xref: /linux/kernel/fork.c (revision 06a130e42a5bfc84795464bff023bff4c16f58c5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/sched/ext.h>
27 #include <linux/seq_file.h>
28 #include <linux/rtmutex.h>
29 #include <linux/init.h>
30 #include <linux/unistd.h>
31 #include <linux/module.h>
32 #include <linux/vmalloc.h>
33 #include <linux/completion.h>
34 #include <linux/personality.h>
35 #include <linux/mempolicy.h>
36 #include <linux/sem.h>
37 #include <linux/file.h>
38 #include <linux/fdtable.h>
39 #include <linux/iocontext.h>
40 #include <linux/key.h>
41 #include <linux/kmsan.h>
42 #include <linux/binfmts.h>
43 #include <linux/mman.h>
44 #include <linux/mmu_notifier.h>
45 #include <linux/fs.h>
46 #include <linux/mm.h>
47 #include <linux/mm_inline.h>
48 #include <linux/memblock.h>
49 #include <linux/nsproxy.h>
50 #include <linux/capability.h>
51 #include <linux/cpu.h>
52 #include <linux/cgroup.h>
53 #include <linux/security.h>
54 #include <linux/hugetlb.h>
55 #include <linux/seccomp.h>
56 #include <linux/swap.h>
57 #include <linux/syscalls.h>
58 #include <linux/syscall_user_dispatch.h>
59 #include <linux/jiffies.h>
60 #include <linux/futex.h>
61 #include <linux/compat.h>
62 #include <linux/kthread.h>
63 #include <linux/task_io_accounting_ops.h>
64 #include <linux/rcupdate.h>
65 #include <linux/ptrace.h>
66 #include <linux/mount.h>
67 #include <linux/audit.h>
68 #include <linux/memcontrol.h>
69 #include <linux/ftrace.h>
70 #include <linux/proc_fs.h>
71 #include <linux/profile.h>
72 #include <linux/rmap.h>
73 #include <linux/ksm.h>
74 #include <linux/acct.h>
75 #include <linux/userfaultfd_k.h>
76 #include <linux/tsacct_kern.h>
77 #include <linux/cn_proc.h>
78 #include <linux/freezer.h>
79 #include <linux/delayacct.h>
80 #include <linux/taskstats_kern.h>
81 #include <linux/tty.h>
82 #include <linux/fs_struct.h>
83 #include <linux/magic.h>
84 #include <linux/perf_event.h>
85 #include <linux/posix-timers.h>
86 #include <linux/user-return-notifier.h>
87 #include <linux/oom.h>
88 #include <linux/khugepaged.h>
89 #include <linux/signalfd.h>
90 #include <linux/uprobes.h>
91 #include <linux/aio.h>
92 #include <linux/compiler.h>
93 #include <linux/sysctl.h>
94 #include <linux/kcov.h>
95 #include <linux/livepatch.h>
96 #include <linux/thread_info.h>
97 #include <linux/stackleak.h>
98 #include <linux/kasan.h>
99 #include <linux/scs.h>
100 #include <linux/io_uring.h>
101 #include <linux/bpf.h>
102 #include <linux/stackprotector.h>
103 #include <linux/user_events.h>
104 #include <linux/iommu.h>
105 #include <linux/rseq.h>
106 #include <uapi/linux/pidfd.h>
107 #include <linux/pidfs.h>
108 
109 #include <asm/pgalloc.h>
110 #include <linux/uaccess.h>
111 #include <asm/mmu_context.h>
112 #include <asm/cacheflush.h>
113 #include <asm/tlbflush.h>
114 
115 #include <trace/events/sched.h>
116 
117 #define CREATE_TRACE_POINTS
118 #include <trace/events/task.h>
119 
120 #include <kunit/visibility.h>
121 
122 /*
123  * Minimum number of threads to boot the kernel
124  */
125 #define MIN_THREADS 20
126 
127 /*
128  * Maximum number of threads
129  */
130 #define MAX_THREADS FUTEX_TID_MASK
131 
132 /*
133  * Protected counters by write_lock_irq(&tasklist_lock)
134  */
135 unsigned long total_forks;	/* Handle normal Linux uptimes. */
136 int nr_threads;			/* The idle threads do not count.. */
137 
138 static int max_threads;		/* tunable limit on nr_threads */
139 
140 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
141 
142 static const char * const resident_page_types[] = {
143 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
144 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
145 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
146 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
147 };
148 
149 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
150 
151 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
152 
153 #ifdef CONFIG_PROVE_RCU
154 int lockdep_tasklist_lock_is_held(void)
155 {
156 	return lockdep_is_held(&tasklist_lock);
157 }
158 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
159 #endif /* #ifdef CONFIG_PROVE_RCU */
160 
161 int nr_processes(void)
162 {
163 	int cpu;
164 	int total = 0;
165 
166 	for_each_possible_cpu(cpu)
167 		total += per_cpu(process_counts, cpu);
168 
169 	return total;
170 }
171 
172 void __weak arch_release_task_struct(struct task_struct *tsk)
173 {
174 }
175 
176 static struct kmem_cache *task_struct_cachep;
177 
178 static inline struct task_struct *alloc_task_struct_node(int node)
179 {
180 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
181 }
182 
183 static inline void free_task_struct(struct task_struct *tsk)
184 {
185 	kmem_cache_free(task_struct_cachep, tsk);
186 }
187 
188 /*
189  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
190  * kmemcache based allocator.
191  */
192 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
193 
194 #  ifdef CONFIG_VMAP_STACK
195 /*
196  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
197  * flush.  Try to minimize the number of calls by caching stacks.
198  */
199 #define NR_CACHED_STACKS 2
200 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
201 
202 struct vm_stack {
203 	struct rcu_head rcu;
204 	struct vm_struct *stack_vm_area;
205 };
206 
207 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
208 {
209 	unsigned int i;
210 
211 	for (i = 0; i < NR_CACHED_STACKS; i++) {
212 		struct vm_struct *tmp = NULL;
213 
214 		if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm))
215 			return true;
216 	}
217 	return false;
218 }
219 
220 static void thread_stack_free_rcu(struct rcu_head *rh)
221 {
222 	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
223 
224 	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
225 		return;
226 
227 	vfree(vm_stack);
228 }
229 
230 static void thread_stack_delayed_free(struct task_struct *tsk)
231 {
232 	struct vm_stack *vm_stack = tsk->stack;
233 
234 	vm_stack->stack_vm_area = tsk->stack_vm_area;
235 	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
236 }
237 
238 static int free_vm_stack_cache(unsigned int cpu)
239 {
240 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
241 	int i;
242 
243 	for (i = 0; i < NR_CACHED_STACKS; i++) {
244 		struct vm_struct *vm_stack = cached_vm_stacks[i];
245 
246 		if (!vm_stack)
247 			continue;
248 
249 		vfree(vm_stack->addr);
250 		cached_vm_stacks[i] = NULL;
251 	}
252 
253 	return 0;
254 }
255 
256 static int memcg_charge_kernel_stack(struct vm_struct *vm)
257 {
258 	int i;
259 	int ret;
260 	int nr_charged = 0;
261 
262 	BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
263 
264 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
265 		ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
266 		if (ret)
267 			goto err;
268 		nr_charged++;
269 	}
270 	return 0;
271 err:
272 	for (i = 0; i < nr_charged; i++)
273 		memcg_kmem_uncharge_page(vm->pages[i], 0);
274 	return ret;
275 }
276 
277 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
278 {
279 	struct vm_struct *vm;
280 	void *stack;
281 	int i;
282 
283 	for (i = 0; i < NR_CACHED_STACKS; i++) {
284 		struct vm_struct *s;
285 
286 		s = this_cpu_xchg(cached_stacks[i], NULL);
287 
288 		if (!s)
289 			continue;
290 
291 		/* Reset stack metadata. */
292 		kasan_unpoison_range(s->addr, THREAD_SIZE);
293 
294 		stack = kasan_reset_tag(s->addr);
295 
296 		/* Clear stale pointers from reused stack. */
297 		memset(stack, 0, THREAD_SIZE);
298 
299 		if (memcg_charge_kernel_stack(s)) {
300 			vfree(s->addr);
301 			return -ENOMEM;
302 		}
303 
304 		tsk->stack_vm_area = s;
305 		tsk->stack = stack;
306 		return 0;
307 	}
308 
309 	/*
310 	 * Allocated stacks are cached and later reused by new threads,
311 	 * so memcg accounting is performed manually on assigning/releasing
312 	 * stacks to tasks. Drop __GFP_ACCOUNT.
313 	 */
314 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
315 				     VMALLOC_START, VMALLOC_END,
316 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
317 				     PAGE_KERNEL,
318 				     0, node, __builtin_return_address(0));
319 	if (!stack)
320 		return -ENOMEM;
321 
322 	vm = find_vm_area(stack);
323 	if (memcg_charge_kernel_stack(vm)) {
324 		vfree(stack);
325 		return -ENOMEM;
326 	}
327 	/*
328 	 * We can't call find_vm_area() in interrupt context, and
329 	 * free_thread_stack() can be called in interrupt context,
330 	 * so cache the vm_struct.
331 	 */
332 	tsk->stack_vm_area = vm;
333 	stack = kasan_reset_tag(stack);
334 	tsk->stack = stack;
335 	return 0;
336 }
337 
338 static void free_thread_stack(struct task_struct *tsk)
339 {
340 	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
341 		thread_stack_delayed_free(tsk);
342 
343 	tsk->stack = NULL;
344 	tsk->stack_vm_area = NULL;
345 }
346 
347 #  else /* !CONFIG_VMAP_STACK */
348 
349 static void thread_stack_free_rcu(struct rcu_head *rh)
350 {
351 	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
352 }
353 
354 static void thread_stack_delayed_free(struct task_struct *tsk)
355 {
356 	struct rcu_head *rh = tsk->stack;
357 
358 	call_rcu(rh, thread_stack_free_rcu);
359 }
360 
361 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
362 {
363 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
364 					     THREAD_SIZE_ORDER);
365 
366 	if (likely(page)) {
367 		tsk->stack = kasan_reset_tag(page_address(page));
368 		return 0;
369 	}
370 	return -ENOMEM;
371 }
372 
373 static void free_thread_stack(struct task_struct *tsk)
374 {
375 	thread_stack_delayed_free(tsk);
376 	tsk->stack = NULL;
377 }
378 
379 #  endif /* CONFIG_VMAP_STACK */
380 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
381 
382 static struct kmem_cache *thread_stack_cache;
383 
384 static void thread_stack_free_rcu(struct rcu_head *rh)
385 {
386 	kmem_cache_free(thread_stack_cache, rh);
387 }
388 
389 static void thread_stack_delayed_free(struct task_struct *tsk)
390 {
391 	struct rcu_head *rh = tsk->stack;
392 
393 	call_rcu(rh, thread_stack_free_rcu);
394 }
395 
396 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
397 {
398 	unsigned long *stack;
399 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
400 	stack = kasan_reset_tag(stack);
401 	tsk->stack = stack;
402 	return stack ? 0 : -ENOMEM;
403 }
404 
405 static void free_thread_stack(struct task_struct *tsk)
406 {
407 	thread_stack_delayed_free(tsk);
408 	tsk->stack = NULL;
409 }
410 
411 void thread_stack_cache_init(void)
412 {
413 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
414 					THREAD_SIZE, THREAD_SIZE, 0, 0,
415 					THREAD_SIZE, NULL);
416 	BUG_ON(thread_stack_cache == NULL);
417 }
418 
419 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
420 
421 /* SLAB cache for signal_struct structures (tsk->signal) */
422 static struct kmem_cache *signal_cachep;
423 
424 /* SLAB cache for sighand_struct structures (tsk->sighand) */
425 struct kmem_cache *sighand_cachep;
426 
427 /* SLAB cache for files_struct structures (tsk->files) */
428 struct kmem_cache *files_cachep;
429 
430 /* SLAB cache for fs_struct structures (tsk->fs) */
431 struct kmem_cache *fs_cachep;
432 
433 /* SLAB cache for vm_area_struct structures */
434 static struct kmem_cache *vm_area_cachep;
435 
436 /* SLAB cache for mm_struct structures (tsk->mm) */
437 static struct kmem_cache *mm_cachep;
438 
439 #ifdef CONFIG_PER_VMA_LOCK
440 
441 /* SLAB cache for vm_area_struct.lock */
442 static struct kmem_cache *vma_lock_cachep;
443 
444 static bool vma_lock_alloc(struct vm_area_struct *vma)
445 {
446 	vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
447 	if (!vma->vm_lock)
448 		return false;
449 
450 	init_rwsem(&vma->vm_lock->lock);
451 	vma->vm_lock_seq = -1;
452 
453 	return true;
454 }
455 
456 static inline void vma_lock_free(struct vm_area_struct *vma)
457 {
458 	kmem_cache_free(vma_lock_cachep, vma->vm_lock);
459 }
460 
461 #else /* CONFIG_PER_VMA_LOCK */
462 
463 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
464 static inline void vma_lock_free(struct vm_area_struct *vma) {}
465 
466 #endif /* CONFIG_PER_VMA_LOCK */
467 
468 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
469 {
470 	struct vm_area_struct *vma;
471 
472 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
473 	if (!vma)
474 		return NULL;
475 
476 	vma_init(vma, mm);
477 	if (!vma_lock_alloc(vma)) {
478 		kmem_cache_free(vm_area_cachep, vma);
479 		return NULL;
480 	}
481 
482 	return vma;
483 }
484 
485 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
486 {
487 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
488 
489 	if (!new)
490 		return NULL;
491 
492 	ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
493 	ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
494 	/*
495 	 * orig->shared.rb may be modified concurrently, but the clone
496 	 * will be reinitialized.
497 	 */
498 	data_race(memcpy(new, orig, sizeof(*new)));
499 	if (!vma_lock_alloc(new)) {
500 		kmem_cache_free(vm_area_cachep, new);
501 		return NULL;
502 	}
503 	INIT_LIST_HEAD(&new->anon_vma_chain);
504 	vma_numab_state_init(new);
505 	dup_anon_vma_name(orig, new);
506 
507 	return new;
508 }
509 
510 void __vm_area_free(struct vm_area_struct *vma)
511 {
512 	vma_numab_state_free(vma);
513 	free_anon_vma_name(vma);
514 	vma_lock_free(vma);
515 	kmem_cache_free(vm_area_cachep, vma);
516 }
517 
518 #ifdef CONFIG_PER_VMA_LOCK
519 static void vm_area_free_rcu_cb(struct rcu_head *head)
520 {
521 	struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
522 						  vm_rcu);
523 
524 	/* The vma should not be locked while being destroyed. */
525 	VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
526 	__vm_area_free(vma);
527 }
528 #endif
529 
530 void vm_area_free(struct vm_area_struct *vma)
531 {
532 #ifdef CONFIG_PER_VMA_LOCK
533 	call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
534 #else
535 	__vm_area_free(vma);
536 #endif
537 }
538 
539 static void account_kernel_stack(struct task_struct *tsk, int account)
540 {
541 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
542 		struct vm_struct *vm = task_stack_vm_area(tsk);
543 		int i;
544 
545 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
546 			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
547 					      account * (PAGE_SIZE / 1024));
548 	} else {
549 		void *stack = task_stack_page(tsk);
550 
551 		/* All stack pages are in the same node. */
552 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
553 				      account * (THREAD_SIZE / 1024));
554 	}
555 }
556 
557 void exit_task_stack_account(struct task_struct *tsk)
558 {
559 	account_kernel_stack(tsk, -1);
560 
561 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
562 		struct vm_struct *vm;
563 		int i;
564 
565 		vm = task_stack_vm_area(tsk);
566 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
567 			memcg_kmem_uncharge_page(vm->pages[i], 0);
568 	}
569 }
570 
571 static void release_task_stack(struct task_struct *tsk)
572 {
573 	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
574 		return;  /* Better to leak the stack than to free prematurely */
575 
576 	free_thread_stack(tsk);
577 }
578 
579 #ifdef CONFIG_THREAD_INFO_IN_TASK
580 void put_task_stack(struct task_struct *tsk)
581 {
582 	if (refcount_dec_and_test(&tsk->stack_refcount))
583 		release_task_stack(tsk);
584 }
585 #endif
586 
587 void free_task(struct task_struct *tsk)
588 {
589 #ifdef CONFIG_SECCOMP
590 	WARN_ON_ONCE(tsk->seccomp.filter);
591 #endif
592 	release_user_cpus_ptr(tsk);
593 	scs_release(tsk);
594 
595 #ifndef CONFIG_THREAD_INFO_IN_TASK
596 	/*
597 	 * The task is finally done with both the stack and thread_info,
598 	 * so free both.
599 	 */
600 	release_task_stack(tsk);
601 #else
602 	/*
603 	 * If the task had a separate stack allocation, it should be gone
604 	 * by now.
605 	 */
606 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
607 #endif
608 	rt_mutex_debug_task_free(tsk);
609 	ftrace_graph_exit_task(tsk);
610 	arch_release_task_struct(tsk);
611 	if (tsk->flags & PF_KTHREAD)
612 		free_kthread_struct(tsk);
613 	bpf_task_storage_free(tsk);
614 	free_task_struct(tsk);
615 }
616 EXPORT_SYMBOL(free_task);
617 
618 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
619 {
620 	struct file *exe_file;
621 
622 	exe_file = get_mm_exe_file(oldmm);
623 	RCU_INIT_POINTER(mm->exe_file, exe_file);
624 }
625 
626 #ifdef CONFIG_MMU
627 static __latent_entropy int dup_mmap(struct mm_struct *mm,
628 					struct mm_struct *oldmm)
629 {
630 	struct vm_area_struct *mpnt, *tmp;
631 	int retval;
632 	unsigned long charge = 0;
633 	LIST_HEAD(uf);
634 	VMA_ITERATOR(vmi, mm, 0);
635 
636 	uprobe_start_dup_mmap();
637 	if (mmap_write_lock_killable(oldmm)) {
638 		retval = -EINTR;
639 		goto fail_uprobe_end;
640 	}
641 	flush_cache_dup_mm(oldmm);
642 	uprobe_dup_mmap(oldmm, mm);
643 	/*
644 	 * Not linked in yet - no deadlock potential:
645 	 */
646 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
647 
648 	/* No ordering required: file already has been exposed. */
649 	dup_mm_exe_file(mm, oldmm);
650 
651 	mm->total_vm = oldmm->total_vm;
652 	mm->data_vm = oldmm->data_vm;
653 	mm->exec_vm = oldmm->exec_vm;
654 	mm->stack_vm = oldmm->stack_vm;
655 
656 	retval = ksm_fork(mm, oldmm);
657 	if (retval)
658 		goto out;
659 	khugepaged_fork(mm, oldmm);
660 
661 	/* Use __mt_dup() to efficiently build an identical maple tree. */
662 	retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL);
663 	if (unlikely(retval))
664 		goto out;
665 
666 	mt_clear_in_rcu(vmi.mas.tree);
667 	for_each_vma(vmi, mpnt) {
668 		struct file *file;
669 
670 		vma_start_write(mpnt);
671 		if (mpnt->vm_flags & VM_DONTCOPY) {
672 			retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start,
673 						    mpnt->vm_end, GFP_KERNEL);
674 			if (retval)
675 				goto loop_out;
676 
677 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
678 			continue;
679 		}
680 		charge = 0;
681 		/*
682 		 * Don't duplicate many vmas if we've been oom-killed (for
683 		 * example)
684 		 */
685 		if (fatal_signal_pending(current)) {
686 			retval = -EINTR;
687 			goto loop_out;
688 		}
689 		if (mpnt->vm_flags & VM_ACCOUNT) {
690 			unsigned long len = vma_pages(mpnt);
691 
692 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
693 				goto fail_nomem;
694 			charge = len;
695 		}
696 		tmp = vm_area_dup(mpnt);
697 		if (!tmp)
698 			goto fail_nomem;
699 		retval = vma_dup_policy(mpnt, tmp);
700 		if (retval)
701 			goto fail_nomem_policy;
702 		tmp->vm_mm = mm;
703 		retval = dup_userfaultfd(tmp, &uf);
704 		if (retval)
705 			goto fail_nomem_anon_vma_fork;
706 		if (tmp->vm_flags & VM_WIPEONFORK) {
707 			/*
708 			 * VM_WIPEONFORK gets a clean slate in the child.
709 			 * Don't prepare anon_vma until fault since we don't
710 			 * copy page for current vma.
711 			 */
712 			tmp->anon_vma = NULL;
713 		} else if (anon_vma_fork(tmp, mpnt))
714 			goto fail_nomem_anon_vma_fork;
715 		vm_flags_clear(tmp, VM_LOCKED_MASK);
716 		/*
717 		 * Copy/update hugetlb private vma information.
718 		 */
719 		if (is_vm_hugetlb_page(tmp))
720 			hugetlb_dup_vma_private(tmp);
721 
722 		/*
723 		 * Link the vma into the MT. After using __mt_dup(), memory
724 		 * allocation is not necessary here, so it cannot fail.
725 		 */
726 		vma_iter_bulk_store(&vmi, tmp);
727 
728 		mm->map_count++;
729 
730 		if (tmp->vm_ops && tmp->vm_ops->open)
731 			tmp->vm_ops->open(tmp);
732 
733 		file = tmp->vm_file;
734 		if (file) {
735 			struct address_space *mapping = file->f_mapping;
736 
737 			get_file(file);
738 			i_mmap_lock_write(mapping);
739 			if (vma_is_shared_maywrite(tmp))
740 				mapping_allow_writable(mapping);
741 			flush_dcache_mmap_lock(mapping);
742 			/* insert tmp into the share list, just after mpnt */
743 			vma_interval_tree_insert_after(tmp, mpnt,
744 					&mapping->i_mmap);
745 			flush_dcache_mmap_unlock(mapping);
746 			i_mmap_unlock_write(mapping);
747 		}
748 
749 		if (!(tmp->vm_flags & VM_WIPEONFORK))
750 			retval = copy_page_range(tmp, mpnt);
751 
752 		if (retval) {
753 			mpnt = vma_next(&vmi);
754 			goto loop_out;
755 		}
756 	}
757 	/* a new mm has just been created */
758 	retval = arch_dup_mmap(oldmm, mm);
759 loop_out:
760 	vma_iter_free(&vmi);
761 	if (!retval) {
762 		mt_set_in_rcu(vmi.mas.tree);
763 	} else if (mpnt) {
764 		/*
765 		 * The entire maple tree has already been duplicated. If the
766 		 * mmap duplication fails, mark the failure point with
767 		 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered,
768 		 * stop releasing VMAs that have not been duplicated after this
769 		 * point.
770 		 */
771 		mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1);
772 		mas_store(&vmi.mas, XA_ZERO_ENTRY);
773 	}
774 out:
775 	mmap_write_unlock(mm);
776 	flush_tlb_mm(oldmm);
777 	mmap_write_unlock(oldmm);
778 	dup_userfaultfd_complete(&uf);
779 fail_uprobe_end:
780 	uprobe_end_dup_mmap();
781 	return retval;
782 
783 fail_nomem_anon_vma_fork:
784 	mpol_put(vma_policy(tmp));
785 fail_nomem_policy:
786 	vm_area_free(tmp);
787 fail_nomem:
788 	retval = -ENOMEM;
789 	vm_unacct_memory(charge);
790 	goto loop_out;
791 }
792 
793 static inline int mm_alloc_pgd(struct mm_struct *mm)
794 {
795 	mm->pgd = pgd_alloc(mm);
796 	if (unlikely(!mm->pgd))
797 		return -ENOMEM;
798 	return 0;
799 }
800 
801 static inline void mm_free_pgd(struct mm_struct *mm)
802 {
803 	pgd_free(mm, mm->pgd);
804 }
805 #else
806 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
807 {
808 	mmap_write_lock(oldmm);
809 	dup_mm_exe_file(mm, oldmm);
810 	mmap_write_unlock(oldmm);
811 	return 0;
812 }
813 #define mm_alloc_pgd(mm)	(0)
814 #define mm_free_pgd(mm)
815 #endif /* CONFIG_MMU */
816 
817 static void check_mm(struct mm_struct *mm)
818 {
819 	int i;
820 
821 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
822 			 "Please make sure 'struct resident_page_types[]' is updated as well");
823 
824 	for (i = 0; i < NR_MM_COUNTERS; i++) {
825 		long x = percpu_counter_sum(&mm->rss_stat[i]);
826 
827 		if (unlikely(x))
828 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
829 				 mm, resident_page_types[i], x);
830 	}
831 
832 	if (mm_pgtables_bytes(mm))
833 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
834 				mm_pgtables_bytes(mm));
835 
836 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
837 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
838 #endif
839 }
840 
841 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
842 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
843 
844 static void do_check_lazy_tlb(void *arg)
845 {
846 	struct mm_struct *mm = arg;
847 
848 	WARN_ON_ONCE(current->active_mm == mm);
849 }
850 
851 static void do_shoot_lazy_tlb(void *arg)
852 {
853 	struct mm_struct *mm = arg;
854 
855 	if (current->active_mm == mm) {
856 		WARN_ON_ONCE(current->mm);
857 		current->active_mm = &init_mm;
858 		switch_mm(mm, &init_mm, current);
859 	}
860 }
861 
862 static void cleanup_lazy_tlbs(struct mm_struct *mm)
863 {
864 	if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
865 		/*
866 		 * In this case, lazy tlb mms are refounted and would not reach
867 		 * __mmdrop until all CPUs have switched away and mmdrop()ed.
868 		 */
869 		return;
870 	}
871 
872 	/*
873 	 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
874 	 * requires lazy mm users to switch to another mm when the refcount
875 	 * drops to zero, before the mm is freed. This requires IPIs here to
876 	 * switch kernel threads to init_mm.
877 	 *
878 	 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
879 	 * switch with the final userspace teardown TLB flush which leaves the
880 	 * mm lazy on this CPU but no others, reducing the need for additional
881 	 * IPIs here. There are cases where a final IPI is still required here,
882 	 * such as the final mmdrop being performed on a different CPU than the
883 	 * one exiting, or kernel threads using the mm when userspace exits.
884 	 *
885 	 * IPI overheads have not found to be expensive, but they could be
886 	 * reduced in a number of possible ways, for example (roughly
887 	 * increasing order of complexity):
888 	 * - The last lazy reference created by exit_mm() could instead switch
889 	 *   to init_mm, however it's probable this will run on the same CPU
890 	 *   immediately afterwards, so this may not reduce IPIs much.
891 	 * - A batch of mms requiring IPIs could be gathered and freed at once.
892 	 * - CPUs store active_mm where it can be remotely checked without a
893 	 *   lock, to filter out false-positives in the cpumask.
894 	 * - After mm_users or mm_count reaches zero, switching away from the
895 	 *   mm could clear mm_cpumask to reduce some IPIs, perhaps together
896 	 *   with some batching or delaying of the final IPIs.
897 	 * - A delayed freeing and RCU-like quiescing sequence based on mm
898 	 *   switching to avoid IPIs completely.
899 	 */
900 	on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
901 	if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
902 		on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
903 }
904 
905 /*
906  * Called when the last reference to the mm
907  * is dropped: either by a lazy thread or by
908  * mmput. Free the page directory and the mm.
909  */
910 void __mmdrop(struct mm_struct *mm)
911 {
912 	BUG_ON(mm == &init_mm);
913 	WARN_ON_ONCE(mm == current->mm);
914 
915 	/* Ensure no CPUs are using this as their lazy tlb mm */
916 	cleanup_lazy_tlbs(mm);
917 
918 	WARN_ON_ONCE(mm == current->active_mm);
919 	mm_free_pgd(mm);
920 	destroy_context(mm);
921 	mmu_notifier_subscriptions_destroy(mm);
922 	check_mm(mm);
923 	put_user_ns(mm->user_ns);
924 	mm_pasid_drop(mm);
925 	mm_destroy_cid(mm);
926 	percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
927 
928 	free_mm(mm);
929 }
930 EXPORT_SYMBOL_GPL(__mmdrop);
931 
932 static void mmdrop_async_fn(struct work_struct *work)
933 {
934 	struct mm_struct *mm;
935 
936 	mm = container_of(work, struct mm_struct, async_put_work);
937 	__mmdrop(mm);
938 }
939 
940 static void mmdrop_async(struct mm_struct *mm)
941 {
942 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
943 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
944 		schedule_work(&mm->async_put_work);
945 	}
946 }
947 
948 static inline void free_signal_struct(struct signal_struct *sig)
949 {
950 	taskstats_tgid_free(sig);
951 	sched_autogroup_exit(sig);
952 	/*
953 	 * __mmdrop is not safe to call from softirq context on x86 due to
954 	 * pgd_dtor so postpone it to the async context
955 	 */
956 	if (sig->oom_mm)
957 		mmdrop_async(sig->oom_mm);
958 	kmem_cache_free(signal_cachep, sig);
959 }
960 
961 static inline void put_signal_struct(struct signal_struct *sig)
962 {
963 	if (refcount_dec_and_test(&sig->sigcnt))
964 		free_signal_struct(sig);
965 }
966 
967 void __put_task_struct(struct task_struct *tsk)
968 {
969 	WARN_ON(!tsk->exit_state);
970 	WARN_ON(refcount_read(&tsk->usage));
971 	WARN_ON(tsk == current);
972 
973 	sched_ext_free(tsk);
974 	io_uring_free(tsk);
975 	cgroup_free(tsk);
976 	task_numa_free(tsk, true);
977 	security_task_free(tsk);
978 	exit_creds(tsk);
979 	delayacct_tsk_free(tsk);
980 	put_signal_struct(tsk->signal);
981 	sched_core_free(tsk);
982 	free_task(tsk);
983 }
984 EXPORT_SYMBOL_GPL(__put_task_struct);
985 
986 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
987 {
988 	struct task_struct *task = container_of(rhp, struct task_struct, rcu);
989 
990 	__put_task_struct(task);
991 }
992 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
993 
994 void __init __weak arch_task_cache_init(void) { }
995 
996 /*
997  * set_max_threads
998  */
999 static void __init set_max_threads(unsigned int max_threads_suggested)
1000 {
1001 	u64 threads;
1002 	unsigned long nr_pages = memblock_estimated_nr_free_pages();
1003 
1004 	/*
1005 	 * The number of threads shall be limited such that the thread
1006 	 * structures may only consume a small part of the available memory.
1007 	 */
1008 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
1009 		threads = MAX_THREADS;
1010 	else
1011 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
1012 				    (u64) THREAD_SIZE * 8UL);
1013 
1014 	if (threads > max_threads_suggested)
1015 		threads = max_threads_suggested;
1016 
1017 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
1018 }
1019 
1020 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1021 /* Initialized by the architecture: */
1022 int arch_task_struct_size __read_mostly;
1023 #endif
1024 
1025 static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size)
1026 {
1027 	/* Fetch thread_struct whitelist for the architecture. */
1028 	arch_thread_struct_whitelist(offset, size);
1029 
1030 	/*
1031 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
1032 	 * adjust offset to position of thread_struct in task_struct.
1033 	 */
1034 	if (unlikely(*size == 0))
1035 		*offset = 0;
1036 	else
1037 		*offset += offsetof(struct task_struct, thread);
1038 }
1039 
1040 void __init fork_init(void)
1041 {
1042 	int i;
1043 #ifndef ARCH_MIN_TASKALIGN
1044 #define ARCH_MIN_TASKALIGN	0
1045 #endif
1046 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1047 	unsigned long useroffset, usersize;
1048 
1049 	/* create a slab on which task_structs can be allocated */
1050 	task_struct_whitelist(&useroffset, &usersize);
1051 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1052 			arch_task_struct_size, align,
1053 			SLAB_PANIC|SLAB_ACCOUNT,
1054 			useroffset, usersize, NULL);
1055 
1056 	/* do the arch specific task caches init */
1057 	arch_task_cache_init();
1058 
1059 	set_max_threads(MAX_THREADS);
1060 
1061 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1062 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1063 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
1064 		init_task.signal->rlim[RLIMIT_NPROC];
1065 
1066 	for (i = 0; i < UCOUNT_COUNTS; i++)
1067 		init_user_ns.ucount_max[i] = max_threads/2;
1068 
1069 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
1070 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
1071 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1072 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
1073 
1074 #ifdef CONFIG_VMAP_STACK
1075 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1076 			  NULL, free_vm_stack_cache);
1077 #endif
1078 
1079 	scs_init();
1080 
1081 	lockdep_init_task(&init_task);
1082 	uprobes_init();
1083 }
1084 
1085 int __weak arch_dup_task_struct(struct task_struct *dst,
1086 					       struct task_struct *src)
1087 {
1088 	*dst = *src;
1089 	return 0;
1090 }
1091 
1092 void set_task_stack_end_magic(struct task_struct *tsk)
1093 {
1094 	unsigned long *stackend;
1095 
1096 	stackend = end_of_stack(tsk);
1097 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
1098 }
1099 
1100 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1101 {
1102 	struct task_struct *tsk;
1103 	int err;
1104 
1105 	if (node == NUMA_NO_NODE)
1106 		node = tsk_fork_get_node(orig);
1107 	tsk = alloc_task_struct_node(node);
1108 	if (!tsk)
1109 		return NULL;
1110 
1111 	err = arch_dup_task_struct(tsk, orig);
1112 	if (err)
1113 		goto free_tsk;
1114 
1115 	err = alloc_thread_stack_node(tsk, node);
1116 	if (err)
1117 		goto free_tsk;
1118 
1119 #ifdef CONFIG_THREAD_INFO_IN_TASK
1120 	refcount_set(&tsk->stack_refcount, 1);
1121 #endif
1122 	account_kernel_stack(tsk, 1);
1123 
1124 	err = scs_prepare(tsk, node);
1125 	if (err)
1126 		goto free_stack;
1127 
1128 #ifdef CONFIG_SECCOMP
1129 	/*
1130 	 * We must handle setting up seccomp filters once we're under
1131 	 * the sighand lock in case orig has changed between now and
1132 	 * then. Until then, filter must be NULL to avoid messing up
1133 	 * the usage counts on the error path calling free_task.
1134 	 */
1135 	tsk->seccomp.filter = NULL;
1136 #endif
1137 
1138 	setup_thread_stack(tsk, orig);
1139 	clear_user_return_notifier(tsk);
1140 	clear_tsk_need_resched(tsk);
1141 	set_task_stack_end_magic(tsk);
1142 	clear_syscall_work_syscall_user_dispatch(tsk);
1143 
1144 #ifdef CONFIG_STACKPROTECTOR
1145 	tsk->stack_canary = get_random_canary();
1146 #endif
1147 	if (orig->cpus_ptr == &orig->cpus_mask)
1148 		tsk->cpus_ptr = &tsk->cpus_mask;
1149 	dup_user_cpus_ptr(tsk, orig, node);
1150 
1151 	/*
1152 	 * One for the user space visible state that goes away when reaped.
1153 	 * One for the scheduler.
1154 	 */
1155 	refcount_set(&tsk->rcu_users, 2);
1156 	/* One for the rcu users */
1157 	refcount_set(&tsk->usage, 1);
1158 #ifdef CONFIG_BLK_DEV_IO_TRACE
1159 	tsk->btrace_seq = 0;
1160 #endif
1161 	tsk->splice_pipe = NULL;
1162 	tsk->task_frag.page = NULL;
1163 	tsk->wake_q.next = NULL;
1164 	tsk->worker_private = NULL;
1165 
1166 	kcov_task_init(tsk);
1167 	kmsan_task_create(tsk);
1168 	kmap_local_fork(tsk);
1169 
1170 #ifdef CONFIG_FAULT_INJECTION
1171 	tsk->fail_nth = 0;
1172 #endif
1173 
1174 #ifdef CONFIG_BLK_CGROUP
1175 	tsk->throttle_disk = NULL;
1176 	tsk->use_memdelay = 0;
1177 #endif
1178 
1179 #ifdef CONFIG_ARCH_HAS_CPU_PASID
1180 	tsk->pasid_activated = 0;
1181 #endif
1182 
1183 #ifdef CONFIG_MEMCG
1184 	tsk->active_memcg = NULL;
1185 #endif
1186 
1187 #ifdef CONFIG_CPU_SUP_INTEL
1188 	tsk->reported_split_lock = 0;
1189 #endif
1190 
1191 #ifdef CONFIG_SCHED_MM_CID
1192 	tsk->mm_cid = -1;
1193 	tsk->last_mm_cid = -1;
1194 	tsk->mm_cid_active = 0;
1195 	tsk->migrate_from_cpu = -1;
1196 #endif
1197 	return tsk;
1198 
1199 free_stack:
1200 	exit_task_stack_account(tsk);
1201 	free_thread_stack(tsk);
1202 free_tsk:
1203 	free_task_struct(tsk);
1204 	return NULL;
1205 }
1206 
1207 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1208 
1209 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1210 
1211 static int __init coredump_filter_setup(char *s)
1212 {
1213 	default_dump_filter =
1214 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1215 		MMF_DUMP_FILTER_MASK;
1216 	return 1;
1217 }
1218 
1219 __setup("coredump_filter=", coredump_filter_setup);
1220 
1221 #include <linux/init_task.h>
1222 
1223 static void mm_init_aio(struct mm_struct *mm)
1224 {
1225 #ifdef CONFIG_AIO
1226 	spin_lock_init(&mm->ioctx_lock);
1227 	mm->ioctx_table = NULL;
1228 #endif
1229 }
1230 
1231 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1232 					   struct task_struct *p)
1233 {
1234 #ifdef CONFIG_MEMCG
1235 	if (mm->owner == p)
1236 		WRITE_ONCE(mm->owner, NULL);
1237 #endif
1238 }
1239 
1240 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1241 {
1242 #ifdef CONFIG_MEMCG
1243 	mm->owner = p;
1244 #endif
1245 }
1246 
1247 static void mm_init_uprobes_state(struct mm_struct *mm)
1248 {
1249 #ifdef CONFIG_UPROBES
1250 	mm->uprobes_state.xol_area = NULL;
1251 #endif
1252 }
1253 
1254 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1255 	struct user_namespace *user_ns)
1256 {
1257 	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1258 	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1259 	atomic_set(&mm->mm_users, 1);
1260 	atomic_set(&mm->mm_count, 1);
1261 	seqcount_init(&mm->write_protect_seq);
1262 	mmap_init_lock(mm);
1263 	INIT_LIST_HEAD(&mm->mmlist);
1264 #ifdef CONFIG_PER_VMA_LOCK
1265 	mm->mm_lock_seq = 0;
1266 #endif
1267 	mm_pgtables_bytes_init(mm);
1268 	mm->map_count = 0;
1269 	mm->locked_vm = 0;
1270 	atomic64_set(&mm->pinned_vm, 0);
1271 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1272 	spin_lock_init(&mm->page_table_lock);
1273 	spin_lock_init(&mm->arg_lock);
1274 	mm_init_cpumask(mm);
1275 	mm_init_aio(mm);
1276 	mm_init_owner(mm, p);
1277 	mm_pasid_init(mm);
1278 	RCU_INIT_POINTER(mm->exe_file, NULL);
1279 	mmu_notifier_subscriptions_init(mm);
1280 	init_tlb_flush_pending(mm);
1281 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
1282 	mm->pmd_huge_pte = NULL;
1283 #endif
1284 	mm_init_uprobes_state(mm);
1285 	hugetlb_count_init(mm);
1286 
1287 	if (current->mm) {
1288 		mm->flags = mmf_init_flags(current->mm->flags);
1289 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1290 	} else {
1291 		mm->flags = default_dump_filter;
1292 		mm->def_flags = 0;
1293 	}
1294 
1295 	if (mm_alloc_pgd(mm))
1296 		goto fail_nopgd;
1297 
1298 	if (init_new_context(p, mm))
1299 		goto fail_nocontext;
1300 
1301 	if (mm_alloc_cid(mm))
1302 		goto fail_cid;
1303 
1304 	if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1305 				     NR_MM_COUNTERS))
1306 		goto fail_pcpu;
1307 
1308 	mm->user_ns = get_user_ns(user_ns);
1309 	lru_gen_init_mm(mm);
1310 	return mm;
1311 
1312 fail_pcpu:
1313 	mm_destroy_cid(mm);
1314 fail_cid:
1315 	destroy_context(mm);
1316 fail_nocontext:
1317 	mm_free_pgd(mm);
1318 fail_nopgd:
1319 	free_mm(mm);
1320 	return NULL;
1321 }
1322 
1323 /*
1324  * Allocate and initialize an mm_struct.
1325  */
1326 struct mm_struct *mm_alloc(void)
1327 {
1328 	struct mm_struct *mm;
1329 
1330 	mm = allocate_mm();
1331 	if (!mm)
1332 		return NULL;
1333 
1334 	memset(mm, 0, sizeof(*mm));
1335 	return mm_init(mm, current, current_user_ns());
1336 }
1337 EXPORT_SYMBOL_IF_KUNIT(mm_alloc);
1338 
1339 static inline void __mmput(struct mm_struct *mm)
1340 {
1341 	VM_BUG_ON(atomic_read(&mm->mm_users));
1342 
1343 	uprobe_clear_state(mm);
1344 	exit_aio(mm);
1345 	ksm_exit(mm);
1346 	khugepaged_exit(mm); /* must run before exit_mmap */
1347 	exit_mmap(mm);
1348 	mm_put_huge_zero_folio(mm);
1349 	set_mm_exe_file(mm, NULL);
1350 	if (!list_empty(&mm->mmlist)) {
1351 		spin_lock(&mmlist_lock);
1352 		list_del(&mm->mmlist);
1353 		spin_unlock(&mmlist_lock);
1354 	}
1355 	if (mm->binfmt)
1356 		module_put(mm->binfmt->module);
1357 	lru_gen_del_mm(mm);
1358 	mmdrop(mm);
1359 }
1360 
1361 /*
1362  * Decrement the use count and release all resources for an mm.
1363  */
1364 void mmput(struct mm_struct *mm)
1365 {
1366 	might_sleep();
1367 
1368 	if (atomic_dec_and_test(&mm->mm_users))
1369 		__mmput(mm);
1370 }
1371 EXPORT_SYMBOL_GPL(mmput);
1372 
1373 #ifdef CONFIG_MMU
1374 static void mmput_async_fn(struct work_struct *work)
1375 {
1376 	struct mm_struct *mm = container_of(work, struct mm_struct,
1377 					    async_put_work);
1378 
1379 	__mmput(mm);
1380 }
1381 
1382 void mmput_async(struct mm_struct *mm)
1383 {
1384 	if (atomic_dec_and_test(&mm->mm_users)) {
1385 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1386 		schedule_work(&mm->async_put_work);
1387 	}
1388 }
1389 EXPORT_SYMBOL_GPL(mmput_async);
1390 #endif
1391 
1392 /**
1393  * set_mm_exe_file - change a reference to the mm's executable file
1394  * @mm: The mm to change.
1395  * @new_exe_file: The new file to use.
1396  *
1397  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1398  *
1399  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1400  * invocations: in mmput() nobody alive left, in execve it happens before
1401  * the new mm is made visible to anyone.
1402  *
1403  * Can only fail if new_exe_file != NULL.
1404  */
1405 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1406 {
1407 	struct file *old_exe_file;
1408 
1409 	/*
1410 	 * It is safe to dereference the exe_file without RCU as
1411 	 * this function is only called if nobody else can access
1412 	 * this mm -- see comment above for justification.
1413 	 */
1414 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1415 
1416 	if (new_exe_file)
1417 		get_file(new_exe_file);
1418 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1419 	if (old_exe_file)
1420 		fput(old_exe_file);
1421 	return 0;
1422 }
1423 
1424 /**
1425  * replace_mm_exe_file - replace a reference to the mm's executable file
1426  * @mm: The mm to change.
1427  * @new_exe_file: The new file to use.
1428  *
1429  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1430  *
1431  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1432  */
1433 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1434 {
1435 	struct vm_area_struct *vma;
1436 	struct file *old_exe_file;
1437 	int ret = 0;
1438 
1439 	/* Forbid mm->exe_file change if old file still mapped. */
1440 	old_exe_file = get_mm_exe_file(mm);
1441 	if (old_exe_file) {
1442 		VMA_ITERATOR(vmi, mm, 0);
1443 		mmap_read_lock(mm);
1444 		for_each_vma(vmi, vma) {
1445 			if (!vma->vm_file)
1446 				continue;
1447 			if (path_equal(&vma->vm_file->f_path,
1448 				       &old_exe_file->f_path)) {
1449 				ret = -EBUSY;
1450 				break;
1451 			}
1452 		}
1453 		mmap_read_unlock(mm);
1454 		fput(old_exe_file);
1455 		if (ret)
1456 			return ret;
1457 	}
1458 
1459 	get_file(new_exe_file);
1460 
1461 	/* set the new file */
1462 	mmap_write_lock(mm);
1463 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1464 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1465 	mmap_write_unlock(mm);
1466 
1467 	if (old_exe_file)
1468 		fput(old_exe_file);
1469 	return 0;
1470 }
1471 
1472 /**
1473  * get_mm_exe_file - acquire a reference to the mm's executable file
1474  * @mm: The mm of interest.
1475  *
1476  * Returns %NULL if mm has no associated executable file.
1477  * User must release file via fput().
1478  */
1479 struct file *get_mm_exe_file(struct mm_struct *mm)
1480 {
1481 	struct file *exe_file;
1482 
1483 	rcu_read_lock();
1484 	exe_file = get_file_rcu(&mm->exe_file);
1485 	rcu_read_unlock();
1486 	return exe_file;
1487 }
1488 
1489 /**
1490  * get_task_exe_file - acquire a reference to the task's executable file
1491  * @task: The task.
1492  *
1493  * Returns %NULL if task's mm (if any) has no associated executable file or
1494  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1495  * User must release file via fput().
1496  */
1497 struct file *get_task_exe_file(struct task_struct *task)
1498 {
1499 	struct file *exe_file = NULL;
1500 	struct mm_struct *mm;
1501 
1502 	task_lock(task);
1503 	mm = task->mm;
1504 	if (mm) {
1505 		if (!(task->flags & PF_KTHREAD))
1506 			exe_file = get_mm_exe_file(mm);
1507 	}
1508 	task_unlock(task);
1509 	return exe_file;
1510 }
1511 
1512 /**
1513  * get_task_mm - acquire a reference to the task's mm
1514  * @task: The task.
1515  *
1516  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1517  * this kernel workthread has transiently adopted a user mm with use_mm,
1518  * to do its AIO) is not set and if so returns a reference to it, after
1519  * bumping up the use count.  User must release the mm via mmput()
1520  * after use.  Typically used by /proc and ptrace.
1521  */
1522 struct mm_struct *get_task_mm(struct task_struct *task)
1523 {
1524 	struct mm_struct *mm;
1525 
1526 	if (task->flags & PF_KTHREAD)
1527 		return NULL;
1528 
1529 	task_lock(task);
1530 	mm = task->mm;
1531 	if (mm)
1532 		mmget(mm);
1533 	task_unlock(task);
1534 	return mm;
1535 }
1536 EXPORT_SYMBOL_GPL(get_task_mm);
1537 
1538 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1539 {
1540 	struct mm_struct *mm;
1541 	int err;
1542 
1543 	err =  down_read_killable(&task->signal->exec_update_lock);
1544 	if (err)
1545 		return ERR_PTR(err);
1546 
1547 	mm = get_task_mm(task);
1548 	if (mm && mm != current->mm &&
1549 			!ptrace_may_access(task, mode)) {
1550 		mmput(mm);
1551 		mm = ERR_PTR(-EACCES);
1552 	}
1553 	up_read(&task->signal->exec_update_lock);
1554 
1555 	return mm;
1556 }
1557 
1558 static void complete_vfork_done(struct task_struct *tsk)
1559 {
1560 	struct completion *vfork;
1561 
1562 	task_lock(tsk);
1563 	vfork = tsk->vfork_done;
1564 	if (likely(vfork)) {
1565 		tsk->vfork_done = NULL;
1566 		complete(vfork);
1567 	}
1568 	task_unlock(tsk);
1569 }
1570 
1571 static int wait_for_vfork_done(struct task_struct *child,
1572 				struct completion *vfork)
1573 {
1574 	unsigned int state = TASK_KILLABLE|TASK_FREEZABLE;
1575 	int killed;
1576 
1577 	cgroup_enter_frozen();
1578 	killed = wait_for_completion_state(vfork, state);
1579 	cgroup_leave_frozen(false);
1580 
1581 	if (killed) {
1582 		task_lock(child);
1583 		child->vfork_done = NULL;
1584 		task_unlock(child);
1585 	}
1586 
1587 	put_task_struct(child);
1588 	return killed;
1589 }
1590 
1591 /* Please note the differences between mmput and mm_release.
1592  * mmput is called whenever we stop holding onto a mm_struct,
1593  * error success whatever.
1594  *
1595  * mm_release is called after a mm_struct has been removed
1596  * from the current process.
1597  *
1598  * This difference is important for error handling, when we
1599  * only half set up a mm_struct for a new process and need to restore
1600  * the old one.  Because we mmput the new mm_struct before
1601  * restoring the old one. . .
1602  * Eric Biederman 10 January 1998
1603  */
1604 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1605 {
1606 	uprobe_free_utask(tsk);
1607 
1608 	/* Get rid of any cached register state */
1609 	deactivate_mm(tsk, mm);
1610 
1611 	/*
1612 	 * Signal userspace if we're not exiting with a core dump
1613 	 * because we want to leave the value intact for debugging
1614 	 * purposes.
1615 	 */
1616 	if (tsk->clear_child_tid) {
1617 		if (atomic_read(&mm->mm_users) > 1) {
1618 			/*
1619 			 * We don't check the error code - if userspace has
1620 			 * not set up a proper pointer then tough luck.
1621 			 */
1622 			put_user(0, tsk->clear_child_tid);
1623 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1624 					1, NULL, NULL, 0, 0);
1625 		}
1626 		tsk->clear_child_tid = NULL;
1627 	}
1628 
1629 	/*
1630 	 * All done, finally we can wake up parent and return this mm to him.
1631 	 * Also kthread_stop() uses this completion for synchronization.
1632 	 */
1633 	if (tsk->vfork_done)
1634 		complete_vfork_done(tsk);
1635 }
1636 
1637 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1638 {
1639 	futex_exit_release(tsk);
1640 	mm_release(tsk, mm);
1641 }
1642 
1643 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1644 {
1645 	futex_exec_release(tsk);
1646 	mm_release(tsk, mm);
1647 }
1648 
1649 /**
1650  * dup_mm() - duplicates an existing mm structure
1651  * @tsk: the task_struct with which the new mm will be associated.
1652  * @oldmm: the mm to duplicate.
1653  *
1654  * Allocates a new mm structure and duplicates the provided @oldmm structure
1655  * content into it.
1656  *
1657  * Return: the duplicated mm or NULL on failure.
1658  */
1659 static struct mm_struct *dup_mm(struct task_struct *tsk,
1660 				struct mm_struct *oldmm)
1661 {
1662 	struct mm_struct *mm;
1663 	int err;
1664 
1665 	mm = allocate_mm();
1666 	if (!mm)
1667 		goto fail_nomem;
1668 
1669 	memcpy(mm, oldmm, sizeof(*mm));
1670 
1671 	if (!mm_init(mm, tsk, mm->user_ns))
1672 		goto fail_nomem;
1673 
1674 	err = dup_mmap(mm, oldmm);
1675 	if (err)
1676 		goto free_pt;
1677 
1678 	mm->hiwater_rss = get_mm_rss(mm);
1679 	mm->hiwater_vm = mm->total_vm;
1680 
1681 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1682 		goto free_pt;
1683 
1684 	return mm;
1685 
1686 free_pt:
1687 	/* don't put binfmt in mmput, we haven't got module yet */
1688 	mm->binfmt = NULL;
1689 	mm_init_owner(mm, NULL);
1690 	mmput(mm);
1691 
1692 fail_nomem:
1693 	return NULL;
1694 }
1695 
1696 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1697 {
1698 	struct mm_struct *mm, *oldmm;
1699 
1700 	tsk->min_flt = tsk->maj_flt = 0;
1701 	tsk->nvcsw = tsk->nivcsw = 0;
1702 #ifdef CONFIG_DETECT_HUNG_TASK
1703 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1704 	tsk->last_switch_time = 0;
1705 #endif
1706 
1707 	tsk->mm = NULL;
1708 	tsk->active_mm = NULL;
1709 
1710 	/*
1711 	 * Are we cloning a kernel thread?
1712 	 *
1713 	 * We need to steal a active VM for that..
1714 	 */
1715 	oldmm = current->mm;
1716 	if (!oldmm)
1717 		return 0;
1718 
1719 	if (clone_flags & CLONE_VM) {
1720 		mmget(oldmm);
1721 		mm = oldmm;
1722 	} else {
1723 		mm = dup_mm(tsk, current->mm);
1724 		if (!mm)
1725 			return -ENOMEM;
1726 	}
1727 
1728 	tsk->mm = mm;
1729 	tsk->active_mm = mm;
1730 	sched_mm_cid_fork(tsk);
1731 	return 0;
1732 }
1733 
1734 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1735 {
1736 	struct fs_struct *fs = current->fs;
1737 	if (clone_flags & CLONE_FS) {
1738 		/* tsk->fs is already what we want */
1739 		spin_lock(&fs->lock);
1740 		/* "users" and "in_exec" locked for check_unsafe_exec() */
1741 		if (fs->in_exec) {
1742 			spin_unlock(&fs->lock);
1743 			return -EAGAIN;
1744 		}
1745 		fs->users++;
1746 		spin_unlock(&fs->lock);
1747 		return 0;
1748 	}
1749 	tsk->fs = copy_fs_struct(fs);
1750 	if (!tsk->fs)
1751 		return -ENOMEM;
1752 	return 0;
1753 }
1754 
1755 static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1756 		      int no_files)
1757 {
1758 	struct files_struct *oldf, *newf;
1759 
1760 	/*
1761 	 * A background process may not have any files ...
1762 	 */
1763 	oldf = current->files;
1764 	if (!oldf)
1765 		return 0;
1766 
1767 	if (no_files) {
1768 		tsk->files = NULL;
1769 		return 0;
1770 	}
1771 
1772 	if (clone_flags & CLONE_FILES) {
1773 		atomic_inc(&oldf->count);
1774 		return 0;
1775 	}
1776 
1777 	newf = dup_fd(oldf, NULL);
1778 	if (IS_ERR(newf))
1779 		return PTR_ERR(newf);
1780 
1781 	tsk->files = newf;
1782 	return 0;
1783 }
1784 
1785 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1786 {
1787 	struct sighand_struct *sig;
1788 
1789 	if (clone_flags & CLONE_SIGHAND) {
1790 		refcount_inc(&current->sighand->count);
1791 		return 0;
1792 	}
1793 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1794 	RCU_INIT_POINTER(tsk->sighand, sig);
1795 	if (!sig)
1796 		return -ENOMEM;
1797 
1798 	refcount_set(&sig->count, 1);
1799 	spin_lock_irq(&current->sighand->siglock);
1800 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1801 	spin_unlock_irq(&current->sighand->siglock);
1802 
1803 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1804 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1805 		flush_signal_handlers(tsk, 0);
1806 
1807 	return 0;
1808 }
1809 
1810 void __cleanup_sighand(struct sighand_struct *sighand)
1811 {
1812 	if (refcount_dec_and_test(&sighand->count)) {
1813 		signalfd_cleanup(sighand);
1814 		/*
1815 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1816 		 * without an RCU grace period, see __lock_task_sighand().
1817 		 */
1818 		kmem_cache_free(sighand_cachep, sighand);
1819 	}
1820 }
1821 
1822 /*
1823  * Initialize POSIX timer handling for a thread group.
1824  */
1825 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1826 {
1827 	struct posix_cputimers *pct = &sig->posix_cputimers;
1828 	unsigned long cpu_limit;
1829 
1830 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1831 	posix_cputimers_group_init(pct, cpu_limit);
1832 }
1833 
1834 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1835 {
1836 	struct signal_struct *sig;
1837 
1838 	if (clone_flags & CLONE_THREAD)
1839 		return 0;
1840 
1841 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1842 	tsk->signal = sig;
1843 	if (!sig)
1844 		return -ENOMEM;
1845 
1846 	sig->nr_threads = 1;
1847 	sig->quick_threads = 1;
1848 	atomic_set(&sig->live, 1);
1849 	refcount_set(&sig->sigcnt, 1);
1850 
1851 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1852 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1853 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1854 
1855 	init_waitqueue_head(&sig->wait_chldexit);
1856 	sig->curr_target = tsk;
1857 	init_sigpending(&sig->shared_pending);
1858 	INIT_HLIST_HEAD(&sig->multiprocess);
1859 	seqlock_init(&sig->stats_lock);
1860 	prev_cputime_init(&sig->prev_cputime);
1861 
1862 #ifdef CONFIG_POSIX_TIMERS
1863 	INIT_HLIST_HEAD(&sig->posix_timers);
1864 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1865 	sig->real_timer.function = it_real_fn;
1866 #endif
1867 
1868 	task_lock(current->group_leader);
1869 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1870 	task_unlock(current->group_leader);
1871 
1872 	posix_cpu_timers_init_group(sig);
1873 
1874 	tty_audit_fork(sig);
1875 	sched_autogroup_fork(sig);
1876 
1877 	sig->oom_score_adj = current->signal->oom_score_adj;
1878 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1879 
1880 	mutex_init(&sig->cred_guard_mutex);
1881 	init_rwsem(&sig->exec_update_lock);
1882 
1883 	return 0;
1884 }
1885 
1886 static void copy_seccomp(struct task_struct *p)
1887 {
1888 #ifdef CONFIG_SECCOMP
1889 	/*
1890 	 * Must be called with sighand->lock held, which is common to
1891 	 * all threads in the group. Holding cred_guard_mutex is not
1892 	 * needed because this new task is not yet running and cannot
1893 	 * be racing exec.
1894 	 */
1895 	assert_spin_locked(&current->sighand->siglock);
1896 
1897 	/* Ref-count the new filter user, and assign it. */
1898 	get_seccomp_filter(current);
1899 	p->seccomp = current->seccomp;
1900 
1901 	/*
1902 	 * Explicitly enable no_new_privs here in case it got set
1903 	 * between the task_struct being duplicated and holding the
1904 	 * sighand lock. The seccomp state and nnp must be in sync.
1905 	 */
1906 	if (task_no_new_privs(current))
1907 		task_set_no_new_privs(p);
1908 
1909 	/*
1910 	 * If the parent gained a seccomp mode after copying thread
1911 	 * flags and between before we held the sighand lock, we have
1912 	 * to manually enable the seccomp thread flag here.
1913 	 */
1914 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1915 		set_task_syscall_work(p, SECCOMP);
1916 #endif
1917 }
1918 
1919 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1920 {
1921 	current->clear_child_tid = tidptr;
1922 
1923 	return task_pid_vnr(current);
1924 }
1925 
1926 static void rt_mutex_init_task(struct task_struct *p)
1927 {
1928 	raw_spin_lock_init(&p->pi_lock);
1929 #ifdef CONFIG_RT_MUTEXES
1930 	p->pi_waiters = RB_ROOT_CACHED;
1931 	p->pi_top_task = NULL;
1932 	p->pi_blocked_on = NULL;
1933 #endif
1934 }
1935 
1936 static inline void init_task_pid_links(struct task_struct *task)
1937 {
1938 	enum pid_type type;
1939 
1940 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1941 		INIT_HLIST_NODE(&task->pid_links[type]);
1942 }
1943 
1944 static inline void
1945 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1946 {
1947 	if (type == PIDTYPE_PID)
1948 		task->thread_pid = pid;
1949 	else
1950 		task->signal->pids[type] = pid;
1951 }
1952 
1953 static inline void rcu_copy_process(struct task_struct *p)
1954 {
1955 #ifdef CONFIG_PREEMPT_RCU
1956 	p->rcu_read_lock_nesting = 0;
1957 	p->rcu_read_unlock_special.s = 0;
1958 	p->rcu_blocked_node = NULL;
1959 	INIT_LIST_HEAD(&p->rcu_node_entry);
1960 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1961 #ifdef CONFIG_TASKS_RCU
1962 	p->rcu_tasks_holdout = false;
1963 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1964 	p->rcu_tasks_idle_cpu = -1;
1965 	INIT_LIST_HEAD(&p->rcu_tasks_exit_list);
1966 #endif /* #ifdef CONFIG_TASKS_RCU */
1967 #ifdef CONFIG_TASKS_TRACE_RCU
1968 	p->trc_reader_nesting = 0;
1969 	p->trc_reader_special.s = 0;
1970 	INIT_LIST_HEAD(&p->trc_holdout_list);
1971 	INIT_LIST_HEAD(&p->trc_blkd_node);
1972 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1973 }
1974 
1975 /**
1976  * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
1977  * @pid:   the struct pid for which to create a pidfd
1978  * @flags: flags of the new @pidfd
1979  * @ret: Where to return the file for the pidfd.
1980  *
1981  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
1982  * caller's file descriptor table. The pidfd is reserved but not installed yet.
1983  *
1984  * The helper doesn't perform checks on @pid which makes it useful for pidfds
1985  * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
1986  * pidfd file are prepared.
1987  *
1988  * If this function returns successfully the caller is responsible to either
1989  * call fd_install() passing the returned pidfd and pidfd file as arguments in
1990  * order to install the pidfd into its file descriptor table or they must use
1991  * put_unused_fd() and fput() on the returned pidfd and pidfd file
1992  * respectively.
1993  *
1994  * This function is useful when a pidfd must already be reserved but there
1995  * might still be points of failure afterwards and the caller wants to ensure
1996  * that no pidfd is leaked into its file descriptor table.
1997  *
1998  * Return: On success, a reserved pidfd is returned from the function and a new
1999  *         pidfd file is returned in the last argument to the function. On
2000  *         error, a negative error code is returned from the function and the
2001  *         last argument remains unchanged.
2002  */
2003 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2004 {
2005 	int pidfd;
2006 	struct file *pidfd_file;
2007 
2008 	pidfd = get_unused_fd_flags(O_CLOEXEC);
2009 	if (pidfd < 0)
2010 		return pidfd;
2011 
2012 	pidfd_file = pidfs_alloc_file(pid, flags | O_RDWR);
2013 	if (IS_ERR(pidfd_file)) {
2014 		put_unused_fd(pidfd);
2015 		return PTR_ERR(pidfd_file);
2016 	}
2017 	/*
2018 	 * anon_inode_getfile() ignores everything outside of the
2019 	 * O_ACCMODE | O_NONBLOCK mask, set PIDFD_THREAD manually.
2020 	 */
2021 	pidfd_file->f_flags |= (flags & PIDFD_THREAD);
2022 	*ret = pidfd_file;
2023 	return pidfd;
2024 }
2025 
2026 /**
2027  * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2028  * @pid:   the struct pid for which to create a pidfd
2029  * @flags: flags of the new @pidfd
2030  * @ret: Where to return the pidfd.
2031  *
2032  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2033  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2034  *
2035  * The helper verifies that @pid is still in use, without PIDFD_THREAD the
2036  * task identified by @pid must be a thread-group leader.
2037  *
2038  * If this function returns successfully the caller is responsible to either
2039  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2040  * order to install the pidfd into its file descriptor table or they must use
2041  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2042  * respectively.
2043  *
2044  * This function is useful when a pidfd must already be reserved but there
2045  * might still be points of failure afterwards and the caller wants to ensure
2046  * that no pidfd is leaked into its file descriptor table.
2047  *
2048  * Return: On success, a reserved pidfd is returned from the function and a new
2049  *         pidfd file is returned in the last argument to the function. On
2050  *         error, a negative error code is returned from the function and the
2051  *         last argument remains unchanged.
2052  */
2053 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2054 {
2055 	bool thread = flags & PIDFD_THREAD;
2056 
2057 	if (!pid || !pid_has_task(pid, thread ? PIDTYPE_PID : PIDTYPE_TGID))
2058 		return -EINVAL;
2059 
2060 	return __pidfd_prepare(pid, flags, ret);
2061 }
2062 
2063 static void __delayed_free_task(struct rcu_head *rhp)
2064 {
2065 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2066 
2067 	free_task(tsk);
2068 }
2069 
2070 static __always_inline void delayed_free_task(struct task_struct *tsk)
2071 {
2072 	if (IS_ENABLED(CONFIG_MEMCG))
2073 		call_rcu(&tsk->rcu, __delayed_free_task);
2074 	else
2075 		free_task(tsk);
2076 }
2077 
2078 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2079 {
2080 	/* Skip if kernel thread */
2081 	if (!tsk->mm)
2082 		return;
2083 
2084 	/* Skip if spawning a thread or using vfork */
2085 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2086 		return;
2087 
2088 	/* We need to synchronize with __set_oom_adj */
2089 	mutex_lock(&oom_adj_mutex);
2090 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2091 	/* Update the values in case they were changed after copy_signal */
2092 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2093 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2094 	mutex_unlock(&oom_adj_mutex);
2095 }
2096 
2097 #ifdef CONFIG_RV
2098 static void rv_task_fork(struct task_struct *p)
2099 {
2100 	int i;
2101 
2102 	for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2103 		p->rv[i].da_mon.monitoring = false;
2104 }
2105 #else
2106 #define rv_task_fork(p) do {} while (0)
2107 #endif
2108 
2109 /*
2110  * This creates a new process as a copy of the old one,
2111  * but does not actually start it yet.
2112  *
2113  * It copies the registers, and all the appropriate
2114  * parts of the process environment (as per the clone
2115  * flags). The actual kick-off is left to the caller.
2116  */
2117 __latent_entropy struct task_struct *copy_process(
2118 					struct pid *pid,
2119 					int trace,
2120 					int node,
2121 					struct kernel_clone_args *args)
2122 {
2123 	int pidfd = -1, retval;
2124 	struct task_struct *p;
2125 	struct multiprocess_signals delayed;
2126 	struct file *pidfile = NULL;
2127 	const u64 clone_flags = args->flags;
2128 	struct nsproxy *nsp = current->nsproxy;
2129 
2130 	/*
2131 	 * Don't allow sharing the root directory with processes in a different
2132 	 * namespace
2133 	 */
2134 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2135 		return ERR_PTR(-EINVAL);
2136 
2137 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2138 		return ERR_PTR(-EINVAL);
2139 
2140 	/*
2141 	 * Thread groups must share signals as well, and detached threads
2142 	 * can only be started up within the thread group.
2143 	 */
2144 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2145 		return ERR_PTR(-EINVAL);
2146 
2147 	/*
2148 	 * Shared signal handlers imply shared VM. By way of the above,
2149 	 * thread groups also imply shared VM. Blocking this case allows
2150 	 * for various simplifications in other code.
2151 	 */
2152 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2153 		return ERR_PTR(-EINVAL);
2154 
2155 	/*
2156 	 * Siblings of global init remain as zombies on exit since they are
2157 	 * not reaped by their parent (swapper). To solve this and to avoid
2158 	 * multi-rooted process trees, prevent global and container-inits
2159 	 * from creating siblings.
2160 	 */
2161 	if ((clone_flags & CLONE_PARENT) &&
2162 				current->signal->flags & SIGNAL_UNKILLABLE)
2163 		return ERR_PTR(-EINVAL);
2164 
2165 	/*
2166 	 * If the new process will be in a different pid or user namespace
2167 	 * do not allow it to share a thread group with the forking task.
2168 	 */
2169 	if (clone_flags & CLONE_THREAD) {
2170 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2171 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2172 			return ERR_PTR(-EINVAL);
2173 	}
2174 
2175 	if (clone_flags & CLONE_PIDFD) {
2176 		/*
2177 		 * - CLONE_DETACHED is blocked so that we can potentially
2178 		 *   reuse it later for CLONE_PIDFD.
2179 		 */
2180 		if (clone_flags & CLONE_DETACHED)
2181 			return ERR_PTR(-EINVAL);
2182 	}
2183 
2184 	/*
2185 	 * Force any signals received before this point to be delivered
2186 	 * before the fork happens.  Collect up signals sent to multiple
2187 	 * processes that happen during the fork and delay them so that
2188 	 * they appear to happen after the fork.
2189 	 */
2190 	sigemptyset(&delayed.signal);
2191 	INIT_HLIST_NODE(&delayed.node);
2192 
2193 	spin_lock_irq(&current->sighand->siglock);
2194 	if (!(clone_flags & CLONE_THREAD))
2195 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2196 	recalc_sigpending();
2197 	spin_unlock_irq(&current->sighand->siglock);
2198 	retval = -ERESTARTNOINTR;
2199 	if (task_sigpending(current))
2200 		goto fork_out;
2201 
2202 	retval = -ENOMEM;
2203 	p = dup_task_struct(current, node);
2204 	if (!p)
2205 		goto fork_out;
2206 	p->flags &= ~PF_KTHREAD;
2207 	if (args->kthread)
2208 		p->flags |= PF_KTHREAD;
2209 	if (args->user_worker) {
2210 		/*
2211 		 * Mark us a user worker, and block any signal that isn't
2212 		 * fatal or STOP
2213 		 */
2214 		p->flags |= PF_USER_WORKER;
2215 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2216 	}
2217 	if (args->io_thread)
2218 		p->flags |= PF_IO_WORKER;
2219 
2220 	if (args->name)
2221 		strscpy_pad(p->comm, args->name, sizeof(p->comm));
2222 
2223 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2224 	/*
2225 	 * Clear TID on mm_release()?
2226 	 */
2227 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2228 
2229 	ftrace_graph_init_task(p);
2230 
2231 	rt_mutex_init_task(p);
2232 
2233 	lockdep_assert_irqs_enabled();
2234 #ifdef CONFIG_PROVE_LOCKING
2235 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2236 #endif
2237 	retval = copy_creds(p, clone_flags);
2238 	if (retval < 0)
2239 		goto bad_fork_free;
2240 
2241 	retval = -EAGAIN;
2242 	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2243 		if (p->real_cred->user != INIT_USER &&
2244 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2245 			goto bad_fork_cleanup_count;
2246 	}
2247 	current->flags &= ~PF_NPROC_EXCEEDED;
2248 
2249 	/*
2250 	 * If multiple threads are within copy_process(), then this check
2251 	 * triggers too late. This doesn't hurt, the check is only there
2252 	 * to stop root fork bombs.
2253 	 */
2254 	retval = -EAGAIN;
2255 	if (data_race(nr_threads >= max_threads))
2256 		goto bad_fork_cleanup_count;
2257 
2258 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2259 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2260 	p->flags |= PF_FORKNOEXEC;
2261 	INIT_LIST_HEAD(&p->children);
2262 	INIT_LIST_HEAD(&p->sibling);
2263 	rcu_copy_process(p);
2264 	p->vfork_done = NULL;
2265 	spin_lock_init(&p->alloc_lock);
2266 
2267 	init_sigpending(&p->pending);
2268 
2269 	p->utime = p->stime = p->gtime = 0;
2270 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2271 	p->utimescaled = p->stimescaled = 0;
2272 #endif
2273 	prev_cputime_init(&p->prev_cputime);
2274 
2275 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2276 	seqcount_init(&p->vtime.seqcount);
2277 	p->vtime.starttime = 0;
2278 	p->vtime.state = VTIME_INACTIVE;
2279 #endif
2280 
2281 #ifdef CONFIG_IO_URING
2282 	p->io_uring = NULL;
2283 #endif
2284 
2285 	p->default_timer_slack_ns = current->timer_slack_ns;
2286 
2287 #ifdef CONFIG_PSI
2288 	p->psi_flags = 0;
2289 #endif
2290 
2291 	task_io_accounting_init(&p->ioac);
2292 	acct_clear_integrals(p);
2293 
2294 	posix_cputimers_init(&p->posix_cputimers);
2295 
2296 	p->io_context = NULL;
2297 	audit_set_context(p, NULL);
2298 	cgroup_fork(p);
2299 	if (args->kthread) {
2300 		if (!set_kthread_struct(p))
2301 			goto bad_fork_cleanup_delayacct;
2302 	}
2303 #ifdef CONFIG_NUMA
2304 	p->mempolicy = mpol_dup(p->mempolicy);
2305 	if (IS_ERR(p->mempolicy)) {
2306 		retval = PTR_ERR(p->mempolicy);
2307 		p->mempolicy = NULL;
2308 		goto bad_fork_cleanup_delayacct;
2309 	}
2310 #endif
2311 #ifdef CONFIG_CPUSETS
2312 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2313 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2314 #endif
2315 #ifdef CONFIG_TRACE_IRQFLAGS
2316 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2317 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2318 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2319 	p->softirqs_enabled		= 1;
2320 	p->softirq_context		= 0;
2321 #endif
2322 
2323 	p->pagefault_disabled = 0;
2324 
2325 #ifdef CONFIG_LOCKDEP
2326 	lockdep_init_task(p);
2327 #endif
2328 
2329 #ifdef CONFIG_DEBUG_MUTEXES
2330 	p->blocked_on = NULL; /* not blocked yet */
2331 #endif
2332 #ifdef CONFIG_BCACHE
2333 	p->sequential_io	= 0;
2334 	p->sequential_io_avg	= 0;
2335 #endif
2336 #ifdef CONFIG_BPF_SYSCALL
2337 	RCU_INIT_POINTER(p->bpf_storage, NULL);
2338 	p->bpf_ctx = NULL;
2339 #endif
2340 
2341 	/* Perform scheduler related setup. Assign this task to a CPU. */
2342 	retval = sched_fork(clone_flags, p);
2343 	if (retval)
2344 		goto bad_fork_cleanup_policy;
2345 
2346 	retval = perf_event_init_task(p, clone_flags);
2347 	if (retval)
2348 		goto bad_fork_sched_cancel_fork;
2349 	retval = audit_alloc(p);
2350 	if (retval)
2351 		goto bad_fork_cleanup_perf;
2352 	/* copy all the process information */
2353 	shm_init_task(p);
2354 	retval = security_task_alloc(p, clone_flags);
2355 	if (retval)
2356 		goto bad_fork_cleanup_audit;
2357 	retval = copy_semundo(clone_flags, p);
2358 	if (retval)
2359 		goto bad_fork_cleanup_security;
2360 	retval = copy_files(clone_flags, p, args->no_files);
2361 	if (retval)
2362 		goto bad_fork_cleanup_semundo;
2363 	retval = copy_fs(clone_flags, p);
2364 	if (retval)
2365 		goto bad_fork_cleanup_files;
2366 	retval = copy_sighand(clone_flags, p);
2367 	if (retval)
2368 		goto bad_fork_cleanup_fs;
2369 	retval = copy_signal(clone_flags, p);
2370 	if (retval)
2371 		goto bad_fork_cleanup_sighand;
2372 	retval = copy_mm(clone_flags, p);
2373 	if (retval)
2374 		goto bad_fork_cleanup_signal;
2375 	retval = copy_namespaces(clone_flags, p);
2376 	if (retval)
2377 		goto bad_fork_cleanup_mm;
2378 	retval = copy_io(clone_flags, p);
2379 	if (retval)
2380 		goto bad_fork_cleanup_namespaces;
2381 	retval = copy_thread(p, args);
2382 	if (retval)
2383 		goto bad_fork_cleanup_io;
2384 
2385 	stackleak_task_init(p);
2386 
2387 	if (pid != &init_struct_pid) {
2388 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2389 				args->set_tid_size);
2390 		if (IS_ERR(pid)) {
2391 			retval = PTR_ERR(pid);
2392 			goto bad_fork_cleanup_thread;
2393 		}
2394 	}
2395 
2396 	/*
2397 	 * This has to happen after we've potentially unshared the file
2398 	 * descriptor table (so that the pidfd doesn't leak into the child
2399 	 * if the fd table isn't shared).
2400 	 */
2401 	if (clone_flags & CLONE_PIDFD) {
2402 		int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0;
2403 
2404 		/* Note that no task has been attached to @pid yet. */
2405 		retval = __pidfd_prepare(pid, flags, &pidfile);
2406 		if (retval < 0)
2407 			goto bad_fork_free_pid;
2408 		pidfd = retval;
2409 
2410 		retval = put_user(pidfd, args->pidfd);
2411 		if (retval)
2412 			goto bad_fork_put_pidfd;
2413 	}
2414 
2415 #ifdef CONFIG_BLOCK
2416 	p->plug = NULL;
2417 #endif
2418 	futex_init_task(p);
2419 
2420 	/*
2421 	 * sigaltstack should be cleared when sharing the same VM
2422 	 */
2423 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2424 		sas_ss_reset(p);
2425 
2426 	/*
2427 	 * Syscall tracing and stepping should be turned off in the
2428 	 * child regardless of CLONE_PTRACE.
2429 	 */
2430 	user_disable_single_step(p);
2431 	clear_task_syscall_work(p, SYSCALL_TRACE);
2432 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2433 	clear_task_syscall_work(p, SYSCALL_EMU);
2434 #endif
2435 	clear_tsk_latency_tracing(p);
2436 
2437 	/* ok, now we should be set up.. */
2438 	p->pid = pid_nr(pid);
2439 	if (clone_flags & CLONE_THREAD) {
2440 		p->group_leader = current->group_leader;
2441 		p->tgid = current->tgid;
2442 	} else {
2443 		p->group_leader = p;
2444 		p->tgid = p->pid;
2445 	}
2446 
2447 	p->nr_dirtied = 0;
2448 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2449 	p->dirty_paused_when = 0;
2450 
2451 	p->pdeath_signal = 0;
2452 	p->task_works = NULL;
2453 	clear_posix_cputimers_work(p);
2454 
2455 #ifdef CONFIG_KRETPROBES
2456 	p->kretprobe_instances.first = NULL;
2457 #endif
2458 #ifdef CONFIG_RETHOOK
2459 	p->rethooks.first = NULL;
2460 #endif
2461 
2462 	/*
2463 	 * Ensure that the cgroup subsystem policies allow the new process to be
2464 	 * forked. It should be noted that the new process's css_set can be changed
2465 	 * between here and cgroup_post_fork() if an organisation operation is in
2466 	 * progress.
2467 	 */
2468 	retval = cgroup_can_fork(p, args);
2469 	if (retval)
2470 		goto bad_fork_put_pidfd;
2471 
2472 	/*
2473 	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2474 	 * the new task on the correct runqueue. All this *before* the task
2475 	 * becomes visible.
2476 	 *
2477 	 * This isn't part of ->can_fork() because while the re-cloning is
2478 	 * cgroup specific, it unconditionally needs to place the task on a
2479 	 * runqueue.
2480 	 */
2481 	retval = sched_cgroup_fork(p, args);
2482 	if (retval)
2483 		goto bad_fork_cancel_cgroup;
2484 
2485 	/*
2486 	 * From this point on we must avoid any synchronous user-space
2487 	 * communication until we take the tasklist-lock. In particular, we do
2488 	 * not want user-space to be able to predict the process start-time by
2489 	 * stalling fork(2) after we recorded the start_time but before it is
2490 	 * visible to the system.
2491 	 */
2492 
2493 	p->start_time = ktime_get_ns();
2494 	p->start_boottime = ktime_get_boottime_ns();
2495 
2496 	/*
2497 	 * Make it visible to the rest of the system, but dont wake it up yet.
2498 	 * Need tasklist lock for parent etc handling!
2499 	 */
2500 	write_lock_irq(&tasklist_lock);
2501 
2502 	/* CLONE_PARENT re-uses the old parent */
2503 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2504 		p->real_parent = current->real_parent;
2505 		p->parent_exec_id = current->parent_exec_id;
2506 		if (clone_flags & CLONE_THREAD)
2507 			p->exit_signal = -1;
2508 		else
2509 			p->exit_signal = current->group_leader->exit_signal;
2510 	} else {
2511 		p->real_parent = current;
2512 		p->parent_exec_id = current->self_exec_id;
2513 		p->exit_signal = args->exit_signal;
2514 	}
2515 
2516 	klp_copy_process(p);
2517 
2518 	sched_core_fork(p);
2519 
2520 	spin_lock(&current->sighand->siglock);
2521 
2522 	rv_task_fork(p);
2523 
2524 	rseq_fork(p, clone_flags);
2525 
2526 	/* Don't start children in a dying pid namespace */
2527 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2528 		retval = -ENOMEM;
2529 		goto bad_fork_core_free;
2530 	}
2531 
2532 	/* Let kill terminate clone/fork in the middle */
2533 	if (fatal_signal_pending(current)) {
2534 		retval = -EINTR;
2535 		goto bad_fork_core_free;
2536 	}
2537 
2538 	/* No more failure paths after this point. */
2539 
2540 	/*
2541 	 * Copy seccomp details explicitly here, in case they were changed
2542 	 * before holding sighand lock.
2543 	 */
2544 	copy_seccomp(p);
2545 
2546 	init_task_pid_links(p);
2547 	if (likely(p->pid)) {
2548 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2549 
2550 		init_task_pid(p, PIDTYPE_PID, pid);
2551 		if (thread_group_leader(p)) {
2552 			init_task_pid(p, PIDTYPE_TGID, pid);
2553 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2554 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2555 
2556 			if (is_child_reaper(pid)) {
2557 				ns_of_pid(pid)->child_reaper = p;
2558 				p->signal->flags |= SIGNAL_UNKILLABLE;
2559 			}
2560 			p->signal->shared_pending.signal = delayed.signal;
2561 			p->signal->tty = tty_kref_get(current->signal->tty);
2562 			/*
2563 			 * Inherit has_child_subreaper flag under the same
2564 			 * tasklist_lock with adding child to the process tree
2565 			 * for propagate_has_child_subreaper optimization.
2566 			 */
2567 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2568 							 p->real_parent->signal->is_child_subreaper;
2569 			list_add_tail(&p->sibling, &p->real_parent->children);
2570 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2571 			attach_pid(p, PIDTYPE_TGID);
2572 			attach_pid(p, PIDTYPE_PGID);
2573 			attach_pid(p, PIDTYPE_SID);
2574 			__this_cpu_inc(process_counts);
2575 		} else {
2576 			current->signal->nr_threads++;
2577 			current->signal->quick_threads++;
2578 			atomic_inc(&current->signal->live);
2579 			refcount_inc(&current->signal->sigcnt);
2580 			task_join_group_stop(p);
2581 			list_add_tail_rcu(&p->thread_node,
2582 					  &p->signal->thread_head);
2583 		}
2584 		attach_pid(p, PIDTYPE_PID);
2585 		nr_threads++;
2586 	}
2587 	total_forks++;
2588 	hlist_del_init(&delayed.node);
2589 	spin_unlock(&current->sighand->siglock);
2590 	syscall_tracepoint_update(p);
2591 	write_unlock_irq(&tasklist_lock);
2592 
2593 	if (pidfile)
2594 		fd_install(pidfd, pidfile);
2595 
2596 	proc_fork_connector(p);
2597 	sched_post_fork(p);
2598 	cgroup_post_fork(p, args);
2599 	perf_event_fork(p);
2600 
2601 	trace_task_newtask(p, clone_flags);
2602 	uprobe_copy_process(p, clone_flags);
2603 	user_events_fork(p, clone_flags);
2604 
2605 	copy_oom_score_adj(clone_flags, p);
2606 
2607 	return p;
2608 
2609 bad_fork_core_free:
2610 	sched_core_free(p);
2611 	spin_unlock(&current->sighand->siglock);
2612 	write_unlock_irq(&tasklist_lock);
2613 bad_fork_cancel_cgroup:
2614 	cgroup_cancel_fork(p, args);
2615 bad_fork_put_pidfd:
2616 	if (clone_flags & CLONE_PIDFD) {
2617 		fput(pidfile);
2618 		put_unused_fd(pidfd);
2619 	}
2620 bad_fork_free_pid:
2621 	if (pid != &init_struct_pid)
2622 		free_pid(pid);
2623 bad_fork_cleanup_thread:
2624 	exit_thread(p);
2625 bad_fork_cleanup_io:
2626 	if (p->io_context)
2627 		exit_io_context(p);
2628 bad_fork_cleanup_namespaces:
2629 	exit_task_namespaces(p);
2630 bad_fork_cleanup_mm:
2631 	if (p->mm) {
2632 		mm_clear_owner(p->mm, p);
2633 		mmput(p->mm);
2634 	}
2635 bad_fork_cleanup_signal:
2636 	if (!(clone_flags & CLONE_THREAD))
2637 		free_signal_struct(p->signal);
2638 bad_fork_cleanup_sighand:
2639 	__cleanup_sighand(p->sighand);
2640 bad_fork_cleanup_fs:
2641 	exit_fs(p); /* blocking */
2642 bad_fork_cleanup_files:
2643 	exit_files(p); /* blocking */
2644 bad_fork_cleanup_semundo:
2645 	exit_sem(p);
2646 bad_fork_cleanup_security:
2647 	security_task_free(p);
2648 bad_fork_cleanup_audit:
2649 	audit_free(p);
2650 bad_fork_cleanup_perf:
2651 	perf_event_free_task(p);
2652 bad_fork_sched_cancel_fork:
2653 	sched_cancel_fork(p);
2654 bad_fork_cleanup_policy:
2655 	lockdep_free_task(p);
2656 #ifdef CONFIG_NUMA
2657 	mpol_put(p->mempolicy);
2658 #endif
2659 bad_fork_cleanup_delayacct:
2660 	delayacct_tsk_free(p);
2661 bad_fork_cleanup_count:
2662 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2663 	exit_creds(p);
2664 bad_fork_free:
2665 	WRITE_ONCE(p->__state, TASK_DEAD);
2666 	exit_task_stack_account(p);
2667 	put_task_stack(p);
2668 	delayed_free_task(p);
2669 fork_out:
2670 	spin_lock_irq(&current->sighand->siglock);
2671 	hlist_del_init(&delayed.node);
2672 	spin_unlock_irq(&current->sighand->siglock);
2673 	return ERR_PTR(retval);
2674 }
2675 
2676 static inline void init_idle_pids(struct task_struct *idle)
2677 {
2678 	enum pid_type type;
2679 
2680 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2681 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2682 		init_task_pid(idle, type, &init_struct_pid);
2683 	}
2684 }
2685 
2686 static int idle_dummy(void *dummy)
2687 {
2688 	/* This function is never called */
2689 	return 0;
2690 }
2691 
2692 struct task_struct * __init fork_idle(int cpu)
2693 {
2694 	struct task_struct *task;
2695 	struct kernel_clone_args args = {
2696 		.flags		= CLONE_VM,
2697 		.fn		= &idle_dummy,
2698 		.fn_arg		= NULL,
2699 		.kthread	= 1,
2700 		.idle		= 1,
2701 	};
2702 
2703 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2704 	if (!IS_ERR(task)) {
2705 		init_idle_pids(task);
2706 		init_idle(task, cpu);
2707 	}
2708 
2709 	return task;
2710 }
2711 
2712 /*
2713  * This is like kernel_clone(), but shaved down and tailored to just
2714  * creating io_uring workers. It returns a created task, or an error pointer.
2715  * The returned task is inactive, and the caller must fire it up through
2716  * wake_up_new_task(p). All signals are blocked in the created task.
2717  */
2718 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2719 {
2720 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2721 				CLONE_IO;
2722 	struct kernel_clone_args args = {
2723 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2724 				    CLONE_UNTRACED) & ~CSIGNAL),
2725 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2726 		.fn		= fn,
2727 		.fn_arg		= arg,
2728 		.io_thread	= 1,
2729 		.user_worker	= 1,
2730 	};
2731 
2732 	return copy_process(NULL, 0, node, &args);
2733 }
2734 
2735 /*
2736  *  Ok, this is the main fork-routine.
2737  *
2738  * It copies the process, and if successful kick-starts
2739  * it and waits for it to finish using the VM if required.
2740  *
2741  * args->exit_signal is expected to be checked for sanity by the caller.
2742  */
2743 pid_t kernel_clone(struct kernel_clone_args *args)
2744 {
2745 	u64 clone_flags = args->flags;
2746 	struct completion vfork;
2747 	struct pid *pid;
2748 	struct task_struct *p;
2749 	int trace = 0;
2750 	pid_t nr;
2751 
2752 	/*
2753 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2754 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2755 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2756 	 * field in struct clone_args and it still doesn't make sense to have
2757 	 * them both point at the same memory location. Performing this check
2758 	 * here has the advantage that we don't need to have a separate helper
2759 	 * to check for legacy clone().
2760 	 */
2761 	if ((clone_flags & CLONE_PIDFD) &&
2762 	    (clone_flags & CLONE_PARENT_SETTID) &&
2763 	    (args->pidfd == args->parent_tid))
2764 		return -EINVAL;
2765 
2766 	/*
2767 	 * Determine whether and which event to report to ptracer.  When
2768 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2769 	 * requested, no event is reported; otherwise, report if the event
2770 	 * for the type of forking is enabled.
2771 	 */
2772 	if (!(clone_flags & CLONE_UNTRACED)) {
2773 		if (clone_flags & CLONE_VFORK)
2774 			trace = PTRACE_EVENT_VFORK;
2775 		else if (args->exit_signal != SIGCHLD)
2776 			trace = PTRACE_EVENT_CLONE;
2777 		else
2778 			trace = PTRACE_EVENT_FORK;
2779 
2780 		if (likely(!ptrace_event_enabled(current, trace)))
2781 			trace = 0;
2782 	}
2783 
2784 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2785 	add_latent_entropy();
2786 
2787 	if (IS_ERR(p))
2788 		return PTR_ERR(p);
2789 
2790 	/*
2791 	 * Do this prior waking up the new thread - the thread pointer
2792 	 * might get invalid after that point, if the thread exits quickly.
2793 	 */
2794 	trace_sched_process_fork(current, p);
2795 
2796 	pid = get_task_pid(p, PIDTYPE_PID);
2797 	nr = pid_vnr(pid);
2798 
2799 	if (clone_flags & CLONE_PARENT_SETTID)
2800 		put_user(nr, args->parent_tid);
2801 
2802 	if (clone_flags & CLONE_VFORK) {
2803 		p->vfork_done = &vfork;
2804 		init_completion(&vfork);
2805 		get_task_struct(p);
2806 	}
2807 
2808 	if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) {
2809 		/* lock the task to synchronize with memcg migration */
2810 		task_lock(p);
2811 		lru_gen_add_mm(p->mm);
2812 		task_unlock(p);
2813 	}
2814 
2815 	wake_up_new_task(p);
2816 
2817 	/* forking complete and child started to run, tell ptracer */
2818 	if (unlikely(trace))
2819 		ptrace_event_pid(trace, pid);
2820 
2821 	if (clone_flags & CLONE_VFORK) {
2822 		if (!wait_for_vfork_done(p, &vfork))
2823 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2824 	}
2825 
2826 	put_pid(pid);
2827 	return nr;
2828 }
2829 
2830 /*
2831  * Create a kernel thread.
2832  */
2833 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2834 		    unsigned long flags)
2835 {
2836 	struct kernel_clone_args args = {
2837 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2838 				    CLONE_UNTRACED) & ~CSIGNAL),
2839 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2840 		.fn		= fn,
2841 		.fn_arg		= arg,
2842 		.name		= name,
2843 		.kthread	= 1,
2844 	};
2845 
2846 	return kernel_clone(&args);
2847 }
2848 
2849 /*
2850  * Create a user mode thread.
2851  */
2852 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2853 {
2854 	struct kernel_clone_args args = {
2855 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2856 				    CLONE_UNTRACED) & ~CSIGNAL),
2857 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2858 		.fn		= fn,
2859 		.fn_arg		= arg,
2860 	};
2861 
2862 	return kernel_clone(&args);
2863 }
2864 
2865 #ifdef __ARCH_WANT_SYS_FORK
2866 SYSCALL_DEFINE0(fork)
2867 {
2868 #ifdef CONFIG_MMU
2869 	struct kernel_clone_args args = {
2870 		.exit_signal = SIGCHLD,
2871 	};
2872 
2873 	return kernel_clone(&args);
2874 #else
2875 	/* can not support in nommu mode */
2876 	return -EINVAL;
2877 #endif
2878 }
2879 #endif
2880 
2881 #ifdef __ARCH_WANT_SYS_VFORK
2882 SYSCALL_DEFINE0(vfork)
2883 {
2884 	struct kernel_clone_args args = {
2885 		.flags		= CLONE_VFORK | CLONE_VM,
2886 		.exit_signal	= SIGCHLD,
2887 	};
2888 
2889 	return kernel_clone(&args);
2890 }
2891 #endif
2892 
2893 #ifdef __ARCH_WANT_SYS_CLONE
2894 #ifdef CONFIG_CLONE_BACKWARDS
2895 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2896 		 int __user *, parent_tidptr,
2897 		 unsigned long, tls,
2898 		 int __user *, child_tidptr)
2899 #elif defined(CONFIG_CLONE_BACKWARDS2)
2900 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2901 		 int __user *, parent_tidptr,
2902 		 int __user *, child_tidptr,
2903 		 unsigned long, tls)
2904 #elif defined(CONFIG_CLONE_BACKWARDS3)
2905 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2906 		int, stack_size,
2907 		int __user *, parent_tidptr,
2908 		int __user *, child_tidptr,
2909 		unsigned long, tls)
2910 #else
2911 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2912 		 int __user *, parent_tidptr,
2913 		 int __user *, child_tidptr,
2914 		 unsigned long, tls)
2915 #endif
2916 {
2917 	struct kernel_clone_args args = {
2918 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2919 		.pidfd		= parent_tidptr,
2920 		.child_tid	= child_tidptr,
2921 		.parent_tid	= parent_tidptr,
2922 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2923 		.stack		= newsp,
2924 		.tls		= tls,
2925 	};
2926 
2927 	return kernel_clone(&args);
2928 }
2929 #endif
2930 
2931 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2932 					      struct clone_args __user *uargs,
2933 					      size_t usize)
2934 {
2935 	int err;
2936 	struct clone_args args;
2937 	pid_t *kset_tid = kargs->set_tid;
2938 
2939 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2940 		     CLONE_ARGS_SIZE_VER0);
2941 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2942 		     CLONE_ARGS_SIZE_VER1);
2943 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2944 		     CLONE_ARGS_SIZE_VER2);
2945 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2946 
2947 	if (unlikely(usize > PAGE_SIZE))
2948 		return -E2BIG;
2949 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2950 		return -EINVAL;
2951 
2952 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2953 	if (err)
2954 		return err;
2955 
2956 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2957 		return -EINVAL;
2958 
2959 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2960 		return -EINVAL;
2961 
2962 	if (unlikely(args.set_tid && args.set_tid_size == 0))
2963 		return -EINVAL;
2964 
2965 	/*
2966 	 * Verify that higher 32bits of exit_signal are unset and that
2967 	 * it is a valid signal
2968 	 */
2969 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2970 		     !valid_signal(args.exit_signal)))
2971 		return -EINVAL;
2972 
2973 	if ((args.flags & CLONE_INTO_CGROUP) &&
2974 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2975 		return -EINVAL;
2976 
2977 	*kargs = (struct kernel_clone_args){
2978 		.flags		= args.flags,
2979 		.pidfd		= u64_to_user_ptr(args.pidfd),
2980 		.child_tid	= u64_to_user_ptr(args.child_tid),
2981 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2982 		.exit_signal	= args.exit_signal,
2983 		.stack		= args.stack,
2984 		.stack_size	= args.stack_size,
2985 		.tls		= args.tls,
2986 		.set_tid_size	= args.set_tid_size,
2987 		.cgroup		= args.cgroup,
2988 	};
2989 
2990 	if (args.set_tid &&
2991 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2992 			(kargs->set_tid_size * sizeof(pid_t))))
2993 		return -EFAULT;
2994 
2995 	kargs->set_tid = kset_tid;
2996 
2997 	return 0;
2998 }
2999 
3000 /**
3001  * clone3_stack_valid - check and prepare stack
3002  * @kargs: kernel clone args
3003  *
3004  * Verify that the stack arguments userspace gave us are sane.
3005  * In addition, set the stack direction for userspace since it's easy for us to
3006  * determine.
3007  */
3008 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3009 {
3010 	if (kargs->stack == 0) {
3011 		if (kargs->stack_size > 0)
3012 			return false;
3013 	} else {
3014 		if (kargs->stack_size == 0)
3015 			return false;
3016 
3017 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3018 			return false;
3019 
3020 #if !defined(CONFIG_STACK_GROWSUP)
3021 		kargs->stack += kargs->stack_size;
3022 #endif
3023 	}
3024 
3025 	return true;
3026 }
3027 
3028 static bool clone3_args_valid(struct kernel_clone_args *kargs)
3029 {
3030 	/* Verify that no unknown flags are passed along. */
3031 	if (kargs->flags &
3032 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3033 		return false;
3034 
3035 	/*
3036 	 * - make the CLONE_DETACHED bit reusable for clone3
3037 	 * - make the CSIGNAL bits reusable for clone3
3038 	 */
3039 	if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3040 		return false;
3041 
3042 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3043 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3044 		return false;
3045 
3046 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3047 	    kargs->exit_signal)
3048 		return false;
3049 
3050 	if (!clone3_stack_valid(kargs))
3051 		return false;
3052 
3053 	return true;
3054 }
3055 
3056 /**
3057  * sys_clone3 - create a new process with specific properties
3058  * @uargs: argument structure
3059  * @size:  size of @uargs
3060  *
3061  * clone3() is the extensible successor to clone()/clone2().
3062  * It takes a struct as argument that is versioned by its size.
3063  *
3064  * Return: On success, a positive PID for the child process.
3065  *         On error, a negative errno number.
3066  */
3067 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3068 {
3069 	int err;
3070 
3071 	struct kernel_clone_args kargs;
3072 	pid_t set_tid[MAX_PID_NS_LEVEL];
3073 
3074 #ifdef __ARCH_BROKEN_SYS_CLONE3
3075 #warning clone3() entry point is missing, please fix
3076 	return -ENOSYS;
3077 #endif
3078 
3079 	kargs.set_tid = set_tid;
3080 
3081 	err = copy_clone_args_from_user(&kargs, uargs, size);
3082 	if (err)
3083 		return err;
3084 
3085 	if (!clone3_args_valid(&kargs))
3086 		return -EINVAL;
3087 
3088 	return kernel_clone(&kargs);
3089 }
3090 
3091 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3092 {
3093 	struct task_struct *leader, *parent, *child;
3094 	int res;
3095 
3096 	read_lock(&tasklist_lock);
3097 	leader = top = top->group_leader;
3098 down:
3099 	for_each_thread(leader, parent) {
3100 		list_for_each_entry(child, &parent->children, sibling) {
3101 			res = visitor(child, data);
3102 			if (res) {
3103 				if (res < 0)
3104 					goto out;
3105 				leader = child;
3106 				goto down;
3107 			}
3108 up:
3109 			;
3110 		}
3111 	}
3112 
3113 	if (leader != top) {
3114 		child = leader;
3115 		parent = child->real_parent;
3116 		leader = parent->group_leader;
3117 		goto up;
3118 	}
3119 out:
3120 	read_unlock(&tasklist_lock);
3121 }
3122 
3123 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3124 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3125 #endif
3126 
3127 static void sighand_ctor(void *data)
3128 {
3129 	struct sighand_struct *sighand = data;
3130 
3131 	spin_lock_init(&sighand->siglock);
3132 	init_waitqueue_head(&sighand->signalfd_wqh);
3133 }
3134 
3135 void __init mm_cache_init(void)
3136 {
3137 	unsigned int mm_size;
3138 
3139 	/*
3140 	 * The mm_cpumask is located at the end of mm_struct, and is
3141 	 * dynamically sized based on the maximum CPU number this system
3142 	 * can have, taking hotplug into account (nr_cpu_ids).
3143 	 */
3144 	mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3145 
3146 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
3147 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3148 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3149 			offsetof(struct mm_struct, saved_auxv),
3150 			sizeof_field(struct mm_struct, saved_auxv),
3151 			NULL);
3152 }
3153 
3154 void __init proc_caches_init(void)
3155 {
3156 	sighand_cachep = kmem_cache_create("sighand_cache",
3157 			sizeof(struct sighand_struct), 0,
3158 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3159 			SLAB_ACCOUNT, sighand_ctor);
3160 	signal_cachep = kmem_cache_create("signal_cache",
3161 			sizeof(struct signal_struct), 0,
3162 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3163 			NULL);
3164 	files_cachep = kmem_cache_create("files_cache",
3165 			sizeof(struct files_struct), 0,
3166 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3167 			NULL);
3168 	fs_cachep = kmem_cache_create("fs_cache",
3169 			sizeof(struct fs_struct), 0,
3170 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3171 			NULL);
3172 
3173 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3174 #ifdef CONFIG_PER_VMA_LOCK
3175 	vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3176 #endif
3177 	mmap_init();
3178 	nsproxy_cache_init();
3179 }
3180 
3181 /*
3182  * Check constraints on flags passed to the unshare system call.
3183  */
3184 static int check_unshare_flags(unsigned long unshare_flags)
3185 {
3186 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3187 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3188 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3189 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3190 				CLONE_NEWTIME))
3191 		return -EINVAL;
3192 	/*
3193 	 * Not implemented, but pretend it works if there is nothing
3194 	 * to unshare.  Note that unsharing the address space or the
3195 	 * signal handlers also need to unshare the signal queues (aka
3196 	 * CLONE_THREAD).
3197 	 */
3198 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3199 		if (!thread_group_empty(current))
3200 			return -EINVAL;
3201 	}
3202 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3203 		if (refcount_read(&current->sighand->count) > 1)
3204 			return -EINVAL;
3205 	}
3206 	if (unshare_flags & CLONE_VM) {
3207 		if (!current_is_single_threaded())
3208 			return -EINVAL;
3209 	}
3210 
3211 	return 0;
3212 }
3213 
3214 /*
3215  * Unshare the filesystem structure if it is being shared
3216  */
3217 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3218 {
3219 	struct fs_struct *fs = current->fs;
3220 
3221 	if (!(unshare_flags & CLONE_FS) || !fs)
3222 		return 0;
3223 
3224 	/* don't need lock here; in the worst case we'll do useless copy */
3225 	if (fs->users == 1)
3226 		return 0;
3227 
3228 	*new_fsp = copy_fs_struct(fs);
3229 	if (!*new_fsp)
3230 		return -ENOMEM;
3231 
3232 	return 0;
3233 }
3234 
3235 /*
3236  * Unshare file descriptor table if it is being shared
3237  */
3238 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
3239 {
3240 	struct files_struct *fd = current->files;
3241 
3242 	if ((unshare_flags & CLONE_FILES) &&
3243 	    (fd && atomic_read(&fd->count) > 1)) {
3244 		fd = dup_fd(fd, NULL);
3245 		if (IS_ERR(fd))
3246 			return PTR_ERR(fd);
3247 		*new_fdp = fd;
3248 	}
3249 
3250 	return 0;
3251 }
3252 
3253 /*
3254  * unshare allows a process to 'unshare' part of the process
3255  * context which was originally shared using clone.  copy_*
3256  * functions used by kernel_clone() cannot be used here directly
3257  * because they modify an inactive task_struct that is being
3258  * constructed. Here we are modifying the current, active,
3259  * task_struct.
3260  */
3261 int ksys_unshare(unsigned long unshare_flags)
3262 {
3263 	struct fs_struct *fs, *new_fs = NULL;
3264 	struct files_struct *new_fd = NULL;
3265 	struct cred *new_cred = NULL;
3266 	struct nsproxy *new_nsproxy = NULL;
3267 	int do_sysvsem = 0;
3268 	int err;
3269 
3270 	/*
3271 	 * If unsharing a user namespace must also unshare the thread group
3272 	 * and unshare the filesystem root and working directories.
3273 	 */
3274 	if (unshare_flags & CLONE_NEWUSER)
3275 		unshare_flags |= CLONE_THREAD | CLONE_FS;
3276 	/*
3277 	 * If unsharing vm, must also unshare signal handlers.
3278 	 */
3279 	if (unshare_flags & CLONE_VM)
3280 		unshare_flags |= CLONE_SIGHAND;
3281 	/*
3282 	 * If unsharing a signal handlers, must also unshare the signal queues.
3283 	 */
3284 	if (unshare_flags & CLONE_SIGHAND)
3285 		unshare_flags |= CLONE_THREAD;
3286 	/*
3287 	 * If unsharing namespace, must also unshare filesystem information.
3288 	 */
3289 	if (unshare_flags & CLONE_NEWNS)
3290 		unshare_flags |= CLONE_FS;
3291 
3292 	err = check_unshare_flags(unshare_flags);
3293 	if (err)
3294 		goto bad_unshare_out;
3295 	/*
3296 	 * CLONE_NEWIPC must also detach from the undolist: after switching
3297 	 * to a new ipc namespace, the semaphore arrays from the old
3298 	 * namespace are unreachable.
3299 	 */
3300 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3301 		do_sysvsem = 1;
3302 	err = unshare_fs(unshare_flags, &new_fs);
3303 	if (err)
3304 		goto bad_unshare_out;
3305 	err = unshare_fd(unshare_flags, &new_fd);
3306 	if (err)
3307 		goto bad_unshare_cleanup_fs;
3308 	err = unshare_userns(unshare_flags, &new_cred);
3309 	if (err)
3310 		goto bad_unshare_cleanup_fd;
3311 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3312 					 new_cred, new_fs);
3313 	if (err)
3314 		goto bad_unshare_cleanup_cred;
3315 
3316 	if (new_cred) {
3317 		err = set_cred_ucounts(new_cred);
3318 		if (err)
3319 			goto bad_unshare_cleanup_cred;
3320 	}
3321 
3322 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3323 		if (do_sysvsem) {
3324 			/*
3325 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3326 			 */
3327 			exit_sem(current);
3328 		}
3329 		if (unshare_flags & CLONE_NEWIPC) {
3330 			/* Orphan segments in old ns (see sem above). */
3331 			exit_shm(current);
3332 			shm_init_task(current);
3333 		}
3334 
3335 		if (new_nsproxy)
3336 			switch_task_namespaces(current, new_nsproxy);
3337 
3338 		task_lock(current);
3339 
3340 		if (new_fs) {
3341 			fs = current->fs;
3342 			spin_lock(&fs->lock);
3343 			current->fs = new_fs;
3344 			if (--fs->users)
3345 				new_fs = NULL;
3346 			else
3347 				new_fs = fs;
3348 			spin_unlock(&fs->lock);
3349 		}
3350 
3351 		if (new_fd)
3352 			swap(current->files, new_fd);
3353 
3354 		task_unlock(current);
3355 
3356 		if (new_cred) {
3357 			/* Install the new user namespace */
3358 			commit_creds(new_cred);
3359 			new_cred = NULL;
3360 		}
3361 	}
3362 
3363 	perf_event_namespaces(current);
3364 
3365 bad_unshare_cleanup_cred:
3366 	if (new_cred)
3367 		put_cred(new_cred);
3368 bad_unshare_cleanup_fd:
3369 	if (new_fd)
3370 		put_files_struct(new_fd);
3371 
3372 bad_unshare_cleanup_fs:
3373 	if (new_fs)
3374 		free_fs_struct(new_fs);
3375 
3376 bad_unshare_out:
3377 	return err;
3378 }
3379 
3380 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3381 {
3382 	return ksys_unshare(unshare_flags);
3383 }
3384 
3385 /*
3386  *	Helper to unshare the files of the current task.
3387  *	We don't want to expose copy_files internals to
3388  *	the exec layer of the kernel.
3389  */
3390 
3391 int unshare_files(void)
3392 {
3393 	struct task_struct *task = current;
3394 	struct files_struct *old, *copy = NULL;
3395 	int error;
3396 
3397 	error = unshare_fd(CLONE_FILES, &copy);
3398 	if (error || !copy)
3399 		return error;
3400 
3401 	old = task->files;
3402 	task_lock(task);
3403 	task->files = copy;
3404 	task_unlock(task);
3405 	put_files_struct(old);
3406 	return 0;
3407 }
3408 
3409 int sysctl_max_threads(const struct ctl_table *table, int write,
3410 		       void *buffer, size_t *lenp, loff_t *ppos)
3411 {
3412 	struct ctl_table t;
3413 	int ret;
3414 	int threads = max_threads;
3415 	int min = 1;
3416 	int max = MAX_THREADS;
3417 
3418 	t = *table;
3419 	t.data = &threads;
3420 	t.extra1 = &min;
3421 	t.extra2 = &max;
3422 
3423 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3424 	if (ret || !write)
3425 		return ret;
3426 
3427 	max_threads = threads;
3428 
3429 	return 0;
3430 }
3431