xref: /linux/kernel/fork.c (revision 08ec212c0f92cbf30e3ecc7349f18151714041d6)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/seccomp.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/rmap.h>
54 #include <linux/ksm.h>
55 #include <linux/acct.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/freezer.h>
59 #include <linux/delayacct.h>
60 #include <linux/taskstats_kern.h>
61 #include <linux/random.h>
62 #include <linux/tty.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71 #include <linux/signalfd.h>
72 #include <linux/uprobes.h>
73 
74 #include <asm/pgtable.h>
75 #include <asm/pgalloc.h>
76 #include <asm/uaccess.h>
77 #include <asm/mmu_context.h>
78 #include <asm/cacheflush.h>
79 #include <asm/tlbflush.h>
80 
81 #include <trace/events/sched.h>
82 
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/task.h>
85 
86 /*
87  * Protected counters by write_lock_irq(&tasklist_lock)
88  */
89 unsigned long total_forks;	/* Handle normal Linux uptimes. */
90 int nr_threads;			/* The idle threads do not count.. */
91 
92 int max_threads;		/* tunable limit on nr_threads */
93 
94 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
95 
96 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
97 
98 #ifdef CONFIG_PROVE_RCU
99 int lockdep_tasklist_lock_is_held(void)
100 {
101 	return lockdep_is_held(&tasklist_lock);
102 }
103 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
104 #endif /* #ifdef CONFIG_PROVE_RCU */
105 
106 int nr_processes(void)
107 {
108 	int cpu;
109 	int total = 0;
110 
111 	for_each_possible_cpu(cpu)
112 		total += per_cpu(process_counts, cpu);
113 
114 	return total;
115 }
116 
117 void __weak arch_release_task_struct(struct task_struct *tsk)
118 {
119 }
120 
121 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
122 static struct kmem_cache *task_struct_cachep;
123 
124 static inline struct task_struct *alloc_task_struct_node(int node)
125 {
126 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
127 }
128 
129 static inline void free_task_struct(struct task_struct *tsk)
130 {
131 	kmem_cache_free(task_struct_cachep, tsk);
132 }
133 #endif
134 
135 void __weak arch_release_thread_info(struct thread_info *ti)
136 {
137 }
138 
139 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
140 
141 /*
142  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
143  * kmemcache based allocator.
144  */
145 # if THREAD_SIZE >= PAGE_SIZE
146 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
147 						  int node)
148 {
149 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
150 					     THREAD_SIZE_ORDER);
151 
152 	return page ? page_address(page) : NULL;
153 }
154 
155 static inline void free_thread_info(struct thread_info *ti)
156 {
157 	free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
158 }
159 # else
160 static struct kmem_cache *thread_info_cache;
161 
162 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
163 						  int node)
164 {
165 	return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
166 }
167 
168 static void free_thread_info(struct thread_info *ti)
169 {
170 	kmem_cache_free(thread_info_cache, ti);
171 }
172 
173 void thread_info_cache_init(void)
174 {
175 	thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
176 					      THREAD_SIZE, 0, NULL);
177 	BUG_ON(thread_info_cache == NULL);
178 }
179 # endif
180 #endif
181 
182 /* SLAB cache for signal_struct structures (tsk->signal) */
183 static struct kmem_cache *signal_cachep;
184 
185 /* SLAB cache for sighand_struct structures (tsk->sighand) */
186 struct kmem_cache *sighand_cachep;
187 
188 /* SLAB cache for files_struct structures (tsk->files) */
189 struct kmem_cache *files_cachep;
190 
191 /* SLAB cache for fs_struct structures (tsk->fs) */
192 struct kmem_cache *fs_cachep;
193 
194 /* SLAB cache for vm_area_struct structures */
195 struct kmem_cache *vm_area_cachep;
196 
197 /* SLAB cache for mm_struct structures (tsk->mm) */
198 static struct kmem_cache *mm_cachep;
199 
200 static void account_kernel_stack(struct thread_info *ti, int account)
201 {
202 	struct zone *zone = page_zone(virt_to_page(ti));
203 
204 	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
205 }
206 
207 void free_task(struct task_struct *tsk)
208 {
209 	account_kernel_stack(tsk->stack, -1);
210 	arch_release_thread_info(tsk->stack);
211 	free_thread_info(tsk->stack);
212 	rt_mutex_debug_task_free(tsk);
213 	ftrace_graph_exit_task(tsk);
214 	put_seccomp_filter(tsk);
215 	arch_release_task_struct(tsk);
216 	free_task_struct(tsk);
217 }
218 EXPORT_SYMBOL(free_task);
219 
220 static inline void free_signal_struct(struct signal_struct *sig)
221 {
222 	taskstats_tgid_free(sig);
223 	sched_autogroup_exit(sig);
224 	kmem_cache_free(signal_cachep, sig);
225 }
226 
227 static inline void put_signal_struct(struct signal_struct *sig)
228 {
229 	if (atomic_dec_and_test(&sig->sigcnt))
230 		free_signal_struct(sig);
231 }
232 
233 void __put_task_struct(struct task_struct *tsk)
234 {
235 	WARN_ON(!tsk->exit_state);
236 	WARN_ON(atomic_read(&tsk->usage));
237 	WARN_ON(tsk == current);
238 
239 	security_task_free(tsk);
240 	exit_creds(tsk);
241 	delayacct_tsk_free(tsk);
242 	put_signal_struct(tsk->signal);
243 
244 	if (!profile_handoff_task(tsk))
245 		free_task(tsk);
246 }
247 EXPORT_SYMBOL_GPL(__put_task_struct);
248 
249 void __init __weak arch_task_cache_init(void) { }
250 
251 void __init fork_init(unsigned long mempages)
252 {
253 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
254 #ifndef ARCH_MIN_TASKALIGN
255 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
256 #endif
257 	/* create a slab on which task_structs can be allocated */
258 	task_struct_cachep =
259 		kmem_cache_create("task_struct", sizeof(struct task_struct),
260 			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
261 #endif
262 
263 	/* do the arch specific task caches init */
264 	arch_task_cache_init();
265 
266 	/*
267 	 * The default maximum number of threads is set to a safe
268 	 * value: the thread structures can take up at most half
269 	 * of memory.
270 	 */
271 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
272 
273 	/*
274 	 * we need to allow at least 20 threads to boot a system
275 	 */
276 	if (max_threads < 20)
277 		max_threads = 20;
278 
279 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
280 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
281 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
282 		init_task.signal->rlim[RLIMIT_NPROC];
283 }
284 
285 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
286 					       struct task_struct *src)
287 {
288 	*dst = *src;
289 	return 0;
290 }
291 
292 static struct task_struct *dup_task_struct(struct task_struct *orig)
293 {
294 	struct task_struct *tsk;
295 	struct thread_info *ti;
296 	unsigned long *stackend;
297 	int node = tsk_fork_get_node(orig);
298 	int err;
299 
300 	tsk = alloc_task_struct_node(node);
301 	if (!tsk)
302 		return NULL;
303 
304 	ti = alloc_thread_info_node(tsk, node);
305 	if (!ti)
306 		goto free_tsk;
307 
308 	err = arch_dup_task_struct(tsk, orig);
309 	if (err)
310 		goto free_ti;
311 
312 	tsk->stack = ti;
313 
314 	setup_thread_stack(tsk, orig);
315 	clear_user_return_notifier(tsk);
316 	clear_tsk_need_resched(tsk);
317 	stackend = end_of_stack(tsk);
318 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
319 
320 #ifdef CONFIG_CC_STACKPROTECTOR
321 	tsk->stack_canary = get_random_int();
322 #endif
323 
324 	/*
325 	 * One for us, one for whoever does the "release_task()" (usually
326 	 * parent)
327 	 */
328 	atomic_set(&tsk->usage, 2);
329 #ifdef CONFIG_BLK_DEV_IO_TRACE
330 	tsk->btrace_seq = 0;
331 #endif
332 	tsk->splice_pipe = NULL;
333 	tsk->task_frag.page = NULL;
334 
335 	account_kernel_stack(ti, 1);
336 
337 	return tsk;
338 
339 free_ti:
340 	free_thread_info(ti);
341 free_tsk:
342 	free_task_struct(tsk);
343 	return NULL;
344 }
345 
346 #ifdef CONFIG_MMU
347 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
348 {
349 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
350 	struct rb_node **rb_link, *rb_parent;
351 	int retval;
352 	unsigned long charge;
353 	struct mempolicy *pol;
354 
355 	down_write(&oldmm->mmap_sem);
356 	flush_cache_dup_mm(oldmm);
357 	uprobe_dup_mmap(oldmm, mm);
358 	/*
359 	 * Not linked in yet - no deadlock potential:
360 	 */
361 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
362 
363 	mm->locked_vm = 0;
364 	mm->mmap = NULL;
365 	mm->mmap_cache = NULL;
366 	mm->free_area_cache = oldmm->mmap_base;
367 	mm->cached_hole_size = ~0UL;
368 	mm->map_count = 0;
369 	cpumask_clear(mm_cpumask(mm));
370 	mm->mm_rb = RB_ROOT;
371 	rb_link = &mm->mm_rb.rb_node;
372 	rb_parent = NULL;
373 	pprev = &mm->mmap;
374 	retval = ksm_fork(mm, oldmm);
375 	if (retval)
376 		goto out;
377 	retval = khugepaged_fork(mm, oldmm);
378 	if (retval)
379 		goto out;
380 
381 	prev = NULL;
382 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
383 		struct file *file;
384 
385 		if (mpnt->vm_flags & VM_DONTCOPY) {
386 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
387 							-vma_pages(mpnt));
388 			continue;
389 		}
390 		charge = 0;
391 		if (mpnt->vm_flags & VM_ACCOUNT) {
392 			unsigned long len = vma_pages(mpnt);
393 
394 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
395 				goto fail_nomem;
396 			charge = len;
397 		}
398 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
399 		if (!tmp)
400 			goto fail_nomem;
401 		*tmp = *mpnt;
402 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
403 		pol = mpol_dup(vma_policy(mpnt));
404 		retval = PTR_ERR(pol);
405 		if (IS_ERR(pol))
406 			goto fail_nomem_policy;
407 		vma_set_policy(tmp, pol);
408 		tmp->vm_mm = mm;
409 		if (anon_vma_fork(tmp, mpnt))
410 			goto fail_nomem_anon_vma_fork;
411 		tmp->vm_flags &= ~VM_LOCKED;
412 		tmp->vm_next = tmp->vm_prev = NULL;
413 		file = tmp->vm_file;
414 		if (file) {
415 			struct inode *inode = file->f_path.dentry->d_inode;
416 			struct address_space *mapping = file->f_mapping;
417 
418 			get_file(file);
419 			if (tmp->vm_flags & VM_DENYWRITE)
420 				atomic_dec(&inode->i_writecount);
421 			mutex_lock(&mapping->i_mmap_mutex);
422 			if (tmp->vm_flags & VM_SHARED)
423 				mapping->i_mmap_writable++;
424 			flush_dcache_mmap_lock(mapping);
425 			/* insert tmp into the share list, just after mpnt */
426 			if (unlikely(tmp->vm_flags & VM_NONLINEAR))
427 				vma_nonlinear_insert(tmp,
428 						&mapping->i_mmap_nonlinear);
429 			else
430 				vma_interval_tree_insert_after(tmp, mpnt,
431 							&mapping->i_mmap);
432 			flush_dcache_mmap_unlock(mapping);
433 			mutex_unlock(&mapping->i_mmap_mutex);
434 		}
435 
436 		/*
437 		 * Clear hugetlb-related page reserves for children. This only
438 		 * affects MAP_PRIVATE mappings. Faults generated by the child
439 		 * are not guaranteed to succeed, even if read-only
440 		 */
441 		if (is_vm_hugetlb_page(tmp))
442 			reset_vma_resv_huge_pages(tmp);
443 
444 		/*
445 		 * Link in the new vma and copy the page table entries.
446 		 */
447 		*pprev = tmp;
448 		pprev = &tmp->vm_next;
449 		tmp->vm_prev = prev;
450 		prev = tmp;
451 
452 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
453 		rb_link = &tmp->vm_rb.rb_right;
454 		rb_parent = &tmp->vm_rb;
455 
456 		mm->map_count++;
457 		retval = copy_page_range(mm, oldmm, mpnt);
458 
459 		if (tmp->vm_ops && tmp->vm_ops->open)
460 			tmp->vm_ops->open(tmp);
461 
462 		if (retval)
463 			goto out;
464 	}
465 	/* a new mm has just been created */
466 	arch_dup_mmap(oldmm, mm);
467 	retval = 0;
468 out:
469 	up_write(&mm->mmap_sem);
470 	flush_tlb_mm(oldmm);
471 	up_write(&oldmm->mmap_sem);
472 	return retval;
473 fail_nomem_anon_vma_fork:
474 	mpol_put(pol);
475 fail_nomem_policy:
476 	kmem_cache_free(vm_area_cachep, tmp);
477 fail_nomem:
478 	retval = -ENOMEM;
479 	vm_unacct_memory(charge);
480 	goto out;
481 }
482 
483 static inline int mm_alloc_pgd(struct mm_struct *mm)
484 {
485 	mm->pgd = pgd_alloc(mm);
486 	if (unlikely(!mm->pgd))
487 		return -ENOMEM;
488 	return 0;
489 }
490 
491 static inline void mm_free_pgd(struct mm_struct *mm)
492 {
493 	pgd_free(mm, mm->pgd);
494 }
495 #else
496 #define dup_mmap(mm, oldmm)	(0)
497 #define mm_alloc_pgd(mm)	(0)
498 #define mm_free_pgd(mm)
499 #endif /* CONFIG_MMU */
500 
501 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
502 
503 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
504 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
505 
506 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
507 
508 static int __init coredump_filter_setup(char *s)
509 {
510 	default_dump_filter =
511 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
512 		MMF_DUMP_FILTER_MASK;
513 	return 1;
514 }
515 
516 __setup("coredump_filter=", coredump_filter_setup);
517 
518 #include <linux/init_task.h>
519 
520 static void mm_init_aio(struct mm_struct *mm)
521 {
522 #ifdef CONFIG_AIO
523 	spin_lock_init(&mm->ioctx_lock);
524 	INIT_HLIST_HEAD(&mm->ioctx_list);
525 #endif
526 }
527 
528 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
529 {
530 	atomic_set(&mm->mm_users, 1);
531 	atomic_set(&mm->mm_count, 1);
532 	init_rwsem(&mm->mmap_sem);
533 	INIT_LIST_HEAD(&mm->mmlist);
534 	mm->flags = (current->mm) ?
535 		(current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
536 	mm->core_state = NULL;
537 	mm->nr_ptes = 0;
538 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
539 	spin_lock_init(&mm->page_table_lock);
540 	mm->free_area_cache = TASK_UNMAPPED_BASE;
541 	mm->cached_hole_size = ~0UL;
542 	mm_init_aio(mm);
543 	mm_init_owner(mm, p);
544 
545 	if (likely(!mm_alloc_pgd(mm))) {
546 		mm->def_flags = 0;
547 		mmu_notifier_mm_init(mm);
548 		return mm;
549 	}
550 
551 	free_mm(mm);
552 	return NULL;
553 }
554 
555 static void check_mm(struct mm_struct *mm)
556 {
557 	int i;
558 
559 	for (i = 0; i < NR_MM_COUNTERS; i++) {
560 		long x = atomic_long_read(&mm->rss_stat.count[i]);
561 
562 		if (unlikely(x))
563 			printk(KERN_ALERT "BUG: Bad rss-counter state "
564 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
565 	}
566 
567 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
568 	VM_BUG_ON(mm->pmd_huge_pte);
569 #endif
570 }
571 
572 /*
573  * Allocate and initialize an mm_struct.
574  */
575 struct mm_struct *mm_alloc(void)
576 {
577 	struct mm_struct *mm;
578 
579 	mm = allocate_mm();
580 	if (!mm)
581 		return NULL;
582 
583 	memset(mm, 0, sizeof(*mm));
584 	mm_init_cpumask(mm);
585 	return mm_init(mm, current);
586 }
587 
588 /*
589  * Called when the last reference to the mm
590  * is dropped: either by a lazy thread or by
591  * mmput. Free the page directory and the mm.
592  */
593 void __mmdrop(struct mm_struct *mm)
594 {
595 	BUG_ON(mm == &init_mm);
596 	mm_free_pgd(mm);
597 	destroy_context(mm);
598 	mmu_notifier_mm_destroy(mm);
599 	check_mm(mm);
600 	free_mm(mm);
601 }
602 EXPORT_SYMBOL_GPL(__mmdrop);
603 
604 /*
605  * Decrement the use count and release all resources for an mm.
606  */
607 void mmput(struct mm_struct *mm)
608 {
609 	might_sleep();
610 
611 	if (atomic_dec_and_test(&mm->mm_users)) {
612 		uprobe_clear_state(mm);
613 		exit_aio(mm);
614 		ksm_exit(mm);
615 		khugepaged_exit(mm); /* must run before exit_mmap */
616 		exit_mmap(mm);
617 		set_mm_exe_file(mm, NULL);
618 		if (!list_empty(&mm->mmlist)) {
619 			spin_lock(&mmlist_lock);
620 			list_del(&mm->mmlist);
621 			spin_unlock(&mmlist_lock);
622 		}
623 		if (mm->binfmt)
624 			module_put(mm->binfmt->module);
625 		mmdrop(mm);
626 	}
627 }
628 EXPORT_SYMBOL_GPL(mmput);
629 
630 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
631 {
632 	if (new_exe_file)
633 		get_file(new_exe_file);
634 	if (mm->exe_file)
635 		fput(mm->exe_file);
636 	mm->exe_file = new_exe_file;
637 }
638 
639 struct file *get_mm_exe_file(struct mm_struct *mm)
640 {
641 	struct file *exe_file;
642 
643 	/* We need mmap_sem to protect against races with removal of exe_file */
644 	down_read(&mm->mmap_sem);
645 	exe_file = mm->exe_file;
646 	if (exe_file)
647 		get_file(exe_file);
648 	up_read(&mm->mmap_sem);
649 	return exe_file;
650 }
651 
652 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
653 {
654 	/* It's safe to write the exe_file pointer without exe_file_lock because
655 	 * this is called during fork when the task is not yet in /proc */
656 	newmm->exe_file = get_mm_exe_file(oldmm);
657 }
658 
659 /**
660  * get_task_mm - acquire a reference to the task's mm
661  *
662  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
663  * this kernel workthread has transiently adopted a user mm with use_mm,
664  * to do its AIO) is not set and if so returns a reference to it, after
665  * bumping up the use count.  User must release the mm via mmput()
666  * after use.  Typically used by /proc and ptrace.
667  */
668 struct mm_struct *get_task_mm(struct task_struct *task)
669 {
670 	struct mm_struct *mm;
671 
672 	task_lock(task);
673 	mm = task->mm;
674 	if (mm) {
675 		if (task->flags & PF_KTHREAD)
676 			mm = NULL;
677 		else
678 			atomic_inc(&mm->mm_users);
679 	}
680 	task_unlock(task);
681 	return mm;
682 }
683 EXPORT_SYMBOL_GPL(get_task_mm);
684 
685 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
686 {
687 	struct mm_struct *mm;
688 	int err;
689 
690 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
691 	if (err)
692 		return ERR_PTR(err);
693 
694 	mm = get_task_mm(task);
695 	if (mm && mm != current->mm &&
696 			!ptrace_may_access(task, mode)) {
697 		mmput(mm);
698 		mm = ERR_PTR(-EACCES);
699 	}
700 	mutex_unlock(&task->signal->cred_guard_mutex);
701 
702 	return mm;
703 }
704 
705 static void complete_vfork_done(struct task_struct *tsk)
706 {
707 	struct completion *vfork;
708 
709 	task_lock(tsk);
710 	vfork = tsk->vfork_done;
711 	if (likely(vfork)) {
712 		tsk->vfork_done = NULL;
713 		complete(vfork);
714 	}
715 	task_unlock(tsk);
716 }
717 
718 static int wait_for_vfork_done(struct task_struct *child,
719 				struct completion *vfork)
720 {
721 	int killed;
722 
723 	freezer_do_not_count();
724 	killed = wait_for_completion_killable(vfork);
725 	freezer_count();
726 
727 	if (killed) {
728 		task_lock(child);
729 		child->vfork_done = NULL;
730 		task_unlock(child);
731 	}
732 
733 	put_task_struct(child);
734 	return killed;
735 }
736 
737 /* Please note the differences between mmput and mm_release.
738  * mmput is called whenever we stop holding onto a mm_struct,
739  * error success whatever.
740  *
741  * mm_release is called after a mm_struct has been removed
742  * from the current process.
743  *
744  * This difference is important for error handling, when we
745  * only half set up a mm_struct for a new process and need to restore
746  * the old one.  Because we mmput the new mm_struct before
747  * restoring the old one. . .
748  * Eric Biederman 10 January 1998
749  */
750 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
751 {
752 	/* Get rid of any futexes when releasing the mm */
753 #ifdef CONFIG_FUTEX
754 	if (unlikely(tsk->robust_list)) {
755 		exit_robust_list(tsk);
756 		tsk->robust_list = NULL;
757 	}
758 #ifdef CONFIG_COMPAT
759 	if (unlikely(tsk->compat_robust_list)) {
760 		compat_exit_robust_list(tsk);
761 		tsk->compat_robust_list = NULL;
762 	}
763 #endif
764 	if (unlikely(!list_empty(&tsk->pi_state_list)))
765 		exit_pi_state_list(tsk);
766 #endif
767 
768 	uprobe_free_utask(tsk);
769 
770 	/* Get rid of any cached register state */
771 	deactivate_mm(tsk, mm);
772 
773 	/*
774 	 * If we're exiting normally, clear a user-space tid field if
775 	 * requested.  We leave this alone when dying by signal, to leave
776 	 * the value intact in a core dump, and to save the unnecessary
777 	 * trouble, say, a killed vfork parent shouldn't touch this mm.
778 	 * Userland only wants this done for a sys_exit.
779 	 */
780 	if (tsk->clear_child_tid) {
781 		if (!(tsk->flags & PF_SIGNALED) &&
782 		    atomic_read(&mm->mm_users) > 1) {
783 			/*
784 			 * We don't check the error code - if userspace has
785 			 * not set up a proper pointer then tough luck.
786 			 */
787 			put_user(0, tsk->clear_child_tid);
788 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
789 					1, NULL, NULL, 0);
790 		}
791 		tsk->clear_child_tid = NULL;
792 	}
793 
794 	/*
795 	 * All done, finally we can wake up parent and return this mm to him.
796 	 * Also kthread_stop() uses this completion for synchronization.
797 	 */
798 	if (tsk->vfork_done)
799 		complete_vfork_done(tsk);
800 }
801 
802 /*
803  * Allocate a new mm structure and copy contents from the
804  * mm structure of the passed in task structure.
805  */
806 struct mm_struct *dup_mm(struct task_struct *tsk)
807 {
808 	struct mm_struct *mm, *oldmm = current->mm;
809 	int err;
810 
811 	if (!oldmm)
812 		return NULL;
813 
814 	mm = allocate_mm();
815 	if (!mm)
816 		goto fail_nomem;
817 
818 	memcpy(mm, oldmm, sizeof(*mm));
819 	mm_init_cpumask(mm);
820 
821 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
822 	mm->pmd_huge_pte = NULL;
823 #endif
824 	if (!mm_init(mm, tsk))
825 		goto fail_nomem;
826 
827 	if (init_new_context(tsk, mm))
828 		goto fail_nocontext;
829 
830 	dup_mm_exe_file(oldmm, mm);
831 
832 	err = dup_mmap(mm, oldmm);
833 	if (err)
834 		goto free_pt;
835 
836 	mm->hiwater_rss = get_mm_rss(mm);
837 	mm->hiwater_vm = mm->total_vm;
838 
839 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
840 		goto free_pt;
841 
842 	return mm;
843 
844 free_pt:
845 	/* don't put binfmt in mmput, we haven't got module yet */
846 	mm->binfmt = NULL;
847 	mmput(mm);
848 
849 fail_nomem:
850 	return NULL;
851 
852 fail_nocontext:
853 	/*
854 	 * If init_new_context() failed, we cannot use mmput() to free the mm
855 	 * because it calls destroy_context()
856 	 */
857 	mm_free_pgd(mm);
858 	free_mm(mm);
859 	return NULL;
860 }
861 
862 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
863 {
864 	struct mm_struct *mm, *oldmm;
865 	int retval;
866 
867 	tsk->min_flt = tsk->maj_flt = 0;
868 	tsk->nvcsw = tsk->nivcsw = 0;
869 #ifdef CONFIG_DETECT_HUNG_TASK
870 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
871 #endif
872 
873 	tsk->mm = NULL;
874 	tsk->active_mm = NULL;
875 
876 	/*
877 	 * Are we cloning a kernel thread?
878 	 *
879 	 * We need to steal a active VM for that..
880 	 */
881 	oldmm = current->mm;
882 	if (!oldmm)
883 		return 0;
884 
885 	if (clone_flags & CLONE_VM) {
886 		atomic_inc(&oldmm->mm_users);
887 		mm = oldmm;
888 		goto good_mm;
889 	}
890 
891 	retval = -ENOMEM;
892 	mm = dup_mm(tsk);
893 	if (!mm)
894 		goto fail_nomem;
895 
896 good_mm:
897 	tsk->mm = mm;
898 	tsk->active_mm = mm;
899 	return 0;
900 
901 fail_nomem:
902 	return retval;
903 }
904 
905 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
906 {
907 	struct fs_struct *fs = current->fs;
908 	if (clone_flags & CLONE_FS) {
909 		/* tsk->fs is already what we want */
910 		spin_lock(&fs->lock);
911 		if (fs->in_exec) {
912 			spin_unlock(&fs->lock);
913 			return -EAGAIN;
914 		}
915 		fs->users++;
916 		spin_unlock(&fs->lock);
917 		return 0;
918 	}
919 	tsk->fs = copy_fs_struct(fs);
920 	if (!tsk->fs)
921 		return -ENOMEM;
922 	return 0;
923 }
924 
925 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
926 {
927 	struct files_struct *oldf, *newf;
928 	int error = 0;
929 
930 	/*
931 	 * A background process may not have any files ...
932 	 */
933 	oldf = current->files;
934 	if (!oldf)
935 		goto out;
936 
937 	if (clone_flags & CLONE_FILES) {
938 		atomic_inc(&oldf->count);
939 		goto out;
940 	}
941 
942 	newf = dup_fd(oldf, &error);
943 	if (!newf)
944 		goto out;
945 
946 	tsk->files = newf;
947 	error = 0;
948 out:
949 	return error;
950 }
951 
952 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
953 {
954 #ifdef CONFIG_BLOCK
955 	struct io_context *ioc = current->io_context;
956 	struct io_context *new_ioc;
957 
958 	if (!ioc)
959 		return 0;
960 	/*
961 	 * Share io context with parent, if CLONE_IO is set
962 	 */
963 	if (clone_flags & CLONE_IO) {
964 		ioc_task_link(ioc);
965 		tsk->io_context = ioc;
966 	} else if (ioprio_valid(ioc->ioprio)) {
967 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
968 		if (unlikely(!new_ioc))
969 			return -ENOMEM;
970 
971 		new_ioc->ioprio = ioc->ioprio;
972 		put_io_context(new_ioc);
973 	}
974 #endif
975 	return 0;
976 }
977 
978 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
979 {
980 	struct sighand_struct *sig;
981 
982 	if (clone_flags & CLONE_SIGHAND) {
983 		atomic_inc(&current->sighand->count);
984 		return 0;
985 	}
986 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
987 	rcu_assign_pointer(tsk->sighand, sig);
988 	if (!sig)
989 		return -ENOMEM;
990 	atomic_set(&sig->count, 1);
991 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
992 	return 0;
993 }
994 
995 void __cleanup_sighand(struct sighand_struct *sighand)
996 {
997 	if (atomic_dec_and_test(&sighand->count)) {
998 		signalfd_cleanup(sighand);
999 		kmem_cache_free(sighand_cachep, sighand);
1000 	}
1001 }
1002 
1003 
1004 /*
1005  * Initialize POSIX timer handling for a thread group.
1006  */
1007 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1008 {
1009 	unsigned long cpu_limit;
1010 
1011 	/* Thread group counters. */
1012 	thread_group_cputime_init(sig);
1013 
1014 	cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1015 	if (cpu_limit != RLIM_INFINITY) {
1016 		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1017 		sig->cputimer.running = 1;
1018 	}
1019 
1020 	/* The timer lists. */
1021 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1022 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1023 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1024 }
1025 
1026 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1027 {
1028 	struct signal_struct *sig;
1029 
1030 	if (clone_flags & CLONE_THREAD)
1031 		return 0;
1032 
1033 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1034 	tsk->signal = sig;
1035 	if (!sig)
1036 		return -ENOMEM;
1037 
1038 	sig->nr_threads = 1;
1039 	atomic_set(&sig->live, 1);
1040 	atomic_set(&sig->sigcnt, 1);
1041 	init_waitqueue_head(&sig->wait_chldexit);
1042 	if (clone_flags & CLONE_NEWPID)
1043 		sig->flags |= SIGNAL_UNKILLABLE;
1044 	sig->curr_target = tsk;
1045 	init_sigpending(&sig->shared_pending);
1046 	INIT_LIST_HEAD(&sig->posix_timers);
1047 
1048 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1049 	sig->real_timer.function = it_real_fn;
1050 
1051 	task_lock(current->group_leader);
1052 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1053 	task_unlock(current->group_leader);
1054 
1055 	posix_cpu_timers_init_group(sig);
1056 
1057 	tty_audit_fork(sig);
1058 	sched_autogroup_fork(sig);
1059 
1060 #ifdef CONFIG_CGROUPS
1061 	init_rwsem(&sig->group_rwsem);
1062 #endif
1063 
1064 	sig->oom_score_adj = current->signal->oom_score_adj;
1065 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1066 
1067 	sig->has_child_subreaper = current->signal->has_child_subreaper ||
1068 				   current->signal->is_child_subreaper;
1069 
1070 	mutex_init(&sig->cred_guard_mutex);
1071 
1072 	return 0;
1073 }
1074 
1075 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1076 {
1077 	unsigned long new_flags = p->flags;
1078 
1079 	new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1080 	new_flags |= PF_FORKNOEXEC;
1081 	p->flags = new_flags;
1082 }
1083 
1084 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1085 {
1086 	current->clear_child_tid = tidptr;
1087 
1088 	return task_pid_vnr(current);
1089 }
1090 
1091 static void rt_mutex_init_task(struct task_struct *p)
1092 {
1093 	raw_spin_lock_init(&p->pi_lock);
1094 #ifdef CONFIG_RT_MUTEXES
1095 	plist_head_init(&p->pi_waiters);
1096 	p->pi_blocked_on = NULL;
1097 #endif
1098 }
1099 
1100 #ifdef CONFIG_MM_OWNER
1101 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1102 {
1103 	mm->owner = p;
1104 }
1105 #endif /* CONFIG_MM_OWNER */
1106 
1107 /*
1108  * Initialize POSIX timer handling for a single task.
1109  */
1110 static void posix_cpu_timers_init(struct task_struct *tsk)
1111 {
1112 	tsk->cputime_expires.prof_exp = 0;
1113 	tsk->cputime_expires.virt_exp = 0;
1114 	tsk->cputime_expires.sched_exp = 0;
1115 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1116 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1117 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1118 }
1119 
1120 /*
1121  * This creates a new process as a copy of the old one,
1122  * but does not actually start it yet.
1123  *
1124  * It copies the registers, and all the appropriate
1125  * parts of the process environment (as per the clone
1126  * flags). The actual kick-off is left to the caller.
1127  */
1128 static struct task_struct *copy_process(unsigned long clone_flags,
1129 					unsigned long stack_start,
1130 					struct pt_regs *regs,
1131 					unsigned long stack_size,
1132 					int __user *child_tidptr,
1133 					struct pid *pid,
1134 					int trace)
1135 {
1136 	int retval;
1137 	struct task_struct *p;
1138 	int cgroup_callbacks_done = 0;
1139 
1140 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1141 		return ERR_PTR(-EINVAL);
1142 
1143 	/*
1144 	 * Thread groups must share signals as well, and detached threads
1145 	 * can only be started up within the thread group.
1146 	 */
1147 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1148 		return ERR_PTR(-EINVAL);
1149 
1150 	/*
1151 	 * Shared signal handlers imply shared VM. By way of the above,
1152 	 * thread groups also imply shared VM. Blocking this case allows
1153 	 * for various simplifications in other code.
1154 	 */
1155 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1156 		return ERR_PTR(-EINVAL);
1157 
1158 	/*
1159 	 * Siblings of global init remain as zombies on exit since they are
1160 	 * not reaped by their parent (swapper). To solve this and to avoid
1161 	 * multi-rooted process trees, prevent global and container-inits
1162 	 * from creating siblings.
1163 	 */
1164 	if ((clone_flags & CLONE_PARENT) &&
1165 				current->signal->flags & SIGNAL_UNKILLABLE)
1166 		return ERR_PTR(-EINVAL);
1167 
1168 	retval = security_task_create(clone_flags);
1169 	if (retval)
1170 		goto fork_out;
1171 
1172 	retval = -ENOMEM;
1173 	p = dup_task_struct(current);
1174 	if (!p)
1175 		goto fork_out;
1176 
1177 	ftrace_graph_init_task(p);
1178 	get_seccomp_filter(p);
1179 
1180 	rt_mutex_init_task(p);
1181 
1182 #ifdef CONFIG_PROVE_LOCKING
1183 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1184 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1185 #endif
1186 	retval = -EAGAIN;
1187 	if (atomic_read(&p->real_cred->user->processes) >=
1188 			task_rlimit(p, RLIMIT_NPROC)) {
1189 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1190 		    p->real_cred->user != INIT_USER)
1191 			goto bad_fork_free;
1192 	}
1193 	current->flags &= ~PF_NPROC_EXCEEDED;
1194 
1195 	retval = copy_creds(p, clone_flags);
1196 	if (retval < 0)
1197 		goto bad_fork_free;
1198 
1199 	/*
1200 	 * If multiple threads are within copy_process(), then this check
1201 	 * triggers too late. This doesn't hurt, the check is only there
1202 	 * to stop root fork bombs.
1203 	 */
1204 	retval = -EAGAIN;
1205 	if (nr_threads >= max_threads)
1206 		goto bad_fork_cleanup_count;
1207 
1208 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1209 		goto bad_fork_cleanup_count;
1210 
1211 	p->did_exec = 0;
1212 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1213 	copy_flags(clone_flags, p);
1214 	INIT_LIST_HEAD(&p->children);
1215 	INIT_LIST_HEAD(&p->sibling);
1216 	rcu_copy_process(p);
1217 	p->vfork_done = NULL;
1218 	spin_lock_init(&p->alloc_lock);
1219 
1220 	init_sigpending(&p->pending);
1221 
1222 	p->utime = p->stime = p->gtime = 0;
1223 	p->utimescaled = p->stimescaled = 0;
1224 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1225 	p->prev_utime = p->prev_stime = 0;
1226 #endif
1227 #if defined(SPLIT_RSS_COUNTING)
1228 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1229 #endif
1230 
1231 	p->default_timer_slack_ns = current->timer_slack_ns;
1232 
1233 	task_io_accounting_init(&p->ioac);
1234 	acct_clear_integrals(p);
1235 
1236 	posix_cpu_timers_init(p);
1237 
1238 	do_posix_clock_monotonic_gettime(&p->start_time);
1239 	p->real_start_time = p->start_time;
1240 	monotonic_to_bootbased(&p->real_start_time);
1241 	p->io_context = NULL;
1242 	p->audit_context = NULL;
1243 	if (clone_flags & CLONE_THREAD)
1244 		threadgroup_change_begin(current);
1245 	cgroup_fork(p);
1246 #ifdef CONFIG_NUMA
1247 	p->mempolicy = mpol_dup(p->mempolicy);
1248 	if (IS_ERR(p->mempolicy)) {
1249 		retval = PTR_ERR(p->mempolicy);
1250 		p->mempolicy = NULL;
1251 		goto bad_fork_cleanup_cgroup;
1252 	}
1253 	mpol_fix_fork_child_flag(p);
1254 #endif
1255 #ifdef CONFIG_CPUSETS
1256 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1257 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1258 	seqcount_init(&p->mems_allowed_seq);
1259 #endif
1260 #ifdef CONFIG_TRACE_IRQFLAGS
1261 	p->irq_events = 0;
1262 	p->hardirqs_enabled = 0;
1263 	p->hardirq_enable_ip = 0;
1264 	p->hardirq_enable_event = 0;
1265 	p->hardirq_disable_ip = _THIS_IP_;
1266 	p->hardirq_disable_event = 0;
1267 	p->softirqs_enabled = 1;
1268 	p->softirq_enable_ip = _THIS_IP_;
1269 	p->softirq_enable_event = 0;
1270 	p->softirq_disable_ip = 0;
1271 	p->softirq_disable_event = 0;
1272 	p->hardirq_context = 0;
1273 	p->softirq_context = 0;
1274 #endif
1275 #ifdef CONFIG_LOCKDEP
1276 	p->lockdep_depth = 0; /* no locks held yet */
1277 	p->curr_chain_key = 0;
1278 	p->lockdep_recursion = 0;
1279 #endif
1280 
1281 #ifdef CONFIG_DEBUG_MUTEXES
1282 	p->blocked_on = NULL; /* not blocked yet */
1283 #endif
1284 #ifdef CONFIG_MEMCG
1285 	p->memcg_batch.do_batch = 0;
1286 	p->memcg_batch.memcg = NULL;
1287 #endif
1288 
1289 	/* Perform scheduler related setup. Assign this task to a CPU. */
1290 	sched_fork(p);
1291 
1292 	retval = perf_event_init_task(p);
1293 	if (retval)
1294 		goto bad_fork_cleanup_policy;
1295 	retval = audit_alloc(p);
1296 	if (retval)
1297 		goto bad_fork_cleanup_policy;
1298 	/* copy all the process information */
1299 	retval = copy_semundo(clone_flags, p);
1300 	if (retval)
1301 		goto bad_fork_cleanup_audit;
1302 	retval = copy_files(clone_flags, p);
1303 	if (retval)
1304 		goto bad_fork_cleanup_semundo;
1305 	retval = copy_fs(clone_flags, p);
1306 	if (retval)
1307 		goto bad_fork_cleanup_files;
1308 	retval = copy_sighand(clone_flags, p);
1309 	if (retval)
1310 		goto bad_fork_cleanup_fs;
1311 	retval = copy_signal(clone_flags, p);
1312 	if (retval)
1313 		goto bad_fork_cleanup_sighand;
1314 	retval = copy_mm(clone_flags, p);
1315 	if (retval)
1316 		goto bad_fork_cleanup_signal;
1317 	retval = copy_namespaces(clone_flags, p);
1318 	if (retval)
1319 		goto bad_fork_cleanup_mm;
1320 	retval = copy_io(clone_flags, p);
1321 	if (retval)
1322 		goto bad_fork_cleanup_namespaces;
1323 	retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1324 	if (retval)
1325 		goto bad_fork_cleanup_io;
1326 
1327 	if (pid != &init_struct_pid) {
1328 		retval = -ENOMEM;
1329 		pid = alloc_pid(p->nsproxy->pid_ns);
1330 		if (!pid)
1331 			goto bad_fork_cleanup_io;
1332 	}
1333 
1334 	p->pid = pid_nr(pid);
1335 	p->tgid = p->pid;
1336 	if (clone_flags & CLONE_THREAD)
1337 		p->tgid = current->tgid;
1338 
1339 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1340 	/*
1341 	 * Clear TID on mm_release()?
1342 	 */
1343 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1344 #ifdef CONFIG_BLOCK
1345 	p->plug = NULL;
1346 #endif
1347 #ifdef CONFIG_FUTEX
1348 	p->robust_list = NULL;
1349 #ifdef CONFIG_COMPAT
1350 	p->compat_robust_list = NULL;
1351 #endif
1352 	INIT_LIST_HEAD(&p->pi_state_list);
1353 	p->pi_state_cache = NULL;
1354 #endif
1355 	uprobe_copy_process(p);
1356 	/*
1357 	 * sigaltstack should be cleared when sharing the same VM
1358 	 */
1359 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1360 		p->sas_ss_sp = p->sas_ss_size = 0;
1361 
1362 	/*
1363 	 * Syscall tracing and stepping should be turned off in the
1364 	 * child regardless of CLONE_PTRACE.
1365 	 */
1366 	user_disable_single_step(p);
1367 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1368 #ifdef TIF_SYSCALL_EMU
1369 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1370 #endif
1371 	clear_all_latency_tracing(p);
1372 
1373 	/* ok, now we should be set up.. */
1374 	if (clone_flags & CLONE_THREAD)
1375 		p->exit_signal = -1;
1376 	else if (clone_flags & CLONE_PARENT)
1377 		p->exit_signal = current->group_leader->exit_signal;
1378 	else
1379 		p->exit_signal = (clone_flags & CSIGNAL);
1380 
1381 	p->pdeath_signal = 0;
1382 	p->exit_state = 0;
1383 
1384 	p->nr_dirtied = 0;
1385 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1386 	p->dirty_paused_when = 0;
1387 
1388 	/*
1389 	 * Ok, make it visible to the rest of the system.
1390 	 * We dont wake it up yet.
1391 	 */
1392 	p->group_leader = p;
1393 	INIT_LIST_HEAD(&p->thread_group);
1394 	p->task_works = NULL;
1395 
1396 	/* Now that the task is set up, run cgroup callbacks if
1397 	 * necessary. We need to run them before the task is visible
1398 	 * on the tasklist. */
1399 	cgroup_fork_callbacks(p);
1400 	cgroup_callbacks_done = 1;
1401 
1402 	/* Need tasklist lock for parent etc handling! */
1403 	write_lock_irq(&tasklist_lock);
1404 
1405 	/* CLONE_PARENT re-uses the old parent */
1406 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1407 		p->real_parent = current->real_parent;
1408 		p->parent_exec_id = current->parent_exec_id;
1409 	} else {
1410 		p->real_parent = current;
1411 		p->parent_exec_id = current->self_exec_id;
1412 	}
1413 
1414 	spin_lock(&current->sighand->siglock);
1415 
1416 	/*
1417 	 * Process group and session signals need to be delivered to just the
1418 	 * parent before the fork or both the parent and the child after the
1419 	 * fork. Restart if a signal comes in before we add the new process to
1420 	 * it's process group.
1421 	 * A fatal signal pending means that current will exit, so the new
1422 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1423 	*/
1424 	recalc_sigpending();
1425 	if (signal_pending(current)) {
1426 		spin_unlock(&current->sighand->siglock);
1427 		write_unlock_irq(&tasklist_lock);
1428 		retval = -ERESTARTNOINTR;
1429 		goto bad_fork_free_pid;
1430 	}
1431 
1432 	if (clone_flags & CLONE_THREAD) {
1433 		current->signal->nr_threads++;
1434 		atomic_inc(&current->signal->live);
1435 		atomic_inc(&current->signal->sigcnt);
1436 		p->group_leader = current->group_leader;
1437 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1438 	}
1439 
1440 	if (likely(p->pid)) {
1441 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1442 
1443 		if (thread_group_leader(p)) {
1444 			if (is_child_reaper(pid))
1445 				p->nsproxy->pid_ns->child_reaper = p;
1446 
1447 			p->signal->leader_pid = pid;
1448 			p->signal->tty = tty_kref_get(current->signal->tty);
1449 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1450 			attach_pid(p, PIDTYPE_SID, task_session(current));
1451 			list_add_tail(&p->sibling, &p->real_parent->children);
1452 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1453 			__this_cpu_inc(process_counts);
1454 		}
1455 		attach_pid(p, PIDTYPE_PID, pid);
1456 		nr_threads++;
1457 	}
1458 
1459 	total_forks++;
1460 	spin_unlock(&current->sighand->siglock);
1461 	write_unlock_irq(&tasklist_lock);
1462 	proc_fork_connector(p);
1463 	cgroup_post_fork(p);
1464 	if (clone_flags & CLONE_THREAD)
1465 		threadgroup_change_end(current);
1466 	perf_event_fork(p);
1467 
1468 	trace_task_newtask(p, clone_flags);
1469 
1470 	return p;
1471 
1472 bad_fork_free_pid:
1473 	if (pid != &init_struct_pid)
1474 		free_pid(pid);
1475 bad_fork_cleanup_io:
1476 	if (p->io_context)
1477 		exit_io_context(p);
1478 bad_fork_cleanup_namespaces:
1479 	if (unlikely(clone_flags & CLONE_NEWPID))
1480 		pid_ns_release_proc(p->nsproxy->pid_ns);
1481 	exit_task_namespaces(p);
1482 bad_fork_cleanup_mm:
1483 	if (p->mm)
1484 		mmput(p->mm);
1485 bad_fork_cleanup_signal:
1486 	if (!(clone_flags & CLONE_THREAD))
1487 		free_signal_struct(p->signal);
1488 bad_fork_cleanup_sighand:
1489 	__cleanup_sighand(p->sighand);
1490 bad_fork_cleanup_fs:
1491 	exit_fs(p); /* blocking */
1492 bad_fork_cleanup_files:
1493 	exit_files(p); /* blocking */
1494 bad_fork_cleanup_semundo:
1495 	exit_sem(p);
1496 bad_fork_cleanup_audit:
1497 	audit_free(p);
1498 bad_fork_cleanup_policy:
1499 	perf_event_free_task(p);
1500 #ifdef CONFIG_NUMA
1501 	mpol_put(p->mempolicy);
1502 bad_fork_cleanup_cgroup:
1503 #endif
1504 	if (clone_flags & CLONE_THREAD)
1505 		threadgroup_change_end(current);
1506 	cgroup_exit(p, cgroup_callbacks_done);
1507 	delayacct_tsk_free(p);
1508 	module_put(task_thread_info(p)->exec_domain->module);
1509 bad_fork_cleanup_count:
1510 	atomic_dec(&p->cred->user->processes);
1511 	exit_creds(p);
1512 bad_fork_free:
1513 	free_task(p);
1514 fork_out:
1515 	return ERR_PTR(retval);
1516 }
1517 
1518 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1519 {
1520 	memset(regs, 0, sizeof(struct pt_regs));
1521 	return regs;
1522 }
1523 
1524 static inline void init_idle_pids(struct pid_link *links)
1525 {
1526 	enum pid_type type;
1527 
1528 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1529 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1530 		links[type].pid = &init_struct_pid;
1531 	}
1532 }
1533 
1534 struct task_struct * __cpuinit fork_idle(int cpu)
1535 {
1536 	struct task_struct *task;
1537 	struct pt_regs regs;
1538 
1539 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1540 			    &init_struct_pid, 0);
1541 	if (!IS_ERR(task)) {
1542 		init_idle_pids(task->pids);
1543 		init_idle(task, cpu);
1544 	}
1545 
1546 	return task;
1547 }
1548 
1549 /*
1550  *  Ok, this is the main fork-routine.
1551  *
1552  * It copies the process, and if successful kick-starts
1553  * it and waits for it to finish using the VM if required.
1554  */
1555 long do_fork(unsigned long clone_flags,
1556 	      unsigned long stack_start,
1557 	      struct pt_regs *regs,
1558 	      unsigned long stack_size,
1559 	      int __user *parent_tidptr,
1560 	      int __user *child_tidptr)
1561 {
1562 	struct task_struct *p;
1563 	int trace = 0;
1564 	long nr;
1565 
1566 	/*
1567 	 * Do some preliminary argument and permissions checking before we
1568 	 * actually start allocating stuff
1569 	 */
1570 	if (clone_flags & CLONE_NEWUSER) {
1571 		if (clone_flags & CLONE_THREAD)
1572 			return -EINVAL;
1573 		/* hopefully this check will go away when userns support is
1574 		 * complete
1575 		 */
1576 		if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1577 				!capable(CAP_SETGID))
1578 			return -EPERM;
1579 	}
1580 
1581 	/*
1582 	 * Determine whether and which event to report to ptracer.  When
1583 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
1584 	 * requested, no event is reported; otherwise, report if the event
1585 	 * for the type of forking is enabled.
1586 	 */
1587 	if (!(clone_flags & CLONE_UNTRACED) && likely(user_mode(regs))) {
1588 		if (clone_flags & CLONE_VFORK)
1589 			trace = PTRACE_EVENT_VFORK;
1590 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
1591 			trace = PTRACE_EVENT_CLONE;
1592 		else
1593 			trace = PTRACE_EVENT_FORK;
1594 
1595 		if (likely(!ptrace_event_enabled(current, trace)))
1596 			trace = 0;
1597 	}
1598 
1599 	p = copy_process(clone_flags, stack_start, regs, stack_size,
1600 			 child_tidptr, NULL, trace);
1601 	/*
1602 	 * Do this prior waking up the new thread - the thread pointer
1603 	 * might get invalid after that point, if the thread exits quickly.
1604 	 */
1605 	if (!IS_ERR(p)) {
1606 		struct completion vfork;
1607 
1608 		trace_sched_process_fork(current, p);
1609 
1610 		nr = task_pid_vnr(p);
1611 
1612 		if (clone_flags & CLONE_PARENT_SETTID)
1613 			put_user(nr, parent_tidptr);
1614 
1615 		if (clone_flags & CLONE_VFORK) {
1616 			p->vfork_done = &vfork;
1617 			init_completion(&vfork);
1618 			get_task_struct(p);
1619 		}
1620 
1621 		wake_up_new_task(p);
1622 
1623 		/* forking complete and child started to run, tell ptracer */
1624 		if (unlikely(trace))
1625 			ptrace_event(trace, nr);
1626 
1627 		if (clone_flags & CLONE_VFORK) {
1628 			if (!wait_for_vfork_done(p, &vfork))
1629 				ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1630 		}
1631 	} else {
1632 		nr = PTR_ERR(p);
1633 	}
1634 	return nr;
1635 }
1636 
1637 #ifdef CONFIG_GENERIC_KERNEL_THREAD
1638 /*
1639  * Create a kernel thread.
1640  */
1641 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1642 {
1643 	return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn, NULL,
1644 		(unsigned long)arg, NULL, NULL);
1645 }
1646 #endif
1647 
1648 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1649 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1650 #endif
1651 
1652 static void sighand_ctor(void *data)
1653 {
1654 	struct sighand_struct *sighand = data;
1655 
1656 	spin_lock_init(&sighand->siglock);
1657 	init_waitqueue_head(&sighand->signalfd_wqh);
1658 }
1659 
1660 void __init proc_caches_init(void)
1661 {
1662 	sighand_cachep = kmem_cache_create("sighand_cache",
1663 			sizeof(struct sighand_struct), 0,
1664 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1665 			SLAB_NOTRACK, sighand_ctor);
1666 	signal_cachep = kmem_cache_create("signal_cache",
1667 			sizeof(struct signal_struct), 0,
1668 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1669 	files_cachep = kmem_cache_create("files_cache",
1670 			sizeof(struct files_struct), 0,
1671 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1672 	fs_cachep = kmem_cache_create("fs_cache",
1673 			sizeof(struct fs_struct), 0,
1674 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1675 	/*
1676 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1677 	 * whole struct cpumask for the OFFSTACK case. We could change
1678 	 * this to *only* allocate as much of it as required by the
1679 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
1680 	 * is at the end of the structure, exactly for that reason.
1681 	 */
1682 	mm_cachep = kmem_cache_create("mm_struct",
1683 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1684 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1685 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1686 	mmap_init();
1687 	nsproxy_cache_init();
1688 }
1689 
1690 /*
1691  * Check constraints on flags passed to the unshare system call.
1692  */
1693 static int check_unshare_flags(unsigned long unshare_flags)
1694 {
1695 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1696 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1697 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1698 		return -EINVAL;
1699 	/*
1700 	 * Not implemented, but pretend it works if there is nothing to
1701 	 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1702 	 * needs to unshare vm.
1703 	 */
1704 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1705 		/* FIXME: get_task_mm() increments ->mm_users */
1706 		if (atomic_read(&current->mm->mm_users) > 1)
1707 			return -EINVAL;
1708 	}
1709 
1710 	return 0;
1711 }
1712 
1713 /*
1714  * Unshare the filesystem structure if it is being shared
1715  */
1716 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1717 {
1718 	struct fs_struct *fs = current->fs;
1719 
1720 	if (!(unshare_flags & CLONE_FS) || !fs)
1721 		return 0;
1722 
1723 	/* don't need lock here; in the worst case we'll do useless copy */
1724 	if (fs->users == 1)
1725 		return 0;
1726 
1727 	*new_fsp = copy_fs_struct(fs);
1728 	if (!*new_fsp)
1729 		return -ENOMEM;
1730 
1731 	return 0;
1732 }
1733 
1734 /*
1735  * Unshare file descriptor table if it is being shared
1736  */
1737 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1738 {
1739 	struct files_struct *fd = current->files;
1740 	int error = 0;
1741 
1742 	if ((unshare_flags & CLONE_FILES) &&
1743 	    (fd && atomic_read(&fd->count) > 1)) {
1744 		*new_fdp = dup_fd(fd, &error);
1745 		if (!*new_fdp)
1746 			return error;
1747 	}
1748 
1749 	return 0;
1750 }
1751 
1752 /*
1753  * unshare allows a process to 'unshare' part of the process
1754  * context which was originally shared using clone.  copy_*
1755  * functions used by do_fork() cannot be used here directly
1756  * because they modify an inactive task_struct that is being
1757  * constructed. Here we are modifying the current, active,
1758  * task_struct.
1759  */
1760 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1761 {
1762 	struct fs_struct *fs, *new_fs = NULL;
1763 	struct files_struct *fd, *new_fd = NULL;
1764 	struct nsproxy *new_nsproxy = NULL;
1765 	int do_sysvsem = 0;
1766 	int err;
1767 
1768 	err = check_unshare_flags(unshare_flags);
1769 	if (err)
1770 		goto bad_unshare_out;
1771 
1772 	/*
1773 	 * If unsharing namespace, must also unshare filesystem information.
1774 	 */
1775 	if (unshare_flags & CLONE_NEWNS)
1776 		unshare_flags |= CLONE_FS;
1777 	/*
1778 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1779 	 * to a new ipc namespace, the semaphore arrays from the old
1780 	 * namespace are unreachable.
1781 	 */
1782 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1783 		do_sysvsem = 1;
1784 	err = unshare_fs(unshare_flags, &new_fs);
1785 	if (err)
1786 		goto bad_unshare_out;
1787 	err = unshare_fd(unshare_flags, &new_fd);
1788 	if (err)
1789 		goto bad_unshare_cleanup_fs;
1790 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
1791 	if (err)
1792 		goto bad_unshare_cleanup_fd;
1793 
1794 	if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1795 		if (do_sysvsem) {
1796 			/*
1797 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1798 			 */
1799 			exit_sem(current);
1800 		}
1801 
1802 		if (new_nsproxy) {
1803 			switch_task_namespaces(current, new_nsproxy);
1804 			new_nsproxy = NULL;
1805 		}
1806 
1807 		task_lock(current);
1808 
1809 		if (new_fs) {
1810 			fs = current->fs;
1811 			spin_lock(&fs->lock);
1812 			current->fs = new_fs;
1813 			if (--fs->users)
1814 				new_fs = NULL;
1815 			else
1816 				new_fs = fs;
1817 			spin_unlock(&fs->lock);
1818 		}
1819 
1820 		if (new_fd) {
1821 			fd = current->files;
1822 			current->files = new_fd;
1823 			new_fd = fd;
1824 		}
1825 
1826 		task_unlock(current);
1827 	}
1828 
1829 	if (new_nsproxy)
1830 		put_nsproxy(new_nsproxy);
1831 
1832 bad_unshare_cleanup_fd:
1833 	if (new_fd)
1834 		put_files_struct(new_fd);
1835 
1836 bad_unshare_cleanup_fs:
1837 	if (new_fs)
1838 		free_fs_struct(new_fs);
1839 
1840 bad_unshare_out:
1841 	return err;
1842 }
1843 
1844 /*
1845  *	Helper to unshare the files of the current task.
1846  *	We don't want to expose copy_files internals to
1847  *	the exec layer of the kernel.
1848  */
1849 
1850 int unshare_files(struct files_struct **displaced)
1851 {
1852 	struct task_struct *task = current;
1853 	struct files_struct *copy = NULL;
1854 	int error;
1855 
1856 	error = unshare_fd(CLONE_FILES, &copy);
1857 	if (error || !copy) {
1858 		*displaced = NULL;
1859 		return error;
1860 	}
1861 	*displaced = task->files;
1862 	task_lock(task);
1863 	task->files = copy;
1864 	task_unlock(task);
1865 	return 0;
1866 }
1867