xref: /linux/kernel/fork.c (revision 08f3e0873ac203449465c2b8473d684e2f9f41d1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/fs.h>
44 #include <linux/mm.h>
45 #include <linux/vmacache.h>
46 #include <linux/nsproxy.h>
47 #include <linux/capability.h>
48 #include <linux/cpu.h>
49 #include <linux/cgroup.h>
50 #include <linux/security.h>
51 #include <linux/hugetlb.h>
52 #include <linux/seccomp.h>
53 #include <linux/swap.h>
54 #include <linux/syscalls.h>
55 #include <linux/jiffies.h>
56 #include <linux/futex.h>
57 #include <linux/compat.h>
58 #include <linux/kthread.h>
59 #include <linux/task_io_accounting_ops.h>
60 #include <linux/rcupdate.h>
61 #include <linux/ptrace.h>
62 #include <linux/mount.h>
63 #include <linux/audit.h>
64 #include <linux/memcontrol.h>
65 #include <linux/ftrace.h>
66 #include <linux/proc_fs.h>
67 #include <linux/profile.h>
68 #include <linux/rmap.h>
69 #include <linux/ksm.h>
70 #include <linux/acct.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/tsacct_kern.h>
73 #include <linux/cn_proc.h>
74 #include <linux/freezer.h>
75 #include <linux/delayacct.h>
76 #include <linux/taskstats_kern.h>
77 #include <linux/random.h>
78 #include <linux/tty.h>
79 #include <linux/blkdev.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 #include <linux/scs.h>
98 #include <linux/io_uring.h>
99 #include <linux/bpf.h>
100 
101 #include <asm/pgalloc.h>
102 #include <linux/uaccess.h>
103 #include <asm/mmu_context.h>
104 #include <asm/cacheflush.h>
105 #include <asm/tlbflush.h>
106 
107 #include <trace/events/sched.h>
108 
109 #define CREATE_TRACE_POINTS
110 #include <trace/events/task.h>
111 
112 /*
113  * Minimum number of threads to boot the kernel
114  */
115 #define MIN_THREADS 20
116 
117 /*
118  * Maximum number of threads
119  */
120 #define MAX_THREADS FUTEX_TID_MASK
121 
122 /*
123  * Protected counters by write_lock_irq(&tasklist_lock)
124  */
125 unsigned long total_forks;	/* Handle normal Linux uptimes. */
126 int nr_threads;			/* The idle threads do not count.. */
127 
128 static int max_threads;		/* tunable limit on nr_threads */
129 
130 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
131 
132 static const char * const resident_page_types[] = {
133 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
134 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
135 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
136 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
137 };
138 
139 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
140 
141 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
142 
143 #ifdef CONFIG_PROVE_RCU
144 int lockdep_tasklist_lock_is_held(void)
145 {
146 	return lockdep_is_held(&tasklist_lock);
147 }
148 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
149 #endif /* #ifdef CONFIG_PROVE_RCU */
150 
151 int nr_processes(void)
152 {
153 	int cpu;
154 	int total = 0;
155 
156 	for_each_possible_cpu(cpu)
157 		total += per_cpu(process_counts, cpu);
158 
159 	return total;
160 }
161 
162 void __weak arch_release_task_struct(struct task_struct *tsk)
163 {
164 }
165 
166 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
167 static struct kmem_cache *task_struct_cachep;
168 
169 static inline struct task_struct *alloc_task_struct_node(int node)
170 {
171 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
172 }
173 
174 static inline void free_task_struct(struct task_struct *tsk)
175 {
176 	kmem_cache_free(task_struct_cachep, tsk);
177 }
178 #endif
179 
180 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
181 
182 /*
183  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
184  * kmemcache based allocator.
185  */
186 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
187 
188 #ifdef CONFIG_VMAP_STACK
189 /*
190  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
191  * flush.  Try to minimize the number of calls by caching stacks.
192  */
193 #define NR_CACHED_STACKS 2
194 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
195 
196 static int free_vm_stack_cache(unsigned int cpu)
197 {
198 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
199 	int i;
200 
201 	for (i = 0; i < NR_CACHED_STACKS; i++) {
202 		struct vm_struct *vm_stack = cached_vm_stacks[i];
203 
204 		if (!vm_stack)
205 			continue;
206 
207 		vfree(vm_stack->addr);
208 		cached_vm_stacks[i] = NULL;
209 	}
210 
211 	return 0;
212 }
213 #endif
214 
215 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
216 {
217 #ifdef CONFIG_VMAP_STACK
218 	void *stack;
219 	int i;
220 
221 	for (i = 0; i < NR_CACHED_STACKS; i++) {
222 		struct vm_struct *s;
223 
224 		s = this_cpu_xchg(cached_stacks[i], NULL);
225 
226 		if (!s)
227 			continue;
228 
229 		/* Mark stack accessible for KASAN. */
230 		kasan_unpoison_range(s->addr, THREAD_SIZE);
231 
232 		/* Clear stale pointers from reused stack. */
233 		memset(s->addr, 0, THREAD_SIZE);
234 
235 		tsk->stack_vm_area = s;
236 		tsk->stack = s->addr;
237 		return s->addr;
238 	}
239 
240 	/*
241 	 * Allocated stacks are cached and later reused by new threads,
242 	 * so memcg accounting is performed manually on assigning/releasing
243 	 * stacks to tasks. Drop __GFP_ACCOUNT.
244 	 */
245 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
246 				     VMALLOC_START, VMALLOC_END,
247 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
248 				     PAGE_KERNEL,
249 				     0, node, __builtin_return_address(0));
250 
251 	/*
252 	 * We can't call find_vm_area() in interrupt context, and
253 	 * free_thread_stack() can be called in interrupt context,
254 	 * so cache the vm_struct.
255 	 */
256 	if (stack) {
257 		tsk->stack_vm_area = find_vm_area(stack);
258 		tsk->stack = stack;
259 	}
260 	return stack;
261 #else
262 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
263 					     THREAD_SIZE_ORDER);
264 
265 	if (likely(page)) {
266 		tsk->stack = kasan_reset_tag(page_address(page));
267 		return tsk->stack;
268 	}
269 	return NULL;
270 #endif
271 }
272 
273 static inline void free_thread_stack(struct task_struct *tsk)
274 {
275 #ifdef CONFIG_VMAP_STACK
276 	struct vm_struct *vm = task_stack_vm_area(tsk);
277 
278 	if (vm) {
279 		int i;
280 
281 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
282 			memcg_kmem_uncharge_page(vm->pages[i], 0);
283 
284 		for (i = 0; i < NR_CACHED_STACKS; i++) {
285 			if (this_cpu_cmpxchg(cached_stacks[i],
286 					NULL, tsk->stack_vm_area) != NULL)
287 				continue;
288 
289 			return;
290 		}
291 
292 		vfree_atomic(tsk->stack);
293 		return;
294 	}
295 #endif
296 
297 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
298 }
299 # else
300 static struct kmem_cache *thread_stack_cache;
301 
302 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
303 						  int node)
304 {
305 	unsigned long *stack;
306 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
307 	stack = kasan_reset_tag(stack);
308 	tsk->stack = stack;
309 	return stack;
310 }
311 
312 static void free_thread_stack(struct task_struct *tsk)
313 {
314 	kmem_cache_free(thread_stack_cache, tsk->stack);
315 }
316 
317 void thread_stack_cache_init(void)
318 {
319 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
320 					THREAD_SIZE, THREAD_SIZE, 0, 0,
321 					THREAD_SIZE, NULL);
322 	BUG_ON(thread_stack_cache == NULL);
323 }
324 # endif
325 #endif
326 
327 /* SLAB cache for signal_struct structures (tsk->signal) */
328 static struct kmem_cache *signal_cachep;
329 
330 /* SLAB cache for sighand_struct structures (tsk->sighand) */
331 struct kmem_cache *sighand_cachep;
332 
333 /* SLAB cache for files_struct structures (tsk->files) */
334 struct kmem_cache *files_cachep;
335 
336 /* SLAB cache for fs_struct structures (tsk->fs) */
337 struct kmem_cache *fs_cachep;
338 
339 /* SLAB cache for vm_area_struct structures */
340 static struct kmem_cache *vm_area_cachep;
341 
342 /* SLAB cache for mm_struct structures (tsk->mm) */
343 static struct kmem_cache *mm_cachep;
344 
345 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
346 {
347 	struct vm_area_struct *vma;
348 
349 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
350 	if (vma)
351 		vma_init(vma, mm);
352 	return vma;
353 }
354 
355 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
356 {
357 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
358 
359 	if (new) {
360 		ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
361 		ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
362 		/*
363 		 * orig->shared.rb may be modified concurrently, but the clone
364 		 * will be reinitialized.
365 		 */
366 		*new = data_race(*orig);
367 		INIT_LIST_HEAD(&new->anon_vma_chain);
368 		new->vm_next = new->vm_prev = NULL;
369 	}
370 	return new;
371 }
372 
373 void vm_area_free(struct vm_area_struct *vma)
374 {
375 	kmem_cache_free(vm_area_cachep, vma);
376 }
377 
378 static void account_kernel_stack(struct task_struct *tsk, int account)
379 {
380 	void *stack = task_stack_page(tsk);
381 	struct vm_struct *vm = task_stack_vm_area(tsk);
382 
383 	if (vm) {
384 		int i;
385 
386 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
387 			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
388 					      account * (PAGE_SIZE / 1024));
389 	} else {
390 		/* All stack pages are in the same node. */
391 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
392 				      account * (THREAD_SIZE / 1024));
393 	}
394 }
395 
396 static int memcg_charge_kernel_stack(struct task_struct *tsk)
397 {
398 #ifdef CONFIG_VMAP_STACK
399 	struct vm_struct *vm = task_stack_vm_area(tsk);
400 	int ret;
401 
402 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
403 
404 	if (vm) {
405 		int i;
406 
407 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
408 
409 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
410 			/*
411 			 * If memcg_kmem_charge_page() fails, page's
412 			 * memory cgroup pointer is NULL, and
413 			 * memcg_kmem_uncharge_page() in free_thread_stack()
414 			 * will ignore this page.
415 			 */
416 			ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
417 						     0);
418 			if (ret)
419 				return ret;
420 		}
421 	}
422 #endif
423 	return 0;
424 }
425 
426 static void release_task_stack(struct task_struct *tsk)
427 {
428 	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
429 		return;  /* Better to leak the stack than to free prematurely */
430 
431 	account_kernel_stack(tsk, -1);
432 	free_thread_stack(tsk);
433 	tsk->stack = NULL;
434 #ifdef CONFIG_VMAP_STACK
435 	tsk->stack_vm_area = NULL;
436 #endif
437 }
438 
439 #ifdef CONFIG_THREAD_INFO_IN_TASK
440 void put_task_stack(struct task_struct *tsk)
441 {
442 	if (refcount_dec_and_test(&tsk->stack_refcount))
443 		release_task_stack(tsk);
444 }
445 #endif
446 
447 void free_task(struct task_struct *tsk)
448 {
449 	release_user_cpus_ptr(tsk);
450 	scs_release(tsk);
451 
452 #ifndef CONFIG_THREAD_INFO_IN_TASK
453 	/*
454 	 * The task is finally done with both the stack and thread_info,
455 	 * so free both.
456 	 */
457 	release_task_stack(tsk);
458 #else
459 	/*
460 	 * If the task had a separate stack allocation, it should be gone
461 	 * by now.
462 	 */
463 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
464 #endif
465 	rt_mutex_debug_task_free(tsk);
466 	ftrace_graph_exit_task(tsk);
467 	arch_release_task_struct(tsk);
468 	if (tsk->flags & PF_KTHREAD)
469 		free_kthread_struct(tsk);
470 	free_task_struct(tsk);
471 }
472 EXPORT_SYMBOL(free_task);
473 
474 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
475 {
476 	struct file *exe_file;
477 
478 	exe_file = get_mm_exe_file(oldmm);
479 	RCU_INIT_POINTER(mm->exe_file, exe_file);
480 	/*
481 	 * We depend on the oldmm having properly denied write access to the
482 	 * exe_file already.
483 	 */
484 	if (exe_file && deny_write_access(exe_file))
485 		pr_warn_once("deny_write_access() failed in %s\n", __func__);
486 }
487 
488 #ifdef CONFIG_MMU
489 static __latent_entropy int dup_mmap(struct mm_struct *mm,
490 					struct mm_struct *oldmm)
491 {
492 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
493 	struct rb_node **rb_link, *rb_parent;
494 	int retval;
495 	unsigned long charge;
496 	LIST_HEAD(uf);
497 
498 	uprobe_start_dup_mmap();
499 	if (mmap_write_lock_killable(oldmm)) {
500 		retval = -EINTR;
501 		goto fail_uprobe_end;
502 	}
503 	flush_cache_dup_mm(oldmm);
504 	uprobe_dup_mmap(oldmm, mm);
505 	/*
506 	 * Not linked in yet - no deadlock potential:
507 	 */
508 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
509 
510 	/* No ordering required: file already has been exposed. */
511 	dup_mm_exe_file(mm, oldmm);
512 
513 	mm->total_vm = oldmm->total_vm;
514 	mm->data_vm = oldmm->data_vm;
515 	mm->exec_vm = oldmm->exec_vm;
516 	mm->stack_vm = oldmm->stack_vm;
517 
518 	rb_link = &mm->mm_rb.rb_node;
519 	rb_parent = NULL;
520 	pprev = &mm->mmap;
521 	retval = ksm_fork(mm, oldmm);
522 	if (retval)
523 		goto out;
524 	retval = khugepaged_fork(mm, oldmm);
525 	if (retval)
526 		goto out;
527 
528 	prev = NULL;
529 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
530 		struct file *file;
531 
532 		if (mpnt->vm_flags & VM_DONTCOPY) {
533 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
534 			continue;
535 		}
536 		charge = 0;
537 		/*
538 		 * Don't duplicate many vmas if we've been oom-killed (for
539 		 * example)
540 		 */
541 		if (fatal_signal_pending(current)) {
542 			retval = -EINTR;
543 			goto out;
544 		}
545 		if (mpnt->vm_flags & VM_ACCOUNT) {
546 			unsigned long len = vma_pages(mpnt);
547 
548 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
549 				goto fail_nomem;
550 			charge = len;
551 		}
552 		tmp = vm_area_dup(mpnt);
553 		if (!tmp)
554 			goto fail_nomem;
555 		retval = vma_dup_policy(mpnt, tmp);
556 		if (retval)
557 			goto fail_nomem_policy;
558 		tmp->vm_mm = mm;
559 		retval = dup_userfaultfd(tmp, &uf);
560 		if (retval)
561 			goto fail_nomem_anon_vma_fork;
562 		if (tmp->vm_flags & VM_WIPEONFORK) {
563 			/*
564 			 * VM_WIPEONFORK gets a clean slate in the child.
565 			 * Don't prepare anon_vma until fault since we don't
566 			 * copy page for current vma.
567 			 */
568 			tmp->anon_vma = NULL;
569 		} else if (anon_vma_fork(tmp, mpnt))
570 			goto fail_nomem_anon_vma_fork;
571 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
572 		file = tmp->vm_file;
573 		if (file) {
574 			struct address_space *mapping = file->f_mapping;
575 
576 			get_file(file);
577 			i_mmap_lock_write(mapping);
578 			if (tmp->vm_flags & VM_SHARED)
579 				mapping_allow_writable(mapping);
580 			flush_dcache_mmap_lock(mapping);
581 			/* insert tmp into the share list, just after mpnt */
582 			vma_interval_tree_insert_after(tmp, mpnt,
583 					&mapping->i_mmap);
584 			flush_dcache_mmap_unlock(mapping);
585 			i_mmap_unlock_write(mapping);
586 		}
587 
588 		/*
589 		 * Clear hugetlb-related page reserves for children. This only
590 		 * affects MAP_PRIVATE mappings. Faults generated by the child
591 		 * are not guaranteed to succeed, even if read-only
592 		 */
593 		if (is_vm_hugetlb_page(tmp))
594 			reset_vma_resv_huge_pages(tmp);
595 
596 		/*
597 		 * Link in the new vma and copy the page table entries.
598 		 */
599 		*pprev = tmp;
600 		pprev = &tmp->vm_next;
601 		tmp->vm_prev = prev;
602 		prev = tmp;
603 
604 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
605 		rb_link = &tmp->vm_rb.rb_right;
606 		rb_parent = &tmp->vm_rb;
607 
608 		mm->map_count++;
609 		if (!(tmp->vm_flags & VM_WIPEONFORK))
610 			retval = copy_page_range(tmp, mpnt);
611 
612 		if (tmp->vm_ops && tmp->vm_ops->open)
613 			tmp->vm_ops->open(tmp);
614 
615 		if (retval)
616 			goto out;
617 	}
618 	/* a new mm has just been created */
619 	retval = arch_dup_mmap(oldmm, mm);
620 out:
621 	mmap_write_unlock(mm);
622 	flush_tlb_mm(oldmm);
623 	mmap_write_unlock(oldmm);
624 	dup_userfaultfd_complete(&uf);
625 fail_uprobe_end:
626 	uprobe_end_dup_mmap();
627 	return retval;
628 fail_nomem_anon_vma_fork:
629 	mpol_put(vma_policy(tmp));
630 fail_nomem_policy:
631 	vm_area_free(tmp);
632 fail_nomem:
633 	retval = -ENOMEM;
634 	vm_unacct_memory(charge);
635 	goto out;
636 }
637 
638 static inline int mm_alloc_pgd(struct mm_struct *mm)
639 {
640 	mm->pgd = pgd_alloc(mm);
641 	if (unlikely(!mm->pgd))
642 		return -ENOMEM;
643 	return 0;
644 }
645 
646 static inline void mm_free_pgd(struct mm_struct *mm)
647 {
648 	pgd_free(mm, mm->pgd);
649 }
650 #else
651 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
652 {
653 	mmap_write_lock(oldmm);
654 	dup_mm_exe_file(mm, oldmm);
655 	mmap_write_unlock(oldmm);
656 	return 0;
657 }
658 #define mm_alloc_pgd(mm)	(0)
659 #define mm_free_pgd(mm)
660 #endif /* CONFIG_MMU */
661 
662 static void check_mm(struct mm_struct *mm)
663 {
664 	int i;
665 
666 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
667 			 "Please make sure 'struct resident_page_types[]' is updated as well");
668 
669 	for (i = 0; i < NR_MM_COUNTERS; i++) {
670 		long x = atomic_long_read(&mm->rss_stat.count[i]);
671 
672 		if (unlikely(x))
673 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
674 				 mm, resident_page_types[i], x);
675 	}
676 
677 	if (mm_pgtables_bytes(mm))
678 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
679 				mm_pgtables_bytes(mm));
680 
681 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
682 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
683 #endif
684 }
685 
686 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
687 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
688 
689 /*
690  * Called when the last reference to the mm
691  * is dropped: either by a lazy thread or by
692  * mmput. Free the page directory and the mm.
693  */
694 void __mmdrop(struct mm_struct *mm)
695 {
696 	BUG_ON(mm == &init_mm);
697 	WARN_ON_ONCE(mm == current->mm);
698 	WARN_ON_ONCE(mm == current->active_mm);
699 	mm_free_pgd(mm);
700 	destroy_context(mm);
701 	mmu_notifier_subscriptions_destroy(mm);
702 	check_mm(mm);
703 	put_user_ns(mm->user_ns);
704 	free_mm(mm);
705 }
706 EXPORT_SYMBOL_GPL(__mmdrop);
707 
708 static void mmdrop_async_fn(struct work_struct *work)
709 {
710 	struct mm_struct *mm;
711 
712 	mm = container_of(work, struct mm_struct, async_put_work);
713 	__mmdrop(mm);
714 }
715 
716 static void mmdrop_async(struct mm_struct *mm)
717 {
718 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
719 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
720 		schedule_work(&mm->async_put_work);
721 	}
722 }
723 
724 static inline void free_signal_struct(struct signal_struct *sig)
725 {
726 	taskstats_tgid_free(sig);
727 	sched_autogroup_exit(sig);
728 	/*
729 	 * __mmdrop is not safe to call from softirq context on x86 due to
730 	 * pgd_dtor so postpone it to the async context
731 	 */
732 	if (sig->oom_mm)
733 		mmdrop_async(sig->oom_mm);
734 	kmem_cache_free(signal_cachep, sig);
735 }
736 
737 static inline void put_signal_struct(struct signal_struct *sig)
738 {
739 	if (refcount_dec_and_test(&sig->sigcnt))
740 		free_signal_struct(sig);
741 }
742 
743 void __put_task_struct(struct task_struct *tsk)
744 {
745 	WARN_ON(!tsk->exit_state);
746 	WARN_ON(refcount_read(&tsk->usage));
747 	WARN_ON(tsk == current);
748 
749 	io_uring_free(tsk);
750 	cgroup_free(tsk);
751 	task_numa_free(tsk, true);
752 	security_task_free(tsk);
753 	bpf_task_storage_free(tsk);
754 	exit_creds(tsk);
755 	delayacct_tsk_free(tsk);
756 	put_signal_struct(tsk->signal);
757 	sched_core_free(tsk);
758 
759 	if (!profile_handoff_task(tsk))
760 		free_task(tsk);
761 }
762 EXPORT_SYMBOL_GPL(__put_task_struct);
763 
764 void __init __weak arch_task_cache_init(void) { }
765 
766 /*
767  * set_max_threads
768  */
769 static void set_max_threads(unsigned int max_threads_suggested)
770 {
771 	u64 threads;
772 	unsigned long nr_pages = totalram_pages();
773 
774 	/*
775 	 * The number of threads shall be limited such that the thread
776 	 * structures may only consume a small part of the available memory.
777 	 */
778 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
779 		threads = MAX_THREADS;
780 	else
781 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
782 				    (u64) THREAD_SIZE * 8UL);
783 
784 	if (threads > max_threads_suggested)
785 		threads = max_threads_suggested;
786 
787 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
788 }
789 
790 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
791 /* Initialized by the architecture: */
792 int arch_task_struct_size __read_mostly;
793 #endif
794 
795 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
796 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
797 {
798 	/* Fetch thread_struct whitelist for the architecture. */
799 	arch_thread_struct_whitelist(offset, size);
800 
801 	/*
802 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
803 	 * adjust offset to position of thread_struct in task_struct.
804 	 */
805 	if (unlikely(*size == 0))
806 		*offset = 0;
807 	else
808 		*offset += offsetof(struct task_struct, thread);
809 }
810 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
811 
812 void __init fork_init(void)
813 {
814 	int i;
815 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
816 #ifndef ARCH_MIN_TASKALIGN
817 #define ARCH_MIN_TASKALIGN	0
818 #endif
819 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
820 	unsigned long useroffset, usersize;
821 
822 	/* create a slab on which task_structs can be allocated */
823 	task_struct_whitelist(&useroffset, &usersize);
824 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
825 			arch_task_struct_size, align,
826 			SLAB_PANIC|SLAB_ACCOUNT,
827 			useroffset, usersize, NULL);
828 #endif
829 
830 	/* do the arch specific task caches init */
831 	arch_task_cache_init();
832 
833 	set_max_threads(MAX_THREADS);
834 
835 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
836 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
837 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
838 		init_task.signal->rlim[RLIMIT_NPROC];
839 
840 	for (i = 0; i < MAX_PER_NAMESPACE_UCOUNTS; i++)
841 		init_user_ns.ucount_max[i] = max_threads/2;
842 
843 	set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
844 	set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
845 	set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
846 	set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
847 
848 #ifdef CONFIG_VMAP_STACK
849 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
850 			  NULL, free_vm_stack_cache);
851 #endif
852 
853 	scs_init();
854 
855 	lockdep_init_task(&init_task);
856 	uprobes_init();
857 }
858 
859 int __weak arch_dup_task_struct(struct task_struct *dst,
860 					       struct task_struct *src)
861 {
862 	*dst = *src;
863 	return 0;
864 }
865 
866 void set_task_stack_end_magic(struct task_struct *tsk)
867 {
868 	unsigned long *stackend;
869 
870 	stackend = end_of_stack(tsk);
871 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
872 }
873 
874 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
875 {
876 	struct task_struct *tsk;
877 	unsigned long *stack;
878 	struct vm_struct *stack_vm_area __maybe_unused;
879 	int err;
880 
881 	if (node == NUMA_NO_NODE)
882 		node = tsk_fork_get_node(orig);
883 	tsk = alloc_task_struct_node(node);
884 	if (!tsk)
885 		return NULL;
886 
887 	stack = alloc_thread_stack_node(tsk, node);
888 	if (!stack)
889 		goto free_tsk;
890 
891 	if (memcg_charge_kernel_stack(tsk))
892 		goto free_stack;
893 
894 	stack_vm_area = task_stack_vm_area(tsk);
895 
896 	err = arch_dup_task_struct(tsk, orig);
897 
898 	/*
899 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
900 	 * sure they're properly initialized before using any stack-related
901 	 * functions again.
902 	 */
903 	tsk->stack = stack;
904 #ifdef CONFIG_VMAP_STACK
905 	tsk->stack_vm_area = stack_vm_area;
906 #endif
907 #ifdef CONFIG_THREAD_INFO_IN_TASK
908 	refcount_set(&tsk->stack_refcount, 1);
909 #endif
910 
911 	if (err)
912 		goto free_stack;
913 
914 	err = scs_prepare(tsk, node);
915 	if (err)
916 		goto free_stack;
917 
918 #ifdef CONFIG_SECCOMP
919 	/*
920 	 * We must handle setting up seccomp filters once we're under
921 	 * the sighand lock in case orig has changed between now and
922 	 * then. Until then, filter must be NULL to avoid messing up
923 	 * the usage counts on the error path calling free_task.
924 	 */
925 	tsk->seccomp.filter = NULL;
926 #endif
927 
928 	setup_thread_stack(tsk, orig);
929 	clear_user_return_notifier(tsk);
930 	clear_tsk_need_resched(tsk);
931 	set_task_stack_end_magic(tsk);
932 	clear_syscall_work_syscall_user_dispatch(tsk);
933 
934 #ifdef CONFIG_STACKPROTECTOR
935 	tsk->stack_canary = get_random_canary();
936 #endif
937 	if (orig->cpus_ptr == &orig->cpus_mask)
938 		tsk->cpus_ptr = &tsk->cpus_mask;
939 	dup_user_cpus_ptr(tsk, orig, node);
940 
941 	/*
942 	 * One for the user space visible state that goes away when reaped.
943 	 * One for the scheduler.
944 	 */
945 	refcount_set(&tsk->rcu_users, 2);
946 	/* One for the rcu users */
947 	refcount_set(&tsk->usage, 1);
948 #ifdef CONFIG_BLK_DEV_IO_TRACE
949 	tsk->btrace_seq = 0;
950 #endif
951 	tsk->splice_pipe = NULL;
952 	tsk->task_frag.page = NULL;
953 	tsk->wake_q.next = NULL;
954 	tsk->pf_io_worker = NULL;
955 
956 	account_kernel_stack(tsk, 1);
957 
958 	kcov_task_init(tsk);
959 	kmap_local_fork(tsk);
960 
961 #ifdef CONFIG_FAULT_INJECTION
962 	tsk->fail_nth = 0;
963 #endif
964 
965 #ifdef CONFIG_BLK_CGROUP
966 	tsk->throttle_queue = NULL;
967 	tsk->use_memdelay = 0;
968 #endif
969 
970 #ifdef CONFIG_MEMCG
971 	tsk->active_memcg = NULL;
972 #endif
973 	return tsk;
974 
975 free_stack:
976 	free_thread_stack(tsk);
977 free_tsk:
978 	free_task_struct(tsk);
979 	return NULL;
980 }
981 
982 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
983 
984 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
985 
986 static int __init coredump_filter_setup(char *s)
987 {
988 	default_dump_filter =
989 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
990 		MMF_DUMP_FILTER_MASK;
991 	return 1;
992 }
993 
994 __setup("coredump_filter=", coredump_filter_setup);
995 
996 #include <linux/init_task.h>
997 
998 static void mm_init_aio(struct mm_struct *mm)
999 {
1000 #ifdef CONFIG_AIO
1001 	spin_lock_init(&mm->ioctx_lock);
1002 	mm->ioctx_table = NULL;
1003 #endif
1004 }
1005 
1006 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1007 					   struct task_struct *p)
1008 {
1009 #ifdef CONFIG_MEMCG
1010 	if (mm->owner == p)
1011 		WRITE_ONCE(mm->owner, NULL);
1012 #endif
1013 }
1014 
1015 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1016 {
1017 #ifdef CONFIG_MEMCG
1018 	mm->owner = p;
1019 #endif
1020 }
1021 
1022 static void mm_init_pasid(struct mm_struct *mm)
1023 {
1024 #ifdef CONFIG_IOMMU_SUPPORT
1025 	mm->pasid = INIT_PASID;
1026 #endif
1027 }
1028 
1029 static void mm_init_uprobes_state(struct mm_struct *mm)
1030 {
1031 #ifdef CONFIG_UPROBES
1032 	mm->uprobes_state.xol_area = NULL;
1033 #endif
1034 }
1035 
1036 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1037 	struct user_namespace *user_ns)
1038 {
1039 	mm->mmap = NULL;
1040 	mm->mm_rb = RB_ROOT;
1041 	mm->vmacache_seqnum = 0;
1042 	atomic_set(&mm->mm_users, 1);
1043 	atomic_set(&mm->mm_count, 1);
1044 	seqcount_init(&mm->write_protect_seq);
1045 	mmap_init_lock(mm);
1046 	INIT_LIST_HEAD(&mm->mmlist);
1047 	mm->core_state = NULL;
1048 	mm_pgtables_bytes_init(mm);
1049 	mm->map_count = 0;
1050 	mm->locked_vm = 0;
1051 	atomic64_set(&mm->pinned_vm, 0);
1052 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1053 	spin_lock_init(&mm->page_table_lock);
1054 	spin_lock_init(&mm->arg_lock);
1055 	mm_init_cpumask(mm);
1056 	mm_init_aio(mm);
1057 	mm_init_owner(mm, p);
1058 	mm_init_pasid(mm);
1059 	RCU_INIT_POINTER(mm->exe_file, NULL);
1060 	mmu_notifier_subscriptions_init(mm);
1061 	init_tlb_flush_pending(mm);
1062 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1063 	mm->pmd_huge_pte = NULL;
1064 #endif
1065 	mm_init_uprobes_state(mm);
1066 	hugetlb_count_init(mm);
1067 
1068 	if (current->mm) {
1069 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1070 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1071 	} else {
1072 		mm->flags = default_dump_filter;
1073 		mm->def_flags = 0;
1074 	}
1075 
1076 	if (mm_alloc_pgd(mm))
1077 		goto fail_nopgd;
1078 
1079 	if (init_new_context(p, mm))
1080 		goto fail_nocontext;
1081 
1082 	mm->user_ns = get_user_ns(user_ns);
1083 	return mm;
1084 
1085 fail_nocontext:
1086 	mm_free_pgd(mm);
1087 fail_nopgd:
1088 	free_mm(mm);
1089 	return NULL;
1090 }
1091 
1092 /*
1093  * Allocate and initialize an mm_struct.
1094  */
1095 struct mm_struct *mm_alloc(void)
1096 {
1097 	struct mm_struct *mm;
1098 
1099 	mm = allocate_mm();
1100 	if (!mm)
1101 		return NULL;
1102 
1103 	memset(mm, 0, sizeof(*mm));
1104 	return mm_init(mm, current, current_user_ns());
1105 }
1106 
1107 static inline void __mmput(struct mm_struct *mm)
1108 {
1109 	VM_BUG_ON(atomic_read(&mm->mm_users));
1110 
1111 	uprobe_clear_state(mm);
1112 	exit_aio(mm);
1113 	ksm_exit(mm);
1114 	khugepaged_exit(mm); /* must run before exit_mmap */
1115 	exit_mmap(mm);
1116 	mm_put_huge_zero_page(mm);
1117 	set_mm_exe_file(mm, NULL);
1118 	if (!list_empty(&mm->mmlist)) {
1119 		spin_lock(&mmlist_lock);
1120 		list_del(&mm->mmlist);
1121 		spin_unlock(&mmlist_lock);
1122 	}
1123 	if (mm->binfmt)
1124 		module_put(mm->binfmt->module);
1125 	mmdrop(mm);
1126 }
1127 
1128 /*
1129  * Decrement the use count and release all resources for an mm.
1130  */
1131 void mmput(struct mm_struct *mm)
1132 {
1133 	might_sleep();
1134 
1135 	if (atomic_dec_and_test(&mm->mm_users))
1136 		__mmput(mm);
1137 }
1138 EXPORT_SYMBOL_GPL(mmput);
1139 
1140 #ifdef CONFIG_MMU
1141 static void mmput_async_fn(struct work_struct *work)
1142 {
1143 	struct mm_struct *mm = container_of(work, struct mm_struct,
1144 					    async_put_work);
1145 
1146 	__mmput(mm);
1147 }
1148 
1149 void mmput_async(struct mm_struct *mm)
1150 {
1151 	if (atomic_dec_and_test(&mm->mm_users)) {
1152 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1153 		schedule_work(&mm->async_put_work);
1154 	}
1155 }
1156 #endif
1157 
1158 /**
1159  * set_mm_exe_file - change a reference to the mm's executable file
1160  *
1161  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1162  *
1163  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1164  * invocations: in mmput() nobody alive left, in execve task is single
1165  * threaded.
1166  *
1167  * Can only fail if new_exe_file != NULL.
1168  */
1169 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1170 {
1171 	struct file *old_exe_file;
1172 
1173 	/*
1174 	 * It is safe to dereference the exe_file without RCU as
1175 	 * this function is only called if nobody else can access
1176 	 * this mm -- see comment above for justification.
1177 	 */
1178 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1179 
1180 	if (new_exe_file) {
1181 		/*
1182 		 * We expect the caller (i.e., sys_execve) to already denied
1183 		 * write access, so this is unlikely to fail.
1184 		 */
1185 		if (unlikely(deny_write_access(new_exe_file)))
1186 			return -EACCES;
1187 		get_file(new_exe_file);
1188 	}
1189 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1190 	if (old_exe_file) {
1191 		allow_write_access(old_exe_file);
1192 		fput(old_exe_file);
1193 	}
1194 	return 0;
1195 }
1196 
1197 /**
1198  * replace_mm_exe_file - replace a reference to the mm's executable file
1199  *
1200  * This changes mm's executable file (shown as symlink /proc/[pid]/exe),
1201  * dealing with concurrent invocation and without grabbing the mmap lock in
1202  * write mode.
1203  *
1204  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1205  */
1206 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1207 {
1208 	struct vm_area_struct *vma;
1209 	struct file *old_exe_file;
1210 	int ret = 0;
1211 
1212 	/* Forbid mm->exe_file change if old file still mapped. */
1213 	old_exe_file = get_mm_exe_file(mm);
1214 	if (old_exe_file) {
1215 		mmap_read_lock(mm);
1216 		for (vma = mm->mmap; vma && !ret; vma = vma->vm_next) {
1217 			if (!vma->vm_file)
1218 				continue;
1219 			if (path_equal(&vma->vm_file->f_path,
1220 				       &old_exe_file->f_path))
1221 				ret = -EBUSY;
1222 		}
1223 		mmap_read_unlock(mm);
1224 		fput(old_exe_file);
1225 		if (ret)
1226 			return ret;
1227 	}
1228 
1229 	/* set the new file, lockless */
1230 	ret = deny_write_access(new_exe_file);
1231 	if (ret)
1232 		return -EACCES;
1233 	get_file(new_exe_file);
1234 
1235 	old_exe_file = xchg(&mm->exe_file, new_exe_file);
1236 	if (old_exe_file) {
1237 		/*
1238 		 * Don't race with dup_mmap() getting the file and disallowing
1239 		 * write access while someone might open the file writable.
1240 		 */
1241 		mmap_read_lock(mm);
1242 		allow_write_access(old_exe_file);
1243 		fput(old_exe_file);
1244 		mmap_read_unlock(mm);
1245 	}
1246 	return 0;
1247 }
1248 
1249 /**
1250  * get_mm_exe_file - acquire a reference to the mm's executable file
1251  *
1252  * Returns %NULL if mm has no associated executable file.
1253  * User must release file via fput().
1254  */
1255 struct file *get_mm_exe_file(struct mm_struct *mm)
1256 {
1257 	struct file *exe_file;
1258 
1259 	rcu_read_lock();
1260 	exe_file = rcu_dereference(mm->exe_file);
1261 	if (exe_file && !get_file_rcu(exe_file))
1262 		exe_file = NULL;
1263 	rcu_read_unlock();
1264 	return exe_file;
1265 }
1266 
1267 /**
1268  * get_task_exe_file - acquire a reference to the task's executable file
1269  *
1270  * Returns %NULL if task's mm (if any) has no associated executable file or
1271  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1272  * User must release file via fput().
1273  */
1274 struct file *get_task_exe_file(struct task_struct *task)
1275 {
1276 	struct file *exe_file = NULL;
1277 	struct mm_struct *mm;
1278 
1279 	task_lock(task);
1280 	mm = task->mm;
1281 	if (mm) {
1282 		if (!(task->flags & PF_KTHREAD))
1283 			exe_file = get_mm_exe_file(mm);
1284 	}
1285 	task_unlock(task);
1286 	return exe_file;
1287 }
1288 
1289 /**
1290  * get_task_mm - acquire a reference to the task's mm
1291  *
1292  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1293  * this kernel workthread has transiently adopted a user mm with use_mm,
1294  * to do its AIO) is not set and if so returns a reference to it, after
1295  * bumping up the use count.  User must release the mm via mmput()
1296  * after use.  Typically used by /proc and ptrace.
1297  */
1298 struct mm_struct *get_task_mm(struct task_struct *task)
1299 {
1300 	struct mm_struct *mm;
1301 
1302 	task_lock(task);
1303 	mm = task->mm;
1304 	if (mm) {
1305 		if (task->flags & PF_KTHREAD)
1306 			mm = NULL;
1307 		else
1308 			mmget(mm);
1309 	}
1310 	task_unlock(task);
1311 	return mm;
1312 }
1313 EXPORT_SYMBOL_GPL(get_task_mm);
1314 
1315 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1316 {
1317 	struct mm_struct *mm;
1318 	int err;
1319 
1320 	err =  down_read_killable(&task->signal->exec_update_lock);
1321 	if (err)
1322 		return ERR_PTR(err);
1323 
1324 	mm = get_task_mm(task);
1325 	if (mm && mm != current->mm &&
1326 			!ptrace_may_access(task, mode)) {
1327 		mmput(mm);
1328 		mm = ERR_PTR(-EACCES);
1329 	}
1330 	up_read(&task->signal->exec_update_lock);
1331 
1332 	return mm;
1333 }
1334 
1335 static void complete_vfork_done(struct task_struct *tsk)
1336 {
1337 	struct completion *vfork;
1338 
1339 	task_lock(tsk);
1340 	vfork = tsk->vfork_done;
1341 	if (likely(vfork)) {
1342 		tsk->vfork_done = NULL;
1343 		complete(vfork);
1344 	}
1345 	task_unlock(tsk);
1346 }
1347 
1348 static int wait_for_vfork_done(struct task_struct *child,
1349 				struct completion *vfork)
1350 {
1351 	int killed;
1352 
1353 	freezer_do_not_count();
1354 	cgroup_enter_frozen();
1355 	killed = wait_for_completion_killable(vfork);
1356 	cgroup_leave_frozen(false);
1357 	freezer_count();
1358 
1359 	if (killed) {
1360 		task_lock(child);
1361 		child->vfork_done = NULL;
1362 		task_unlock(child);
1363 	}
1364 
1365 	put_task_struct(child);
1366 	return killed;
1367 }
1368 
1369 /* Please note the differences between mmput and mm_release.
1370  * mmput is called whenever we stop holding onto a mm_struct,
1371  * error success whatever.
1372  *
1373  * mm_release is called after a mm_struct has been removed
1374  * from the current process.
1375  *
1376  * This difference is important for error handling, when we
1377  * only half set up a mm_struct for a new process and need to restore
1378  * the old one.  Because we mmput the new mm_struct before
1379  * restoring the old one. . .
1380  * Eric Biederman 10 January 1998
1381  */
1382 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1383 {
1384 	uprobe_free_utask(tsk);
1385 
1386 	/* Get rid of any cached register state */
1387 	deactivate_mm(tsk, mm);
1388 
1389 	/*
1390 	 * Signal userspace if we're not exiting with a core dump
1391 	 * because we want to leave the value intact for debugging
1392 	 * purposes.
1393 	 */
1394 	if (tsk->clear_child_tid) {
1395 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1396 		    atomic_read(&mm->mm_users) > 1) {
1397 			/*
1398 			 * We don't check the error code - if userspace has
1399 			 * not set up a proper pointer then tough luck.
1400 			 */
1401 			put_user(0, tsk->clear_child_tid);
1402 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1403 					1, NULL, NULL, 0, 0);
1404 		}
1405 		tsk->clear_child_tid = NULL;
1406 	}
1407 
1408 	/*
1409 	 * All done, finally we can wake up parent and return this mm to him.
1410 	 * Also kthread_stop() uses this completion for synchronization.
1411 	 */
1412 	if (tsk->vfork_done)
1413 		complete_vfork_done(tsk);
1414 }
1415 
1416 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1417 {
1418 	futex_exit_release(tsk);
1419 	mm_release(tsk, mm);
1420 }
1421 
1422 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1423 {
1424 	futex_exec_release(tsk);
1425 	mm_release(tsk, mm);
1426 }
1427 
1428 /**
1429  * dup_mm() - duplicates an existing mm structure
1430  * @tsk: the task_struct with which the new mm will be associated.
1431  * @oldmm: the mm to duplicate.
1432  *
1433  * Allocates a new mm structure and duplicates the provided @oldmm structure
1434  * content into it.
1435  *
1436  * Return: the duplicated mm or NULL on failure.
1437  */
1438 static struct mm_struct *dup_mm(struct task_struct *tsk,
1439 				struct mm_struct *oldmm)
1440 {
1441 	struct mm_struct *mm;
1442 	int err;
1443 
1444 	mm = allocate_mm();
1445 	if (!mm)
1446 		goto fail_nomem;
1447 
1448 	memcpy(mm, oldmm, sizeof(*mm));
1449 
1450 	if (!mm_init(mm, tsk, mm->user_ns))
1451 		goto fail_nomem;
1452 
1453 	err = dup_mmap(mm, oldmm);
1454 	if (err)
1455 		goto free_pt;
1456 
1457 	mm->hiwater_rss = get_mm_rss(mm);
1458 	mm->hiwater_vm = mm->total_vm;
1459 
1460 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1461 		goto free_pt;
1462 
1463 	return mm;
1464 
1465 free_pt:
1466 	/* don't put binfmt in mmput, we haven't got module yet */
1467 	mm->binfmt = NULL;
1468 	mm_init_owner(mm, NULL);
1469 	mmput(mm);
1470 
1471 fail_nomem:
1472 	return NULL;
1473 }
1474 
1475 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1476 {
1477 	struct mm_struct *mm, *oldmm;
1478 
1479 	tsk->min_flt = tsk->maj_flt = 0;
1480 	tsk->nvcsw = tsk->nivcsw = 0;
1481 #ifdef CONFIG_DETECT_HUNG_TASK
1482 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1483 	tsk->last_switch_time = 0;
1484 #endif
1485 
1486 	tsk->mm = NULL;
1487 	tsk->active_mm = NULL;
1488 
1489 	/*
1490 	 * Are we cloning a kernel thread?
1491 	 *
1492 	 * We need to steal a active VM for that..
1493 	 */
1494 	oldmm = current->mm;
1495 	if (!oldmm)
1496 		return 0;
1497 
1498 	/* initialize the new vmacache entries */
1499 	vmacache_flush(tsk);
1500 
1501 	if (clone_flags & CLONE_VM) {
1502 		mmget(oldmm);
1503 		mm = oldmm;
1504 	} else {
1505 		mm = dup_mm(tsk, current->mm);
1506 		if (!mm)
1507 			return -ENOMEM;
1508 	}
1509 
1510 	tsk->mm = mm;
1511 	tsk->active_mm = mm;
1512 	return 0;
1513 }
1514 
1515 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1516 {
1517 	struct fs_struct *fs = current->fs;
1518 	if (clone_flags & CLONE_FS) {
1519 		/* tsk->fs is already what we want */
1520 		spin_lock(&fs->lock);
1521 		if (fs->in_exec) {
1522 			spin_unlock(&fs->lock);
1523 			return -EAGAIN;
1524 		}
1525 		fs->users++;
1526 		spin_unlock(&fs->lock);
1527 		return 0;
1528 	}
1529 	tsk->fs = copy_fs_struct(fs);
1530 	if (!tsk->fs)
1531 		return -ENOMEM;
1532 	return 0;
1533 }
1534 
1535 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1536 {
1537 	struct files_struct *oldf, *newf;
1538 	int error = 0;
1539 
1540 	/*
1541 	 * A background process may not have any files ...
1542 	 */
1543 	oldf = current->files;
1544 	if (!oldf)
1545 		goto out;
1546 
1547 	if (clone_flags & CLONE_FILES) {
1548 		atomic_inc(&oldf->count);
1549 		goto out;
1550 	}
1551 
1552 	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1553 	if (!newf)
1554 		goto out;
1555 
1556 	tsk->files = newf;
1557 	error = 0;
1558 out:
1559 	return error;
1560 }
1561 
1562 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1563 {
1564 #ifdef CONFIG_BLOCK
1565 	struct io_context *ioc = current->io_context;
1566 	struct io_context *new_ioc;
1567 
1568 	if (!ioc)
1569 		return 0;
1570 	/*
1571 	 * Share io context with parent, if CLONE_IO is set
1572 	 */
1573 	if (clone_flags & CLONE_IO) {
1574 		ioc_task_link(ioc);
1575 		tsk->io_context = ioc;
1576 	} else if (ioprio_valid(ioc->ioprio)) {
1577 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1578 		if (unlikely(!new_ioc))
1579 			return -ENOMEM;
1580 
1581 		new_ioc->ioprio = ioc->ioprio;
1582 		put_io_context(new_ioc);
1583 	}
1584 #endif
1585 	return 0;
1586 }
1587 
1588 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1589 {
1590 	struct sighand_struct *sig;
1591 
1592 	if (clone_flags & CLONE_SIGHAND) {
1593 		refcount_inc(&current->sighand->count);
1594 		return 0;
1595 	}
1596 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1597 	RCU_INIT_POINTER(tsk->sighand, sig);
1598 	if (!sig)
1599 		return -ENOMEM;
1600 
1601 	refcount_set(&sig->count, 1);
1602 	spin_lock_irq(&current->sighand->siglock);
1603 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1604 	spin_unlock_irq(&current->sighand->siglock);
1605 
1606 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1607 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1608 		flush_signal_handlers(tsk, 0);
1609 
1610 	return 0;
1611 }
1612 
1613 void __cleanup_sighand(struct sighand_struct *sighand)
1614 {
1615 	if (refcount_dec_and_test(&sighand->count)) {
1616 		signalfd_cleanup(sighand);
1617 		/*
1618 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1619 		 * without an RCU grace period, see __lock_task_sighand().
1620 		 */
1621 		kmem_cache_free(sighand_cachep, sighand);
1622 	}
1623 }
1624 
1625 /*
1626  * Initialize POSIX timer handling for a thread group.
1627  */
1628 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1629 {
1630 	struct posix_cputimers *pct = &sig->posix_cputimers;
1631 	unsigned long cpu_limit;
1632 
1633 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1634 	posix_cputimers_group_init(pct, cpu_limit);
1635 }
1636 
1637 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1638 {
1639 	struct signal_struct *sig;
1640 
1641 	if (clone_flags & CLONE_THREAD)
1642 		return 0;
1643 
1644 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1645 	tsk->signal = sig;
1646 	if (!sig)
1647 		return -ENOMEM;
1648 
1649 	sig->nr_threads = 1;
1650 	atomic_set(&sig->live, 1);
1651 	refcount_set(&sig->sigcnt, 1);
1652 
1653 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1654 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1655 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1656 
1657 	init_waitqueue_head(&sig->wait_chldexit);
1658 	sig->curr_target = tsk;
1659 	init_sigpending(&sig->shared_pending);
1660 	INIT_HLIST_HEAD(&sig->multiprocess);
1661 	seqlock_init(&sig->stats_lock);
1662 	prev_cputime_init(&sig->prev_cputime);
1663 
1664 #ifdef CONFIG_POSIX_TIMERS
1665 	INIT_LIST_HEAD(&sig->posix_timers);
1666 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1667 	sig->real_timer.function = it_real_fn;
1668 #endif
1669 
1670 	task_lock(current->group_leader);
1671 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1672 	task_unlock(current->group_leader);
1673 
1674 	posix_cpu_timers_init_group(sig);
1675 
1676 	tty_audit_fork(sig);
1677 	sched_autogroup_fork(sig);
1678 
1679 	sig->oom_score_adj = current->signal->oom_score_adj;
1680 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1681 
1682 	mutex_init(&sig->cred_guard_mutex);
1683 	init_rwsem(&sig->exec_update_lock);
1684 
1685 	return 0;
1686 }
1687 
1688 static void copy_seccomp(struct task_struct *p)
1689 {
1690 #ifdef CONFIG_SECCOMP
1691 	/*
1692 	 * Must be called with sighand->lock held, which is common to
1693 	 * all threads in the group. Holding cred_guard_mutex is not
1694 	 * needed because this new task is not yet running and cannot
1695 	 * be racing exec.
1696 	 */
1697 	assert_spin_locked(&current->sighand->siglock);
1698 
1699 	/* Ref-count the new filter user, and assign it. */
1700 	get_seccomp_filter(current);
1701 	p->seccomp = current->seccomp;
1702 
1703 	/*
1704 	 * Explicitly enable no_new_privs here in case it got set
1705 	 * between the task_struct being duplicated and holding the
1706 	 * sighand lock. The seccomp state and nnp must be in sync.
1707 	 */
1708 	if (task_no_new_privs(current))
1709 		task_set_no_new_privs(p);
1710 
1711 	/*
1712 	 * If the parent gained a seccomp mode after copying thread
1713 	 * flags and between before we held the sighand lock, we have
1714 	 * to manually enable the seccomp thread flag here.
1715 	 */
1716 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1717 		set_task_syscall_work(p, SECCOMP);
1718 #endif
1719 }
1720 
1721 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1722 {
1723 	current->clear_child_tid = tidptr;
1724 
1725 	return task_pid_vnr(current);
1726 }
1727 
1728 static void rt_mutex_init_task(struct task_struct *p)
1729 {
1730 	raw_spin_lock_init(&p->pi_lock);
1731 #ifdef CONFIG_RT_MUTEXES
1732 	p->pi_waiters = RB_ROOT_CACHED;
1733 	p->pi_top_task = NULL;
1734 	p->pi_blocked_on = NULL;
1735 #endif
1736 }
1737 
1738 static inline void init_task_pid_links(struct task_struct *task)
1739 {
1740 	enum pid_type type;
1741 
1742 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1743 		INIT_HLIST_NODE(&task->pid_links[type]);
1744 }
1745 
1746 static inline void
1747 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1748 {
1749 	if (type == PIDTYPE_PID)
1750 		task->thread_pid = pid;
1751 	else
1752 		task->signal->pids[type] = pid;
1753 }
1754 
1755 static inline void rcu_copy_process(struct task_struct *p)
1756 {
1757 #ifdef CONFIG_PREEMPT_RCU
1758 	p->rcu_read_lock_nesting = 0;
1759 	p->rcu_read_unlock_special.s = 0;
1760 	p->rcu_blocked_node = NULL;
1761 	INIT_LIST_HEAD(&p->rcu_node_entry);
1762 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1763 #ifdef CONFIG_TASKS_RCU
1764 	p->rcu_tasks_holdout = false;
1765 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1766 	p->rcu_tasks_idle_cpu = -1;
1767 #endif /* #ifdef CONFIG_TASKS_RCU */
1768 #ifdef CONFIG_TASKS_TRACE_RCU
1769 	p->trc_reader_nesting = 0;
1770 	p->trc_reader_special.s = 0;
1771 	INIT_LIST_HEAD(&p->trc_holdout_list);
1772 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1773 }
1774 
1775 struct pid *pidfd_pid(const struct file *file)
1776 {
1777 	if (file->f_op == &pidfd_fops)
1778 		return file->private_data;
1779 
1780 	return ERR_PTR(-EBADF);
1781 }
1782 
1783 static int pidfd_release(struct inode *inode, struct file *file)
1784 {
1785 	struct pid *pid = file->private_data;
1786 
1787 	file->private_data = NULL;
1788 	put_pid(pid);
1789 	return 0;
1790 }
1791 
1792 #ifdef CONFIG_PROC_FS
1793 /**
1794  * pidfd_show_fdinfo - print information about a pidfd
1795  * @m: proc fdinfo file
1796  * @f: file referencing a pidfd
1797  *
1798  * Pid:
1799  * This function will print the pid that a given pidfd refers to in the
1800  * pid namespace of the procfs instance.
1801  * If the pid namespace of the process is not a descendant of the pid
1802  * namespace of the procfs instance 0 will be shown as its pid. This is
1803  * similar to calling getppid() on a process whose parent is outside of
1804  * its pid namespace.
1805  *
1806  * NSpid:
1807  * If pid namespaces are supported then this function will also print
1808  * the pid of a given pidfd refers to for all descendant pid namespaces
1809  * starting from the current pid namespace of the instance, i.e. the
1810  * Pid field and the first entry in the NSpid field will be identical.
1811  * If the pid namespace of the process is not a descendant of the pid
1812  * namespace of the procfs instance 0 will be shown as its first NSpid
1813  * entry and no others will be shown.
1814  * Note that this differs from the Pid and NSpid fields in
1815  * /proc/<pid>/status where Pid and NSpid are always shown relative to
1816  * the  pid namespace of the procfs instance. The difference becomes
1817  * obvious when sending around a pidfd between pid namespaces from a
1818  * different branch of the tree, i.e. where no ancestral relation is
1819  * present between the pid namespaces:
1820  * - create two new pid namespaces ns1 and ns2 in the initial pid
1821  *   namespace (also take care to create new mount namespaces in the
1822  *   new pid namespace and mount procfs)
1823  * - create a process with a pidfd in ns1
1824  * - send pidfd from ns1 to ns2
1825  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1826  *   have exactly one entry, which is 0
1827  */
1828 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1829 {
1830 	struct pid *pid = f->private_data;
1831 	struct pid_namespace *ns;
1832 	pid_t nr = -1;
1833 
1834 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1835 		ns = proc_pid_ns(file_inode(m->file)->i_sb);
1836 		nr = pid_nr_ns(pid, ns);
1837 	}
1838 
1839 	seq_put_decimal_ll(m, "Pid:\t", nr);
1840 
1841 #ifdef CONFIG_PID_NS
1842 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1843 	if (nr > 0) {
1844 		int i;
1845 
1846 		/* If nr is non-zero it means that 'pid' is valid and that
1847 		 * ns, i.e. the pid namespace associated with the procfs
1848 		 * instance, is in the pid namespace hierarchy of pid.
1849 		 * Start at one below the already printed level.
1850 		 */
1851 		for (i = ns->level + 1; i <= pid->level; i++)
1852 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1853 	}
1854 #endif
1855 	seq_putc(m, '\n');
1856 }
1857 #endif
1858 
1859 /*
1860  * Poll support for process exit notification.
1861  */
1862 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1863 {
1864 	struct pid *pid = file->private_data;
1865 	__poll_t poll_flags = 0;
1866 
1867 	poll_wait(file, &pid->wait_pidfd, pts);
1868 
1869 	/*
1870 	 * Inform pollers only when the whole thread group exits.
1871 	 * If the thread group leader exits before all other threads in the
1872 	 * group, then poll(2) should block, similar to the wait(2) family.
1873 	 */
1874 	if (thread_group_exited(pid))
1875 		poll_flags = EPOLLIN | EPOLLRDNORM;
1876 
1877 	return poll_flags;
1878 }
1879 
1880 const struct file_operations pidfd_fops = {
1881 	.release = pidfd_release,
1882 	.poll = pidfd_poll,
1883 #ifdef CONFIG_PROC_FS
1884 	.show_fdinfo = pidfd_show_fdinfo,
1885 #endif
1886 };
1887 
1888 static void __delayed_free_task(struct rcu_head *rhp)
1889 {
1890 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1891 
1892 	free_task(tsk);
1893 }
1894 
1895 static __always_inline void delayed_free_task(struct task_struct *tsk)
1896 {
1897 	if (IS_ENABLED(CONFIG_MEMCG))
1898 		call_rcu(&tsk->rcu, __delayed_free_task);
1899 	else
1900 		free_task(tsk);
1901 }
1902 
1903 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1904 {
1905 	/* Skip if kernel thread */
1906 	if (!tsk->mm)
1907 		return;
1908 
1909 	/* Skip if spawning a thread or using vfork */
1910 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1911 		return;
1912 
1913 	/* We need to synchronize with __set_oom_adj */
1914 	mutex_lock(&oom_adj_mutex);
1915 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1916 	/* Update the values in case they were changed after copy_signal */
1917 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1918 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1919 	mutex_unlock(&oom_adj_mutex);
1920 }
1921 
1922 /*
1923  * This creates a new process as a copy of the old one,
1924  * but does not actually start it yet.
1925  *
1926  * It copies the registers, and all the appropriate
1927  * parts of the process environment (as per the clone
1928  * flags). The actual kick-off is left to the caller.
1929  */
1930 static __latent_entropy struct task_struct *copy_process(
1931 					struct pid *pid,
1932 					int trace,
1933 					int node,
1934 					struct kernel_clone_args *args)
1935 {
1936 	int pidfd = -1, retval;
1937 	struct task_struct *p;
1938 	struct multiprocess_signals delayed;
1939 	struct file *pidfile = NULL;
1940 	u64 clone_flags = args->flags;
1941 	struct nsproxy *nsp = current->nsproxy;
1942 
1943 	/*
1944 	 * Don't allow sharing the root directory with processes in a different
1945 	 * namespace
1946 	 */
1947 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1948 		return ERR_PTR(-EINVAL);
1949 
1950 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1951 		return ERR_PTR(-EINVAL);
1952 
1953 	/*
1954 	 * Thread groups must share signals as well, and detached threads
1955 	 * can only be started up within the thread group.
1956 	 */
1957 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1958 		return ERR_PTR(-EINVAL);
1959 
1960 	/*
1961 	 * Shared signal handlers imply shared VM. By way of the above,
1962 	 * thread groups also imply shared VM. Blocking this case allows
1963 	 * for various simplifications in other code.
1964 	 */
1965 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1966 		return ERR_PTR(-EINVAL);
1967 
1968 	/*
1969 	 * Siblings of global init remain as zombies on exit since they are
1970 	 * not reaped by their parent (swapper). To solve this and to avoid
1971 	 * multi-rooted process trees, prevent global and container-inits
1972 	 * from creating siblings.
1973 	 */
1974 	if ((clone_flags & CLONE_PARENT) &&
1975 				current->signal->flags & SIGNAL_UNKILLABLE)
1976 		return ERR_PTR(-EINVAL);
1977 
1978 	/*
1979 	 * If the new process will be in a different pid or user namespace
1980 	 * do not allow it to share a thread group with the forking task.
1981 	 */
1982 	if (clone_flags & CLONE_THREAD) {
1983 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1984 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1985 			return ERR_PTR(-EINVAL);
1986 	}
1987 
1988 	/*
1989 	 * If the new process will be in a different time namespace
1990 	 * do not allow it to share VM or a thread group with the forking task.
1991 	 */
1992 	if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1993 		if (nsp->time_ns != nsp->time_ns_for_children)
1994 			return ERR_PTR(-EINVAL);
1995 	}
1996 
1997 	if (clone_flags & CLONE_PIDFD) {
1998 		/*
1999 		 * - CLONE_DETACHED is blocked so that we can potentially
2000 		 *   reuse it later for CLONE_PIDFD.
2001 		 * - CLONE_THREAD is blocked until someone really needs it.
2002 		 */
2003 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2004 			return ERR_PTR(-EINVAL);
2005 	}
2006 
2007 	/*
2008 	 * Force any signals received before this point to be delivered
2009 	 * before the fork happens.  Collect up signals sent to multiple
2010 	 * processes that happen during the fork and delay them so that
2011 	 * they appear to happen after the fork.
2012 	 */
2013 	sigemptyset(&delayed.signal);
2014 	INIT_HLIST_NODE(&delayed.node);
2015 
2016 	spin_lock_irq(&current->sighand->siglock);
2017 	if (!(clone_flags & CLONE_THREAD))
2018 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2019 	recalc_sigpending();
2020 	spin_unlock_irq(&current->sighand->siglock);
2021 	retval = -ERESTARTNOINTR;
2022 	if (task_sigpending(current))
2023 		goto fork_out;
2024 
2025 	retval = -ENOMEM;
2026 	p = dup_task_struct(current, node);
2027 	if (!p)
2028 		goto fork_out;
2029 	if (args->io_thread) {
2030 		/*
2031 		 * Mark us an IO worker, and block any signal that isn't
2032 		 * fatal or STOP
2033 		 */
2034 		p->flags |= PF_IO_WORKER;
2035 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2036 	}
2037 
2038 	/*
2039 	 * This _must_ happen before we call free_task(), i.e. before we jump
2040 	 * to any of the bad_fork_* labels. This is to avoid freeing
2041 	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
2042 	 * kernel threads (PF_KTHREAD).
2043 	 */
2044 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2045 	/*
2046 	 * Clear TID on mm_release()?
2047 	 */
2048 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2049 
2050 	ftrace_graph_init_task(p);
2051 
2052 	rt_mutex_init_task(p);
2053 
2054 	lockdep_assert_irqs_enabled();
2055 #ifdef CONFIG_PROVE_LOCKING
2056 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2057 #endif
2058 	retval = -EAGAIN;
2059 	if (is_ucounts_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2060 		if (p->real_cred->user != INIT_USER &&
2061 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2062 			goto bad_fork_free;
2063 	}
2064 	current->flags &= ~PF_NPROC_EXCEEDED;
2065 
2066 	retval = copy_creds(p, clone_flags);
2067 	if (retval < 0)
2068 		goto bad_fork_free;
2069 
2070 	/*
2071 	 * If multiple threads are within copy_process(), then this check
2072 	 * triggers too late. This doesn't hurt, the check is only there
2073 	 * to stop root fork bombs.
2074 	 */
2075 	retval = -EAGAIN;
2076 	if (data_race(nr_threads >= max_threads))
2077 		goto bad_fork_cleanup_count;
2078 
2079 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2080 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2081 	p->flags |= PF_FORKNOEXEC;
2082 	INIT_LIST_HEAD(&p->children);
2083 	INIT_LIST_HEAD(&p->sibling);
2084 	rcu_copy_process(p);
2085 	p->vfork_done = NULL;
2086 	spin_lock_init(&p->alloc_lock);
2087 
2088 	init_sigpending(&p->pending);
2089 
2090 	p->utime = p->stime = p->gtime = 0;
2091 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2092 	p->utimescaled = p->stimescaled = 0;
2093 #endif
2094 	prev_cputime_init(&p->prev_cputime);
2095 
2096 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2097 	seqcount_init(&p->vtime.seqcount);
2098 	p->vtime.starttime = 0;
2099 	p->vtime.state = VTIME_INACTIVE;
2100 #endif
2101 
2102 #ifdef CONFIG_IO_URING
2103 	p->io_uring = NULL;
2104 #endif
2105 
2106 #if defined(SPLIT_RSS_COUNTING)
2107 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2108 #endif
2109 
2110 	p->default_timer_slack_ns = current->timer_slack_ns;
2111 
2112 #ifdef CONFIG_PSI
2113 	p->psi_flags = 0;
2114 #endif
2115 
2116 	task_io_accounting_init(&p->ioac);
2117 	acct_clear_integrals(p);
2118 
2119 	posix_cputimers_init(&p->posix_cputimers);
2120 
2121 	p->io_context = NULL;
2122 	audit_set_context(p, NULL);
2123 	cgroup_fork(p);
2124 #ifdef CONFIG_NUMA
2125 	p->mempolicy = mpol_dup(p->mempolicy);
2126 	if (IS_ERR(p->mempolicy)) {
2127 		retval = PTR_ERR(p->mempolicy);
2128 		p->mempolicy = NULL;
2129 		goto bad_fork_cleanup_threadgroup_lock;
2130 	}
2131 #endif
2132 #ifdef CONFIG_CPUSETS
2133 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2134 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2135 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2136 #endif
2137 #ifdef CONFIG_TRACE_IRQFLAGS
2138 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2139 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2140 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2141 	p->softirqs_enabled		= 1;
2142 	p->softirq_context		= 0;
2143 #endif
2144 
2145 	p->pagefault_disabled = 0;
2146 
2147 #ifdef CONFIG_LOCKDEP
2148 	lockdep_init_task(p);
2149 #endif
2150 
2151 #ifdef CONFIG_DEBUG_MUTEXES
2152 	p->blocked_on = NULL; /* not blocked yet */
2153 #endif
2154 #ifdef CONFIG_BCACHE
2155 	p->sequential_io	= 0;
2156 	p->sequential_io_avg	= 0;
2157 #endif
2158 #ifdef CONFIG_BPF_SYSCALL
2159 	RCU_INIT_POINTER(p->bpf_storage, NULL);
2160 	p->bpf_ctx = NULL;
2161 #endif
2162 
2163 	/* Perform scheduler related setup. Assign this task to a CPU. */
2164 	retval = sched_fork(clone_flags, p);
2165 	if (retval)
2166 		goto bad_fork_cleanup_policy;
2167 
2168 	retval = perf_event_init_task(p, clone_flags);
2169 	if (retval)
2170 		goto bad_fork_cleanup_policy;
2171 	retval = audit_alloc(p);
2172 	if (retval)
2173 		goto bad_fork_cleanup_perf;
2174 	/* copy all the process information */
2175 	shm_init_task(p);
2176 	retval = security_task_alloc(p, clone_flags);
2177 	if (retval)
2178 		goto bad_fork_cleanup_audit;
2179 	retval = copy_semundo(clone_flags, p);
2180 	if (retval)
2181 		goto bad_fork_cleanup_security;
2182 	retval = copy_files(clone_flags, p);
2183 	if (retval)
2184 		goto bad_fork_cleanup_semundo;
2185 	retval = copy_fs(clone_flags, p);
2186 	if (retval)
2187 		goto bad_fork_cleanup_files;
2188 	retval = copy_sighand(clone_flags, p);
2189 	if (retval)
2190 		goto bad_fork_cleanup_fs;
2191 	retval = copy_signal(clone_flags, p);
2192 	if (retval)
2193 		goto bad_fork_cleanup_sighand;
2194 	retval = copy_mm(clone_flags, p);
2195 	if (retval)
2196 		goto bad_fork_cleanup_signal;
2197 	retval = copy_namespaces(clone_flags, p);
2198 	if (retval)
2199 		goto bad_fork_cleanup_mm;
2200 	retval = copy_io(clone_flags, p);
2201 	if (retval)
2202 		goto bad_fork_cleanup_namespaces;
2203 	retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
2204 	if (retval)
2205 		goto bad_fork_cleanup_io;
2206 
2207 	stackleak_task_init(p);
2208 
2209 	if (pid != &init_struct_pid) {
2210 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2211 				args->set_tid_size);
2212 		if (IS_ERR(pid)) {
2213 			retval = PTR_ERR(pid);
2214 			goto bad_fork_cleanup_thread;
2215 		}
2216 	}
2217 
2218 	/*
2219 	 * This has to happen after we've potentially unshared the file
2220 	 * descriptor table (so that the pidfd doesn't leak into the child
2221 	 * if the fd table isn't shared).
2222 	 */
2223 	if (clone_flags & CLONE_PIDFD) {
2224 		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2225 		if (retval < 0)
2226 			goto bad_fork_free_pid;
2227 
2228 		pidfd = retval;
2229 
2230 		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2231 					      O_RDWR | O_CLOEXEC);
2232 		if (IS_ERR(pidfile)) {
2233 			put_unused_fd(pidfd);
2234 			retval = PTR_ERR(pidfile);
2235 			goto bad_fork_free_pid;
2236 		}
2237 		get_pid(pid);	/* held by pidfile now */
2238 
2239 		retval = put_user(pidfd, args->pidfd);
2240 		if (retval)
2241 			goto bad_fork_put_pidfd;
2242 	}
2243 
2244 #ifdef CONFIG_BLOCK
2245 	p->plug = NULL;
2246 #endif
2247 	futex_init_task(p);
2248 
2249 	/*
2250 	 * sigaltstack should be cleared when sharing the same VM
2251 	 */
2252 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2253 		sas_ss_reset(p);
2254 
2255 	/*
2256 	 * Syscall tracing and stepping should be turned off in the
2257 	 * child regardless of CLONE_PTRACE.
2258 	 */
2259 	user_disable_single_step(p);
2260 	clear_task_syscall_work(p, SYSCALL_TRACE);
2261 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2262 	clear_task_syscall_work(p, SYSCALL_EMU);
2263 #endif
2264 	clear_tsk_latency_tracing(p);
2265 
2266 	/* ok, now we should be set up.. */
2267 	p->pid = pid_nr(pid);
2268 	if (clone_flags & CLONE_THREAD) {
2269 		p->group_leader = current->group_leader;
2270 		p->tgid = current->tgid;
2271 	} else {
2272 		p->group_leader = p;
2273 		p->tgid = p->pid;
2274 	}
2275 
2276 	p->nr_dirtied = 0;
2277 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2278 	p->dirty_paused_when = 0;
2279 
2280 	p->pdeath_signal = 0;
2281 	INIT_LIST_HEAD(&p->thread_group);
2282 	p->task_works = NULL;
2283 
2284 #ifdef CONFIG_KRETPROBES
2285 	p->kretprobe_instances.first = NULL;
2286 #endif
2287 
2288 	/*
2289 	 * Ensure that the cgroup subsystem policies allow the new process to be
2290 	 * forked. It should be noted that the new process's css_set can be changed
2291 	 * between here and cgroup_post_fork() if an organisation operation is in
2292 	 * progress.
2293 	 */
2294 	retval = cgroup_can_fork(p, args);
2295 	if (retval)
2296 		goto bad_fork_put_pidfd;
2297 
2298 	/*
2299 	 * From this point on we must avoid any synchronous user-space
2300 	 * communication until we take the tasklist-lock. In particular, we do
2301 	 * not want user-space to be able to predict the process start-time by
2302 	 * stalling fork(2) after we recorded the start_time but before it is
2303 	 * visible to the system.
2304 	 */
2305 
2306 	p->start_time = ktime_get_ns();
2307 	p->start_boottime = ktime_get_boottime_ns();
2308 
2309 	/*
2310 	 * Make it visible to the rest of the system, but dont wake it up yet.
2311 	 * Need tasklist lock for parent etc handling!
2312 	 */
2313 	write_lock_irq(&tasklist_lock);
2314 
2315 	/* CLONE_PARENT re-uses the old parent */
2316 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2317 		p->real_parent = current->real_parent;
2318 		p->parent_exec_id = current->parent_exec_id;
2319 		if (clone_flags & CLONE_THREAD)
2320 			p->exit_signal = -1;
2321 		else
2322 			p->exit_signal = current->group_leader->exit_signal;
2323 	} else {
2324 		p->real_parent = current;
2325 		p->parent_exec_id = current->self_exec_id;
2326 		p->exit_signal = args->exit_signal;
2327 	}
2328 
2329 	klp_copy_process(p);
2330 
2331 	sched_core_fork(p);
2332 
2333 	spin_lock(&current->sighand->siglock);
2334 
2335 	/*
2336 	 * Copy seccomp details explicitly here, in case they were changed
2337 	 * before holding sighand lock.
2338 	 */
2339 	copy_seccomp(p);
2340 
2341 	rseq_fork(p, clone_flags);
2342 
2343 	/* Don't start children in a dying pid namespace */
2344 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2345 		retval = -ENOMEM;
2346 		goto bad_fork_cancel_cgroup;
2347 	}
2348 
2349 	/* Let kill terminate clone/fork in the middle */
2350 	if (fatal_signal_pending(current)) {
2351 		retval = -EINTR;
2352 		goto bad_fork_cancel_cgroup;
2353 	}
2354 
2355 	/* past the last point of failure */
2356 	if (pidfile)
2357 		fd_install(pidfd, pidfile);
2358 
2359 	init_task_pid_links(p);
2360 	if (likely(p->pid)) {
2361 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2362 
2363 		init_task_pid(p, PIDTYPE_PID, pid);
2364 		if (thread_group_leader(p)) {
2365 			init_task_pid(p, PIDTYPE_TGID, pid);
2366 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2367 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2368 
2369 			if (is_child_reaper(pid)) {
2370 				ns_of_pid(pid)->child_reaper = p;
2371 				p->signal->flags |= SIGNAL_UNKILLABLE;
2372 			}
2373 			p->signal->shared_pending.signal = delayed.signal;
2374 			p->signal->tty = tty_kref_get(current->signal->tty);
2375 			/*
2376 			 * Inherit has_child_subreaper flag under the same
2377 			 * tasklist_lock with adding child to the process tree
2378 			 * for propagate_has_child_subreaper optimization.
2379 			 */
2380 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2381 							 p->real_parent->signal->is_child_subreaper;
2382 			list_add_tail(&p->sibling, &p->real_parent->children);
2383 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2384 			attach_pid(p, PIDTYPE_TGID);
2385 			attach_pid(p, PIDTYPE_PGID);
2386 			attach_pid(p, PIDTYPE_SID);
2387 			__this_cpu_inc(process_counts);
2388 		} else {
2389 			current->signal->nr_threads++;
2390 			atomic_inc(&current->signal->live);
2391 			refcount_inc(&current->signal->sigcnt);
2392 			task_join_group_stop(p);
2393 			list_add_tail_rcu(&p->thread_group,
2394 					  &p->group_leader->thread_group);
2395 			list_add_tail_rcu(&p->thread_node,
2396 					  &p->signal->thread_head);
2397 		}
2398 		attach_pid(p, PIDTYPE_PID);
2399 		nr_threads++;
2400 	}
2401 	total_forks++;
2402 	hlist_del_init(&delayed.node);
2403 	spin_unlock(&current->sighand->siglock);
2404 	syscall_tracepoint_update(p);
2405 	write_unlock_irq(&tasklist_lock);
2406 
2407 	proc_fork_connector(p);
2408 	sched_post_fork(p);
2409 	cgroup_post_fork(p, args);
2410 	perf_event_fork(p);
2411 
2412 	trace_task_newtask(p, clone_flags);
2413 	uprobe_copy_process(p, clone_flags);
2414 
2415 	copy_oom_score_adj(clone_flags, p);
2416 
2417 	return p;
2418 
2419 bad_fork_cancel_cgroup:
2420 	sched_core_free(p);
2421 	spin_unlock(&current->sighand->siglock);
2422 	write_unlock_irq(&tasklist_lock);
2423 	cgroup_cancel_fork(p, args);
2424 bad_fork_put_pidfd:
2425 	if (clone_flags & CLONE_PIDFD) {
2426 		fput(pidfile);
2427 		put_unused_fd(pidfd);
2428 	}
2429 bad_fork_free_pid:
2430 	if (pid != &init_struct_pid)
2431 		free_pid(pid);
2432 bad_fork_cleanup_thread:
2433 	exit_thread(p);
2434 bad_fork_cleanup_io:
2435 	if (p->io_context)
2436 		exit_io_context(p);
2437 bad_fork_cleanup_namespaces:
2438 	exit_task_namespaces(p);
2439 bad_fork_cleanup_mm:
2440 	if (p->mm) {
2441 		mm_clear_owner(p->mm, p);
2442 		mmput(p->mm);
2443 	}
2444 bad_fork_cleanup_signal:
2445 	if (!(clone_flags & CLONE_THREAD))
2446 		free_signal_struct(p->signal);
2447 bad_fork_cleanup_sighand:
2448 	__cleanup_sighand(p->sighand);
2449 bad_fork_cleanup_fs:
2450 	exit_fs(p); /* blocking */
2451 bad_fork_cleanup_files:
2452 	exit_files(p); /* blocking */
2453 bad_fork_cleanup_semundo:
2454 	exit_sem(p);
2455 bad_fork_cleanup_security:
2456 	security_task_free(p);
2457 bad_fork_cleanup_audit:
2458 	audit_free(p);
2459 bad_fork_cleanup_perf:
2460 	perf_event_free_task(p);
2461 bad_fork_cleanup_policy:
2462 	lockdep_free_task(p);
2463 #ifdef CONFIG_NUMA
2464 	mpol_put(p->mempolicy);
2465 bad_fork_cleanup_threadgroup_lock:
2466 #endif
2467 	delayacct_tsk_free(p);
2468 bad_fork_cleanup_count:
2469 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2470 	exit_creds(p);
2471 bad_fork_free:
2472 	WRITE_ONCE(p->__state, TASK_DEAD);
2473 	put_task_stack(p);
2474 	delayed_free_task(p);
2475 fork_out:
2476 	spin_lock_irq(&current->sighand->siglock);
2477 	hlist_del_init(&delayed.node);
2478 	spin_unlock_irq(&current->sighand->siglock);
2479 	return ERR_PTR(retval);
2480 }
2481 
2482 static inline void init_idle_pids(struct task_struct *idle)
2483 {
2484 	enum pid_type type;
2485 
2486 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2487 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2488 		init_task_pid(idle, type, &init_struct_pid);
2489 	}
2490 }
2491 
2492 struct task_struct * __init fork_idle(int cpu)
2493 {
2494 	struct task_struct *task;
2495 	struct kernel_clone_args args = {
2496 		.flags = CLONE_VM,
2497 	};
2498 
2499 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2500 	if (!IS_ERR(task)) {
2501 		init_idle_pids(task);
2502 		init_idle(task, cpu);
2503 	}
2504 
2505 	return task;
2506 }
2507 
2508 struct mm_struct *copy_init_mm(void)
2509 {
2510 	return dup_mm(NULL, &init_mm);
2511 }
2512 
2513 /*
2514  * This is like kernel_clone(), but shaved down and tailored to just
2515  * creating io_uring workers. It returns a created task, or an error pointer.
2516  * The returned task is inactive, and the caller must fire it up through
2517  * wake_up_new_task(p). All signals are blocked in the created task.
2518  */
2519 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2520 {
2521 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2522 				CLONE_IO;
2523 	struct kernel_clone_args args = {
2524 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2525 				    CLONE_UNTRACED) & ~CSIGNAL),
2526 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2527 		.stack		= (unsigned long)fn,
2528 		.stack_size	= (unsigned long)arg,
2529 		.io_thread	= 1,
2530 	};
2531 
2532 	return copy_process(NULL, 0, node, &args);
2533 }
2534 
2535 /*
2536  *  Ok, this is the main fork-routine.
2537  *
2538  * It copies the process, and if successful kick-starts
2539  * it and waits for it to finish using the VM if required.
2540  *
2541  * args->exit_signal is expected to be checked for sanity by the caller.
2542  */
2543 pid_t kernel_clone(struct kernel_clone_args *args)
2544 {
2545 	u64 clone_flags = args->flags;
2546 	struct completion vfork;
2547 	struct pid *pid;
2548 	struct task_struct *p;
2549 	int trace = 0;
2550 	pid_t nr;
2551 
2552 	/*
2553 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2554 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2555 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2556 	 * field in struct clone_args and it still doesn't make sense to have
2557 	 * them both point at the same memory location. Performing this check
2558 	 * here has the advantage that we don't need to have a separate helper
2559 	 * to check for legacy clone().
2560 	 */
2561 	if ((args->flags & CLONE_PIDFD) &&
2562 	    (args->flags & CLONE_PARENT_SETTID) &&
2563 	    (args->pidfd == args->parent_tid))
2564 		return -EINVAL;
2565 
2566 	/*
2567 	 * Determine whether and which event to report to ptracer.  When
2568 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2569 	 * requested, no event is reported; otherwise, report if the event
2570 	 * for the type of forking is enabled.
2571 	 */
2572 	if (!(clone_flags & CLONE_UNTRACED)) {
2573 		if (clone_flags & CLONE_VFORK)
2574 			trace = PTRACE_EVENT_VFORK;
2575 		else if (args->exit_signal != SIGCHLD)
2576 			trace = PTRACE_EVENT_CLONE;
2577 		else
2578 			trace = PTRACE_EVENT_FORK;
2579 
2580 		if (likely(!ptrace_event_enabled(current, trace)))
2581 			trace = 0;
2582 	}
2583 
2584 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2585 	add_latent_entropy();
2586 
2587 	if (IS_ERR(p))
2588 		return PTR_ERR(p);
2589 
2590 	/*
2591 	 * Do this prior waking up the new thread - the thread pointer
2592 	 * might get invalid after that point, if the thread exits quickly.
2593 	 */
2594 	trace_sched_process_fork(current, p);
2595 
2596 	pid = get_task_pid(p, PIDTYPE_PID);
2597 	nr = pid_vnr(pid);
2598 
2599 	if (clone_flags & CLONE_PARENT_SETTID)
2600 		put_user(nr, args->parent_tid);
2601 
2602 	if (clone_flags & CLONE_VFORK) {
2603 		p->vfork_done = &vfork;
2604 		init_completion(&vfork);
2605 		get_task_struct(p);
2606 	}
2607 
2608 	wake_up_new_task(p);
2609 
2610 	/* forking complete and child started to run, tell ptracer */
2611 	if (unlikely(trace))
2612 		ptrace_event_pid(trace, pid);
2613 
2614 	if (clone_flags & CLONE_VFORK) {
2615 		if (!wait_for_vfork_done(p, &vfork))
2616 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2617 	}
2618 
2619 	put_pid(pid);
2620 	return nr;
2621 }
2622 
2623 /*
2624  * Create a kernel thread.
2625  */
2626 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2627 {
2628 	struct kernel_clone_args args = {
2629 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2630 				    CLONE_UNTRACED) & ~CSIGNAL),
2631 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2632 		.stack		= (unsigned long)fn,
2633 		.stack_size	= (unsigned long)arg,
2634 	};
2635 
2636 	return kernel_clone(&args);
2637 }
2638 
2639 #ifdef __ARCH_WANT_SYS_FORK
2640 SYSCALL_DEFINE0(fork)
2641 {
2642 #ifdef CONFIG_MMU
2643 	struct kernel_clone_args args = {
2644 		.exit_signal = SIGCHLD,
2645 	};
2646 
2647 	return kernel_clone(&args);
2648 #else
2649 	/* can not support in nommu mode */
2650 	return -EINVAL;
2651 #endif
2652 }
2653 #endif
2654 
2655 #ifdef __ARCH_WANT_SYS_VFORK
2656 SYSCALL_DEFINE0(vfork)
2657 {
2658 	struct kernel_clone_args args = {
2659 		.flags		= CLONE_VFORK | CLONE_VM,
2660 		.exit_signal	= SIGCHLD,
2661 	};
2662 
2663 	return kernel_clone(&args);
2664 }
2665 #endif
2666 
2667 #ifdef __ARCH_WANT_SYS_CLONE
2668 #ifdef CONFIG_CLONE_BACKWARDS
2669 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2670 		 int __user *, parent_tidptr,
2671 		 unsigned long, tls,
2672 		 int __user *, child_tidptr)
2673 #elif defined(CONFIG_CLONE_BACKWARDS2)
2674 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2675 		 int __user *, parent_tidptr,
2676 		 int __user *, child_tidptr,
2677 		 unsigned long, tls)
2678 #elif defined(CONFIG_CLONE_BACKWARDS3)
2679 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2680 		int, stack_size,
2681 		int __user *, parent_tidptr,
2682 		int __user *, child_tidptr,
2683 		unsigned long, tls)
2684 #else
2685 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2686 		 int __user *, parent_tidptr,
2687 		 int __user *, child_tidptr,
2688 		 unsigned long, tls)
2689 #endif
2690 {
2691 	struct kernel_clone_args args = {
2692 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2693 		.pidfd		= parent_tidptr,
2694 		.child_tid	= child_tidptr,
2695 		.parent_tid	= parent_tidptr,
2696 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2697 		.stack		= newsp,
2698 		.tls		= tls,
2699 	};
2700 
2701 	return kernel_clone(&args);
2702 }
2703 #endif
2704 
2705 #ifdef __ARCH_WANT_SYS_CLONE3
2706 
2707 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2708 					      struct clone_args __user *uargs,
2709 					      size_t usize)
2710 {
2711 	int err;
2712 	struct clone_args args;
2713 	pid_t *kset_tid = kargs->set_tid;
2714 
2715 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2716 		     CLONE_ARGS_SIZE_VER0);
2717 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2718 		     CLONE_ARGS_SIZE_VER1);
2719 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2720 		     CLONE_ARGS_SIZE_VER2);
2721 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2722 
2723 	if (unlikely(usize > PAGE_SIZE))
2724 		return -E2BIG;
2725 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2726 		return -EINVAL;
2727 
2728 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2729 	if (err)
2730 		return err;
2731 
2732 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2733 		return -EINVAL;
2734 
2735 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2736 		return -EINVAL;
2737 
2738 	if (unlikely(args.set_tid && args.set_tid_size == 0))
2739 		return -EINVAL;
2740 
2741 	/*
2742 	 * Verify that higher 32bits of exit_signal are unset and that
2743 	 * it is a valid signal
2744 	 */
2745 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2746 		     !valid_signal(args.exit_signal)))
2747 		return -EINVAL;
2748 
2749 	if ((args.flags & CLONE_INTO_CGROUP) &&
2750 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2751 		return -EINVAL;
2752 
2753 	*kargs = (struct kernel_clone_args){
2754 		.flags		= args.flags,
2755 		.pidfd		= u64_to_user_ptr(args.pidfd),
2756 		.child_tid	= u64_to_user_ptr(args.child_tid),
2757 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2758 		.exit_signal	= args.exit_signal,
2759 		.stack		= args.stack,
2760 		.stack_size	= args.stack_size,
2761 		.tls		= args.tls,
2762 		.set_tid_size	= args.set_tid_size,
2763 		.cgroup		= args.cgroup,
2764 	};
2765 
2766 	if (args.set_tid &&
2767 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2768 			(kargs->set_tid_size * sizeof(pid_t))))
2769 		return -EFAULT;
2770 
2771 	kargs->set_tid = kset_tid;
2772 
2773 	return 0;
2774 }
2775 
2776 /**
2777  * clone3_stack_valid - check and prepare stack
2778  * @kargs: kernel clone args
2779  *
2780  * Verify that the stack arguments userspace gave us are sane.
2781  * In addition, set the stack direction for userspace since it's easy for us to
2782  * determine.
2783  */
2784 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2785 {
2786 	if (kargs->stack == 0) {
2787 		if (kargs->stack_size > 0)
2788 			return false;
2789 	} else {
2790 		if (kargs->stack_size == 0)
2791 			return false;
2792 
2793 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2794 			return false;
2795 
2796 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2797 		kargs->stack += kargs->stack_size;
2798 #endif
2799 	}
2800 
2801 	return true;
2802 }
2803 
2804 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2805 {
2806 	/* Verify that no unknown flags are passed along. */
2807 	if (kargs->flags &
2808 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2809 		return false;
2810 
2811 	/*
2812 	 * - make the CLONE_DETACHED bit reusable for clone3
2813 	 * - make the CSIGNAL bits reusable for clone3
2814 	 */
2815 	if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2816 		return false;
2817 
2818 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2819 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2820 		return false;
2821 
2822 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2823 	    kargs->exit_signal)
2824 		return false;
2825 
2826 	if (!clone3_stack_valid(kargs))
2827 		return false;
2828 
2829 	return true;
2830 }
2831 
2832 /**
2833  * clone3 - create a new process with specific properties
2834  * @uargs: argument structure
2835  * @size:  size of @uargs
2836  *
2837  * clone3() is the extensible successor to clone()/clone2().
2838  * It takes a struct as argument that is versioned by its size.
2839  *
2840  * Return: On success, a positive PID for the child process.
2841  *         On error, a negative errno number.
2842  */
2843 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2844 {
2845 	int err;
2846 
2847 	struct kernel_clone_args kargs;
2848 	pid_t set_tid[MAX_PID_NS_LEVEL];
2849 
2850 	kargs.set_tid = set_tid;
2851 
2852 	err = copy_clone_args_from_user(&kargs, uargs, size);
2853 	if (err)
2854 		return err;
2855 
2856 	if (!clone3_args_valid(&kargs))
2857 		return -EINVAL;
2858 
2859 	return kernel_clone(&kargs);
2860 }
2861 #endif
2862 
2863 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2864 {
2865 	struct task_struct *leader, *parent, *child;
2866 	int res;
2867 
2868 	read_lock(&tasklist_lock);
2869 	leader = top = top->group_leader;
2870 down:
2871 	for_each_thread(leader, parent) {
2872 		list_for_each_entry(child, &parent->children, sibling) {
2873 			res = visitor(child, data);
2874 			if (res) {
2875 				if (res < 0)
2876 					goto out;
2877 				leader = child;
2878 				goto down;
2879 			}
2880 up:
2881 			;
2882 		}
2883 	}
2884 
2885 	if (leader != top) {
2886 		child = leader;
2887 		parent = child->real_parent;
2888 		leader = parent->group_leader;
2889 		goto up;
2890 	}
2891 out:
2892 	read_unlock(&tasklist_lock);
2893 }
2894 
2895 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2896 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2897 #endif
2898 
2899 static void sighand_ctor(void *data)
2900 {
2901 	struct sighand_struct *sighand = data;
2902 
2903 	spin_lock_init(&sighand->siglock);
2904 	init_waitqueue_head(&sighand->signalfd_wqh);
2905 }
2906 
2907 void __init proc_caches_init(void)
2908 {
2909 	unsigned int mm_size;
2910 
2911 	sighand_cachep = kmem_cache_create("sighand_cache",
2912 			sizeof(struct sighand_struct), 0,
2913 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2914 			SLAB_ACCOUNT, sighand_ctor);
2915 	signal_cachep = kmem_cache_create("signal_cache",
2916 			sizeof(struct signal_struct), 0,
2917 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2918 			NULL);
2919 	files_cachep = kmem_cache_create("files_cache",
2920 			sizeof(struct files_struct), 0,
2921 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2922 			NULL);
2923 	fs_cachep = kmem_cache_create("fs_cache",
2924 			sizeof(struct fs_struct), 0,
2925 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2926 			NULL);
2927 
2928 	/*
2929 	 * The mm_cpumask is located at the end of mm_struct, and is
2930 	 * dynamically sized based on the maximum CPU number this system
2931 	 * can have, taking hotplug into account (nr_cpu_ids).
2932 	 */
2933 	mm_size = sizeof(struct mm_struct) + cpumask_size();
2934 
2935 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2936 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2937 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2938 			offsetof(struct mm_struct, saved_auxv),
2939 			sizeof_field(struct mm_struct, saved_auxv),
2940 			NULL);
2941 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2942 	mmap_init();
2943 	nsproxy_cache_init();
2944 }
2945 
2946 /*
2947  * Check constraints on flags passed to the unshare system call.
2948  */
2949 static int check_unshare_flags(unsigned long unshare_flags)
2950 {
2951 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2952 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2953 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2954 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2955 				CLONE_NEWTIME))
2956 		return -EINVAL;
2957 	/*
2958 	 * Not implemented, but pretend it works if there is nothing
2959 	 * to unshare.  Note that unsharing the address space or the
2960 	 * signal handlers also need to unshare the signal queues (aka
2961 	 * CLONE_THREAD).
2962 	 */
2963 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2964 		if (!thread_group_empty(current))
2965 			return -EINVAL;
2966 	}
2967 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2968 		if (refcount_read(&current->sighand->count) > 1)
2969 			return -EINVAL;
2970 	}
2971 	if (unshare_flags & CLONE_VM) {
2972 		if (!current_is_single_threaded())
2973 			return -EINVAL;
2974 	}
2975 
2976 	return 0;
2977 }
2978 
2979 /*
2980  * Unshare the filesystem structure if it is being shared
2981  */
2982 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2983 {
2984 	struct fs_struct *fs = current->fs;
2985 
2986 	if (!(unshare_flags & CLONE_FS) || !fs)
2987 		return 0;
2988 
2989 	/* don't need lock here; in the worst case we'll do useless copy */
2990 	if (fs->users == 1)
2991 		return 0;
2992 
2993 	*new_fsp = copy_fs_struct(fs);
2994 	if (!*new_fsp)
2995 		return -ENOMEM;
2996 
2997 	return 0;
2998 }
2999 
3000 /*
3001  * Unshare file descriptor table if it is being shared
3002  */
3003 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3004 	       struct files_struct **new_fdp)
3005 {
3006 	struct files_struct *fd = current->files;
3007 	int error = 0;
3008 
3009 	if ((unshare_flags & CLONE_FILES) &&
3010 	    (fd && atomic_read(&fd->count) > 1)) {
3011 		*new_fdp = dup_fd(fd, max_fds, &error);
3012 		if (!*new_fdp)
3013 			return error;
3014 	}
3015 
3016 	return 0;
3017 }
3018 
3019 /*
3020  * unshare allows a process to 'unshare' part of the process
3021  * context which was originally shared using clone.  copy_*
3022  * functions used by kernel_clone() cannot be used here directly
3023  * because they modify an inactive task_struct that is being
3024  * constructed. Here we are modifying the current, active,
3025  * task_struct.
3026  */
3027 int ksys_unshare(unsigned long unshare_flags)
3028 {
3029 	struct fs_struct *fs, *new_fs = NULL;
3030 	struct files_struct *fd, *new_fd = NULL;
3031 	struct cred *new_cred = NULL;
3032 	struct nsproxy *new_nsproxy = NULL;
3033 	int do_sysvsem = 0;
3034 	int err;
3035 
3036 	/*
3037 	 * If unsharing a user namespace must also unshare the thread group
3038 	 * and unshare the filesystem root and working directories.
3039 	 */
3040 	if (unshare_flags & CLONE_NEWUSER)
3041 		unshare_flags |= CLONE_THREAD | CLONE_FS;
3042 	/*
3043 	 * If unsharing vm, must also unshare signal handlers.
3044 	 */
3045 	if (unshare_flags & CLONE_VM)
3046 		unshare_flags |= CLONE_SIGHAND;
3047 	/*
3048 	 * If unsharing a signal handlers, must also unshare the signal queues.
3049 	 */
3050 	if (unshare_flags & CLONE_SIGHAND)
3051 		unshare_flags |= CLONE_THREAD;
3052 	/*
3053 	 * If unsharing namespace, must also unshare filesystem information.
3054 	 */
3055 	if (unshare_flags & CLONE_NEWNS)
3056 		unshare_flags |= CLONE_FS;
3057 
3058 	err = check_unshare_flags(unshare_flags);
3059 	if (err)
3060 		goto bad_unshare_out;
3061 	/*
3062 	 * CLONE_NEWIPC must also detach from the undolist: after switching
3063 	 * to a new ipc namespace, the semaphore arrays from the old
3064 	 * namespace are unreachable.
3065 	 */
3066 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3067 		do_sysvsem = 1;
3068 	err = unshare_fs(unshare_flags, &new_fs);
3069 	if (err)
3070 		goto bad_unshare_out;
3071 	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3072 	if (err)
3073 		goto bad_unshare_cleanup_fs;
3074 	err = unshare_userns(unshare_flags, &new_cred);
3075 	if (err)
3076 		goto bad_unshare_cleanup_fd;
3077 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3078 					 new_cred, new_fs);
3079 	if (err)
3080 		goto bad_unshare_cleanup_cred;
3081 
3082 	if (new_cred) {
3083 		err = set_cred_ucounts(new_cred);
3084 		if (err)
3085 			goto bad_unshare_cleanup_cred;
3086 	}
3087 
3088 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3089 		if (do_sysvsem) {
3090 			/*
3091 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3092 			 */
3093 			exit_sem(current);
3094 		}
3095 		if (unshare_flags & CLONE_NEWIPC) {
3096 			/* Orphan segments in old ns (see sem above). */
3097 			exit_shm(current);
3098 			shm_init_task(current);
3099 		}
3100 
3101 		if (new_nsproxy)
3102 			switch_task_namespaces(current, new_nsproxy);
3103 
3104 		task_lock(current);
3105 
3106 		if (new_fs) {
3107 			fs = current->fs;
3108 			spin_lock(&fs->lock);
3109 			current->fs = new_fs;
3110 			if (--fs->users)
3111 				new_fs = NULL;
3112 			else
3113 				new_fs = fs;
3114 			spin_unlock(&fs->lock);
3115 		}
3116 
3117 		if (new_fd) {
3118 			fd = current->files;
3119 			current->files = new_fd;
3120 			new_fd = fd;
3121 		}
3122 
3123 		task_unlock(current);
3124 
3125 		if (new_cred) {
3126 			/* Install the new user namespace */
3127 			commit_creds(new_cred);
3128 			new_cred = NULL;
3129 		}
3130 	}
3131 
3132 	perf_event_namespaces(current);
3133 
3134 bad_unshare_cleanup_cred:
3135 	if (new_cred)
3136 		put_cred(new_cred);
3137 bad_unshare_cleanup_fd:
3138 	if (new_fd)
3139 		put_files_struct(new_fd);
3140 
3141 bad_unshare_cleanup_fs:
3142 	if (new_fs)
3143 		free_fs_struct(new_fs);
3144 
3145 bad_unshare_out:
3146 	return err;
3147 }
3148 
3149 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3150 {
3151 	return ksys_unshare(unshare_flags);
3152 }
3153 
3154 /*
3155  *	Helper to unshare the files of the current task.
3156  *	We don't want to expose copy_files internals to
3157  *	the exec layer of the kernel.
3158  */
3159 
3160 int unshare_files(void)
3161 {
3162 	struct task_struct *task = current;
3163 	struct files_struct *old, *copy = NULL;
3164 	int error;
3165 
3166 	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3167 	if (error || !copy)
3168 		return error;
3169 
3170 	old = task->files;
3171 	task_lock(task);
3172 	task->files = copy;
3173 	task_unlock(task);
3174 	put_files_struct(old);
3175 	return 0;
3176 }
3177 
3178 int sysctl_max_threads(struct ctl_table *table, int write,
3179 		       void *buffer, size_t *lenp, loff_t *ppos)
3180 {
3181 	struct ctl_table t;
3182 	int ret;
3183 	int threads = max_threads;
3184 	int min = 1;
3185 	int max = MAX_THREADS;
3186 
3187 	t = *table;
3188 	t.data = &threads;
3189 	t.extra1 = &min;
3190 	t.extra2 = &max;
3191 
3192 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3193 	if (ret || !write)
3194 		return ret;
3195 
3196 	max_threads = threads;
3197 
3198 	return 0;
3199 }
3200