork:
785 	mpol_put(vma_policy(tmp));
786 fail_nomem_policy:
787 	vm_area_free(tmp);
788 fail_nomem:
789 	retval = -ENOMEM;
790 	vm_unacct_memory(charge);
791 	goto loop_out;
792 }
793 
794 static inline int mm_alloc_pgd(struct mm_struct *mm)
795 {
796 	mm->pgd = pgd_alloc(mm);
797 	if (unlikely(!mm->pgd))
798 		return -ENOMEM;
799 	return 0;
800 }
801 
802 static inline void mm_free_pgd(struct mm_struct *mm)
803 {
804 	pgd_free(mm, mm->pgd);
805 }
806 #else
807 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
808 {
809 	mmap_write_lock(oldmm);
810 	dup_mm_exe_file(mm, oldmm);
811 	mmap_write_unlock(oldmm);
812 	return 0;
813 }
814 #define mm_alloc_pgd(mm)	(0)
815 #define mm_free_pgd(mm)
816 #endif /* CONFIG_MMU */
817 
818 static void check_mm(struct mm_struct *mm)
819 {
820 	int i;
821 
822 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
823 			 "Please make sure 'struct resident_page_types[]' is updated as well");
824 
825 	for (i = 0; i < NR_MM_COUNTERS; i++) {
826 		long x = percpu_counter_sum(&mm->rss_stat[i]);
827 
828 		if (unlikely(x))
829 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
830 				 mm, resident_page_types[i], x);
831 	}
832 
833 	if (mm_pgtables_bytes(mm))
834 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
835 				mm_pgtables_bytes(mm));
836 
837 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
838 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
839 #endif
840 }
841 
842 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
843 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
844 
845 static void do_check_lazy_tlb(void *arg)
846 {
847 	struct mm_struct *mm = arg;
848 
849 	WARN_ON_ONCE(current->active_mm == mm);
850 }
851 
852 static void do_shoot_lazy_tlb(void *arg)
853 {
854 	struct mm_struct *mm = arg;
855 
856 	if (current->active_mm == mm) {
857 		WARN_ON_ONCE(current->mm);
858 		current->active_mm = &init_mm;
859 		switch_mm(mm, &init_mm, current);
860 	}
861 }
862 
863 static void cleanup_lazy_tlbs(struct mm_struct *mm)
864 {
865 	if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
866 		/*
867 		 * In this case, lazy tlb mms are refounted and would not reach
868 		 * __mmdrop until all CPUs have switched away and mmdrop()ed.
869 		 */
870 		return;
871 	}
872 
873 	/*
874 	 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
875 	 * requires lazy mm users to switch to another mm when the refcount
876 	 * drops to zero, before the mm is freed. This requires IPIs here to
877 	 * switch kernel threads to init_mm.
878 	 *
879 	 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
880 	 * switch with the final userspace teardown TLB flush which leaves the
881 	 * mm lazy on this CPU but no others, reducing the need for additional
882 	 * IPIs here. There are cases where a final IPI is still required here,
883 	 * such as the final mmdrop being performed on a different CPU than the
884 	 * one exiting, or kernel threads using the mm when userspace exits.
885 	 *
886 	 * IPI overheads have not found to be expensive, but they could be
887 	 * reduced in a number of possible ways, for example (roughly
888 	 * increasing order of complexity):
889 	 * - The last lazy reference created by exit_mm() could instead switch
890 	 *   to init_mm, however it's probable this will run on the same CPU
891 	 *   immediately afterwards, so this may not reduce IPIs much.
892 	 * - A batch of mms requiring IPIs could be gathered and freed at once.
893 	 * - CPUs store active_mm where it can be remotely checked without a
894 	 *   lock, to filter out false-positives in the cpumask.
895 	 * - After mm_users or mm_count reaches zero, switching away from the
896 	 *   mm could clear mm_cpumask to reduce some IPIs, perhaps together
897 	 *   with some batching or delaying of the final IPIs.
898 	 * - A delayed freeing and RCU-like quiescing sequence based on mm
899 	 *   switching to avoid IPIs completely.
900 	 */
901 	on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
902 	if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
903 		on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
904 }
905 
906 /*
907  * Called when the last reference to the mm
908  * is dropped: either by a lazy thread or by
909  * mmput. Free the page directory and the mm.
910  */
911 void __mmdrop(struct mm_struct *mm)
912 {
913 	BUG_ON(mm == &init_mm);
914 	WARN_ON_ONCE(mm == current->mm);
915 
916 	/* Ensure no CPUs are using this as their lazy tlb mm */
917 	cleanup_lazy_tlbs(mm);
918 
919 	WARN_ON_ONCE(mm == current->active_mm);
920 	mm_free_pgd(mm);
921 	destroy_context(mm);
922 	mmu_notifier_subscriptions_destroy(mm);
923 	check_mm(mm);
924 	put_user_ns(mm->user_ns);
925 	mm_pasid_drop(mm);
926 	mm_destroy_cid(mm);
927 	percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
928 
929 	free_mm(mm);
930 }
931 EXPORT_SYMBOL_GPL(__mmdrop);
932 
933 static void mmdrop_async_fn(struct work_struct *work)
934 {
935 	struct mm_struct *mm;
936 
937 	mm = container_of(work, struct mm_struct, async_put_work);
938 	__mmdrop(mm);
939 }
940 
941 static void mmdrop_async(struct mm_struct *mm)
942 {
943 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
944 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
945 		schedule_work(&mm->async_put_work);
946 	}
947 }
948 
949 static inline void free_signal_struct(struct signal_struct *sig)
950 {
951 	taskstats_tgid_free(sig);
952 	sched_autogroup_exit(sig);
953 	/*
954 	 * __mmdrop is not safe to call from softirq context on x86 due to
955 	 * pgd_dtor so postpone it to the async context
956 	 */
957 	if (sig->oom_mm)
958 		mmdrop_async(sig->oom_mm);
959 	kmem_cache_free(signal_cachep, sig);
960 }
961 
962 static inline void put_signal_struct(struct signal_struct *sig)
963 {
964 	if (refcount_dec_and_test(&sig->sigcnt))
965 		free_signal_struct(sig);
966 }
967 
968 void __put_task_struct(struct task_struct *tsk)
969 {
970 	WARN_ON(!tsk->exit_state);
971 	WARN_ON(refcount_read(&tsk->usage));
972 	WARN_ON(tsk == current);
973 
974 	sched_ext_free(tsk);
975 	io_uring_free(tsk);
976 	cgroup_free(tsk);
977 	task_numa_free(tsk, true);
978 	security_task_free(tsk);
979 	exit_creds(tsk);
980 	delayacct_tsk_free(tsk);
981 	put_signal_struct(tsk->signal);
982 	sched_core_free(tsk);
983 	free_task(tsk);
984 }
985 EXPORT_SYMBOL_GPL(__put_task_struct);
986 
987 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
988 {
989 	struct task_struct *task = container_of(rhp, struct task_struct, rcu);
990 
991 	__put_task_struct(task);
992 }
993 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
994 
995 void __init __weak arch_task_cache_init(void) { }
996 
997 /*
998  * set_max_threads
999  */
1000 static void __init set_max_threads(unsigned int max_threads_suggested)
1001 {
1002 	u64 threads;
1003 	unsigned long nr_pages = memblock_estimated_nr_free_pages();
1004 
1005 	/*
1006 	 * The number of threads shall be limited such that the thread
1007 	 * structures may only consume a small part of the available memory.
1008 	 */
1009 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
1010 		threads = MAX_THREADS;
1011 	else
1012 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
1013 				    (u64) THREAD_SIZE * 8UL);
1014 
1015 	if (threads > max_threads_suggested)
1016 		threads = max_threads_suggested;
1017 
1018 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
1019 }
1020 
1021 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1022 /* Initialized by the architecture: */
1023 int arch_task_struct_size __read_mostly;
1024 #endif
1025 
1026 static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size)
1027 {
1028 	/* Fetch thread_struct whitelist for the architecture. */
1029 	arch_thread_struct_whitelist(offset, size);
1030 
1031 	/*
1032 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
1033 	 * adjust offset to position of thread_struct in task_struct.
1034 	 */
1035 	if (unlikely(*size == 0))
1036 		*offset = 0;
1037 	else
1038 		*offset += offsetof(struct task_struct, thread);
1039 }
1040 
1041 void __init fork_init(void)
1042 {
1043 	int i;
1044 #ifndef ARCH_MIN_TASKALIGN
1045 #define ARCH_MIN_TASKALIGN	0
1046 #endif
1047 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1048 	unsigned long useroffset, usersize;
1049 
1050 	/* create a slab on which task_structs can be allocated */
1051 	task_struct_whitelist(&useroffset, &usersize);
1052 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1053 			arch_task_struct_size, align,
1054 			SLAB_PANIC|SLAB_ACCOUNT,
1055 			useroffset, usersize, NULL);
1056 
1057 	/* do the arch specific task caches init */
1058 	arch_task_cache_init();
1059 
1060 	set_max_threads(MAX_THREADS);
1061 
1062 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1063 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1064 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
1065 		init_task.signal->rlim[RLIMIT_NPROC];
1066 
1067 	for (i = 0; i < UCOUNT_COUNTS; i++)
1068 		init_user_ns.ucount_max[i] = max_threads/2;
1069 
1070 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
1071 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
1072 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1073 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
1074 
1075 #ifdef CONFIG_VMAP_STACK
1076 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1077 			  NULL, free_vm_stack_cache);
1078 #endif
1079 
1080 	scs_init();
1081 
1082 	lockdep_init_task(&init_task);
1083 	uprobes_init();
1084 }
1085 
1086 int __weak arch_dup_task_struct(struct task_struct *dst,
1087 					       struct task_struct *src)
1088 {
1089 	*dst = *src;
1090 	return 0;
1091 }
1092 
1093 void set_task_stack_end_magic(struct task_struct *tsk)
1094 {
1095 	unsigned long *stackend;
1096 
1097 	stackend = end_of_stack(tsk);
1098 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
1099 }
1100 
1101 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1102 {
1103 	struct task_struct *tsk;
1104 	int err;
1105 
1106 	if (node == NUMA_NO_NODE)
1107 		node = tsk_fork_get_node(orig);
1108 	tsk = alloc_task_struct_node(node);
1109 	if (!tsk)
1110 		return NULL;
1111 
1112 	err = arch_dup_task_struct(tsk, orig);
1113 	if (err)
1114 		goto free_tsk;
1115 
1116 	err = alloc_thread_stack_node(tsk, node);
1117 	if (err)
1118 		goto free_tsk;
1119 
1120 #ifdef CONFIG_THREAD_INFO_IN_TASK
1121 	refcount_set(&tsk->stack_refcount, 1);
1122 #endif
1123 	account_kernel_stack(tsk, 1);
1124 
1125 	err = scs_prepare(tsk, node);
1126 	if (err)
1127 		goto free_stack;
1128 
1129 #ifdef CONFIG_SECCOMP
1130 	/*
1131 	 * We must handle setting up seccomp filters once we're under
1132 	 * the sighand lock in case orig has changed between now and
1133 	 * then. Until then, filter must be NULL to avoid messing up
1134 	 * the usage counts on the error path calling free_task.
1135 	 */
1136 	tsk->seccomp.filter = NULL;
1137 #endif
1138 
1139 	setup_thread_stack(tsk, orig);
1140 	clear_user_return_notifier(tsk);
1141 	clear_tsk_need_resched(tsk);
1142 	set_task_stack_end_magic(tsk);
1143 	clear_syscall_work_syscall_user_dispatch(tsk);
1144 
1145 #ifdef CONFIG_STACKPROTECTOR
1146 	tsk->stack_canary = get_random_canary();
1147 #endif
1148 	if (orig->cpus_ptr == &orig->cpus_mask)
1149 		tsk->cpus_ptr = &tsk->cpus_mask;
1150 	dup_user_cpus_ptr(tsk, orig, node);
1151 
1152 	/*
1153 	 * One for the user space visible state that goes away when reaped.
1154 	 * One for the scheduler.
1155 	 */
1156 	refcount_set(&tsk->rcu_users, 2);
1157 	/* One for the rcu users */
1158 	refcount_set(&tsk->usage, 1);
1159 #ifdef CONFIG_BLK_DEV_IO_TRACE
1160 	tsk->btrace_seq = 0;
1161 #endif
1162 	tsk->splice_pipe = NULL;
1163 	tsk->task_frag.page = NULL;
1164 	tsk->wake_q.next = NULL;
1165 	tsk->worker_private = NULL;
1166 
1167 	kcov_task_init(tsk);
1168 	kmsan_task_create(tsk);
1169 	kmap_local_fork(tsk);
1170 
1171 #ifdef CONFIG_FAULT_INJECTION
1172 	tsk->fail_nth = 0;
1173 #endif
1174 
1175 #ifdef CONFIG_BLK_CGROUP
1176 	tsk->throttle_disk = NULL;
1177 	tsk->use_memdelay = 0;
1178 #endif
1179 
1180 #ifdef CONFIG_ARCH_HAS_CPU_PASID
1181 	tsk->pasid_activated = 0;
1182 #endif
1183 
1184 #ifdef CONFIG_MEMCG
1185 	tsk->active_memcg = NULL;
1186 #endif
1187 
1188 #ifdef CONFIG_X86_BUS_LOCK_DETECT
1189 	tsk->reported_split_lock = 0;
1190 #endif
1191 
1192 #ifdef CONFIG_SCHED_MM_CID
1193 	tsk->mm_cid = -1;
1194 	tsk->last_mm_cid = -1;
1195 	tsk->mm_cid_active = 0;
1196 	tsk->migrate_from_cpu = -1;
1197 #endif
1198 	return tsk;
1199 
1200 free_stack:
1201 	exit_task_stack_account(tsk);
1202 	free_thread_stack(tsk);
1203 free_tsk:
1204 	free_task_struct(tsk);
1205 	return NULL;
1206 }
1207 
1208 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1209 
1210 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1211 
1212 static int __init coredump_filter_setup(char *s)
1213 {
1214 	default_dump_filter =
1215 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1216 		MMF_DUMP_FILTER_MASK;
1217 	return 1;
1218 }
1219 
1220 __setup("coredump_filter=", coredump_filter_setup);
1221 
1222 #include <linux/init_task.h>
1223 
1224 static void mm_init_aio(struct mm_struct *mm)
1225 {
1226 #ifdef CONFIG_AIO
1227 	spin_lock_init(&mm->ioctx_lock);
1228 	mm->ioctx_table = NULL;
1229 #endif
1230 }
1231 
1232 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1233 					   struct task_struct *p)
1234 {
1235 #ifdef CONFIG_MEMCG
1236 	if (mm->owner == p)
1237 		WRITE_ONCE(mm->owner, NULL);
1238 #endif
1239 }
1240 
1241 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1242 {
1243 #ifdef CONFIG_MEMCG
1244 	mm->owner = p;
1245 #endif
1246 }
1247 
1248 static void mm_init_uprobes_state(struct mm_struct *mm)
1249 {
1250 #ifdef CONFIG_UPROBES
1251 	mm->uprobes_state.xol_area = NULL;
1252 #endif
1253 }
1254 
1255 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1256 	struct user_namespace *user_ns)
1257 {
1258 	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1259 	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1260 	atomic_set(&mm->mm_users, 1);
1261 	atomic_set(&mm->mm_count, 1);
1262 	seqcount_init(&mm->write_protect_seq);
1263 	mmap_init_lock(mm);
1264 	INIT_LIST_HEAD(&mm->mmlist);
1265 #ifdef CONFIG_PER_VMA_LOCK
1266 	mm->mm_lock_seq = 0;
1267 #endif
1268 	mm_pgtables_bytes_init(mm);
1269 	mm->map_count = 0;
1270 	mm->locked_vm = 0;
1271 	atomic64_set(&mm->pinned_vm, 0);
1272 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1273 	spin_lock_init(&mm->page_table_lock);
1274 	spin_lock_init(&mm->arg_lock);
1275 	mm_init_cpumask(mm);
1276 	mm_init_aio(mm);
1277 	mm_init_owner(mm, p);
1278 	mm_pasid_init(mm);
1279 	RCU_INIT_POINTER(mm->exe_file, NULL);
1280 	mmu_notifier_subscriptions_init(mm);
1281 	init_tlb_flush_pending(mm);
1282 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
1283 	mm->pmd_huge_pte = NULL;
1284 #endif
1285 	mm_init_uprobes_state(mm);
1286 	hugetlb_count_init(mm);
1287 
1288 	if (current->mm) {
1289 		mm->flags = mmf_init_flags(current->mm->flags);
1290 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1291 	} else {
1292 		mm->flags = default_dump_filter;
1293 		mm->def_flags = 0;
1294 	}
1295 
1296 	if (mm_alloc_pgd(mm))
1297 		goto fail_nopgd;
1298 
1299 	if (init_new_context(p, mm))
1300 		goto fail_nocontext;
1301 
1302 	if (mm_alloc_cid(mm, p))
1303 		goto fail_cid;
1304 
1305 	if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1306 				     NR_MM_COUNTERS))
1307 		goto fail_pcpu;
1308 
1309 	mm->user_ns = get_user_ns(user_ns);
1310 	lru_gen_init_mm(mm);
1311 	return mm;
1312 
1313 fail_pcpu:
1314 	mm_destroy_cid(mm);
1315 fail_cid:
1316 	destroy_context(mm);
1317 fail_nocontext:
1318 	mm_free_pgd(mm);
1319 fail_nopgd:
1320 	free_mm(mm);
1321 	return NULL;
1322 }
1323 
1324 /*
1325  * Allocate and initialize an mm_struct.
1326  */
1327 struct mm_struct *mm_alloc(void)
1328 {
1329 	struct mm_struct *mm;
1330 
1331 	mm = allocate_mm();
1332 	if (!mm)
1333 		return NULL;
1334 
1335 	memset(mm, 0, sizeof(*mm));
1336 	return mm_init(mm, current, current_user_ns());
1337 }
1338 EXPORT_SYMBOL_IF_KUNIT(mm_alloc);
1339 
1340 static inline void __mmput(struct mm_struct *mm)
1341 {
1342 	VM_BUG_ON(atomic_read(&mm->mm_users));
1343 
1344 	uprobe_clear_state(mm);
1345 	exit_aio(mm);
1346 	ksm_exit(mm);
1347 	khugepaged_exit(mm); /* must run before exit_mmap */
1348 	exit_mmap(mm);
1349 	mm_put_huge_zero_folio(mm);
1350 	set_mm_exe_file(mm, NULL);
1351 	if (!list_empty(&mm->mmlist)) {
1352 		spin_lock(&mmlist_lock);
1353 		list_del(&mm->mmlist);
1354 		spin_unlock(&mmlist_lock);
1355 	}
1356 	if (mm->binfmt)
1357 		module_put(mm->binfmt->module);
1358 	lru_gen_del_mm(mm);
1359 	mmdrop(mm);
1360 }
1361 
1362 /*
1363  * Decrement the use count and release all resources for an mm.
1364  */
1365 void mmput(struct mm_struct *mm)
1366 {
1367 	might_sleep();
1368 
1369 	if (atomic_dec_and_test(&mm->mm_users))
1370 		__mmput(mm);
1371 }
1372 EXPORT_SYMBOL_GPL(mmput);
1373 
1374 #ifdef CONFIG_MMU
1375 static void mmput_async_fn(struct work_struct *work)
1376 {
1377 	struct mm_struct *mm = container_of(work, struct mm_struct,
1378 					    async_put_work);
1379 
1380 	__mmput(mm);
1381 }
1382 
1383 void mmput_async(struct mm_struct *mm)
1384 {
1385 	if (atomic_dec_and_test(&mm->mm_users)) {
1386 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1387 		schedule_work(&mm->async_put_work);
1388 	}
1389 }
1390 EXPORT_SYMBOL_GPL(mmput_async);
1391 #endif
1392 
1393 /**
1394  * set_mm_exe_file - change a reference to the mm's executable file
1395  * @mm: The mm to change.
1396  * @new_exe_file: The new file to use.
1397  *
1398  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1399  *
1400  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1401  * invocations: in mmput() nobody alive left, in execve it happens before
1402  * the new mm is made visible to anyone.
1403  *
1404  * Can only fail if new_exe_file != NULL.
1405  */
1406 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1407 {
1408 	struct file *old_exe_file;
1409 
1410 	/*
1411 	 * It is safe to dereference the exe_file without RCU as
1412 	 * this function is only called if nobody else can access
1413 	 * this mm -- see comment above for justification.
1414 	 */
1415 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1416 
1417 	if (new_exe_file) {
1418 		/*
1419 		 * We expect the caller (i.e., sys_execve) to already denied
1420 		 * write access, so this is unlikely to fail.
1421 		 */
1422 		if (unlikely(deny_write_access(new_exe_file)))
1423 			return -EACCES;
1424 		get_file(new_exe_file);
1425 	}
1426 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1427 	if (old_exe_file) {
1428 		allow_write_access(old_exe_file);
1429 		fput(old_exe_file);
1430 	}
1431 	return 0;
1432 }
1433 
1434 /**
1435  * replace_mm_exe_file - replace a reference to the mm's executable file
1436  * @mm: The mm to change.
1437  * @new_exe_file: The new file to use.
1438  *
1439  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1440  *
1441  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1442  */
1443 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1444 {
1445 	struct vm_area_struct *vma;
1446 	struct file *old_exe_file;
1447 	int ret = 0;
1448 
1449 	/* Forbid mm->exe_file change if old file still mapped. */
1450 	old_exe_file = get_mm_exe_file(mm);
1451 	if (old_exe_file) {
1452 		VMA_ITERATOR(vmi, mm, 0);
1453 		mmap_read_lock(mm);
1454 		for_each_vma(vmi, vma) {
1455 			if (!vma->vm_file)
1456 				continue;
1457 			if (path_equal(&vma->vm_file->f_path,
1458 				       &old_exe_file->f_path)) {
1459 				ret = -EBUSY;
1460 				break;
1461 			}
1462 		}
1463 		mmap_read_unlock(mm);
1464 		fput(old_exe_file);
1465 		if (ret)
1466 			return ret;
1467 	}
1468 
1469 	ret = deny_write_access(new_exe_file);
1470 	if (ret)
1471 		return -EACCES;
1472 	get_file(new_exe_file);
1473 
1474 	/* set the new file */
1475 	mmap_write_lock(mm);
1476 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1477 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1478 	mmap_write_unlock(mm);
1479 
1480 	if (old_exe_file) {
1481 		allow_write_access(old_exe_file);
1482 		fput(old_exe_file);
1483 	}
1484 	return 0;
1485 }
1486 
1487 /**
1488  * get_mm_exe_file - acquire a reference to the mm's executable file
1489  * @mm: The mm of interest.
1490  *
1491  * Returns %NULL if mm has no associated executable file.
1492  * User must release file via fput().
1493  */
1494 struct file *get_mm_exe_file(struct mm_struct *mm)
1495 {
1496 	struct file *exe_file;
1497 
1498 	rcu_read_lock();
1499 	exe_file = get_file_rcu(&mm->exe_file);
1500 	rcu_read_unlock();
1501 	return exe_file;
1502 }
1503 
1504 /**
1505  * get_task_exe_file - acquire a reference to the task's executable file
1506  * @task: The task.
1507  *
1508  * Returns %NULL if task's mm (if any) has no associated executable file or
1509  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1510  * User must release file via fput().
1511  */
1512 struct file *get_task_exe_file(struct task_struct *task)
1513 {
1514 	struct file *exe_file = NULL;
1515 	struct mm_struct *mm;
1516 
1517 	task_lock(task);
1518 	mm = task->mm;
1519 	if (mm) {
1520 		if (!(task->flags & PF_KTHREAD))
1521 			exe_file = get_mm_exe_file(mm);
1522 	}
1523 	task_unlock(task);
1524 	return exe_file;
1525 }
1526 
1527 /**
1528  * get_task_mm - acquire a reference to the task's mm
1529  * @task: The task.
1530  *
1531  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1532  * this kernel workthread has transiently adopted a user mm with use_mm,
1533  * to do its AIO) is not set and if so returns a reference to it, after
1534  * bumping up the use count.  User must release the mm via mmput()
1535  * after use.  Typically used by /proc and ptrace.
1536  */
1537 struct mm_struct *get_task_mm(struct task_struct *task)
1538 {
1539 	struct mm_struct *mm;
1540 
1541 	if (task->flags & PF_KTHREAD)
1542 		return NULL;
1543 
1544 	task_lock(task);
1545 	mm = task->mm;
1546 	if (mm)
1547 		mmget(mm);
1548 	task_unlock(task);
1549 	return mm;
1550 }
1551 EXPORT_SYMBOL_GPL(get_task_mm);
1552 
1553 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1554 {
1555 	struct mm_struct *mm;
1556 	int err;
1557 
1558 	err =  down_read_killable(&task->signal->exec_update_lock);
1559 	if (err)
1560 		return ERR_PTR(err);
1561 
1562 	mm = get_task_mm(task);
1563 	if (!mm) {
1564 		mm = ERR_PTR(-ESRCH);
1565 	} else if (mm != current->mm && !ptrace_may_access(task, mode)) {
1566 		mmput(mm);
1567 		mm = ERR_PTR(-EACCES);
1568 	}
1569 	up_read(&task->signal->exec_update_lock);
1570 
1571 	return mm;
1572 }
1573 
1574 static void complete_vfork_done(struct task_struct *tsk)
1575 {
1576 	struct completion *vfork;
1577 
1578 	task_lock(tsk);
1579 	vfork = tsk->vfork_done;
1580 	if (likely(vfork)) {
1581 		tsk->vfork_done = NULL;
1582 		complete(vfork);
1583 	}
1584 	task_unlock(tsk);
1585 }
1586 
1587 static int wait_for_vfork_done(struct task_struct *child,
1588 				struct completion *vfork)
1589 {
1590 	unsigned int state = TASK_KILLABLE|TASK_FREEZABLE;
1591 	int killed;
1592 
1593 	cgroup_enter_frozen();
1594 	killed = wait_for_completion_state(vfork, state);
1595 	cgroup_leave_frozen(false);
1596 
1597 	if (killed) {
1598 		task_lock(child);
1599 		child->vfork_done = NULL;
1600 		task_unlock(child);
1601 	}
1602 
1603 	put_task_struct(child);
1604 	return killed;
1605 }
1606 
1607 /* Please note the differences between mmput and mm_release.
1608  * mmput is called whenever we stop holding onto a mm_struct,
1609  * error success whatever.
1610  *
1611  * mm_release is called after a mm_struct has been removed
1612  * from the current process.
1613  *
1614  * This difference is important for error handling, when we
1615  * only half set up a mm_struct for a new process and need to restore
1616  * the old one.  Because we mmput the new mm_struct before
1617  * restoring the old one. . .
1618  * Eric Biederman 10 January 1998
1619  */
1620 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1621 {
1622 	uprobe_free_utask(tsk);
1623 
1624 	/* Get rid of any cached register state */
1625 	deactivate_mm(tsk, mm);
1626 
1627 	/*
1628 	 * Signal userspace if we're not exiting with a core dump
1629 	 * because we want to leave the value intact for debugging
1630 	 * purposes.
1631 	 */
1632 	if (tsk->clear_child_tid) {
1633 		if (atomic_read(&mm->mm_users) > 1) {
1634 			/*
1635 			 * We don't check the error code - if userspace has
1636 			 * not set up a proper pointer then tough luck.
1637 			 */
1638 			put_user(0, tsk->clear_child_tid);
1639 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1640 					1, NULL, NULL, 0, 0);
1641 		}
1642 		tsk->clear_child_tid = NULL;
1643 	}
1644 
1645 	/*
1646 	 * All done, finally we can wake up parent and return this mm to him.
1647 	 * Also kthread_stop() uses this completion for synchronization.
1648 	 */
1649 	if (tsk->vfork_done)
1650 		complete_vfork_done(tsk);
1651 }
1652 
1653 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1654 {
1655 	futex_exit_release(tsk);
1656 	mm_release(tsk, mm);
1657 }
1658 
1659 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1660 {
1661 	futex_exec_release(tsk);
1662 	mm_release(tsk, mm);
1663 }
1664 
1665 /**
1666  * dup_mm() - duplicates an existing mm structure
1667  * @tsk: the task_struct with which the new mm will be associated.
1668  * @oldmm: the mm to duplicate.
1669  *
1670  * Allocates a new mm structure and duplicates the provided @oldmm structure
1671  * content into it.
1672  *
1673  * Return: the duplicated mm or NULL on failure.
1674  */
1675 static struct mm_struct *dup_mm(struct task_struct *tsk,
1676 				struct mm_struct *oldmm)
1677 {
1678 	struct mm_struct *mm;
1679 	int err;
1680 
1681 	mm = allocate_mm();
1682 	if (!mm)
1683 		goto fail_nomem;
1684 
1685 	memcpy(mm, oldmm, sizeof(*mm));
1686 
1687 	if (!mm_init(mm, tsk, mm->user_ns))
1688 		goto fail_nomem;
1689 
1690 	uprobe_start_dup_mmap();
1691 	err = dup_mmap(mm, oldmm);
1692 	if (err)
1693 		goto free_pt;
1694 	uprobe_end_dup_mmap();
1695 
1696 	mm->hiwater_rss = get_mm_rss(mm);
1697 	mm->hiwater_vm = mm->total_vm;
1698 
1699 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1700 		goto free_pt;
1701 
1702 	return mm;
1703 
1704 free_pt:
1705 	/* don't put binfmt in mmput, we haven't got module yet */
1706 	mm->binfmt = NULL;
1707 	mm_init_owner(mm, NULL);
1708 	mmput(mm);
1709 	if (err)
1710 		uprobe_end_dup_mmap();
1711 
1712 fail_nomem:
1713 	return NULL;
1714 }
1715 
1716 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1717 {
1718 	struct mm_struct *mm, *oldmm;
1719 
1720 	tsk->min_flt = tsk->maj_flt = 0;
1721 	tsk->nvcsw = tsk->nivcsw = 0;
1722 #ifdef CONFIG_DETECT_HUNG_TASK
1723 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1724 	tsk->last_switch_time = 0;
1725 #endif
1726 
1727 	tsk->mm = NULL;
1728 	tsk->active_mm = NULL;
1729 
1730 	/*
1731 	 * Are we cloning a kernel thread?
1732 	 *
1733 	 * We need to steal a active VM for that..
1734 	 */
1735 	oldmm = current->mm;
1736 	if (!oldmm)
1737 		return 0;
1738 
1739 	if (clone_flags & CLONE_VM) {
1740 		mmget(oldmm);
1741 		mm = oldmm;
1742 	} else {
1743 		mm = dup_mm(tsk, current->mm);
1744 		if (!mm)
1745 			return -ENOMEM;
1746 	}
1747 
1748 	tsk->mm = mm;
1749 	tsk->active_mm = mm;
1750 	sched_mm_cid_fork(tsk);
1751 	return 0;
1752 }
1753 
1754 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1755 {
1756 	struct fs_struct *fs = current->fs;
1757 	if (clone_flags & CLONE_FS) {
1758 		/* tsk->fs is already what we want */
1759 		spin_lock(&fs->lock);
1760 		/* "users" and "in_exec" locked for check_unsafe_exec() */
1761 		if (fs->in_exec) {
1762 			spin_unlock(&fs->lock);
1763 			return -EAGAIN;
1764 		}
1765 		fs->users++;
1766 		spin_unlock(&fs->lock);
1767 		return 0;
1768 	}
1769 	tsk->fs = copy_fs_struct(fs);
1770 	if (!tsk->fs)
1771 		return -ENOMEM;
1772 	return 0;
1773 }
1774 
1775 static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1776 		      int no_files)
1777 {
1778 	struct files_struct *oldf, *newf;
1779 
1780 	/*
1781 	 * A background process may not have any files ...
1782 	 */
1783 	oldf = current->files;
1784 	if (!oldf)
1785 		return 0;
1786 
1787 	if (no_files) {
1788 		tsk->files = NULL;
1789 		return 0;
1790 	}
1791 
1792 	if (clone_flags & CLONE_FILES) {
1793 		atomic_inc(&oldf->count);
1794 		return 0;
1795 	}
1796 
1797 	newf = dup_fd(oldf, NULL);
1798 	if (IS_ERR(newf))
1799 		return PTR_ERR(newf);
1800 
1801 	tsk->files = newf;
1802 	return 0;
1803 }
1804 
1805 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1806 {
1807 	struct sighand_struct *sig;
1808 
1809 	if (clone_flags & CLONE_SIGHAND) {
1810 		refcount_inc(&current->sighand->count);
1811 		return 0;
1812 	}
1813 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1814 	RCU_INIT_POINTER(tsk->sighand, sig);
1815 	if (!sig)
1816 		return -ENOMEM;
1817 
1818 	refcount_set(&sig->count, 1);
1819 	spin_lock_irq(&current->sighand->siglock);
1820 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1821 	spin_unlock_irq(&current->sighand->siglock);
1822 
1823 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1824 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1825 		flush_signal_handlers(tsk, 0);
1826 
1827 	return 0;
1828 }
1829 
1830 void __cleanup_sighand(struct sighand_struct *sighand)
1831 {
1832 	if (refcount_dec_and_test(&sighand->count)) {
1833 		signalfd_cleanup(sighand);
1834 		/*
1835 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1836 		 * without an RCU grace period, see __lock_task_sighand().
1837 		 */
1838 		kmem_cache_free(sighand_cachep, sighand);
1839 	}
1840 }
1841 
1842 /*
1843  * Initialize POSIX timer handling for a thread group.
1844  */
1845 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1846 {
1847 	struct posix_cputimers *pct = &sig->posix_cputimers;
1848 	unsigned long cpu_limit;
1849 
1850 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1851 	posix_cputimers_group_init(pct, cpu_limit);
1852 }
1853 
1854 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1855 {
1856 	struct signal_struct *sig;
1857 
1858 	if (clone_flags & CLONE_THREAD)
1859 		return 0;
1860 
1861 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1862 	tsk->signal = sig;
1863 	if (!sig)
1864 		return -ENOMEM;
1865 
1866 	sig->nr_threads = 1;
1867 	sig->quick_threads = 1;
1868 	atomic_set(&sig->live, 1);
1869 	refcount_set(&sig->sigcnt, 1);
1870 
1871 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1872 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1873 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1874 
1875 	init_waitqueue_head(&sig->wait_chldexit);
1876 	sig->curr_target = tsk;
1877 	init_sigpending(&sig->shared_pending);
1878 	INIT_HLIST_HEAD(&sig->multiprocess);
1879 	seqlock_init(&sig->stats_lock);
1880 	prev_cputime_init(&sig->prev_cputime);
1881 
1882 #ifdef CONFIG_POSIX_TIMERS
1883 	INIT_HLIST_HEAD(&sig->posix_timers);
1884 	INIT_HLIST_HEAD(&sig->ignored_posix_timers);
1885 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1886 	sig->real_timer.function = it_real_fn;
1887 #endif
1888 
1889 	task_lock(current->group_leader);
1890 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1891 	task_unlock(current->group_leader);
1892 
1893 	posix_cpu_timers_init_group(sig);
1894 
1895 	tty_audit_fork(sig);
1896 	sched_autogroup_fork(sig);
1897 
1898 	sig->oom_score_adj = current->signal->oom_score_adj;
1899 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1900 
1901 	mutex_init(&sig->cred_guard_mutex);
1902 	init_rwsem(&sig->exec_update_lock);
1903 
1904 	return 0;
1905 }
1906 
1907 static void copy_seccomp(struct task_struct *p)
1908 {
1909 #ifdef CONFIG_SECCOMP
1910 	/*
1911 	 * Must be called with sighand->lock held, which is common to
1912 	 * all threads in the group. Holding cred_guard_mutex is not
1913 	 * needed because this new task is not yet running and cannot
1914 	 * be racing exec.
1915 	 */
1916 	assert_spin_locked(&current->sighand->siglock);
1917 
1918 	/* Ref-count the new filter user, and assign it. */
1919 	get_seccomp_filter(current);
1920 	p->seccomp = current->seccomp;
1921 
1922 	/*
1923 	 * Explicitly enable no_new_privs here in case it got set
1924 	 * between the task_struct being duplicated and holding the
1925 	 * sighand lock. The seccomp state and nnp must be in sync.
1926 	 */
1927 	if (task_no_new_privs(current))
1928 		task_set_no_new_privs(p);
1929 
1930 	/*
1931 	 * If the parent gained a seccomp mode after copying thread
1932 	 * flags and between before we held the sighand lock, we have
1933 	 * to manually enable the seccomp thread flag here.
1934 	 */
1935 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1936 		set_task_syscall_work(p, SECCOMP);
1937 #endif
1938 }
1939 
1940 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1941 {
1942 	current->clear_child_tid = tidptr;
1943 
1944 	return task_pid_vnr(current);
1945 }
1946 
1947 static void rt_mutex_init_task(struct task_struct *p)
1948 {
1949 	raw_spin_lock_init(&p->pi_lock);
1950 #ifdef CONFIG_RT_MUTEXES
1951 	p->pi_waiters = RB_ROOT_CACHED;
1952 	p->pi_top_task = NULL;
1953 	p->pi_blocked_on = NULL;
1954 #endif
1955 }
1956 
1957 static inline void init_task_pid_links(struct task_struct *task)
1958 {
1959 	enum pid_type type;
1960 
1961 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1962 		INIT_HLIST_NODE(&task->pid_links[type]);
1963 }
1964 
1965 static inline void
1966 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1967 {
1968 	if (type == PIDTYPE_PID)
1969 		task->thread_pid = pid;
1970 	else
1971 		task->signal->pids[type] = pid;
1972 }
1973 
1974 static inline void rcu_copy_process(struct task_struct *p)
1975 {
1976 #ifdef CONFIG_PREEMPT_RCU
1977 	p->rcu_read_lock_nesting = 0;
1978 	p->rcu_read_unlock_special.s = 0;
1979 	p->rcu_blocked_node = NULL;
1980 	INIT_LIST_HEAD(&p->rcu_node_entry);
1981 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1982 #ifdef CONFIG_TASKS_RCU
1983 	p->rcu_tasks_holdout = false;
1984 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1985 	p->rcu_tasks_idle_cpu = -1;
1986 	INIT_LIST_HEAD(&p->rcu_tasks_exit_list);
1987 #endif /* #ifdef CONFIG_TASKS_RCU */
1988 #ifdef CONFIG_TASKS_TRACE_RCU
1989 	p->trc_reader_nesting = 0;
1990 	p->trc_reader_special.s = 0;
1991 	INIT_LIST_HEAD(&p->trc_holdout_list);
1992 	INIT_LIST_HEAD(&p->trc_blkd_node);
1993 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1994 }
1995 
1996 /**
1997  * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
1998  * @pid:   the struct pid for which to create a pidfd
1999  * @flags: flags of the new @pidfd
2000  * @ret: Where to return the file for the pidfd.
2001  *
2002  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2003  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2004  *
2005  * The helper doesn't perform checks on @pid which makes it useful for pidfds
2006  * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
2007  * pidfd file are prepared.
2008  *
2009  * If this function returns successfully the caller is responsible to either
2010  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2011  * order to install the pidfd into its file descriptor table or they must use
2012  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2013  * respectively.
2014  *
2015  * This function is useful when a pidfd must already be reserved but there
2016  * might still be points of failure afterwards and the caller wants to ensure
2017  * that no pidfd is leaked into its file descriptor table.
2018  *
2019  * Return: On success, a reserved pidfd is returned from the function and a new
2020  *         pidfd file is returned in the last argument to the function. On
2021  *         error, a negative error code is returned from the function and the
2022  *         last argument remains unchanged.
2023  */
2024 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2025 {
2026 	int pidfd;
2027 	struct file *pidfd_file;
2028 
2029 	pidfd = get_unused_fd_flags(O_CLOEXEC);
2030 	if (pidfd < 0)
2031 		return pidfd;
2032 
2033 	pidfd_file = pidfs_alloc_file(pid, flags | O_RDWR);
2034 	if (IS_ERR(pidfd_file)) {
2035 		put_unused_fd(pidfd);
2036 		return PTR_ERR(pidfd_file);
2037 	}
2038 	/*
2039 	 * anon_inode_getfile() ignores everything outside of the
2040 	 * O_ACCMODE | O_NONBLOCK mask, set PIDFD_THREAD manually.
2041 	 */
2042 	pidfd_file->f_flags |= (flags & PIDFD_THREAD);
2043 	*ret = pidfd_file;
2044 	return pidfd;
2045 }
2046 
2047 /**
2048  * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2049  * @pid:   the struct pid for which to create a pidfd
2050  * @flags: flags of the new @pidfd
2051  * @ret: Where to return the pidfd.
2052  *
2053  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2054  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2055  *
2056  * The helper verifies that @pid is still in use, without PIDFD_THREAD the
2057  * task identified by @pid must be a thread-group leader.
2058  *
2059  * If this function returns successfully the caller is responsible to either
2060  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2061  * order to install the pidfd into its file descriptor table or they must use
2062  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2063  * respectively.
2064  *
2065  * This function is useful when a pidfd must already be reserved but there
2066  * might still be points of failure afterwards and the caller wants to ensure
2067  * that no pidfd is leaked into its file descriptor table.
2068  *
2069  * Return: On success, a reserved pidfd is returned from the function and a new
2070  *         pidfd file is returned in the last argument to the function. On
2071  *         error, a negative error code is returned from the function and the
2072  *         last argument remains unchanged.
2073  */
2074 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2075 {
2076 	bool thread = flags & PIDFD_THREAD;
2077 
2078 	if (!pid || !pid_has_task(pid, thread ? PIDTYPE_PID : PIDTYPE_TGID))
2079 		return -EINVAL;
2080 
2081 	return __pidfd_prepare(pid, flags, ret);
2082 }
2083 
2084 static void __delayed_free_task(struct rcu_head *rhp)
2085 {
2086 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2087 
2088 	free_task(tsk);
2089 }
2090 
2091 static __always_inline void delayed_free_task(struct task_struct *tsk)
2092 {
2093 	if (IS_ENABLED(CONFIG_MEMCG))
2094 		call_rcu(&tsk->rcu, __delayed_free_task);
2095 	else
2096 		free_task(tsk);
2097 }
2098 
2099 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2100 {
2101 	/* Skip if kernel thread */
2102 	if (!tsk->mm)
2103 		return;
2104 
2105 	/* Skip if spawning a thread or using vfork */
2106 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2107 		return;
2108 
2109 	/* We need to synchronize with __set_oom_adj */
2110 	mutex_lock(&oom_adj_mutex);
2111 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2112 	/* Update the values in case they were changed after copy_signal */
2113 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2114 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2115 	mutex_unlock(&oom_adj_mutex);
2116 }
2117 
2118 #ifdef CONFIG_RV
2119 static void rv_task_fork(struct task_struct *p)
2120 {
2121 	int i;
2122 
2123 	for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2124 		p->rv[i].da_mon.monitoring = false;
2125 }
2126 #else
2127 #define rv_task_fork(p) do {} while (0)
2128 #endif
2129 
2130 /*
2131  * This creates a new process as a copy of the old one,
2132  * but does not actually start it yet.
2133  *
2134  * It copies the registers, and all the appropriate
2135  * parts of the process environment (as per the clone
2136  * flags). The actual kick-off is left to the caller.
2137  */
2138 __latent_entropy struct task_struct *copy_process(
2139 					struct pid *pid,
2140 					int trace,
2141 					int node,
2142 					struct kernel_clone_args *args)
2143 {
2144 	int pidfd = -1, retval;
2145 	struct task_struct *p;
2146 	struct multiprocess_signals delayed;
2147 	struct file *pidfile = NULL;
2148 	const u64 clone_flags = args->flags;
2149 	struct nsproxy *nsp = current->nsproxy;
2150 
2151 	/*
2152 	 * Don't allow sharing the root directory with processes in a different
2153 	 * namespace
2154 	 */
2155 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2156 		return ERR_PTR(-EINVAL);
2157 
2158 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2159 		return ERR_PTR(-EINVAL);
2160 
2161 	/*
2162 	 * Thread groups must share signals as well, and detached threads
2163 	 * can only be started up within the thread group.
2164 	 */
2165 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2166 		return ERR_PTR(-EINVAL);
2167 
2168 	/*
2169 	 * Shared signal handlers imply shared VM. By way of the above,
2170 	 * thread groups also imply shared VM. Blocking this case allows
2171 	 * for various simplifications in other code.
2172 	 */
2173 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2174 		return ERR_PTR(-EINVAL);
2175 
2176 	/*
2177 	 * Siblings of global init remain as zombies on exit since they are
2178 	 * not reaped by their parent (swapper). To solve this and to avoid
2179 	 * multi-rooted process trees, prevent global and container-inits
2180 	 * from creating siblings.
2181 	 */
2182 	if ((clone_flags & CLONE_PARENT) &&
2183 				current->signal->flags & SIGNAL_UNKILLABLE)
2184 		return ERR_PTR(-EINVAL);
2185 
2186 	/*
2187 	 * If the new process will be in a different pid or user namespace
2188 	 * do not allow it to share a thread group with the forking task.
2189 	 */
2190 	if (clone_flags & CLONE_THREAD) {
2191 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2192 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2193 			return ERR_PTR(-EINVAL);
2194 	}
2195 
2196 	if (clone_flags & CLONE_PIDFD) {
2197 		/*
2198 		 * - CLONE_DETACHED is blocked so that we can potentially
2199 		 *   reuse it later for CLONE_PIDFD.
2200 		 */
2201 		if (clone_flags & CLONE_DETACHED)
2202 			return ERR_PTR(-EINVAL);
2203 	}
2204 
2205 	/*
2206 	 * Force any signals received before this point to be delivered
2207 	 * before the fork happens.  Collect up signals sent to multiple
2208 	 * processes that happen during the fork and delay them so that
2209 	 * they appear to happen after the fork.
2210 	 */
2211 	sigemptyset(&delayed.signal);
2212 	INIT_HLIST_NODE(&delayed.node);
2213 
2214 	spin_lock_irq(&current->sighand->siglock);
2215 	if (!(clone_flags & CLONE_THREAD))
2216 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2217 	recalc_sigpending();
2218 	spin_unlock_irq(&current->sighand->siglock);
2219 	retval = -ERESTARTNOINTR;
2220 	if (task_sigpending(current))
2221 		goto fork_out;
2222 
2223 	retval = -ENOMEM;
2224 	p = dup_task_struct(current, node);
2225 	if (!p)
2226 		goto fork_out;
2227 	p->flags &= ~PF_KTHREAD;
2228 	if (args->kthread)
2229 		p->flags |= PF_KTHREAD;
2230 	if (args->user_worker) {
2231 		/*
2232 		 * Mark us a user worker, and block any signal that isn't
2233 		 * fatal or STOP
2234 		 */
2235 		p->flags |= PF_USER_WORKER;
2236 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2237 	}
2238 	if (args->io_thread)
2239 		p->flags |= PF_IO_WORKER;
2240 
2241 	if (args->name)
2242 		strscpy_pad(p->comm, args->name, sizeof(p->comm));
2243 
2244 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2245 	/*
2246 	 * Clear TID on mm_release()?
2247 	 */
2248 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2249 
2250 	ftrace_graph_init_task(p);
2251 
2252 	rt_mutex_init_task(p);
2253 
2254 	lockdep_assert_irqs_enabled();
2255 #ifdef CONFIG_PROVE_LOCKING
2256 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2257 #endif
2258 	retval = copy_creds(p, clone_flags);
2259 	if (retval < 0)
2260 		goto bad_fork_free;
2261 
2262 	retval = -EAGAIN;
2263 	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2264 		if (p->real_cred->user != INIT_USER &&
2265 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2266 			goto bad_fork_cleanup_count;
2267 	}
2268 	current->flags &= ~PF_NPROC_EXCEEDED;
2269 
2270 	/*
2271 	 * If multiple threads are within copy_process(), then this check
2272 	 * triggers too late. This doesn't hurt, the check is only there
2273 	 * to stop root fork bombs.
2274 	 */
2275 	retval = -EAGAIN;
2276 	if (data_race(nr_threads >= max_threads))
2277 		goto bad_fork_cleanup_count;
2278 
2279 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2280 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2281 	p->flags |= PF_FORKNOEXEC;
2282 	INIT_LIST_HEAD(&p->children);
2283 	INIT_LIST_HEAD(&p->sibling);
2284 	rcu_copy_process(p);
2285 	p->vfork_done = NULL;
2286 	spin_lock_init(&p->alloc_lock);
2287 
2288 	init_sigpending(&p->pending);
2289 
2290 	p->utime = p->stime = p->gtime = 0;
2291 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2292 	p->utimescaled = p->stimescaled = 0;
2293 #endif
2294 	prev_cputime_init(&p->prev_cputime);
2295 
2296 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2297 	seqcount_init(&p->vtime.seqcount);
2298 	p->vtime.starttime = 0;
2299 	p->vtime.state = VTIME_INACTIVE;
2300 #endif
2301 
2302 #ifdef CONFIG_IO_URING
2303 	p->io_uring = NULL;
2304 #endif
2305 
2306 	p->default_timer_slack_ns = current->timer_slack_ns;
2307 
2308 #ifdef CONFIG_PSI
2309 	p->psi_flags = 0;
2310 #endif
2311 
2312 	task_io_accounting_init(&p->ioac);
2313 	acct_clear_integrals(p);
2314 
2315 	posix_cputimers_init(&p->posix_cputimers);
2316 	tick_dep_init_task(p);
2317 
2318 	p->io_context = NULL;
2319 	audit_set_context(p, NULL);
2320 	cgroup_fork(p);
2321 	if (args->kthread) {
2322 		if (!set_kthread_struct(p))
2323 			goto bad_fork_cleanup_delayacct;
2324 	}
2325 #ifdef CONFIG_NUMA
2326 	p->mempolicy = mpol_dup(p->mempolicy);
2327 	if (IS_ERR(p->mempolicy)) {
2328 		retval = PTR_ERR(p->mempolicy);
2329 		p->mempolicy = NULL;
2330 		goto bad_fork_cleanup_delayacct;
2331 	}
2332 #endif
2333 #ifdef CONFIG_CPUSETS
2334 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2335 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2336 #endif
2337 #ifdef CONFIG_TRACE_IRQFLAGS
2338 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2339 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2340 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2341 	p->softirqs_enabled		= 1;
2342 	p->softirq_context		= 0;
2343 #endif
2344 
2345 	p->pagefault_disabled = 0;
2346 
2347 #ifdef CONFIG_LOCKDEP
2348 	lockdep_init_task(p);
2349 #endif
2350 
2351 #ifdef CONFIG_DEBUG_MUTEXES
2352 	p->blocked_on = NULL; /* not blocked yet */
2353 #endif
2354 #ifdef CONFIG_BCACHE
2355 	p->sequential_io	= 0;
2356 	p->sequential_io_avg	= 0;
2357 #endif
2358 #ifdef CONFIG_BPF_SYSCALL
2359 	RCU_INIT_POINTER(p->bpf_storage, NULL);
2360 	p->bpf_ctx = NULL;
2361 #endif
2362 
2363 	/* Perform scheduler related setup. Assign this task to a CPU. */
2364 	retval = sched_fork(clone_flags, p);
2365 	if (retval)
2366 		goto bad_fork_cleanup_policy;
2367 
2368 	retval = perf_event_init_task(p, clone_flags);
2369 	if (retval)
2370 		goto bad_fork_sched_cancel_fork;
2371 	retval = audit_alloc(p);
2372 	if (retval)
2373 		goto bad_fork_cleanup_perf;
2374 	/* copy all the process information */
2375 	shm_init_task(p);
2376 	retval = security_task_alloc(p, clone_flags);
2377 	if (retval)
2378 		goto bad_fork_cleanup_audit;
2379 	retval = copy_semundo(clone_flags, p);
2380 	if (retval)
2381 		goto bad_fork_cleanup_security;
2382 	retval = copy_files(clone_flags, p, args->no_files);
2383 	if (retval)
2384 		goto bad_fork_cleanup_semundo;
2385 	retval = copy_fs(clone_flags, p);
2386 	if (retval)
2387 		goto bad_fork_cleanup_files;
2388 	retval = copy_sighand(clone_flags, p);
2389 	if (retval)
2390 		goto bad_fork_cleanup_fs;
2391 	retval = copy_signal(clone_flags, p);
2392 	if (retval)
2393 		goto bad_fork_cleanup_sighand;
2394 	retval = copy_mm(clone_flags, p);
2395 	if (retval)
2396 		goto bad_fork_cleanup_signal;
2397 	retval = copy_namespaces(clone_flags, p);
2398 	if (retval)
2399 		goto bad_fork_cleanup_mm;
2400 	retval = copy_io(clone_flags, p);
2401 	if (retval)
2402 		goto bad_fork_cleanup_namespaces;
2403 	retval = copy_thread(p, args);
2404 	if (retval)
2405 		goto bad_fork_cleanup_io;
2406 
2407 	stackleak_task_init(p);
2408 
2409 	if (pid != &init_struct_pid) {
2410 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2411 				args->set_tid_size);
2412 		if (IS_ERR(pid)) {
2413 			retval = PTR_ERR(pid);
2414 			goto bad_fork_cleanup_thread;
2415 		}
2416 	}
2417 
2418 	/*
2419 	 * This has to happen after we've potentially unshared the file
2420 	 * descriptor table (so that the pidfd doesn't leak into the child
2421 	 * if the fd table isn't shared).
2422 	 */
2423 	if (clone_flags & CLONE_PIDFD) {
2424 		int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0;
2425 
2426 		/* Note that no task has been attached to @pid yet. */
2427 		retval = __pidfd_prepare(pid, flags, &pidfile);
2428 		if (retval < 0)
2429 			goto bad_fork_free_pid;
2430 		pidfd = retval;
2431 
2432 		retval = put_user(pidfd, args->pidfd);
2433 		if (retval)
2434 			goto bad_fork_put_pidfd;
2435 	}
2436 
2437 #ifdef CONFIG_BLOCK
2438 	p->plug = NULL;
2439 #endif
2440 	futex_init_task(p);
2441 
2442 	/*
2443 	 * sigaltstack should be cleared when sharing the same VM
2444 	 */
2445 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2446 		sas_ss_reset(p);
2447 
2448 	/*
2449 	 * Syscall tracing and stepping should be turned off in the
2450 	 * child regardless of CLONE_PTRACE.
2451 	 */
2452 	user_disable_single_step(p);
2453 	clear_task_syscall_work(p, SYSCALL_TRACE);
2454 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2455 	clear_task_syscall_work(p, SYSCALL_EMU);
2456 #endif
2457 	clear_tsk_latency_tracing(p);
2458 
2459 	/* ok, now we should be set up.. */
2460 	p->pid = pid_nr(pid);
2461 	if (clone_flags & CLONE_THREAD) {
2462 		p->group_leader = current->group_leader;
2463 		p->tgid = current->tgid;
2464 	} else {
2465 		p->group_leader = p;
2466 		p->tgid = p->pid;
2467 	}
2468 
2469 	p->nr_dirtied = 0;
2470 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2471 	p->dirty_paused_when = 0;
2472 
2473 	p->pdeath_signal = 0;
2474 	p->task_works = NULL;
2475 	clear_posix_cputimers_work(p);
2476 
2477 #ifdef CONFIG_KRETPROBES
2478 	p->kretprobe_instances.first = NULL;
2479 #endif
2480 #ifdef CONFIG_RETHOOK
2481 	p->rethooks.first = NULL;
2482 #endif
2483 
2484 	/*
2485 	 * Ensure that the cgroup subsystem policies allow the new process to be
2486 	 * forked. It should be noted that the new process's css_set can be changed
2487 	 * between here and cgroup_post_fork() if an organisation operation is in
2488 	 * progress.
2489 	 */
2490 	retval = cgroup_can_fork(p, args);
2491 	if (retval)
2492 		goto bad_fork_put_pidfd;
2493 
2494 	/*
2495 	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2496 	 * the new task on the correct runqueue. All this *before* the task
2497 	 * becomes visible.
2498 	 *
2499 	 * This isn't part of ->can_fork() because while the re-cloning is
2500 	 * cgroup specific, it unconditionally needs to place the task on a
2501 	 * runqueue.
2502 	 */
2503 	retval = sched_cgroup_fork(p, args);
2504 	if (retval)
2505 		goto bad_fork_cancel_cgroup;
2506 
2507 	/*
2508 	 * From this point on we must avoid any synchronous user-space
2509 	 * communication until we take the tasklist-lock. In particular, we do
2510 	 * not want user-space to be able to predict the process start-time by
2511 	 * stalling fork(2) after we recorded the start_time but before it is
2512 	 * visible to the system.
2513 	 */
2514 
2515 	p->start_time = ktime_get_ns();
2516 	p->start_boottime = ktime_get_boottime_ns();
2517 
2518 	/*
2519 	 * Make it visible to the rest of the system, but dont wake it up yet.
2520 	 * Need tasklist lock for parent etc handling!
2521 	 */
2522 	write_lock_irq(&tasklist_lock);
2523 
2524 	/* CLONE_PARENT re-uses the old parent */
2525 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2526 		p->real_parent = current->real_parent;
2527 		p->parent_exec_id = current->parent_exec_id;
2528 		if (clone_flags & CLONE_THREAD)
2529 			p->exit_signal = -1;
2530 		else
2531 			p->exit_signal = current->group_leader->exit_signal;
2532 	} else {
2533 		p->real_parent = current;
2534 		p->parent_exec_id = current->self_exec_id;
2535 		p->exit_signal = args->exit_signal;
2536 	}
2537 
2538 	klp_copy_process(p);
2539 
2540 	sched_core_fork(p);
2541 
2542 	spin_lock(&current->sighand->siglock);
2543 
2544 	rv_task_fork(p);
2545 
2546 	rseq_fork(p, clone_flags);
2547 
2548 	/* Don't start children in a dying pid namespace */
2549 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2550 		retval = -ENOMEM;
2551 		goto bad_fork_core_free;
2552 	}
2553 
2554 	/* Let kill terminate clone/fork in the middle */
2555 	if (fatal_signal_pending(current)) {
2556 		retval = -EINTR;
2557 		goto bad_fork_core_free;
2558 	}
2559 
2560 	/* No more failure paths after this point. */
2561 
2562 	/*
2563 	 * Copy seccomp details explicitly here, in case they were changed
2564 	 * before holding sighand lock.
2565 	 */
2566 	copy_seccomp(p);
2567 
2568 	init_task_pid_links(p);
2569 	if (likely(p->pid)) {
2570 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2571 
2572 		init_task_pid(p, PIDTYPE_PID, pid);
2573 		if (thread_group_leader(p)) {
2574 			init_task_pid(p, PIDTYPE_TGID, pid);
2575 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2576 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2577 
2578 			if (is_child_reaper(pid)) {
2579 				ns_of_pid(pid)->child_reaper = p;
2580 				p->signal->flags |= SIGNAL_UNKILLABLE;
2581 			}
2582 			p->signal->shared_pending.signal = delayed.signal;
2583 			p->signal->tty = tty_kref_get(current->signal->tty);
2584 			/*
2585 			 * Inherit has_child_subreaper flag under the same
2586 			 * tasklist_lock with adding child to the process tree
2587 			 * for propagate_has_child_subreaper optimization.
2588 			 */
2589 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2590 							 p->real_parent->signal->is_child_subreaper;
2591 			list_add_tail(&p->sibling, &p->real_parent->children);
2592 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2593 			attach_pid(p, PIDTYPE_TGID);
2594 			attach_pid(p, PIDTYPE_PGID);
2595 			attach_pid(p, PIDTYPE_SID);
2596 			__this_cpu_inc(process_counts);
2597 		} else {
2598 			current->signal->nr_threads++;
2599 			current->signal->quick_threads++;
2600 			atomic_inc(&current->signal->live);
2601 			refcount_inc(&current->signal->sigcnt);
2602 			task_join_group_stop(p);
2603 			list_add_tail_rcu(&p->thread_node,
2604 					  &p->signal->thread_head);
2605 		}
2606 		attach_pid(p, PIDTYPE_PID);
2607 		nr_threads++;
2608 	}
2609 	total_forks++;
2610 	hlist_del_init(&delayed.node);
2611 	spin_unlock(&current->sighand->siglock);
2612 	syscall_tracepoint_update(p);
2613 	write_unlock_irq(&tasklist_lock);
2614 
2615 	if (pidfile)
2616 		fd_install(pidfd, pidfile);
2617 
2618 	proc_fork_connector(p);
2619 	sched_post_fork(p);
2620 	cgroup_post_fork(p, args);
2621 	perf_event_fork(p);
2622 
2623 	trace_task_newtask(p, clone_flags);
2624 	uprobe_copy_process(p, clone_flags);
2625 	user_events_fork(p, clone_flags);
2626 
2627 	copy_oom_score_adj(clone_flags, p);
2628 
2629 	return p;
2630 
2631 bad_fork_core_free:
2632 	sched_core_free(p);
2633 	spin_unlock(&current->sighand->siglock);
2634 	write_unlock_irq(&tasklist_lock);
2635 bad_fork_cancel_cgroup:
2636 	cgroup_cancel_fork(p, args);
2637 bad_fork_put_pidfd:
2638 	if (clone_flags & CLONE_PIDFD) {
2639 		fput(pidfile);
2640 		put_unused_fd(pidfd);
2641 	}
2642 bad_fork_free_pid:
2643 	if (pid != &init_struct_pid)
2644 		free_pid(pid);
2645 bad_fork_cleanup_thread:
2646 	exit_thread(p);
2647 bad_fork_cleanup_io:
2648 	if (p->io_context)
2649 		exit_io_context(p);
2650 bad_fork_cleanup_namespaces:
2651 	exit_task_namespaces(p);
2652 bad_fork_cleanup_mm:
2653 	if (p->mm) {
2654 		mm_clear_owner(p->mm, p);
2655 		mmput(p->mm);
2656 	}
2657 bad_fork_cleanup_signal:
2658 	if (!(clone_flags & CLONE_THREAD))
2659 		free_signal_struct(p->signal);
2660 bad_fork_cleanup_sighand:
2661 	__cleanup_sighand(p->sighand);
2662 bad_fork_cleanup_fs:
2663 	exit_fs(p); /* blocking */
2664 bad_fork_cleanup_files:
2665 	exit_files(p); /* blocking */
2666 bad_fork_cleanup_semundo:
2667 	exit_sem(p);
2668 bad_fork_cleanup_security:
2669 	security_task_free(p);
2670 bad_fork_cleanup_audit:
2671 	audit_free(p);
2672 bad_fork_cleanup_perf:
2673 	perf_event_free_task(p);
2674 bad_fork_sched_cancel_fork:
2675 	sched_cancel_fork(p);
2676 bad_fork_cleanup_policy:
2677 	lockdep_free_task(p);
2678 #ifdef CONFIG_NUMA
2679 	mpol_put(p->mempolicy);
2680 #endif
2681 bad_fork_cleanup_delayacct:
2682 	delayacct_tsk_free(p);
2683 bad_fork_cleanup_count:
2684 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2685 	exit_creds(p);
2686 bad_fork_free:
2687 	WRITE_ONCE(p->__state, TASK_DEAD);
2688 	exit_task_stack_account(p);
2689 	put_task_stack(p);
2690 	delayed_free_task(p);
2691 fork_out:
2692 	spin_lock_irq(&current->sighand->siglock);
2693 	hlist_del_init(&delayed.node);
2694 	spin_unlock_irq(&current->sighand->siglock);
2695 	return ERR_PTR(retval);
2696 }
2697 
2698 static inline void init_idle_pids(struct task_struct *idle)
2699 {
2700 	enum pid_type type;
2701 
2702 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2703 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2704 		init_task_pid(idle, type, &init_struct_pid);
2705 	}
2706 }
2707 
2708 static int idle_dummy(void *dummy)
2709 {
2710 	/* This function is never called */
2711 	return 0;
2712 }
2713 
2714 struct task_struct * __init fork_idle(int cpu)
2715 {
2716 	struct task_struct *task;
2717 	struct kernel_clone_args args = {
2718 		.flags		= CLONE_VM,
2719 		.fn		= &idle_dummy,
2720 		.fn_arg		= NULL,
2721 		.kthread	= 1,
2722 		.idle		= 1,
2723 	};
2724 
2725 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2726 	if (!IS_ERR(task)) {
2727 		init_idle_pids(task);
2728 		init_idle(task, cpu);
2729 	}
2730 
2731 	return task;
2732 }
2733 
2734 /*
2735  * This is like kernel_clone(), but shaved down and tailored to just
2736  * creating io_uring workers. It returns a created task, or an error pointer.
2737  * The returned task is inactive, and the caller must fire it up through
2738  * wake_up_new_task(p). All signals are blocked in the created task.
2739  */
2740 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2741 {
2742 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2743 				CLONE_IO;
2744 	struct kernel_clone_args args = {
2745 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2746 				    CLONE_UNTRACED) & ~CSIGNAL),
2747 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2748 		.fn		= fn,
2749 		.fn_arg		= arg,
2750 		.io_thread	= 1,
2751 		.user_worker	= 1,
2752 	};
2753 
2754 	return copy_process(NULL, 0, node, &args);
2755 }
2756 
2757 /*
2758  *  Ok, this is the main fork-routine.
2759  *
2760  * It copies the process, and if successful kick-starts
2761  * it and waits for it to finish using the VM if required.
2762  *
2763  * args->exit_signal is expected to be checked for sanity by the caller.
2764  */
2765 pid_t kernel_clone(struct kernel_clone_args *args)
2766 {
2767 	u64 clone_flags = args->flags;
2768 	struct completion vfork;
2769 	struct pid *pid;
2770 	struct task_struct *p;
2771 	int trace = 0;
2772 	pid_t nr;
2773 
2774 	/*
2775 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2776 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2777 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2778 	 * field in struct clone_args and it still doesn't make sense to have
2779 	 * them both point at the same memory location. Performing this check
2780 	 * here has the advantage that we don't need to have a separate helper
2781 	 * to check for legacy clone().
2782 	 */
2783 	if ((clone_flags & CLONE_PIDFD) &&
2784 	    (clone_flags & CLONE_PARENT_SETTID) &&
2785 	    (args->pidfd == args->parent_tid))
2786 		return -EINVAL;
2787 
2788 	/*
2789 	 * Determine whether and which event to report to ptracer.  When
2790 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2791 	 * requested, no event is reported; otherwise, report if the event
2792 	 * for the type of forking is enabled.
2793 	 */
2794 	if (!(clone_flags & CLONE_UNTRACED)) {
2795 		if (clone_flags & CLONE_VFORK)
2796 			trace = PTRACE_EVENT_VFORK;
2797 		else if (args->exit_signal != SIGCHLD)
2798 			trace = PTRACE_EVENT_CLONE;
2799 		else
2800 			trace = PTRACE_EVENT_FORK;
2801 
2802 		if (likely(!ptrace_event_enabled(current, trace)))
2803 			trace = 0;
2804 	}
2805 
2806 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2807 	add_latent_entropy();
2808 
2809 	if (IS_ERR(p))
2810 		return PTR_ERR(p);
2811 
2812 	/*
2813 	 * Do this prior waking up the new thread - the thread pointer
2814 	 * might get invalid after that point, if the thread exits quickly.
2815 	 */
2816 	trace_sched_process_fork(current, p);
2817 
2818 	pid = get_task_pid(p, PIDTYPE_PID);
2819 	nr = pid_vnr(pid);
2820 
2821 	if (clone_flags & CLONE_PARENT_SETTID)
2822 		put_user(nr, args->parent_tid);
2823 
2824 	if (clone_flags & CLONE_VFORK) {
2825 		p->vfork_done = &vfork;
2826 		init_completion(&vfork);
2827 		get_task_struct(p);
2828 	}
2829 
2830 	if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) {
2831 		/* lock the task to synchronize with memcg migration */
2832 		task_lock(p);
2833 		lru_gen_add_mm(p->mm);
2834 		task_unlock(p);
2835 	}
2836 
2837 	wake_up_new_task(p);
2838 
2839 	/* forking complete and child started to run, tell ptracer */
2840 	if (unlikely(trace))
2841 		ptrace_event_pid(trace, pid);
2842 
2843 	if (clone_flags & CLONE_VFORK) {
2844 		if (!wait_for_vfork_done(p, &vfork))
2845 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2846 	}
2847 
2848 	put_pid(pid);
2849 	return nr;
2850 }
2851 
2852 /*
2853  * Create a kernel thread.
2854  */
2855 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2856 		    unsigned long flags)
2857 {
2858 	struct kernel_clone_args args = {
2859 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2860 				    CLONE_UNTRACED) & ~CSIGNAL),
2861 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2862 		.fn		= fn,
2863 		.fn_arg		= arg,
2864 		.name		= name,
2865 		.kthread	= 1,
2866 	};
2867 
2868 	return kernel_clone(&args);
2869 }
2870 
2871 /*
2872  * Create a user mode thread.
2873  */
2874 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2875 {
2876 	struct kernel_clone_args args = {
2877 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2878 				    CLONE_UNTRACED) & ~CSIGNAL),
2879 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2880 		.fn		= fn,
2881 		.fn_arg		= arg,
2882 	};
2883 
2884 	return kernel_clone(&args);
2885 }
2886 
2887 #ifdef __ARCH_WANT_SYS_FORK
2888 SYSCALL_DEFINE0(fork)
2889 {
2890 #ifdef CONFIG_MMU
2891 	struct kernel_clone_args args = {
2892 		.exit_signal = SIGCHLD,
2893 	};
2894 
2895 	return kernel_clone(&args);
2896 #else
2897 	/* can not support in nommu mode */
2898 	return -EINVAL;
2899 #endif
2900 }
2901 #endif
2902 
2903 #ifdef __ARCH_WANT_SYS_VFORK
2904 SYSCALL_DEFINE0(vfork)
2905 {
2906 	struct kernel_clone_args args = {
2907 		.flags		= CLONE_VFORK | CLONE_VM,
2908 		.exit_signal	= SIGCHLD,
2909 	};
2910 
2911 	return kernel_clone(&args);
2912 }
2913 #endif
2914 
2915 #ifdef __ARCH_WANT_SYS_CLONE
2916 #ifdef CONFIG_CLONE_BACKWARDS
2917 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2918 		 int __user *, parent_tidptr,
2919 		 unsigned long, tls,
2920 		 int __user *, child_tidptr)
2921 #elif defined(CONFIG_CLONE_BACKWARDS2)
2922 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2923 		 int __user *, parent_tidptr,
2924 		 int __user *, child_tidptr,
2925 		 unsigned long, tls)
2926 #elif defined(CONFIG_CLONE_BACKWARDS3)
2927 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2928 		int, stack_size,
2929 		int __user *, parent_tidptr,
2930 		int __user *, child_tidptr,
2931 		unsigned long, tls)
2932 #else
2933 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2934 		 int __user *, parent_tidptr,
2935 		 int __user *, child_tidptr,
2936 		 unsigned long, tls)
2937 #endif
2938 {
2939 	struct kernel_clone_args args = {
2940 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2941 		.pidfd		= parent_tidptr,
2942 		.child_tid	= child_tidptr,
2943 		.parent_tid	= parent_tidptr,
2944 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2945 		.stack		= newsp,
2946 		.tls		= tls,
2947 	};
2948 
2949 	return kernel_clone(&args);
2950 }
2951 #endif
2952 
2953 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2954 					      struct clone_args __user *uargs,
2955 					      size_t usize)
2956 {
2957 	int err;
2958 	struct clone_args args;
2959 	pid_t *kset_tid = kargs->set_tid;
2960 
2961 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2962 		     CLONE_ARGS_SIZE_VER0);
2963 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2964 		     CLONE_ARGS_SIZE_VER1);
2965 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2966 		     CLONE_ARGS_SIZE_VER2);
2967 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2968 
2969 	if (unlikely(usize > PAGE_SIZE))
2970 		return -E2BIG;
2971 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2972 		return -EINVAL;
2973 
2974 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2975 	if (err)
2976 		return err;
2977 
2978 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2979 		return -EINVAL;
2980 
2981 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2982 		return -EINVAL;
2983 
2984 	if (unlikely(args.set_tid && args.set_tid_size == 0))
2985 		return -EINVAL;
2986 
2987 	/*
2988 	 * Verify that higher 32bits of exit_signal are unset and that
2989 	 * it is a valid signal
2990 	 */
2991 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2992 		     !valid_signal(args.exit_signal)))
2993 		return -EINVAL;
2994 
2995 	if ((args.flags & CLONE_INTO_CGROUP) &&
2996 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2997 		return -EINVAL;
2998 
2999 	*kargs = (struct kernel_clone_args){
3000 		.flags		= args.flags,
3001 		.pidfd		= u64_to_user_ptr(args.pidfd),
3002 		.child_tid	= u64_to_user_ptr(args.child_tid),
3003 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
3004 		.exit_signal	= args.exit_signal,
3005 		.stack		= args.stack,
3006 		.stack_size	= args.stack_size,
3007 		.tls		= args.tls,
3008 		.set_tid_size	= args.set_tid_size,
3009 		.cgroup		= args.cgroup,
3010 	};
3011 
3012 	if (args.set_tid &&
3013 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
3014 			(kargs->set_tid_size * sizeof(pid_t))))
3015 		return -EFAULT;
3016 
3017 	kargs->set_tid = kset_tid;
3018 
3019 	return 0;
3020 }
3021 
3022 /**
3023  * clone3_stack_valid - check and prepare stack
3024  * @kargs: kernel clone args
3025  *
3026  * Verify that the stack arguments userspace gave us are sane.
3027  * In addition, set the stack direction for userspace since it's easy for us to
3028  * determine.
3029  */
3030 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3031 {
3032 	if (kargs->stack == 0) {
3033 		if (kargs->stack_size > 0)
3034 			return false;
3035 	} else {
3036 		if (kargs->stack_size == 0)
3037 			return false;
3038 
3039 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3040 			return false;
3041 
3042 #if !defined(CONFIG_STACK_GROWSUP)
3043 		kargs->stack += kargs->stack_size;
3044 #endif
3045 	}
3046 
3047 	return true;
3048 }
3049 
3050 static bool clone3_args_valid(struct kernel_clone_args *kargs)
3051 {
3052 	/* Verify that no unknown flags are passed along. */
3053 	if (kargs->flags &
3054 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3055 		return false;
3056 
3057 	/*
3058 	 * - make the CLONE_DETACHED bit reusable for clone3
3059 	 * - make the CSIGNAL bits reusable for clone3
3060 	 */
3061 	if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3062 		return false;
3063 
3064 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3065 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3066 		return false;
3067 
3068 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3069 	    kargs->exit_signal)
3070 		return false;
3071 
3072 	if (!clone3_stack_valid(kargs))
3073 		return false;
3074 
3075 	return true;
3076 }
3077 
3078 /**
3079  * sys_clone3 - create a new process with specific properties
3080  * @uargs: argument structure
3081  * @size:  size of @uargs
3082  *
3083  * clone3() is the extensible successor to clone()/clone2().
3084  * It takes a struct as argument that is versioned by its size.
3085  *
3086  * Return: On success, a positive PID for the child process.
3087  *         On error, a negative errno number.
3088  */
3089 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3090 {
3091 	int err;
3092 
3093 	struct kernel_clone_args kargs;
3094 	pid_t set_tid[MAX_PID_NS_LEVEL];
3095 
3096 #ifdef __ARCH_BROKEN_SYS_CLONE3
3097 #warning clone3() entry point is missing, please fix
3098 	return -ENOSYS;
3099 #endif
3100 
3101 	kargs.set_tid = set_tid;
3102 
3103 	err = copy_clone_args_from_user(&kargs, uargs, size);
3104 	if (err)
3105 		return err;
3106 
3107 	if (!clone3_args_valid(&kargs))
3108 		return -EINVAL;
3109 
3110 	return kernel_clone(&kargs);
3111 }
3112 
3113 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3114 {
3115 	struct task_struct *leader, *parent, *child;
3116 	int res;
3117 
3118 	read_lock(&tasklist_lock);
3119 	leader = top = top->group_leader;
3120 down:
3121 	for_each_thread(leader, parent) {
3122 		list_for_each_entry(child, &parent->children, sibling) {
3123 			res = visitor(child, data);
3124 			if (res) {
3125 				if (res < 0)
3126 					goto out;
3127 				leader = child;
3128 				goto down;
3129 			}
3130 up:
3131 			;
3132 		}
3133 	}
3134 
3135 	if (leader != top) {
3136 		child = leader;
3137 		parent = child->real_parent;
3138 		leader = parent->group_leader;
3139 		goto up;
3140 	}
3141 out:
3142 	read_unlock(&tasklist_lock);
3143 }
3144 
3145 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3146 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3147 #endif
3148 
3149 static void sighand_ctor(void *data)
3150 {
3151 	struct sighand_struct *sighand = data;
3152 
3153 	spin_lock_init(&sighand->siglock);
3154 	init_waitqueue_head(&sighand->signalfd_wqh);
3155 }
3156 
3157 void __init mm_cache_init(void)
3158 {
3159 	unsigned int mm_size;
3160 
3161 	/*
3162 	 * The mm_cpumask is located at the end of mm_struct, and is
3163 	 * dynamically sized based on the maximum CPU number this system
3164 	 * can have, taking hotplug into account (nr_cpu_ids).
3165 	 */
3166 	mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3167 
3168 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
3169 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3170 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3171 			offsetof(struct mm_struct, saved_auxv),
3172 			sizeof_field(struct mm_struct, saved_auxv),
3173 			NULL);
3174 }
3175 
3176 void __init proc_caches_init(void)
3177 {
3178 	sighand_cachep = kmem_cache_create("sighand_cache",
3179 			sizeof(struct sighand_struct), 0,
3180 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3181 			SLAB_ACCOUNT, sighand_ctor);
3182 	signal_cachep = kmem_cache_create("signal_cache",
3183 			sizeof(struct signal_struct), 0,
3184 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3185 			NULL);
3186 	files_cachep = kmem_cache_create("files_cache",
3187 			sizeof(struct files_struct), 0,
3188 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3189 			NULL);
3190 	fs_cachep = kmem_cache_create("fs_cache",
3191 			sizeof(struct fs_struct), 0,
3192 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3193 			NULL);
3194 
3195 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3196 #ifdef CONFIG_PER_VMA_LOCK
3197 	vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3198 #endif
3199 	mmap_init();
3200 	nsproxy_cache_init();
3201 }
3202 
3203 /*
3204  * Check constraints on flags passed to the unshare system call.
3205  */
3206 static int check_unshare_flags(unsigned long unshare_flags)
3207 {
3208 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3209 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3210 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3211 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3212 				CLONE_NEWTIME))
3213 		return -EINVAL;
3214 	/*
3215 	 * Not implemented, but pretend it works if there is nothing
3216 	 * to unshare.  Note that unsharing the address space or the
3217 	 * signal handlers also need to unshare the signal queues (aka
3218 	 * CLONE_THREAD).
3219 	 */
3220 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3221 		if (!thread_group_empty(current))
3222 			return -EINVAL;
3223 	}
3224 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3225 		if (refcount_read(&current->sighand->count) > 1)
3226 			return -EINVAL;
3227 	}
3228 	if (unshare_flags & CLONE_VM) {
3229 		if (!current_is_single_threaded())
3230 			return -EINVAL;
3231 	}
3232 
3233 	return 0;
3234 }
3235 
3236 /*
3237  * Unshare the filesystem structure if it is being shared
3238  */
3239 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3240 {
3241 	struct fs_struct *fs = current->fs;
3242 
3243 	if (!(unshare_flags & CLONE_FS) || !fs)
3244 		return 0;
3245 
3246 	/* don't need lock here; in the worst case we'll do useless copy */
3247 	if (fs->users == 1)
3248 		return 0;
3249 
3250 	*new_fsp = copy_fs_struct(fs);
3251 	if (!*new_fsp)
3252 		return -ENOMEM;
3253 
3254 	return 0;
3255 }
3256 
3257 /*
3258  * Unshare file descriptor table if it is being shared
3259  */
3260 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
3261 {
3262 	struct files_struct *fd = current->files;
3263 
3264 	if ((unshare_flags & CLONE_FILES) &&
3265 	    (fd && atomic_read(&fd->count) > 1)) {
3266 		fd = dup_fd(fd, NULL);
3267 		if (IS_ERR(fd))
3268 			return PTR_ERR(fd);
3269 		*new_fdp = fd;
3270 	}
3271 
3272 	return 0;
3273 }
3274 
3275 /*
3276  * unshare allows a process to 'unshare' part of the process
3277  * context which was originally shared using clone.  copy_*
3278  * functions used by kernel_clone() cannot be used here directly
3279  * because they modify an inactive task_struct that is being
3280  * constructed. Here we are modifying the current, active,
3281  * task_struct.
3282  */
3283 int ksys_unshare(unsigned long unshare_flags)
3284 {
3285 	struct fs_struct *fs, *new_fs = NULL;
3286 	struct files_struct *new_fd = NULL;
3287 	struct cred *new_cred = NULL;
3288 	struct nsproxy *new_nsproxy = NULL;
3289 	int do_sysvsem = 0;
3290 	int err;
3291 
3292 	/*
3293 	 * If unsharing a user namespace must also unshare the thread group
3294 	 * and unshare the filesystem root and working directories.
3295 	 */
3296 	if (unshare_flags & CLONE_NEWUSER)
3297 		unshare_flags |= CLONE_THREAD | CLONE_FS;
3298 	/*
3299 	 * If unsharing vm, must also unshare signal handlers.
3300 	 */
3301 	if (unshare_flags & CLONE_VM)
3302 		unshare_flags |= CLONE_SIGHAND;
3303 	/*
3304 	 * If unsharing a signal handlers, must also unshare the signal queues.
3305 	 */
3306 	if (unshare_flags & CLONE_SIGHAND)
3307 		unshare_flags |= CLONE_THREAD;
3308 	/*
3309 	 * If unsharing namespace, must also unshare filesystem information.
3310 	 */
3311 	if (unshare_flags & CLONE_NEWNS)
3312 		unshare_flags |= CLONE_FS;
3313 
3314 	err = check_unshare_flags(unshare_flags);
3315 	if (err)
3316 		goto bad_unshare_out;
3317 	/*
3318 	 * CLONE_NEWIPC must also detach from the undolist: after switching
3319 	 * to a new ipc namespace, the semaphore arrays from the old
3320 	 * namespace are unreachable.
3321 	 */
3322 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3323 		do_sysvsem = 1;
3324 	err = unshare_fs(unshare_flags, &new_fs);
3325 	if (err)
3326 		goto bad_unshare_out;
3327 	err = unshare_fd(unshare_flags, &new_fd);
3328 	if (err)
3329 		goto bad_unshare_cleanup_fs;
3330 	err = unshare_userns(unshare_flags, &new_cred);
3331 	if (err)
3332 		goto bad_unshare_cleanup_fd;
3333 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3334 					 new_cred, new_fs);
3335 	if (err)
3336 		goto bad_unshare_cleanup_cred;
3337 
3338 	if (new_cred) {
3339 		err = set_cred_ucounts(new_cred);
3340 		if (err)
3341 			goto bad_unshare_cleanup_cred;
3342 	}
3343 
3344 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3345 		if (do_sysvsem) {
3346 			/*
3347 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3348 			 */
3349 			exit_sem(current);
3350 		}
3351 		if (unshare_flags & CLONE_NEWIPC) {
3352 			/* Orphan segments in old ns (see sem above). */
3353 			exit_shm(current);
3354 			shm_init_task(current);
3355 		}
3356 
3357 		if (new_nsproxy)
3358 			switch_task_namespaces(current, new_nsproxy);
3359 
3360 		task_lock(current);
3361 
3362 		if (new_fs) {
3363 			fs = current->fs;
3364 			spin_lock(&fs->lock);
3365 			current->fs = new_fs;
3366 			if (--fs->users)
3367 				new_fs = NULL;
3368 			else
3369 				new_fs = fs;
3370 			spin_unlock(&fs->lock);
3371 		}
3372 
3373 		if (new_fd)
3374 			swap(current->files, new_fd);
3375 
3376 		task_unlock(current);
3377 
3378 		if (new_cred) {
3379 			/* Install the new user namespace */
3380 			commit_creds(new_cred);
3381 			new_cred = NULL;
3382 		}
3383 	}
3384 
3385 	perf_event_namespaces(current);
3386 
3387 bad_unshare_cleanup_cred:
3388 	if (new_cred)
3389 		put_cred(new_cred);
3390 bad_unshare_cleanup_fd:
3391 	if (new_fd)
3392 		put_files_struct(new_fd);
3393 
3394 bad_unshare_cleanup_fs:
3395 	if (new_fs)
3396 		free_fs_struct(new_fs);
3397 
3398 bad_unshare_out:
3399 	return err;
3400 }
3401 
3402 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3403 {
3404 	return ksys_unshare(unshare_flags);
3405 }
3406 
3407 /*
3408  *	Helper to unshare the files of the current task.
3409  *	We don't want to expose copy_files internals to
3410  *	the exec layer of the kernel.
3411  */
3412 
3413 int unshare_files(void)
3414 {
3415 	struct task_struct *task = current;
3416 	struct files_struct *old, *copy = NULL;
3417 	int error;
3418 
3419 	error = unshare_fd(CLONE_FILES, &copy);
3420 	if (error || !copy)
3421 		return error;
3422 
3423 	old = task->files;
3424 	task_lock(task);
3425 	task->files = copy;
3426 	task_unlock(task);
3427 	put_files_struct(old);
3428 	return 0;
3429 }
3430 
3431 int sysctl_max_threads(const struct ctl_table *table, int write,
3432 		       void *buffer, size_t *lenp, loff_t *ppos)
3433 {
3434 	struct ctl_table t;
3435 	int ret;
3436 	int threads = max_threads;
3437 	int min = 1;
3438 	int max = MAX_THREADS;
3439 
3440 	t = *table;
3441 	t.data = &threads;
3442 	t.extra1 = &min;
3443 	t.extra2 = &max;
3444 
3445 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3446 	if (ret || !write)
3447 		return ret;
3448 
3449 	max_threads = threads;
3450 
3451 	return 0;
3452 }
3453