xref: /linux/kernel/fork.c (revision 13abf8130139c2ccd4962a7e5a8902be5e6cb5a7)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/config.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/unistd.h>
18 #include <linux/smp_lock.h>
19 #include <linux/module.h>
20 #include <linux/vmalloc.h>
21 #include <linux/completion.h>
22 #include <linux/namespace.h>
23 #include <linux/personality.h>
24 #include <linux/mempolicy.h>
25 #include <linux/sem.h>
26 #include <linux/file.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/fs.h>
31 #include <linux/cpu.h>
32 #include <linux/cpuset.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/ptrace.h>
39 #include <linux/mount.h>
40 #include <linux/audit.h>
41 #include <linux/profile.h>
42 #include <linux/rmap.h>
43 #include <linux/acct.h>
44 
45 #include <asm/pgtable.h>
46 #include <asm/pgalloc.h>
47 #include <asm/uaccess.h>
48 #include <asm/mmu_context.h>
49 #include <asm/cacheflush.h>
50 #include <asm/tlbflush.h>
51 
52 /*
53  * Protected counters by write_lock_irq(&tasklist_lock)
54  */
55 unsigned long total_forks;	/* Handle normal Linux uptimes. */
56 int nr_threads; 		/* The idle threads do not count.. */
57 
58 int max_threads;		/* tunable limit on nr_threads */
59 
60 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
61 
62  __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
63 
64 EXPORT_SYMBOL(tasklist_lock);
65 
66 int nr_processes(void)
67 {
68 	int cpu;
69 	int total = 0;
70 
71 	for_each_online_cpu(cpu)
72 		total += per_cpu(process_counts, cpu);
73 
74 	return total;
75 }
76 
77 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
78 # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
79 # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
80 static kmem_cache_t *task_struct_cachep;
81 #endif
82 
83 /* SLAB cache for signal_struct structures (tsk->signal) */
84 kmem_cache_t *signal_cachep;
85 
86 /* SLAB cache for sighand_struct structures (tsk->sighand) */
87 kmem_cache_t *sighand_cachep;
88 
89 /* SLAB cache for files_struct structures (tsk->files) */
90 kmem_cache_t *files_cachep;
91 
92 /* SLAB cache for fs_struct structures (tsk->fs) */
93 kmem_cache_t *fs_cachep;
94 
95 /* SLAB cache for vm_area_struct structures */
96 kmem_cache_t *vm_area_cachep;
97 
98 /* SLAB cache for mm_struct structures (tsk->mm) */
99 static kmem_cache_t *mm_cachep;
100 
101 void free_task(struct task_struct *tsk)
102 {
103 	free_thread_info(tsk->thread_info);
104 	free_task_struct(tsk);
105 }
106 EXPORT_SYMBOL(free_task);
107 
108 void __put_task_struct(struct task_struct *tsk)
109 {
110 	WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
111 	WARN_ON(atomic_read(&tsk->usage));
112 	WARN_ON(tsk == current);
113 
114 	if (unlikely(tsk->audit_context))
115 		audit_free(tsk);
116 	security_task_free(tsk);
117 	free_uid(tsk->user);
118 	put_group_info(tsk->group_info);
119 
120 	if (!profile_handoff_task(tsk))
121 		free_task(tsk);
122 }
123 
124 void __init fork_init(unsigned long mempages)
125 {
126 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
127 #ifndef ARCH_MIN_TASKALIGN
128 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
129 #endif
130 	/* create a slab on which task_structs can be allocated */
131 	task_struct_cachep =
132 		kmem_cache_create("task_struct", sizeof(struct task_struct),
133 			ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
134 #endif
135 
136 	/*
137 	 * The default maximum number of threads is set to a safe
138 	 * value: the thread structures can take up at most half
139 	 * of memory.
140 	 */
141 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
142 
143 	/*
144 	 * we need to allow at least 20 threads to boot a system
145 	 */
146 	if(max_threads < 20)
147 		max_threads = 20;
148 
149 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
150 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
151 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
152 		init_task.signal->rlim[RLIMIT_NPROC];
153 }
154 
155 static struct task_struct *dup_task_struct(struct task_struct *orig)
156 {
157 	struct task_struct *tsk;
158 	struct thread_info *ti;
159 
160 	prepare_to_copy(orig);
161 
162 	tsk = alloc_task_struct();
163 	if (!tsk)
164 		return NULL;
165 
166 	ti = alloc_thread_info(tsk);
167 	if (!ti) {
168 		free_task_struct(tsk);
169 		return NULL;
170 	}
171 
172 	*ti = *orig->thread_info;
173 	*tsk = *orig;
174 	tsk->thread_info = ti;
175 	ti->task = tsk;
176 
177 	/* One for us, one for whoever does the "release_task()" (usually parent) */
178 	atomic_set(&tsk->usage,2);
179 	return tsk;
180 }
181 
182 #ifdef CONFIG_MMU
183 static inline int dup_mmap(struct mm_struct * mm, struct mm_struct * oldmm)
184 {
185 	struct vm_area_struct * mpnt, *tmp, **pprev;
186 	struct rb_node **rb_link, *rb_parent;
187 	int retval;
188 	unsigned long charge;
189 	struct mempolicy *pol;
190 
191 	down_write(&oldmm->mmap_sem);
192 	flush_cache_mm(current->mm);
193 	mm->locked_vm = 0;
194 	mm->mmap = NULL;
195 	mm->mmap_cache = NULL;
196 	mm->free_area_cache = oldmm->mmap_base;
197 	mm->cached_hole_size = ~0UL;
198 	mm->map_count = 0;
199 	set_mm_counter(mm, rss, 0);
200 	set_mm_counter(mm, anon_rss, 0);
201 	cpus_clear(mm->cpu_vm_mask);
202 	mm->mm_rb = RB_ROOT;
203 	rb_link = &mm->mm_rb.rb_node;
204 	rb_parent = NULL;
205 	pprev = &mm->mmap;
206 
207 	for (mpnt = current->mm->mmap ; mpnt ; mpnt = mpnt->vm_next) {
208 		struct file *file;
209 
210 		if (mpnt->vm_flags & VM_DONTCOPY) {
211 			long pages = vma_pages(mpnt);
212 			mm->total_vm -= pages;
213 			__vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
214 								-pages);
215 			continue;
216 		}
217 		charge = 0;
218 		if (mpnt->vm_flags & VM_ACCOUNT) {
219 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
220 			if (security_vm_enough_memory(len))
221 				goto fail_nomem;
222 			charge = len;
223 		}
224 		tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
225 		if (!tmp)
226 			goto fail_nomem;
227 		*tmp = *mpnt;
228 		pol = mpol_copy(vma_policy(mpnt));
229 		retval = PTR_ERR(pol);
230 		if (IS_ERR(pol))
231 			goto fail_nomem_policy;
232 		vma_set_policy(tmp, pol);
233 		tmp->vm_flags &= ~VM_LOCKED;
234 		tmp->vm_mm = mm;
235 		tmp->vm_next = NULL;
236 		anon_vma_link(tmp);
237 		file = tmp->vm_file;
238 		if (file) {
239 			struct inode *inode = file->f_dentry->d_inode;
240 			get_file(file);
241 			if (tmp->vm_flags & VM_DENYWRITE)
242 				atomic_dec(&inode->i_writecount);
243 
244 			/* insert tmp into the share list, just after mpnt */
245 			spin_lock(&file->f_mapping->i_mmap_lock);
246 			tmp->vm_truncate_count = mpnt->vm_truncate_count;
247 			flush_dcache_mmap_lock(file->f_mapping);
248 			vma_prio_tree_add(tmp, mpnt);
249 			flush_dcache_mmap_unlock(file->f_mapping);
250 			spin_unlock(&file->f_mapping->i_mmap_lock);
251 		}
252 
253 		/*
254 		 * Link in the new vma and copy the page table entries:
255 		 * link in first so that swapoff can see swap entries.
256 		 * Note that, exceptionally, here the vma is inserted
257 		 * without holding mm->mmap_sem.
258 		 */
259 		spin_lock(&mm->page_table_lock);
260 		*pprev = tmp;
261 		pprev = &tmp->vm_next;
262 
263 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
264 		rb_link = &tmp->vm_rb.rb_right;
265 		rb_parent = &tmp->vm_rb;
266 
267 		mm->map_count++;
268 		retval = copy_page_range(mm, current->mm, tmp);
269 		spin_unlock(&mm->page_table_lock);
270 
271 		if (tmp->vm_ops && tmp->vm_ops->open)
272 			tmp->vm_ops->open(tmp);
273 
274 		if (retval)
275 			goto out;
276 	}
277 	retval = 0;
278 
279 out:
280 	flush_tlb_mm(current->mm);
281 	up_write(&oldmm->mmap_sem);
282 	return retval;
283 fail_nomem_policy:
284 	kmem_cache_free(vm_area_cachep, tmp);
285 fail_nomem:
286 	retval = -ENOMEM;
287 	vm_unacct_memory(charge);
288 	goto out;
289 }
290 
291 static inline int mm_alloc_pgd(struct mm_struct * mm)
292 {
293 	mm->pgd = pgd_alloc(mm);
294 	if (unlikely(!mm->pgd))
295 		return -ENOMEM;
296 	return 0;
297 }
298 
299 static inline void mm_free_pgd(struct mm_struct * mm)
300 {
301 	pgd_free(mm->pgd);
302 }
303 #else
304 #define dup_mmap(mm, oldmm)	(0)
305 #define mm_alloc_pgd(mm)	(0)
306 #define mm_free_pgd(mm)
307 #endif /* CONFIG_MMU */
308 
309  __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
310 
311 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
312 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
313 
314 #include <linux/init_task.h>
315 
316 static struct mm_struct * mm_init(struct mm_struct * mm)
317 {
318 	atomic_set(&mm->mm_users, 1);
319 	atomic_set(&mm->mm_count, 1);
320 	init_rwsem(&mm->mmap_sem);
321 	INIT_LIST_HEAD(&mm->mmlist);
322 	mm->core_waiters = 0;
323 	mm->nr_ptes = 0;
324 	spin_lock_init(&mm->page_table_lock);
325 	rwlock_init(&mm->ioctx_list_lock);
326 	mm->ioctx_list = NULL;
327 	mm->default_kioctx = (struct kioctx)INIT_KIOCTX(mm->default_kioctx, *mm);
328 	mm->free_area_cache = TASK_UNMAPPED_BASE;
329 	mm->cached_hole_size = ~0UL;
330 
331 	if (likely(!mm_alloc_pgd(mm))) {
332 		mm->def_flags = 0;
333 		return mm;
334 	}
335 	free_mm(mm);
336 	return NULL;
337 }
338 
339 /*
340  * Allocate and initialize an mm_struct.
341  */
342 struct mm_struct * mm_alloc(void)
343 {
344 	struct mm_struct * mm;
345 
346 	mm = allocate_mm();
347 	if (mm) {
348 		memset(mm, 0, sizeof(*mm));
349 		mm = mm_init(mm);
350 	}
351 	return mm;
352 }
353 
354 /*
355  * Called when the last reference to the mm
356  * is dropped: either by a lazy thread or by
357  * mmput. Free the page directory and the mm.
358  */
359 void fastcall __mmdrop(struct mm_struct *mm)
360 {
361 	BUG_ON(mm == &init_mm);
362 	mm_free_pgd(mm);
363 	destroy_context(mm);
364 	free_mm(mm);
365 }
366 
367 /*
368  * Decrement the use count and release all resources for an mm.
369  */
370 void mmput(struct mm_struct *mm)
371 {
372 	if (atomic_dec_and_test(&mm->mm_users)) {
373 		exit_aio(mm);
374 		exit_mmap(mm);
375 		if (!list_empty(&mm->mmlist)) {
376 			spin_lock(&mmlist_lock);
377 			list_del(&mm->mmlist);
378 			spin_unlock(&mmlist_lock);
379 		}
380 		put_swap_token(mm);
381 		mmdrop(mm);
382 	}
383 }
384 EXPORT_SYMBOL_GPL(mmput);
385 
386 /**
387  * get_task_mm - acquire a reference to the task's mm
388  *
389  * Returns %NULL if the task has no mm.  Checks PF_BORROWED_MM (meaning
390  * this kernel workthread has transiently adopted a user mm with use_mm,
391  * to do its AIO) is not set and if so returns a reference to it, after
392  * bumping up the use count.  User must release the mm via mmput()
393  * after use.  Typically used by /proc and ptrace.
394  */
395 struct mm_struct *get_task_mm(struct task_struct *task)
396 {
397 	struct mm_struct *mm;
398 
399 	task_lock(task);
400 	mm = task->mm;
401 	if (mm) {
402 		if (task->flags & PF_BORROWED_MM)
403 			mm = NULL;
404 		else
405 			atomic_inc(&mm->mm_users);
406 	}
407 	task_unlock(task);
408 	return mm;
409 }
410 EXPORT_SYMBOL_GPL(get_task_mm);
411 
412 /* Please note the differences between mmput and mm_release.
413  * mmput is called whenever we stop holding onto a mm_struct,
414  * error success whatever.
415  *
416  * mm_release is called after a mm_struct has been removed
417  * from the current process.
418  *
419  * This difference is important for error handling, when we
420  * only half set up a mm_struct for a new process and need to restore
421  * the old one.  Because we mmput the new mm_struct before
422  * restoring the old one. . .
423  * Eric Biederman 10 January 1998
424  */
425 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
426 {
427 	struct completion *vfork_done = tsk->vfork_done;
428 
429 	/* Get rid of any cached register state */
430 	deactivate_mm(tsk, mm);
431 
432 	/* notify parent sleeping on vfork() */
433 	if (vfork_done) {
434 		tsk->vfork_done = NULL;
435 		complete(vfork_done);
436 	}
437 	if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
438 		u32 __user * tidptr = tsk->clear_child_tid;
439 		tsk->clear_child_tid = NULL;
440 
441 		/*
442 		 * We don't check the error code - if userspace has
443 		 * not set up a proper pointer then tough luck.
444 		 */
445 		put_user(0, tidptr);
446 		sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
447 	}
448 }
449 
450 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
451 {
452 	struct mm_struct * mm, *oldmm;
453 	int retval;
454 
455 	tsk->min_flt = tsk->maj_flt = 0;
456 	tsk->nvcsw = tsk->nivcsw = 0;
457 
458 	tsk->mm = NULL;
459 	tsk->active_mm = NULL;
460 
461 	/*
462 	 * Are we cloning a kernel thread?
463 	 *
464 	 * We need to steal a active VM for that..
465 	 */
466 	oldmm = current->mm;
467 	if (!oldmm)
468 		return 0;
469 
470 	if (clone_flags & CLONE_VM) {
471 		atomic_inc(&oldmm->mm_users);
472 		mm = oldmm;
473 		/*
474 		 * There are cases where the PTL is held to ensure no
475 		 * new threads start up in user mode using an mm, which
476 		 * allows optimizing out ipis; the tlb_gather_mmu code
477 		 * is an example.
478 		 */
479 		spin_unlock_wait(&oldmm->page_table_lock);
480 		goto good_mm;
481 	}
482 
483 	retval = -ENOMEM;
484 	mm = allocate_mm();
485 	if (!mm)
486 		goto fail_nomem;
487 
488 	/* Copy the current MM stuff.. */
489 	memcpy(mm, oldmm, sizeof(*mm));
490 	if (!mm_init(mm))
491 		goto fail_nomem;
492 
493 	if (init_new_context(tsk,mm))
494 		goto fail_nocontext;
495 
496 	retval = dup_mmap(mm, oldmm);
497 	if (retval)
498 		goto free_pt;
499 
500 	mm->hiwater_rss = get_mm_counter(mm,rss);
501 	mm->hiwater_vm = mm->total_vm;
502 
503 good_mm:
504 	tsk->mm = mm;
505 	tsk->active_mm = mm;
506 	return 0;
507 
508 free_pt:
509 	mmput(mm);
510 fail_nomem:
511 	return retval;
512 
513 fail_nocontext:
514 	/*
515 	 * If init_new_context() failed, we cannot use mmput() to free the mm
516 	 * because it calls destroy_context()
517 	 */
518 	mm_free_pgd(mm);
519 	free_mm(mm);
520 	return retval;
521 }
522 
523 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
524 {
525 	struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
526 	/* We don't need to lock fs - think why ;-) */
527 	if (fs) {
528 		atomic_set(&fs->count, 1);
529 		rwlock_init(&fs->lock);
530 		fs->umask = old->umask;
531 		read_lock(&old->lock);
532 		fs->rootmnt = mntget(old->rootmnt);
533 		fs->root = dget(old->root);
534 		fs->pwdmnt = mntget(old->pwdmnt);
535 		fs->pwd = dget(old->pwd);
536 		if (old->altroot) {
537 			fs->altrootmnt = mntget(old->altrootmnt);
538 			fs->altroot = dget(old->altroot);
539 		} else {
540 			fs->altrootmnt = NULL;
541 			fs->altroot = NULL;
542 		}
543 		read_unlock(&old->lock);
544 	}
545 	return fs;
546 }
547 
548 struct fs_struct *copy_fs_struct(struct fs_struct *old)
549 {
550 	return __copy_fs_struct(old);
551 }
552 
553 EXPORT_SYMBOL_GPL(copy_fs_struct);
554 
555 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
556 {
557 	if (clone_flags & CLONE_FS) {
558 		atomic_inc(&current->fs->count);
559 		return 0;
560 	}
561 	tsk->fs = __copy_fs_struct(current->fs);
562 	if (!tsk->fs)
563 		return -ENOMEM;
564 	return 0;
565 }
566 
567 static int count_open_files(struct files_struct *files, int size)
568 {
569 	int i;
570 
571 	/* Find the last open fd */
572 	for (i = size/(8*sizeof(long)); i > 0; ) {
573 		if (files->open_fds->fds_bits[--i])
574 			break;
575 	}
576 	i = (i+1) * 8 * sizeof(long);
577 	return i;
578 }
579 
580 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
581 {
582 	struct files_struct *oldf, *newf;
583 	struct file **old_fds, **new_fds;
584 	int open_files, size, i, error = 0, expand;
585 
586 	/*
587 	 * A background process may not have any files ...
588 	 */
589 	oldf = current->files;
590 	if (!oldf)
591 		goto out;
592 
593 	if (clone_flags & CLONE_FILES) {
594 		atomic_inc(&oldf->count);
595 		goto out;
596 	}
597 
598 	/*
599 	 * Note: we may be using current for both targets (See exec.c)
600 	 * This works because we cache current->files (old) as oldf. Don't
601 	 * break this.
602 	 */
603 	tsk->files = NULL;
604 	error = -ENOMEM;
605 	newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
606 	if (!newf)
607 		goto out;
608 
609 	atomic_set(&newf->count, 1);
610 
611 	spin_lock_init(&newf->file_lock);
612 	newf->next_fd	    = 0;
613 	newf->max_fds	    = NR_OPEN_DEFAULT;
614 	newf->max_fdset	    = __FD_SETSIZE;
615 	newf->close_on_exec = &newf->close_on_exec_init;
616 	newf->open_fds	    = &newf->open_fds_init;
617 	newf->fd	    = &newf->fd_array[0];
618 
619 	spin_lock(&oldf->file_lock);
620 
621 	open_files = count_open_files(oldf, oldf->max_fdset);
622 	expand = 0;
623 
624 	/*
625 	 * Check whether we need to allocate a larger fd array or fd set.
626 	 * Note: we're not a clone task, so the open count won't  change.
627 	 */
628 	if (open_files > newf->max_fdset) {
629 		newf->max_fdset = 0;
630 		expand = 1;
631 	}
632 	if (open_files > newf->max_fds) {
633 		newf->max_fds = 0;
634 		expand = 1;
635 	}
636 
637 	/* if the old fdset gets grown now, we'll only copy up to "size" fds */
638 	if (expand) {
639 		spin_unlock(&oldf->file_lock);
640 		spin_lock(&newf->file_lock);
641 		error = expand_files(newf, open_files-1);
642 		spin_unlock(&newf->file_lock);
643 		if (error < 0)
644 			goto out_release;
645 		spin_lock(&oldf->file_lock);
646 	}
647 
648 	old_fds = oldf->fd;
649 	new_fds = newf->fd;
650 
651 	memcpy(newf->open_fds->fds_bits, oldf->open_fds->fds_bits, open_files/8);
652 	memcpy(newf->close_on_exec->fds_bits, oldf->close_on_exec->fds_bits, open_files/8);
653 
654 	for (i = open_files; i != 0; i--) {
655 		struct file *f = *old_fds++;
656 		if (f) {
657 			get_file(f);
658 		} else {
659 			/*
660 			 * The fd may be claimed in the fd bitmap but not yet
661 			 * instantiated in the files array if a sibling thread
662 			 * is partway through open().  So make sure that this
663 			 * fd is available to the new process.
664 			 */
665 			FD_CLR(open_files - i, newf->open_fds);
666 		}
667 		*new_fds++ = f;
668 	}
669 	spin_unlock(&oldf->file_lock);
670 
671 	/* compute the remainder to be cleared */
672 	size = (newf->max_fds - open_files) * sizeof(struct file *);
673 
674 	/* This is long word aligned thus could use a optimized version */
675 	memset(new_fds, 0, size);
676 
677 	if (newf->max_fdset > open_files) {
678 		int left = (newf->max_fdset-open_files)/8;
679 		int start = open_files / (8 * sizeof(unsigned long));
680 
681 		memset(&newf->open_fds->fds_bits[start], 0, left);
682 		memset(&newf->close_on_exec->fds_bits[start], 0, left);
683 	}
684 
685 	tsk->files = newf;
686 	error = 0;
687 out:
688 	return error;
689 
690 out_release:
691 	free_fdset (newf->close_on_exec, newf->max_fdset);
692 	free_fdset (newf->open_fds, newf->max_fdset);
693 	free_fd_array(newf->fd, newf->max_fds);
694 	kmem_cache_free(files_cachep, newf);
695 	goto out;
696 }
697 
698 /*
699  *	Helper to unshare the files of the current task.
700  *	We don't want to expose copy_files internals to
701  *	the exec layer of the kernel.
702  */
703 
704 int unshare_files(void)
705 {
706 	struct files_struct *files  = current->files;
707 	int rc;
708 
709 	if(!files)
710 		BUG();
711 
712 	/* This can race but the race causes us to copy when we don't
713 	   need to and drop the copy */
714 	if(atomic_read(&files->count) == 1)
715 	{
716 		atomic_inc(&files->count);
717 		return 0;
718 	}
719 	rc = copy_files(0, current);
720 	if(rc)
721 		current->files = files;
722 	return rc;
723 }
724 
725 EXPORT_SYMBOL(unshare_files);
726 
727 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
728 {
729 	struct sighand_struct *sig;
730 
731 	if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
732 		atomic_inc(&current->sighand->count);
733 		return 0;
734 	}
735 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
736 	tsk->sighand = sig;
737 	if (!sig)
738 		return -ENOMEM;
739 	spin_lock_init(&sig->siglock);
740 	atomic_set(&sig->count, 1);
741 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
742 	return 0;
743 }
744 
745 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
746 {
747 	struct signal_struct *sig;
748 	int ret;
749 
750 	if (clone_flags & CLONE_THREAD) {
751 		atomic_inc(&current->signal->count);
752 		atomic_inc(&current->signal->live);
753 		return 0;
754 	}
755 	sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
756 	tsk->signal = sig;
757 	if (!sig)
758 		return -ENOMEM;
759 
760 	ret = copy_thread_group_keys(tsk);
761 	if (ret < 0) {
762 		kmem_cache_free(signal_cachep, sig);
763 		return ret;
764 	}
765 
766 	atomic_set(&sig->count, 1);
767 	atomic_set(&sig->live, 1);
768 	init_waitqueue_head(&sig->wait_chldexit);
769 	sig->flags = 0;
770 	sig->group_exit_code = 0;
771 	sig->group_exit_task = NULL;
772 	sig->group_stop_count = 0;
773 	sig->curr_target = NULL;
774 	init_sigpending(&sig->shared_pending);
775 	INIT_LIST_HEAD(&sig->posix_timers);
776 
777 	sig->it_real_value = sig->it_real_incr = 0;
778 	sig->real_timer.function = it_real_fn;
779 	sig->real_timer.data = (unsigned long) tsk;
780 	init_timer(&sig->real_timer);
781 
782 	sig->it_virt_expires = cputime_zero;
783 	sig->it_virt_incr = cputime_zero;
784 	sig->it_prof_expires = cputime_zero;
785 	sig->it_prof_incr = cputime_zero;
786 
787 	sig->tty = current->signal->tty;
788 	sig->pgrp = process_group(current);
789 	sig->session = current->signal->session;
790 	sig->leader = 0;	/* session leadership doesn't inherit */
791 	sig->tty_old_pgrp = 0;
792 
793 	sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
794 	sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
795 	sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
796 	sig->sched_time = 0;
797 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
798 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
799 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
800 
801 	task_lock(current->group_leader);
802 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
803 	task_unlock(current->group_leader);
804 
805 	if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
806 		/*
807 		 * New sole thread in the process gets an expiry time
808 		 * of the whole CPU time limit.
809 		 */
810 		tsk->it_prof_expires =
811 			secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
812 	}
813 
814 	return 0;
815 }
816 
817 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
818 {
819 	unsigned long new_flags = p->flags;
820 
821 	new_flags &= ~PF_SUPERPRIV;
822 	new_flags |= PF_FORKNOEXEC;
823 	if (!(clone_flags & CLONE_PTRACE))
824 		p->ptrace = 0;
825 	p->flags = new_flags;
826 }
827 
828 asmlinkage long sys_set_tid_address(int __user *tidptr)
829 {
830 	current->clear_child_tid = tidptr;
831 
832 	return current->pid;
833 }
834 
835 /*
836  * This creates a new process as a copy of the old one,
837  * but does not actually start it yet.
838  *
839  * It copies the registers, and all the appropriate
840  * parts of the process environment (as per the clone
841  * flags). The actual kick-off is left to the caller.
842  */
843 static task_t *copy_process(unsigned long clone_flags,
844 				 unsigned long stack_start,
845 				 struct pt_regs *regs,
846 				 unsigned long stack_size,
847 				 int __user *parent_tidptr,
848 				 int __user *child_tidptr,
849 				 int pid)
850 {
851 	int retval;
852 	struct task_struct *p = NULL;
853 
854 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
855 		return ERR_PTR(-EINVAL);
856 
857 	/*
858 	 * Thread groups must share signals as well, and detached threads
859 	 * can only be started up within the thread group.
860 	 */
861 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
862 		return ERR_PTR(-EINVAL);
863 
864 	/*
865 	 * Shared signal handlers imply shared VM. By way of the above,
866 	 * thread groups also imply shared VM. Blocking this case allows
867 	 * for various simplifications in other code.
868 	 */
869 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
870 		return ERR_PTR(-EINVAL);
871 
872 	retval = security_task_create(clone_flags);
873 	if (retval)
874 		goto fork_out;
875 
876 	retval = -ENOMEM;
877 	p = dup_task_struct(current);
878 	if (!p)
879 		goto fork_out;
880 
881 	retval = -EAGAIN;
882 	if (atomic_read(&p->user->processes) >=
883 			p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
884 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
885 				p->user != &root_user)
886 			goto bad_fork_free;
887 	}
888 
889 	atomic_inc(&p->user->__count);
890 	atomic_inc(&p->user->processes);
891 	get_group_info(p->group_info);
892 
893 	/*
894 	 * If multiple threads are within copy_process(), then this check
895 	 * triggers too late. This doesn't hurt, the check is only there
896 	 * to stop root fork bombs.
897 	 */
898 	if (nr_threads >= max_threads)
899 		goto bad_fork_cleanup_count;
900 
901 	if (!try_module_get(p->thread_info->exec_domain->module))
902 		goto bad_fork_cleanup_count;
903 
904 	if (p->binfmt && !try_module_get(p->binfmt->module))
905 		goto bad_fork_cleanup_put_domain;
906 
907 	p->did_exec = 0;
908 	copy_flags(clone_flags, p);
909 	p->pid = pid;
910 	retval = -EFAULT;
911 	if (clone_flags & CLONE_PARENT_SETTID)
912 		if (put_user(p->pid, parent_tidptr))
913 			goto bad_fork_cleanup;
914 
915 	p->proc_dentry = NULL;
916 
917 	INIT_LIST_HEAD(&p->children);
918 	INIT_LIST_HEAD(&p->sibling);
919 	p->vfork_done = NULL;
920 	spin_lock_init(&p->alloc_lock);
921 	spin_lock_init(&p->proc_lock);
922 
923 	clear_tsk_thread_flag(p, TIF_SIGPENDING);
924 	init_sigpending(&p->pending);
925 
926 	p->utime = cputime_zero;
927 	p->stime = cputime_zero;
928  	p->sched_time = 0;
929 	p->rchar = 0;		/* I/O counter: bytes read */
930 	p->wchar = 0;		/* I/O counter: bytes written */
931 	p->syscr = 0;		/* I/O counter: read syscalls */
932 	p->syscw = 0;		/* I/O counter: write syscalls */
933 	acct_clear_integrals(p);
934 
935  	p->it_virt_expires = cputime_zero;
936 	p->it_prof_expires = cputime_zero;
937  	p->it_sched_expires = 0;
938  	INIT_LIST_HEAD(&p->cpu_timers[0]);
939  	INIT_LIST_HEAD(&p->cpu_timers[1]);
940  	INIT_LIST_HEAD(&p->cpu_timers[2]);
941 
942 	p->lock_depth = -1;		/* -1 = no lock */
943 	do_posix_clock_monotonic_gettime(&p->start_time);
944 	p->security = NULL;
945 	p->io_context = NULL;
946 	p->io_wait = NULL;
947 	p->audit_context = NULL;
948 #ifdef CONFIG_NUMA
949  	p->mempolicy = mpol_copy(p->mempolicy);
950  	if (IS_ERR(p->mempolicy)) {
951  		retval = PTR_ERR(p->mempolicy);
952  		p->mempolicy = NULL;
953  		goto bad_fork_cleanup;
954  	}
955 #endif
956 
957 	p->tgid = p->pid;
958 	if (clone_flags & CLONE_THREAD)
959 		p->tgid = current->tgid;
960 
961 	if ((retval = security_task_alloc(p)))
962 		goto bad_fork_cleanup_policy;
963 	if ((retval = audit_alloc(p)))
964 		goto bad_fork_cleanup_security;
965 	/* copy all the process information */
966 	if ((retval = copy_semundo(clone_flags, p)))
967 		goto bad_fork_cleanup_audit;
968 	if ((retval = copy_files(clone_flags, p)))
969 		goto bad_fork_cleanup_semundo;
970 	if ((retval = copy_fs(clone_flags, p)))
971 		goto bad_fork_cleanup_files;
972 	if ((retval = copy_sighand(clone_flags, p)))
973 		goto bad_fork_cleanup_fs;
974 	if ((retval = copy_signal(clone_flags, p)))
975 		goto bad_fork_cleanup_sighand;
976 	if ((retval = copy_mm(clone_flags, p)))
977 		goto bad_fork_cleanup_signal;
978 	if ((retval = copy_keys(clone_flags, p)))
979 		goto bad_fork_cleanup_mm;
980 	if ((retval = copy_namespace(clone_flags, p)))
981 		goto bad_fork_cleanup_keys;
982 	retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
983 	if (retval)
984 		goto bad_fork_cleanup_namespace;
985 
986 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
987 	/*
988 	 * Clear TID on mm_release()?
989 	 */
990 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
991 
992 	/*
993 	 * Syscall tracing should be turned off in the child regardless
994 	 * of CLONE_PTRACE.
995 	 */
996 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
997 #ifdef TIF_SYSCALL_EMU
998 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
999 #endif
1000 
1001 	/* Our parent execution domain becomes current domain
1002 	   These must match for thread signalling to apply */
1003 
1004 	p->parent_exec_id = p->self_exec_id;
1005 
1006 	/* ok, now we should be set up.. */
1007 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1008 	p->pdeath_signal = 0;
1009 	p->exit_state = 0;
1010 
1011 	/*
1012 	 * Ok, make it visible to the rest of the system.
1013 	 * We dont wake it up yet.
1014 	 */
1015 	p->group_leader = p;
1016 	INIT_LIST_HEAD(&p->ptrace_children);
1017 	INIT_LIST_HEAD(&p->ptrace_list);
1018 
1019 	/* Perform scheduler related setup. Assign this task to a CPU. */
1020 	sched_fork(p, clone_flags);
1021 
1022 	/* Need tasklist lock for parent etc handling! */
1023 	write_lock_irq(&tasklist_lock);
1024 
1025 	/*
1026 	 * The task hasn't been attached yet, so its cpus_allowed mask will
1027 	 * not be changed, nor will its assigned CPU.
1028 	 *
1029 	 * The cpus_allowed mask of the parent may have changed after it was
1030 	 * copied first time - so re-copy it here, then check the child's CPU
1031 	 * to ensure it is on a valid CPU (and if not, just force it back to
1032 	 * parent's CPU). This avoids alot of nasty races.
1033 	 */
1034 	p->cpus_allowed = current->cpus_allowed;
1035 	if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed)))
1036 		set_task_cpu(p, smp_processor_id());
1037 
1038 	/*
1039 	 * Check for pending SIGKILL! The new thread should not be allowed
1040 	 * to slip out of an OOM kill. (or normal SIGKILL.)
1041 	 */
1042 	if (sigismember(&current->pending.signal, SIGKILL)) {
1043 		write_unlock_irq(&tasklist_lock);
1044 		retval = -EINTR;
1045 		goto bad_fork_cleanup_namespace;
1046 	}
1047 
1048 	/* CLONE_PARENT re-uses the old parent */
1049 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1050 		p->real_parent = current->real_parent;
1051 	else
1052 		p->real_parent = current;
1053 	p->parent = p->real_parent;
1054 
1055 	if (clone_flags & CLONE_THREAD) {
1056 		spin_lock(&current->sighand->siglock);
1057 		/*
1058 		 * Important: if an exit-all has been started then
1059 		 * do not create this new thread - the whole thread
1060 		 * group is supposed to exit anyway.
1061 		 */
1062 		if (current->signal->flags & SIGNAL_GROUP_EXIT) {
1063 			spin_unlock(&current->sighand->siglock);
1064 			write_unlock_irq(&tasklist_lock);
1065 			retval = -EAGAIN;
1066 			goto bad_fork_cleanup_namespace;
1067 		}
1068 		p->group_leader = current->group_leader;
1069 
1070 		if (current->signal->group_stop_count > 0) {
1071 			/*
1072 			 * There is an all-stop in progress for the group.
1073 			 * We ourselves will stop as soon as we check signals.
1074 			 * Make the new thread part of that group stop too.
1075 			 */
1076 			current->signal->group_stop_count++;
1077 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1078 		}
1079 
1080 		if (!cputime_eq(current->signal->it_virt_expires,
1081 				cputime_zero) ||
1082 		    !cputime_eq(current->signal->it_prof_expires,
1083 				cputime_zero) ||
1084 		    current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1085 		    !list_empty(&current->signal->cpu_timers[0]) ||
1086 		    !list_empty(&current->signal->cpu_timers[1]) ||
1087 		    !list_empty(&current->signal->cpu_timers[2])) {
1088 			/*
1089 			 * Have child wake up on its first tick to check
1090 			 * for process CPU timers.
1091 			 */
1092 			p->it_prof_expires = jiffies_to_cputime(1);
1093 		}
1094 
1095 		spin_unlock(&current->sighand->siglock);
1096 	}
1097 
1098 	/*
1099 	 * inherit ioprio
1100 	 */
1101 	p->ioprio = current->ioprio;
1102 
1103 	SET_LINKS(p);
1104 	if (unlikely(p->ptrace & PT_PTRACED))
1105 		__ptrace_link(p, current->parent);
1106 
1107 	cpuset_fork(p);
1108 
1109 	attach_pid(p, PIDTYPE_PID, p->pid);
1110 	attach_pid(p, PIDTYPE_TGID, p->tgid);
1111 	if (thread_group_leader(p)) {
1112 		attach_pid(p, PIDTYPE_PGID, process_group(p));
1113 		attach_pid(p, PIDTYPE_SID, p->signal->session);
1114 		if (p->pid)
1115 			__get_cpu_var(process_counts)++;
1116 	}
1117 
1118 	nr_threads++;
1119 	total_forks++;
1120 	write_unlock_irq(&tasklist_lock);
1121 	retval = 0;
1122 
1123 fork_out:
1124 	if (retval)
1125 		return ERR_PTR(retval);
1126 	return p;
1127 
1128 bad_fork_cleanup_namespace:
1129 	exit_namespace(p);
1130 bad_fork_cleanup_keys:
1131 	exit_keys(p);
1132 bad_fork_cleanup_mm:
1133 	if (p->mm)
1134 		mmput(p->mm);
1135 bad_fork_cleanup_signal:
1136 	exit_signal(p);
1137 bad_fork_cleanup_sighand:
1138 	exit_sighand(p);
1139 bad_fork_cleanup_fs:
1140 	exit_fs(p); /* blocking */
1141 bad_fork_cleanup_files:
1142 	exit_files(p); /* blocking */
1143 bad_fork_cleanup_semundo:
1144 	exit_sem(p);
1145 bad_fork_cleanup_audit:
1146 	audit_free(p);
1147 bad_fork_cleanup_security:
1148 	security_task_free(p);
1149 bad_fork_cleanup_policy:
1150 #ifdef CONFIG_NUMA
1151 	mpol_free(p->mempolicy);
1152 #endif
1153 bad_fork_cleanup:
1154 	if (p->binfmt)
1155 		module_put(p->binfmt->module);
1156 bad_fork_cleanup_put_domain:
1157 	module_put(p->thread_info->exec_domain->module);
1158 bad_fork_cleanup_count:
1159 	put_group_info(p->group_info);
1160 	atomic_dec(&p->user->processes);
1161 	free_uid(p->user);
1162 bad_fork_free:
1163 	free_task(p);
1164 	goto fork_out;
1165 }
1166 
1167 struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1168 {
1169 	memset(regs, 0, sizeof(struct pt_regs));
1170 	return regs;
1171 }
1172 
1173 task_t * __devinit fork_idle(int cpu)
1174 {
1175 	task_t *task;
1176 	struct pt_regs regs;
1177 
1178 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1179 	if (!task)
1180 		return ERR_PTR(-ENOMEM);
1181 	init_idle(task, cpu);
1182 	unhash_process(task);
1183 	return task;
1184 }
1185 
1186 static inline int fork_traceflag (unsigned clone_flags)
1187 {
1188 	if (clone_flags & CLONE_UNTRACED)
1189 		return 0;
1190 	else if (clone_flags & CLONE_VFORK) {
1191 		if (current->ptrace & PT_TRACE_VFORK)
1192 			return PTRACE_EVENT_VFORK;
1193 	} else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1194 		if (current->ptrace & PT_TRACE_CLONE)
1195 			return PTRACE_EVENT_CLONE;
1196 	} else if (current->ptrace & PT_TRACE_FORK)
1197 		return PTRACE_EVENT_FORK;
1198 
1199 	return 0;
1200 }
1201 
1202 /*
1203  *  Ok, this is the main fork-routine.
1204  *
1205  * It copies the process, and if successful kick-starts
1206  * it and waits for it to finish using the VM if required.
1207  */
1208 long do_fork(unsigned long clone_flags,
1209 	      unsigned long stack_start,
1210 	      struct pt_regs *regs,
1211 	      unsigned long stack_size,
1212 	      int __user *parent_tidptr,
1213 	      int __user *child_tidptr)
1214 {
1215 	struct task_struct *p;
1216 	int trace = 0;
1217 	long pid = alloc_pidmap();
1218 
1219 	if (pid < 0)
1220 		return -EAGAIN;
1221 	if (unlikely(current->ptrace)) {
1222 		trace = fork_traceflag (clone_flags);
1223 		if (trace)
1224 			clone_flags |= CLONE_PTRACE;
1225 	}
1226 
1227 	p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
1228 	/*
1229 	 * Do this prior waking up the new thread - the thread pointer
1230 	 * might get invalid after that point, if the thread exits quickly.
1231 	 */
1232 	if (!IS_ERR(p)) {
1233 		struct completion vfork;
1234 
1235 		if (clone_flags & CLONE_VFORK) {
1236 			p->vfork_done = &vfork;
1237 			init_completion(&vfork);
1238 		}
1239 
1240 		if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1241 			/*
1242 			 * We'll start up with an immediate SIGSTOP.
1243 			 */
1244 			sigaddset(&p->pending.signal, SIGSTOP);
1245 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1246 		}
1247 
1248 		if (!(clone_flags & CLONE_STOPPED))
1249 			wake_up_new_task(p, clone_flags);
1250 		else
1251 			p->state = TASK_STOPPED;
1252 
1253 		if (unlikely (trace)) {
1254 			current->ptrace_message = pid;
1255 			ptrace_notify ((trace << 8) | SIGTRAP);
1256 		}
1257 
1258 		if (clone_flags & CLONE_VFORK) {
1259 			wait_for_completion(&vfork);
1260 			if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE))
1261 				ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1262 		}
1263 	} else {
1264 		free_pidmap(pid);
1265 		pid = PTR_ERR(p);
1266 	}
1267 	return pid;
1268 }
1269 
1270 void __init proc_caches_init(void)
1271 {
1272 	sighand_cachep = kmem_cache_create("sighand_cache",
1273 			sizeof(struct sighand_struct), 0,
1274 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1275 	signal_cachep = kmem_cache_create("signal_cache",
1276 			sizeof(struct signal_struct), 0,
1277 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1278 	files_cachep = kmem_cache_create("files_cache",
1279 			sizeof(struct files_struct), 0,
1280 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1281 	fs_cachep = kmem_cache_create("fs_cache",
1282 			sizeof(struct fs_struct), 0,
1283 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1284 	vm_area_cachep = kmem_cache_create("vm_area_struct",
1285 			sizeof(struct vm_area_struct), 0,
1286 			SLAB_PANIC, NULL, NULL);
1287 	mm_cachep = kmem_cache_create("mm_struct",
1288 			sizeof(struct mm_struct), 0,
1289 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1290 }
1291