xref: /linux/kernel/fork.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/smp_lock.h>
18 #include <linux/module.h>
19 #include <linux/vmalloc.h>
20 #include <linux/completion.h>
21 #include <linux/namespace.h>
22 #include <linux/personality.h>
23 #include <linux/mempolicy.h>
24 #include <linux/sem.h>
25 #include <linux/file.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/fs.h>
30 #include <linux/capability.h>
31 #include <linux/cpu.h>
32 #include <linux/cpuset.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/rcupdate.h>
39 #include <linux/ptrace.h>
40 #include <linux/mount.h>
41 #include <linux/audit.h>
42 #include <linux/profile.h>
43 #include <linux/rmap.h>
44 #include <linux/acct.h>
45 #include <linux/cn_proc.h>
46 
47 #include <asm/pgtable.h>
48 #include <asm/pgalloc.h>
49 #include <asm/uaccess.h>
50 #include <asm/mmu_context.h>
51 #include <asm/cacheflush.h>
52 #include <asm/tlbflush.h>
53 
54 /*
55  * Protected counters by write_lock_irq(&tasklist_lock)
56  */
57 unsigned long total_forks;	/* Handle normal Linux uptimes. */
58 int nr_threads; 		/* The idle threads do not count.. */
59 
60 int max_threads;		/* tunable limit on nr_threads */
61 
62 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
63 
64  __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
65 
66 EXPORT_SYMBOL(tasklist_lock);
67 
68 int nr_processes(void)
69 {
70 	int cpu;
71 	int total = 0;
72 
73 	for_each_online_cpu(cpu)
74 		total += per_cpu(process_counts, cpu);
75 
76 	return total;
77 }
78 
79 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
80 # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
81 # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
82 static kmem_cache_t *task_struct_cachep;
83 #endif
84 
85 /* SLAB cache for signal_struct structures (tsk->signal) */
86 static kmem_cache_t *signal_cachep;
87 
88 /* SLAB cache for sighand_struct structures (tsk->sighand) */
89 kmem_cache_t *sighand_cachep;
90 
91 /* SLAB cache for files_struct structures (tsk->files) */
92 kmem_cache_t *files_cachep;
93 
94 /* SLAB cache for fs_struct structures (tsk->fs) */
95 kmem_cache_t *fs_cachep;
96 
97 /* SLAB cache for vm_area_struct structures */
98 kmem_cache_t *vm_area_cachep;
99 
100 /* SLAB cache for mm_struct structures (tsk->mm) */
101 static kmem_cache_t *mm_cachep;
102 
103 void free_task(struct task_struct *tsk)
104 {
105 	free_thread_info(tsk->thread_info);
106 	rt_mutex_debug_task_free(tsk);
107 	free_task_struct(tsk);
108 }
109 EXPORT_SYMBOL(free_task);
110 
111 void __put_task_struct(struct task_struct *tsk)
112 {
113 	WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
114 	WARN_ON(atomic_read(&tsk->usage));
115 	WARN_ON(tsk == current);
116 
117 	security_task_free(tsk);
118 	free_uid(tsk->user);
119 	put_group_info(tsk->group_info);
120 
121 	if (!profile_handoff_task(tsk))
122 		free_task(tsk);
123 }
124 
125 void __init fork_init(unsigned long mempages)
126 {
127 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
128 #ifndef ARCH_MIN_TASKALIGN
129 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
130 #endif
131 	/* create a slab on which task_structs can be allocated */
132 	task_struct_cachep =
133 		kmem_cache_create("task_struct", sizeof(struct task_struct),
134 			ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
135 #endif
136 
137 	/*
138 	 * The default maximum number of threads is set to a safe
139 	 * value: the thread structures can take up at most half
140 	 * of memory.
141 	 */
142 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
143 
144 	/*
145 	 * we need to allow at least 20 threads to boot a system
146 	 */
147 	if(max_threads < 20)
148 		max_threads = 20;
149 
150 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
151 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
152 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
153 		init_task.signal->rlim[RLIMIT_NPROC];
154 }
155 
156 static struct task_struct *dup_task_struct(struct task_struct *orig)
157 {
158 	struct task_struct *tsk;
159 	struct thread_info *ti;
160 
161 	prepare_to_copy(orig);
162 
163 	tsk = alloc_task_struct();
164 	if (!tsk)
165 		return NULL;
166 
167 	ti = alloc_thread_info(tsk);
168 	if (!ti) {
169 		free_task_struct(tsk);
170 		return NULL;
171 	}
172 
173 	*tsk = *orig;
174 	tsk->thread_info = ti;
175 	setup_thread_stack(tsk, orig);
176 
177 	/* One for us, one for whoever does the "release_task()" (usually parent) */
178 	atomic_set(&tsk->usage,2);
179 	atomic_set(&tsk->fs_excl, 0);
180 	tsk->btrace_seq = 0;
181 	tsk->splice_pipe = NULL;
182 	return tsk;
183 }
184 
185 #ifdef CONFIG_MMU
186 static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
187 {
188 	struct vm_area_struct *mpnt, *tmp, **pprev;
189 	struct rb_node **rb_link, *rb_parent;
190 	int retval;
191 	unsigned long charge;
192 	struct mempolicy *pol;
193 
194 	down_write(&oldmm->mmap_sem);
195 	flush_cache_mm(oldmm);
196 	/*
197 	 * Not linked in yet - no deadlock potential:
198 	 */
199 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
200 
201 	mm->locked_vm = 0;
202 	mm->mmap = NULL;
203 	mm->mmap_cache = NULL;
204 	mm->free_area_cache = oldmm->mmap_base;
205 	mm->cached_hole_size = ~0UL;
206 	mm->map_count = 0;
207 	cpus_clear(mm->cpu_vm_mask);
208 	mm->mm_rb = RB_ROOT;
209 	rb_link = &mm->mm_rb.rb_node;
210 	rb_parent = NULL;
211 	pprev = &mm->mmap;
212 
213 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
214 		struct file *file;
215 
216 		if (mpnt->vm_flags & VM_DONTCOPY) {
217 			long pages = vma_pages(mpnt);
218 			mm->total_vm -= pages;
219 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
220 								-pages);
221 			continue;
222 		}
223 		charge = 0;
224 		if (mpnt->vm_flags & VM_ACCOUNT) {
225 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
226 			if (security_vm_enough_memory(len))
227 				goto fail_nomem;
228 			charge = len;
229 		}
230 		tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
231 		if (!tmp)
232 			goto fail_nomem;
233 		*tmp = *mpnt;
234 		pol = mpol_copy(vma_policy(mpnt));
235 		retval = PTR_ERR(pol);
236 		if (IS_ERR(pol))
237 			goto fail_nomem_policy;
238 		vma_set_policy(tmp, pol);
239 		tmp->vm_flags &= ~VM_LOCKED;
240 		tmp->vm_mm = mm;
241 		tmp->vm_next = NULL;
242 		anon_vma_link(tmp);
243 		file = tmp->vm_file;
244 		if (file) {
245 			struct inode *inode = file->f_dentry->d_inode;
246 			get_file(file);
247 			if (tmp->vm_flags & VM_DENYWRITE)
248 				atomic_dec(&inode->i_writecount);
249 
250 			/* insert tmp into the share list, just after mpnt */
251 			spin_lock(&file->f_mapping->i_mmap_lock);
252 			tmp->vm_truncate_count = mpnt->vm_truncate_count;
253 			flush_dcache_mmap_lock(file->f_mapping);
254 			vma_prio_tree_add(tmp, mpnt);
255 			flush_dcache_mmap_unlock(file->f_mapping);
256 			spin_unlock(&file->f_mapping->i_mmap_lock);
257 		}
258 
259 		/*
260 		 * Link in the new vma and copy the page table entries.
261 		 */
262 		*pprev = tmp;
263 		pprev = &tmp->vm_next;
264 
265 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
266 		rb_link = &tmp->vm_rb.rb_right;
267 		rb_parent = &tmp->vm_rb;
268 
269 		mm->map_count++;
270 		retval = copy_page_range(mm, oldmm, mpnt);
271 
272 		if (tmp->vm_ops && tmp->vm_ops->open)
273 			tmp->vm_ops->open(tmp);
274 
275 		if (retval)
276 			goto out;
277 	}
278 	retval = 0;
279 out:
280 	up_write(&mm->mmap_sem);
281 	flush_tlb_mm(oldmm);
282 	up_write(&oldmm->mmap_sem);
283 	return retval;
284 fail_nomem_policy:
285 	kmem_cache_free(vm_area_cachep, tmp);
286 fail_nomem:
287 	retval = -ENOMEM;
288 	vm_unacct_memory(charge);
289 	goto out;
290 }
291 
292 static inline int mm_alloc_pgd(struct mm_struct * mm)
293 {
294 	mm->pgd = pgd_alloc(mm);
295 	if (unlikely(!mm->pgd))
296 		return -ENOMEM;
297 	return 0;
298 }
299 
300 static inline void mm_free_pgd(struct mm_struct * mm)
301 {
302 	pgd_free(mm->pgd);
303 }
304 #else
305 #define dup_mmap(mm, oldmm)	(0)
306 #define mm_alloc_pgd(mm)	(0)
307 #define mm_free_pgd(mm)
308 #endif /* CONFIG_MMU */
309 
310  __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
311 
312 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
313 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
314 
315 #include <linux/init_task.h>
316 
317 static struct mm_struct * mm_init(struct mm_struct * mm)
318 {
319 	atomic_set(&mm->mm_users, 1);
320 	atomic_set(&mm->mm_count, 1);
321 	init_rwsem(&mm->mmap_sem);
322 	INIT_LIST_HEAD(&mm->mmlist);
323 	mm->core_waiters = 0;
324 	mm->nr_ptes = 0;
325 	set_mm_counter(mm, file_rss, 0);
326 	set_mm_counter(mm, anon_rss, 0);
327 	spin_lock_init(&mm->page_table_lock);
328 	rwlock_init(&mm->ioctx_list_lock);
329 	mm->ioctx_list = NULL;
330 	mm->free_area_cache = TASK_UNMAPPED_BASE;
331 	mm->cached_hole_size = ~0UL;
332 
333 	if (likely(!mm_alloc_pgd(mm))) {
334 		mm->def_flags = 0;
335 		return mm;
336 	}
337 	free_mm(mm);
338 	return NULL;
339 }
340 
341 /*
342  * Allocate and initialize an mm_struct.
343  */
344 struct mm_struct * mm_alloc(void)
345 {
346 	struct mm_struct * mm;
347 
348 	mm = allocate_mm();
349 	if (mm) {
350 		memset(mm, 0, sizeof(*mm));
351 		mm = mm_init(mm);
352 	}
353 	return mm;
354 }
355 
356 /*
357  * Called when the last reference to the mm
358  * is dropped: either by a lazy thread or by
359  * mmput. Free the page directory and the mm.
360  */
361 void fastcall __mmdrop(struct mm_struct *mm)
362 {
363 	BUG_ON(mm == &init_mm);
364 	mm_free_pgd(mm);
365 	destroy_context(mm);
366 	free_mm(mm);
367 }
368 
369 /*
370  * Decrement the use count and release all resources for an mm.
371  */
372 void mmput(struct mm_struct *mm)
373 {
374 	might_sleep();
375 
376 	if (atomic_dec_and_test(&mm->mm_users)) {
377 		exit_aio(mm);
378 		exit_mmap(mm);
379 		if (!list_empty(&mm->mmlist)) {
380 			spin_lock(&mmlist_lock);
381 			list_del(&mm->mmlist);
382 			spin_unlock(&mmlist_lock);
383 		}
384 		put_swap_token(mm);
385 		mmdrop(mm);
386 	}
387 }
388 EXPORT_SYMBOL_GPL(mmput);
389 
390 /**
391  * get_task_mm - acquire a reference to the task's mm
392  *
393  * Returns %NULL if the task has no mm.  Checks PF_BORROWED_MM (meaning
394  * this kernel workthread has transiently adopted a user mm with use_mm,
395  * to do its AIO) is not set and if so returns a reference to it, after
396  * bumping up the use count.  User must release the mm via mmput()
397  * after use.  Typically used by /proc and ptrace.
398  */
399 struct mm_struct *get_task_mm(struct task_struct *task)
400 {
401 	struct mm_struct *mm;
402 
403 	task_lock(task);
404 	mm = task->mm;
405 	if (mm) {
406 		if (task->flags & PF_BORROWED_MM)
407 			mm = NULL;
408 		else
409 			atomic_inc(&mm->mm_users);
410 	}
411 	task_unlock(task);
412 	return mm;
413 }
414 EXPORT_SYMBOL_GPL(get_task_mm);
415 
416 /* Please note the differences between mmput and mm_release.
417  * mmput is called whenever we stop holding onto a mm_struct,
418  * error success whatever.
419  *
420  * mm_release is called after a mm_struct has been removed
421  * from the current process.
422  *
423  * This difference is important for error handling, when we
424  * only half set up a mm_struct for a new process and need to restore
425  * the old one.  Because we mmput the new mm_struct before
426  * restoring the old one. . .
427  * Eric Biederman 10 January 1998
428  */
429 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
430 {
431 	struct completion *vfork_done = tsk->vfork_done;
432 
433 	/* Get rid of any cached register state */
434 	deactivate_mm(tsk, mm);
435 
436 	/* notify parent sleeping on vfork() */
437 	if (vfork_done) {
438 		tsk->vfork_done = NULL;
439 		complete(vfork_done);
440 	}
441 	if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
442 		u32 __user * tidptr = tsk->clear_child_tid;
443 		tsk->clear_child_tid = NULL;
444 
445 		/*
446 		 * We don't check the error code - if userspace has
447 		 * not set up a proper pointer then tough luck.
448 		 */
449 		put_user(0, tidptr);
450 		sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
451 	}
452 }
453 
454 /*
455  * Allocate a new mm structure and copy contents from the
456  * mm structure of the passed in task structure.
457  */
458 static struct mm_struct *dup_mm(struct task_struct *tsk)
459 {
460 	struct mm_struct *mm, *oldmm = current->mm;
461 	int err;
462 
463 	if (!oldmm)
464 		return NULL;
465 
466 	mm = allocate_mm();
467 	if (!mm)
468 		goto fail_nomem;
469 
470 	memcpy(mm, oldmm, sizeof(*mm));
471 
472 	if (!mm_init(mm))
473 		goto fail_nomem;
474 
475 	if (init_new_context(tsk, mm))
476 		goto fail_nocontext;
477 
478 	err = dup_mmap(mm, oldmm);
479 	if (err)
480 		goto free_pt;
481 
482 	mm->hiwater_rss = get_mm_rss(mm);
483 	mm->hiwater_vm = mm->total_vm;
484 
485 	return mm;
486 
487 free_pt:
488 	mmput(mm);
489 
490 fail_nomem:
491 	return NULL;
492 
493 fail_nocontext:
494 	/*
495 	 * If init_new_context() failed, we cannot use mmput() to free the mm
496 	 * because it calls destroy_context()
497 	 */
498 	mm_free_pgd(mm);
499 	free_mm(mm);
500 	return NULL;
501 }
502 
503 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
504 {
505 	struct mm_struct * mm, *oldmm;
506 	int retval;
507 
508 	tsk->min_flt = tsk->maj_flt = 0;
509 	tsk->nvcsw = tsk->nivcsw = 0;
510 
511 	tsk->mm = NULL;
512 	tsk->active_mm = NULL;
513 
514 	/*
515 	 * Are we cloning a kernel thread?
516 	 *
517 	 * We need to steal a active VM for that..
518 	 */
519 	oldmm = current->mm;
520 	if (!oldmm)
521 		return 0;
522 
523 	if (clone_flags & CLONE_VM) {
524 		atomic_inc(&oldmm->mm_users);
525 		mm = oldmm;
526 		goto good_mm;
527 	}
528 
529 	retval = -ENOMEM;
530 	mm = dup_mm(tsk);
531 	if (!mm)
532 		goto fail_nomem;
533 
534 good_mm:
535 	tsk->mm = mm;
536 	tsk->active_mm = mm;
537 	return 0;
538 
539 fail_nomem:
540 	return retval;
541 }
542 
543 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
544 {
545 	struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
546 	/* We don't need to lock fs - think why ;-) */
547 	if (fs) {
548 		atomic_set(&fs->count, 1);
549 		rwlock_init(&fs->lock);
550 		fs->umask = old->umask;
551 		read_lock(&old->lock);
552 		fs->rootmnt = mntget(old->rootmnt);
553 		fs->root = dget(old->root);
554 		fs->pwdmnt = mntget(old->pwdmnt);
555 		fs->pwd = dget(old->pwd);
556 		if (old->altroot) {
557 			fs->altrootmnt = mntget(old->altrootmnt);
558 			fs->altroot = dget(old->altroot);
559 		} else {
560 			fs->altrootmnt = NULL;
561 			fs->altroot = NULL;
562 		}
563 		read_unlock(&old->lock);
564 	}
565 	return fs;
566 }
567 
568 struct fs_struct *copy_fs_struct(struct fs_struct *old)
569 {
570 	return __copy_fs_struct(old);
571 }
572 
573 EXPORT_SYMBOL_GPL(copy_fs_struct);
574 
575 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
576 {
577 	if (clone_flags & CLONE_FS) {
578 		atomic_inc(&current->fs->count);
579 		return 0;
580 	}
581 	tsk->fs = __copy_fs_struct(current->fs);
582 	if (!tsk->fs)
583 		return -ENOMEM;
584 	return 0;
585 }
586 
587 static int count_open_files(struct fdtable *fdt)
588 {
589 	int size = fdt->max_fdset;
590 	int i;
591 
592 	/* Find the last open fd */
593 	for (i = size/(8*sizeof(long)); i > 0; ) {
594 		if (fdt->open_fds->fds_bits[--i])
595 			break;
596 	}
597 	i = (i+1) * 8 * sizeof(long);
598 	return i;
599 }
600 
601 static struct files_struct *alloc_files(void)
602 {
603 	struct files_struct *newf;
604 	struct fdtable *fdt;
605 
606 	newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
607 	if (!newf)
608 		goto out;
609 
610 	atomic_set(&newf->count, 1);
611 
612 	spin_lock_init(&newf->file_lock);
613 	newf->next_fd = 0;
614 	fdt = &newf->fdtab;
615 	fdt->max_fds = NR_OPEN_DEFAULT;
616 	fdt->max_fdset = EMBEDDED_FD_SET_SIZE;
617 	fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
618 	fdt->open_fds = (fd_set *)&newf->open_fds_init;
619 	fdt->fd = &newf->fd_array[0];
620 	INIT_RCU_HEAD(&fdt->rcu);
621 	fdt->free_files = NULL;
622 	fdt->next = NULL;
623 	rcu_assign_pointer(newf->fdt, fdt);
624 out:
625 	return newf;
626 }
627 
628 /*
629  * Allocate a new files structure and copy contents from the
630  * passed in files structure.
631  * errorp will be valid only when the returned files_struct is NULL.
632  */
633 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
634 {
635 	struct files_struct *newf;
636 	struct file **old_fds, **new_fds;
637 	int open_files, size, i, expand;
638 	struct fdtable *old_fdt, *new_fdt;
639 
640 	*errorp = -ENOMEM;
641 	newf = alloc_files();
642 	if (!newf)
643 		goto out;
644 
645 	spin_lock(&oldf->file_lock);
646 	old_fdt = files_fdtable(oldf);
647 	new_fdt = files_fdtable(newf);
648 	size = old_fdt->max_fdset;
649 	open_files = count_open_files(old_fdt);
650 	expand = 0;
651 
652 	/*
653 	 * Check whether we need to allocate a larger fd array or fd set.
654 	 * Note: we're not a clone task, so the open count won't  change.
655 	 */
656 	if (open_files > new_fdt->max_fdset) {
657 		new_fdt->max_fdset = 0;
658 		expand = 1;
659 	}
660 	if (open_files > new_fdt->max_fds) {
661 		new_fdt->max_fds = 0;
662 		expand = 1;
663 	}
664 
665 	/* if the old fdset gets grown now, we'll only copy up to "size" fds */
666 	if (expand) {
667 		spin_unlock(&oldf->file_lock);
668 		spin_lock(&newf->file_lock);
669 		*errorp = expand_files(newf, open_files-1);
670 		spin_unlock(&newf->file_lock);
671 		if (*errorp < 0)
672 			goto out_release;
673 		new_fdt = files_fdtable(newf);
674 		/*
675 		 * Reacquire the oldf lock and a pointer to its fd table
676 		 * who knows it may have a new bigger fd table. We need
677 		 * the latest pointer.
678 		 */
679 		spin_lock(&oldf->file_lock);
680 		old_fdt = files_fdtable(oldf);
681 	}
682 
683 	old_fds = old_fdt->fd;
684 	new_fds = new_fdt->fd;
685 
686 	memcpy(new_fdt->open_fds->fds_bits, old_fdt->open_fds->fds_bits, open_files/8);
687 	memcpy(new_fdt->close_on_exec->fds_bits, old_fdt->close_on_exec->fds_bits, open_files/8);
688 
689 	for (i = open_files; i != 0; i--) {
690 		struct file *f = *old_fds++;
691 		if (f) {
692 			get_file(f);
693 		} else {
694 			/*
695 			 * The fd may be claimed in the fd bitmap but not yet
696 			 * instantiated in the files array if a sibling thread
697 			 * is partway through open().  So make sure that this
698 			 * fd is available to the new process.
699 			 */
700 			FD_CLR(open_files - i, new_fdt->open_fds);
701 		}
702 		rcu_assign_pointer(*new_fds++, f);
703 	}
704 	spin_unlock(&oldf->file_lock);
705 
706 	/* compute the remainder to be cleared */
707 	size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
708 
709 	/* This is long word aligned thus could use a optimized version */
710 	memset(new_fds, 0, size);
711 
712 	if (new_fdt->max_fdset > open_files) {
713 		int left = (new_fdt->max_fdset-open_files)/8;
714 		int start = open_files / (8 * sizeof(unsigned long));
715 
716 		memset(&new_fdt->open_fds->fds_bits[start], 0, left);
717 		memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
718 	}
719 
720 out:
721 	return newf;
722 
723 out_release:
724 	free_fdset (new_fdt->close_on_exec, new_fdt->max_fdset);
725 	free_fdset (new_fdt->open_fds, new_fdt->max_fdset);
726 	free_fd_array(new_fdt->fd, new_fdt->max_fds);
727 	kmem_cache_free(files_cachep, newf);
728 	return NULL;
729 }
730 
731 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
732 {
733 	struct files_struct *oldf, *newf;
734 	int error = 0;
735 
736 	/*
737 	 * A background process may not have any files ...
738 	 */
739 	oldf = current->files;
740 	if (!oldf)
741 		goto out;
742 
743 	if (clone_flags & CLONE_FILES) {
744 		atomic_inc(&oldf->count);
745 		goto out;
746 	}
747 
748 	/*
749 	 * Note: we may be using current for both targets (See exec.c)
750 	 * This works because we cache current->files (old) as oldf. Don't
751 	 * break this.
752 	 */
753 	tsk->files = NULL;
754 	newf = dup_fd(oldf, &error);
755 	if (!newf)
756 		goto out;
757 
758 	tsk->files = newf;
759 	error = 0;
760 out:
761 	return error;
762 }
763 
764 /*
765  *	Helper to unshare the files of the current task.
766  *	We don't want to expose copy_files internals to
767  *	the exec layer of the kernel.
768  */
769 
770 int unshare_files(void)
771 {
772 	struct files_struct *files  = current->files;
773 	int rc;
774 
775 	BUG_ON(!files);
776 
777 	/* This can race but the race causes us to copy when we don't
778 	   need to and drop the copy */
779 	if(atomic_read(&files->count) == 1)
780 	{
781 		atomic_inc(&files->count);
782 		return 0;
783 	}
784 	rc = copy_files(0, current);
785 	if(rc)
786 		current->files = files;
787 	return rc;
788 }
789 
790 EXPORT_SYMBOL(unshare_files);
791 
792 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
793 {
794 	struct sighand_struct *sig;
795 
796 	if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
797 		atomic_inc(&current->sighand->count);
798 		return 0;
799 	}
800 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
801 	rcu_assign_pointer(tsk->sighand, sig);
802 	if (!sig)
803 		return -ENOMEM;
804 	atomic_set(&sig->count, 1);
805 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
806 	return 0;
807 }
808 
809 void __cleanup_sighand(struct sighand_struct *sighand)
810 {
811 	if (atomic_dec_and_test(&sighand->count))
812 		kmem_cache_free(sighand_cachep, sighand);
813 }
814 
815 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
816 {
817 	struct signal_struct *sig;
818 	int ret;
819 
820 	if (clone_flags & CLONE_THREAD) {
821 		atomic_inc(&current->signal->count);
822 		atomic_inc(&current->signal->live);
823 		return 0;
824 	}
825 	sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
826 	tsk->signal = sig;
827 	if (!sig)
828 		return -ENOMEM;
829 
830 	ret = copy_thread_group_keys(tsk);
831 	if (ret < 0) {
832 		kmem_cache_free(signal_cachep, sig);
833 		return ret;
834 	}
835 
836 	atomic_set(&sig->count, 1);
837 	atomic_set(&sig->live, 1);
838 	init_waitqueue_head(&sig->wait_chldexit);
839 	sig->flags = 0;
840 	sig->group_exit_code = 0;
841 	sig->group_exit_task = NULL;
842 	sig->group_stop_count = 0;
843 	sig->curr_target = NULL;
844 	init_sigpending(&sig->shared_pending);
845 	INIT_LIST_HEAD(&sig->posix_timers);
846 
847 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_REL);
848 	sig->it_real_incr.tv64 = 0;
849 	sig->real_timer.function = it_real_fn;
850 	sig->tsk = tsk;
851 
852 	sig->it_virt_expires = cputime_zero;
853 	sig->it_virt_incr = cputime_zero;
854 	sig->it_prof_expires = cputime_zero;
855 	sig->it_prof_incr = cputime_zero;
856 
857 	sig->leader = 0;	/* session leadership doesn't inherit */
858 	sig->tty_old_pgrp = 0;
859 
860 	sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
861 	sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
862 	sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
863 	sig->sched_time = 0;
864 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
865 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
866 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
867 
868 	task_lock(current->group_leader);
869 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
870 	task_unlock(current->group_leader);
871 
872 	if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
873 		/*
874 		 * New sole thread in the process gets an expiry time
875 		 * of the whole CPU time limit.
876 		 */
877 		tsk->it_prof_expires =
878 			secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
879 	}
880 	acct_init_pacct(&sig->pacct);
881 
882 	return 0;
883 }
884 
885 void __cleanup_signal(struct signal_struct *sig)
886 {
887 	exit_thread_group_keys(sig);
888 	kmem_cache_free(signal_cachep, sig);
889 }
890 
891 static inline void cleanup_signal(struct task_struct *tsk)
892 {
893 	struct signal_struct *sig = tsk->signal;
894 
895 	atomic_dec(&sig->live);
896 
897 	if (atomic_dec_and_test(&sig->count))
898 		__cleanup_signal(sig);
899 }
900 
901 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
902 {
903 	unsigned long new_flags = p->flags;
904 
905 	new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE);
906 	new_flags |= PF_FORKNOEXEC;
907 	if (!(clone_flags & CLONE_PTRACE))
908 		p->ptrace = 0;
909 	p->flags = new_flags;
910 }
911 
912 asmlinkage long sys_set_tid_address(int __user *tidptr)
913 {
914 	current->clear_child_tid = tidptr;
915 
916 	return current->pid;
917 }
918 
919 static inline void rt_mutex_init_task(struct task_struct *p)
920 {
921 #ifdef CONFIG_RT_MUTEXES
922 	spin_lock_init(&p->pi_lock);
923 	plist_head_init(&p->pi_waiters, &p->pi_lock);
924 	p->pi_blocked_on = NULL;
925 #endif
926 }
927 
928 /*
929  * This creates a new process as a copy of the old one,
930  * but does not actually start it yet.
931  *
932  * It copies the registers, and all the appropriate
933  * parts of the process environment (as per the clone
934  * flags). The actual kick-off is left to the caller.
935  */
936 static struct task_struct *copy_process(unsigned long clone_flags,
937 					unsigned long stack_start,
938 					struct pt_regs *regs,
939 					unsigned long stack_size,
940 					int __user *parent_tidptr,
941 					int __user *child_tidptr,
942 					int pid)
943 {
944 	int retval;
945 	struct task_struct *p = NULL;
946 
947 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
948 		return ERR_PTR(-EINVAL);
949 
950 	/*
951 	 * Thread groups must share signals as well, and detached threads
952 	 * can only be started up within the thread group.
953 	 */
954 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
955 		return ERR_PTR(-EINVAL);
956 
957 	/*
958 	 * Shared signal handlers imply shared VM. By way of the above,
959 	 * thread groups also imply shared VM. Blocking this case allows
960 	 * for various simplifications in other code.
961 	 */
962 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
963 		return ERR_PTR(-EINVAL);
964 
965 	retval = security_task_create(clone_flags);
966 	if (retval)
967 		goto fork_out;
968 
969 	retval = -ENOMEM;
970 	p = dup_task_struct(current);
971 	if (!p)
972 		goto fork_out;
973 
974 #ifdef CONFIG_TRACE_IRQFLAGS
975 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
976 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
977 #endif
978 	retval = -EAGAIN;
979 	if (atomic_read(&p->user->processes) >=
980 			p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
981 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
982 				p->user != &root_user)
983 			goto bad_fork_free;
984 	}
985 
986 	atomic_inc(&p->user->__count);
987 	atomic_inc(&p->user->processes);
988 	get_group_info(p->group_info);
989 
990 	/*
991 	 * If multiple threads are within copy_process(), then this check
992 	 * triggers too late. This doesn't hurt, the check is only there
993 	 * to stop root fork bombs.
994 	 */
995 	if (nr_threads >= max_threads)
996 		goto bad_fork_cleanup_count;
997 
998 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
999 		goto bad_fork_cleanup_count;
1000 
1001 	if (p->binfmt && !try_module_get(p->binfmt->module))
1002 		goto bad_fork_cleanup_put_domain;
1003 
1004 	p->did_exec = 0;
1005 	copy_flags(clone_flags, p);
1006 	p->pid = pid;
1007 	retval = -EFAULT;
1008 	if (clone_flags & CLONE_PARENT_SETTID)
1009 		if (put_user(p->pid, parent_tidptr))
1010 			goto bad_fork_cleanup;
1011 
1012 	INIT_LIST_HEAD(&p->children);
1013 	INIT_LIST_HEAD(&p->sibling);
1014 	p->vfork_done = NULL;
1015 	spin_lock_init(&p->alloc_lock);
1016 
1017 	clear_tsk_thread_flag(p, TIF_SIGPENDING);
1018 	init_sigpending(&p->pending);
1019 
1020 	p->utime = cputime_zero;
1021 	p->stime = cputime_zero;
1022  	p->sched_time = 0;
1023 	p->rchar = 0;		/* I/O counter: bytes read */
1024 	p->wchar = 0;		/* I/O counter: bytes written */
1025 	p->syscr = 0;		/* I/O counter: read syscalls */
1026 	p->syscw = 0;		/* I/O counter: write syscalls */
1027 	acct_clear_integrals(p);
1028 
1029  	p->it_virt_expires = cputime_zero;
1030 	p->it_prof_expires = cputime_zero;
1031  	p->it_sched_expires = 0;
1032  	INIT_LIST_HEAD(&p->cpu_timers[0]);
1033  	INIT_LIST_HEAD(&p->cpu_timers[1]);
1034  	INIT_LIST_HEAD(&p->cpu_timers[2]);
1035 
1036 	p->lock_depth = -1;		/* -1 = no lock */
1037 	do_posix_clock_monotonic_gettime(&p->start_time);
1038 	p->security = NULL;
1039 	p->io_context = NULL;
1040 	p->io_wait = NULL;
1041 	p->audit_context = NULL;
1042 	cpuset_fork(p);
1043 #ifdef CONFIG_NUMA
1044  	p->mempolicy = mpol_copy(p->mempolicy);
1045  	if (IS_ERR(p->mempolicy)) {
1046  		retval = PTR_ERR(p->mempolicy);
1047  		p->mempolicy = NULL;
1048  		goto bad_fork_cleanup_cpuset;
1049  	}
1050 	mpol_fix_fork_child_flag(p);
1051 #endif
1052 #ifdef CONFIG_TRACE_IRQFLAGS
1053 	p->irq_events = 0;
1054 	p->hardirqs_enabled = 0;
1055 	p->hardirq_enable_ip = 0;
1056 	p->hardirq_enable_event = 0;
1057 	p->hardirq_disable_ip = _THIS_IP_;
1058 	p->hardirq_disable_event = 0;
1059 	p->softirqs_enabled = 1;
1060 	p->softirq_enable_ip = _THIS_IP_;
1061 	p->softirq_enable_event = 0;
1062 	p->softirq_disable_ip = 0;
1063 	p->softirq_disable_event = 0;
1064 	p->hardirq_context = 0;
1065 	p->softirq_context = 0;
1066 #endif
1067 #ifdef CONFIG_LOCKDEP
1068 	p->lockdep_depth = 0; /* no locks held yet */
1069 	p->curr_chain_key = 0;
1070 	p->lockdep_recursion = 0;
1071 #endif
1072 
1073 	rt_mutex_init_task(p);
1074 
1075 #ifdef CONFIG_DEBUG_MUTEXES
1076 	p->blocked_on = NULL; /* not blocked yet */
1077 #endif
1078 
1079 	p->tgid = p->pid;
1080 	if (clone_flags & CLONE_THREAD)
1081 		p->tgid = current->tgid;
1082 
1083 	if ((retval = security_task_alloc(p)))
1084 		goto bad_fork_cleanup_policy;
1085 	if ((retval = audit_alloc(p)))
1086 		goto bad_fork_cleanup_security;
1087 	/* copy all the process information */
1088 	if ((retval = copy_semundo(clone_flags, p)))
1089 		goto bad_fork_cleanup_audit;
1090 	if ((retval = copy_files(clone_flags, p)))
1091 		goto bad_fork_cleanup_semundo;
1092 	if ((retval = copy_fs(clone_flags, p)))
1093 		goto bad_fork_cleanup_files;
1094 	if ((retval = copy_sighand(clone_flags, p)))
1095 		goto bad_fork_cleanup_fs;
1096 	if ((retval = copy_signal(clone_flags, p)))
1097 		goto bad_fork_cleanup_sighand;
1098 	if ((retval = copy_mm(clone_flags, p)))
1099 		goto bad_fork_cleanup_signal;
1100 	if ((retval = copy_keys(clone_flags, p)))
1101 		goto bad_fork_cleanup_mm;
1102 	if ((retval = copy_namespace(clone_flags, p)))
1103 		goto bad_fork_cleanup_keys;
1104 	retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1105 	if (retval)
1106 		goto bad_fork_cleanup_namespace;
1107 
1108 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1109 	/*
1110 	 * Clear TID on mm_release()?
1111 	 */
1112 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1113 	p->robust_list = NULL;
1114 #ifdef CONFIG_COMPAT
1115 	p->compat_robust_list = NULL;
1116 #endif
1117 	INIT_LIST_HEAD(&p->pi_state_list);
1118 	p->pi_state_cache = NULL;
1119 
1120 	/*
1121 	 * sigaltstack should be cleared when sharing the same VM
1122 	 */
1123 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1124 		p->sas_ss_sp = p->sas_ss_size = 0;
1125 
1126 	/*
1127 	 * Syscall tracing should be turned off in the child regardless
1128 	 * of CLONE_PTRACE.
1129 	 */
1130 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1131 #ifdef TIF_SYSCALL_EMU
1132 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1133 #endif
1134 
1135 	/* Our parent execution domain becomes current domain
1136 	   These must match for thread signalling to apply */
1137 
1138 	p->parent_exec_id = p->self_exec_id;
1139 
1140 	/* ok, now we should be set up.. */
1141 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1142 	p->pdeath_signal = 0;
1143 	p->exit_state = 0;
1144 
1145 	/*
1146 	 * Ok, make it visible to the rest of the system.
1147 	 * We dont wake it up yet.
1148 	 */
1149 	p->group_leader = p;
1150 	INIT_LIST_HEAD(&p->thread_group);
1151 	INIT_LIST_HEAD(&p->ptrace_children);
1152 	INIT_LIST_HEAD(&p->ptrace_list);
1153 
1154 	/* Perform scheduler related setup. Assign this task to a CPU. */
1155 	sched_fork(p, clone_flags);
1156 
1157 	/* Need tasklist lock for parent etc handling! */
1158 	write_lock_irq(&tasklist_lock);
1159 
1160 	/*
1161 	 * The task hasn't been attached yet, so its cpus_allowed mask will
1162 	 * not be changed, nor will its assigned CPU.
1163 	 *
1164 	 * The cpus_allowed mask of the parent may have changed after it was
1165 	 * copied first time - so re-copy it here, then check the child's CPU
1166 	 * to ensure it is on a valid CPU (and if not, just force it back to
1167 	 * parent's CPU). This avoids alot of nasty races.
1168 	 */
1169 	p->cpus_allowed = current->cpus_allowed;
1170 	if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1171 			!cpu_online(task_cpu(p))))
1172 		set_task_cpu(p, smp_processor_id());
1173 
1174 	/* CLONE_PARENT re-uses the old parent */
1175 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1176 		p->real_parent = current->real_parent;
1177 	else
1178 		p->real_parent = current;
1179 	p->parent = p->real_parent;
1180 
1181 	spin_lock(&current->sighand->siglock);
1182 
1183 	/*
1184 	 * Process group and session signals need to be delivered to just the
1185 	 * parent before the fork or both the parent and the child after the
1186 	 * fork. Restart if a signal comes in before we add the new process to
1187 	 * it's process group.
1188 	 * A fatal signal pending means that current will exit, so the new
1189 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1190  	 */
1191  	recalc_sigpending();
1192 	if (signal_pending(current)) {
1193 		spin_unlock(&current->sighand->siglock);
1194 		write_unlock_irq(&tasklist_lock);
1195 		retval = -ERESTARTNOINTR;
1196 		goto bad_fork_cleanup_namespace;
1197 	}
1198 
1199 	if (clone_flags & CLONE_THREAD) {
1200 		p->group_leader = current->group_leader;
1201 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1202 
1203 		if (!cputime_eq(current->signal->it_virt_expires,
1204 				cputime_zero) ||
1205 		    !cputime_eq(current->signal->it_prof_expires,
1206 				cputime_zero) ||
1207 		    current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1208 		    !list_empty(&current->signal->cpu_timers[0]) ||
1209 		    !list_empty(&current->signal->cpu_timers[1]) ||
1210 		    !list_empty(&current->signal->cpu_timers[2])) {
1211 			/*
1212 			 * Have child wake up on its first tick to check
1213 			 * for process CPU timers.
1214 			 */
1215 			p->it_prof_expires = jiffies_to_cputime(1);
1216 		}
1217 	}
1218 
1219 	/*
1220 	 * inherit ioprio
1221 	 */
1222 	p->ioprio = current->ioprio;
1223 
1224 	if (likely(p->pid)) {
1225 		add_parent(p);
1226 		if (unlikely(p->ptrace & PT_PTRACED))
1227 			__ptrace_link(p, current->parent);
1228 
1229 		if (thread_group_leader(p)) {
1230 			p->signal->tty = current->signal->tty;
1231 			p->signal->pgrp = process_group(current);
1232 			p->signal->session = current->signal->session;
1233 			attach_pid(p, PIDTYPE_PGID, process_group(p));
1234 			attach_pid(p, PIDTYPE_SID, p->signal->session);
1235 
1236 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1237 			__get_cpu_var(process_counts)++;
1238 		}
1239 		attach_pid(p, PIDTYPE_PID, p->pid);
1240 		nr_threads++;
1241 	}
1242 
1243 	total_forks++;
1244 	spin_unlock(&current->sighand->siglock);
1245 	write_unlock_irq(&tasklist_lock);
1246 	proc_fork_connector(p);
1247 	return p;
1248 
1249 bad_fork_cleanup_namespace:
1250 	exit_namespace(p);
1251 bad_fork_cleanup_keys:
1252 	exit_keys(p);
1253 bad_fork_cleanup_mm:
1254 	if (p->mm)
1255 		mmput(p->mm);
1256 bad_fork_cleanup_signal:
1257 	cleanup_signal(p);
1258 bad_fork_cleanup_sighand:
1259 	__cleanup_sighand(p->sighand);
1260 bad_fork_cleanup_fs:
1261 	exit_fs(p); /* blocking */
1262 bad_fork_cleanup_files:
1263 	exit_files(p); /* blocking */
1264 bad_fork_cleanup_semundo:
1265 	exit_sem(p);
1266 bad_fork_cleanup_audit:
1267 	audit_free(p);
1268 bad_fork_cleanup_security:
1269 	security_task_free(p);
1270 bad_fork_cleanup_policy:
1271 #ifdef CONFIG_NUMA
1272 	mpol_free(p->mempolicy);
1273 bad_fork_cleanup_cpuset:
1274 #endif
1275 	cpuset_exit(p);
1276 bad_fork_cleanup:
1277 	if (p->binfmt)
1278 		module_put(p->binfmt->module);
1279 bad_fork_cleanup_put_domain:
1280 	module_put(task_thread_info(p)->exec_domain->module);
1281 bad_fork_cleanup_count:
1282 	put_group_info(p->group_info);
1283 	atomic_dec(&p->user->processes);
1284 	free_uid(p->user);
1285 bad_fork_free:
1286 	free_task(p);
1287 fork_out:
1288 	return ERR_PTR(retval);
1289 }
1290 
1291 struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1292 {
1293 	memset(regs, 0, sizeof(struct pt_regs));
1294 	return regs;
1295 }
1296 
1297 struct task_struct * __devinit fork_idle(int cpu)
1298 {
1299 	struct task_struct *task;
1300 	struct pt_regs regs;
1301 
1302 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1303 	if (!task)
1304 		return ERR_PTR(-ENOMEM);
1305 	init_idle(task, cpu);
1306 
1307 	return task;
1308 }
1309 
1310 static inline int fork_traceflag (unsigned clone_flags)
1311 {
1312 	if (clone_flags & CLONE_UNTRACED)
1313 		return 0;
1314 	else if (clone_flags & CLONE_VFORK) {
1315 		if (current->ptrace & PT_TRACE_VFORK)
1316 			return PTRACE_EVENT_VFORK;
1317 	} else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1318 		if (current->ptrace & PT_TRACE_CLONE)
1319 			return PTRACE_EVENT_CLONE;
1320 	} else if (current->ptrace & PT_TRACE_FORK)
1321 		return PTRACE_EVENT_FORK;
1322 
1323 	return 0;
1324 }
1325 
1326 /*
1327  *  Ok, this is the main fork-routine.
1328  *
1329  * It copies the process, and if successful kick-starts
1330  * it and waits for it to finish using the VM if required.
1331  */
1332 long do_fork(unsigned long clone_flags,
1333 	      unsigned long stack_start,
1334 	      struct pt_regs *regs,
1335 	      unsigned long stack_size,
1336 	      int __user *parent_tidptr,
1337 	      int __user *child_tidptr)
1338 {
1339 	struct task_struct *p;
1340 	int trace = 0;
1341 	struct pid *pid = alloc_pid();
1342 	long nr;
1343 
1344 	if (!pid)
1345 		return -EAGAIN;
1346 	nr = pid->nr;
1347 	if (unlikely(current->ptrace)) {
1348 		trace = fork_traceflag (clone_flags);
1349 		if (trace)
1350 			clone_flags |= CLONE_PTRACE;
1351 	}
1352 
1353 	p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, nr);
1354 	/*
1355 	 * Do this prior waking up the new thread - the thread pointer
1356 	 * might get invalid after that point, if the thread exits quickly.
1357 	 */
1358 	if (!IS_ERR(p)) {
1359 		struct completion vfork;
1360 
1361 		if (clone_flags & CLONE_VFORK) {
1362 			p->vfork_done = &vfork;
1363 			init_completion(&vfork);
1364 		}
1365 
1366 		if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1367 			/*
1368 			 * We'll start up with an immediate SIGSTOP.
1369 			 */
1370 			sigaddset(&p->pending.signal, SIGSTOP);
1371 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1372 		}
1373 
1374 		if (!(clone_flags & CLONE_STOPPED))
1375 			wake_up_new_task(p, clone_flags);
1376 		else
1377 			p->state = TASK_STOPPED;
1378 
1379 		if (unlikely (trace)) {
1380 			current->ptrace_message = nr;
1381 			ptrace_notify ((trace << 8) | SIGTRAP);
1382 		}
1383 
1384 		if (clone_flags & CLONE_VFORK) {
1385 			wait_for_completion(&vfork);
1386 			if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE))
1387 				ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1388 		}
1389 	} else {
1390 		free_pid(pid);
1391 		nr = PTR_ERR(p);
1392 	}
1393 	return nr;
1394 }
1395 
1396 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1397 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1398 #endif
1399 
1400 static void sighand_ctor(void *data, kmem_cache_t *cachep, unsigned long flags)
1401 {
1402 	struct sighand_struct *sighand = data;
1403 
1404 	if ((flags & (SLAB_CTOR_VERIFY | SLAB_CTOR_CONSTRUCTOR)) ==
1405 					SLAB_CTOR_CONSTRUCTOR)
1406 		spin_lock_init(&sighand->siglock);
1407 }
1408 
1409 void __init proc_caches_init(void)
1410 {
1411 	sighand_cachep = kmem_cache_create("sighand_cache",
1412 			sizeof(struct sighand_struct), 0,
1413 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1414 			sighand_ctor, NULL);
1415 	signal_cachep = kmem_cache_create("signal_cache",
1416 			sizeof(struct signal_struct), 0,
1417 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1418 	files_cachep = kmem_cache_create("files_cache",
1419 			sizeof(struct files_struct), 0,
1420 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1421 	fs_cachep = kmem_cache_create("fs_cache",
1422 			sizeof(struct fs_struct), 0,
1423 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1424 	vm_area_cachep = kmem_cache_create("vm_area_struct",
1425 			sizeof(struct vm_area_struct), 0,
1426 			SLAB_PANIC, NULL, NULL);
1427 	mm_cachep = kmem_cache_create("mm_struct",
1428 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1429 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1430 }
1431 
1432 
1433 /*
1434  * Check constraints on flags passed to the unshare system call and
1435  * force unsharing of additional process context as appropriate.
1436  */
1437 static inline void check_unshare_flags(unsigned long *flags_ptr)
1438 {
1439 	/*
1440 	 * If unsharing a thread from a thread group, must also
1441 	 * unshare vm.
1442 	 */
1443 	if (*flags_ptr & CLONE_THREAD)
1444 		*flags_ptr |= CLONE_VM;
1445 
1446 	/*
1447 	 * If unsharing vm, must also unshare signal handlers.
1448 	 */
1449 	if (*flags_ptr & CLONE_VM)
1450 		*flags_ptr |= CLONE_SIGHAND;
1451 
1452 	/*
1453 	 * If unsharing signal handlers and the task was created
1454 	 * using CLONE_THREAD, then must unshare the thread
1455 	 */
1456 	if ((*flags_ptr & CLONE_SIGHAND) &&
1457 	    (atomic_read(&current->signal->count) > 1))
1458 		*flags_ptr |= CLONE_THREAD;
1459 
1460 	/*
1461 	 * If unsharing namespace, must also unshare filesystem information.
1462 	 */
1463 	if (*flags_ptr & CLONE_NEWNS)
1464 		*flags_ptr |= CLONE_FS;
1465 }
1466 
1467 /*
1468  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1469  */
1470 static int unshare_thread(unsigned long unshare_flags)
1471 {
1472 	if (unshare_flags & CLONE_THREAD)
1473 		return -EINVAL;
1474 
1475 	return 0;
1476 }
1477 
1478 /*
1479  * Unshare the filesystem structure if it is being shared
1480  */
1481 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1482 {
1483 	struct fs_struct *fs = current->fs;
1484 
1485 	if ((unshare_flags & CLONE_FS) &&
1486 	    (fs && atomic_read(&fs->count) > 1)) {
1487 		*new_fsp = __copy_fs_struct(current->fs);
1488 		if (!*new_fsp)
1489 			return -ENOMEM;
1490 	}
1491 
1492 	return 0;
1493 }
1494 
1495 /*
1496  * Unshare the namespace structure if it is being shared
1497  */
1498 static int unshare_namespace(unsigned long unshare_flags, struct namespace **new_nsp, struct fs_struct *new_fs)
1499 {
1500 	struct namespace *ns = current->namespace;
1501 
1502 	if ((unshare_flags & CLONE_NEWNS) &&
1503 	    (ns && atomic_read(&ns->count) > 1)) {
1504 		if (!capable(CAP_SYS_ADMIN))
1505 			return -EPERM;
1506 
1507 		*new_nsp = dup_namespace(current, new_fs ? new_fs : current->fs);
1508 		if (!*new_nsp)
1509 			return -ENOMEM;
1510 	}
1511 
1512 	return 0;
1513 }
1514 
1515 /*
1516  * Unsharing of sighand for tasks created with CLONE_SIGHAND is not
1517  * supported yet
1518  */
1519 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1520 {
1521 	struct sighand_struct *sigh = current->sighand;
1522 
1523 	if ((unshare_flags & CLONE_SIGHAND) &&
1524 	    (sigh && atomic_read(&sigh->count) > 1))
1525 		return -EINVAL;
1526 	else
1527 		return 0;
1528 }
1529 
1530 /*
1531  * Unshare vm if it is being shared
1532  */
1533 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1534 {
1535 	struct mm_struct *mm = current->mm;
1536 
1537 	if ((unshare_flags & CLONE_VM) &&
1538 	    (mm && atomic_read(&mm->mm_users) > 1)) {
1539 		return -EINVAL;
1540 	}
1541 
1542 	return 0;
1543 }
1544 
1545 /*
1546  * Unshare file descriptor table if it is being shared
1547  */
1548 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1549 {
1550 	struct files_struct *fd = current->files;
1551 	int error = 0;
1552 
1553 	if ((unshare_flags & CLONE_FILES) &&
1554 	    (fd && atomic_read(&fd->count) > 1)) {
1555 		*new_fdp = dup_fd(fd, &error);
1556 		if (!*new_fdp)
1557 			return error;
1558 	}
1559 
1560 	return 0;
1561 }
1562 
1563 /*
1564  * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1565  * supported yet
1566  */
1567 static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
1568 {
1569 	if (unshare_flags & CLONE_SYSVSEM)
1570 		return -EINVAL;
1571 
1572 	return 0;
1573 }
1574 
1575 /*
1576  * unshare allows a process to 'unshare' part of the process
1577  * context which was originally shared using clone.  copy_*
1578  * functions used by do_fork() cannot be used here directly
1579  * because they modify an inactive task_struct that is being
1580  * constructed. Here we are modifying the current, active,
1581  * task_struct.
1582  */
1583 asmlinkage long sys_unshare(unsigned long unshare_flags)
1584 {
1585 	int err = 0;
1586 	struct fs_struct *fs, *new_fs = NULL;
1587 	struct namespace *ns, *new_ns = NULL;
1588 	struct sighand_struct *sigh, *new_sigh = NULL;
1589 	struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1590 	struct files_struct *fd, *new_fd = NULL;
1591 	struct sem_undo_list *new_ulist = NULL;
1592 
1593 	check_unshare_flags(&unshare_flags);
1594 
1595 	/* Return -EINVAL for all unsupported flags */
1596 	err = -EINVAL;
1597 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1598 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM))
1599 		goto bad_unshare_out;
1600 
1601 	if ((err = unshare_thread(unshare_flags)))
1602 		goto bad_unshare_out;
1603 	if ((err = unshare_fs(unshare_flags, &new_fs)))
1604 		goto bad_unshare_cleanup_thread;
1605 	if ((err = unshare_namespace(unshare_flags, &new_ns, new_fs)))
1606 		goto bad_unshare_cleanup_fs;
1607 	if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1608 		goto bad_unshare_cleanup_ns;
1609 	if ((err = unshare_vm(unshare_flags, &new_mm)))
1610 		goto bad_unshare_cleanup_sigh;
1611 	if ((err = unshare_fd(unshare_flags, &new_fd)))
1612 		goto bad_unshare_cleanup_vm;
1613 	if ((err = unshare_semundo(unshare_flags, &new_ulist)))
1614 		goto bad_unshare_cleanup_fd;
1615 
1616 	if (new_fs || new_ns || new_sigh || new_mm || new_fd || new_ulist) {
1617 
1618 		task_lock(current);
1619 
1620 		if (new_fs) {
1621 			fs = current->fs;
1622 			current->fs = new_fs;
1623 			new_fs = fs;
1624 		}
1625 
1626 		if (new_ns) {
1627 			ns = current->namespace;
1628 			current->namespace = new_ns;
1629 			new_ns = ns;
1630 		}
1631 
1632 		if (new_sigh) {
1633 			sigh = current->sighand;
1634 			rcu_assign_pointer(current->sighand, new_sigh);
1635 			new_sigh = sigh;
1636 		}
1637 
1638 		if (new_mm) {
1639 			mm = current->mm;
1640 			active_mm = current->active_mm;
1641 			current->mm = new_mm;
1642 			current->active_mm = new_mm;
1643 			activate_mm(active_mm, new_mm);
1644 			new_mm = mm;
1645 		}
1646 
1647 		if (new_fd) {
1648 			fd = current->files;
1649 			current->files = new_fd;
1650 			new_fd = fd;
1651 		}
1652 
1653 		task_unlock(current);
1654 	}
1655 
1656 bad_unshare_cleanup_fd:
1657 	if (new_fd)
1658 		put_files_struct(new_fd);
1659 
1660 bad_unshare_cleanup_vm:
1661 	if (new_mm)
1662 		mmput(new_mm);
1663 
1664 bad_unshare_cleanup_sigh:
1665 	if (new_sigh)
1666 		if (atomic_dec_and_test(&new_sigh->count))
1667 			kmem_cache_free(sighand_cachep, new_sigh);
1668 
1669 bad_unshare_cleanup_ns:
1670 	if (new_ns)
1671 		put_namespace(new_ns);
1672 
1673 bad_unshare_cleanup_fs:
1674 	if (new_fs)
1675 		put_fs_struct(new_fs);
1676 
1677 bad_unshare_cleanup_thread:
1678 bad_unshare_out:
1679 	return err;
1680 }
1681