xref: /linux/kernel/fork.c (revision 092e0e7e520a1fca03e13c9f2d157432a8657ff2)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/tracehook.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/proc_fs.h>
62 #include <linux/blkdev.h>
63 #include <linux/fs_struct.h>
64 #include <linux/magic.h>
65 #include <linux/perf_event.h>
66 #include <linux/posix-timers.h>
67 #include <linux/user-return-notifier.h>
68 
69 #include <asm/pgtable.h>
70 #include <asm/pgalloc.h>
71 #include <asm/uaccess.h>
72 #include <asm/mmu_context.h>
73 #include <asm/cacheflush.h>
74 #include <asm/tlbflush.h>
75 
76 #include <trace/events/sched.h>
77 
78 /*
79  * Protected counters by write_lock_irq(&tasklist_lock)
80  */
81 unsigned long total_forks;	/* Handle normal Linux uptimes. */
82 int nr_threads; 		/* The idle threads do not count.. */
83 
84 int max_threads;		/* tunable limit on nr_threads */
85 
86 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
87 
88 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
89 
90 #ifdef CONFIG_PROVE_RCU
91 int lockdep_tasklist_lock_is_held(void)
92 {
93 	return lockdep_is_held(&tasklist_lock);
94 }
95 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
96 #endif /* #ifdef CONFIG_PROVE_RCU */
97 
98 int nr_processes(void)
99 {
100 	int cpu;
101 	int total = 0;
102 
103 	for_each_possible_cpu(cpu)
104 		total += per_cpu(process_counts, cpu);
105 
106 	return total;
107 }
108 
109 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
110 # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
111 # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
112 static struct kmem_cache *task_struct_cachep;
113 #endif
114 
115 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
116 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
117 {
118 #ifdef CONFIG_DEBUG_STACK_USAGE
119 	gfp_t mask = GFP_KERNEL | __GFP_ZERO;
120 #else
121 	gfp_t mask = GFP_KERNEL;
122 #endif
123 	return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
124 }
125 
126 static inline void free_thread_info(struct thread_info *ti)
127 {
128 	free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
129 }
130 #endif
131 
132 /* SLAB cache for signal_struct structures (tsk->signal) */
133 static struct kmem_cache *signal_cachep;
134 
135 /* SLAB cache for sighand_struct structures (tsk->sighand) */
136 struct kmem_cache *sighand_cachep;
137 
138 /* SLAB cache for files_struct structures (tsk->files) */
139 struct kmem_cache *files_cachep;
140 
141 /* SLAB cache for fs_struct structures (tsk->fs) */
142 struct kmem_cache *fs_cachep;
143 
144 /* SLAB cache for vm_area_struct structures */
145 struct kmem_cache *vm_area_cachep;
146 
147 /* SLAB cache for mm_struct structures (tsk->mm) */
148 static struct kmem_cache *mm_cachep;
149 
150 static void account_kernel_stack(struct thread_info *ti, int account)
151 {
152 	struct zone *zone = page_zone(virt_to_page(ti));
153 
154 	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
155 }
156 
157 void free_task(struct task_struct *tsk)
158 {
159 	prop_local_destroy_single(&tsk->dirties);
160 	account_kernel_stack(tsk->stack, -1);
161 	free_thread_info(tsk->stack);
162 	rt_mutex_debug_task_free(tsk);
163 	ftrace_graph_exit_task(tsk);
164 	free_task_struct(tsk);
165 }
166 EXPORT_SYMBOL(free_task);
167 
168 static inline void free_signal_struct(struct signal_struct *sig)
169 {
170 	taskstats_tgid_free(sig);
171 	kmem_cache_free(signal_cachep, sig);
172 }
173 
174 static inline void put_signal_struct(struct signal_struct *sig)
175 {
176 	if (atomic_dec_and_test(&sig->sigcnt))
177 		free_signal_struct(sig);
178 }
179 
180 void __put_task_struct(struct task_struct *tsk)
181 {
182 	WARN_ON(!tsk->exit_state);
183 	WARN_ON(atomic_read(&tsk->usage));
184 	WARN_ON(tsk == current);
185 
186 	exit_creds(tsk);
187 	delayacct_tsk_free(tsk);
188 	put_signal_struct(tsk->signal);
189 
190 	if (!profile_handoff_task(tsk))
191 		free_task(tsk);
192 }
193 
194 /*
195  * macro override instead of weak attribute alias, to workaround
196  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
197  */
198 #ifndef arch_task_cache_init
199 #define arch_task_cache_init()
200 #endif
201 
202 void __init fork_init(unsigned long mempages)
203 {
204 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
205 #ifndef ARCH_MIN_TASKALIGN
206 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
207 #endif
208 	/* create a slab on which task_structs can be allocated */
209 	task_struct_cachep =
210 		kmem_cache_create("task_struct", sizeof(struct task_struct),
211 			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
212 #endif
213 
214 	/* do the arch specific task caches init */
215 	arch_task_cache_init();
216 
217 	/*
218 	 * The default maximum number of threads is set to a safe
219 	 * value: the thread structures can take up at most half
220 	 * of memory.
221 	 */
222 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
223 
224 	/*
225 	 * we need to allow at least 20 threads to boot a system
226 	 */
227 	if(max_threads < 20)
228 		max_threads = 20;
229 
230 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
231 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
232 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
233 		init_task.signal->rlim[RLIMIT_NPROC];
234 }
235 
236 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
237 					       struct task_struct *src)
238 {
239 	*dst = *src;
240 	return 0;
241 }
242 
243 static struct task_struct *dup_task_struct(struct task_struct *orig)
244 {
245 	struct task_struct *tsk;
246 	struct thread_info *ti;
247 	unsigned long *stackend;
248 
249 	int err;
250 
251 	prepare_to_copy(orig);
252 
253 	tsk = alloc_task_struct();
254 	if (!tsk)
255 		return NULL;
256 
257 	ti = alloc_thread_info(tsk);
258 	if (!ti) {
259 		free_task_struct(tsk);
260 		return NULL;
261 	}
262 
263  	err = arch_dup_task_struct(tsk, orig);
264 	if (err)
265 		goto out;
266 
267 	tsk->stack = ti;
268 
269 	err = prop_local_init_single(&tsk->dirties);
270 	if (err)
271 		goto out;
272 
273 	setup_thread_stack(tsk, orig);
274 	clear_user_return_notifier(tsk);
275 	stackend = end_of_stack(tsk);
276 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
277 
278 #ifdef CONFIG_CC_STACKPROTECTOR
279 	tsk->stack_canary = get_random_int();
280 #endif
281 
282 	/* One for us, one for whoever does the "release_task()" (usually parent) */
283 	atomic_set(&tsk->usage,2);
284 	atomic_set(&tsk->fs_excl, 0);
285 #ifdef CONFIG_BLK_DEV_IO_TRACE
286 	tsk->btrace_seq = 0;
287 #endif
288 	tsk->splice_pipe = NULL;
289 
290 	account_kernel_stack(ti, 1);
291 
292 	return tsk;
293 
294 out:
295 	free_thread_info(ti);
296 	free_task_struct(tsk);
297 	return NULL;
298 }
299 
300 #ifdef CONFIG_MMU
301 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
302 {
303 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
304 	struct rb_node **rb_link, *rb_parent;
305 	int retval;
306 	unsigned long charge;
307 	struct mempolicy *pol;
308 
309 	down_write(&oldmm->mmap_sem);
310 	flush_cache_dup_mm(oldmm);
311 	/*
312 	 * Not linked in yet - no deadlock potential:
313 	 */
314 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
315 
316 	mm->locked_vm = 0;
317 	mm->mmap = NULL;
318 	mm->mmap_cache = NULL;
319 	mm->free_area_cache = oldmm->mmap_base;
320 	mm->cached_hole_size = ~0UL;
321 	mm->map_count = 0;
322 	cpumask_clear(mm_cpumask(mm));
323 	mm->mm_rb = RB_ROOT;
324 	rb_link = &mm->mm_rb.rb_node;
325 	rb_parent = NULL;
326 	pprev = &mm->mmap;
327 	retval = ksm_fork(mm, oldmm);
328 	if (retval)
329 		goto out;
330 
331 	prev = NULL;
332 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
333 		struct file *file;
334 
335 		if (mpnt->vm_flags & VM_DONTCOPY) {
336 			long pages = vma_pages(mpnt);
337 			mm->total_vm -= pages;
338 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
339 								-pages);
340 			continue;
341 		}
342 		charge = 0;
343 		if (mpnt->vm_flags & VM_ACCOUNT) {
344 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
345 			if (security_vm_enough_memory(len))
346 				goto fail_nomem;
347 			charge = len;
348 		}
349 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
350 		if (!tmp)
351 			goto fail_nomem;
352 		*tmp = *mpnt;
353 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
354 		pol = mpol_dup(vma_policy(mpnt));
355 		retval = PTR_ERR(pol);
356 		if (IS_ERR(pol))
357 			goto fail_nomem_policy;
358 		vma_set_policy(tmp, pol);
359 		tmp->vm_mm = mm;
360 		if (anon_vma_fork(tmp, mpnt))
361 			goto fail_nomem_anon_vma_fork;
362 		tmp->vm_flags &= ~VM_LOCKED;
363 		tmp->vm_next = tmp->vm_prev = NULL;
364 		file = tmp->vm_file;
365 		if (file) {
366 			struct inode *inode = file->f_path.dentry->d_inode;
367 			struct address_space *mapping = file->f_mapping;
368 
369 			get_file(file);
370 			if (tmp->vm_flags & VM_DENYWRITE)
371 				atomic_dec(&inode->i_writecount);
372 			spin_lock(&mapping->i_mmap_lock);
373 			if (tmp->vm_flags & VM_SHARED)
374 				mapping->i_mmap_writable++;
375 			tmp->vm_truncate_count = mpnt->vm_truncate_count;
376 			flush_dcache_mmap_lock(mapping);
377 			/* insert tmp into the share list, just after mpnt */
378 			vma_prio_tree_add(tmp, mpnt);
379 			flush_dcache_mmap_unlock(mapping);
380 			spin_unlock(&mapping->i_mmap_lock);
381 		}
382 
383 		/*
384 		 * Clear hugetlb-related page reserves for children. This only
385 		 * affects MAP_PRIVATE mappings. Faults generated by the child
386 		 * are not guaranteed to succeed, even if read-only
387 		 */
388 		if (is_vm_hugetlb_page(tmp))
389 			reset_vma_resv_huge_pages(tmp);
390 
391 		/*
392 		 * Link in the new vma and copy the page table entries.
393 		 */
394 		*pprev = tmp;
395 		pprev = &tmp->vm_next;
396 		tmp->vm_prev = prev;
397 		prev = tmp;
398 
399 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
400 		rb_link = &tmp->vm_rb.rb_right;
401 		rb_parent = &tmp->vm_rb;
402 
403 		mm->map_count++;
404 		retval = copy_page_range(mm, oldmm, mpnt);
405 
406 		if (tmp->vm_ops && tmp->vm_ops->open)
407 			tmp->vm_ops->open(tmp);
408 
409 		if (retval)
410 			goto out;
411 	}
412 	/* a new mm has just been created */
413 	arch_dup_mmap(oldmm, mm);
414 	retval = 0;
415 out:
416 	up_write(&mm->mmap_sem);
417 	flush_tlb_mm(oldmm);
418 	up_write(&oldmm->mmap_sem);
419 	return retval;
420 fail_nomem_anon_vma_fork:
421 	mpol_put(pol);
422 fail_nomem_policy:
423 	kmem_cache_free(vm_area_cachep, tmp);
424 fail_nomem:
425 	retval = -ENOMEM;
426 	vm_unacct_memory(charge);
427 	goto out;
428 }
429 
430 static inline int mm_alloc_pgd(struct mm_struct * mm)
431 {
432 	mm->pgd = pgd_alloc(mm);
433 	if (unlikely(!mm->pgd))
434 		return -ENOMEM;
435 	return 0;
436 }
437 
438 static inline void mm_free_pgd(struct mm_struct * mm)
439 {
440 	pgd_free(mm, mm->pgd);
441 }
442 #else
443 #define dup_mmap(mm, oldmm)	(0)
444 #define mm_alloc_pgd(mm)	(0)
445 #define mm_free_pgd(mm)
446 #endif /* CONFIG_MMU */
447 
448 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
449 
450 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
451 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
452 
453 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
454 
455 static int __init coredump_filter_setup(char *s)
456 {
457 	default_dump_filter =
458 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
459 		MMF_DUMP_FILTER_MASK;
460 	return 1;
461 }
462 
463 __setup("coredump_filter=", coredump_filter_setup);
464 
465 #include <linux/init_task.h>
466 
467 static void mm_init_aio(struct mm_struct *mm)
468 {
469 #ifdef CONFIG_AIO
470 	spin_lock_init(&mm->ioctx_lock);
471 	INIT_HLIST_HEAD(&mm->ioctx_list);
472 #endif
473 }
474 
475 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
476 {
477 	atomic_set(&mm->mm_users, 1);
478 	atomic_set(&mm->mm_count, 1);
479 	init_rwsem(&mm->mmap_sem);
480 	INIT_LIST_HEAD(&mm->mmlist);
481 	mm->flags = (current->mm) ?
482 		(current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
483 	mm->core_state = NULL;
484 	mm->nr_ptes = 0;
485 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
486 	spin_lock_init(&mm->page_table_lock);
487 	mm->free_area_cache = TASK_UNMAPPED_BASE;
488 	mm->cached_hole_size = ~0UL;
489 	mm_init_aio(mm);
490 	mm_init_owner(mm, p);
491 
492 	if (likely(!mm_alloc_pgd(mm))) {
493 		mm->def_flags = 0;
494 		mmu_notifier_mm_init(mm);
495 		return mm;
496 	}
497 
498 	free_mm(mm);
499 	return NULL;
500 }
501 
502 /*
503  * Allocate and initialize an mm_struct.
504  */
505 struct mm_struct * mm_alloc(void)
506 {
507 	struct mm_struct * mm;
508 
509 	mm = allocate_mm();
510 	if (mm) {
511 		memset(mm, 0, sizeof(*mm));
512 		mm = mm_init(mm, current);
513 	}
514 	return mm;
515 }
516 
517 /*
518  * Called when the last reference to the mm
519  * is dropped: either by a lazy thread or by
520  * mmput. Free the page directory and the mm.
521  */
522 void __mmdrop(struct mm_struct *mm)
523 {
524 	BUG_ON(mm == &init_mm);
525 	mm_free_pgd(mm);
526 	destroy_context(mm);
527 	mmu_notifier_mm_destroy(mm);
528 	free_mm(mm);
529 }
530 EXPORT_SYMBOL_GPL(__mmdrop);
531 
532 /*
533  * Decrement the use count and release all resources for an mm.
534  */
535 void mmput(struct mm_struct *mm)
536 {
537 	might_sleep();
538 
539 	if (atomic_dec_and_test(&mm->mm_users)) {
540 		exit_aio(mm);
541 		ksm_exit(mm);
542 		exit_mmap(mm);
543 		set_mm_exe_file(mm, NULL);
544 		if (!list_empty(&mm->mmlist)) {
545 			spin_lock(&mmlist_lock);
546 			list_del(&mm->mmlist);
547 			spin_unlock(&mmlist_lock);
548 		}
549 		put_swap_token(mm);
550 		if (mm->binfmt)
551 			module_put(mm->binfmt->module);
552 		mmdrop(mm);
553 	}
554 }
555 EXPORT_SYMBOL_GPL(mmput);
556 
557 /**
558  * get_task_mm - acquire a reference to the task's mm
559  *
560  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
561  * this kernel workthread has transiently adopted a user mm with use_mm,
562  * to do its AIO) is not set and if so returns a reference to it, after
563  * bumping up the use count.  User must release the mm via mmput()
564  * after use.  Typically used by /proc and ptrace.
565  */
566 struct mm_struct *get_task_mm(struct task_struct *task)
567 {
568 	struct mm_struct *mm;
569 
570 	task_lock(task);
571 	mm = task->mm;
572 	if (mm) {
573 		if (task->flags & PF_KTHREAD)
574 			mm = NULL;
575 		else
576 			atomic_inc(&mm->mm_users);
577 	}
578 	task_unlock(task);
579 	return mm;
580 }
581 EXPORT_SYMBOL_GPL(get_task_mm);
582 
583 /* Please note the differences between mmput and mm_release.
584  * mmput is called whenever we stop holding onto a mm_struct,
585  * error success whatever.
586  *
587  * mm_release is called after a mm_struct has been removed
588  * from the current process.
589  *
590  * This difference is important for error handling, when we
591  * only half set up a mm_struct for a new process and need to restore
592  * the old one.  Because we mmput the new mm_struct before
593  * restoring the old one. . .
594  * Eric Biederman 10 January 1998
595  */
596 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
597 {
598 	struct completion *vfork_done = tsk->vfork_done;
599 
600 	/* Get rid of any futexes when releasing the mm */
601 #ifdef CONFIG_FUTEX
602 	if (unlikely(tsk->robust_list)) {
603 		exit_robust_list(tsk);
604 		tsk->robust_list = NULL;
605 	}
606 #ifdef CONFIG_COMPAT
607 	if (unlikely(tsk->compat_robust_list)) {
608 		compat_exit_robust_list(tsk);
609 		tsk->compat_robust_list = NULL;
610 	}
611 #endif
612 	if (unlikely(!list_empty(&tsk->pi_state_list)))
613 		exit_pi_state_list(tsk);
614 #endif
615 
616 	/* Get rid of any cached register state */
617 	deactivate_mm(tsk, mm);
618 
619 	/* notify parent sleeping on vfork() */
620 	if (vfork_done) {
621 		tsk->vfork_done = NULL;
622 		complete(vfork_done);
623 	}
624 
625 	/*
626 	 * If we're exiting normally, clear a user-space tid field if
627 	 * requested.  We leave this alone when dying by signal, to leave
628 	 * the value intact in a core dump, and to save the unnecessary
629 	 * trouble otherwise.  Userland only wants this done for a sys_exit.
630 	 */
631 	if (tsk->clear_child_tid) {
632 		if (!(tsk->flags & PF_SIGNALED) &&
633 		    atomic_read(&mm->mm_users) > 1) {
634 			/*
635 			 * We don't check the error code - if userspace has
636 			 * not set up a proper pointer then tough luck.
637 			 */
638 			put_user(0, tsk->clear_child_tid);
639 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
640 					1, NULL, NULL, 0);
641 		}
642 		tsk->clear_child_tid = NULL;
643 	}
644 }
645 
646 /*
647  * Allocate a new mm structure and copy contents from the
648  * mm structure of the passed in task structure.
649  */
650 struct mm_struct *dup_mm(struct task_struct *tsk)
651 {
652 	struct mm_struct *mm, *oldmm = current->mm;
653 	int err;
654 
655 	if (!oldmm)
656 		return NULL;
657 
658 	mm = allocate_mm();
659 	if (!mm)
660 		goto fail_nomem;
661 
662 	memcpy(mm, oldmm, sizeof(*mm));
663 
664 	/* Initializing for Swap token stuff */
665 	mm->token_priority = 0;
666 	mm->last_interval = 0;
667 
668 	if (!mm_init(mm, tsk))
669 		goto fail_nomem;
670 
671 	if (init_new_context(tsk, mm))
672 		goto fail_nocontext;
673 
674 	dup_mm_exe_file(oldmm, mm);
675 
676 	err = dup_mmap(mm, oldmm);
677 	if (err)
678 		goto free_pt;
679 
680 	mm->hiwater_rss = get_mm_rss(mm);
681 	mm->hiwater_vm = mm->total_vm;
682 
683 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
684 		goto free_pt;
685 
686 	return mm;
687 
688 free_pt:
689 	/* don't put binfmt in mmput, we haven't got module yet */
690 	mm->binfmt = NULL;
691 	mmput(mm);
692 
693 fail_nomem:
694 	return NULL;
695 
696 fail_nocontext:
697 	/*
698 	 * If init_new_context() failed, we cannot use mmput() to free the mm
699 	 * because it calls destroy_context()
700 	 */
701 	mm_free_pgd(mm);
702 	free_mm(mm);
703 	return NULL;
704 }
705 
706 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
707 {
708 	struct mm_struct * mm, *oldmm;
709 	int retval;
710 
711 	tsk->min_flt = tsk->maj_flt = 0;
712 	tsk->nvcsw = tsk->nivcsw = 0;
713 #ifdef CONFIG_DETECT_HUNG_TASK
714 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
715 #endif
716 
717 	tsk->mm = NULL;
718 	tsk->active_mm = NULL;
719 
720 	/*
721 	 * Are we cloning a kernel thread?
722 	 *
723 	 * We need to steal a active VM for that..
724 	 */
725 	oldmm = current->mm;
726 	if (!oldmm)
727 		return 0;
728 
729 	if (clone_flags & CLONE_VM) {
730 		atomic_inc(&oldmm->mm_users);
731 		mm = oldmm;
732 		goto good_mm;
733 	}
734 
735 	retval = -ENOMEM;
736 	mm = dup_mm(tsk);
737 	if (!mm)
738 		goto fail_nomem;
739 
740 good_mm:
741 	/* Initializing for Swap token stuff */
742 	mm->token_priority = 0;
743 	mm->last_interval = 0;
744 
745 	tsk->mm = mm;
746 	tsk->active_mm = mm;
747 	return 0;
748 
749 fail_nomem:
750 	return retval;
751 }
752 
753 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
754 {
755 	struct fs_struct *fs = current->fs;
756 	if (clone_flags & CLONE_FS) {
757 		/* tsk->fs is already what we want */
758 		spin_lock(&fs->lock);
759 		if (fs->in_exec) {
760 			spin_unlock(&fs->lock);
761 			return -EAGAIN;
762 		}
763 		fs->users++;
764 		spin_unlock(&fs->lock);
765 		return 0;
766 	}
767 	tsk->fs = copy_fs_struct(fs);
768 	if (!tsk->fs)
769 		return -ENOMEM;
770 	return 0;
771 }
772 
773 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
774 {
775 	struct files_struct *oldf, *newf;
776 	int error = 0;
777 
778 	/*
779 	 * A background process may not have any files ...
780 	 */
781 	oldf = current->files;
782 	if (!oldf)
783 		goto out;
784 
785 	if (clone_flags & CLONE_FILES) {
786 		atomic_inc(&oldf->count);
787 		goto out;
788 	}
789 
790 	newf = dup_fd(oldf, &error);
791 	if (!newf)
792 		goto out;
793 
794 	tsk->files = newf;
795 	error = 0;
796 out:
797 	return error;
798 }
799 
800 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
801 {
802 #ifdef CONFIG_BLOCK
803 	struct io_context *ioc = current->io_context;
804 
805 	if (!ioc)
806 		return 0;
807 	/*
808 	 * Share io context with parent, if CLONE_IO is set
809 	 */
810 	if (clone_flags & CLONE_IO) {
811 		tsk->io_context = ioc_task_link(ioc);
812 		if (unlikely(!tsk->io_context))
813 			return -ENOMEM;
814 	} else if (ioprio_valid(ioc->ioprio)) {
815 		tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
816 		if (unlikely(!tsk->io_context))
817 			return -ENOMEM;
818 
819 		tsk->io_context->ioprio = ioc->ioprio;
820 	}
821 #endif
822 	return 0;
823 }
824 
825 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
826 {
827 	struct sighand_struct *sig;
828 
829 	if (clone_flags & CLONE_SIGHAND) {
830 		atomic_inc(&current->sighand->count);
831 		return 0;
832 	}
833 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
834 	rcu_assign_pointer(tsk->sighand, sig);
835 	if (!sig)
836 		return -ENOMEM;
837 	atomic_set(&sig->count, 1);
838 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
839 	return 0;
840 }
841 
842 void __cleanup_sighand(struct sighand_struct *sighand)
843 {
844 	if (atomic_dec_and_test(&sighand->count))
845 		kmem_cache_free(sighand_cachep, sighand);
846 }
847 
848 
849 /*
850  * Initialize POSIX timer handling for a thread group.
851  */
852 static void posix_cpu_timers_init_group(struct signal_struct *sig)
853 {
854 	unsigned long cpu_limit;
855 
856 	/* Thread group counters. */
857 	thread_group_cputime_init(sig);
858 
859 	cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
860 	if (cpu_limit != RLIM_INFINITY) {
861 		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
862 		sig->cputimer.running = 1;
863 	}
864 
865 	/* The timer lists. */
866 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
867 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
868 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
869 }
870 
871 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
872 {
873 	struct signal_struct *sig;
874 
875 	if (clone_flags & CLONE_THREAD)
876 		return 0;
877 
878 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
879 	tsk->signal = sig;
880 	if (!sig)
881 		return -ENOMEM;
882 
883 	sig->nr_threads = 1;
884 	atomic_set(&sig->live, 1);
885 	atomic_set(&sig->sigcnt, 1);
886 	init_waitqueue_head(&sig->wait_chldexit);
887 	if (clone_flags & CLONE_NEWPID)
888 		sig->flags |= SIGNAL_UNKILLABLE;
889 	sig->curr_target = tsk;
890 	init_sigpending(&sig->shared_pending);
891 	INIT_LIST_HEAD(&sig->posix_timers);
892 
893 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
894 	sig->real_timer.function = it_real_fn;
895 
896 	task_lock(current->group_leader);
897 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
898 	task_unlock(current->group_leader);
899 
900 	posix_cpu_timers_init_group(sig);
901 
902 	tty_audit_fork(sig);
903 
904 	sig->oom_adj = current->signal->oom_adj;
905 	sig->oom_score_adj = current->signal->oom_score_adj;
906 
907 	return 0;
908 }
909 
910 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
911 {
912 	unsigned long new_flags = p->flags;
913 
914 	new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
915 	new_flags |= PF_FORKNOEXEC;
916 	new_flags |= PF_STARTING;
917 	p->flags = new_flags;
918 	clear_freeze_flag(p);
919 }
920 
921 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
922 {
923 	current->clear_child_tid = tidptr;
924 
925 	return task_pid_vnr(current);
926 }
927 
928 static void rt_mutex_init_task(struct task_struct *p)
929 {
930 	raw_spin_lock_init(&p->pi_lock);
931 #ifdef CONFIG_RT_MUTEXES
932 	plist_head_init_raw(&p->pi_waiters, &p->pi_lock);
933 	p->pi_blocked_on = NULL;
934 #endif
935 }
936 
937 #ifdef CONFIG_MM_OWNER
938 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
939 {
940 	mm->owner = p;
941 }
942 #endif /* CONFIG_MM_OWNER */
943 
944 /*
945  * Initialize POSIX timer handling for a single task.
946  */
947 static void posix_cpu_timers_init(struct task_struct *tsk)
948 {
949 	tsk->cputime_expires.prof_exp = cputime_zero;
950 	tsk->cputime_expires.virt_exp = cputime_zero;
951 	tsk->cputime_expires.sched_exp = 0;
952 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
953 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
954 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
955 }
956 
957 /*
958  * This creates a new process as a copy of the old one,
959  * but does not actually start it yet.
960  *
961  * It copies the registers, and all the appropriate
962  * parts of the process environment (as per the clone
963  * flags). The actual kick-off is left to the caller.
964  */
965 static struct task_struct *copy_process(unsigned long clone_flags,
966 					unsigned long stack_start,
967 					struct pt_regs *regs,
968 					unsigned long stack_size,
969 					int __user *child_tidptr,
970 					struct pid *pid,
971 					int trace)
972 {
973 	int retval;
974 	struct task_struct *p;
975 	int cgroup_callbacks_done = 0;
976 
977 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
978 		return ERR_PTR(-EINVAL);
979 
980 	/*
981 	 * Thread groups must share signals as well, and detached threads
982 	 * can only be started up within the thread group.
983 	 */
984 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
985 		return ERR_PTR(-EINVAL);
986 
987 	/*
988 	 * Shared signal handlers imply shared VM. By way of the above,
989 	 * thread groups also imply shared VM. Blocking this case allows
990 	 * for various simplifications in other code.
991 	 */
992 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
993 		return ERR_PTR(-EINVAL);
994 
995 	/*
996 	 * Siblings of global init remain as zombies on exit since they are
997 	 * not reaped by their parent (swapper). To solve this and to avoid
998 	 * multi-rooted process trees, prevent global and container-inits
999 	 * from creating siblings.
1000 	 */
1001 	if ((clone_flags & CLONE_PARENT) &&
1002 				current->signal->flags & SIGNAL_UNKILLABLE)
1003 		return ERR_PTR(-EINVAL);
1004 
1005 	retval = security_task_create(clone_flags);
1006 	if (retval)
1007 		goto fork_out;
1008 
1009 	retval = -ENOMEM;
1010 	p = dup_task_struct(current);
1011 	if (!p)
1012 		goto fork_out;
1013 
1014 	ftrace_graph_init_task(p);
1015 
1016 	rt_mutex_init_task(p);
1017 
1018 #ifdef CONFIG_PROVE_LOCKING
1019 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1020 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1021 #endif
1022 	retval = -EAGAIN;
1023 	if (atomic_read(&p->real_cred->user->processes) >=
1024 			task_rlimit(p, RLIMIT_NPROC)) {
1025 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1026 		    p->real_cred->user != INIT_USER)
1027 			goto bad_fork_free;
1028 	}
1029 
1030 	retval = copy_creds(p, clone_flags);
1031 	if (retval < 0)
1032 		goto bad_fork_free;
1033 
1034 	/*
1035 	 * If multiple threads are within copy_process(), then this check
1036 	 * triggers too late. This doesn't hurt, the check is only there
1037 	 * to stop root fork bombs.
1038 	 */
1039 	retval = -EAGAIN;
1040 	if (nr_threads >= max_threads)
1041 		goto bad_fork_cleanup_count;
1042 
1043 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1044 		goto bad_fork_cleanup_count;
1045 
1046 	p->did_exec = 0;
1047 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1048 	copy_flags(clone_flags, p);
1049 	INIT_LIST_HEAD(&p->children);
1050 	INIT_LIST_HEAD(&p->sibling);
1051 	rcu_copy_process(p);
1052 	p->vfork_done = NULL;
1053 	spin_lock_init(&p->alloc_lock);
1054 
1055 	init_sigpending(&p->pending);
1056 
1057 	p->utime = cputime_zero;
1058 	p->stime = cputime_zero;
1059 	p->gtime = cputime_zero;
1060 	p->utimescaled = cputime_zero;
1061 	p->stimescaled = cputime_zero;
1062 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1063 	p->prev_utime = cputime_zero;
1064 	p->prev_stime = cputime_zero;
1065 #endif
1066 #if defined(SPLIT_RSS_COUNTING)
1067 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1068 #endif
1069 
1070 	p->default_timer_slack_ns = current->timer_slack_ns;
1071 
1072 	task_io_accounting_init(&p->ioac);
1073 	acct_clear_integrals(p);
1074 
1075 	posix_cpu_timers_init(p);
1076 
1077 	p->lock_depth = -1;		/* -1 = no lock */
1078 	do_posix_clock_monotonic_gettime(&p->start_time);
1079 	p->real_start_time = p->start_time;
1080 	monotonic_to_bootbased(&p->real_start_time);
1081 	p->io_context = NULL;
1082 	p->audit_context = NULL;
1083 	cgroup_fork(p);
1084 #ifdef CONFIG_NUMA
1085 	p->mempolicy = mpol_dup(p->mempolicy);
1086  	if (IS_ERR(p->mempolicy)) {
1087  		retval = PTR_ERR(p->mempolicy);
1088  		p->mempolicy = NULL;
1089  		goto bad_fork_cleanup_cgroup;
1090  	}
1091 	mpol_fix_fork_child_flag(p);
1092 #endif
1093 #ifdef CONFIG_TRACE_IRQFLAGS
1094 	p->irq_events = 0;
1095 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1096 	p->hardirqs_enabled = 1;
1097 #else
1098 	p->hardirqs_enabled = 0;
1099 #endif
1100 	p->hardirq_enable_ip = 0;
1101 	p->hardirq_enable_event = 0;
1102 	p->hardirq_disable_ip = _THIS_IP_;
1103 	p->hardirq_disable_event = 0;
1104 	p->softirqs_enabled = 1;
1105 	p->softirq_enable_ip = _THIS_IP_;
1106 	p->softirq_enable_event = 0;
1107 	p->softirq_disable_ip = 0;
1108 	p->softirq_disable_event = 0;
1109 	p->hardirq_context = 0;
1110 	p->softirq_context = 0;
1111 #endif
1112 #ifdef CONFIG_LOCKDEP
1113 	p->lockdep_depth = 0; /* no locks held yet */
1114 	p->curr_chain_key = 0;
1115 	p->lockdep_recursion = 0;
1116 #endif
1117 
1118 #ifdef CONFIG_DEBUG_MUTEXES
1119 	p->blocked_on = NULL; /* not blocked yet */
1120 #endif
1121 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1122 	p->memcg_batch.do_batch = 0;
1123 	p->memcg_batch.memcg = NULL;
1124 #endif
1125 
1126 	/* Perform scheduler related setup. Assign this task to a CPU. */
1127 	sched_fork(p, clone_flags);
1128 
1129 	retval = perf_event_init_task(p);
1130 	if (retval)
1131 		goto bad_fork_cleanup_policy;
1132 
1133 	if ((retval = audit_alloc(p)))
1134 		goto bad_fork_cleanup_policy;
1135 	/* copy all the process information */
1136 	if ((retval = copy_semundo(clone_flags, p)))
1137 		goto bad_fork_cleanup_audit;
1138 	if ((retval = copy_files(clone_flags, p)))
1139 		goto bad_fork_cleanup_semundo;
1140 	if ((retval = copy_fs(clone_flags, p)))
1141 		goto bad_fork_cleanup_files;
1142 	if ((retval = copy_sighand(clone_flags, p)))
1143 		goto bad_fork_cleanup_fs;
1144 	if ((retval = copy_signal(clone_flags, p)))
1145 		goto bad_fork_cleanup_sighand;
1146 	if ((retval = copy_mm(clone_flags, p)))
1147 		goto bad_fork_cleanup_signal;
1148 	if ((retval = copy_namespaces(clone_flags, p)))
1149 		goto bad_fork_cleanup_mm;
1150 	if ((retval = copy_io(clone_flags, p)))
1151 		goto bad_fork_cleanup_namespaces;
1152 	retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1153 	if (retval)
1154 		goto bad_fork_cleanup_io;
1155 
1156 	if (pid != &init_struct_pid) {
1157 		retval = -ENOMEM;
1158 		pid = alloc_pid(p->nsproxy->pid_ns);
1159 		if (!pid)
1160 			goto bad_fork_cleanup_io;
1161 
1162 		if (clone_flags & CLONE_NEWPID) {
1163 			retval = pid_ns_prepare_proc(p->nsproxy->pid_ns);
1164 			if (retval < 0)
1165 				goto bad_fork_free_pid;
1166 		}
1167 	}
1168 
1169 	p->pid = pid_nr(pid);
1170 	p->tgid = p->pid;
1171 	if (clone_flags & CLONE_THREAD)
1172 		p->tgid = current->tgid;
1173 
1174 	if (current->nsproxy != p->nsproxy) {
1175 		retval = ns_cgroup_clone(p, pid);
1176 		if (retval)
1177 			goto bad_fork_free_pid;
1178 	}
1179 
1180 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1181 	/*
1182 	 * Clear TID on mm_release()?
1183 	 */
1184 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1185 #ifdef CONFIG_FUTEX
1186 	p->robust_list = NULL;
1187 #ifdef CONFIG_COMPAT
1188 	p->compat_robust_list = NULL;
1189 #endif
1190 	INIT_LIST_HEAD(&p->pi_state_list);
1191 	p->pi_state_cache = NULL;
1192 #endif
1193 	/*
1194 	 * sigaltstack should be cleared when sharing the same VM
1195 	 */
1196 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1197 		p->sas_ss_sp = p->sas_ss_size = 0;
1198 
1199 	/*
1200 	 * Syscall tracing and stepping should be turned off in the
1201 	 * child regardless of CLONE_PTRACE.
1202 	 */
1203 	user_disable_single_step(p);
1204 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1205 #ifdef TIF_SYSCALL_EMU
1206 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1207 #endif
1208 	clear_all_latency_tracing(p);
1209 
1210 	/* ok, now we should be set up.. */
1211 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1212 	p->pdeath_signal = 0;
1213 	p->exit_state = 0;
1214 
1215 	/*
1216 	 * Ok, make it visible to the rest of the system.
1217 	 * We dont wake it up yet.
1218 	 */
1219 	p->group_leader = p;
1220 	INIT_LIST_HEAD(&p->thread_group);
1221 
1222 	/* Now that the task is set up, run cgroup callbacks if
1223 	 * necessary. We need to run them before the task is visible
1224 	 * on the tasklist. */
1225 	cgroup_fork_callbacks(p);
1226 	cgroup_callbacks_done = 1;
1227 
1228 	/* Need tasklist lock for parent etc handling! */
1229 	write_lock_irq(&tasklist_lock);
1230 
1231 	/* CLONE_PARENT re-uses the old parent */
1232 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1233 		p->real_parent = current->real_parent;
1234 		p->parent_exec_id = current->parent_exec_id;
1235 	} else {
1236 		p->real_parent = current;
1237 		p->parent_exec_id = current->self_exec_id;
1238 	}
1239 
1240 	spin_lock(&current->sighand->siglock);
1241 
1242 	/*
1243 	 * Process group and session signals need to be delivered to just the
1244 	 * parent before the fork or both the parent and the child after the
1245 	 * fork. Restart if a signal comes in before we add the new process to
1246 	 * it's process group.
1247 	 * A fatal signal pending means that current will exit, so the new
1248 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1249  	 */
1250 	recalc_sigpending();
1251 	if (signal_pending(current)) {
1252 		spin_unlock(&current->sighand->siglock);
1253 		write_unlock_irq(&tasklist_lock);
1254 		retval = -ERESTARTNOINTR;
1255 		goto bad_fork_free_pid;
1256 	}
1257 
1258 	if (clone_flags & CLONE_THREAD) {
1259 		current->signal->nr_threads++;
1260 		atomic_inc(&current->signal->live);
1261 		atomic_inc(&current->signal->sigcnt);
1262 		p->group_leader = current->group_leader;
1263 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1264 	}
1265 
1266 	if (likely(p->pid)) {
1267 		tracehook_finish_clone(p, clone_flags, trace);
1268 
1269 		if (thread_group_leader(p)) {
1270 			if (clone_flags & CLONE_NEWPID)
1271 				p->nsproxy->pid_ns->child_reaper = p;
1272 
1273 			p->signal->leader_pid = pid;
1274 			p->signal->tty = tty_kref_get(current->signal->tty);
1275 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1276 			attach_pid(p, PIDTYPE_SID, task_session(current));
1277 			list_add_tail(&p->sibling, &p->real_parent->children);
1278 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1279 			__get_cpu_var(process_counts)++;
1280 		}
1281 		attach_pid(p, PIDTYPE_PID, pid);
1282 		nr_threads++;
1283 	}
1284 
1285 	total_forks++;
1286 	spin_unlock(&current->sighand->siglock);
1287 	write_unlock_irq(&tasklist_lock);
1288 	proc_fork_connector(p);
1289 	cgroup_post_fork(p);
1290 	perf_event_fork(p);
1291 	return p;
1292 
1293 bad_fork_free_pid:
1294 	if (pid != &init_struct_pid)
1295 		free_pid(pid);
1296 bad_fork_cleanup_io:
1297 	if (p->io_context)
1298 		exit_io_context(p);
1299 bad_fork_cleanup_namespaces:
1300 	exit_task_namespaces(p);
1301 bad_fork_cleanup_mm:
1302 	if (p->mm)
1303 		mmput(p->mm);
1304 bad_fork_cleanup_signal:
1305 	if (!(clone_flags & CLONE_THREAD))
1306 		free_signal_struct(p->signal);
1307 bad_fork_cleanup_sighand:
1308 	__cleanup_sighand(p->sighand);
1309 bad_fork_cleanup_fs:
1310 	exit_fs(p); /* blocking */
1311 bad_fork_cleanup_files:
1312 	exit_files(p); /* blocking */
1313 bad_fork_cleanup_semundo:
1314 	exit_sem(p);
1315 bad_fork_cleanup_audit:
1316 	audit_free(p);
1317 bad_fork_cleanup_policy:
1318 	perf_event_free_task(p);
1319 #ifdef CONFIG_NUMA
1320 	mpol_put(p->mempolicy);
1321 bad_fork_cleanup_cgroup:
1322 #endif
1323 	cgroup_exit(p, cgroup_callbacks_done);
1324 	delayacct_tsk_free(p);
1325 	module_put(task_thread_info(p)->exec_domain->module);
1326 bad_fork_cleanup_count:
1327 	atomic_dec(&p->cred->user->processes);
1328 	exit_creds(p);
1329 bad_fork_free:
1330 	free_task(p);
1331 fork_out:
1332 	return ERR_PTR(retval);
1333 }
1334 
1335 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1336 {
1337 	memset(regs, 0, sizeof(struct pt_regs));
1338 	return regs;
1339 }
1340 
1341 static inline void init_idle_pids(struct pid_link *links)
1342 {
1343 	enum pid_type type;
1344 
1345 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1346 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1347 		links[type].pid = &init_struct_pid;
1348 	}
1349 }
1350 
1351 struct task_struct * __cpuinit fork_idle(int cpu)
1352 {
1353 	struct task_struct *task;
1354 	struct pt_regs regs;
1355 
1356 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1357 			    &init_struct_pid, 0);
1358 	if (!IS_ERR(task)) {
1359 		init_idle_pids(task->pids);
1360 		init_idle(task, cpu);
1361 	}
1362 
1363 	return task;
1364 }
1365 
1366 /*
1367  *  Ok, this is the main fork-routine.
1368  *
1369  * It copies the process, and if successful kick-starts
1370  * it and waits for it to finish using the VM if required.
1371  */
1372 long do_fork(unsigned long clone_flags,
1373 	      unsigned long stack_start,
1374 	      struct pt_regs *regs,
1375 	      unsigned long stack_size,
1376 	      int __user *parent_tidptr,
1377 	      int __user *child_tidptr)
1378 {
1379 	struct task_struct *p;
1380 	int trace = 0;
1381 	long nr;
1382 
1383 	/*
1384 	 * Do some preliminary argument and permissions checking before we
1385 	 * actually start allocating stuff
1386 	 */
1387 	if (clone_flags & CLONE_NEWUSER) {
1388 		if (clone_flags & CLONE_THREAD)
1389 			return -EINVAL;
1390 		/* hopefully this check will go away when userns support is
1391 		 * complete
1392 		 */
1393 		if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1394 				!capable(CAP_SETGID))
1395 			return -EPERM;
1396 	}
1397 
1398 	/*
1399 	 * We hope to recycle these flags after 2.6.26
1400 	 */
1401 	if (unlikely(clone_flags & CLONE_STOPPED)) {
1402 		static int __read_mostly count = 100;
1403 
1404 		if (count > 0 && printk_ratelimit()) {
1405 			char comm[TASK_COMM_LEN];
1406 
1407 			count--;
1408 			printk(KERN_INFO "fork(): process `%s' used deprecated "
1409 					"clone flags 0x%lx\n",
1410 				get_task_comm(comm, current),
1411 				clone_flags & CLONE_STOPPED);
1412 		}
1413 	}
1414 
1415 	/*
1416 	 * When called from kernel_thread, don't do user tracing stuff.
1417 	 */
1418 	if (likely(user_mode(regs)))
1419 		trace = tracehook_prepare_clone(clone_flags);
1420 
1421 	p = copy_process(clone_flags, stack_start, regs, stack_size,
1422 			 child_tidptr, NULL, trace);
1423 	/*
1424 	 * Do this prior waking up the new thread - the thread pointer
1425 	 * might get invalid after that point, if the thread exits quickly.
1426 	 */
1427 	if (!IS_ERR(p)) {
1428 		struct completion vfork;
1429 
1430 		trace_sched_process_fork(current, p);
1431 
1432 		nr = task_pid_vnr(p);
1433 
1434 		if (clone_flags & CLONE_PARENT_SETTID)
1435 			put_user(nr, parent_tidptr);
1436 
1437 		if (clone_flags & CLONE_VFORK) {
1438 			p->vfork_done = &vfork;
1439 			init_completion(&vfork);
1440 		}
1441 
1442 		audit_finish_fork(p);
1443 		tracehook_report_clone(regs, clone_flags, nr, p);
1444 
1445 		/*
1446 		 * We set PF_STARTING at creation in case tracing wants to
1447 		 * use this to distinguish a fully live task from one that
1448 		 * hasn't gotten to tracehook_report_clone() yet.  Now we
1449 		 * clear it and set the child going.
1450 		 */
1451 		p->flags &= ~PF_STARTING;
1452 
1453 		if (unlikely(clone_flags & CLONE_STOPPED)) {
1454 			/*
1455 			 * We'll start up with an immediate SIGSTOP.
1456 			 */
1457 			sigaddset(&p->pending.signal, SIGSTOP);
1458 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1459 			__set_task_state(p, TASK_STOPPED);
1460 		} else {
1461 			wake_up_new_task(p, clone_flags);
1462 		}
1463 
1464 		tracehook_report_clone_complete(trace, regs,
1465 						clone_flags, nr, p);
1466 
1467 		if (clone_flags & CLONE_VFORK) {
1468 			freezer_do_not_count();
1469 			wait_for_completion(&vfork);
1470 			freezer_count();
1471 			tracehook_report_vfork_done(p, nr);
1472 		}
1473 	} else {
1474 		nr = PTR_ERR(p);
1475 	}
1476 	return nr;
1477 }
1478 
1479 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1480 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1481 #endif
1482 
1483 static void sighand_ctor(void *data)
1484 {
1485 	struct sighand_struct *sighand = data;
1486 
1487 	spin_lock_init(&sighand->siglock);
1488 	init_waitqueue_head(&sighand->signalfd_wqh);
1489 }
1490 
1491 void __init proc_caches_init(void)
1492 {
1493 	sighand_cachep = kmem_cache_create("sighand_cache",
1494 			sizeof(struct sighand_struct), 0,
1495 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1496 			SLAB_NOTRACK, sighand_ctor);
1497 	signal_cachep = kmem_cache_create("signal_cache",
1498 			sizeof(struct signal_struct), 0,
1499 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1500 	files_cachep = kmem_cache_create("files_cache",
1501 			sizeof(struct files_struct), 0,
1502 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1503 	fs_cachep = kmem_cache_create("fs_cache",
1504 			sizeof(struct fs_struct), 0,
1505 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1506 	mm_cachep = kmem_cache_create("mm_struct",
1507 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1508 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1509 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1510 	mmap_init();
1511 }
1512 
1513 /*
1514  * Check constraints on flags passed to the unshare system call and
1515  * force unsharing of additional process context as appropriate.
1516  */
1517 static void check_unshare_flags(unsigned long *flags_ptr)
1518 {
1519 	/*
1520 	 * If unsharing a thread from a thread group, must also
1521 	 * unshare vm.
1522 	 */
1523 	if (*flags_ptr & CLONE_THREAD)
1524 		*flags_ptr |= CLONE_VM;
1525 
1526 	/*
1527 	 * If unsharing vm, must also unshare signal handlers.
1528 	 */
1529 	if (*flags_ptr & CLONE_VM)
1530 		*flags_ptr |= CLONE_SIGHAND;
1531 
1532 	/*
1533 	 * If unsharing namespace, must also unshare filesystem information.
1534 	 */
1535 	if (*flags_ptr & CLONE_NEWNS)
1536 		*flags_ptr |= CLONE_FS;
1537 }
1538 
1539 /*
1540  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1541  */
1542 static int unshare_thread(unsigned long unshare_flags)
1543 {
1544 	if (unshare_flags & CLONE_THREAD)
1545 		return -EINVAL;
1546 
1547 	return 0;
1548 }
1549 
1550 /*
1551  * Unshare the filesystem structure if it is being shared
1552  */
1553 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1554 {
1555 	struct fs_struct *fs = current->fs;
1556 
1557 	if (!(unshare_flags & CLONE_FS) || !fs)
1558 		return 0;
1559 
1560 	/* don't need lock here; in the worst case we'll do useless copy */
1561 	if (fs->users == 1)
1562 		return 0;
1563 
1564 	*new_fsp = copy_fs_struct(fs);
1565 	if (!*new_fsp)
1566 		return -ENOMEM;
1567 
1568 	return 0;
1569 }
1570 
1571 /*
1572  * Unsharing of sighand is not supported yet
1573  */
1574 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1575 {
1576 	struct sighand_struct *sigh = current->sighand;
1577 
1578 	if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1579 		return -EINVAL;
1580 	else
1581 		return 0;
1582 }
1583 
1584 /*
1585  * Unshare vm if it is being shared
1586  */
1587 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1588 {
1589 	struct mm_struct *mm = current->mm;
1590 
1591 	if ((unshare_flags & CLONE_VM) &&
1592 	    (mm && atomic_read(&mm->mm_users) > 1)) {
1593 		return -EINVAL;
1594 	}
1595 
1596 	return 0;
1597 }
1598 
1599 /*
1600  * Unshare file descriptor table if it is being shared
1601  */
1602 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1603 {
1604 	struct files_struct *fd = current->files;
1605 	int error = 0;
1606 
1607 	if ((unshare_flags & CLONE_FILES) &&
1608 	    (fd && atomic_read(&fd->count) > 1)) {
1609 		*new_fdp = dup_fd(fd, &error);
1610 		if (!*new_fdp)
1611 			return error;
1612 	}
1613 
1614 	return 0;
1615 }
1616 
1617 /*
1618  * unshare allows a process to 'unshare' part of the process
1619  * context which was originally shared using clone.  copy_*
1620  * functions used by do_fork() cannot be used here directly
1621  * because they modify an inactive task_struct that is being
1622  * constructed. Here we are modifying the current, active,
1623  * task_struct.
1624  */
1625 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1626 {
1627 	int err = 0;
1628 	struct fs_struct *fs, *new_fs = NULL;
1629 	struct sighand_struct *new_sigh = NULL;
1630 	struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1631 	struct files_struct *fd, *new_fd = NULL;
1632 	struct nsproxy *new_nsproxy = NULL;
1633 	int do_sysvsem = 0;
1634 
1635 	check_unshare_flags(&unshare_flags);
1636 
1637 	/* Return -EINVAL for all unsupported flags */
1638 	err = -EINVAL;
1639 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1640 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1641 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1642 		goto bad_unshare_out;
1643 
1644 	/*
1645 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1646 	 * to a new ipc namespace, the semaphore arrays from the old
1647 	 * namespace are unreachable.
1648 	 */
1649 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1650 		do_sysvsem = 1;
1651 	if ((err = unshare_thread(unshare_flags)))
1652 		goto bad_unshare_out;
1653 	if ((err = unshare_fs(unshare_flags, &new_fs)))
1654 		goto bad_unshare_cleanup_thread;
1655 	if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1656 		goto bad_unshare_cleanup_fs;
1657 	if ((err = unshare_vm(unshare_flags, &new_mm)))
1658 		goto bad_unshare_cleanup_sigh;
1659 	if ((err = unshare_fd(unshare_flags, &new_fd)))
1660 		goto bad_unshare_cleanup_vm;
1661 	if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1662 			new_fs)))
1663 		goto bad_unshare_cleanup_fd;
1664 
1665 	if (new_fs ||  new_mm || new_fd || do_sysvsem || new_nsproxy) {
1666 		if (do_sysvsem) {
1667 			/*
1668 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1669 			 */
1670 			exit_sem(current);
1671 		}
1672 
1673 		if (new_nsproxy) {
1674 			switch_task_namespaces(current, new_nsproxy);
1675 			new_nsproxy = NULL;
1676 		}
1677 
1678 		task_lock(current);
1679 
1680 		if (new_fs) {
1681 			fs = current->fs;
1682 			spin_lock(&fs->lock);
1683 			current->fs = new_fs;
1684 			if (--fs->users)
1685 				new_fs = NULL;
1686 			else
1687 				new_fs = fs;
1688 			spin_unlock(&fs->lock);
1689 		}
1690 
1691 		if (new_mm) {
1692 			mm = current->mm;
1693 			active_mm = current->active_mm;
1694 			current->mm = new_mm;
1695 			current->active_mm = new_mm;
1696 			activate_mm(active_mm, new_mm);
1697 			new_mm = mm;
1698 		}
1699 
1700 		if (new_fd) {
1701 			fd = current->files;
1702 			current->files = new_fd;
1703 			new_fd = fd;
1704 		}
1705 
1706 		task_unlock(current);
1707 	}
1708 
1709 	if (new_nsproxy)
1710 		put_nsproxy(new_nsproxy);
1711 
1712 bad_unshare_cleanup_fd:
1713 	if (new_fd)
1714 		put_files_struct(new_fd);
1715 
1716 bad_unshare_cleanup_vm:
1717 	if (new_mm)
1718 		mmput(new_mm);
1719 
1720 bad_unshare_cleanup_sigh:
1721 	if (new_sigh)
1722 		if (atomic_dec_and_test(&new_sigh->count))
1723 			kmem_cache_free(sighand_cachep, new_sigh);
1724 
1725 bad_unshare_cleanup_fs:
1726 	if (new_fs)
1727 		free_fs_struct(new_fs);
1728 
1729 bad_unshare_cleanup_thread:
1730 bad_unshare_out:
1731 	return err;
1732 }
1733 
1734 /*
1735  *	Helper to unshare the files of the current task.
1736  *	We don't want to expose copy_files internals to
1737  *	the exec layer of the kernel.
1738  */
1739 
1740 int unshare_files(struct files_struct **displaced)
1741 {
1742 	struct task_struct *task = current;
1743 	struct files_struct *copy = NULL;
1744 	int error;
1745 
1746 	error = unshare_fd(CLONE_FILES, &copy);
1747 	if (error || !copy) {
1748 		*displaced = NULL;
1749 		return error;
1750 	}
1751 	*displaced = task->files;
1752 	task_lock(task);
1753 	task->files = copy;
1754 	task_unlock(task);
1755 	return 0;
1756 }
1757