xref: /linux/kernel/fork.c (revision 0d08df6c493898e679d9c517e77ea95c063d40ec)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 #include <linux/sysctl.h>
78 #include <linux/kcov.h>
79 
80 #include <asm/pgtable.h>
81 #include <asm/pgalloc.h>
82 #include <asm/uaccess.h>
83 #include <asm/mmu_context.h>
84 #include <asm/cacheflush.h>
85 #include <asm/tlbflush.h>
86 
87 #include <trace/events/sched.h>
88 
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/task.h>
91 
92 /*
93  * Minimum number of threads to boot the kernel
94  */
95 #define MIN_THREADS 20
96 
97 /*
98  * Maximum number of threads
99  */
100 #define MAX_THREADS FUTEX_TID_MASK
101 
102 /*
103  * Protected counters by write_lock_irq(&tasklist_lock)
104  */
105 unsigned long total_forks;	/* Handle normal Linux uptimes. */
106 int nr_threads;			/* The idle threads do not count.. */
107 
108 int max_threads;		/* tunable limit on nr_threads */
109 
110 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
111 
112 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
113 
114 #ifdef CONFIG_PROVE_RCU
115 int lockdep_tasklist_lock_is_held(void)
116 {
117 	return lockdep_is_held(&tasklist_lock);
118 }
119 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
120 #endif /* #ifdef CONFIG_PROVE_RCU */
121 
122 int nr_processes(void)
123 {
124 	int cpu;
125 	int total = 0;
126 
127 	for_each_possible_cpu(cpu)
128 		total += per_cpu(process_counts, cpu);
129 
130 	return total;
131 }
132 
133 void __weak arch_release_task_struct(struct task_struct *tsk)
134 {
135 }
136 
137 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
138 static struct kmem_cache *task_struct_cachep;
139 
140 static inline struct task_struct *alloc_task_struct_node(int node)
141 {
142 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
143 }
144 
145 static inline void free_task_struct(struct task_struct *tsk)
146 {
147 	kmem_cache_free(task_struct_cachep, tsk);
148 }
149 #endif
150 
151 void __weak arch_release_thread_info(struct thread_info *ti)
152 {
153 }
154 
155 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
156 
157 /*
158  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
159  * kmemcache based allocator.
160  */
161 # if THREAD_SIZE >= PAGE_SIZE
162 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
163 						  int node)
164 {
165 	struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
166 						  THREAD_SIZE_ORDER);
167 
168 	if (page)
169 		memcg_kmem_update_page_stat(page, MEMCG_KERNEL_STACK,
170 					    1 << THREAD_SIZE_ORDER);
171 
172 	return page ? page_address(page) : NULL;
173 }
174 
175 static inline void free_thread_info(struct thread_info *ti)
176 {
177 	struct page *page = virt_to_page(ti);
178 
179 	memcg_kmem_update_page_stat(page, MEMCG_KERNEL_STACK,
180 				    -(1 << THREAD_SIZE_ORDER));
181 	__free_kmem_pages(page, THREAD_SIZE_ORDER);
182 }
183 # else
184 static struct kmem_cache *thread_info_cache;
185 
186 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
187 						  int node)
188 {
189 	return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
190 }
191 
192 static void free_thread_info(struct thread_info *ti)
193 {
194 	kmem_cache_free(thread_info_cache, ti);
195 }
196 
197 void thread_info_cache_init(void)
198 {
199 	thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
200 					      THREAD_SIZE, 0, NULL);
201 	BUG_ON(thread_info_cache == NULL);
202 }
203 # endif
204 #endif
205 
206 /* SLAB cache for signal_struct structures (tsk->signal) */
207 static struct kmem_cache *signal_cachep;
208 
209 /* SLAB cache for sighand_struct structures (tsk->sighand) */
210 struct kmem_cache *sighand_cachep;
211 
212 /* SLAB cache for files_struct structures (tsk->files) */
213 struct kmem_cache *files_cachep;
214 
215 /* SLAB cache for fs_struct structures (tsk->fs) */
216 struct kmem_cache *fs_cachep;
217 
218 /* SLAB cache for vm_area_struct structures */
219 struct kmem_cache *vm_area_cachep;
220 
221 /* SLAB cache for mm_struct structures (tsk->mm) */
222 static struct kmem_cache *mm_cachep;
223 
224 static void account_kernel_stack(struct thread_info *ti, int account)
225 {
226 	struct zone *zone = page_zone(virt_to_page(ti));
227 
228 	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
229 }
230 
231 void free_task(struct task_struct *tsk)
232 {
233 	account_kernel_stack(tsk->stack, -1);
234 	arch_release_thread_info(tsk->stack);
235 	free_thread_info(tsk->stack);
236 	rt_mutex_debug_task_free(tsk);
237 	ftrace_graph_exit_task(tsk);
238 	put_seccomp_filter(tsk);
239 	arch_release_task_struct(tsk);
240 	free_task_struct(tsk);
241 }
242 EXPORT_SYMBOL(free_task);
243 
244 static inline void free_signal_struct(struct signal_struct *sig)
245 {
246 	taskstats_tgid_free(sig);
247 	sched_autogroup_exit(sig);
248 	kmem_cache_free(signal_cachep, sig);
249 }
250 
251 static inline void put_signal_struct(struct signal_struct *sig)
252 {
253 	if (atomic_dec_and_test(&sig->sigcnt))
254 		free_signal_struct(sig);
255 }
256 
257 void __put_task_struct(struct task_struct *tsk)
258 {
259 	WARN_ON(!tsk->exit_state);
260 	WARN_ON(atomic_read(&tsk->usage));
261 	WARN_ON(tsk == current);
262 
263 	cgroup_free(tsk);
264 	task_numa_free(tsk);
265 	security_task_free(tsk);
266 	exit_creds(tsk);
267 	delayacct_tsk_free(tsk);
268 	put_signal_struct(tsk->signal);
269 
270 	if (!profile_handoff_task(tsk))
271 		free_task(tsk);
272 }
273 EXPORT_SYMBOL_GPL(__put_task_struct);
274 
275 void __init __weak arch_task_cache_init(void) { }
276 
277 /*
278  * set_max_threads
279  */
280 static void set_max_threads(unsigned int max_threads_suggested)
281 {
282 	u64 threads;
283 
284 	/*
285 	 * The number of threads shall be limited such that the thread
286 	 * structures may only consume a small part of the available memory.
287 	 */
288 	if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
289 		threads = MAX_THREADS;
290 	else
291 		threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
292 				    (u64) THREAD_SIZE * 8UL);
293 
294 	if (threads > max_threads_suggested)
295 		threads = max_threads_suggested;
296 
297 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
298 }
299 
300 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
301 /* Initialized by the architecture: */
302 int arch_task_struct_size __read_mostly;
303 #endif
304 
305 void __init fork_init(void)
306 {
307 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
308 #ifndef ARCH_MIN_TASKALIGN
309 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
310 #endif
311 	/* create a slab on which task_structs can be allocated */
312 	task_struct_cachep = kmem_cache_create("task_struct",
313 			arch_task_struct_size, ARCH_MIN_TASKALIGN,
314 			SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
315 #endif
316 
317 	/* do the arch specific task caches init */
318 	arch_task_cache_init();
319 
320 	set_max_threads(MAX_THREADS);
321 
322 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
323 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
324 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
325 		init_task.signal->rlim[RLIMIT_NPROC];
326 }
327 
328 int __weak arch_dup_task_struct(struct task_struct *dst,
329 					       struct task_struct *src)
330 {
331 	*dst = *src;
332 	return 0;
333 }
334 
335 void set_task_stack_end_magic(struct task_struct *tsk)
336 {
337 	unsigned long *stackend;
338 
339 	stackend = end_of_stack(tsk);
340 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
341 }
342 
343 static struct task_struct *dup_task_struct(struct task_struct *orig)
344 {
345 	struct task_struct *tsk;
346 	struct thread_info *ti;
347 	int node = tsk_fork_get_node(orig);
348 	int err;
349 
350 	tsk = alloc_task_struct_node(node);
351 	if (!tsk)
352 		return NULL;
353 
354 	ti = alloc_thread_info_node(tsk, node);
355 	if (!ti)
356 		goto free_tsk;
357 
358 	err = arch_dup_task_struct(tsk, orig);
359 	if (err)
360 		goto free_ti;
361 
362 	tsk->stack = ti;
363 #ifdef CONFIG_SECCOMP
364 	/*
365 	 * We must handle setting up seccomp filters once we're under
366 	 * the sighand lock in case orig has changed between now and
367 	 * then. Until then, filter must be NULL to avoid messing up
368 	 * the usage counts on the error path calling free_task.
369 	 */
370 	tsk->seccomp.filter = NULL;
371 #endif
372 
373 	setup_thread_stack(tsk, orig);
374 	clear_user_return_notifier(tsk);
375 	clear_tsk_need_resched(tsk);
376 	set_task_stack_end_magic(tsk);
377 
378 #ifdef CONFIG_CC_STACKPROTECTOR
379 	tsk->stack_canary = get_random_int();
380 #endif
381 
382 	/*
383 	 * One for us, one for whoever does the "release_task()" (usually
384 	 * parent)
385 	 */
386 	atomic_set(&tsk->usage, 2);
387 #ifdef CONFIG_BLK_DEV_IO_TRACE
388 	tsk->btrace_seq = 0;
389 #endif
390 	tsk->splice_pipe = NULL;
391 	tsk->task_frag.page = NULL;
392 	tsk->wake_q.next = NULL;
393 
394 	account_kernel_stack(ti, 1);
395 
396 	kcov_task_init(tsk);
397 
398 	return tsk;
399 
400 free_ti:
401 	free_thread_info(ti);
402 free_tsk:
403 	free_task_struct(tsk);
404 	return NULL;
405 }
406 
407 #ifdef CONFIG_MMU
408 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
409 {
410 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
411 	struct rb_node **rb_link, *rb_parent;
412 	int retval;
413 	unsigned long charge;
414 
415 	uprobe_start_dup_mmap();
416 	down_write(&oldmm->mmap_sem);
417 	flush_cache_dup_mm(oldmm);
418 	uprobe_dup_mmap(oldmm, mm);
419 	/*
420 	 * Not linked in yet - no deadlock potential:
421 	 */
422 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
423 
424 	/* No ordering required: file already has been exposed. */
425 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
426 
427 	mm->total_vm = oldmm->total_vm;
428 	mm->data_vm = oldmm->data_vm;
429 	mm->exec_vm = oldmm->exec_vm;
430 	mm->stack_vm = oldmm->stack_vm;
431 
432 	rb_link = &mm->mm_rb.rb_node;
433 	rb_parent = NULL;
434 	pprev = &mm->mmap;
435 	retval = ksm_fork(mm, oldmm);
436 	if (retval)
437 		goto out;
438 	retval = khugepaged_fork(mm, oldmm);
439 	if (retval)
440 		goto out;
441 
442 	prev = NULL;
443 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
444 		struct file *file;
445 
446 		if (mpnt->vm_flags & VM_DONTCOPY) {
447 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
448 			continue;
449 		}
450 		charge = 0;
451 		if (mpnt->vm_flags & VM_ACCOUNT) {
452 			unsigned long len = vma_pages(mpnt);
453 
454 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
455 				goto fail_nomem;
456 			charge = len;
457 		}
458 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
459 		if (!tmp)
460 			goto fail_nomem;
461 		*tmp = *mpnt;
462 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
463 		retval = vma_dup_policy(mpnt, tmp);
464 		if (retval)
465 			goto fail_nomem_policy;
466 		tmp->vm_mm = mm;
467 		if (anon_vma_fork(tmp, mpnt))
468 			goto fail_nomem_anon_vma_fork;
469 		tmp->vm_flags &=
470 			~(VM_LOCKED|VM_LOCKONFAULT|VM_UFFD_MISSING|VM_UFFD_WP);
471 		tmp->vm_next = tmp->vm_prev = NULL;
472 		tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
473 		file = tmp->vm_file;
474 		if (file) {
475 			struct inode *inode = file_inode(file);
476 			struct address_space *mapping = file->f_mapping;
477 
478 			get_file(file);
479 			if (tmp->vm_flags & VM_DENYWRITE)
480 				atomic_dec(&inode->i_writecount);
481 			i_mmap_lock_write(mapping);
482 			if (tmp->vm_flags & VM_SHARED)
483 				atomic_inc(&mapping->i_mmap_writable);
484 			flush_dcache_mmap_lock(mapping);
485 			/* insert tmp into the share list, just after mpnt */
486 			vma_interval_tree_insert_after(tmp, mpnt,
487 					&mapping->i_mmap);
488 			flush_dcache_mmap_unlock(mapping);
489 			i_mmap_unlock_write(mapping);
490 		}
491 
492 		/*
493 		 * Clear hugetlb-related page reserves for children. This only
494 		 * affects MAP_PRIVATE mappings. Faults generated by the child
495 		 * are not guaranteed to succeed, even if read-only
496 		 */
497 		if (is_vm_hugetlb_page(tmp))
498 			reset_vma_resv_huge_pages(tmp);
499 
500 		/*
501 		 * Link in the new vma and copy the page table entries.
502 		 */
503 		*pprev = tmp;
504 		pprev = &tmp->vm_next;
505 		tmp->vm_prev = prev;
506 		prev = tmp;
507 
508 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
509 		rb_link = &tmp->vm_rb.rb_right;
510 		rb_parent = &tmp->vm_rb;
511 
512 		mm->map_count++;
513 		retval = copy_page_range(mm, oldmm, mpnt);
514 
515 		if (tmp->vm_ops && tmp->vm_ops->open)
516 			tmp->vm_ops->open(tmp);
517 
518 		if (retval)
519 			goto out;
520 	}
521 	/* a new mm has just been created */
522 	arch_dup_mmap(oldmm, mm);
523 	retval = 0;
524 out:
525 	up_write(&mm->mmap_sem);
526 	flush_tlb_mm(oldmm);
527 	up_write(&oldmm->mmap_sem);
528 	uprobe_end_dup_mmap();
529 	return retval;
530 fail_nomem_anon_vma_fork:
531 	mpol_put(vma_policy(tmp));
532 fail_nomem_policy:
533 	kmem_cache_free(vm_area_cachep, tmp);
534 fail_nomem:
535 	retval = -ENOMEM;
536 	vm_unacct_memory(charge);
537 	goto out;
538 }
539 
540 static inline int mm_alloc_pgd(struct mm_struct *mm)
541 {
542 	mm->pgd = pgd_alloc(mm);
543 	if (unlikely(!mm->pgd))
544 		return -ENOMEM;
545 	return 0;
546 }
547 
548 static inline void mm_free_pgd(struct mm_struct *mm)
549 {
550 	pgd_free(mm, mm->pgd);
551 }
552 #else
553 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
554 {
555 	down_write(&oldmm->mmap_sem);
556 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
557 	up_write(&oldmm->mmap_sem);
558 	return 0;
559 }
560 #define mm_alloc_pgd(mm)	(0)
561 #define mm_free_pgd(mm)
562 #endif /* CONFIG_MMU */
563 
564 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
565 
566 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
567 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
568 
569 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
570 
571 static int __init coredump_filter_setup(char *s)
572 {
573 	default_dump_filter =
574 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
575 		MMF_DUMP_FILTER_MASK;
576 	return 1;
577 }
578 
579 __setup("coredump_filter=", coredump_filter_setup);
580 
581 #include <linux/init_task.h>
582 
583 static void mm_init_aio(struct mm_struct *mm)
584 {
585 #ifdef CONFIG_AIO
586 	spin_lock_init(&mm->ioctx_lock);
587 	mm->ioctx_table = NULL;
588 #endif
589 }
590 
591 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
592 {
593 #ifdef CONFIG_MEMCG
594 	mm->owner = p;
595 #endif
596 }
597 
598 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
599 {
600 	mm->mmap = NULL;
601 	mm->mm_rb = RB_ROOT;
602 	mm->vmacache_seqnum = 0;
603 	atomic_set(&mm->mm_users, 1);
604 	atomic_set(&mm->mm_count, 1);
605 	init_rwsem(&mm->mmap_sem);
606 	INIT_LIST_HEAD(&mm->mmlist);
607 	mm->core_state = NULL;
608 	atomic_long_set(&mm->nr_ptes, 0);
609 	mm_nr_pmds_init(mm);
610 	mm->map_count = 0;
611 	mm->locked_vm = 0;
612 	mm->pinned_vm = 0;
613 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
614 	spin_lock_init(&mm->page_table_lock);
615 	mm_init_cpumask(mm);
616 	mm_init_aio(mm);
617 	mm_init_owner(mm, p);
618 	mmu_notifier_mm_init(mm);
619 	clear_tlb_flush_pending(mm);
620 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
621 	mm->pmd_huge_pte = NULL;
622 #endif
623 
624 	if (current->mm) {
625 		mm->flags = current->mm->flags & MMF_INIT_MASK;
626 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
627 	} else {
628 		mm->flags = default_dump_filter;
629 		mm->def_flags = 0;
630 	}
631 
632 	if (mm_alloc_pgd(mm))
633 		goto fail_nopgd;
634 
635 	if (init_new_context(p, mm))
636 		goto fail_nocontext;
637 
638 	return mm;
639 
640 fail_nocontext:
641 	mm_free_pgd(mm);
642 fail_nopgd:
643 	free_mm(mm);
644 	return NULL;
645 }
646 
647 static void check_mm(struct mm_struct *mm)
648 {
649 	int i;
650 
651 	for (i = 0; i < NR_MM_COUNTERS; i++) {
652 		long x = atomic_long_read(&mm->rss_stat.count[i]);
653 
654 		if (unlikely(x))
655 			printk(KERN_ALERT "BUG: Bad rss-counter state "
656 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
657 	}
658 
659 	if (atomic_long_read(&mm->nr_ptes))
660 		pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
661 				atomic_long_read(&mm->nr_ptes));
662 	if (mm_nr_pmds(mm))
663 		pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
664 				mm_nr_pmds(mm));
665 
666 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
667 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
668 #endif
669 }
670 
671 /*
672  * Allocate and initialize an mm_struct.
673  */
674 struct mm_struct *mm_alloc(void)
675 {
676 	struct mm_struct *mm;
677 
678 	mm = allocate_mm();
679 	if (!mm)
680 		return NULL;
681 
682 	memset(mm, 0, sizeof(*mm));
683 	return mm_init(mm, current);
684 }
685 
686 /*
687  * Called when the last reference to the mm
688  * is dropped: either by a lazy thread or by
689  * mmput. Free the page directory and the mm.
690  */
691 void __mmdrop(struct mm_struct *mm)
692 {
693 	BUG_ON(mm == &init_mm);
694 	mm_free_pgd(mm);
695 	destroy_context(mm);
696 	mmu_notifier_mm_destroy(mm);
697 	check_mm(mm);
698 	free_mm(mm);
699 }
700 EXPORT_SYMBOL_GPL(__mmdrop);
701 
702 static inline void __mmput(struct mm_struct *mm)
703 {
704 	VM_BUG_ON(atomic_read(&mm->mm_users));
705 
706 	uprobe_clear_state(mm);
707 	exit_aio(mm);
708 	ksm_exit(mm);
709 	khugepaged_exit(mm); /* must run before exit_mmap */
710 	exit_mmap(mm);
711 	set_mm_exe_file(mm, NULL);
712 	if (!list_empty(&mm->mmlist)) {
713 		spin_lock(&mmlist_lock);
714 		list_del(&mm->mmlist);
715 		spin_unlock(&mmlist_lock);
716 	}
717 	if (mm->binfmt)
718 		module_put(mm->binfmt->module);
719 	mmdrop(mm);
720 }
721 
722 /*
723  * Decrement the use count and release all resources for an mm.
724  */
725 void mmput(struct mm_struct *mm)
726 {
727 	might_sleep();
728 
729 	if (atomic_dec_and_test(&mm->mm_users))
730 		__mmput(mm);
731 }
732 EXPORT_SYMBOL_GPL(mmput);
733 
734 static void mmput_async_fn(struct work_struct *work)
735 {
736 	struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
737 	__mmput(mm);
738 }
739 
740 void mmput_async(struct mm_struct *mm)
741 {
742 	if (atomic_dec_and_test(&mm->mm_users)) {
743 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
744 		schedule_work(&mm->async_put_work);
745 	}
746 }
747 
748 /**
749  * set_mm_exe_file - change a reference to the mm's executable file
750  *
751  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
752  *
753  * Main users are mmput() and sys_execve(). Callers prevent concurrent
754  * invocations: in mmput() nobody alive left, in execve task is single
755  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
756  * mm->exe_file, but does so without using set_mm_exe_file() in order
757  * to do avoid the need for any locks.
758  */
759 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
760 {
761 	struct file *old_exe_file;
762 
763 	/*
764 	 * It is safe to dereference the exe_file without RCU as
765 	 * this function is only called if nobody else can access
766 	 * this mm -- see comment above for justification.
767 	 */
768 	old_exe_file = rcu_dereference_raw(mm->exe_file);
769 
770 	if (new_exe_file)
771 		get_file(new_exe_file);
772 	rcu_assign_pointer(mm->exe_file, new_exe_file);
773 	if (old_exe_file)
774 		fput(old_exe_file);
775 }
776 
777 /**
778  * get_mm_exe_file - acquire a reference to the mm's executable file
779  *
780  * Returns %NULL if mm has no associated executable file.
781  * User must release file via fput().
782  */
783 struct file *get_mm_exe_file(struct mm_struct *mm)
784 {
785 	struct file *exe_file;
786 
787 	rcu_read_lock();
788 	exe_file = rcu_dereference(mm->exe_file);
789 	if (exe_file && !get_file_rcu(exe_file))
790 		exe_file = NULL;
791 	rcu_read_unlock();
792 	return exe_file;
793 }
794 EXPORT_SYMBOL(get_mm_exe_file);
795 
796 /**
797  * get_task_mm - acquire a reference to the task's mm
798  *
799  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
800  * this kernel workthread has transiently adopted a user mm with use_mm,
801  * to do its AIO) is not set and if so returns a reference to it, after
802  * bumping up the use count.  User must release the mm via mmput()
803  * after use.  Typically used by /proc and ptrace.
804  */
805 struct mm_struct *get_task_mm(struct task_struct *task)
806 {
807 	struct mm_struct *mm;
808 
809 	task_lock(task);
810 	mm = task->mm;
811 	if (mm) {
812 		if (task->flags & PF_KTHREAD)
813 			mm = NULL;
814 		else
815 			atomic_inc(&mm->mm_users);
816 	}
817 	task_unlock(task);
818 	return mm;
819 }
820 EXPORT_SYMBOL_GPL(get_task_mm);
821 
822 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
823 {
824 	struct mm_struct *mm;
825 	int err;
826 
827 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
828 	if (err)
829 		return ERR_PTR(err);
830 
831 	mm = get_task_mm(task);
832 	if (mm && mm != current->mm &&
833 			!ptrace_may_access(task, mode)) {
834 		mmput(mm);
835 		mm = ERR_PTR(-EACCES);
836 	}
837 	mutex_unlock(&task->signal->cred_guard_mutex);
838 
839 	return mm;
840 }
841 
842 static void complete_vfork_done(struct task_struct *tsk)
843 {
844 	struct completion *vfork;
845 
846 	task_lock(tsk);
847 	vfork = tsk->vfork_done;
848 	if (likely(vfork)) {
849 		tsk->vfork_done = NULL;
850 		complete(vfork);
851 	}
852 	task_unlock(tsk);
853 }
854 
855 static int wait_for_vfork_done(struct task_struct *child,
856 				struct completion *vfork)
857 {
858 	int killed;
859 
860 	freezer_do_not_count();
861 	killed = wait_for_completion_killable(vfork);
862 	freezer_count();
863 
864 	if (killed) {
865 		task_lock(child);
866 		child->vfork_done = NULL;
867 		task_unlock(child);
868 	}
869 
870 	put_task_struct(child);
871 	return killed;
872 }
873 
874 /* Please note the differences between mmput and mm_release.
875  * mmput is called whenever we stop holding onto a mm_struct,
876  * error success whatever.
877  *
878  * mm_release is called after a mm_struct has been removed
879  * from the current process.
880  *
881  * This difference is important for error handling, when we
882  * only half set up a mm_struct for a new process and need to restore
883  * the old one.  Because we mmput the new mm_struct before
884  * restoring the old one. . .
885  * Eric Biederman 10 January 1998
886  */
887 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
888 {
889 	/* Get rid of any futexes when releasing the mm */
890 #ifdef CONFIG_FUTEX
891 	if (unlikely(tsk->robust_list)) {
892 		exit_robust_list(tsk);
893 		tsk->robust_list = NULL;
894 	}
895 #ifdef CONFIG_COMPAT
896 	if (unlikely(tsk->compat_robust_list)) {
897 		compat_exit_robust_list(tsk);
898 		tsk->compat_robust_list = NULL;
899 	}
900 #endif
901 	if (unlikely(!list_empty(&tsk->pi_state_list)))
902 		exit_pi_state_list(tsk);
903 #endif
904 
905 	uprobe_free_utask(tsk);
906 
907 	/* Get rid of any cached register state */
908 	deactivate_mm(tsk, mm);
909 
910 	/*
911 	 * If we're exiting normally, clear a user-space tid field if
912 	 * requested.  We leave this alone when dying by signal, to leave
913 	 * the value intact in a core dump, and to save the unnecessary
914 	 * trouble, say, a killed vfork parent shouldn't touch this mm.
915 	 * Userland only wants this done for a sys_exit.
916 	 */
917 	if (tsk->clear_child_tid) {
918 		if (!(tsk->flags & PF_SIGNALED) &&
919 		    atomic_read(&mm->mm_users) > 1) {
920 			/*
921 			 * We don't check the error code - if userspace has
922 			 * not set up a proper pointer then tough luck.
923 			 */
924 			put_user(0, tsk->clear_child_tid);
925 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
926 					1, NULL, NULL, 0);
927 		}
928 		tsk->clear_child_tid = NULL;
929 	}
930 
931 	/*
932 	 * All done, finally we can wake up parent and return this mm to him.
933 	 * Also kthread_stop() uses this completion for synchronization.
934 	 */
935 	if (tsk->vfork_done)
936 		complete_vfork_done(tsk);
937 }
938 
939 /*
940  * Allocate a new mm structure and copy contents from the
941  * mm structure of the passed in task structure.
942  */
943 static struct mm_struct *dup_mm(struct task_struct *tsk)
944 {
945 	struct mm_struct *mm, *oldmm = current->mm;
946 	int err;
947 
948 	mm = allocate_mm();
949 	if (!mm)
950 		goto fail_nomem;
951 
952 	memcpy(mm, oldmm, sizeof(*mm));
953 
954 	if (!mm_init(mm, tsk))
955 		goto fail_nomem;
956 
957 	err = dup_mmap(mm, oldmm);
958 	if (err)
959 		goto free_pt;
960 
961 	mm->hiwater_rss = get_mm_rss(mm);
962 	mm->hiwater_vm = mm->total_vm;
963 
964 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
965 		goto free_pt;
966 
967 	return mm;
968 
969 free_pt:
970 	/* don't put binfmt in mmput, we haven't got module yet */
971 	mm->binfmt = NULL;
972 	mmput(mm);
973 
974 fail_nomem:
975 	return NULL;
976 }
977 
978 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
979 {
980 	struct mm_struct *mm, *oldmm;
981 	int retval;
982 
983 	tsk->min_flt = tsk->maj_flt = 0;
984 	tsk->nvcsw = tsk->nivcsw = 0;
985 #ifdef CONFIG_DETECT_HUNG_TASK
986 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
987 #endif
988 
989 	tsk->mm = NULL;
990 	tsk->active_mm = NULL;
991 
992 	/*
993 	 * Are we cloning a kernel thread?
994 	 *
995 	 * We need to steal a active VM for that..
996 	 */
997 	oldmm = current->mm;
998 	if (!oldmm)
999 		return 0;
1000 
1001 	/* initialize the new vmacache entries */
1002 	vmacache_flush(tsk);
1003 
1004 	if (clone_flags & CLONE_VM) {
1005 		atomic_inc(&oldmm->mm_users);
1006 		mm = oldmm;
1007 		goto good_mm;
1008 	}
1009 
1010 	retval = -ENOMEM;
1011 	mm = dup_mm(tsk);
1012 	if (!mm)
1013 		goto fail_nomem;
1014 
1015 good_mm:
1016 	tsk->mm = mm;
1017 	tsk->active_mm = mm;
1018 	return 0;
1019 
1020 fail_nomem:
1021 	return retval;
1022 }
1023 
1024 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1025 {
1026 	struct fs_struct *fs = current->fs;
1027 	if (clone_flags & CLONE_FS) {
1028 		/* tsk->fs is already what we want */
1029 		spin_lock(&fs->lock);
1030 		if (fs->in_exec) {
1031 			spin_unlock(&fs->lock);
1032 			return -EAGAIN;
1033 		}
1034 		fs->users++;
1035 		spin_unlock(&fs->lock);
1036 		return 0;
1037 	}
1038 	tsk->fs = copy_fs_struct(fs);
1039 	if (!tsk->fs)
1040 		return -ENOMEM;
1041 	return 0;
1042 }
1043 
1044 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1045 {
1046 	struct files_struct *oldf, *newf;
1047 	int error = 0;
1048 
1049 	/*
1050 	 * A background process may not have any files ...
1051 	 */
1052 	oldf = current->files;
1053 	if (!oldf)
1054 		goto out;
1055 
1056 	if (clone_flags & CLONE_FILES) {
1057 		atomic_inc(&oldf->count);
1058 		goto out;
1059 	}
1060 
1061 	newf = dup_fd(oldf, &error);
1062 	if (!newf)
1063 		goto out;
1064 
1065 	tsk->files = newf;
1066 	error = 0;
1067 out:
1068 	return error;
1069 }
1070 
1071 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1072 {
1073 #ifdef CONFIG_BLOCK
1074 	struct io_context *ioc = current->io_context;
1075 	struct io_context *new_ioc;
1076 
1077 	if (!ioc)
1078 		return 0;
1079 	/*
1080 	 * Share io context with parent, if CLONE_IO is set
1081 	 */
1082 	if (clone_flags & CLONE_IO) {
1083 		ioc_task_link(ioc);
1084 		tsk->io_context = ioc;
1085 	} else if (ioprio_valid(ioc->ioprio)) {
1086 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1087 		if (unlikely(!new_ioc))
1088 			return -ENOMEM;
1089 
1090 		new_ioc->ioprio = ioc->ioprio;
1091 		put_io_context(new_ioc);
1092 	}
1093 #endif
1094 	return 0;
1095 }
1096 
1097 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1098 {
1099 	struct sighand_struct *sig;
1100 
1101 	if (clone_flags & CLONE_SIGHAND) {
1102 		atomic_inc(&current->sighand->count);
1103 		return 0;
1104 	}
1105 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1106 	rcu_assign_pointer(tsk->sighand, sig);
1107 	if (!sig)
1108 		return -ENOMEM;
1109 
1110 	atomic_set(&sig->count, 1);
1111 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1112 	return 0;
1113 }
1114 
1115 void __cleanup_sighand(struct sighand_struct *sighand)
1116 {
1117 	if (atomic_dec_and_test(&sighand->count)) {
1118 		signalfd_cleanup(sighand);
1119 		/*
1120 		 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1121 		 * without an RCU grace period, see __lock_task_sighand().
1122 		 */
1123 		kmem_cache_free(sighand_cachep, sighand);
1124 	}
1125 }
1126 
1127 /*
1128  * Initialize POSIX timer handling for a thread group.
1129  */
1130 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1131 {
1132 	unsigned long cpu_limit;
1133 
1134 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1135 	if (cpu_limit != RLIM_INFINITY) {
1136 		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1137 		sig->cputimer.running = true;
1138 	}
1139 
1140 	/* The timer lists. */
1141 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1142 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1143 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1144 }
1145 
1146 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1147 {
1148 	struct signal_struct *sig;
1149 
1150 	if (clone_flags & CLONE_THREAD)
1151 		return 0;
1152 
1153 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1154 	tsk->signal = sig;
1155 	if (!sig)
1156 		return -ENOMEM;
1157 
1158 	sig->nr_threads = 1;
1159 	atomic_set(&sig->live, 1);
1160 	atomic_set(&sig->sigcnt, 1);
1161 
1162 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1163 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1164 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1165 
1166 	init_waitqueue_head(&sig->wait_chldexit);
1167 	sig->curr_target = tsk;
1168 	init_sigpending(&sig->shared_pending);
1169 	INIT_LIST_HEAD(&sig->posix_timers);
1170 	seqlock_init(&sig->stats_lock);
1171 	prev_cputime_init(&sig->prev_cputime);
1172 
1173 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1174 	sig->real_timer.function = it_real_fn;
1175 
1176 	task_lock(current->group_leader);
1177 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1178 	task_unlock(current->group_leader);
1179 
1180 	posix_cpu_timers_init_group(sig);
1181 
1182 	tty_audit_fork(sig);
1183 	sched_autogroup_fork(sig);
1184 
1185 	sig->oom_score_adj = current->signal->oom_score_adj;
1186 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1187 
1188 	sig->has_child_subreaper = current->signal->has_child_subreaper ||
1189 				   current->signal->is_child_subreaper;
1190 
1191 	mutex_init(&sig->cred_guard_mutex);
1192 
1193 	return 0;
1194 }
1195 
1196 static void copy_seccomp(struct task_struct *p)
1197 {
1198 #ifdef CONFIG_SECCOMP
1199 	/*
1200 	 * Must be called with sighand->lock held, which is common to
1201 	 * all threads in the group. Holding cred_guard_mutex is not
1202 	 * needed because this new task is not yet running and cannot
1203 	 * be racing exec.
1204 	 */
1205 	assert_spin_locked(&current->sighand->siglock);
1206 
1207 	/* Ref-count the new filter user, and assign it. */
1208 	get_seccomp_filter(current);
1209 	p->seccomp = current->seccomp;
1210 
1211 	/*
1212 	 * Explicitly enable no_new_privs here in case it got set
1213 	 * between the task_struct being duplicated and holding the
1214 	 * sighand lock. The seccomp state and nnp must be in sync.
1215 	 */
1216 	if (task_no_new_privs(current))
1217 		task_set_no_new_privs(p);
1218 
1219 	/*
1220 	 * If the parent gained a seccomp mode after copying thread
1221 	 * flags and between before we held the sighand lock, we have
1222 	 * to manually enable the seccomp thread flag here.
1223 	 */
1224 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1225 		set_tsk_thread_flag(p, TIF_SECCOMP);
1226 #endif
1227 }
1228 
1229 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1230 {
1231 	current->clear_child_tid = tidptr;
1232 
1233 	return task_pid_vnr(current);
1234 }
1235 
1236 static void rt_mutex_init_task(struct task_struct *p)
1237 {
1238 	raw_spin_lock_init(&p->pi_lock);
1239 #ifdef CONFIG_RT_MUTEXES
1240 	p->pi_waiters = RB_ROOT;
1241 	p->pi_waiters_leftmost = NULL;
1242 	p->pi_blocked_on = NULL;
1243 #endif
1244 }
1245 
1246 /*
1247  * Initialize POSIX timer handling for a single task.
1248  */
1249 static void posix_cpu_timers_init(struct task_struct *tsk)
1250 {
1251 	tsk->cputime_expires.prof_exp = 0;
1252 	tsk->cputime_expires.virt_exp = 0;
1253 	tsk->cputime_expires.sched_exp = 0;
1254 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1255 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1256 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1257 }
1258 
1259 static inline void
1260 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1261 {
1262 	 task->pids[type].pid = pid;
1263 }
1264 
1265 /*
1266  * This creates a new process as a copy of the old one,
1267  * but does not actually start it yet.
1268  *
1269  * It copies the registers, and all the appropriate
1270  * parts of the process environment (as per the clone
1271  * flags). The actual kick-off is left to the caller.
1272  */
1273 static struct task_struct *copy_process(unsigned long clone_flags,
1274 					unsigned long stack_start,
1275 					unsigned long stack_size,
1276 					int __user *child_tidptr,
1277 					struct pid *pid,
1278 					int trace,
1279 					unsigned long tls)
1280 {
1281 	int retval;
1282 	struct task_struct *p;
1283 
1284 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1285 		return ERR_PTR(-EINVAL);
1286 
1287 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1288 		return ERR_PTR(-EINVAL);
1289 
1290 	/*
1291 	 * Thread groups must share signals as well, and detached threads
1292 	 * can only be started up within the thread group.
1293 	 */
1294 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1295 		return ERR_PTR(-EINVAL);
1296 
1297 	/*
1298 	 * Shared signal handlers imply shared VM. By way of the above,
1299 	 * thread groups also imply shared VM. Blocking this case allows
1300 	 * for various simplifications in other code.
1301 	 */
1302 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1303 		return ERR_PTR(-EINVAL);
1304 
1305 	/*
1306 	 * Siblings of global init remain as zombies on exit since they are
1307 	 * not reaped by their parent (swapper). To solve this and to avoid
1308 	 * multi-rooted process trees, prevent global and container-inits
1309 	 * from creating siblings.
1310 	 */
1311 	if ((clone_flags & CLONE_PARENT) &&
1312 				current->signal->flags & SIGNAL_UNKILLABLE)
1313 		return ERR_PTR(-EINVAL);
1314 
1315 	/*
1316 	 * If the new process will be in a different pid or user namespace
1317 	 * do not allow it to share a thread group with the forking task.
1318 	 */
1319 	if (clone_flags & CLONE_THREAD) {
1320 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1321 		    (task_active_pid_ns(current) !=
1322 				current->nsproxy->pid_ns_for_children))
1323 			return ERR_PTR(-EINVAL);
1324 	}
1325 
1326 	retval = security_task_create(clone_flags);
1327 	if (retval)
1328 		goto fork_out;
1329 
1330 	retval = -ENOMEM;
1331 	p = dup_task_struct(current);
1332 	if (!p)
1333 		goto fork_out;
1334 
1335 	ftrace_graph_init_task(p);
1336 
1337 	rt_mutex_init_task(p);
1338 
1339 #ifdef CONFIG_PROVE_LOCKING
1340 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1341 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1342 #endif
1343 	retval = -EAGAIN;
1344 	if (atomic_read(&p->real_cred->user->processes) >=
1345 			task_rlimit(p, RLIMIT_NPROC)) {
1346 		if (p->real_cred->user != INIT_USER &&
1347 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1348 			goto bad_fork_free;
1349 	}
1350 	current->flags &= ~PF_NPROC_EXCEEDED;
1351 
1352 	retval = copy_creds(p, clone_flags);
1353 	if (retval < 0)
1354 		goto bad_fork_free;
1355 
1356 	/*
1357 	 * If multiple threads are within copy_process(), then this check
1358 	 * triggers too late. This doesn't hurt, the check is only there
1359 	 * to stop root fork bombs.
1360 	 */
1361 	retval = -EAGAIN;
1362 	if (nr_threads >= max_threads)
1363 		goto bad_fork_cleanup_count;
1364 
1365 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1366 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1367 	p->flags |= PF_FORKNOEXEC;
1368 	INIT_LIST_HEAD(&p->children);
1369 	INIT_LIST_HEAD(&p->sibling);
1370 	rcu_copy_process(p);
1371 	p->vfork_done = NULL;
1372 	spin_lock_init(&p->alloc_lock);
1373 
1374 	init_sigpending(&p->pending);
1375 
1376 	p->utime = p->stime = p->gtime = 0;
1377 	p->utimescaled = p->stimescaled = 0;
1378 	prev_cputime_init(&p->prev_cputime);
1379 
1380 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1381 	seqcount_init(&p->vtime_seqcount);
1382 	p->vtime_snap = 0;
1383 	p->vtime_snap_whence = VTIME_INACTIVE;
1384 #endif
1385 
1386 #if defined(SPLIT_RSS_COUNTING)
1387 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1388 #endif
1389 
1390 	p->default_timer_slack_ns = current->timer_slack_ns;
1391 
1392 	task_io_accounting_init(&p->ioac);
1393 	acct_clear_integrals(p);
1394 
1395 	posix_cpu_timers_init(p);
1396 
1397 	p->start_time = ktime_get_ns();
1398 	p->real_start_time = ktime_get_boot_ns();
1399 	p->io_context = NULL;
1400 	p->audit_context = NULL;
1401 	threadgroup_change_begin(current);
1402 	cgroup_fork(p);
1403 #ifdef CONFIG_NUMA
1404 	p->mempolicy = mpol_dup(p->mempolicy);
1405 	if (IS_ERR(p->mempolicy)) {
1406 		retval = PTR_ERR(p->mempolicy);
1407 		p->mempolicy = NULL;
1408 		goto bad_fork_cleanup_threadgroup_lock;
1409 	}
1410 #endif
1411 #ifdef CONFIG_CPUSETS
1412 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1413 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1414 	seqcount_init(&p->mems_allowed_seq);
1415 #endif
1416 #ifdef CONFIG_TRACE_IRQFLAGS
1417 	p->irq_events = 0;
1418 	p->hardirqs_enabled = 0;
1419 	p->hardirq_enable_ip = 0;
1420 	p->hardirq_enable_event = 0;
1421 	p->hardirq_disable_ip = _THIS_IP_;
1422 	p->hardirq_disable_event = 0;
1423 	p->softirqs_enabled = 1;
1424 	p->softirq_enable_ip = _THIS_IP_;
1425 	p->softirq_enable_event = 0;
1426 	p->softirq_disable_ip = 0;
1427 	p->softirq_disable_event = 0;
1428 	p->hardirq_context = 0;
1429 	p->softirq_context = 0;
1430 #endif
1431 
1432 	p->pagefault_disabled = 0;
1433 
1434 #ifdef CONFIG_LOCKDEP
1435 	p->lockdep_depth = 0; /* no locks held yet */
1436 	p->curr_chain_key = 0;
1437 	p->lockdep_recursion = 0;
1438 #endif
1439 
1440 #ifdef CONFIG_DEBUG_MUTEXES
1441 	p->blocked_on = NULL; /* not blocked yet */
1442 #endif
1443 #ifdef CONFIG_BCACHE
1444 	p->sequential_io	= 0;
1445 	p->sequential_io_avg	= 0;
1446 #endif
1447 
1448 	/* Perform scheduler related setup. Assign this task to a CPU. */
1449 	retval = sched_fork(clone_flags, p);
1450 	if (retval)
1451 		goto bad_fork_cleanup_policy;
1452 
1453 	retval = perf_event_init_task(p);
1454 	if (retval)
1455 		goto bad_fork_cleanup_policy;
1456 	retval = audit_alloc(p);
1457 	if (retval)
1458 		goto bad_fork_cleanup_perf;
1459 	/* copy all the process information */
1460 	shm_init_task(p);
1461 	retval = copy_semundo(clone_flags, p);
1462 	if (retval)
1463 		goto bad_fork_cleanup_audit;
1464 	retval = copy_files(clone_flags, p);
1465 	if (retval)
1466 		goto bad_fork_cleanup_semundo;
1467 	retval = copy_fs(clone_flags, p);
1468 	if (retval)
1469 		goto bad_fork_cleanup_files;
1470 	retval = copy_sighand(clone_flags, p);
1471 	if (retval)
1472 		goto bad_fork_cleanup_fs;
1473 	retval = copy_signal(clone_flags, p);
1474 	if (retval)
1475 		goto bad_fork_cleanup_sighand;
1476 	retval = copy_mm(clone_flags, p);
1477 	if (retval)
1478 		goto bad_fork_cleanup_signal;
1479 	retval = copy_namespaces(clone_flags, p);
1480 	if (retval)
1481 		goto bad_fork_cleanup_mm;
1482 	retval = copy_io(clone_flags, p);
1483 	if (retval)
1484 		goto bad_fork_cleanup_namespaces;
1485 	retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1486 	if (retval)
1487 		goto bad_fork_cleanup_io;
1488 
1489 	if (pid != &init_struct_pid) {
1490 		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1491 		if (IS_ERR(pid)) {
1492 			retval = PTR_ERR(pid);
1493 			goto bad_fork_cleanup_thread;
1494 		}
1495 	}
1496 
1497 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1498 	/*
1499 	 * Clear TID on mm_release()?
1500 	 */
1501 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1502 #ifdef CONFIG_BLOCK
1503 	p->plug = NULL;
1504 #endif
1505 #ifdef CONFIG_FUTEX
1506 	p->robust_list = NULL;
1507 #ifdef CONFIG_COMPAT
1508 	p->compat_robust_list = NULL;
1509 #endif
1510 	INIT_LIST_HEAD(&p->pi_state_list);
1511 	p->pi_state_cache = NULL;
1512 #endif
1513 	/*
1514 	 * sigaltstack should be cleared when sharing the same VM
1515 	 */
1516 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1517 		sas_ss_reset(p);
1518 
1519 	/*
1520 	 * Syscall tracing and stepping should be turned off in the
1521 	 * child regardless of CLONE_PTRACE.
1522 	 */
1523 	user_disable_single_step(p);
1524 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1525 #ifdef TIF_SYSCALL_EMU
1526 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1527 #endif
1528 	clear_all_latency_tracing(p);
1529 
1530 	/* ok, now we should be set up.. */
1531 	p->pid = pid_nr(pid);
1532 	if (clone_flags & CLONE_THREAD) {
1533 		p->exit_signal = -1;
1534 		p->group_leader = current->group_leader;
1535 		p->tgid = current->tgid;
1536 	} else {
1537 		if (clone_flags & CLONE_PARENT)
1538 			p->exit_signal = current->group_leader->exit_signal;
1539 		else
1540 			p->exit_signal = (clone_flags & CSIGNAL);
1541 		p->group_leader = p;
1542 		p->tgid = p->pid;
1543 	}
1544 
1545 	p->nr_dirtied = 0;
1546 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1547 	p->dirty_paused_when = 0;
1548 
1549 	p->pdeath_signal = 0;
1550 	INIT_LIST_HEAD(&p->thread_group);
1551 	p->task_works = NULL;
1552 
1553 	/*
1554 	 * Ensure that the cgroup subsystem policies allow the new process to be
1555 	 * forked. It should be noted the the new process's css_set can be changed
1556 	 * between here and cgroup_post_fork() if an organisation operation is in
1557 	 * progress.
1558 	 */
1559 	retval = cgroup_can_fork(p);
1560 	if (retval)
1561 		goto bad_fork_free_pid;
1562 
1563 	/*
1564 	 * Make it visible to the rest of the system, but dont wake it up yet.
1565 	 * Need tasklist lock for parent etc handling!
1566 	 */
1567 	write_lock_irq(&tasklist_lock);
1568 
1569 	/* CLONE_PARENT re-uses the old parent */
1570 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1571 		p->real_parent = current->real_parent;
1572 		p->parent_exec_id = current->parent_exec_id;
1573 	} else {
1574 		p->real_parent = current;
1575 		p->parent_exec_id = current->self_exec_id;
1576 	}
1577 
1578 	spin_lock(&current->sighand->siglock);
1579 
1580 	/*
1581 	 * Copy seccomp details explicitly here, in case they were changed
1582 	 * before holding sighand lock.
1583 	 */
1584 	copy_seccomp(p);
1585 
1586 	/*
1587 	 * Process group and session signals need to be delivered to just the
1588 	 * parent before the fork or both the parent and the child after the
1589 	 * fork. Restart if a signal comes in before we add the new process to
1590 	 * it's process group.
1591 	 * A fatal signal pending means that current will exit, so the new
1592 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1593 	*/
1594 	recalc_sigpending();
1595 	if (signal_pending(current)) {
1596 		spin_unlock(&current->sighand->siglock);
1597 		write_unlock_irq(&tasklist_lock);
1598 		retval = -ERESTARTNOINTR;
1599 		goto bad_fork_cancel_cgroup;
1600 	}
1601 
1602 	if (likely(p->pid)) {
1603 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1604 
1605 		init_task_pid(p, PIDTYPE_PID, pid);
1606 		if (thread_group_leader(p)) {
1607 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1608 			init_task_pid(p, PIDTYPE_SID, task_session(current));
1609 
1610 			if (is_child_reaper(pid)) {
1611 				ns_of_pid(pid)->child_reaper = p;
1612 				p->signal->flags |= SIGNAL_UNKILLABLE;
1613 			}
1614 
1615 			p->signal->leader_pid = pid;
1616 			p->signal->tty = tty_kref_get(current->signal->tty);
1617 			list_add_tail(&p->sibling, &p->real_parent->children);
1618 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1619 			attach_pid(p, PIDTYPE_PGID);
1620 			attach_pid(p, PIDTYPE_SID);
1621 			__this_cpu_inc(process_counts);
1622 		} else {
1623 			current->signal->nr_threads++;
1624 			atomic_inc(&current->signal->live);
1625 			atomic_inc(&current->signal->sigcnt);
1626 			list_add_tail_rcu(&p->thread_group,
1627 					  &p->group_leader->thread_group);
1628 			list_add_tail_rcu(&p->thread_node,
1629 					  &p->signal->thread_head);
1630 		}
1631 		attach_pid(p, PIDTYPE_PID);
1632 		nr_threads++;
1633 	}
1634 
1635 	total_forks++;
1636 	spin_unlock(&current->sighand->siglock);
1637 	syscall_tracepoint_update(p);
1638 	write_unlock_irq(&tasklist_lock);
1639 
1640 	proc_fork_connector(p);
1641 	cgroup_post_fork(p);
1642 	threadgroup_change_end(current);
1643 	perf_event_fork(p);
1644 
1645 	trace_task_newtask(p, clone_flags);
1646 	uprobe_copy_process(p, clone_flags);
1647 
1648 	return p;
1649 
1650 bad_fork_cancel_cgroup:
1651 	cgroup_cancel_fork(p);
1652 bad_fork_free_pid:
1653 	if (pid != &init_struct_pid)
1654 		free_pid(pid);
1655 bad_fork_cleanup_thread:
1656 	exit_thread(p);
1657 bad_fork_cleanup_io:
1658 	if (p->io_context)
1659 		exit_io_context(p);
1660 bad_fork_cleanup_namespaces:
1661 	exit_task_namespaces(p);
1662 bad_fork_cleanup_mm:
1663 	if (p->mm)
1664 		mmput(p->mm);
1665 bad_fork_cleanup_signal:
1666 	if (!(clone_flags & CLONE_THREAD))
1667 		free_signal_struct(p->signal);
1668 bad_fork_cleanup_sighand:
1669 	__cleanup_sighand(p->sighand);
1670 bad_fork_cleanup_fs:
1671 	exit_fs(p); /* blocking */
1672 bad_fork_cleanup_files:
1673 	exit_files(p); /* blocking */
1674 bad_fork_cleanup_semundo:
1675 	exit_sem(p);
1676 bad_fork_cleanup_audit:
1677 	audit_free(p);
1678 bad_fork_cleanup_perf:
1679 	perf_event_free_task(p);
1680 bad_fork_cleanup_policy:
1681 #ifdef CONFIG_NUMA
1682 	mpol_put(p->mempolicy);
1683 bad_fork_cleanup_threadgroup_lock:
1684 #endif
1685 	threadgroup_change_end(current);
1686 	delayacct_tsk_free(p);
1687 bad_fork_cleanup_count:
1688 	atomic_dec(&p->cred->user->processes);
1689 	exit_creds(p);
1690 bad_fork_free:
1691 	free_task(p);
1692 fork_out:
1693 	return ERR_PTR(retval);
1694 }
1695 
1696 static inline void init_idle_pids(struct pid_link *links)
1697 {
1698 	enum pid_type type;
1699 
1700 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1701 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1702 		links[type].pid = &init_struct_pid;
1703 	}
1704 }
1705 
1706 struct task_struct *fork_idle(int cpu)
1707 {
1708 	struct task_struct *task;
1709 	task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0);
1710 	if (!IS_ERR(task)) {
1711 		init_idle_pids(task->pids);
1712 		init_idle(task, cpu);
1713 	}
1714 
1715 	return task;
1716 }
1717 
1718 /*
1719  *  Ok, this is the main fork-routine.
1720  *
1721  * It copies the process, and if successful kick-starts
1722  * it and waits for it to finish using the VM if required.
1723  */
1724 long _do_fork(unsigned long clone_flags,
1725 	      unsigned long stack_start,
1726 	      unsigned long stack_size,
1727 	      int __user *parent_tidptr,
1728 	      int __user *child_tidptr,
1729 	      unsigned long tls)
1730 {
1731 	struct task_struct *p;
1732 	int trace = 0;
1733 	long nr;
1734 
1735 	/*
1736 	 * Determine whether and which event to report to ptracer.  When
1737 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
1738 	 * requested, no event is reported; otherwise, report if the event
1739 	 * for the type of forking is enabled.
1740 	 */
1741 	if (!(clone_flags & CLONE_UNTRACED)) {
1742 		if (clone_flags & CLONE_VFORK)
1743 			trace = PTRACE_EVENT_VFORK;
1744 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
1745 			trace = PTRACE_EVENT_CLONE;
1746 		else
1747 			trace = PTRACE_EVENT_FORK;
1748 
1749 		if (likely(!ptrace_event_enabled(current, trace)))
1750 			trace = 0;
1751 	}
1752 
1753 	p = copy_process(clone_flags, stack_start, stack_size,
1754 			 child_tidptr, NULL, trace, tls);
1755 	/*
1756 	 * Do this prior waking up the new thread - the thread pointer
1757 	 * might get invalid after that point, if the thread exits quickly.
1758 	 */
1759 	if (!IS_ERR(p)) {
1760 		struct completion vfork;
1761 		struct pid *pid;
1762 
1763 		trace_sched_process_fork(current, p);
1764 
1765 		pid = get_task_pid(p, PIDTYPE_PID);
1766 		nr = pid_vnr(pid);
1767 
1768 		if (clone_flags & CLONE_PARENT_SETTID)
1769 			put_user(nr, parent_tidptr);
1770 
1771 		if (clone_flags & CLONE_VFORK) {
1772 			p->vfork_done = &vfork;
1773 			init_completion(&vfork);
1774 			get_task_struct(p);
1775 		}
1776 
1777 		wake_up_new_task(p);
1778 
1779 		/* forking complete and child started to run, tell ptracer */
1780 		if (unlikely(trace))
1781 			ptrace_event_pid(trace, pid);
1782 
1783 		if (clone_flags & CLONE_VFORK) {
1784 			if (!wait_for_vfork_done(p, &vfork))
1785 				ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1786 		}
1787 
1788 		put_pid(pid);
1789 	} else {
1790 		nr = PTR_ERR(p);
1791 	}
1792 	return nr;
1793 }
1794 
1795 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
1796 /* For compatibility with architectures that call do_fork directly rather than
1797  * using the syscall entry points below. */
1798 long do_fork(unsigned long clone_flags,
1799 	      unsigned long stack_start,
1800 	      unsigned long stack_size,
1801 	      int __user *parent_tidptr,
1802 	      int __user *child_tidptr)
1803 {
1804 	return _do_fork(clone_flags, stack_start, stack_size,
1805 			parent_tidptr, child_tidptr, 0);
1806 }
1807 #endif
1808 
1809 /*
1810  * Create a kernel thread.
1811  */
1812 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1813 {
1814 	return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1815 		(unsigned long)arg, NULL, NULL, 0);
1816 }
1817 
1818 #ifdef __ARCH_WANT_SYS_FORK
1819 SYSCALL_DEFINE0(fork)
1820 {
1821 #ifdef CONFIG_MMU
1822 	return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
1823 #else
1824 	/* can not support in nommu mode */
1825 	return -EINVAL;
1826 #endif
1827 }
1828 #endif
1829 
1830 #ifdef __ARCH_WANT_SYS_VFORK
1831 SYSCALL_DEFINE0(vfork)
1832 {
1833 	return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1834 			0, NULL, NULL, 0);
1835 }
1836 #endif
1837 
1838 #ifdef __ARCH_WANT_SYS_CLONE
1839 #ifdef CONFIG_CLONE_BACKWARDS
1840 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1841 		 int __user *, parent_tidptr,
1842 		 unsigned long, tls,
1843 		 int __user *, child_tidptr)
1844 #elif defined(CONFIG_CLONE_BACKWARDS2)
1845 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1846 		 int __user *, parent_tidptr,
1847 		 int __user *, child_tidptr,
1848 		 unsigned long, tls)
1849 #elif defined(CONFIG_CLONE_BACKWARDS3)
1850 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1851 		int, stack_size,
1852 		int __user *, parent_tidptr,
1853 		int __user *, child_tidptr,
1854 		unsigned long, tls)
1855 #else
1856 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1857 		 int __user *, parent_tidptr,
1858 		 int __user *, child_tidptr,
1859 		 unsigned long, tls)
1860 #endif
1861 {
1862 	return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
1863 }
1864 #endif
1865 
1866 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1867 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1868 #endif
1869 
1870 static void sighand_ctor(void *data)
1871 {
1872 	struct sighand_struct *sighand = data;
1873 
1874 	spin_lock_init(&sighand->siglock);
1875 	init_waitqueue_head(&sighand->signalfd_wqh);
1876 }
1877 
1878 void __init proc_caches_init(void)
1879 {
1880 	sighand_cachep = kmem_cache_create("sighand_cache",
1881 			sizeof(struct sighand_struct), 0,
1882 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1883 			SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
1884 	signal_cachep = kmem_cache_create("signal_cache",
1885 			sizeof(struct signal_struct), 0,
1886 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1887 			NULL);
1888 	files_cachep = kmem_cache_create("files_cache",
1889 			sizeof(struct files_struct), 0,
1890 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1891 			NULL);
1892 	fs_cachep = kmem_cache_create("fs_cache",
1893 			sizeof(struct fs_struct), 0,
1894 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1895 			NULL);
1896 	/*
1897 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1898 	 * whole struct cpumask for the OFFSTACK case. We could change
1899 	 * this to *only* allocate as much of it as required by the
1900 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
1901 	 * is at the end of the structure, exactly for that reason.
1902 	 */
1903 	mm_cachep = kmem_cache_create("mm_struct",
1904 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1905 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1906 			NULL);
1907 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
1908 	mmap_init();
1909 	nsproxy_cache_init();
1910 }
1911 
1912 /*
1913  * Check constraints on flags passed to the unshare system call.
1914  */
1915 static int check_unshare_flags(unsigned long unshare_flags)
1916 {
1917 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1918 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1919 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1920 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
1921 		return -EINVAL;
1922 	/*
1923 	 * Not implemented, but pretend it works if there is nothing
1924 	 * to unshare.  Note that unsharing the address space or the
1925 	 * signal handlers also need to unshare the signal queues (aka
1926 	 * CLONE_THREAD).
1927 	 */
1928 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1929 		if (!thread_group_empty(current))
1930 			return -EINVAL;
1931 	}
1932 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
1933 		if (atomic_read(&current->sighand->count) > 1)
1934 			return -EINVAL;
1935 	}
1936 	if (unshare_flags & CLONE_VM) {
1937 		if (!current_is_single_threaded())
1938 			return -EINVAL;
1939 	}
1940 
1941 	return 0;
1942 }
1943 
1944 /*
1945  * Unshare the filesystem structure if it is being shared
1946  */
1947 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1948 {
1949 	struct fs_struct *fs = current->fs;
1950 
1951 	if (!(unshare_flags & CLONE_FS) || !fs)
1952 		return 0;
1953 
1954 	/* don't need lock here; in the worst case we'll do useless copy */
1955 	if (fs->users == 1)
1956 		return 0;
1957 
1958 	*new_fsp = copy_fs_struct(fs);
1959 	if (!*new_fsp)
1960 		return -ENOMEM;
1961 
1962 	return 0;
1963 }
1964 
1965 /*
1966  * Unshare file descriptor table if it is being shared
1967  */
1968 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1969 {
1970 	struct files_struct *fd = current->files;
1971 	int error = 0;
1972 
1973 	if ((unshare_flags & CLONE_FILES) &&
1974 	    (fd && atomic_read(&fd->count) > 1)) {
1975 		*new_fdp = dup_fd(fd, &error);
1976 		if (!*new_fdp)
1977 			return error;
1978 	}
1979 
1980 	return 0;
1981 }
1982 
1983 /*
1984  * unshare allows a process to 'unshare' part of the process
1985  * context which was originally shared using clone.  copy_*
1986  * functions used by do_fork() cannot be used here directly
1987  * because they modify an inactive task_struct that is being
1988  * constructed. Here we are modifying the current, active,
1989  * task_struct.
1990  */
1991 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1992 {
1993 	struct fs_struct *fs, *new_fs = NULL;
1994 	struct files_struct *fd, *new_fd = NULL;
1995 	struct cred *new_cred = NULL;
1996 	struct nsproxy *new_nsproxy = NULL;
1997 	int do_sysvsem = 0;
1998 	int err;
1999 
2000 	/*
2001 	 * If unsharing a user namespace must also unshare the thread group
2002 	 * and unshare the filesystem root and working directories.
2003 	 */
2004 	if (unshare_flags & CLONE_NEWUSER)
2005 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2006 	/*
2007 	 * If unsharing vm, must also unshare signal handlers.
2008 	 */
2009 	if (unshare_flags & CLONE_VM)
2010 		unshare_flags |= CLONE_SIGHAND;
2011 	/*
2012 	 * If unsharing a signal handlers, must also unshare the signal queues.
2013 	 */
2014 	if (unshare_flags & CLONE_SIGHAND)
2015 		unshare_flags |= CLONE_THREAD;
2016 	/*
2017 	 * If unsharing namespace, must also unshare filesystem information.
2018 	 */
2019 	if (unshare_flags & CLONE_NEWNS)
2020 		unshare_flags |= CLONE_FS;
2021 
2022 	err = check_unshare_flags(unshare_flags);
2023 	if (err)
2024 		goto bad_unshare_out;
2025 	/*
2026 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2027 	 * to a new ipc namespace, the semaphore arrays from the old
2028 	 * namespace are unreachable.
2029 	 */
2030 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2031 		do_sysvsem = 1;
2032 	err = unshare_fs(unshare_flags, &new_fs);
2033 	if (err)
2034 		goto bad_unshare_out;
2035 	err = unshare_fd(unshare_flags, &new_fd);
2036 	if (err)
2037 		goto bad_unshare_cleanup_fs;
2038 	err = unshare_userns(unshare_flags, &new_cred);
2039 	if (err)
2040 		goto bad_unshare_cleanup_fd;
2041 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2042 					 new_cred, new_fs);
2043 	if (err)
2044 		goto bad_unshare_cleanup_cred;
2045 
2046 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2047 		if (do_sysvsem) {
2048 			/*
2049 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2050 			 */
2051 			exit_sem(current);
2052 		}
2053 		if (unshare_flags & CLONE_NEWIPC) {
2054 			/* Orphan segments in old ns (see sem above). */
2055 			exit_shm(current);
2056 			shm_init_task(current);
2057 		}
2058 
2059 		if (new_nsproxy)
2060 			switch_task_namespaces(current, new_nsproxy);
2061 
2062 		task_lock(current);
2063 
2064 		if (new_fs) {
2065 			fs = current->fs;
2066 			spin_lock(&fs->lock);
2067 			current->fs = new_fs;
2068 			if (--fs->users)
2069 				new_fs = NULL;
2070 			else
2071 				new_fs = fs;
2072 			spin_unlock(&fs->lock);
2073 		}
2074 
2075 		if (new_fd) {
2076 			fd = current->files;
2077 			current->files = new_fd;
2078 			new_fd = fd;
2079 		}
2080 
2081 		task_unlock(current);
2082 
2083 		if (new_cred) {
2084 			/* Install the new user namespace */
2085 			commit_creds(new_cred);
2086 			new_cred = NULL;
2087 		}
2088 	}
2089 
2090 bad_unshare_cleanup_cred:
2091 	if (new_cred)
2092 		put_cred(new_cred);
2093 bad_unshare_cleanup_fd:
2094 	if (new_fd)
2095 		put_files_struct(new_fd);
2096 
2097 bad_unshare_cleanup_fs:
2098 	if (new_fs)
2099 		free_fs_struct(new_fs);
2100 
2101 bad_unshare_out:
2102 	return err;
2103 }
2104 
2105 /*
2106  *	Helper to unshare the files of the current task.
2107  *	We don't want to expose copy_files internals to
2108  *	the exec layer of the kernel.
2109  */
2110 
2111 int unshare_files(struct files_struct **displaced)
2112 {
2113 	struct task_struct *task = current;
2114 	struct files_struct *copy = NULL;
2115 	int error;
2116 
2117 	error = unshare_fd(CLONE_FILES, &copy);
2118 	if (error || !copy) {
2119 		*displaced = NULL;
2120 		return error;
2121 	}
2122 	*displaced = task->files;
2123 	task_lock(task);
2124 	task->files = copy;
2125 	task_unlock(task);
2126 	return 0;
2127 }
2128 
2129 int sysctl_max_threads(struct ctl_table *table, int write,
2130 		       void __user *buffer, size_t *lenp, loff_t *ppos)
2131 {
2132 	struct ctl_table t;
2133 	int ret;
2134 	int threads = max_threads;
2135 	int min = MIN_THREADS;
2136 	int max = MAX_THREADS;
2137 
2138 	t = *table;
2139 	t.data = &threads;
2140 	t.extra1 = &min;
2141 	t.extra2 = &max;
2142 
2143 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2144 	if (ret || !write)
2145 		return ret;
2146 
2147 	set_max_threads(threads);
2148 
2149 	return 0;
2150 }
2151