xref: /linux/kernel/fork.c (revision 071bf69a0220253a44acb8b2a27f7a262b9a46bf)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 #include <linux/sysctl.h>
78 #include <linux/kcov.h>
79 
80 #include <asm/pgtable.h>
81 #include <asm/pgalloc.h>
82 #include <asm/uaccess.h>
83 #include <asm/mmu_context.h>
84 #include <asm/cacheflush.h>
85 #include <asm/tlbflush.h>
86 
87 #include <trace/events/sched.h>
88 
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/task.h>
91 
92 /*
93  * Minimum number of threads to boot the kernel
94  */
95 #define MIN_THREADS 20
96 
97 /*
98  * Maximum number of threads
99  */
100 #define MAX_THREADS FUTEX_TID_MASK
101 
102 /*
103  * Protected counters by write_lock_irq(&tasklist_lock)
104  */
105 unsigned long total_forks;	/* Handle normal Linux uptimes. */
106 int nr_threads;			/* The idle threads do not count.. */
107 
108 int max_threads;		/* tunable limit on nr_threads */
109 
110 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
111 
112 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
113 
114 #ifdef CONFIG_PROVE_RCU
115 int lockdep_tasklist_lock_is_held(void)
116 {
117 	return lockdep_is_held(&tasklist_lock);
118 }
119 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
120 #endif /* #ifdef CONFIG_PROVE_RCU */
121 
122 int nr_processes(void)
123 {
124 	int cpu;
125 	int total = 0;
126 
127 	for_each_possible_cpu(cpu)
128 		total += per_cpu(process_counts, cpu);
129 
130 	return total;
131 }
132 
133 void __weak arch_release_task_struct(struct task_struct *tsk)
134 {
135 }
136 
137 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
138 static struct kmem_cache *task_struct_cachep;
139 
140 static inline struct task_struct *alloc_task_struct_node(int node)
141 {
142 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
143 }
144 
145 static inline void free_task_struct(struct task_struct *tsk)
146 {
147 	kmem_cache_free(task_struct_cachep, tsk);
148 }
149 #endif
150 
151 void __weak arch_release_thread_stack(unsigned long *stack)
152 {
153 }
154 
155 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
156 
157 /*
158  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
159  * kmemcache based allocator.
160  */
161 # if THREAD_SIZE >= PAGE_SIZE
162 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
163 						  int node)
164 {
165 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
166 					     THREAD_SIZE_ORDER);
167 
168 	return page ? page_address(page) : NULL;
169 }
170 
171 static inline void free_thread_stack(unsigned long *stack)
172 {
173 	__free_pages(virt_to_page(stack), THREAD_SIZE_ORDER);
174 }
175 # else
176 static struct kmem_cache *thread_stack_cache;
177 
178 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
179 						  int node)
180 {
181 	return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
182 }
183 
184 static void free_thread_stack(unsigned long *stack)
185 {
186 	kmem_cache_free(thread_stack_cache, stack);
187 }
188 
189 void thread_stack_cache_init(void)
190 {
191 	thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
192 					      THREAD_SIZE, 0, NULL);
193 	BUG_ON(thread_stack_cache == NULL);
194 }
195 # endif
196 #endif
197 
198 /* SLAB cache for signal_struct structures (tsk->signal) */
199 static struct kmem_cache *signal_cachep;
200 
201 /* SLAB cache for sighand_struct structures (tsk->sighand) */
202 struct kmem_cache *sighand_cachep;
203 
204 /* SLAB cache for files_struct structures (tsk->files) */
205 struct kmem_cache *files_cachep;
206 
207 /* SLAB cache for fs_struct structures (tsk->fs) */
208 struct kmem_cache *fs_cachep;
209 
210 /* SLAB cache for vm_area_struct structures */
211 struct kmem_cache *vm_area_cachep;
212 
213 /* SLAB cache for mm_struct structures (tsk->mm) */
214 static struct kmem_cache *mm_cachep;
215 
216 static void account_kernel_stack(unsigned long *stack, int account)
217 {
218 	/* All stack pages are in the same zone and belong to the same memcg. */
219 	struct page *first_page = virt_to_page(stack);
220 
221 	mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
222 			    THREAD_SIZE / 1024 * account);
223 
224 	memcg_kmem_update_page_stat(
225 		first_page, MEMCG_KERNEL_STACK_KB,
226 		account * (THREAD_SIZE / 1024));
227 }
228 
229 void free_task(struct task_struct *tsk)
230 {
231 	account_kernel_stack(tsk->stack, -1);
232 	arch_release_thread_stack(tsk->stack);
233 	free_thread_stack(tsk->stack);
234 	rt_mutex_debug_task_free(tsk);
235 	ftrace_graph_exit_task(tsk);
236 	put_seccomp_filter(tsk);
237 	arch_release_task_struct(tsk);
238 	free_task_struct(tsk);
239 }
240 EXPORT_SYMBOL(free_task);
241 
242 static inline void free_signal_struct(struct signal_struct *sig)
243 {
244 	taskstats_tgid_free(sig);
245 	sched_autogroup_exit(sig);
246 	kmem_cache_free(signal_cachep, sig);
247 }
248 
249 static inline void put_signal_struct(struct signal_struct *sig)
250 {
251 	if (atomic_dec_and_test(&sig->sigcnt))
252 		free_signal_struct(sig);
253 }
254 
255 void __put_task_struct(struct task_struct *tsk)
256 {
257 	WARN_ON(!tsk->exit_state);
258 	WARN_ON(atomic_read(&tsk->usage));
259 	WARN_ON(tsk == current);
260 
261 	cgroup_free(tsk);
262 	task_numa_free(tsk);
263 	security_task_free(tsk);
264 	exit_creds(tsk);
265 	delayacct_tsk_free(tsk);
266 	put_signal_struct(tsk->signal);
267 
268 	if (!profile_handoff_task(tsk))
269 		free_task(tsk);
270 }
271 EXPORT_SYMBOL_GPL(__put_task_struct);
272 
273 void __init __weak arch_task_cache_init(void) { }
274 
275 /*
276  * set_max_threads
277  */
278 static void set_max_threads(unsigned int max_threads_suggested)
279 {
280 	u64 threads;
281 
282 	/*
283 	 * The number of threads shall be limited such that the thread
284 	 * structures may only consume a small part of the available memory.
285 	 */
286 	if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
287 		threads = MAX_THREADS;
288 	else
289 		threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
290 				    (u64) THREAD_SIZE * 8UL);
291 
292 	if (threads > max_threads_suggested)
293 		threads = max_threads_suggested;
294 
295 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
296 }
297 
298 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
299 /* Initialized by the architecture: */
300 int arch_task_struct_size __read_mostly;
301 #endif
302 
303 void __init fork_init(void)
304 {
305 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
306 #ifndef ARCH_MIN_TASKALIGN
307 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
308 #endif
309 	/* create a slab on which task_structs can be allocated */
310 	task_struct_cachep = kmem_cache_create("task_struct",
311 			arch_task_struct_size, ARCH_MIN_TASKALIGN,
312 			SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
313 #endif
314 
315 	/* do the arch specific task caches init */
316 	arch_task_cache_init();
317 
318 	set_max_threads(MAX_THREADS);
319 
320 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
321 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
322 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
323 		init_task.signal->rlim[RLIMIT_NPROC];
324 }
325 
326 int __weak arch_dup_task_struct(struct task_struct *dst,
327 					       struct task_struct *src)
328 {
329 	*dst = *src;
330 	return 0;
331 }
332 
333 void set_task_stack_end_magic(struct task_struct *tsk)
334 {
335 	unsigned long *stackend;
336 
337 	stackend = end_of_stack(tsk);
338 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
339 }
340 
341 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
342 {
343 	struct task_struct *tsk;
344 	unsigned long *stack;
345 	int err;
346 
347 	if (node == NUMA_NO_NODE)
348 		node = tsk_fork_get_node(orig);
349 	tsk = alloc_task_struct_node(node);
350 	if (!tsk)
351 		return NULL;
352 
353 	stack = alloc_thread_stack_node(tsk, node);
354 	if (!stack)
355 		goto free_tsk;
356 
357 	err = arch_dup_task_struct(tsk, orig);
358 	if (err)
359 		goto free_stack;
360 
361 	tsk->stack = stack;
362 #ifdef CONFIG_SECCOMP
363 	/*
364 	 * We must handle setting up seccomp filters once we're under
365 	 * the sighand lock in case orig has changed between now and
366 	 * then. Until then, filter must be NULL to avoid messing up
367 	 * the usage counts on the error path calling free_task.
368 	 */
369 	tsk->seccomp.filter = NULL;
370 #endif
371 
372 	setup_thread_stack(tsk, orig);
373 	clear_user_return_notifier(tsk);
374 	clear_tsk_need_resched(tsk);
375 	set_task_stack_end_magic(tsk);
376 
377 #ifdef CONFIG_CC_STACKPROTECTOR
378 	tsk->stack_canary = get_random_int();
379 #endif
380 
381 	/*
382 	 * One for us, one for whoever does the "release_task()" (usually
383 	 * parent)
384 	 */
385 	atomic_set(&tsk->usage, 2);
386 #ifdef CONFIG_BLK_DEV_IO_TRACE
387 	tsk->btrace_seq = 0;
388 #endif
389 	tsk->splice_pipe = NULL;
390 	tsk->task_frag.page = NULL;
391 	tsk->wake_q.next = NULL;
392 
393 	account_kernel_stack(stack, 1);
394 
395 	kcov_task_init(tsk);
396 
397 	return tsk;
398 
399 free_stack:
400 	free_thread_stack(stack);
401 free_tsk:
402 	free_task_struct(tsk);
403 	return NULL;
404 }
405 
406 #ifdef CONFIG_MMU
407 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
408 {
409 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
410 	struct rb_node **rb_link, *rb_parent;
411 	int retval;
412 	unsigned long charge;
413 
414 	uprobe_start_dup_mmap();
415 	if (down_write_killable(&oldmm->mmap_sem)) {
416 		retval = -EINTR;
417 		goto fail_uprobe_end;
418 	}
419 	flush_cache_dup_mm(oldmm);
420 	uprobe_dup_mmap(oldmm, mm);
421 	/*
422 	 * Not linked in yet - no deadlock potential:
423 	 */
424 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
425 
426 	/* No ordering required: file already has been exposed. */
427 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
428 
429 	mm->total_vm = oldmm->total_vm;
430 	mm->data_vm = oldmm->data_vm;
431 	mm->exec_vm = oldmm->exec_vm;
432 	mm->stack_vm = oldmm->stack_vm;
433 
434 	rb_link = &mm->mm_rb.rb_node;
435 	rb_parent = NULL;
436 	pprev = &mm->mmap;
437 	retval = ksm_fork(mm, oldmm);
438 	if (retval)
439 		goto out;
440 	retval = khugepaged_fork(mm, oldmm);
441 	if (retval)
442 		goto out;
443 
444 	prev = NULL;
445 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
446 		struct file *file;
447 
448 		if (mpnt->vm_flags & VM_DONTCOPY) {
449 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
450 			continue;
451 		}
452 		charge = 0;
453 		if (mpnt->vm_flags & VM_ACCOUNT) {
454 			unsigned long len = vma_pages(mpnt);
455 
456 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
457 				goto fail_nomem;
458 			charge = len;
459 		}
460 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
461 		if (!tmp)
462 			goto fail_nomem;
463 		*tmp = *mpnt;
464 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
465 		retval = vma_dup_policy(mpnt, tmp);
466 		if (retval)
467 			goto fail_nomem_policy;
468 		tmp->vm_mm = mm;
469 		if (anon_vma_fork(tmp, mpnt))
470 			goto fail_nomem_anon_vma_fork;
471 		tmp->vm_flags &=
472 			~(VM_LOCKED|VM_LOCKONFAULT|VM_UFFD_MISSING|VM_UFFD_WP);
473 		tmp->vm_next = tmp->vm_prev = NULL;
474 		tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
475 		file = tmp->vm_file;
476 		if (file) {
477 			struct inode *inode = file_inode(file);
478 			struct address_space *mapping = file->f_mapping;
479 
480 			get_file(file);
481 			if (tmp->vm_flags & VM_DENYWRITE)
482 				atomic_dec(&inode->i_writecount);
483 			i_mmap_lock_write(mapping);
484 			if (tmp->vm_flags & VM_SHARED)
485 				atomic_inc(&mapping->i_mmap_writable);
486 			flush_dcache_mmap_lock(mapping);
487 			/* insert tmp into the share list, just after mpnt */
488 			vma_interval_tree_insert_after(tmp, mpnt,
489 					&mapping->i_mmap);
490 			flush_dcache_mmap_unlock(mapping);
491 			i_mmap_unlock_write(mapping);
492 		}
493 
494 		/*
495 		 * Clear hugetlb-related page reserves for children. This only
496 		 * affects MAP_PRIVATE mappings. Faults generated by the child
497 		 * are not guaranteed to succeed, even if read-only
498 		 */
499 		if (is_vm_hugetlb_page(tmp))
500 			reset_vma_resv_huge_pages(tmp);
501 
502 		/*
503 		 * Link in the new vma and copy the page table entries.
504 		 */
505 		*pprev = tmp;
506 		pprev = &tmp->vm_next;
507 		tmp->vm_prev = prev;
508 		prev = tmp;
509 
510 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
511 		rb_link = &tmp->vm_rb.rb_right;
512 		rb_parent = &tmp->vm_rb;
513 
514 		mm->map_count++;
515 		retval = copy_page_range(mm, oldmm, mpnt);
516 
517 		if (tmp->vm_ops && tmp->vm_ops->open)
518 			tmp->vm_ops->open(tmp);
519 
520 		if (retval)
521 			goto out;
522 	}
523 	/* a new mm has just been created */
524 	arch_dup_mmap(oldmm, mm);
525 	retval = 0;
526 out:
527 	up_write(&mm->mmap_sem);
528 	flush_tlb_mm(oldmm);
529 	up_write(&oldmm->mmap_sem);
530 fail_uprobe_end:
531 	uprobe_end_dup_mmap();
532 	return retval;
533 fail_nomem_anon_vma_fork:
534 	mpol_put(vma_policy(tmp));
535 fail_nomem_policy:
536 	kmem_cache_free(vm_area_cachep, tmp);
537 fail_nomem:
538 	retval = -ENOMEM;
539 	vm_unacct_memory(charge);
540 	goto out;
541 }
542 
543 static inline int mm_alloc_pgd(struct mm_struct *mm)
544 {
545 	mm->pgd = pgd_alloc(mm);
546 	if (unlikely(!mm->pgd))
547 		return -ENOMEM;
548 	return 0;
549 }
550 
551 static inline void mm_free_pgd(struct mm_struct *mm)
552 {
553 	pgd_free(mm, mm->pgd);
554 }
555 #else
556 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
557 {
558 	down_write(&oldmm->mmap_sem);
559 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
560 	up_write(&oldmm->mmap_sem);
561 	return 0;
562 }
563 #define mm_alloc_pgd(mm)	(0)
564 #define mm_free_pgd(mm)
565 #endif /* CONFIG_MMU */
566 
567 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
568 
569 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
570 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
571 
572 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
573 
574 static int __init coredump_filter_setup(char *s)
575 {
576 	default_dump_filter =
577 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
578 		MMF_DUMP_FILTER_MASK;
579 	return 1;
580 }
581 
582 __setup("coredump_filter=", coredump_filter_setup);
583 
584 #include <linux/init_task.h>
585 
586 static void mm_init_aio(struct mm_struct *mm)
587 {
588 #ifdef CONFIG_AIO
589 	spin_lock_init(&mm->ioctx_lock);
590 	mm->ioctx_table = NULL;
591 #endif
592 }
593 
594 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
595 {
596 #ifdef CONFIG_MEMCG
597 	mm->owner = p;
598 #endif
599 }
600 
601 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
602 {
603 	mm->mmap = NULL;
604 	mm->mm_rb = RB_ROOT;
605 	mm->vmacache_seqnum = 0;
606 	atomic_set(&mm->mm_users, 1);
607 	atomic_set(&mm->mm_count, 1);
608 	init_rwsem(&mm->mmap_sem);
609 	INIT_LIST_HEAD(&mm->mmlist);
610 	mm->core_state = NULL;
611 	atomic_long_set(&mm->nr_ptes, 0);
612 	mm_nr_pmds_init(mm);
613 	mm->map_count = 0;
614 	mm->locked_vm = 0;
615 	mm->pinned_vm = 0;
616 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
617 	spin_lock_init(&mm->page_table_lock);
618 	mm_init_cpumask(mm);
619 	mm_init_aio(mm);
620 	mm_init_owner(mm, p);
621 	mmu_notifier_mm_init(mm);
622 	clear_tlb_flush_pending(mm);
623 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
624 	mm->pmd_huge_pte = NULL;
625 #endif
626 
627 	if (current->mm) {
628 		mm->flags = current->mm->flags & MMF_INIT_MASK;
629 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
630 	} else {
631 		mm->flags = default_dump_filter;
632 		mm->def_flags = 0;
633 	}
634 
635 	if (mm_alloc_pgd(mm))
636 		goto fail_nopgd;
637 
638 	if (init_new_context(p, mm))
639 		goto fail_nocontext;
640 
641 	return mm;
642 
643 fail_nocontext:
644 	mm_free_pgd(mm);
645 fail_nopgd:
646 	free_mm(mm);
647 	return NULL;
648 }
649 
650 static void check_mm(struct mm_struct *mm)
651 {
652 	int i;
653 
654 	for (i = 0; i < NR_MM_COUNTERS; i++) {
655 		long x = atomic_long_read(&mm->rss_stat.count[i]);
656 
657 		if (unlikely(x))
658 			printk(KERN_ALERT "BUG: Bad rss-counter state "
659 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
660 	}
661 
662 	if (atomic_long_read(&mm->nr_ptes))
663 		pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
664 				atomic_long_read(&mm->nr_ptes));
665 	if (mm_nr_pmds(mm))
666 		pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
667 				mm_nr_pmds(mm));
668 
669 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
670 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
671 #endif
672 }
673 
674 /*
675  * Allocate and initialize an mm_struct.
676  */
677 struct mm_struct *mm_alloc(void)
678 {
679 	struct mm_struct *mm;
680 
681 	mm = allocate_mm();
682 	if (!mm)
683 		return NULL;
684 
685 	memset(mm, 0, sizeof(*mm));
686 	return mm_init(mm, current);
687 }
688 
689 /*
690  * Called when the last reference to the mm
691  * is dropped: either by a lazy thread or by
692  * mmput. Free the page directory and the mm.
693  */
694 void __mmdrop(struct mm_struct *mm)
695 {
696 	BUG_ON(mm == &init_mm);
697 	mm_free_pgd(mm);
698 	destroy_context(mm);
699 	mmu_notifier_mm_destroy(mm);
700 	check_mm(mm);
701 	free_mm(mm);
702 }
703 EXPORT_SYMBOL_GPL(__mmdrop);
704 
705 static inline void __mmput(struct mm_struct *mm)
706 {
707 	VM_BUG_ON(atomic_read(&mm->mm_users));
708 
709 	uprobe_clear_state(mm);
710 	exit_aio(mm);
711 	ksm_exit(mm);
712 	khugepaged_exit(mm); /* must run before exit_mmap */
713 	exit_mmap(mm);
714 	set_mm_exe_file(mm, NULL);
715 	if (!list_empty(&mm->mmlist)) {
716 		spin_lock(&mmlist_lock);
717 		list_del(&mm->mmlist);
718 		spin_unlock(&mmlist_lock);
719 	}
720 	if (mm->binfmt)
721 		module_put(mm->binfmt->module);
722 	mmdrop(mm);
723 }
724 
725 /*
726  * Decrement the use count and release all resources for an mm.
727  */
728 void mmput(struct mm_struct *mm)
729 {
730 	might_sleep();
731 
732 	if (atomic_dec_and_test(&mm->mm_users))
733 		__mmput(mm);
734 }
735 EXPORT_SYMBOL_GPL(mmput);
736 
737 #ifdef CONFIG_MMU
738 static void mmput_async_fn(struct work_struct *work)
739 {
740 	struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
741 	__mmput(mm);
742 }
743 
744 void mmput_async(struct mm_struct *mm)
745 {
746 	if (atomic_dec_and_test(&mm->mm_users)) {
747 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
748 		schedule_work(&mm->async_put_work);
749 	}
750 }
751 #endif
752 
753 /**
754  * set_mm_exe_file - change a reference to the mm's executable file
755  *
756  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
757  *
758  * Main users are mmput() and sys_execve(). Callers prevent concurrent
759  * invocations: in mmput() nobody alive left, in execve task is single
760  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
761  * mm->exe_file, but does so without using set_mm_exe_file() in order
762  * to do avoid the need for any locks.
763  */
764 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
765 {
766 	struct file *old_exe_file;
767 
768 	/*
769 	 * It is safe to dereference the exe_file without RCU as
770 	 * this function is only called if nobody else can access
771 	 * this mm -- see comment above for justification.
772 	 */
773 	old_exe_file = rcu_dereference_raw(mm->exe_file);
774 
775 	if (new_exe_file)
776 		get_file(new_exe_file);
777 	rcu_assign_pointer(mm->exe_file, new_exe_file);
778 	if (old_exe_file)
779 		fput(old_exe_file);
780 }
781 
782 /**
783  * get_mm_exe_file - acquire a reference to the mm's executable file
784  *
785  * Returns %NULL if mm has no associated executable file.
786  * User must release file via fput().
787  */
788 struct file *get_mm_exe_file(struct mm_struct *mm)
789 {
790 	struct file *exe_file;
791 
792 	rcu_read_lock();
793 	exe_file = rcu_dereference(mm->exe_file);
794 	if (exe_file && !get_file_rcu(exe_file))
795 		exe_file = NULL;
796 	rcu_read_unlock();
797 	return exe_file;
798 }
799 EXPORT_SYMBOL(get_mm_exe_file);
800 
801 /**
802  * get_task_mm - acquire a reference to the task's mm
803  *
804  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
805  * this kernel workthread has transiently adopted a user mm with use_mm,
806  * to do its AIO) is not set and if so returns a reference to it, after
807  * bumping up the use count.  User must release the mm via mmput()
808  * after use.  Typically used by /proc and ptrace.
809  */
810 struct mm_struct *get_task_mm(struct task_struct *task)
811 {
812 	struct mm_struct *mm;
813 
814 	task_lock(task);
815 	mm = task->mm;
816 	if (mm) {
817 		if (task->flags & PF_KTHREAD)
818 			mm = NULL;
819 		else
820 			atomic_inc(&mm->mm_users);
821 	}
822 	task_unlock(task);
823 	return mm;
824 }
825 EXPORT_SYMBOL_GPL(get_task_mm);
826 
827 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
828 {
829 	struct mm_struct *mm;
830 	int err;
831 
832 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
833 	if (err)
834 		return ERR_PTR(err);
835 
836 	mm = get_task_mm(task);
837 	if (mm && mm != current->mm &&
838 			!ptrace_may_access(task, mode)) {
839 		mmput(mm);
840 		mm = ERR_PTR(-EACCES);
841 	}
842 	mutex_unlock(&task->signal->cred_guard_mutex);
843 
844 	return mm;
845 }
846 
847 static void complete_vfork_done(struct task_struct *tsk)
848 {
849 	struct completion *vfork;
850 
851 	task_lock(tsk);
852 	vfork = tsk->vfork_done;
853 	if (likely(vfork)) {
854 		tsk->vfork_done = NULL;
855 		complete(vfork);
856 	}
857 	task_unlock(tsk);
858 }
859 
860 static int wait_for_vfork_done(struct task_struct *child,
861 				struct completion *vfork)
862 {
863 	int killed;
864 
865 	freezer_do_not_count();
866 	killed = wait_for_completion_killable(vfork);
867 	freezer_count();
868 
869 	if (killed) {
870 		task_lock(child);
871 		child->vfork_done = NULL;
872 		task_unlock(child);
873 	}
874 
875 	put_task_struct(child);
876 	return killed;
877 }
878 
879 /* Please note the differences between mmput and mm_release.
880  * mmput is called whenever we stop holding onto a mm_struct,
881  * error success whatever.
882  *
883  * mm_release is called after a mm_struct has been removed
884  * from the current process.
885  *
886  * This difference is important for error handling, when we
887  * only half set up a mm_struct for a new process and need to restore
888  * the old one.  Because we mmput the new mm_struct before
889  * restoring the old one. . .
890  * Eric Biederman 10 January 1998
891  */
892 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
893 {
894 	/* Get rid of any futexes when releasing the mm */
895 #ifdef CONFIG_FUTEX
896 	if (unlikely(tsk->robust_list)) {
897 		exit_robust_list(tsk);
898 		tsk->robust_list = NULL;
899 	}
900 #ifdef CONFIG_COMPAT
901 	if (unlikely(tsk->compat_robust_list)) {
902 		compat_exit_robust_list(tsk);
903 		tsk->compat_robust_list = NULL;
904 	}
905 #endif
906 	if (unlikely(!list_empty(&tsk->pi_state_list)))
907 		exit_pi_state_list(tsk);
908 #endif
909 
910 	uprobe_free_utask(tsk);
911 
912 	/* Get rid of any cached register state */
913 	deactivate_mm(tsk, mm);
914 
915 	/*
916 	 * If we're exiting normally, clear a user-space tid field if
917 	 * requested.  We leave this alone when dying by signal, to leave
918 	 * the value intact in a core dump, and to save the unnecessary
919 	 * trouble, say, a killed vfork parent shouldn't touch this mm.
920 	 * Userland only wants this done for a sys_exit.
921 	 */
922 	if (tsk->clear_child_tid) {
923 		if (!(tsk->flags & PF_SIGNALED) &&
924 		    atomic_read(&mm->mm_users) > 1) {
925 			/*
926 			 * We don't check the error code - if userspace has
927 			 * not set up a proper pointer then tough luck.
928 			 */
929 			put_user(0, tsk->clear_child_tid);
930 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
931 					1, NULL, NULL, 0);
932 		}
933 		tsk->clear_child_tid = NULL;
934 	}
935 
936 	/*
937 	 * All done, finally we can wake up parent and return this mm to him.
938 	 * Also kthread_stop() uses this completion for synchronization.
939 	 */
940 	if (tsk->vfork_done)
941 		complete_vfork_done(tsk);
942 }
943 
944 /*
945  * Allocate a new mm structure and copy contents from the
946  * mm structure of the passed in task structure.
947  */
948 static struct mm_struct *dup_mm(struct task_struct *tsk)
949 {
950 	struct mm_struct *mm, *oldmm = current->mm;
951 	int err;
952 
953 	mm = allocate_mm();
954 	if (!mm)
955 		goto fail_nomem;
956 
957 	memcpy(mm, oldmm, sizeof(*mm));
958 
959 	if (!mm_init(mm, tsk))
960 		goto fail_nomem;
961 
962 	err = dup_mmap(mm, oldmm);
963 	if (err)
964 		goto free_pt;
965 
966 	mm->hiwater_rss = get_mm_rss(mm);
967 	mm->hiwater_vm = mm->total_vm;
968 
969 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
970 		goto free_pt;
971 
972 	return mm;
973 
974 free_pt:
975 	/* don't put binfmt in mmput, we haven't got module yet */
976 	mm->binfmt = NULL;
977 	mmput(mm);
978 
979 fail_nomem:
980 	return NULL;
981 }
982 
983 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
984 {
985 	struct mm_struct *mm, *oldmm;
986 	int retval;
987 
988 	tsk->min_flt = tsk->maj_flt = 0;
989 	tsk->nvcsw = tsk->nivcsw = 0;
990 #ifdef CONFIG_DETECT_HUNG_TASK
991 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
992 #endif
993 
994 	tsk->mm = NULL;
995 	tsk->active_mm = NULL;
996 
997 	/*
998 	 * Are we cloning a kernel thread?
999 	 *
1000 	 * We need to steal a active VM for that..
1001 	 */
1002 	oldmm = current->mm;
1003 	if (!oldmm)
1004 		return 0;
1005 
1006 	/* initialize the new vmacache entries */
1007 	vmacache_flush(tsk);
1008 
1009 	if (clone_flags & CLONE_VM) {
1010 		atomic_inc(&oldmm->mm_users);
1011 		mm = oldmm;
1012 		goto good_mm;
1013 	}
1014 
1015 	retval = -ENOMEM;
1016 	mm = dup_mm(tsk);
1017 	if (!mm)
1018 		goto fail_nomem;
1019 
1020 good_mm:
1021 	tsk->mm = mm;
1022 	tsk->active_mm = mm;
1023 	return 0;
1024 
1025 fail_nomem:
1026 	return retval;
1027 }
1028 
1029 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1030 {
1031 	struct fs_struct *fs = current->fs;
1032 	if (clone_flags & CLONE_FS) {
1033 		/* tsk->fs is already what we want */
1034 		spin_lock(&fs->lock);
1035 		if (fs->in_exec) {
1036 			spin_unlock(&fs->lock);
1037 			return -EAGAIN;
1038 		}
1039 		fs->users++;
1040 		spin_unlock(&fs->lock);
1041 		return 0;
1042 	}
1043 	tsk->fs = copy_fs_struct(fs);
1044 	if (!tsk->fs)
1045 		return -ENOMEM;
1046 	return 0;
1047 }
1048 
1049 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1050 {
1051 	struct files_struct *oldf, *newf;
1052 	int error = 0;
1053 
1054 	/*
1055 	 * A background process may not have any files ...
1056 	 */
1057 	oldf = current->files;
1058 	if (!oldf)
1059 		goto out;
1060 
1061 	if (clone_flags & CLONE_FILES) {
1062 		atomic_inc(&oldf->count);
1063 		goto out;
1064 	}
1065 
1066 	newf = dup_fd(oldf, &error);
1067 	if (!newf)
1068 		goto out;
1069 
1070 	tsk->files = newf;
1071 	error = 0;
1072 out:
1073 	return error;
1074 }
1075 
1076 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1077 {
1078 #ifdef CONFIG_BLOCK
1079 	struct io_context *ioc = current->io_context;
1080 	struct io_context *new_ioc;
1081 
1082 	if (!ioc)
1083 		return 0;
1084 	/*
1085 	 * Share io context with parent, if CLONE_IO is set
1086 	 */
1087 	if (clone_flags & CLONE_IO) {
1088 		ioc_task_link(ioc);
1089 		tsk->io_context = ioc;
1090 	} else if (ioprio_valid(ioc->ioprio)) {
1091 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1092 		if (unlikely(!new_ioc))
1093 			return -ENOMEM;
1094 
1095 		new_ioc->ioprio = ioc->ioprio;
1096 		put_io_context(new_ioc);
1097 	}
1098 #endif
1099 	return 0;
1100 }
1101 
1102 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1103 {
1104 	struct sighand_struct *sig;
1105 
1106 	if (clone_flags & CLONE_SIGHAND) {
1107 		atomic_inc(&current->sighand->count);
1108 		return 0;
1109 	}
1110 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1111 	rcu_assign_pointer(tsk->sighand, sig);
1112 	if (!sig)
1113 		return -ENOMEM;
1114 
1115 	atomic_set(&sig->count, 1);
1116 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1117 	return 0;
1118 }
1119 
1120 void __cleanup_sighand(struct sighand_struct *sighand)
1121 {
1122 	if (atomic_dec_and_test(&sighand->count)) {
1123 		signalfd_cleanup(sighand);
1124 		/*
1125 		 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1126 		 * without an RCU grace period, see __lock_task_sighand().
1127 		 */
1128 		kmem_cache_free(sighand_cachep, sighand);
1129 	}
1130 }
1131 
1132 /*
1133  * Initialize POSIX timer handling for a thread group.
1134  */
1135 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1136 {
1137 	unsigned long cpu_limit;
1138 
1139 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1140 	if (cpu_limit != RLIM_INFINITY) {
1141 		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1142 		sig->cputimer.running = true;
1143 	}
1144 
1145 	/* The timer lists. */
1146 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1147 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1148 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1149 }
1150 
1151 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1152 {
1153 	struct signal_struct *sig;
1154 
1155 	if (clone_flags & CLONE_THREAD)
1156 		return 0;
1157 
1158 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1159 	tsk->signal = sig;
1160 	if (!sig)
1161 		return -ENOMEM;
1162 
1163 	sig->nr_threads = 1;
1164 	atomic_set(&sig->live, 1);
1165 	atomic_set(&sig->sigcnt, 1);
1166 
1167 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1168 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1169 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1170 
1171 	init_waitqueue_head(&sig->wait_chldexit);
1172 	sig->curr_target = tsk;
1173 	init_sigpending(&sig->shared_pending);
1174 	INIT_LIST_HEAD(&sig->posix_timers);
1175 	seqlock_init(&sig->stats_lock);
1176 	prev_cputime_init(&sig->prev_cputime);
1177 
1178 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1179 	sig->real_timer.function = it_real_fn;
1180 
1181 	task_lock(current->group_leader);
1182 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1183 	task_unlock(current->group_leader);
1184 
1185 	posix_cpu_timers_init_group(sig);
1186 
1187 	tty_audit_fork(sig);
1188 	sched_autogroup_fork(sig);
1189 
1190 	sig->oom_score_adj = current->signal->oom_score_adj;
1191 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1192 
1193 	sig->has_child_subreaper = current->signal->has_child_subreaper ||
1194 				   current->signal->is_child_subreaper;
1195 
1196 	mutex_init(&sig->cred_guard_mutex);
1197 
1198 	return 0;
1199 }
1200 
1201 static void copy_seccomp(struct task_struct *p)
1202 {
1203 #ifdef CONFIG_SECCOMP
1204 	/*
1205 	 * Must be called with sighand->lock held, which is common to
1206 	 * all threads in the group. Holding cred_guard_mutex is not
1207 	 * needed because this new task is not yet running and cannot
1208 	 * be racing exec.
1209 	 */
1210 	assert_spin_locked(&current->sighand->siglock);
1211 
1212 	/* Ref-count the new filter user, and assign it. */
1213 	get_seccomp_filter(current);
1214 	p->seccomp = current->seccomp;
1215 
1216 	/*
1217 	 * Explicitly enable no_new_privs here in case it got set
1218 	 * between the task_struct being duplicated and holding the
1219 	 * sighand lock. The seccomp state and nnp must be in sync.
1220 	 */
1221 	if (task_no_new_privs(current))
1222 		task_set_no_new_privs(p);
1223 
1224 	/*
1225 	 * If the parent gained a seccomp mode after copying thread
1226 	 * flags and between before we held the sighand lock, we have
1227 	 * to manually enable the seccomp thread flag here.
1228 	 */
1229 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1230 		set_tsk_thread_flag(p, TIF_SECCOMP);
1231 #endif
1232 }
1233 
1234 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1235 {
1236 	current->clear_child_tid = tidptr;
1237 
1238 	return task_pid_vnr(current);
1239 }
1240 
1241 static void rt_mutex_init_task(struct task_struct *p)
1242 {
1243 	raw_spin_lock_init(&p->pi_lock);
1244 #ifdef CONFIG_RT_MUTEXES
1245 	p->pi_waiters = RB_ROOT;
1246 	p->pi_waiters_leftmost = NULL;
1247 	p->pi_blocked_on = NULL;
1248 #endif
1249 }
1250 
1251 /*
1252  * Initialize POSIX timer handling for a single task.
1253  */
1254 static void posix_cpu_timers_init(struct task_struct *tsk)
1255 {
1256 	tsk->cputime_expires.prof_exp = 0;
1257 	tsk->cputime_expires.virt_exp = 0;
1258 	tsk->cputime_expires.sched_exp = 0;
1259 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1260 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1261 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1262 }
1263 
1264 static inline void
1265 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1266 {
1267 	 task->pids[type].pid = pid;
1268 }
1269 
1270 /*
1271  * This creates a new process as a copy of the old one,
1272  * but does not actually start it yet.
1273  *
1274  * It copies the registers, and all the appropriate
1275  * parts of the process environment (as per the clone
1276  * flags). The actual kick-off is left to the caller.
1277  */
1278 static struct task_struct *copy_process(unsigned long clone_flags,
1279 					unsigned long stack_start,
1280 					unsigned long stack_size,
1281 					int __user *child_tidptr,
1282 					struct pid *pid,
1283 					int trace,
1284 					unsigned long tls,
1285 					int node)
1286 {
1287 	int retval;
1288 	struct task_struct *p;
1289 
1290 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1291 		return ERR_PTR(-EINVAL);
1292 
1293 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1294 		return ERR_PTR(-EINVAL);
1295 
1296 	/*
1297 	 * Thread groups must share signals as well, and detached threads
1298 	 * can only be started up within the thread group.
1299 	 */
1300 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1301 		return ERR_PTR(-EINVAL);
1302 
1303 	/*
1304 	 * Shared signal handlers imply shared VM. By way of the above,
1305 	 * thread groups also imply shared VM. Blocking this case allows
1306 	 * for various simplifications in other code.
1307 	 */
1308 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1309 		return ERR_PTR(-EINVAL);
1310 
1311 	/*
1312 	 * Siblings of global init remain as zombies on exit since they are
1313 	 * not reaped by their parent (swapper). To solve this and to avoid
1314 	 * multi-rooted process trees, prevent global and container-inits
1315 	 * from creating siblings.
1316 	 */
1317 	if ((clone_flags & CLONE_PARENT) &&
1318 				current->signal->flags & SIGNAL_UNKILLABLE)
1319 		return ERR_PTR(-EINVAL);
1320 
1321 	/*
1322 	 * If the new process will be in a different pid or user namespace
1323 	 * do not allow it to share a thread group with the forking task.
1324 	 */
1325 	if (clone_flags & CLONE_THREAD) {
1326 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1327 		    (task_active_pid_ns(current) !=
1328 				current->nsproxy->pid_ns_for_children))
1329 			return ERR_PTR(-EINVAL);
1330 	}
1331 
1332 	retval = security_task_create(clone_flags);
1333 	if (retval)
1334 		goto fork_out;
1335 
1336 	retval = -ENOMEM;
1337 	p = dup_task_struct(current, node);
1338 	if (!p)
1339 		goto fork_out;
1340 
1341 	ftrace_graph_init_task(p);
1342 
1343 	rt_mutex_init_task(p);
1344 
1345 #ifdef CONFIG_PROVE_LOCKING
1346 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1347 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1348 #endif
1349 	retval = -EAGAIN;
1350 	if (atomic_read(&p->real_cred->user->processes) >=
1351 			task_rlimit(p, RLIMIT_NPROC)) {
1352 		if (p->real_cred->user != INIT_USER &&
1353 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1354 			goto bad_fork_free;
1355 	}
1356 	current->flags &= ~PF_NPROC_EXCEEDED;
1357 
1358 	retval = copy_creds(p, clone_flags);
1359 	if (retval < 0)
1360 		goto bad_fork_free;
1361 
1362 	/*
1363 	 * If multiple threads are within copy_process(), then this check
1364 	 * triggers too late. This doesn't hurt, the check is only there
1365 	 * to stop root fork bombs.
1366 	 */
1367 	retval = -EAGAIN;
1368 	if (nr_threads >= max_threads)
1369 		goto bad_fork_cleanup_count;
1370 
1371 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1372 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1373 	p->flags |= PF_FORKNOEXEC;
1374 	INIT_LIST_HEAD(&p->children);
1375 	INIT_LIST_HEAD(&p->sibling);
1376 	rcu_copy_process(p);
1377 	p->vfork_done = NULL;
1378 	spin_lock_init(&p->alloc_lock);
1379 
1380 	init_sigpending(&p->pending);
1381 
1382 	p->utime = p->stime = p->gtime = 0;
1383 	p->utimescaled = p->stimescaled = 0;
1384 	prev_cputime_init(&p->prev_cputime);
1385 
1386 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1387 	seqcount_init(&p->vtime_seqcount);
1388 	p->vtime_snap = 0;
1389 	p->vtime_snap_whence = VTIME_INACTIVE;
1390 #endif
1391 
1392 #if defined(SPLIT_RSS_COUNTING)
1393 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1394 #endif
1395 
1396 	p->default_timer_slack_ns = current->timer_slack_ns;
1397 
1398 	task_io_accounting_init(&p->ioac);
1399 	acct_clear_integrals(p);
1400 
1401 	posix_cpu_timers_init(p);
1402 
1403 	p->start_time = ktime_get_ns();
1404 	p->real_start_time = ktime_get_boot_ns();
1405 	p->io_context = NULL;
1406 	p->audit_context = NULL;
1407 	threadgroup_change_begin(current);
1408 	cgroup_fork(p);
1409 #ifdef CONFIG_NUMA
1410 	p->mempolicy = mpol_dup(p->mempolicy);
1411 	if (IS_ERR(p->mempolicy)) {
1412 		retval = PTR_ERR(p->mempolicy);
1413 		p->mempolicy = NULL;
1414 		goto bad_fork_cleanup_threadgroup_lock;
1415 	}
1416 #endif
1417 #ifdef CONFIG_CPUSETS
1418 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1419 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1420 	seqcount_init(&p->mems_allowed_seq);
1421 #endif
1422 #ifdef CONFIG_TRACE_IRQFLAGS
1423 	p->irq_events = 0;
1424 	p->hardirqs_enabled = 0;
1425 	p->hardirq_enable_ip = 0;
1426 	p->hardirq_enable_event = 0;
1427 	p->hardirq_disable_ip = _THIS_IP_;
1428 	p->hardirq_disable_event = 0;
1429 	p->softirqs_enabled = 1;
1430 	p->softirq_enable_ip = _THIS_IP_;
1431 	p->softirq_enable_event = 0;
1432 	p->softirq_disable_ip = 0;
1433 	p->softirq_disable_event = 0;
1434 	p->hardirq_context = 0;
1435 	p->softirq_context = 0;
1436 #endif
1437 
1438 	p->pagefault_disabled = 0;
1439 
1440 #ifdef CONFIG_LOCKDEP
1441 	p->lockdep_depth = 0; /* no locks held yet */
1442 	p->curr_chain_key = 0;
1443 	p->lockdep_recursion = 0;
1444 #endif
1445 
1446 #ifdef CONFIG_DEBUG_MUTEXES
1447 	p->blocked_on = NULL; /* not blocked yet */
1448 #endif
1449 #ifdef CONFIG_BCACHE
1450 	p->sequential_io	= 0;
1451 	p->sequential_io_avg	= 0;
1452 #endif
1453 
1454 	/* Perform scheduler related setup. Assign this task to a CPU. */
1455 	retval = sched_fork(clone_flags, p);
1456 	if (retval)
1457 		goto bad_fork_cleanup_policy;
1458 
1459 	retval = perf_event_init_task(p);
1460 	if (retval)
1461 		goto bad_fork_cleanup_policy;
1462 	retval = audit_alloc(p);
1463 	if (retval)
1464 		goto bad_fork_cleanup_perf;
1465 	/* copy all the process information */
1466 	shm_init_task(p);
1467 	retval = copy_semundo(clone_flags, p);
1468 	if (retval)
1469 		goto bad_fork_cleanup_audit;
1470 	retval = copy_files(clone_flags, p);
1471 	if (retval)
1472 		goto bad_fork_cleanup_semundo;
1473 	retval = copy_fs(clone_flags, p);
1474 	if (retval)
1475 		goto bad_fork_cleanup_files;
1476 	retval = copy_sighand(clone_flags, p);
1477 	if (retval)
1478 		goto bad_fork_cleanup_fs;
1479 	retval = copy_signal(clone_flags, p);
1480 	if (retval)
1481 		goto bad_fork_cleanup_sighand;
1482 	retval = copy_mm(clone_flags, p);
1483 	if (retval)
1484 		goto bad_fork_cleanup_signal;
1485 	retval = copy_namespaces(clone_flags, p);
1486 	if (retval)
1487 		goto bad_fork_cleanup_mm;
1488 	retval = copy_io(clone_flags, p);
1489 	if (retval)
1490 		goto bad_fork_cleanup_namespaces;
1491 	retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1492 	if (retval)
1493 		goto bad_fork_cleanup_io;
1494 
1495 	if (pid != &init_struct_pid) {
1496 		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1497 		if (IS_ERR(pid)) {
1498 			retval = PTR_ERR(pid);
1499 			goto bad_fork_cleanup_thread;
1500 		}
1501 	}
1502 
1503 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1504 	/*
1505 	 * Clear TID on mm_release()?
1506 	 */
1507 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1508 #ifdef CONFIG_BLOCK
1509 	p->plug = NULL;
1510 #endif
1511 #ifdef CONFIG_FUTEX
1512 	p->robust_list = NULL;
1513 #ifdef CONFIG_COMPAT
1514 	p->compat_robust_list = NULL;
1515 #endif
1516 	INIT_LIST_HEAD(&p->pi_state_list);
1517 	p->pi_state_cache = NULL;
1518 #endif
1519 	/*
1520 	 * sigaltstack should be cleared when sharing the same VM
1521 	 */
1522 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1523 		sas_ss_reset(p);
1524 
1525 	/*
1526 	 * Syscall tracing and stepping should be turned off in the
1527 	 * child regardless of CLONE_PTRACE.
1528 	 */
1529 	user_disable_single_step(p);
1530 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1531 #ifdef TIF_SYSCALL_EMU
1532 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1533 #endif
1534 	clear_all_latency_tracing(p);
1535 
1536 	/* ok, now we should be set up.. */
1537 	p->pid = pid_nr(pid);
1538 	if (clone_flags & CLONE_THREAD) {
1539 		p->exit_signal = -1;
1540 		p->group_leader = current->group_leader;
1541 		p->tgid = current->tgid;
1542 	} else {
1543 		if (clone_flags & CLONE_PARENT)
1544 			p->exit_signal = current->group_leader->exit_signal;
1545 		else
1546 			p->exit_signal = (clone_flags & CSIGNAL);
1547 		p->group_leader = p;
1548 		p->tgid = p->pid;
1549 	}
1550 
1551 	p->nr_dirtied = 0;
1552 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1553 	p->dirty_paused_when = 0;
1554 
1555 	p->pdeath_signal = 0;
1556 	INIT_LIST_HEAD(&p->thread_group);
1557 	p->task_works = NULL;
1558 
1559 	/*
1560 	 * Ensure that the cgroup subsystem policies allow the new process to be
1561 	 * forked. It should be noted the the new process's css_set can be changed
1562 	 * between here and cgroup_post_fork() if an organisation operation is in
1563 	 * progress.
1564 	 */
1565 	retval = cgroup_can_fork(p);
1566 	if (retval)
1567 		goto bad_fork_free_pid;
1568 
1569 	/*
1570 	 * Make it visible to the rest of the system, but dont wake it up yet.
1571 	 * Need tasklist lock for parent etc handling!
1572 	 */
1573 	write_lock_irq(&tasklist_lock);
1574 
1575 	/* CLONE_PARENT re-uses the old parent */
1576 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1577 		p->real_parent = current->real_parent;
1578 		p->parent_exec_id = current->parent_exec_id;
1579 	} else {
1580 		p->real_parent = current;
1581 		p->parent_exec_id = current->self_exec_id;
1582 	}
1583 
1584 	spin_lock(&current->sighand->siglock);
1585 
1586 	/*
1587 	 * Copy seccomp details explicitly here, in case they were changed
1588 	 * before holding sighand lock.
1589 	 */
1590 	copy_seccomp(p);
1591 
1592 	/*
1593 	 * Process group and session signals need to be delivered to just the
1594 	 * parent before the fork or both the parent and the child after the
1595 	 * fork. Restart if a signal comes in before we add the new process to
1596 	 * it's process group.
1597 	 * A fatal signal pending means that current will exit, so the new
1598 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1599 	*/
1600 	recalc_sigpending();
1601 	if (signal_pending(current)) {
1602 		spin_unlock(&current->sighand->siglock);
1603 		write_unlock_irq(&tasklist_lock);
1604 		retval = -ERESTARTNOINTR;
1605 		goto bad_fork_cancel_cgroup;
1606 	}
1607 
1608 	if (likely(p->pid)) {
1609 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1610 
1611 		init_task_pid(p, PIDTYPE_PID, pid);
1612 		if (thread_group_leader(p)) {
1613 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1614 			init_task_pid(p, PIDTYPE_SID, task_session(current));
1615 
1616 			if (is_child_reaper(pid)) {
1617 				ns_of_pid(pid)->child_reaper = p;
1618 				p->signal->flags |= SIGNAL_UNKILLABLE;
1619 			}
1620 
1621 			p->signal->leader_pid = pid;
1622 			p->signal->tty = tty_kref_get(current->signal->tty);
1623 			list_add_tail(&p->sibling, &p->real_parent->children);
1624 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1625 			attach_pid(p, PIDTYPE_PGID);
1626 			attach_pid(p, PIDTYPE_SID);
1627 			__this_cpu_inc(process_counts);
1628 		} else {
1629 			current->signal->nr_threads++;
1630 			atomic_inc(&current->signal->live);
1631 			atomic_inc(&current->signal->sigcnt);
1632 			list_add_tail_rcu(&p->thread_group,
1633 					  &p->group_leader->thread_group);
1634 			list_add_tail_rcu(&p->thread_node,
1635 					  &p->signal->thread_head);
1636 		}
1637 		attach_pid(p, PIDTYPE_PID);
1638 		nr_threads++;
1639 	}
1640 
1641 	total_forks++;
1642 	spin_unlock(&current->sighand->siglock);
1643 	syscall_tracepoint_update(p);
1644 	write_unlock_irq(&tasklist_lock);
1645 
1646 	proc_fork_connector(p);
1647 	cgroup_post_fork(p);
1648 	threadgroup_change_end(current);
1649 	perf_event_fork(p);
1650 
1651 	trace_task_newtask(p, clone_flags);
1652 	uprobe_copy_process(p, clone_flags);
1653 
1654 	return p;
1655 
1656 bad_fork_cancel_cgroup:
1657 	cgroup_cancel_fork(p);
1658 bad_fork_free_pid:
1659 	if (pid != &init_struct_pid)
1660 		free_pid(pid);
1661 bad_fork_cleanup_thread:
1662 	exit_thread(p);
1663 bad_fork_cleanup_io:
1664 	if (p->io_context)
1665 		exit_io_context(p);
1666 bad_fork_cleanup_namespaces:
1667 	exit_task_namespaces(p);
1668 bad_fork_cleanup_mm:
1669 	if (p->mm)
1670 		mmput(p->mm);
1671 bad_fork_cleanup_signal:
1672 	if (!(clone_flags & CLONE_THREAD))
1673 		free_signal_struct(p->signal);
1674 bad_fork_cleanup_sighand:
1675 	__cleanup_sighand(p->sighand);
1676 bad_fork_cleanup_fs:
1677 	exit_fs(p); /* blocking */
1678 bad_fork_cleanup_files:
1679 	exit_files(p); /* blocking */
1680 bad_fork_cleanup_semundo:
1681 	exit_sem(p);
1682 bad_fork_cleanup_audit:
1683 	audit_free(p);
1684 bad_fork_cleanup_perf:
1685 	perf_event_free_task(p);
1686 bad_fork_cleanup_policy:
1687 #ifdef CONFIG_NUMA
1688 	mpol_put(p->mempolicy);
1689 bad_fork_cleanup_threadgroup_lock:
1690 #endif
1691 	threadgroup_change_end(current);
1692 	delayacct_tsk_free(p);
1693 bad_fork_cleanup_count:
1694 	atomic_dec(&p->cred->user->processes);
1695 	exit_creds(p);
1696 bad_fork_free:
1697 	free_task(p);
1698 fork_out:
1699 	return ERR_PTR(retval);
1700 }
1701 
1702 static inline void init_idle_pids(struct pid_link *links)
1703 {
1704 	enum pid_type type;
1705 
1706 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1707 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1708 		links[type].pid = &init_struct_pid;
1709 	}
1710 }
1711 
1712 struct task_struct *fork_idle(int cpu)
1713 {
1714 	struct task_struct *task;
1715 	task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
1716 			    cpu_to_node(cpu));
1717 	if (!IS_ERR(task)) {
1718 		init_idle_pids(task->pids);
1719 		init_idle(task, cpu);
1720 	}
1721 
1722 	return task;
1723 }
1724 
1725 /*
1726  *  Ok, this is the main fork-routine.
1727  *
1728  * It copies the process, and if successful kick-starts
1729  * it and waits for it to finish using the VM if required.
1730  */
1731 long _do_fork(unsigned long clone_flags,
1732 	      unsigned long stack_start,
1733 	      unsigned long stack_size,
1734 	      int __user *parent_tidptr,
1735 	      int __user *child_tidptr,
1736 	      unsigned long tls)
1737 {
1738 	struct task_struct *p;
1739 	int trace = 0;
1740 	long nr;
1741 
1742 	/*
1743 	 * Determine whether and which event to report to ptracer.  When
1744 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
1745 	 * requested, no event is reported; otherwise, report if the event
1746 	 * for the type of forking is enabled.
1747 	 */
1748 	if (!(clone_flags & CLONE_UNTRACED)) {
1749 		if (clone_flags & CLONE_VFORK)
1750 			trace = PTRACE_EVENT_VFORK;
1751 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
1752 			trace = PTRACE_EVENT_CLONE;
1753 		else
1754 			trace = PTRACE_EVENT_FORK;
1755 
1756 		if (likely(!ptrace_event_enabled(current, trace)))
1757 			trace = 0;
1758 	}
1759 
1760 	p = copy_process(clone_flags, stack_start, stack_size,
1761 			 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
1762 	/*
1763 	 * Do this prior waking up the new thread - the thread pointer
1764 	 * might get invalid after that point, if the thread exits quickly.
1765 	 */
1766 	if (!IS_ERR(p)) {
1767 		struct completion vfork;
1768 		struct pid *pid;
1769 
1770 		trace_sched_process_fork(current, p);
1771 
1772 		pid = get_task_pid(p, PIDTYPE_PID);
1773 		nr = pid_vnr(pid);
1774 
1775 		if (clone_flags & CLONE_PARENT_SETTID)
1776 			put_user(nr, parent_tidptr);
1777 
1778 		if (clone_flags & CLONE_VFORK) {
1779 			p->vfork_done = &vfork;
1780 			init_completion(&vfork);
1781 			get_task_struct(p);
1782 		}
1783 
1784 		wake_up_new_task(p);
1785 
1786 		/* forking complete and child started to run, tell ptracer */
1787 		if (unlikely(trace))
1788 			ptrace_event_pid(trace, pid);
1789 
1790 		if (clone_flags & CLONE_VFORK) {
1791 			if (!wait_for_vfork_done(p, &vfork))
1792 				ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1793 		}
1794 
1795 		put_pid(pid);
1796 	} else {
1797 		nr = PTR_ERR(p);
1798 	}
1799 	return nr;
1800 }
1801 
1802 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
1803 /* For compatibility with architectures that call do_fork directly rather than
1804  * using the syscall entry points below. */
1805 long do_fork(unsigned long clone_flags,
1806 	      unsigned long stack_start,
1807 	      unsigned long stack_size,
1808 	      int __user *parent_tidptr,
1809 	      int __user *child_tidptr)
1810 {
1811 	return _do_fork(clone_flags, stack_start, stack_size,
1812 			parent_tidptr, child_tidptr, 0);
1813 }
1814 #endif
1815 
1816 /*
1817  * Create a kernel thread.
1818  */
1819 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1820 {
1821 	return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1822 		(unsigned long)arg, NULL, NULL, 0);
1823 }
1824 
1825 #ifdef __ARCH_WANT_SYS_FORK
1826 SYSCALL_DEFINE0(fork)
1827 {
1828 #ifdef CONFIG_MMU
1829 	return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
1830 #else
1831 	/* can not support in nommu mode */
1832 	return -EINVAL;
1833 #endif
1834 }
1835 #endif
1836 
1837 #ifdef __ARCH_WANT_SYS_VFORK
1838 SYSCALL_DEFINE0(vfork)
1839 {
1840 	return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1841 			0, NULL, NULL, 0);
1842 }
1843 #endif
1844 
1845 #ifdef __ARCH_WANT_SYS_CLONE
1846 #ifdef CONFIG_CLONE_BACKWARDS
1847 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1848 		 int __user *, parent_tidptr,
1849 		 unsigned long, tls,
1850 		 int __user *, child_tidptr)
1851 #elif defined(CONFIG_CLONE_BACKWARDS2)
1852 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1853 		 int __user *, parent_tidptr,
1854 		 int __user *, child_tidptr,
1855 		 unsigned long, tls)
1856 #elif defined(CONFIG_CLONE_BACKWARDS3)
1857 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1858 		int, stack_size,
1859 		int __user *, parent_tidptr,
1860 		int __user *, child_tidptr,
1861 		unsigned long, tls)
1862 #else
1863 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1864 		 int __user *, parent_tidptr,
1865 		 int __user *, child_tidptr,
1866 		 unsigned long, tls)
1867 #endif
1868 {
1869 	return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
1870 }
1871 #endif
1872 
1873 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1874 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1875 #endif
1876 
1877 static void sighand_ctor(void *data)
1878 {
1879 	struct sighand_struct *sighand = data;
1880 
1881 	spin_lock_init(&sighand->siglock);
1882 	init_waitqueue_head(&sighand->signalfd_wqh);
1883 }
1884 
1885 void __init proc_caches_init(void)
1886 {
1887 	sighand_cachep = kmem_cache_create("sighand_cache",
1888 			sizeof(struct sighand_struct), 0,
1889 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1890 			SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
1891 	signal_cachep = kmem_cache_create("signal_cache",
1892 			sizeof(struct signal_struct), 0,
1893 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1894 			NULL);
1895 	files_cachep = kmem_cache_create("files_cache",
1896 			sizeof(struct files_struct), 0,
1897 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1898 			NULL);
1899 	fs_cachep = kmem_cache_create("fs_cache",
1900 			sizeof(struct fs_struct), 0,
1901 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1902 			NULL);
1903 	/*
1904 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1905 	 * whole struct cpumask for the OFFSTACK case. We could change
1906 	 * this to *only* allocate as much of it as required by the
1907 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
1908 	 * is at the end of the structure, exactly for that reason.
1909 	 */
1910 	mm_cachep = kmem_cache_create("mm_struct",
1911 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1912 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1913 			NULL);
1914 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
1915 	mmap_init();
1916 	nsproxy_cache_init();
1917 }
1918 
1919 /*
1920  * Check constraints on flags passed to the unshare system call.
1921  */
1922 static int check_unshare_flags(unsigned long unshare_flags)
1923 {
1924 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1925 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1926 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1927 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
1928 		return -EINVAL;
1929 	/*
1930 	 * Not implemented, but pretend it works if there is nothing
1931 	 * to unshare.  Note that unsharing the address space or the
1932 	 * signal handlers also need to unshare the signal queues (aka
1933 	 * CLONE_THREAD).
1934 	 */
1935 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1936 		if (!thread_group_empty(current))
1937 			return -EINVAL;
1938 	}
1939 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
1940 		if (atomic_read(&current->sighand->count) > 1)
1941 			return -EINVAL;
1942 	}
1943 	if (unshare_flags & CLONE_VM) {
1944 		if (!current_is_single_threaded())
1945 			return -EINVAL;
1946 	}
1947 
1948 	return 0;
1949 }
1950 
1951 /*
1952  * Unshare the filesystem structure if it is being shared
1953  */
1954 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1955 {
1956 	struct fs_struct *fs = current->fs;
1957 
1958 	if (!(unshare_flags & CLONE_FS) || !fs)
1959 		return 0;
1960 
1961 	/* don't need lock here; in the worst case we'll do useless copy */
1962 	if (fs->users == 1)
1963 		return 0;
1964 
1965 	*new_fsp = copy_fs_struct(fs);
1966 	if (!*new_fsp)
1967 		return -ENOMEM;
1968 
1969 	return 0;
1970 }
1971 
1972 /*
1973  * Unshare file descriptor table if it is being shared
1974  */
1975 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1976 {
1977 	struct files_struct *fd = current->files;
1978 	int error = 0;
1979 
1980 	if ((unshare_flags & CLONE_FILES) &&
1981 	    (fd && atomic_read(&fd->count) > 1)) {
1982 		*new_fdp = dup_fd(fd, &error);
1983 		if (!*new_fdp)
1984 			return error;
1985 	}
1986 
1987 	return 0;
1988 }
1989 
1990 /*
1991  * unshare allows a process to 'unshare' part of the process
1992  * context which was originally shared using clone.  copy_*
1993  * functions used by do_fork() cannot be used here directly
1994  * because they modify an inactive task_struct that is being
1995  * constructed. Here we are modifying the current, active,
1996  * task_struct.
1997  */
1998 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1999 {
2000 	struct fs_struct *fs, *new_fs = NULL;
2001 	struct files_struct *fd, *new_fd = NULL;
2002 	struct cred *new_cred = NULL;
2003 	struct nsproxy *new_nsproxy = NULL;
2004 	int do_sysvsem = 0;
2005 	int err;
2006 
2007 	/*
2008 	 * If unsharing a user namespace must also unshare the thread group
2009 	 * and unshare the filesystem root and working directories.
2010 	 */
2011 	if (unshare_flags & CLONE_NEWUSER)
2012 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2013 	/*
2014 	 * If unsharing vm, must also unshare signal handlers.
2015 	 */
2016 	if (unshare_flags & CLONE_VM)
2017 		unshare_flags |= CLONE_SIGHAND;
2018 	/*
2019 	 * If unsharing a signal handlers, must also unshare the signal queues.
2020 	 */
2021 	if (unshare_flags & CLONE_SIGHAND)
2022 		unshare_flags |= CLONE_THREAD;
2023 	/*
2024 	 * If unsharing namespace, must also unshare filesystem information.
2025 	 */
2026 	if (unshare_flags & CLONE_NEWNS)
2027 		unshare_flags |= CLONE_FS;
2028 
2029 	err = check_unshare_flags(unshare_flags);
2030 	if (err)
2031 		goto bad_unshare_out;
2032 	/*
2033 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2034 	 * to a new ipc namespace, the semaphore arrays from the old
2035 	 * namespace are unreachable.
2036 	 */
2037 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2038 		do_sysvsem = 1;
2039 	err = unshare_fs(unshare_flags, &new_fs);
2040 	if (err)
2041 		goto bad_unshare_out;
2042 	err = unshare_fd(unshare_flags, &new_fd);
2043 	if (err)
2044 		goto bad_unshare_cleanup_fs;
2045 	err = unshare_userns(unshare_flags, &new_cred);
2046 	if (err)
2047 		goto bad_unshare_cleanup_fd;
2048 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2049 					 new_cred, new_fs);
2050 	if (err)
2051 		goto bad_unshare_cleanup_cred;
2052 
2053 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2054 		if (do_sysvsem) {
2055 			/*
2056 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2057 			 */
2058 			exit_sem(current);
2059 		}
2060 		if (unshare_flags & CLONE_NEWIPC) {
2061 			/* Orphan segments in old ns (see sem above). */
2062 			exit_shm(current);
2063 			shm_init_task(current);
2064 		}
2065 
2066 		if (new_nsproxy)
2067 			switch_task_namespaces(current, new_nsproxy);
2068 
2069 		task_lock(current);
2070 
2071 		if (new_fs) {
2072 			fs = current->fs;
2073 			spin_lock(&fs->lock);
2074 			current->fs = new_fs;
2075 			if (--fs->users)
2076 				new_fs = NULL;
2077 			else
2078 				new_fs = fs;
2079 			spin_unlock(&fs->lock);
2080 		}
2081 
2082 		if (new_fd) {
2083 			fd = current->files;
2084 			current->files = new_fd;
2085 			new_fd = fd;
2086 		}
2087 
2088 		task_unlock(current);
2089 
2090 		if (new_cred) {
2091 			/* Install the new user namespace */
2092 			commit_creds(new_cred);
2093 			new_cred = NULL;
2094 		}
2095 	}
2096 
2097 bad_unshare_cleanup_cred:
2098 	if (new_cred)
2099 		put_cred(new_cred);
2100 bad_unshare_cleanup_fd:
2101 	if (new_fd)
2102 		put_files_struct(new_fd);
2103 
2104 bad_unshare_cleanup_fs:
2105 	if (new_fs)
2106 		free_fs_struct(new_fs);
2107 
2108 bad_unshare_out:
2109 	return err;
2110 }
2111 
2112 /*
2113  *	Helper to unshare the files of the current task.
2114  *	We don't want to expose copy_files internals to
2115  *	the exec layer of the kernel.
2116  */
2117 
2118 int unshare_files(struct files_struct **displaced)
2119 {
2120 	struct task_struct *task = current;
2121 	struct files_struct *copy = NULL;
2122 	int error;
2123 
2124 	error = unshare_fd(CLONE_FILES, &copy);
2125 	if (error || !copy) {
2126 		*displaced = NULL;
2127 		return error;
2128 	}
2129 	*displaced = task->files;
2130 	task_lock(task);
2131 	task->files = copy;
2132 	task_unlock(task);
2133 	return 0;
2134 }
2135 
2136 int sysctl_max_threads(struct ctl_table *table, int write,
2137 		       void __user *buffer, size_t *lenp, loff_t *ppos)
2138 {
2139 	struct ctl_table t;
2140 	int ret;
2141 	int threads = max_threads;
2142 	int min = MIN_THREADS;
2143 	int max = MAX_THREADS;
2144 
2145 	t = *table;
2146 	t.data = &threads;
2147 	t.extra1 = &min;
2148 	t.extra2 = &max;
2149 
2150 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2151 	if (ret || !write)
2152 		return ret;
2153 
2154 	set_max_threads(threads);
2155 
2156 	return 0;
2157 }
2158