1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/kmsan.h> 41 #include <linux/binfmts.h> 42 #include <linux/mman.h> 43 #include <linux/mmu_notifier.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/mm_inline.h> 47 #include <linux/nsproxy.h> 48 #include <linux/capability.h> 49 #include <linux/cpu.h> 50 #include <linux/cgroup.h> 51 #include <linux/security.h> 52 #include <linux/hugetlb.h> 53 #include <linux/seccomp.h> 54 #include <linux/swap.h> 55 #include <linux/syscalls.h> 56 #include <linux/jiffies.h> 57 #include <linux/futex.h> 58 #include <linux/compat.h> 59 #include <linux/kthread.h> 60 #include <linux/task_io_accounting_ops.h> 61 #include <linux/rcupdate.h> 62 #include <linux/ptrace.h> 63 #include <linux/mount.h> 64 #include <linux/audit.h> 65 #include <linux/memcontrol.h> 66 #include <linux/ftrace.h> 67 #include <linux/proc_fs.h> 68 #include <linux/profile.h> 69 #include <linux/rmap.h> 70 #include <linux/ksm.h> 71 #include <linux/acct.h> 72 #include <linux/userfaultfd_k.h> 73 #include <linux/tsacct_kern.h> 74 #include <linux/cn_proc.h> 75 #include <linux/freezer.h> 76 #include <linux/delayacct.h> 77 #include <linux/taskstats_kern.h> 78 #include <linux/tty.h> 79 #include <linux/fs_struct.h> 80 #include <linux/magic.h> 81 #include <linux/perf_event.h> 82 #include <linux/posix-timers.h> 83 #include <linux/user-return-notifier.h> 84 #include <linux/oom.h> 85 #include <linux/khugepaged.h> 86 #include <linux/signalfd.h> 87 #include <linux/uprobes.h> 88 #include <linux/aio.h> 89 #include <linux/compiler.h> 90 #include <linux/sysctl.h> 91 #include <linux/kcov.h> 92 #include <linux/livepatch.h> 93 #include <linux/thread_info.h> 94 #include <linux/stackleak.h> 95 #include <linux/kasan.h> 96 #include <linux/scs.h> 97 #include <linux/io_uring.h> 98 #include <linux/bpf.h> 99 #include <linux/stackprotector.h> 100 101 #include <asm/pgalloc.h> 102 #include <linux/uaccess.h> 103 #include <asm/mmu_context.h> 104 #include <asm/cacheflush.h> 105 #include <asm/tlbflush.h> 106 107 #include <trace/events/sched.h> 108 109 #define CREATE_TRACE_POINTS 110 #include <trace/events/task.h> 111 112 /* 113 * Minimum number of threads to boot the kernel 114 */ 115 #define MIN_THREADS 20 116 117 /* 118 * Maximum number of threads 119 */ 120 #define MAX_THREADS FUTEX_TID_MASK 121 122 /* 123 * Protected counters by write_lock_irq(&tasklist_lock) 124 */ 125 unsigned long total_forks; /* Handle normal Linux uptimes. */ 126 int nr_threads; /* The idle threads do not count.. */ 127 128 static int max_threads; /* tunable limit on nr_threads */ 129 130 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 131 132 static const char * const resident_page_types[] = { 133 NAMED_ARRAY_INDEX(MM_FILEPAGES), 134 NAMED_ARRAY_INDEX(MM_ANONPAGES), 135 NAMED_ARRAY_INDEX(MM_SWAPENTS), 136 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 137 }; 138 139 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 140 141 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 142 143 #ifdef CONFIG_PROVE_RCU 144 int lockdep_tasklist_lock_is_held(void) 145 { 146 return lockdep_is_held(&tasklist_lock); 147 } 148 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 149 #endif /* #ifdef CONFIG_PROVE_RCU */ 150 151 int nr_processes(void) 152 { 153 int cpu; 154 int total = 0; 155 156 for_each_possible_cpu(cpu) 157 total += per_cpu(process_counts, cpu); 158 159 return total; 160 } 161 162 void __weak arch_release_task_struct(struct task_struct *tsk) 163 { 164 } 165 166 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 167 static struct kmem_cache *task_struct_cachep; 168 169 static inline struct task_struct *alloc_task_struct_node(int node) 170 { 171 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 172 } 173 174 static inline void free_task_struct(struct task_struct *tsk) 175 { 176 kmem_cache_free(task_struct_cachep, tsk); 177 } 178 #endif 179 180 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 181 182 /* 183 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 184 * kmemcache based allocator. 185 */ 186 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 187 188 # ifdef CONFIG_VMAP_STACK 189 /* 190 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 191 * flush. Try to minimize the number of calls by caching stacks. 192 */ 193 #define NR_CACHED_STACKS 2 194 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 195 196 struct vm_stack { 197 struct rcu_head rcu; 198 struct vm_struct *stack_vm_area; 199 }; 200 201 static bool try_release_thread_stack_to_cache(struct vm_struct *vm) 202 { 203 unsigned int i; 204 205 for (i = 0; i < NR_CACHED_STACKS; i++) { 206 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL) 207 continue; 208 return true; 209 } 210 return false; 211 } 212 213 static void thread_stack_free_rcu(struct rcu_head *rh) 214 { 215 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 216 217 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 218 return; 219 220 vfree(vm_stack); 221 } 222 223 static void thread_stack_delayed_free(struct task_struct *tsk) 224 { 225 struct vm_stack *vm_stack = tsk->stack; 226 227 vm_stack->stack_vm_area = tsk->stack_vm_area; 228 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 229 } 230 231 static int free_vm_stack_cache(unsigned int cpu) 232 { 233 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 234 int i; 235 236 for (i = 0; i < NR_CACHED_STACKS; i++) { 237 struct vm_struct *vm_stack = cached_vm_stacks[i]; 238 239 if (!vm_stack) 240 continue; 241 242 vfree(vm_stack->addr); 243 cached_vm_stacks[i] = NULL; 244 } 245 246 return 0; 247 } 248 249 static int memcg_charge_kernel_stack(struct vm_struct *vm) 250 { 251 int i; 252 int ret; 253 254 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 255 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 256 257 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 258 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0); 259 if (ret) 260 goto err; 261 } 262 return 0; 263 err: 264 /* 265 * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is 266 * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will 267 * ignore this page. 268 */ 269 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 270 memcg_kmem_uncharge_page(vm->pages[i], 0); 271 return ret; 272 } 273 274 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 275 { 276 struct vm_struct *vm; 277 void *stack; 278 int i; 279 280 for (i = 0; i < NR_CACHED_STACKS; i++) { 281 struct vm_struct *s; 282 283 s = this_cpu_xchg(cached_stacks[i], NULL); 284 285 if (!s) 286 continue; 287 288 /* Reset stack metadata. */ 289 kasan_unpoison_range(s->addr, THREAD_SIZE); 290 291 stack = kasan_reset_tag(s->addr); 292 293 /* Clear stale pointers from reused stack. */ 294 memset(stack, 0, THREAD_SIZE); 295 296 if (memcg_charge_kernel_stack(s)) { 297 vfree(s->addr); 298 return -ENOMEM; 299 } 300 301 tsk->stack_vm_area = s; 302 tsk->stack = stack; 303 return 0; 304 } 305 306 /* 307 * Allocated stacks are cached and later reused by new threads, 308 * so memcg accounting is performed manually on assigning/releasing 309 * stacks to tasks. Drop __GFP_ACCOUNT. 310 */ 311 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 312 VMALLOC_START, VMALLOC_END, 313 THREADINFO_GFP & ~__GFP_ACCOUNT, 314 PAGE_KERNEL, 315 0, node, __builtin_return_address(0)); 316 if (!stack) 317 return -ENOMEM; 318 319 vm = find_vm_area(stack); 320 if (memcg_charge_kernel_stack(vm)) { 321 vfree(stack); 322 return -ENOMEM; 323 } 324 /* 325 * We can't call find_vm_area() in interrupt context, and 326 * free_thread_stack() can be called in interrupt context, 327 * so cache the vm_struct. 328 */ 329 tsk->stack_vm_area = vm; 330 stack = kasan_reset_tag(stack); 331 tsk->stack = stack; 332 return 0; 333 } 334 335 static void free_thread_stack(struct task_struct *tsk) 336 { 337 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 338 thread_stack_delayed_free(tsk); 339 340 tsk->stack = NULL; 341 tsk->stack_vm_area = NULL; 342 } 343 344 # else /* !CONFIG_VMAP_STACK */ 345 346 static void thread_stack_free_rcu(struct rcu_head *rh) 347 { 348 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 349 } 350 351 static void thread_stack_delayed_free(struct task_struct *tsk) 352 { 353 struct rcu_head *rh = tsk->stack; 354 355 call_rcu(rh, thread_stack_free_rcu); 356 } 357 358 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 359 { 360 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 361 THREAD_SIZE_ORDER); 362 363 if (likely(page)) { 364 tsk->stack = kasan_reset_tag(page_address(page)); 365 return 0; 366 } 367 return -ENOMEM; 368 } 369 370 static void free_thread_stack(struct task_struct *tsk) 371 { 372 thread_stack_delayed_free(tsk); 373 tsk->stack = NULL; 374 } 375 376 # endif /* CONFIG_VMAP_STACK */ 377 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */ 378 379 static struct kmem_cache *thread_stack_cache; 380 381 static void thread_stack_free_rcu(struct rcu_head *rh) 382 { 383 kmem_cache_free(thread_stack_cache, rh); 384 } 385 386 static void thread_stack_delayed_free(struct task_struct *tsk) 387 { 388 struct rcu_head *rh = tsk->stack; 389 390 call_rcu(rh, thread_stack_free_rcu); 391 } 392 393 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 394 { 395 unsigned long *stack; 396 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 397 stack = kasan_reset_tag(stack); 398 tsk->stack = stack; 399 return stack ? 0 : -ENOMEM; 400 } 401 402 static void free_thread_stack(struct task_struct *tsk) 403 { 404 thread_stack_delayed_free(tsk); 405 tsk->stack = NULL; 406 } 407 408 void thread_stack_cache_init(void) 409 { 410 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 411 THREAD_SIZE, THREAD_SIZE, 0, 0, 412 THREAD_SIZE, NULL); 413 BUG_ON(thread_stack_cache == NULL); 414 } 415 416 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */ 417 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ 418 419 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 420 { 421 unsigned long *stack; 422 423 stack = arch_alloc_thread_stack_node(tsk, node); 424 tsk->stack = stack; 425 return stack ? 0 : -ENOMEM; 426 } 427 428 static void free_thread_stack(struct task_struct *tsk) 429 { 430 arch_free_thread_stack(tsk); 431 tsk->stack = NULL; 432 } 433 434 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ 435 436 /* SLAB cache for signal_struct structures (tsk->signal) */ 437 static struct kmem_cache *signal_cachep; 438 439 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 440 struct kmem_cache *sighand_cachep; 441 442 /* SLAB cache for files_struct structures (tsk->files) */ 443 struct kmem_cache *files_cachep; 444 445 /* SLAB cache for fs_struct structures (tsk->fs) */ 446 struct kmem_cache *fs_cachep; 447 448 /* SLAB cache for vm_area_struct structures */ 449 static struct kmem_cache *vm_area_cachep; 450 451 /* SLAB cache for mm_struct structures (tsk->mm) */ 452 static struct kmem_cache *mm_cachep; 453 454 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 455 { 456 struct vm_area_struct *vma; 457 458 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 459 if (vma) 460 vma_init(vma, mm); 461 return vma; 462 } 463 464 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 465 { 466 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 467 468 if (new) { 469 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 470 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 471 /* 472 * orig->shared.rb may be modified concurrently, but the clone 473 * will be reinitialized. 474 */ 475 data_race(memcpy(new, orig, sizeof(*new))); 476 INIT_LIST_HEAD(&new->anon_vma_chain); 477 dup_anon_vma_name(orig, new); 478 } 479 return new; 480 } 481 482 void vm_area_free(struct vm_area_struct *vma) 483 { 484 free_anon_vma_name(vma); 485 kmem_cache_free(vm_area_cachep, vma); 486 } 487 488 static void account_kernel_stack(struct task_struct *tsk, int account) 489 { 490 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 491 struct vm_struct *vm = task_stack_vm_area(tsk); 492 int i; 493 494 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 495 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 496 account * (PAGE_SIZE / 1024)); 497 } else { 498 void *stack = task_stack_page(tsk); 499 500 /* All stack pages are in the same node. */ 501 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 502 account * (THREAD_SIZE / 1024)); 503 } 504 } 505 506 void exit_task_stack_account(struct task_struct *tsk) 507 { 508 account_kernel_stack(tsk, -1); 509 510 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 511 struct vm_struct *vm; 512 int i; 513 514 vm = task_stack_vm_area(tsk); 515 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 516 memcg_kmem_uncharge_page(vm->pages[i], 0); 517 } 518 } 519 520 static void release_task_stack(struct task_struct *tsk) 521 { 522 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 523 return; /* Better to leak the stack than to free prematurely */ 524 525 free_thread_stack(tsk); 526 } 527 528 #ifdef CONFIG_THREAD_INFO_IN_TASK 529 void put_task_stack(struct task_struct *tsk) 530 { 531 if (refcount_dec_and_test(&tsk->stack_refcount)) 532 release_task_stack(tsk); 533 } 534 #endif 535 536 void free_task(struct task_struct *tsk) 537 { 538 #ifdef CONFIG_SECCOMP 539 WARN_ON_ONCE(tsk->seccomp.filter); 540 #endif 541 release_user_cpus_ptr(tsk); 542 scs_release(tsk); 543 544 #ifndef CONFIG_THREAD_INFO_IN_TASK 545 /* 546 * The task is finally done with both the stack and thread_info, 547 * so free both. 548 */ 549 release_task_stack(tsk); 550 #else 551 /* 552 * If the task had a separate stack allocation, it should be gone 553 * by now. 554 */ 555 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 556 #endif 557 rt_mutex_debug_task_free(tsk); 558 ftrace_graph_exit_task(tsk); 559 arch_release_task_struct(tsk); 560 if (tsk->flags & PF_KTHREAD) 561 free_kthread_struct(tsk); 562 free_task_struct(tsk); 563 } 564 EXPORT_SYMBOL(free_task); 565 566 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 567 { 568 struct file *exe_file; 569 570 exe_file = get_mm_exe_file(oldmm); 571 RCU_INIT_POINTER(mm->exe_file, exe_file); 572 /* 573 * We depend on the oldmm having properly denied write access to the 574 * exe_file already. 575 */ 576 if (exe_file && deny_write_access(exe_file)) 577 pr_warn_once("deny_write_access() failed in %s\n", __func__); 578 } 579 580 #ifdef CONFIG_MMU 581 static __latent_entropy int dup_mmap(struct mm_struct *mm, 582 struct mm_struct *oldmm) 583 { 584 struct vm_area_struct *mpnt, *tmp; 585 int retval; 586 unsigned long charge = 0; 587 LIST_HEAD(uf); 588 VMA_ITERATOR(old_vmi, oldmm, 0); 589 VMA_ITERATOR(vmi, mm, 0); 590 591 uprobe_start_dup_mmap(); 592 if (mmap_write_lock_killable(oldmm)) { 593 retval = -EINTR; 594 goto fail_uprobe_end; 595 } 596 flush_cache_dup_mm(oldmm); 597 uprobe_dup_mmap(oldmm, mm); 598 /* 599 * Not linked in yet - no deadlock potential: 600 */ 601 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 602 603 /* No ordering required: file already has been exposed. */ 604 dup_mm_exe_file(mm, oldmm); 605 606 mm->total_vm = oldmm->total_vm; 607 mm->data_vm = oldmm->data_vm; 608 mm->exec_vm = oldmm->exec_vm; 609 mm->stack_vm = oldmm->stack_vm; 610 611 retval = ksm_fork(mm, oldmm); 612 if (retval) 613 goto out; 614 khugepaged_fork(mm, oldmm); 615 616 retval = vma_iter_bulk_alloc(&vmi, oldmm->map_count); 617 if (retval) 618 goto out; 619 620 for_each_vma(old_vmi, mpnt) { 621 struct file *file; 622 623 if (mpnt->vm_flags & VM_DONTCOPY) { 624 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 625 continue; 626 } 627 charge = 0; 628 /* 629 * Don't duplicate many vmas if we've been oom-killed (for 630 * example) 631 */ 632 if (fatal_signal_pending(current)) { 633 retval = -EINTR; 634 goto loop_out; 635 } 636 if (mpnt->vm_flags & VM_ACCOUNT) { 637 unsigned long len = vma_pages(mpnt); 638 639 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 640 goto fail_nomem; 641 charge = len; 642 } 643 tmp = vm_area_dup(mpnt); 644 if (!tmp) 645 goto fail_nomem; 646 retval = vma_dup_policy(mpnt, tmp); 647 if (retval) 648 goto fail_nomem_policy; 649 tmp->vm_mm = mm; 650 retval = dup_userfaultfd(tmp, &uf); 651 if (retval) 652 goto fail_nomem_anon_vma_fork; 653 if (tmp->vm_flags & VM_WIPEONFORK) { 654 /* 655 * VM_WIPEONFORK gets a clean slate in the child. 656 * Don't prepare anon_vma until fault since we don't 657 * copy page for current vma. 658 */ 659 tmp->anon_vma = NULL; 660 } else if (anon_vma_fork(tmp, mpnt)) 661 goto fail_nomem_anon_vma_fork; 662 vm_flags_clear(tmp, VM_LOCKED_MASK); 663 file = tmp->vm_file; 664 if (file) { 665 struct address_space *mapping = file->f_mapping; 666 667 get_file(file); 668 i_mmap_lock_write(mapping); 669 if (tmp->vm_flags & VM_SHARED) 670 mapping_allow_writable(mapping); 671 flush_dcache_mmap_lock(mapping); 672 /* insert tmp into the share list, just after mpnt */ 673 vma_interval_tree_insert_after(tmp, mpnt, 674 &mapping->i_mmap); 675 flush_dcache_mmap_unlock(mapping); 676 i_mmap_unlock_write(mapping); 677 } 678 679 /* 680 * Copy/update hugetlb private vma information. 681 */ 682 if (is_vm_hugetlb_page(tmp)) 683 hugetlb_dup_vma_private(tmp); 684 685 /* Link the vma into the MT */ 686 if (vma_iter_bulk_store(&vmi, tmp)) 687 goto fail_nomem_vmi_store; 688 689 mm->map_count++; 690 if (!(tmp->vm_flags & VM_WIPEONFORK)) 691 retval = copy_page_range(tmp, mpnt); 692 693 if (tmp->vm_ops && tmp->vm_ops->open) 694 tmp->vm_ops->open(tmp); 695 696 if (retval) 697 goto loop_out; 698 } 699 /* a new mm has just been created */ 700 retval = arch_dup_mmap(oldmm, mm); 701 loop_out: 702 vma_iter_free(&vmi); 703 out: 704 mmap_write_unlock(mm); 705 flush_tlb_mm(oldmm); 706 mmap_write_unlock(oldmm); 707 dup_userfaultfd_complete(&uf); 708 fail_uprobe_end: 709 uprobe_end_dup_mmap(); 710 return retval; 711 712 fail_nomem_vmi_store: 713 unlink_anon_vmas(tmp); 714 fail_nomem_anon_vma_fork: 715 mpol_put(vma_policy(tmp)); 716 fail_nomem_policy: 717 vm_area_free(tmp); 718 fail_nomem: 719 retval = -ENOMEM; 720 vm_unacct_memory(charge); 721 goto loop_out; 722 } 723 724 static inline int mm_alloc_pgd(struct mm_struct *mm) 725 { 726 mm->pgd = pgd_alloc(mm); 727 if (unlikely(!mm->pgd)) 728 return -ENOMEM; 729 return 0; 730 } 731 732 static inline void mm_free_pgd(struct mm_struct *mm) 733 { 734 pgd_free(mm, mm->pgd); 735 } 736 #else 737 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 738 { 739 mmap_write_lock(oldmm); 740 dup_mm_exe_file(mm, oldmm); 741 mmap_write_unlock(oldmm); 742 return 0; 743 } 744 #define mm_alloc_pgd(mm) (0) 745 #define mm_free_pgd(mm) 746 #endif /* CONFIG_MMU */ 747 748 static void check_mm(struct mm_struct *mm) 749 { 750 int i; 751 752 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 753 "Please make sure 'struct resident_page_types[]' is updated as well"); 754 755 for (i = 0; i < NR_MM_COUNTERS; i++) { 756 long x = percpu_counter_sum(&mm->rss_stat[i]); 757 758 if (likely(!x)) 759 continue; 760 761 /* Making sure this is not due to race with CPU offlining. */ 762 x = percpu_counter_sum_all(&mm->rss_stat[i]); 763 if (unlikely(x)) 764 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 765 mm, resident_page_types[i], x); 766 } 767 768 if (mm_pgtables_bytes(mm)) 769 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 770 mm_pgtables_bytes(mm)); 771 772 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 773 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 774 #endif 775 } 776 777 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 778 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 779 780 /* 781 * Called when the last reference to the mm 782 * is dropped: either by a lazy thread or by 783 * mmput. Free the page directory and the mm. 784 */ 785 void __mmdrop(struct mm_struct *mm) 786 { 787 int i; 788 789 BUG_ON(mm == &init_mm); 790 WARN_ON_ONCE(mm == current->mm); 791 WARN_ON_ONCE(mm == current->active_mm); 792 mm_free_pgd(mm); 793 destroy_context(mm); 794 mmu_notifier_subscriptions_destroy(mm); 795 check_mm(mm); 796 put_user_ns(mm->user_ns); 797 mm_pasid_drop(mm); 798 799 for (i = 0; i < NR_MM_COUNTERS; i++) 800 percpu_counter_destroy(&mm->rss_stat[i]); 801 free_mm(mm); 802 } 803 EXPORT_SYMBOL_GPL(__mmdrop); 804 805 static void mmdrop_async_fn(struct work_struct *work) 806 { 807 struct mm_struct *mm; 808 809 mm = container_of(work, struct mm_struct, async_put_work); 810 __mmdrop(mm); 811 } 812 813 static void mmdrop_async(struct mm_struct *mm) 814 { 815 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 816 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 817 schedule_work(&mm->async_put_work); 818 } 819 } 820 821 static inline void free_signal_struct(struct signal_struct *sig) 822 { 823 taskstats_tgid_free(sig); 824 sched_autogroup_exit(sig); 825 /* 826 * __mmdrop is not safe to call from softirq context on x86 due to 827 * pgd_dtor so postpone it to the async context 828 */ 829 if (sig->oom_mm) 830 mmdrop_async(sig->oom_mm); 831 kmem_cache_free(signal_cachep, sig); 832 } 833 834 static inline void put_signal_struct(struct signal_struct *sig) 835 { 836 if (refcount_dec_and_test(&sig->sigcnt)) 837 free_signal_struct(sig); 838 } 839 840 void __put_task_struct(struct task_struct *tsk) 841 { 842 WARN_ON(!tsk->exit_state); 843 WARN_ON(refcount_read(&tsk->usage)); 844 WARN_ON(tsk == current); 845 846 io_uring_free(tsk); 847 cgroup_free(tsk); 848 task_numa_free(tsk, true); 849 security_task_free(tsk); 850 bpf_task_storage_free(tsk); 851 exit_creds(tsk); 852 delayacct_tsk_free(tsk); 853 put_signal_struct(tsk->signal); 854 sched_core_free(tsk); 855 free_task(tsk); 856 } 857 EXPORT_SYMBOL_GPL(__put_task_struct); 858 859 void __init __weak arch_task_cache_init(void) { } 860 861 /* 862 * set_max_threads 863 */ 864 static void set_max_threads(unsigned int max_threads_suggested) 865 { 866 u64 threads; 867 unsigned long nr_pages = totalram_pages(); 868 869 /* 870 * The number of threads shall be limited such that the thread 871 * structures may only consume a small part of the available memory. 872 */ 873 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 874 threads = MAX_THREADS; 875 else 876 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 877 (u64) THREAD_SIZE * 8UL); 878 879 if (threads > max_threads_suggested) 880 threads = max_threads_suggested; 881 882 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 883 } 884 885 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 886 /* Initialized by the architecture: */ 887 int arch_task_struct_size __read_mostly; 888 #endif 889 890 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 891 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 892 { 893 /* Fetch thread_struct whitelist for the architecture. */ 894 arch_thread_struct_whitelist(offset, size); 895 896 /* 897 * Handle zero-sized whitelist or empty thread_struct, otherwise 898 * adjust offset to position of thread_struct in task_struct. 899 */ 900 if (unlikely(*size == 0)) 901 *offset = 0; 902 else 903 *offset += offsetof(struct task_struct, thread); 904 } 905 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 906 907 void __init fork_init(void) 908 { 909 int i; 910 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 911 #ifndef ARCH_MIN_TASKALIGN 912 #define ARCH_MIN_TASKALIGN 0 913 #endif 914 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 915 unsigned long useroffset, usersize; 916 917 /* create a slab on which task_structs can be allocated */ 918 task_struct_whitelist(&useroffset, &usersize); 919 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 920 arch_task_struct_size, align, 921 SLAB_PANIC|SLAB_ACCOUNT, 922 useroffset, usersize, NULL); 923 #endif 924 925 /* do the arch specific task caches init */ 926 arch_task_cache_init(); 927 928 set_max_threads(MAX_THREADS); 929 930 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 931 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 932 init_task.signal->rlim[RLIMIT_SIGPENDING] = 933 init_task.signal->rlim[RLIMIT_NPROC]; 934 935 for (i = 0; i < UCOUNT_COUNTS; i++) 936 init_user_ns.ucount_max[i] = max_threads/2; 937 938 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 939 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 940 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 941 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 942 943 #ifdef CONFIG_VMAP_STACK 944 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 945 NULL, free_vm_stack_cache); 946 #endif 947 948 scs_init(); 949 950 lockdep_init_task(&init_task); 951 uprobes_init(); 952 } 953 954 int __weak arch_dup_task_struct(struct task_struct *dst, 955 struct task_struct *src) 956 { 957 *dst = *src; 958 return 0; 959 } 960 961 void set_task_stack_end_magic(struct task_struct *tsk) 962 { 963 unsigned long *stackend; 964 965 stackend = end_of_stack(tsk); 966 *stackend = STACK_END_MAGIC; /* for overflow detection */ 967 } 968 969 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 970 { 971 struct task_struct *tsk; 972 int err; 973 974 if (node == NUMA_NO_NODE) 975 node = tsk_fork_get_node(orig); 976 tsk = alloc_task_struct_node(node); 977 if (!tsk) 978 return NULL; 979 980 err = arch_dup_task_struct(tsk, orig); 981 if (err) 982 goto free_tsk; 983 984 err = alloc_thread_stack_node(tsk, node); 985 if (err) 986 goto free_tsk; 987 988 #ifdef CONFIG_THREAD_INFO_IN_TASK 989 refcount_set(&tsk->stack_refcount, 1); 990 #endif 991 account_kernel_stack(tsk, 1); 992 993 err = scs_prepare(tsk, node); 994 if (err) 995 goto free_stack; 996 997 #ifdef CONFIG_SECCOMP 998 /* 999 * We must handle setting up seccomp filters once we're under 1000 * the sighand lock in case orig has changed between now and 1001 * then. Until then, filter must be NULL to avoid messing up 1002 * the usage counts on the error path calling free_task. 1003 */ 1004 tsk->seccomp.filter = NULL; 1005 #endif 1006 1007 setup_thread_stack(tsk, orig); 1008 clear_user_return_notifier(tsk); 1009 clear_tsk_need_resched(tsk); 1010 set_task_stack_end_magic(tsk); 1011 clear_syscall_work_syscall_user_dispatch(tsk); 1012 1013 #ifdef CONFIG_STACKPROTECTOR 1014 tsk->stack_canary = get_random_canary(); 1015 #endif 1016 if (orig->cpus_ptr == &orig->cpus_mask) 1017 tsk->cpus_ptr = &tsk->cpus_mask; 1018 dup_user_cpus_ptr(tsk, orig, node); 1019 1020 /* 1021 * One for the user space visible state that goes away when reaped. 1022 * One for the scheduler. 1023 */ 1024 refcount_set(&tsk->rcu_users, 2); 1025 /* One for the rcu users */ 1026 refcount_set(&tsk->usage, 1); 1027 #ifdef CONFIG_BLK_DEV_IO_TRACE 1028 tsk->btrace_seq = 0; 1029 #endif 1030 tsk->splice_pipe = NULL; 1031 tsk->task_frag.page = NULL; 1032 tsk->wake_q.next = NULL; 1033 tsk->worker_private = NULL; 1034 1035 kcov_task_init(tsk); 1036 kmsan_task_create(tsk); 1037 kmap_local_fork(tsk); 1038 1039 #ifdef CONFIG_FAULT_INJECTION 1040 tsk->fail_nth = 0; 1041 #endif 1042 1043 #ifdef CONFIG_BLK_CGROUP 1044 tsk->throttle_disk = NULL; 1045 tsk->use_memdelay = 0; 1046 #endif 1047 1048 #ifdef CONFIG_IOMMU_SVA 1049 tsk->pasid_activated = 0; 1050 #endif 1051 1052 #ifdef CONFIG_MEMCG 1053 tsk->active_memcg = NULL; 1054 #endif 1055 1056 #ifdef CONFIG_CPU_SUP_INTEL 1057 tsk->reported_split_lock = 0; 1058 #endif 1059 1060 #ifdef CONFIG_SCHED_MM_CID 1061 tsk->mm_cid = -1; 1062 tsk->mm_cid_active = 0; 1063 #endif 1064 return tsk; 1065 1066 free_stack: 1067 exit_task_stack_account(tsk); 1068 free_thread_stack(tsk); 1069 free_tsk: 1070 free_task_struct(tsk); 1071 return NULL; 1072 } 1073 1074 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 1075 1076 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 1077 1078 static int __init coredump_filter_setup(char *s) 1079 { 1080 default_dump_filter = 1081 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 1082 MMF_DUMP_FILTER_MASK; 1083 return 1; 1084 } 1085 1086 __setup("coredump_filter=", coredump_filter_setup); 1087 1088 #include <linux/init_task.h> 1089 1090 static void mm_init_aio(struct mm_struct *mm) 1091 { 1092 #ifdef CONFIG_AIO 1093 spin_lock_init(&mm->ioctx_lock); 1094 mm->ioctx_table = NULL; 1095 #endif 1096 } 1097 1098 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1099 struct task_struct *p) 1100 { 1101 #ifdef CONFIG_MEMCG 1102 if (mm->owner == p) 1103 WRITE_ONCE(mm->owner, NULL); 1104 #endif 1105 } 1106 1107 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1108 { 1109 #ifdef CONFIG_MEMCG 1110 mm->owner = p; 1111 #endif 1112 } 1113 1114 static void mm_init_uprobes_state(struct mm_struct *mm) 1115 { 1116 #ifdef CONFIG_UPROBES 1117 mm->uprobes_state.xol_area = NULL; 1118 #endif 1119 } 1120 1121 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1122 struct user_namespace *user_ns) 1123 { 1124 int i; 1125 1126 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); 1127 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); 1128 atomic_set(&mm->mm_users, 1); 1129 atomic_set(&mm->mm_count, 1); 1130 seqcount_init(&mm->write_protect_seq); 1131 mmap_init_lock(mm); 1132 INIT_LIST_HEAD(&mm->mmlist); 1133 mm_pgtables_bytes_init(mm); 1134 mm->map_count = 0; 1135 mm->locked_vm = 0; 1136 atomic64_set(&mm->pinned_vm, 0); 1137 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1138 spin_lock_init(&mm->page_table_lock); 1139 spin_lock_init(&mm->arg_lock); 1140 mm_init_cpumask(mm); 1141 mm_init_aio(mm); 1142 mm_init_owner(mm, p); 1143 mm_pasid_init(mm); 1144 RCU_INIT_POINTER(mm->exe_file, NULL); 1145 mmu_notifier_subscriptions_init(mm); 1146 init_tlb_flush_pending(mm); 1147 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1148 mm->pmd_huge_pte = NULL; 1149 #endif 1150 mm_init_uprobes_state(mm); 1151 hugetlb_count_init(mm); 1152 1153 if (current->mm) { 1154 mm->flags = current->mm->flags & MMF_INIT_MASK; 1155 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1156 } else { 1157 mm->flags = default_dump_filter; 1158 mm->def_flags = 0; 1159 } 1160 1161 if (mm_alloc_pgd(mm)) 1162 goto fail_nopgd; 1163 1164 if (init_new_context(p, mm)) 1165 goto fail_nocontext; 1166 1167 for (i = 0; i < NR_MM_COUNTERS; i++) 1168 if (percpu_counter_init(&mm->rss_stat[i], 0, GFP_KERNEL_ACCOUNT)) 1169 goto fail_pcpu; 1170 1171 mm->user_ns = get_user_ns(user_ns); 1172 lru_gen_init_mm(mm); 1173 mm_init_cid(mm); 1174 return mm; 1175 1176 fail_pcpu: 1177 while (i > 0) 1178 percpu_counter_destroy(&mm->rss_stat[--i]); 1179 fail_nocontext: 1180 mm_free_pgd(mm); 1181 fail_nopgd: 1182 free_mm(mm); 1183 return NULL; 1184 } 1185 1186 /* 1187 * Allocate and initialize an mm_struct. 1188 */ 1189 struct mm_struct *mm_alloc(void) 1190 { 1191 struct mm_struct *mm; 1192 1193 mm = allocate_mm(); 1194 if (!mm) 1195 return NULL; 1196 1197 memset(mm, 0, sizeof(*mm)); 1198 return mm_init(mm, current, current_user_ns()); 1199 } 1200 1201 static inline void __mmput(struct mm_struct *mm) 1202 { 1203 VM_BUG_ON(atomic_read(&mm->mm_users)); 1204 1205 uprobe_clear_state(mm); 1206 exit_aio(mm); 1207 ksm_exit(mm); 1208 khugepaged_exit(mm); /* must run before exit_mmap */ 1209 exit_mmap(mm); 1210 mm_put_huge_zero_page(mm); 1211 set_mm_exe_file(mm, NULL); 1212 if (!list_empty(&mm->mmlist)) { 1213 spin_lock(&mmlist_lock); 1214 list_del(&mm->mmlist); 1215 spin_unlock(&mmlist_lock); 1216 } 1217 if (mm->binfmt) 1218 module_put(mm->binfmt->module); 1219 lru_gen_del_mm(mm); 1220 mmdrop(mm); 1221 } 1222 1223 /* 1224 * Decrement the use count and release all resources for an mm. 1225 */ 1226 void mmput(struct mm_struct *mm) 1227 { 1228 might_sleep(); 1229 1230 if (atomic_dec_and_test(&mm->mm_users)) 1231 __mmput(mm); 1232 } 1233 EXPORT_SYMBOL_GPL(mmput); 1234 1235 #ifdef CONFIG_MMU 1236 static void mmput_async_fn(struct work_struct *work) 1237 { 1238 struct mm_struct *mm = container_of(work, struct mm_struct, 1239 async_put_work); 1240 1241 __mmput(mm); 1242 } 1243 1244 void mmput_async(struct mm_struct *mm) 1245 { 1246 if (atomic_dec_and_test(&mm->mm_users)) { 1247 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1248 schedule_work(&mm->async_put_work); 1249 } 1250 } 1251 EXPORT_SYMBOL_GPL(mmput_async); 1252 #endif 1253 1254 /** 1255 * set_mm_exe_file - change a reference to the mm's executable file 1256 * 1257 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1258 * 1259 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1260 * invocations: in mmput() nobody alive left, in execve task is single 1261 * threaded. 1262 * 1263 * Can only fail if new_exe_file != NULL. 1264 */ 1265 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1266 { 1267 struct file *old_exe_file; 1268 1269 /* 1270 * It is safe to dereference the exe_file without RCU as 1271 * this function is only called if nobody else can access 1272 * this mm -- see comment above for justification. 1273 */ 1274 old_exe_file = rcu_dereference_raw(mm->exe_file); 1275 1276 if (new_exe_file) { 1277 /* 1278 * We expect the caller (i.e., sys_execve) to already denied 1279 * write access, so this is unlikely to fail. 1280 */ 1281 if (unlikely(deny_write_access(new_exe_file))) 1282 return -EACCES; 1283 get_file(new_exe_file); 1284 } 1285 rcu_assign_pointer(mm->exe_file, new_exe_file); 1286 if (old_exe_file) { 1287 allow_write_access(old_exe_file); 1288 fput(old_exe_file); 1289 } 1290 return 0; 1291 } 1292 1293 /** 1294 * replace_mm_exe_file - replace a reference to the mm's executable file 1295 * 1296 * This changes mm's executable file (shown as symlink /proc/[pid]/exe), 1297 * dealing with concurrent invocation and without grabbing the mmap lock in 1298 * write mode. 1299 * 1300 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1301 */ 1302 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1303 { 1304 struct vm_area_struct *vma; 1305 struct file *old_exe_file; 1306 int ret = 0; 1307 1308 /* Forbid mm->exe_file change if old file still mapped. */ 1309 old_exe_file = get_mm_exe_file(mm); 1310 if (old_exe_file) { 1311 VMA_ITERATOR(vmi, mm, 0); 1312 mmap_read_lock(mm); 1313 for_each_vma(vmi, vma) { 1314 if (!vma->vm_file) 1315 continue; 1316 if (path_equal(&vma->vm_file->f_path, 1317 &old_exe_file->f_path)) { 1318 ret = -EBUSY; 1319 break; 1320 } 1321 } 1322 mmap_read_unlock(mm); 1323 fput(old_exe_file); 1324 if (ret) 1325 return ret; 1326 } 1327 1328 /* set the new file, lockless */ 1329 ret = deny_write_access(new_exe_file); 1330 if (ret) 1331 return -EACCES; 1332 get_file(new_exe_file); 1333 1334 old_exe_file = xchg(&mm->exe_file, new_exe_file); 1335 if (old_exe_file) { 1336 /* 1337 * Don't race with dup_mmap() getting the file and disallowing 1338 * write access while someone might open the file writable. 1339 */ 1340 mmap_read_lock(mm); 1341 allow_write_access(old_exe_file); 1342 fput(old_exe_file); 1343 mmap_read_unlock(mm); 1344 } 1345 return 0; 1346 } 1347 1348 /** 1349 * get_mm_exe_file - acquire a reference to the mm's executable file 1350 * 1351 * Returns %NULL if mm has no associated executable file. 1352 * User must release file via fput(). 1353 */ 1354 struct file *get_mm_exe_file(struct mm_struct *mm) 1355 { 1356 struct file *exe_file; 1357 1358 rcu_read_lock(); 1359 exe_file = rcu_dereference(mm->exe_file); 1360 if (exe_file && !get_file_rcu(exe_file)) 1361 exe_file = NULL; 1362 rcu_read_unlock(); 1363 return exe_file; 1364 } 1365 1366 /** 1367 * get_task_exe_file - acquire a reference to the task's executable file 1368 * 1369 * Returns %NULL if task's mm (if any) has no associated executable file or 1370 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1371 * User must release file via fput(). 1372 */ 1373 struct file *get_task_exe_file(struct task_struct *task) 1374 { 1375 struct file *exe_file = NULL; 1376 struct mm_struct *mm; 1377 1378 task_lock(task); 1379 mm = task->mm; 1380 if (mm) { 1381 if (!(task->flags & PF_KTHREAD)) 1382 exe_file = get_mm_exe_file(mm); 1383 } 1384 task_unlock(task); 1385 return exe_file; 1386 } 1387 1388 /** 1389 * get_task_mm - acquire a reference to the task's mm 1390 * 1391 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1392 * this kernel workthread has transiently adopted a user mm with use_mm, 1393 * to do its AIO) is not set and if so returns a reference to it, after 1394 * bumping up the use count. User must release the mm via mmput() 1395 * after use. Typically used by /proc and ptrace. 1396 */ 1397 struct mm_struct *get_task_mm(struct task_struct *task) 1398 { 1399 struct mm_struct *mm; 1400 1401 task_lock(task); 1402 mm = task->mm; 1403 if (mm) { 1404 if (task->flags & PF_KTHREAD) 1405 mm = NULL; 1406 else 1407 mmget(mm); 1408 } 1409 task_unlock(task); 1410 return mm; 1411 } 1412 EXPORT_SYMBOL_GPL(get_task_mm); 1413 1414 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1415 { 1416 struct mm_struct *mm; 1417 int err; 1418 1419 err = down_read_killable(&task->signal->exec_update_lock); 1420 if (err) 1421 return ERR_PTR(err); 1422 1423 mm = get_task_mm(task); 1424 if (mm && mm != current->mm && 1425 !ptrace_may_access(task, mode)) { 1426 mmput(mm); 1427 mm = ERR_PTR(-EACCES); 1428 } 1429 up_read(&task->signal->exec_update_lock); 1430 1431 return mm; 1432 } 1433 1434 static void complete_vfork_done(struct task_struct *tsk) 1435 { 1436 struct completion *vfork; 1437 1438 task_lock(tsk); 1439 vfork = tsk->vfork_done; 1440 if (likely(vfork)) { 1441 tsk->vfork_done = NULL; 1442 complete(vfork); 1443 } 1444 task_unlock(tsk); 1445 } 1446 1447 static int wait_for_vfork_done(struct task_struct *child, 1448 struct completion *vfork) 1449 { 1450 unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE; 1451 int killed; 1452 1453 cgroup_enter_frozen(); 1454 killed = wait_for_completion_state(vfork, state); 1455 cgroup_leave_frozen(false); 1456 1457 if (killed) { 1458 task_lock(child); 1459 child->vfork_done = NULL; 1460 task_unlock(child); 1461 } 1462 1463 put_task_struct(child); 1464 return killed; 1465 } 1466 1467 /* Please note the differences between mmput and mm_release. 1468 * mmput is called whenever we stop holding onto a mm_struct, 1469 * error success whatever. 1470 * 1471 * mm_release is called after a mm_struct has been removed 1472 * from the current process. 1473 * 1474 * This difference is important for error handling, when we 1475 * only half set up a mm_struct for a new process and need to restore 1476 * the old one. Because we mmput the new mm_struct before 1477 * restoring the old one. . . 1478 * Eric Biederman 10 January 1998 1479 */ 1480 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1481 { 1482 uprobe_free_utask(tsk); 1483 1484 /* Get rid of any cached register state */ 1485 deactivate_mm(tsk, mm); 1486 1487 /* 1488 * Signal userspace if we're not exiting with a core dump 1489 * because we want to leave the value intact for debugging 1490 * purposes. 1491 */ 1492 if (tsk->clear_child_tid) { 1493 if (atomic_read(&mm->mm_users) > 1) { 1494 /* 1495 * We don't check the error code - if userspace has 1496 * not set up a proper pointer then tough luck. 1497 */ 1498 put_user(0, tsk->clear_child_tid); 1499 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1500 1, NULL, NULL, 0, 0); 1501 } 1502 tsk->clear_child_tid = NULL; 1503 } 1504 1505 /* 1506 * All done, finally we can wake up parent and return this mm to him. 1507 * Also kthread_stop() uses this completion for synchronization. 1508 */ 1509 if (tsk->vfork_done) 1510 complete_vfork_done(tsk); 1511 } 1512 1513 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1514 { 1515 futex_exit_release(tsk); 1516 mm_release(tsk, mm); 1517 } 1518 1519 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1520 { 1521 futex_exec_release(tsk); 1522 mm_release(tsk, mm); 1523 } 1524 1525 /** 1526 * dup_mm() - duplicates an existing mm structure 1527 * @tsk: the task_struct with which the new mm will be associated. 1528 * @oldmm: the mm to duplicate. 1529 * 1530 * Allocates a new mm structure and duplicates the provided @oldmm structure 1531 * content into it. 1532 * 1533 * Return: the duplicated mm or NULL on failure. 1534 */ 1535 static struct mm_struct *dup_mm(struct task_struct *tsk, 1536 struct mm_struct *oldmm) 1537 { 1538 struct mm_struct *mm; 1539 int err; 1540 1541 mm = allocate_mm(); 1542 if (!mm) 1543 goto fail_nomem; 1544 1545 memcpy(mm, oldmm, sizeof(*mm)); 1546 1547 if (!mm_init(mm, tsk, mm->user_ns)) 1548 goto fail_nomem; 1549 1550 err = dup_mmap(mm, oldmm); 1551 if (err) 1552 goto free_pt; 1553 1554 mm->hiwater_rss = get_mm_rss(mm); 1555 mm->hiwater_vm = mm->total_vm; 1556 1557 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1558 goto free_pt; 1559 1560 return mm; 1561 1562 free_pt: 1563 /* don't put binfmt in mmput, we haven't got module yet */ 1564 mm->binfmt = NULL; 1565 mm_init_owner(mm, NULL); 1566 mmput(mm); 1567 1568 fail_nomem: 1569 return NULL; 1570 } 1571 1572 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1573 { 1574 struct mm_struct *mm, *oldmm; 1575 1576 tsk->min_flt = tsk->maj_flt = 0; 1577 tsk->nvcsw = tsk->nivcsw = 0; 1578 #ifdef CONFIG_DETECT_HUNG_TASK 1579 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1580 tsk->last_switch_time = 0; 1581 #endif 1582 1583 tsk->mm = NULL; 1584 tsk->active_mm = NULL; 1585 1586 /* 1587 * Are we cloning a kernel thread? 1588 * 1589 * We need to steal a active VM for that.. 1590 */ 1591 oldmm = current->mm; 1592 if (!oldmm) 1593 return 0; 1594 1595 if (clone_flags & CLONE_VM) { 1596 mmget(oldmm); 1597 mm = oldmm; 1598 } else { 1599 mm = dup_mm(tsk, current->mm); 1600 if (!mm) 1601 return -ENOMEM; 1602 } 1603 1604 tsk->mm = mm; 1605 tsk->active_mm = mm; 1606 sched_mm_cid_fork(tsk); 1607 return 0; 1608 } 1609 1610 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1611 { 1612 struct fs_struct *fs = current->fs; 1613 if (clone_flags & CLONE_FS) { 1614 /* tsk->fs is already what we want */ 1615 spin_lock(&fs->lock); 1616 if (fs->in_exec) { 1617 spin_unlock(&fs->lock); 1618 return -EAGAIN; 1619 } 1620 fs->users++; 1621 spin_unlock(&fs->lock); 1622 return 0; 1623 } 1624 tsk->fs = copy_fs_struct(fs); 1625 if (!tsk->fs) 1626 return -ENOMEM; 1627 return 0; 1628 } 1629 1630 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1631 { 1632 struct files_struct *oldf, *newf; 1633 int error = 0; 1634 1635 /* 1636 * A background process may not have any files ... 1637 */ 1638 oldf = current->files; 1639 if (!oldf) 1640 goto out; 1641 1642 if (clone_flags & CLONE_FILES) { 1643 atomic_inc(&oldf->count); 1644 goto out; 1645 } 1646 1647 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1648 if (!newf) 1649 goto out; 1650 1651 tsk->files = newf; 1652 error = 0; 1653 out: 1654 return error; 1655 } 1656 1657 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1658 { 1659 struct sighand_struct *sig; 1660 1661 if (clone_flags & CLONE_SIGHAND) { 1662 refcount_inc(¤t->sighand->count); 1663 return 0; 1664 } 1665 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1666 RCU_INIT_POINTER(tsk->sighand, sig); 1667 if (!sig) 1668 return -ENOMEM; 1669 1670 refcount_set(&sig->count, 1); 1671 spin_lock_irq(¤t->sighand->siglock); 1672 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1673 spin_unlock_irq(¤t->sighand->siglock); 1674 1675 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1676 if (clone_flags & CLONE_CLEAR_SIGHAND) 1677 flush_signal_handlers(tsk, 0); 1678 1679 return 0; 1680 } 1681 1682 void __cleanup_sighand(struct sighand_struct *sighand) 1683 { 1684 if (refcount_dec_and_test(&sighand->count)) { 1685 signalfd_cleanup(sighand); 1686 /* 1687 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1688 * without an RCU grace period, see __lock_task_sighand(). 1689 */ 1690 kmem_cache_free(sighand_cachep, sighand); 1691 } 1692 } 1693 1694 /* 1695 * Initialize POSIX timer handling for a thread group. 1696 */ 1697 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1698 { 1699 struct posix_cputimers *pct = &sig->posix_cputimers; 1700 unsigned long cpu_limit; 1701 1702 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1703 posix_cputimers_group_init(pct, cpu_limit); 1704 } 1705 1706 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1707 { 1708 struct signal_struct *sig; 1709 1710 if (clone_flags & CLONE_THREAD) 1711 return 0; 1712 1713 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1714 tsk->signal = sig; 1715 if (!sig) 1716 return -ENOMEM; 1717 1718 sig->nr_threads = 1; 1719 sig->quick_threads = 1; 1720 atomic_set(&sig->live, 1); 1721 refcount_set(&sig->sigcnt, 1); 1722 1723 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1724 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1725 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1726 1727 init_waitqueue_head(&sig->wait_chldexit); 1728 sig->curr_target = tsk; 1729 init_sigpending(&sig->shared_pending); 1730 INIT_HLIST_HEAD(&sig->multiprocess); 1731 seqlock_init(&sig->stats_lock); 1732 prev_cputime_init(&sig->prev_cputime); 1733 1734 #ifdef CONFIG_POSIX_TIMERS 1735 INIT_LIST_HEAD(&sig->posix_timers); 1736 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1737 sig->real_timer.function = it_real_fn; 1738 #endif 1739 1740 task_lock(current->group_leader); 1741 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1742 task_unlock(current->group_leader); 1743 1744 posix_cpu_timers_init_group(sig); 1745 1746 tty_audit_fork(sig); 1747 sched_autogroup_fork(sig); 1748 1749 sig->oom_score_adj = current->signal->oom_score_adj; 1750 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1751 1752 mutex_init(&sig->cred_guard_mutex); 1753 init_rwsem(&sig->exec_update_lock); 1754 1755 return 0; 1756 } 1757 1758 static void copy_seccomp(struct task_struct *p) 1759 { 1760 #ifdef CONFIG_SECCOMP 1761 /* 1762 * Must be called with sighand->lock held, which is common to 1763 * all threads in the group. Holding cred_guard_mutex is not 1764 * needed because this new task is not yet running and cannot 1765 * be racing exec. 1766 */ 1767 assert_spin_locked(¤t->sighand->siglock); 1768 1769 /* Ref-count the new filter user, and assign it. */ 1770 get_seccomp_filter(current); 1771 p->seccomp = current->seccomp; 1772 1773 /* 1774 * Explicitly enable no_new_privs here in case it got set 1775 * between the task_struct being duplicated and holding the 1776 * sighand lock. The seccomp state and nnp must be in sync. 1777 */ 1778 if (task_no_new_privs(current)) 1779 task_set_no_new_privs(p); 1780 1781 /* 1782 * If the parent gained a seccomp mode after copying thread 1783 * flags and between before we held the sighand lock, we have 1784 * to manually enable the seccomp thread flag here. 1785 */ 1786 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1787 set_task_syscall_work(p, SECCOMP); 1788 #endif 1789 } 1790 1791 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1792 { 1793 current->clear_child_tid = tidptr; 1794 1795 return task_pid_vnr(current); 1796 } 1797 1798 static void rt_mutex_init_task(struct task_struct *p) 1799 { 1800 raw_spin_lock_init(&p->pi_lock); 1801 #ifdef CONFIG_RT_MUTEXES 1802 p->pi_waiters = RB_ROOT_CACHED; 1803 p->pi_top_task = NULL; 1804 p->pi_blocked_on = NULL; 1805 #endif 1806 } 1807 1808 static inline void init_task_pid_links(struct task_struct *task) 1809 { 1810 enum pid_type type; 1811 1812 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1813 INIT_HLIST_NODE(&task->pid_links[type]); 1814 } 1815 1816 static inline void 1817 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1818 { 1819 if (type == PIDTYPE_PID) 1820 task->thread_pid = pid; 1821 else 1822 task->signal->pids[type] = pid; 1823 } 1824 1825 static inline void rcu_copy_process(struct task_struct *p) 1826 { 1827 #ifdef CONFIG_PREEMPT_RCU 1828 p->rcu_read_lock_nesting = 0; 1829 p->rcu_read_unlock_special.s = 0; 1830 p->rcu_blocked_node = NULL; 1831 INIT_LIST_HEAD(&p->rcu_node_entry); 1832 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1833 #ifdef CONFIG_TASKS_RCU 1834 p->rcu_tasks_holdout = false; 1835 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1836 p->rcu_tasks_idle_cpu = -1; 1837 #endif /* #ifdef CONFIG_TASKS_RCU */ 1838 #ifdef CONFIG_TASKS_TRACE_RCU 1839 p->trc_reader_nesting = 0; 1840 p->trc_reader_special.s = 0; 1841 INIT_LIST_HEAD(&p->trc_holdout_list); 1842 INIT_LIST_HEAD(&p->trc_blkd_node); 1843 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1844 } 1845 1846 struct pid *pidfd_pid(const struct file *file) 1847 { 1848 if (file->f_op == &pidfd_fops) 1849 return file->private_data; 1850 1851 return ERR_PTR(-EBADF); 1852 } 1853 1854 static int pidfd_release(struct inode *inode, struct file *file) 1855 { 1856 struct pid *pid = file->private_data; 1857 1858 file->private_data = NULL; 1859 put_pid(pid); 1860 return 0; 1861 } 1862 1863 #ifdef CONFIG_PROC_FS 1864 /** 1865 * pidfd_show_fdinfo - print information about a pidfd 1866 * @m: proc fdinfo file 1867 * @f: file referencing a pidfd 1868 * 1869 * Pid: 1870 * This function will print the pid that a given pidfd refers to in the 1871 * pid namespace of the procfs instance. 1872 * If the pid namespace of the process is not a descendant of the pid 1873 * namespace of the procfs instance 0 will be shown as its pid. This is 1874 * similar to calling getppid() on a process whose parent is outside of 1875 * its pid namespace. 1876 * 1877 * NSpid: 1878 * If pid namespaces are supported then this function will also print 1879 * the pid of a given pidfd refers to for all descendant pid namespaces 1880 * starting from the current pid namespace of the instance, i.e. the 1881 * Pid field and the first entry in the NSpid field will be identical. 1882 * If the pid namespace of the process is not a descendant of the pid 1883 * namespace of the procfs instance 0 will be shown as its first NSpid 1884 * entry and no others will be shown. 1885 * Note that this differs from the Pid and NSpid fields in 1886 * /proc/<pid>/status where Pid and NSpid are always shown relative to 1887 * the pid namespace of the procfs instance. The difference becomes 1888 * obvious when sending around a pidfd between pid namespaces from a 1889 * different branch of the tree, i.e. where no ancestral relation is 1890 * present between the pid namespaces: 1891 * - create two new pid namespaces ns1 and ns2 in the initial pid 1892 * namespace (also take care to create new mount namespaces in the 1893 * new pid namespace and mount procfs) 1894 * - create a process with a pidfd in ns1 1895 * - send pidfd from ns1 to ns2 1896 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 1897 * have exactly one entry, which is 0 1898 */ 1899 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 1900 { 1901 struct pid *pid = f->private_data; 1902 struct pid_namespace *ns; 1903 pid_t nr = -1; 1904 1905 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 1906 ns = proc_pid_ns(file_inode(m->file)->i_sb); 1907 nr = pid_nr_ns(pid, ns); 1908 } 1909 1910 seq_put_decimal_ll(m, "Pid:\t", nr); 1911 1912 #ifdef CONFIG_PID_NS 1913 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 1914 if (nr > 0) { 1915 int i; 1916 1917 /* If nr is non-zero it means that 'pid' is valid and that 1918 * ns, i.e. the pid namespace associated with the procfs 1919 * instance, is in the pid namespace hierarchy of pid. 1920 * Start at one below the already printed level. 1921 */ 1922 for (i = ns->level + 1; i <= pid->level; i++) 1923 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 1924 } 1925 #endif 1926 seq_putc(m, '\n'); 1927 } 1928 #endif 1929 1930 /* 1931 * Poll support for process exit notification. 1932 */ 1933 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 1934 { 1935 struct pid *pid = file->private_data; 1936 __poll_t poll_flags = 0; 1937 1938 poll_wait(file, &pid->wait_pidfd, pts); 1939 1940 /* 1941 * Inform pollers only when the whole thread group exits. 1942 * If the thread group leader exits before all other threads in the 1943 * group, then poll(2) should block, similar to the wait(2) family. 1944 */ 1945 if (thread_group_exited(pid)) 1946 poll_flags = EPOLLIN | EPOLLRDNORM; 1947 1948 return poll_flags; 1949 } 1950 1951 const struct file_operations pidfd_fops = { 1952 .release = pidfd_release, 1953 .poll = pidfd_poll, 1954 #ifdef CONFIG_PROC_FS 1955 .show_fdinfo = pidfd_show_fdinfo, 1956 #endif 1957 }; 1958 1959 static void __delayed_free_task(struct rcu_head *rhp) 1960 { 1961 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1962 1963 free_task(tsk); 1964 } 1965 1966 static __always_inline void delayed_free_task(struct task_struct *tsk) 1967 { 1968 if (IS_ENABLED(CONFIG_MEMCG)) 1969 call_rcu(&tsk->rcu, __delayed_free_task); 1970 else 1971 free_task(tsk); 1972 } 1973 1974 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 1975 { 1976 /* Skip if kernel thread */ 1977 if (!tsk->mm) 1978 return; 1979 1980 /* Skip if spawning a thread or using vfork */ 1981 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 1982 return; 1983 1984 /* We need to synchronize with __set_oom_adj */ 1985 mutex_lock(&oom_adj_mutex); 1986 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 1987 /* Update the values in case they were changed after copy_signal */ 1988 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 1989 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 1990 mutex_unlock(&oom_adj_mutex); 1991 } 1992 1993 #ifdef CONFIG_RV 1994 static void rv_task_fork(struct task_struct *p) 1995 { 1996 int i; 1997 1998 for (i = 0; i < RV_PER_TASK_MONITORS; i++) 1999 p->rv[i].da_mon.monitoring = false; 2000 } 2001 #else 2002 #define rv_task_fork(p) do {} while (0) 2003 #endif 2004 2005 /* 2006 * This creates a new process as a copy of the old one, 2007 * but does not actually start it yet. 2008 * 2009 * It copies the registers, and all the appropriate 2010 * parts of the process environment (as per the clone 2011 * flags). The actual kick-off is left to the caller. 2012 */ 2013 static __latent_entropy struct task_struct *copy_process( 2014 struct pid *pid, 2015 int trace, 2016 int node, 2017 struct kernel_clone_args *args) 2018 { 2019 int pidfd = -1, retval; 2020 struct task_struct *p; 2021 struct multiprocess_signals delayed; 2022 struct file *pidfile = NULL; 2023 const u64 clone_flags = args->flags; 2024 struct nsproxy *nsp = current->nsproxy; 2025 2026 /* 2027 * Don't allow sharing the root directory with processes in a different 2028 * namespace 2029 */ 2030 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 2031 return ERR_PTR(-EINVAL); 2032 2033 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 2034 return ERR_PTR(-EINVAL); 2035 2036 /* 2037 * Thread groups must share signals as well, and detached threads 2038 * can only be started up within the thread group. 2039 */ 2040 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 2041 return ERR_PTR(-EINVAL); 2042 2043 /* 2044 * Shared signal handlers imply shared VM. By way of the above, 2045 * thread groups also imply shared VM. Blocking this case allows 2046 * for various simplifications in other code. 2047 */ 2048 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 2049 return ERR_PTR(-EINVAL); 2050 2051 /* 2052 * Siblings of global init remain as zombies on exit since they are 2053 * not reaped by their parent (swapper). To solve this and to avoid 2054 * multi-rooted process trees, prevent global and container-inits 2055 * from creating siblings. 2056 */ 2057 if ((clone_flags & CLONE_PARENT) && 2058 current->signal->flags & SIGNAL_UNKILLABLE) 2059 return ERR_PTR(-EINVAL); 2060 2061 /* 2062 * If the new process will be in a different pid or user namespace 2063 * do not allow it to share a thread group with the forking task. 2064 */ 2065 if (clone_flags & CLONE_THREAD) { 2066 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 2067 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 2068 return ERR_PTR(-EINVAL); 2069 } 2070 2071 if (clone_flags & CLONE_PIDFD) { 2072 /* 2073 * - CLONE_DETACHED is blocked so that we can potentially 2074 * reuse it later for CLONE_PIDFD. 2075 * - CLONE_THREAD is blocked until someone really needs it. 2076 */ 2077 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 2078 return ERR_PTR(-EINVAL); 2079 } 2080 2081 /* 2082 * Force any signals received before this point to be delivered 2083 * before the fork happens. Collect up signals sent to multiple 2084 * processes that happen during the fork and delay them so that 2085 * they appear to happen after the fork. 2086 */ 2087 sigemptyset(&delayed.signal); 2088 INIT_HLIST_NODE(&delayed.node); 2089 2090 spin_lock_irq(¤t->sighand->siglock); 2091 if (!(clone_flags & CLONE_THREAD)) 2092 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2093 recalc_sigpending(); 2094 spin_unlock_irq(¤t->sighand->siglock); 2095 retval = -ERESTARTNOINTR; 2096 if (task_sigpending(current)) 2097 goto fork_out; 2098 2099 retval = -ENOMEM; 2100 p = dup_task_struct(current, node); 2101 if (!p) 2102 goto fork_out; 2103 p->flags &= ~PF_KTHREAD; 2104 if (args->kthread) 2105 p->flags |= PF_KTHREAD; 2106 if (args->io_thread) { 2107 /* 2108 * Mark us an IO worker, and block any signal that isn't 2109 * fatal or STOP 2110 */ 2111 p->flags |= PF_IO_WORKER; 2112 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2113 } 2114 2115 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2116 /* 2117 * Clear TID on mm_release()? 2118 */ 2119 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2120 2121 ftrace_graph_init_task(p); 2122 2123 rt_mutex_init_task(p); 2124 2125 lockdep_assert_irqs_enabled(); 2126 #ifdef CONFIG_PROVE_LOCKING 2127 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2128 #endif 2129 retval = copy_creds(p, clone_flags); 2130 if (retval < 0) 2131 goto bad_fork_free; 2132 2133 retval = -EAGAIN; 2134 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2135 if (p->real_cred->user != INIT_USER && 2136 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2137 goto bad_fork_cleanup_count; 2138 } 2139 current->flags &= ~PF_NPROC_EXCEEDED; 2140 2141 /* 2142 * If multiple threads are within copy_process(), then this check 2143 * triggers too late. This doesn't hurt, the check is only there 2144 * to stop root fork bombs. 2145 */ 2146 retval = -EAGAIN; 2147 if (data_race(nr_threads >= max_threads)) 2148 goto bad_fork_cleanup_count; 2149 2150 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2151 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2152 p->flags |= PF_FORKNOEXEC; 2153 INIT_LIST_HEAD(&p->children); 2154 INIT_LIST_HEAD(&p->sibling); 2155 rcu_copy_process(p); 2156 p->vfork_done = NULL; 2157 spin_lock_init(&p->alloc_lock); 2158 2159 init_sigpending(&p->pending); 2160 2161 p->utime = p->stime = p->gtime = 0; 2162 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2163 p->utimescaled = p->stimescaled = 0; 2164 #endif 2165 prev_cputime_init(&p->prev_cputime); 2166 2167 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2168 seqcount_init(&p->vtime.seqcount); 2169 p->vtime.starttime = 0; 2170 p->vtime.state = VTIME_INACTIVE; 2171 #endif 2172 2173 #ifdef CONFIG_IO_URING 2174 p->io_uring = NULL; 2175 #endif 2176 2177 #if defined(SPLIT_RSS_COUNTING) 2178 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 2179 #endif 2180 2181 p->default_timer_slack_ns = current->timer_slack_ns; 2182 2183 #ifdef CONFIG_PSI 2184 p->psi_flags = 0; 2185 #endif 2186 2187 task_io_accounting_init(&p->ioac); 2188 acct_clear_integrals(p); 2189 2190 posix_cputimers_init(&p->posix_cputimers); 2191 2192 p->io_context = NULL; 2193 audit_set_context(p, NULL); 2194 cgroup_fork(p); 2195 if (args->kthread) { 2196 if (!set_kthread_struct(p)) 2197 goto bad_fork_cleanup_delayacct; 2198 } 2199 #ifdef CONFIG_NUMA 2200 p->mempolicy = mpol_dup(p->mempolicy); 2201 if (IS_ERR(p->mempolicy)) { 2202 retval = PTR_ERR(p->mempolicy); 2203 p->mempolicy = NULL; 2204 goto bad_fork_cleanup_delayacct; 2205 } 2206 #endif 2207 #ifdef CONFIG_CPUSETS 2208 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2209 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2210 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2211 #endif 2212 #ifdef CONFIG_TRACE_IRQFLAGS 2213 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2214 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2215 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2216 p->softirqs_enabled = 1; 2217 p->softirq_context = 0; 2218 #endif 2219 2220 p->pagefault_disabled = 0; 2221 2222 #ifdef CONFIG_LOCKDEP 2223 lockdep_init_task(p); 2224 #endif 2225 2226 #ifdef CONFIG_DEBUG_MUTEXES 2227 p->blocked_on = NULL; /* not blocked yet */ 2228 #endif 2229 #ifdef CONFIG_BCACHE 2230 p->sequential_io = 0; 2231 p->sequential_io_avg = 0; 2232 #endif 2233 #ifdef CONFIG_BPF_SYSCALL 2234 RCU_INIT_POINTER(p->bpf_storage, NULL); 2235 p->bpf_ctx = NULL; 2236 #endif 2237 2238 /* Perform scheduler related setup. Assign this task to a CPU. */ 2239 retval = sched_fork(clone_flags, p); 2240 if (retval) 2241 goto bad_fork_cleanup_policy; 2242 2243 retval = perf_event_init_task(p, clone_flags); 2244 if (retval) 2245 goto bad_fork_cleanup_policy; 2246 retval = audit_alloc(p); 2247 if (retval) 2248 goto bad_fork_cleanup_perf; 2249 /* copy all the process information */ 2250 shm_init_task(p); 2251 retval = security_task_alloc(p, clone_flags); 2252 if (retval) 2253 goto bad_fork_cleanup_audit; 2254 retval = copy_semundo(clone_flags, p); 2255 if (retval) 2256 goto bad_fork_cleanup_security; 2257 retval = copy_files(clone_flags, p); 2258 if (retval) 2259 goto bad_fork_cleanup_semundo; 2260 retval = copy_fs(clone_flags, p); 2261 if (retval) 2262 goto bad_fork_cleanup_files; 2263 retval = copy_sighand(clone_flags, p); 2264 if (retval) 2265 goto bad_fork_cleanup_fs; 2266 retval = copy_signal(clone_flags, p); 2267 if (retval) 2268 goto bad_fork_cleanup_sighand; 2269 retval = copy_mm(clone_flags, p); 2270 if (retval) 2271 goto bad_fork_cleanup_signal; 2272 retval = copy_namespaces(clone_flags, p); 2273 if (retval) 2274 goto bad_fork_cleanup_mm; 2275 retval = copy_io(clone_flags, p); 2276 if (retval) 2277 goto bad_fork_cleanup_namespaces; 2278 retval = copy_thread(p, args); 2279 if (retval) 2280 goto bad_fork_cleanup_io; 2281 2282 stackleak_task_init(p); 2283 2284 if (pid != &init_struct_pid) { 2285 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2286 args->set_tid_size); 2287 if (IS_ERR(pid)) { 2288 retval = PTR_ERR(pid); 2289 goto bad_fork_cleanup_thread; 2290 } 2291 } 2292 2293 /* 2294 * This has to happen after we've potentially unshared the file 2295 * descriptor table (so that the pidfd doesn't leak into the child 2296 * if the fd table isn't shared). 2297 */ 2298 if (clone_flags & CLONE_PIDFD) { 2299 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2300 if (retval < 0) 2301 goto bad_fork_free_pid; 2302 2303 pidfd = retval; 2304 2305 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2306 O_RDWR | O_CLOEXEC); 2307 if (IS_ERR(pidfile)) { 2308 put_unused_fd(pidfd); 2309 retval = PTR_ERR(pidfile); 2310 goto bad_fork_free_pid; 2311 } 2312 get_pid(pid); /* held by pidfile now */ 2313 2314 retval = put_user(pidfd, args->pidfd); 2315 if (retval) 2316 goto bad_fork_put_pidfd; 2317 } 2318 2319 #ifdef CONFIG_BLOCK 2320 p->plug = NULL; 2321 #endif 2322 futex_init_task(p); 2323 2324 /* 2325 * sigaltstack should be cleared when sharing the same VM 2326 */ 2327 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2328 sas_ss_reset(p); 2329 2330 /* 2331 * Syscall tracing and stepping should be turned off in the 2332 * child regardless of CLONE_PTRACE. 2333 */ 2334 user_disable_single_step(p); 2335 clear_task_syscall_work(p, SYSCALL_TRACE); 2336 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2337 clear_task_syscall_work(p, SYSCALL_EMU); 2338 #endif 2339 clear_tsk_latency_tracing(p); 2340 2341 /* ok, now we should be set up.. */ 2342 p->pid = pid_nr(pid); 2343 if (clone_flags & CLONE_THREAD) { 2344 p->group_leader = current->group_leader; 2345 p->tgid = current->tgid; 2346 } else { 2347 p->group_leader = p; 2348 p->tgid = p->pid; 2349 } 2350 2351 p->nr_dirtied = 0; 2352 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2353 p->dirty_paused_when = 0; 2354 2355 p->pdeath_signal = 0; 2356 INIT_LIST_HEAD(&p->thread_group); 2357 p->task_works = NULL; 2358 clear_posix_cputimers_work(p); 2359 2360 #ifdef CONFIG_KRETPROBES 2361 p->kretprobe_instances.first = NULL; 2362 #endif 2363 #ifdef CONFIG_RETHOOK 2364 p->rethooks.first = NULL; 2365 #endif 2366 2367 /* 2368 * Ensure that the cgroup subsystem policies allow the new process to be 2369 * forked. It should be noted that the new process's css_set can be changed 2370 * between here and cgroup_post_fork() if an organisation operation is in 2371 * progress. 2372 */ 2373 retval = cgroup_can_fork(p, args); 2374 if (retval) 2375 goto bad_fork_put_pidfd; 2376 2377 /* 2378 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2379 * the new task on the correct runqueue. All this *before* the task 2380 * becomes visible. 2381 * 2382 * This isn't part of ->can_fork() because while the re-cloning is 2383 * cgroup specific, it unconditionally needs to place the task on a 2384 * runqueue. 2385 */ 2386 sched_cgroup_fork(p, args); 2387 2388 /* 2389 * From this point on we must avoid any synchronous user-space 2390 * communication until we take the tasklist-lock. In particular, we do 2391 * not want user-space to be able to predict the process start-time by 2392 * stalling fork(2) after we recorded the start_time but before it is 2393 * visible to the system. 2394 */ 2395 2396 p->start_time = ktime_get_ns(); 2397 p->start_boottime = ktime_get_boottime_ns(); 2398 2399 /* 2400 * Make it visible to the rest of the system, but dont wake it up yet. 2401 * Need tasklist lock for parent etc handling! 2402 */ 2403 write_lock_irq(&tasklist_lock); 2404 2405 /* CLONE_PARENT re-uses the old parent */ 2406 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2407 p->real_parent = current->real_parent; 2408 p->parent_exec_id = current->parent_exec_id; 2409 if (clone_flags & CLONE_THREAD) 2410 p->exit_signal = -1; 2411 else 2412 p->exit_signal = current->group_leader->exit_signal; 2413 } else { 2414 p->real_parent = current; 2415 p->parent_exec_id = current->self_exec_id; 2416 p->exit_signal = args->exit_signal; 2417 } 2418 2419 klp_copy_process(p); 2420 2421 sched_core_fork(p); 2422 2423 spin_lock(¤t->sighand->siglock); 2424 2425 rv_task_fork(p); 2426 2427 rseq_fork(p, clone_flags); 2428 2429 /* Don't start children in a dying pid namespace */ 2430 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2431 retval = -ENOMEM; 2432 goto bad_fork_cancel_cgroup; 2433 } 2434 2435 /* Let kill terminate clone/fork in the middle */ 2436 if (fatal_signal_pending(current)) { 2437 retval = -EINTR; 2438 goto bad_fork_cancel_cgroup; 2439 } 2440 2441 /* No more failure paths after this point. */ 2442 2443 /* 2444 * Copy seccomp details explicitly here, in case they were changed 2445 * before holding sighand lock. 2446 */ 2447 copy_seccomp(p); 2448 2449 init_task_pid_links(p); 2450 if (likely(p->pid)) { 2451 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2452 2453 init_task_pid(p, PIDTYPE_PID, pid); 2454 if (thread_group_leader(p)) { 2455 init_task_pid(p, PIDTYPE_TGID, pid); 2456 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2457 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2458 2459 if (is_child_reaper(pid)) { 2460 ns_of_pid(pid)->child_reaper = p; 2461 p->signal->flags |= SIGNAL_UNKILLABLE; 2462 } 2463 p->signal->shared_pending.signal = delayed.signal; 2464 p->signal->tty = tty_kref_get(current->signal->tty); 2465 /* 2466 * Inherit has_child_subreaper flag under the same 2467 * tasklist_lock with adding child to the process tree 2468 * for propagate_has_child_subreaper optimization. 2469 */ 2470 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2471 p->real_parent->signal->is_child_subreaper; 2472 list_add_tail(&p->sibling, &p->real_parent->children); 2473 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2474 attach_pid(p, PIDTYPE_TGID); 2475 attach_pid(p, PIDTYPE_PGID); 2476 attach_pid(p, PIDTYPE_SID); 2477 __this_cpu_inc(process_counts); 2478 } else { 2479 current->signal->nr_threads++; 2480 current->signal->quick_threads++; 2481 atomic_inc(¤t->signal->live); 2482 refcount_inc(¤t->signal->sigcnt); 2483 task_join_group_stop(p); 2484 list_add_tail_rcu(&p->thread_group, 2485 &p->group_leader->thread_group); 2486 list_add_tail_rcu(&p->thread_node, 2487 &p->signal->thread_head); 2488 } 2489 attach_pid(p, PIDTYPE_PID); 2490 nr_threads++; 2491 } 2492 total_forks++; 2493 hlist_del_init(&delayed.node); 2494 spin_unlock(¤t->sighand->siglock); 2495 syscall_tracepoint_update(p); 2496 write_unlock_irq(&tasklist_lock); 2497 2498 if (pidfile) 2499 fd_install(pidfd, pidfile); 2500 2501 proc_fork_connector(p); 2502 sched_post_fork(p); 2503 cgroup_post_fork(p, args); 2504 perf_event_fork(p); 2505 2506 trace_task_newtask(p, clone_flags); 2507 uprobe_copy_process(p, clone_flags); 2508 2509 copy_oom_score_adj(clone_flags, p); 2510 2511 return p; 2512 2513 bad_fork_cancel_cgroup: 2514 sched_core_free(p); 2515 spin_unlock(¤t->sighand->siglock); 2516 write_unlock_irq(&tasklist_lock); 2517 cgroup_cancel_fork(p, args); 2518 bad_fork_put_pidfd: 2519 if (clone_flags & CLONE_PIDFD) { 2520 fput(pidfile); 2521 put_unused_fd(pidfd); 2522 } 2523 bad_fork_free_pid: 2524 if (pid != &init_struct_pid) 2525 free_pid(pid); 2526 bad_fork_cleanup_thread: 2527 exit_thread(p); 2528 bad_fork_cleanup_io: 2529 if (p->io_context) 2530 exit_io_context(p); 2531 bad_fork_cleanup_namespaces: 2532 exit_task_namespaces(p); 2533 bad_fork_cleanup_mm: 2534 if (p->mm) { 2535 mm_clear_owner(p->mm, p); 2536 mmput(p->mm); 2537 } 2538 bad_fork_cleanup_signal: 2539 if (!(clone_flags & CLONE_THREAD)) 2540 free_signal_struct(p->signal); 2541 bad_fork_cleanup_sighand: 2542 __cleanup_sighand(p->sighand); 2543 bad_fork_cleanup_fs: 2544 exit_fs(p); /* blocking */ 2545 bad_fork_cleanup_files: 2546 exit_files(p); /* blocking */ 2547 bad_fork_cleanup_semundo: 2548 exit_sem(p); 2549 bad_fork_cleanup_security: 2550 security_task_free(p); 2551 bad_fork_cleanup_audit: 2552 audit_free(p); 2553 bad_fork_cleanup_perf: 2554 perf_event_free_task(p); 2555 bad_fork_cleanup_policy: 2556 lockdep_free_task(p); 2557 #ifdef CONFIG_NUMA 2558 mpol_put(p->mempolicy); 2559 #endif 2560 bad_fork_cleanup_delayacct: 2561 delayacct_tsk_free(p); 2562 bad_fork_cleanup_count: 2563 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2564 exit_creds(p); 2565 bad_fork_free: 2566 WRITE_ONCE(p->__state, TASK_DEAD); 2567 exit_task_stack_account(p); 2568 put_task_stack(p); 2569 delayed_free_task(p); 2570 fork_out: 2571 spin_lock_irq(¤t->sighand->siglock); 2572 hlist_del_init(&delayed.node); 2573 spin_unlock_irq(¤t->sighand->siglock); 2574 return ERR_PTR(retval); 2575 } 2576 2577 static inline void init_idle_pids(struct task_struct *idle) 2578 { 2579 enum pid_type type; 2580 2581 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2582 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2583 init_task_pid(idle, type, &init_struct_pid); 2584 } 2585 } 2586 2587 static int idle_dummy(void *dummy) 2588 { 2589 /* This function is never called */ 2590 return 0; 2591 } 2592 2593 struct task_struct * __init fork_idle(int cpu) 2594 { 2595 struct task_struct *task; 2596 struct kernel_clone_args args = { 2597 .flags = CLONE_VM, 2598 .fn = &idle_dummy, 2599 .fn_arg = NULL, 2600 .kthread = 1, 2601 .idle = 1, 2602 }; 2603 2604 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2605 if (!IS_ERR(task)) { 2606 init_idle_pids(task); 2607 init_idle(task, cpu); 2608 } 2609 2610 return task; 2611 } 2612 2613 /* 2614 * This is like kernel_clone(), but shaved down and tailored to just 2615 * creating io_uring workers. It returns a created task, or an error pointer. 2616 * The returned task is inactive, and the caller must fire it up through 2617 * wake_up_new_task(p). All signals are blocked in the created task. 2618 */ 2619 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2620 { 2621 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2622 CLONE_IO; 2623 struct kernel_clone_args args = { 2624 .flags = ((lower_32_bits(flags) | CLONE_VM | 2625 CLONE_UNTRACED) & ~CSIGNAL), 2626 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2627 .fn = fn, 2628 .fn_arg = arg, 2629 .io_thread = 1, 2630 }; 2631 2632 return copy_process(NULL, 0, node, &args); 2633 } 2634 2635 /* 2636 * Ok, this is the main fork-routine. 2637 * 2638 * It copies the process, and if successful kick-starts 2639 * it and waits for it to finish using the VM if required. 2640 * 2641 * args->exit_signal is expected to be checked for sanity by the caller. 2642 */ 2643 pid_t kernel_clone(struct kernel_clone_args *args) 2644 { 2645 u64 clone_flags = args->flags; 2646 struct completion vfork; 2647 struct pid *pid; 2648 struct task_struct *p; 2649 int trace = 0; 2650 pid_t nr; 2651 2652 /* 2653 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2654 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2655 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2656 * field in struct clone_args and it still doesn't make sense to have 2657 * them both point at the same memory location. Performing this check 2658 * here has the advantage that we don't need to have a separate helper 2659 * to check for legacy clone(). 2660 */ 2661 if ((args->flags & CLONE_PIDFD) && 2662 (args->flags & CLONE_PARENT_SETTID) && 2663 (args->pidfd == args->parent_tid)) 2664 return -EINVAL; 2665 2666 /* 2667 * Determine whether and which event to report to ptracer. When 2668 * called from kernel_thread or CLONE_UNTRACED is explicitly 2669 * requested, no event is reported; otherwise, report if the event 2670 * for the type of forking is enabled. 2671 */ 2672 if (!(clone_flags & CLONE_UNTRACED)) { 2673 if (clone_flags & CLONE_VFORK) 2674 trace = PTRACE_EVENT_VFORK; 2675 else if (args->exit_signal != SIGCHLD) 2676 trace = PTRACE_EVENT_CLONE; 2677 else 2678 trace = PTRACE_EVENT_FORK; 2679 2680 if (likely(!ptrace_event_enabled(current, trace))) 2681 trace = 0; 2682 } 2683 2684 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2685 add_latent_entropy(); 2686 2687 if (IS_ERR(p)) 2688 return PTR_ERR(p); 2689 2690 /* 2691 * Do this prior waking up the new thread - the thread pointer 2692 * might get invalid after that point, if the thread exits quickly. 2693 */ 2694 trace_sched_process_fork(current, p); 2695 2696 pid = get_task_pid(p, PIDTYPE_PID); 2697 nr = pid_vnr(pid); 2698 2699 if (clone_flags & CLONE_PARENT_SETTID) 2700 put_user(nr, args->parent_tid); 2701 2702 if (clone_flags & CLONE_VFORK) { 2703 p->vfork_done = &vfork; 2704 init_completion(&vfork); 2705 get_task_struct(p); 2706 } 2707 2708 if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) { 2709 /* lock the task to synchronize with memcg migration */ 2710 task_lock(p); 2711 lru_gen_add_mm(p->mm); 2712 task_unlock(p); 2713 } 2714 2715 wake_up_new_task(p); 2716 2717 /* forking complete and child started to run, tell ptracer */ 2718 if (unlikely(trace)) 2719 ptrace_event_pid(trace, pid); 2720 2721 if (clone_flags & CLONE_VFORK) { 2722 if (!wait_for_vfork_done(p, &vfork)) 2723 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2724 } 2725 2726 put_pid(pid); 2727 return nr; 2728 } 2729 2730 /* 2731 * Create a kernel thread. 2732 */ 2733 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 2734 { 2735 struct kernel_clone_args args = { 2736 .flags = ((lower_32_bits(flags) | CLONE_VM | 2737 CLONE_UNTRACED) & ~CSIGNAL), 2738 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2739 .fn = fn, 2740 .fn_arg = arg, 2741 .kthread = 1, 2742 }; 2743 2744 return kernel_clone(&args); 2745 } 2746 2747 /* 2748 * Create a user mode thread. 2749 */ 2750 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) 2751 { 2752 struct kernel_clone_args args = { 2753 .flags = ((lower_32_bits(flags) | CLONE_VM | 2754 CLONE_UNTRACED) & ~CSIGNAL), 2755 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2756 .fn = fn, 2757 .fn_arg = arg, 2758 }; 2759 2760 return kernel_clone(&args); 2761 } 2762 2763 #ifdef __ARCH_WANT_SYS_FORK 2764 SYSCALL_DEFINE0(fork) 2765 { 2766 #ifdef CONFIG_MMU 2767 struct kernel_clone_args args = { 2768 .exit_signal = SIGCHLD, 2769 }; 2770 2771 return kernel_clone(&args); 2772 #else 2773 /* can not support in nommu mode */ 2774 return -EINVAL; 2775 #endif 2776 } 2777 #endif 2778 2779 #ifdef __ARCH_WANT_SYS_VFORK 2780 SYSCALL_DEFINE0(vfork) 2781 { 2782 struct kernel_clone_args args = { 2783 .flags = CLONE_VFORK | CLONE_VM, 2784 .exit_signal = SIGCHLD, 2785 }; 2786 2787 return kernel_clone(&args); 2788 } 2789 #endif 2790 2791 #ifdef __ARCH_WANT_SYS_CLONE 2792 #ifdef CONFIG_CLONE_BACKWARDS 2793 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2794 int __user *, parent_tidptr, 2795 unsigned long, tls, 2796 int __user *, child_tidptr) 2797 #elif defined(CONFIG_CLONE_BACKWARDS2) 2798 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2799 int __user *, parent_tidptr, 2800 int __user *, child_tidptr, 2801 unsigned long, tls) 2802 #elif defined(CONFIG_CLONE_BACKWARDS3) 2803 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2804 int, stack_size, 2805 int __user *, parent_tidptr, 2806 int __user *, child_tidptr, 2807 unsigned long, tls) 2808 #else 2809 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2810 int __user *, parent_tidptr, 2811 int __user *, child_tidptr, 2812 unsigned long, tls) 2813 #endif 2814 { 2815 struct kernel_clone_args args = { 2816 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2817 .pidfd = parent_tidptr, 2818 .child_tid = child_tidptr, 2819 .parent_tid = parent_tidptr, 2820 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2821 .stack = newsp, 2822 .tls = tls, 2823 }; 2824 2825 return kernel_clone(&args); 2826 } 2827 #endif 2828 2829 #ifdef __ARCH_WANT_SYS_CLONE3 2830 2831 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2832 struct clone_args __user *uargs, 2833 size_t usize) 2834 { 2835 int err; 2836 struct clone_args args; 2837 pid_t *kset_tid = kargs->set_tid; 2838 2839 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2840 CLONE_ARGS_SIZE_VER0); 2841 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2842 CLONE_ARGS_SIZE_VER1); 2843 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2844 CLONE_ARGS_SIZE_VER2); 2845 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2846 2847 if (unlikely(usize > PAGE_SIZE)) 2848 return -E2BIG; 2849 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2850 return -EINVAL; 2851 2852 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2853 if (err) 2854 return err; 2855 2856 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2857 return -EINVAL; 2858 2859 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2860 return -EINVAL; 2861 2862 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2863 return -EINVAL; 2864 2865 /* 2866 * Verify that higher 32bits of exit_signal are unset and that 2867 * it is a valid signal 2868 */ 2869 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2870 !valid_signal(args.exit_signal))) 2871 return -EINVAL; 2872 2873 if ((args.flags & CLONE_INTO_CGROUP) && 2874 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2875 return -EINVAL; 2876 2877 *kargs = (struct kernel_clone_args){ 2878 .flags = args.flags, 2879 .pidfd = u64_to_user_ptr(args.pidfd), 2880 .child_tid = u64_to_user_ptr(args.child_tid), 2881 .parent_tid = u64_to_user_ptr(args.parent_tid), 2882 .exit_signal = args.exit_signal, 2883 .stack = args.stack, 2884 .stack_size = args.stack_size, 2885 .tls = args.tls, 2886 .set_tid_size = args.set_tid_size, 2887 .cgroup = args.cgroup, 2888 }; 2889 2890 if (args.set_tid && 2891 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2892 (kargs->set_tid_size * sizeof(pid_t)))) 2893 return -EFAULT; 2894 2895 kargs->set_tid = kset_tid; 2896 2897 return 0; 2898 } 2899 2900 /** 2901 * clone3_stack_valid - check and prepare stack 2902 * @kargs: kernel clone args 2903 * 2904 * Verify that the stack arguments userspace gave us are sane. 2905 * In addition, set the stack direction for userspace since it's easy for us to 2906 * determine. 2907 */ 2908 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 2909 { 2910 if (kargs->stack == 0) { 2911 if (kargs->stack_size > 0) 2912 return false; 2913 } else { 2914 if (kargs->stack_size == 0) 2915 return false; 2916 2917 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 2918 return false; 2919 2920 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64) 2921 kargs->stack += kargs->stack_size; 2922 #endif 2923 } 2924 2925 return true; 2926 } 2927 2928 static bool clone3_args_valid(struct kernel_clone_args *kargs) 2929 { 2930 /* Verify that no unknown flags are passed along. */ 2931 if (kargs->flags & 2932 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 2933 return false; 2934 2935 /* 2936 * - make the CLONE_DETACHED bit reusable for clone3 2937 * - make the CSIGNAL bits reusable for clone3 2938 */ 2939 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME)))) 2940 return false; 2941 2942 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 2943 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 2944 return false; 2945 2946 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 2947 kargs->exit_signal) 2948 return false; 2949 2950 if (!clone3_stack_valid(kargs)) 2951 return false; 2952 2953 return true; 2954 } 2955 2956 /** 2957 * clone3 - create a new process with specific properties 2958 * @uargs: argument structure 2959 * @size: size of @uargs 2960 * 2961 * clone3() is the extensible successor to clone()/clone2(). 2962 * It takes a struct as argument that is versioned by its size. 2963 * 2964 * Return: On success, a positive PID for the child process. 2965 * On error, a negative errno number. 2966 */ 2967 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 2968 { 2969 int err; 2970 2971 struct kernel_clone_args kargs; 2972 pid_t set_tid[MAX_PID_NS_LEVEL]; 2973 2974 kargs.set_tid = set_tid; 2975 2976 err = copy_clone_args_from_user(&kargs, uargs, size); 2977 if (err) 2978 return err; 2979 2980 if (!clone3_args_valid(&kargs)) 2981 return -EINVAL; 2982 2983 return kernel_clone(&kargs); 2984 } 2985 #endif 2986 2987 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2988 { 2989 struct task_struct *leader, *parent, *child; 2990 int res; 2991 2992 read_lock(&tasklist_lock); 2993 leader = top = top->group_leader; 2994 down: 2995 for_each_thread(leader, parent) { 2996 list_for_each_entry(child, &parent->children, sibling) { 2997 res = visitor(child, data); 2998 if (res) { 2999 if (res < 0) 3000 goto out; 3001 leader = child; 3002 goto down; 3003 } 3004 up: 3005 ; 3006 } 3007 } 3008 3009 if (leader != top) { 3010 child = leader; 3011 parent = child->real_parent; 3012 leader = parent->group_leader; 3013 goto up; 3014 } 3015 out: 3016 read_unlock(&tasklist_lock); 3017 } 3018 3019 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 3020 #define ARCH_MIN_MMSTRUCT_ALIGN 0 3021 #endif 3022 3023 static void sighand_ctor(void *data) 3024 { 3025 struct sighand_struct *sighand = data; 3026 3027 spin_lock_init(&sighand->siglock); 3028 init_waitqueue_head(&sighand->signalfd_wqh); 3029 } 3030 3031 void __init mm_cache_init(void) 3032 { 3033 unsigned int mm_size; 3034 3035 /* 3036 * The mm_cpumask is located at the end of mm_struct, and is 3037 * dynamically sized based on the maximum CPU number this system 3038 * can have, taking hotplug into account (nr_cpu_ids). 3039 */ 3040 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size(); 3041 3042 mm_cachep = kmem_cache_create_usercopy("mm_struct", 3043 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 3044 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3045 offsetof(struct mm_struct, saved_auxv), 3046 sizeof_field(struct mm_struct, saved_auxv), 3047 NULL); 3048 } 3049 3050 void __init proc_caches_init(void) 3051 { 3052 sighand_cachep = kmem_cache_create("sighand_cache", 3053 sizeof(struct sighand_struct), 0, 3054 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 3055 SLAB_ACCOUNT, sighand_ctor); 3056 signal_cachep = kmem_cache_create("signal_cache", 3057 sizeof(struct signal_struct), 0, 3058 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3059 NULL); 3060 files_cachep = kmem_cache_create("files_cache", 3061 sizeof(struct files_struct), 0, 3062 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3063 NULL); 3064 fs_cachep = kmem_cache_create("fs_cache", 3065 sizeof(struct fs_struct), 0, 3066 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3067 NULL); 3068 3069 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 3070 mmap_init(); 3071 nsproxy_cache_init(); 3072 } 3073 3074 /* 3075 * Check constraints on flags passed to the unshare system call. 3076 */ 3077 static int check_unshare_flags(unsigned long unshare_flags) 3078 { 3079 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 3080 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 3081 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 3082 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 3083 CLONE_NEWTIME)) 3084 return -EINVAL; 3085 /* 3086 * Not implemented, but pretend it works if there is nothing 3087 * to unshare. Note that unsharing the address space or the 3088 * signal handlers also need to unshare the signal queues (aka 3089 * CLONE_THREAD). 3090 */ 3091 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3092 if (!thread_group_empty(current)) 3093 return -EINVAL; 3094 } 3095 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3096 if (refcount_read(¤t->sighand->count) > 1) 3097 return -EINVAL; 3098 } 3099 if (unshare_flags & CLONE_VM) { 3100 if (!current_is_single_threaded()) 3101 return -EINVAL; 3102 } 3103 3104 return 0; 3105 } 3106 3107 /* 3108 * Unshare the filesystem structure if it is being shared 3109 */ 3110 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3111 { 3112 struct fs_struct *fs = current->fs; 3113 3114 if (!(unshare_flags & CLONE_FS) || !fs) 3115 return 0; 3116 3117 /* don't need lock here; in the worst case we'll do useless copy */ 3118 if (fs->users == 1) 3119 return 0; 3120 3121 *new_fsp = copy_fs_struct(fs); 3122 if (!*new_fsp) 3123 return -ENOMEM; 3124 3125 return 0; 3126 } 3127 3128 /* 3129 * Unshare file descriptor table if it is being shared 3130 */ 3131 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 3132 struct files_struct **new_fdp) 3133 { 3134 struct files_struct *fd = current->files; 3135 int error = 0; 3136 3137 if ((unshare_flags & CLONE_FILES) && 3138 (fd && atomic_read(&fd->count) > 1)) { 3139 *new_fdp = dup_fd(fd, max_fds, &error); 3140 if (!*new_fdp) 3141 return error; 3142 } 3143 3144 return 0; 3145 } 3146 3147 /* 3148 * unshare allows a process to 'unshare' part of the process 3149 * context which was originally shared using clone. copy_* 3150 * functions used by kernel_clone() cannot be used here directly 3151 * because they modify an inactive task_struct that is being 3152 * constructed. Here we are modifying the current, active, 3153 * task_struct. 3154 */ 3155 int ksys_unshare(unsigned long unshare_flags) 3156 { 3157 struct fs_struct *fs, *new_fs = NULL; 3158 struct files_struct *new_fd = NULL; 3159 struct cred *new_cred = NULL; 3160 struct nsproxy *new_nsproxy = NULL; 3161 int do_sysvsem = 0; 3162 int err; 3163 3164 /* 3165 * If unsharing a user namespace must also unshare the thread group 3166 * and unshare the filesystem root and working directories. 3167 */ 3168 if (unshare_flags & CLONE_NEWUSER) 3169 unshare_flags |= CLONE_THREAD | CLONE_FS; 3170 /* 3171 * If unsharing vm, must also unshare signal handlers. 3172 */ 3173 if (unshare_flags & CLONE_VM) 3174 unshare_flags |= CLONE_SIGHAND; 3175 /* 3176 * If unsharing a signal handlers, must also unshare the signal queues. 3177 */ 3178 if (unshare_flags & CLONE_SIGHAND) 3179 unshare_flags |= CLONE_THREAD; 3180 /* 3181 * If unsharing namespace, must also unshare filesystem information. 3182 */ 3183 if (unshare_flags & CLONE_NEWNS) 3184 unshare_flags |= CLONE_FS; 3185 3186 err = check_unshare_flags(unshare_flags); 3187 if (err) 3188 goto bad_unshare_out; 3189 /* 3190 * CLONE_NEWIPC must also detach from the undolist: after switching 3191 * to a new ipc namespace, the semaphore arrays from the old 3192 * namespace are unreachable. 3193 */ 3194 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3195 do_sysvsem = 1; 3196 err = unshare_fs(unshare_flags, &new_fs); 3197 if (err) 3198 goto bad_unshare_out; 3199 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 3200 if (err) 3201 goto bad_unshare_cleanup_fs; 3202 err = unshare_userns(unshare_flags, &new_cred); 3203 if (err) 3204 goto bad_unshare_cleanup_fd; 3205 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3206 new_cred, new_fs); 3207 if (err) 3208 goto bad_unshare_cleanup_cred; 3209 3210 if (new_cred) { 3211 err = set_cred_ucounts(new_cred); 3212 if (err) 3213 goto bad_unshare_cleanup_cred; 3214 } 3215 3216 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3217 if (do_sysvsem) { 3218 /* 3219 * CLONE_SYSVSEM is equivalent to sys_exit(). 3220 */ 3221 exit_sem(current); 3222 } 3223 if (unshare_flags & CLONE_NEWIPC) { 3224 /* Orphan segments in old ns (see sem above). */ 3225 exit_shm(current); 3226 shm_init_task(current); 3227 } 3228 3229 if (new_nsproxy) 3230 switch_task_namespaces(current, new_nsproxy); 3231 3232 task_lock(current); 3233 3234 if (new_fs) { 3235 fs = current->fs; 3236 spin_lock(&fs->lock); 3237 current->fs = new_fs; 3238 if (--fs->users) 3239 new_fs = NULL; 3240 else 3241 new_fs = fs; 3242 spin_unlock(&fs->lock); 3243 } 3244 3245 if (new_fd) 3246 swap(current->files, new_fd); 3247 3248 task_unlock(current); 3249 3250 if (new_cred) { 3251 /* Install the new user namespace */ 3252 commit_creds(new_cred); 3253 new_cred = NULL; 3254 } 3255 } 3256 3257 perf_event_namespaces(current); 3258 3259 bad_unshare_cleanup_cred: 3260 if (new_cred) 3261 put_cred(new_cred); 3262 bad_unshare_cleanup_fd: 3263 if (new_fd) 3264 put_files_struct(new_fd); 3265 3266 bad_unshare_cleanup_fs: 3267 if (new_fs) 3268 free_fs_struct(new_fs); 3269 3270 bad_unshare_out: 3271 return err; 3272 } 3273 3274 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3275 { 3276 return ksys_unshare(unshare_flags); 3277 } 3278 3279 /* 3280 * Helper to unshare the files of the current task. 3281 * We don't want to expose copy_files internals to 3282 * the exec layer of the kernel. 3283 */ 3284 3285 int unshare_files(void) 3286 { 3287 struct task_struct *task = current; 3288 struct files_struct *old, *copy = NULL; 3289 int error; 3290 3291 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3292 if (error || !copy) 3293 return error; 3294 3295 old = task->files; 3296 task_lock(task); 3297 task->files = copy; 3298 task_unlock(task); 3299 put_files_struct(old); 3300 return 0; 3301 } 3302 3303 int sysctl_max_threads(struct ctl_table *table, int write, 3304 void *buffer, size_t *lenp, loff_t *ppos) 3305 { 3306 struct ctl_table t; 3307 int ret; 3308 int threads = max_threads; 3309 int min = 1; 3310 int max = MAX_THREADS; 3311 3312 t = *table; 3313 t.data = &threads; 3314 t.extra1 = &min; 3315 t.extra2 = &max; 3316 3317 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3318 if (ret || !write) 3319 return ret; 3320 3321 max_threads = threads; 3322 3323 return 0; 3324 } 3325