xref: /linux/kernel/fork.c (revision 040932cdcfca9b0ac55a4f74f194c2e2c8a2527b)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/tracehook.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/acct.h>
53 #include <linux/tsacct_kern.h>
54 #include <linux/cn_proc.h>
55 #include <linux/freezer.h>
56 #include <linux/delayacct.h>
57 #include <linux/taskstats_kern.h>
58 #include <linux/random.h>
59 #include <linux/tty.h>
60 #include <linux/proc_fs.h>
61 #include <linux/blkdev.h>
62 #include <linux/fs_struct.h>
63 #include <linux/magic.h>
64 #include <linux/perf_event.h>
65 
66 #include <asm/pgtable.h>
67 #include <asm/pgalloc.h>
68 #include <asm/uaccess.h>
69 #include <asm/mmu_context.h>
70 #include <asm/cacheflush.h>
71 #include <asm/tlbflush.h>
72 
73 #include <trace/events/sched.h>
74 
75 /*
76  * Protected counters by write_lock_irq(&tasklist_lock)
77  */
78 unsigned long total_forks;	/* Handle normal Linux uptimes. */
79 int nr_threads; 		/* The idle threads do not count.. */
80 
81 int max_threads;		/* tunable limit on nr_threads */
82 
83 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
84 
85 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
86 
87 int nr_processes(void)
88 {
89 	int cpu;
90 	int total = 0;
91 
92 	for_each_online_cpu(cpu)
93 		total += per_cpu(process_counts, cpu);
94 
95 	return total;
96 }
97 
98 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
99 # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
100 # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
101 static struct kmem_cache *task_struct_cachep;
102 #endif
103 
104 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
105 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
106 {
107 #ifdef CONFIG_DEBUG_STACK_USAGE
108 	gfp_t mask = GFP_KERNEL | __GFP_ZERO;
109 #else
110 	gfp_t mask = GFP_KERNEL;
111 #endif
112 	return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
113 }
114 
115 static inline void free_thread_info(struct thread_info *ti)
116 {
117 	free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
118 }
119 #endif
120 
121 /* SLAB cache for signal_struct structures (tsk->signal) */
122 static struct kmem_cache *signal_cachep;
123 
124 /* SLAB cache for sighand_struct structures (tsk->sighand) */
125 struct kmem_cache *sighand_cachep;
126 
127 /* SLAB cache for files_struct structures (tsk->files) */
128 struct kmem_cache *files_cachep;
129 
130 /* SLAB cache for fs_struct structures (tsk->fs) */
131 struct kmem_cache *fs_cachep;
132 
133 /* SLAB cache for vm_area_struct structures */
134 struct kmem_cache *vm_area_cachep;
135 
136 /* SLAB cache for mm_struct structures (tsk->mm) */
137 static struct kmem_cache *mm_cachep;
138 
139 void free_task(struct task_struct *tsk)
140 {
141 	prop_local_destroy_single(&tsk->dirties);
142 	free_thread_info(tsk->stack);
143 	rt_mutex_debug_task_free(tsk);
144 	ftrace_graph_exit_task(tsk);
145 	free_task_struct(tsk);
146 }
147 EXPORT_SYMBOL(free_task);
148 
149 void __put_task_struct(struct task_struct *tsk)
150 {
151 	WARN_ON(!tsk->exit_state);
152 	WARN_ON(atomic_read(&tsk->usage));
153 	WARN_ON(tsk == current);
154 
155 	exit_creds(tsk);
156 	delayacct_tsk_free(tsk);
157 
158 	if (!profile_handoff_task(tsk))
159 		free_task(tsk);
160 }
161 
162 /*
163  * macro override instead of weak attribute alias, to workaround
164  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
165  */
166 #ifndef arch_task_cache_init
167 #define arch_task_cache_init()
168 #endif
169 
170 void __init fork_init(unsigned long mempages)
171 {
172 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
173 #ifndef ARCH_MIN_TASKALIGN
174 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
175 #endif
176 	/* create a slab on which task_structs can be allocated */
177 	task_struct_cachep =
178 		kmem_cache_create("task_struct", sizeof(struct task_struct),
179 			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
180 #endif
181 
182 	/* do the arch specific task caches init */
183 	arch_task_cache_init();
184 
185 	/*
186 	 * The default maximum number of threads is set to a safe
187 	 * value: the thread structures can take up at most half
188 	 * of memory.
189 	 */
190 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
191 
192 	/*
193 	 * we need to allow at least 20 threads to boot a system
194 	 */
195 	if(max_threads < 20)
196 		max_threads = 20;
197 
198 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
199 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
200 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
201 		init_task.signal->rlim[RLIMIT_NPROC];
202 }
203 
204 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
205 					       struct task_struct *src)
206 {
207 	*dst = *src;
208 	return 0;
209 }
210 
211 static struct task_struct *dup_task_struct(struct task_struct *orig)
212 {
213 	struct task_struct *tsk;
214 	struct thread_info *ti;
215 	unsigned long *stackend;
216 
217 	int err;
218 
219 	prepare_to_copy(orig);
220 
221 	tsk = alloc_task_struct();
222 	if (!tsk)
223 		return NULL;
224 
225 	ti = alloc_thread_info(tsk);
226 	if (!ti) {
227 		free_task_struct(tsk);
228 		return NULL;
229 	}
230 
231  	err = arch_dup_task_struct(tsk, orig);
232 	if (err)
233 		goto out;
234 
235 	tsk->stack = ti;
236 
237 	err = prop_local_init_single(&tsk->dirties);
238 	if (err)
239 		goto out;
240 
241 	setup_thread_stack(tsk, orig);
242 	stackend = end_of_stack(tsk);
243 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
244 
245 #ifdef CONFIG_CC_STACKPROTECTOR
246 	tsk->stack_canary = get_random_int();
247 #endif
248 
249 	/* One for us, one for whoever does the "release_task()" (usually parent) */
250 	atomic_set(&tsk->usage,2);
251 	atomic_set(&tsk->fs_excl, 0);
252 #ifdef CONFIG_BLK_DEV_IO_TRACE
253 	tsk->btrace_seq = 0;
254 #endif
255 	tsk->splice_pipe = NULL;
256 	return tsk;
257 
258 out:
259 	free_thread_info(ti);
260 	free_task_struct(tsk);
261 	return NULL;
262 }
263 
264 #ifdef CONFIG_MMU
265 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
266 {
267 	struct vm_area_struct *mpnt, *tmp, **pprev;
268 	struct rb_node **rb_link, *rb_parent;
269 	int retval;
270 	unsigned long charge;
271 	struct mempolicy *pol;
272 
273 	down_write(&oldmm->mmap_sem);
274 	flush_cache_dup_mm(oldmm);
275 	/*
276 	 * Not linked in yet - no deadlock potential:
277 	 */
278 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
279 
280 	mm->locked_vm = 0;
281 	mm->mmap = NULL;
282 	mm->mmap_cache = NULL;
283 	mm->free_area_cache = oldmm->mmap_base;
284 	mm->cached_hole_size = ~0UL;
285 	mm->map_count = 0;
286 	cpumask_clear(mm_cpumask(mm));
287 	mm->mm_rb = RB_ROOT;
288 	rb_link = &mm->mm_rb.rb_node;
289 	rb_parent = NULL;
290 	pprev = &mm->mmap;
291 
292 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
293 		struct file *file;
294 
295 		if (mpnt->vm_flags & VM_DONTCOPY) {
296 			long pages = vma_pages(mpnt);
297 			mm->total_vm -= pages;
298 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
299 								-pages);
300 			continue;
301 		}
302 		charge = 0;
303 		if (mpnt->vm_flags & VM_ACCOUNT) {
304 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
305 			if (security_vm_enough_memory(len))
306 				goto fail_nomem;
307 			charge = len;
308 		}
309 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
310 		if (!tmp)
311 			goto fail_nomem;
312 		*tmp = *mpnt;
313 		pol = mpol_dup(vma_policy(mpnt));
314 		retval = PTR_ERR(pol);
315 		if (IS_ERR(pol))
316 			goto fail_nomem_policy;
317 		vma_set_policy(tmp, pol);
318 		tmp->vm_flags &= ~VM_LOCKED;
319 		tmp->vm_mm = mm;
320 		tmp->vm_next = NULL;
321 		anon_vma_link(tmp);
322 		file = tmp->vm_file;
323 		if (file) {
324 			struct inode *inode = file->f_path.dentry->d_inode;
325 			struct address_space *mapping = file->f_mapping;
326 
327 			get_file(file);
328 			if (tmp->vm_flags & VM_DENYWRITE)
329 				atomic_dec(&inode->i_writecount);
330 			spin_lock(&mapping->i_mmap_lock);
331 			if (tmp->vm_flags & VM_SHARED)
332 				mapping->i_mmap_writable++;
333 			tmp->vm_truncate_count = mpnt->vm_truncate_count;
334 			flush_dcache_mmap_lock(mapping);
335 			/* insert tmp into the share list, just after mpnt */
336 			vma_prio_tree_add(tmp, mpnt);
337 			flush_dcache_mmap_unlock(mapping);
338 			spin_unlock(&mapping->i_mmap_lock);
339 		}
340 
341 		/*
342 		 * Clear hugetlb-related page reserves for children. This only
343 		 * affects MAP_PRIVATE mappings. Faults generated by the child
344 		 * are not guaranteed to succeed, even if read-only
345 		 */
346 		if (is_vm_hugetlb_page(tmp))
347 			reset_vma_resv_huge_pages(tmp);
348 
349 		/*
350 		 * Link in the new vma and copy the page table entries.
351 		 */
352 		*pprev = tmp;
353 		pprev = &tmp->vm_next;
354 
355 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
356 		rb_link = &tmp->vm_rb.rb_right;
357 		rb_parent = &tmp->vm_rb;
358 
359 		mm->map_count++;
360 		retval = copy_page_range(mm, oldmm, mpnt);
361 
362 		if (tmp->vm_ops && tmp->vm_ops->open)
363 			tmp->vm_ops->open(tmp);
364 
365 		if (retval)
366 			goto out;
367 	}
368 	/* a new mm has just been created */
369 	arch_dup_mmap(oldmm, mm);
370 	retval = 0;
371 out:
372 	up_write(&mm->mmap_sem);
373 	flush_tlb_mm(oldmm);
374 	up_write(&oldmm->mmap_sem);
375 	return retval;
376 fail_nomem_policy:
377 	kmem_cache_free(vm_area_cachep, tmp);
378 fail_nomem:
379 	retval = -ENOMEM;
380 	vm_unacct_memory(charge);
381 	goto out;
382 }
383 
384 static inline int mm_alloc_pgd(struct mm_struct * mm)
385 {
386 	mm->pgd = pgd_alloc(mm);
387 	if (unlikely(!mm->pgd))
388 		return -ENOMEM;
389 	return 0;
390 }
391 
392 static inline void mm_free_pgd(struct mm_struct * mm)
393 {
394 	pgd_free(mm, mm->pgd);
395 }
396 #else
397 #define dup_mmap(mm, oldmm)	(0)
398 #define mm_alloc_pgd(mm)	(0)
399 #define mm_free_pgd(mm)
400 #endif /* CONFIG_MMU */
401 
402 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
403 
404 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
405 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
406 
407 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
408 
409 static int __init coredump_filter_setup(char *s)
410 {
411 	default_dump_filter =
412 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
413 		MMF_DUMP_FILTER_MASK;
414 	return 1;
415 }
416 
417 __setup("coredump_filter=", coredump_filter_setup);
418 
419 #include <linux/init_task.h>
420 
421 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
422 {
423 	atomic_set(&mm->mm_users, 1);
424 	atomic_set(&mm->mm_count, 1);
425 	init_rwsem(&mm->mmap_sem);
426 	INIT_LIST_HEAD(&mm->mmlist);
427 	mm->flags = (current->mm) ? current->mm->flags : default_dump_filter;
428 	mm->core_state = NULL;
429 	mm->nr_ptes = 0;
430 	set_mm_counter(mm, file_rss, 0);
431 	set_mm_counter(mm, anon_rss, 0);
432 	spin_lock_init(&mm->page_table_lock);
433 	spin_lock_init(&mm->ioctx_lock);
434 	INIT_HLIST_HEAD(&mm->ioctx_list);
435 	mm->free_area_cache = TASK_UNMAPPED_BASE;
436 	mm->cached_hole_size = ~0UL;
437 	mm_init_owner(mm, p);
438 
439 	if (likely(!mm_alloc_pgd(mm))) {
440 		mm->def_flags = 0;
441 		mmu_notifier_mm_init(mm);
442 		return mm;
443 	}
444 
445 	free_mm(mm);
446 	return NULL;
447 }
448 
449 /*
450  * Allocate and initialize an mm_struct.
451  */
452 struct mm_struct * mm_alloc(void)
453 {
454 	struct mm_struct * mm;
455 
456 	mm = allocate_mm();
457 	if (mm) {
458 		memset(mm, 0, sizeof(*mm));
459 		mm = mm_init(mm, current);
460 	}
461 	return mm;
462 }
463 
464 /*
465  * Called when the last reference to the mm
466  * is dropped: either by a lazy thread or by
467  * mmput. Free the page directory and the mm.
468  */
469 void __mmdrop(struct mm_struct *mm)
470 {
471 	BUG_ON(mm == &init_mm);
472 	mm_free_pgd(mm);
473 	destroy_context(mm);
474 	mmu_notifier_mm_destroy(mm);
475 	free_mm(mm);
476 }
477 EXPORT_SYMBOL_GPL(__mmdrop);
478 
479 /*
480  * Decrement the use count and release all resources for an mm.
481  */
482 void mmput(struct mm_struct *mm)
483 {
484 	might_sleep();
485 
486 	if (atomic_dec_and_test(&mm->mm_users)) {
487 		exit_aio(mm);
488 		exit_mmap(mm);
489 		set_mm_exe_file(mm, NULL);
490 		if (!list_empty(&mm->mmlist)) {
491 			spin_lock(&mmlist_lock);
492 			list_del(&mm->mmlist);
493 			spin_unlock(&mmlist_lock);
494 		}
495 		put_swap_token(mm);
496 		mmdrop(mm);
497 	}
498 }
499 EXPORT_SYMBOL_GPL(mmput);
500 
501 /**
502  * get_task_mm - acquire a reference to the task's mm
503  *
504  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
505  * this kernel workthread has transiently adopted a user mm with use_mm,
506  * to do its AIO) is not set and if so returns a reference to it, after
507  * bumping up the use count.  User must release the mm via mmput()
508  * after use.  Typically used by /proc and ptrace.
509  */
510 struct mm_struct *get_task_mm(struct task_struct *task)
511 {
512 	struct mm_struct *mm;
513 
514 	task_lock(task);
515 	mm = task->mm;
516 	if (mm) {
517 		if (task->flags & PF_KTHREAD)
518 			mm = NULL;
519 		else
520 			atomic_inc(&mm->mm_users);
521 	}
522 	task_unlock(task);
523 	return mm;
524 }
525 EXPORT_SYMBOL_GPL(get_task_mm);
526 
527 /* Please note the differences between mmput and mm_release.
528  * mmput is called whenever we stop holding onto a mm_struct,
529  * error success whatever.
530  *
531  * mm_release is called after a mm_struct has been removed
532  * from the current process.
533  *
534  * This difference is important for error handling, when we
535  * only half set up a mm_struct for a new process and need to restore
536  * the old one.  Because we mmput the new mm_struct before
537  * restoring the old one. . .
538  * Eric Biederman 10 January 1998
539  */
540 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
541 {
542 	struct completion *vfork_done = tsk->vfork_done;
543 
544 	/* Get rid of any futexes when releasing the mm */
545 #ifdef CONFIG_FUTEX
546 	if (unlikely(tsk->robust_list))
547 		exit_robust_list(tsk);
548 #ifdef CONFIG_COMPAT
549 	if (unlikely(tsk->compat_robust_list))
550 		compat_exit_robust_list(tsk);
551 #endif
552 #endif
553 
554 	/* Get rid of any cached register state */
555 	deactivate_mm(tsk, mm);
556 
557 	/* notify parent sleeping on vfork() */
558 	if (vfork_done) {
559 		tsk->vfork_done = NULL;
560 		complete(vfork_done);
561 	}
562 
563 	/*
564 	 * If we're exiting normally, clear a user-space tid field if
565 	 * requested.  We leave this alone when dying by signal, to leave
566 	 * the value intact in a core dump, and to save the unnecessary
567 	 * trouble otherwise.  Userland only wants this done for a sys_exit.
568 	 */
569 	if (tsk->clear_child_tid) {
570 		if (!(tsk->flags & PF_SIGNALED) &&
571 		    atomic_read(&mm->mm_users) > 1) {
572 			/*
573 			 * We don't check the error code - if userspace has
574 			 * not set up a proper pointer then tough luck.
575 			 */
576 			put_user(0, tsk->clear_child_tid);
577 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
578 					1, NULL, NULL, 0);
579 		}
580 		tsk->clear_child_tid = NULL;
581 	}
582 }
583 
584 /*
585  * Allocate a new mm structure and copy contents from the
586  * mm structure of the passed in task structure.
587  */
588 struct mm_struct *dup_mm(struct task_struct *tsk)
589 {
590 	struct mm_struct *mm, *oldmm = current->mm;
591 	int err;
592 
593 	if (!oldmm)
594 		return NULL;
595 
596 	mm = allocate_mm();
597 	if (!mm)
598 		goto fail_nomem;
599 
600 	memcpy(mm, oldmm, sizeof(*mm));
601 
602 	/* Initializing for Swap token stuff */
603 	mm->token_priority = 0;
604 	mm->last_interval = 0;
605 
606 	if (!mm_init(mm, tsk))
607 		goto fail_nomem;
608 
609 	if (init_new_context(tsk, mm))
610 		goto fail_nocontext;
611 
612 	dup_mm_exe_file(oldmm, mm);
613 
614 	err = dup_mmap(mm, oldmm);
615 	if (err)
616 		goto free_pt;
617 
618 	mm->hiwater_rss = get_mm_rss(mm);
619 	mm->hiwater_vm = mm->total_vm;
620 
621 	return mm;
622 
623 free_pt:
624 	mmput(mm);
625 
626 fail_nomem:
627 	return NULL;
628 
629 fail_nocontext:
630 	/*
631 	 * If init_new_context() failed, we cannot use mmput() to free the mm
632 	 * because it calls destroy_context()
633 	 */
634 	mm_free_pgd(mm);
635 	free_mm(mm);
636 	return NULL;
637 }
638 
639 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
640 {
641 	struct mm_struct * mm, *oldmm;
642 	int retval;
643 
644 	tsk->min_flt = tsk->maj_flt = 0;
645 	tsk->nvcsw = tsk->nivcsw = 0;
646 #ifdef CONFIG_DETECT_HUNG_TASK
647 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
648 #endif
649 
650 	tsk->mm = NULL;
651 	tsk->active_mm = NULL;
652 
653 	/*
654 	 * Are we cloning a kernel thread?
655 	 *
656 	 * We need to steal a active VM for that..
657 	 */
658 	oldmm = current->mm;
659 	if (!oldmm)
660 		return 0;
661 
662 	if (clone_flags & CLONE_VM) {
663 		atomic_inc(&oldmm->mm_users);
664 		mm = oldmm;
665 		goto good_mm;
666 	}
667 
668 	retval = -ENOMEM;
669 	mm = dup_mm(tsk);
670 	if (!mm)
671 		goto fail_nomem;
672 
673 good_mm:
674 	/* Initializing for Swap token stuff */
675 	mm->token_priority = 0;
676 	mm->last_interval = 0;
677 
678 	tsk->mm = mm;
679 	tsk->active_mm = mm;
680 	return 0;
681 
682 fail_nomem:
683 	return retval;
684 }
685 
686 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
687 {
688 	struct fs_struct *fs = current->fs;
689 	if (clone_flags & CLONE_FS) {
690 		/* tsk->fs is already what we want */
691 		write_lock(&fs->lock);
692 		if (fs->in_exec) {
693 			write_unlock(&fs->lock);
694 			return -EAGAIN;
695 		}
696 		fs->users++;
697 		write_unlock(&fs->lock);
698 		return 0;
699 	}
700 	tsk->fs = copy_fs_struct(fs);
701 	if (!tsk->fs)
702 		return -ENOMEM;
703 	return 0;
704 }
705 
706 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
707 {
708 	struct files_struct *oldf, *newf;
709 	int error = 0;
710 
711 	/*
712 	 * A background process may not have any files ...
713 	 */
714 	oldf = current->files;
715 	if (!oldf)
716 		goto out;
717 
718 	if (clone_flags & CLONE_FILES) {
719 		atomic_inc(&oldf->count);
720 		goto out;
721 	}
722 
723 	newf = dup_fd(oldf, &error);
724 	if (!newf)
725 		goto out;
726 
727 	tsk->files = newf;
728 	error = 0;
729 out:
730 	return error;
731 }
732 
733 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
734 {
735 #ifdef CONFIG_BLOCK
736 	struct io_context *ioc = current->io_context;
737 
738 	if (!ioc)
739 		return 0;
740 	/*
741 	 * Share io context with parent, if CLONE_IO is set
742 	 */
743 	if (clone_flags & CLONE_IO) {
744 		tsk->io_context = ioc_task_link(ioc);
745 		if (unlikely(!tsk->io_context))
746 			return -ENOMEM;
747 	} else if (ioprio_valid(ioc->ioprio)) {
748 		tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
749 		if (unlikely(!tsk->io_context))
750 			return -ENOMEM;
751 
752 		tsk->io_context->ioprio = ioc->ioprio;
753 	}
754 #endif
755 	return 0;
756 }
757 
758 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
759 {
760 	struct sighand_struct *sig;
761 
762 	if (clone_flags & CLONE_SIGHAND) {
763 		atomic_inc(&current->sighand->count);
764 		return 0;
765 	}
766 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
767 	rcu_assign_pointer(tsk->sighand, sig);
768 	if (!sig)
769 		return -ENOMEM;
770 	atomic_set(&sig->count, 1);
771 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
772 	return 0;
773 }
774 
775 void __cleanup_sighand(struct sighand_struct *sighand)
776 {
777 	if (atomic_dec_and_test(&sighand->count))
778 		kmem_cache_free(sighand_cachep, sighand);
779 }
780 
781 
782 /*
783  * Initialize POSIX timer handling for a thread group.
784  */
785 static void posix_cpu_timers_init_group(struct signal_struct *sig)
786 {
787 	/* Thread group counters. */
788 	thread_group_cputime_init(sig);
789 
790 	/* Expiration times and increments. */
791 	sig->it_virt_expires = cputime_zero;
792 	sig->it_virt_incr = cputime_zero;
793 	sig->it_prof_expires = cputime_zero;
794 	sig->it_prof_incr = cputime_zero;
795 
796 	/* Cached expiration times. */
797 	sig->cputime_expires.prof_exp = cputime_zero;
798 	sig->cputime_expires.virt_exp = cputime_zero;
799 	sig->cputime_expires.sched_exp = 0;
800 
801 	if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
802 		sig->cputime_expires.prof_exp =
803 			secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
804 		sig->cputimer.running = 1;
805 	}
806 
807 	/* The timer lists. */
808 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
809 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
810 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
811 }
812 
813 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
814 {
815 	struct signal_struct *sig;
816 
817 	if (clone_flags & CLONE_THREAD)
818 		return 0;
819 
820 	sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
821 	tsk->signal = sig;
822 	if (!sig)
823 		return -ENOMEM;
824 
825 	atomic_set(&sig->count, 1);
826 	atomic_set(&sig->live, 1);
827 	init_waitqueue_head(&sig->wait_chldexit);
828 	sig->flags = 0;
829 	if (clone_flags & CLONE_NEWPID)
830 		sig->flags |= SIGNAL_UNKILLABLE;
831 	sig->group_exit_code = 0;
832 	sig->group_exit_task = NULL;
833 	sig->group_stop_count = 0;
834 	sig->curr_target = tsk;
835 	init_sigpending(&sig->shared_pending);
836 	INIT_LIST_HEAD(&sig->posix_timers);
837 
838 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
839 	sig->it_real_incr.tv64 = 0;
840 	sig->real_timer.function = it_real_fn;
841 
842 	sig->leader = 0;	/* session leadership doesn't inherit */
843 	sig->tty_old_pgrp = NULL;
844 	sig->tty = NULL;
845 
846 	sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
847 	sig->gtime = cputime_zero;
848 	sig->cgtime = cputime_zero;
849 	sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
850 	sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
851 	sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
852 	task_io_accounting_init(&sig->ioac);
853 	sig->sum_sched_runtime = 0;
854 	taskstats_tgid_init(sig);
855 
856 	task_lock(current->group_leader);
857 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
858 	task_unlock(current->group_leader);
859 
860 	posix_cpu_timers_init_group(sig);
861 
862 	acct_init_pacct(&sig->pacct);
863 
864 	tty_audit_fork(sig);
865 
866 	return 0;
867 }
868 
869 void __cleanup_signal(struct signal_struct *sig)
870 {
871 	thread_group_cputime_free(sig);
872 	tty_kref_put(sig->tty);
873 	kmem_cache_free(signal_cachep, sig);
874 }
875 
876 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
877 {
878 	unsigned long new_flags = p->flags;
879 
880 	new_flags &= ~PF_SUPERPRIV;
881 	new_flags |= PF_FORKNOEXEC;
882 	new_flags |= PF_STARTING;
883 	p->flags = new_flags;
884 	clear_freeze_flag(p);
885 }
886 
887 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
888 {
889 	current->clear_child_tid = tidptr;
890 
891 	return task_pid_vnr(current);
892 }
893 
894 static void rt_mutex_init_task(struct task_struct *p)
895 {
896 	spin_lock_init(&p->pi_lock);
897 #ifdef CONFIG_RT_MUTEXES
898 	plist_head_init(&p->pi_waiters, &p->pi_lock);
899 	p->pi_blocked_on = NULL;
900 #endif
901 }
902 
903 #ifdef CONFIG_MM_OWNER
904 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
905 {
906 	mm->owner = p;
907 }
908 #endif /* CONFIG_MM_OWNER */
909 
910 /*
911  * Initialize POSIX timer handling for a single task.
912  */
913 static void posix_cpu_timers_init(struct task_struct *tsk)
914 {
915 	tsk->cputime_expires.prof_exp = cputime_zero;
916 	tsk->cputime_expires.virt_exp = cputime_zero;
917 	tsk->cputime_expires.sched_exp = 0;
918 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
919 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
920 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
921 }
922 
923 /*
924  * This creates a new process as a copy of the old one,
925  * but does not actually start it yet.
926  *
927  * It copies the registers, and all the appropriate
928  * parts of the process environment (as per the clone
929  * flags). The actual kick-off is left to the caller.
930  */
931 static struct task_struct *copy_process(unsigned long clone_flags,
932 					unsigned long stack_start,
933 					struct pt_regs *regs,
934 					unsigned long stack_size,
935 					int __user *child_tidptr,
936 					struct pid *pid,
937 					int trace)
938 {
939 	int retval;
940 	struct task_struct *p;
941 	int cgroup_callbacks_done = 0;
942 
943 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
944 		return ERR_PTR(-EINVAL);
945 
946 	/*
947 	 * Thread groups must share signals as well, and detached threads
948 	 * can only be started up within the thread group.
949 	 */
950 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
951 		return ERR_PTR(-EINVAL);
952 
953 	/*
954 	 * Shared signal handlers imply shared VM. By way of the above,
955 	 * thread groups also imply shared VM. Blocking this case allows
956 	 * for various simplifications in other code.
957 	 */
958 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
959 		return ERR_PTR(-EINVAL);
960 
961 	retval = security_task_create(clone_flags);
962 	if (retval)
963 		goto fork_out;
964 
965 	retval = -ENOMEM;
966 	p = dup_task_struct(current);
967 	if (!p)
968 		goto fork_out;
969 
970 	ftrace_graph_init_task(p);
971 
972 	rt_mutex_init_task(p);
973 
974 #ifdef CONFIG_PROVE_LOCKING
975 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
976 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
977 #endif
978 	retval = -EAGAIN;
979 	if (atomic_read(&p->real_cred->user->processes) >=
980 			p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
981 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
982 		    p->real_cred->user != INIT_USER)
983 			goto bad_fork_free;
984 	}
985 
986 	retval = copy_creds(p, clone_flags);
987 	if (retval < 0)
988 		goto bad_fork_free;
989 
990 	/*
991 	 * If multiple threads are within copy_process(), then this check
992 	 * triggers too late. This doesn't hurt, the check is only there
993 	 * to stop root fork bombs.
994 	 */
995 	retval = -EAGAIN;
996 	if (nr_threads >= max_threads)
997 		goto bad_fork_cleanup_count;
998 
999 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1000 		goto bad_fork_cleanup_count;
1001 
1002 	if (p->binfmt && !try_module_get(p->binfmt->module))
1003 		goto bad_fork_cleanup_put_domain;
1004 
1005 	p->did_exec = 0;
1006 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1007 	copy_flags(clone_flags, p);
1008 	INIT_LIST_HEAD(&p->children);
1009 	INIT_LIST_HEAD(&p->sibling);
1010 	rcu_copy_process(p);
1011 	p->vfork_done = NULL;
1012 	spin_lock_init(&p->alloc_lock);
1013 
1014 	init_sigpending(&p->pending);
1015 
1016 	p->utime = cputime_zero;
1017 	p->stime = cputime_zero;
1018 	p->gtime = cputime_zero;
1019 	p->utimescaled = cputime_zero;
1020 	p->stimescaled = cputime_zero;
1021 	p->prev_utime = cputime_zero;
1022 	p->prev_stime = cputime_zero;
1023 
1024 	p->default_timer_slack_ns = current->timer_slack_ns;
1025 
1026 	task_io_accounting_init(&p->ioac);
1027 	acct_clear_integrals(p);
1028 
1029 	posix_cpu_timers_init(p);
1030 
1031 	p->lock_depth = -1;		/* -1 = no lock */
1032 	do_posix_clock_monotonic_gettime(&p->start_time);
1033 	p->real_start_time = p->start_time;
1034 	monotonic_to_bootbased(&p->real_start_time);
1035 	p->io_context = NULL;
1036 	p->audit_context = NULL;
1037 	cgroup_fork(p);
1038 #ifdef CONFIG_NUMA
1039 	p->mempolicy = mpol_dup(p->mempolicy);
1040  	if (IS_ERR(p->mempolicy)) {
1041  		retval = PTR_ERR(p->mempolicy);
1042  		p->mempolicy = NULL;
1043  		goto bad_fork_cleanup_cgroup;
1044  	}
1045 	mpol_fix_fork_child_flag(p);
1046 #endif
1047 #ifdef CONFIG_TRACE_IRQFLAGS
1048 	p->irq_events = 0;
1049 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1050 	p->hardirqs_enabled = 1;
1051 #else
1052 	p->hardirqs_enabled = 0;
1053 #endif
1054 	p->hardirq_enable_ip = 0;
1055 	p->hardirq_enable_event = 0;
1056 	p->hardirq_disable_ip = _THIS_IP_;
1057 	p->hardirq_disable_event = 0;
1058 	p->softirqs_enabled = 1;
1059 	p->softirq_enable_ip = _THIS_IP_;
1060 	p->softirq_enable_event = 0;
1061 	p->softirq_disable_ip = 0;
1062 	p->softirq_disable_event = 0;
1063 	p->hardirq_context = 0;
1064 	p->softirq_context = 0;
1065 #endif
1066 #ifdef CONFIG_LOCKDEP
1067 	p->lockdep_depth = 0; /* no locks held yet */
1068 	p->curr_chain_key = 0;
1069 	p->lockdep_recursion = 0;
1070 #endif
1071 
1072 #ifdef CONFIG_DEBUG_MUTEXES
1073 	p->blocked_on = NULL; /* not blocked yet */
1074 #endif
1075 
1076 	p->bts = NULL;
1077 
1078 	/* Perform scheduler related setup. Assign this task to a CPU. */
1079 	sched_fork(p, clone_flags);
1080 
1081 	retval = perf_event_init_task(p);
1082 	if (retval)
1083 		goto bad_fork_cleanup_policy;
1084 
1085 	if ((retval = audit_alloc(p)))
1086 		goto bad_fork_cleanup_policy;
1087 	/* copy all the process information */
1088 	if ((retval = copy_semundo(clone_flags, p)))
1089 		goto bad_fork_cleanup_audit;
1090 	if ((retval = copy_files(clone_flags, p)))
1091 		goto bad_fork_cleanup_semundo;
1092 	if ((retval = copy_fs(clone_flags, p)))
1093 		goto bad_fork_cleanup_files;
1094 	if ((retval = copy_sighand(clone_flags, p)))
1095 		goto bad_fork_cleanup_fs;
1096 	if ((retval = copy_signal(clone_flags, p)))
1097 		goto bad_fork_cleanup_sighand;
1098 	if ((retval = copy_mm(clone_flags, p)))
1099 		goto bad_fork_cleanup_signal;
1100 	if ((retval = copy_namespaces(clone_flags, p)))
1101 		goto bad_fork_cleanup_mm;
1102 	if ((retval = copy_io(clone_flags, p)))
1103 		goto bad_fork_cleanup_namespaces;
1104 	retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1105 	if (retval)
1106 		goto bad_fork_cleanup_io;
1107 
1108 	if (pid != &init_struct_pid) {
1109 		retval = -ENOMEM;
1110 		pid = alloc_pid(p->nsproxy->pid_ns);
1111 		if (!pid)
1112 			goto bad_fork_cleanup_io;
1113 
1114 		if (clone_flags & CLONE_NEWPID) {
1115 			retval = pid_ns_prepare_proc(p->nsproxy->pid_ns);
1116 			if (retval < 0)
1117 				goto bad_fork_free_pid;
1118 		}
1119 	}
1120 
1121 	p->pid = pid_nr(pid);
1122 	p->tgid = p->pid;
1123 	if (clone_flags & CLONE_THREAD)
1124 		p->tgid = current->tgid;
1125 
1126 	if (current->nsproxy != p->nsproxy) {
1127 		retval = ns_cgroup_clone(p, pid);
1128 		if (retval)
1129 			goto bad_fork_free_pid;
1130 	}
1131 
1132 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1133 	/*
1134 	 * Clear TID on mm_release()?
1135 	 */
1136 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1137 #ifdef CONFIG_FUTEX
1138 	p->robust_list = NULL;
1139 #ifdef CONFIG_COMPAT
1140 	p->compat_robust_list = NULL;
1141 #endif
1142 	INIT_LIST_HEAD(&p->pi_state_list);
1143 	p->pi_state_cache = NULL;
1144 #endif
1145 	/*
1146 	 * sigaltstack should be cleared when sharing the same VM
1147 	 */
1148 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1149 		p->sas_ss_sp = p->sas_ss_size = 0;
1150 
1151 	/*
1152 	 * Syscall tracing should be turned off in the child regardless
1153 	 * of CLONE_PTRACE.
1154 	 */
1155 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1156 #ifdef TIF_SYSCALL_EMU
1157 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1158 #endif
1159 	clear_all_latency_tracing(p);
1160 
1161 	/* ok, now we should be set up.. */
1162 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1163 	p->pdeath_signal = 0;
1164 	p->exit_state = 0;
1165 
1166 	/*
1167 	 * Ok, make it visible to the rest of the system.
1168 	 * We dont wake it up yet.
1169 	 */
1170 	p->group_leader = p;
1171 	INIT_LIST_HEAD(&p->thread_group);
1172 
1173 	/* Now that the task is set up, run cgroup callbacks if
1174 	 * necessary. We need to run them before the task is visible
1175 	 * on the tasklist. */
1176 	cgroup_fork_callbacks(p);
1177 	cgroup_callbacks_done = 1;
1178 
1179 	/* Need tasklist lock for parent etc handling! */
1180 	write_lock_irq(&tasklist_lock);
1181 
1182 	/*
1183 	 * The task hasn't been attached yet, so its cpus_allowed mask will
1184 	 * not be changed, nor will its assigned CPU.
1185 	 *
1186 	 * The cpus_allowed mask of the parent may have changed after it was
1187 	 * copied first time - so re-copy it here, then check the child's CPU
1188 	 * to ensure it is on a valid CPU (and if not, just force it back to
1189 	 * parent's CPU). This avoids alot of nasty races.
1190 	 */
1191 	p->cpus_allowed = current->cpus_allowed;
1192 	p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1193 	if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1194 			!cpu_online(task_cpu(p))))
1195 		set_task_cpu(p, smp_processor_id());
1196 
1197 	/* CLONE_PARENT re-uses the old parent */
1198 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1199 		p->real_parent = current->real_parent;
1200 		p->parent_exec_id = current->parent_exec_id;
1201 	} else {
1202 		p->real_parent = current;
1203 		p->parent_exec_id = current->self_exec_id;
1204 	}
1205 
1206 	spin_lock(&current->sighand->siglock);
1207 
1208 	/*
1209 	 * Process group and session signals need to be delivered to just the
1210 	 * parent before the fork or both the parent and the child after the
1211 	 * fork. Restart if a signal comes in before we add the new process to
1212 	 * it's process group.
1213 	 * A fatal signal pending means that current will exit, so the new
1214 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1215  	 */
1216 	recalc_sigpending();
1217 	if (signal_pending(current)) {
1218 		spin_unlock(&current->sighand->siglock);
1219 		write_unlock_irq(&tasklist_lock);
1220 		retval = -ERESTARTNOINTR;
1221 		goto bad_fork_free_pid;
1222 	}
1223 
1224 	if (clone_flags & CLONE_THREAD) {
1225 		atomic_inc(&current->signal->count);
1226 		atomic_inc(&current->signal->live);
1227 		p->group_leader = current->group_leader;
1228 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1229 	}
1230 
1231 	if (likely(p->pid)) {
1232 		list_add_tail(&p->sibling, &p->real_parent->children);
1233 		tracehook_finish_clone(p, clone_flags, trace);
1234 
1235 		if (thread_group_leader(p)) {
1236 			if (clone_flags & CLONE_NEWPID)
1237 				p->nsproxy->pid_ns->child_reaper = p;
1238 
1239 			p->signal->leader_pid = pid;
1240 			tty_kref_put(p->signal->tty);
1241 			p->signal->tty = tty_kref_get(current->signal->tty);
1242 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1243 			attach_pid(p, PIDTYPE_SID, task_session(current));
1244 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1245 			__get_cpu_var(process_counts)++;
1246 		}
1247 		attach_pid(p, PIDTYPE_PID, pid);
1248 		nr_threads++;
1249 	}
1250 
1251 	total_forks++;
1252 	spin_unlock(&current->sighand->siglock);
1253 	write_unlock_irq(&tasklist_lock);
1254 	proc_fork_connector(p);
1255 	cgroup_post_fork(p);
1256 	perf_event_fork(p);
1257 	return p;
1258 
1259 bad_fork_free_pid:
1260 	if (pid != &init_struct_pid)
1261 		free_pid(pid);
1262 bad_fork_cleanup_io:
1263 	put_io_context(p->io_context);
1264 bad_fork_cleanup_namespaces:
1265 	exit_task_namespaces(p);
1266 bad_fork_cleanup_mm:
1267 	if (p->mm)
1268 		mmput(p->mm);
1269 bad_fork_cleanup_signal:
1270 	if (!(clone_flags & CLONE_THREAD))
1271 		__cleanup_signal(p->signal);
1272 bad_fork_cleanup_sighand:
1273 	__cleanup_sighand(p->sighand);
1274 bad_fork_cleanup_fs:
1275 	exit_fs(p); /* blocking */
1276 bad_fork_cleanup_files:
1277 	exit_files(p); /* blocking */
1278 bad_fork_cleanup_semundo:
1279 	exit_sem(p);
1280 bad_fork_cleanup_audit:
1281 	audit_free(p);
1282 bad_fork_cleanup_policy:
1283 	perf_event_free_task(p);
1284 #ifdef CONFIG_NUMA
1285 	mpol_put(p->mempolicy);
1286 bad_fork_cleanup_cgroup:
1287 #endif
1288 	cgroup_exit(p, cgroup_callbacks_done);
1289 	delayacct_tsk_free(p);
1290 	if (p->binfmt)
1291 		module_put(p->binfmt->module);
1292 bad_fork_cleanup_put_domain:
1293 	module_put(task_thread_info(p)->exec_domain->module);
1294 bad_fork_cleanup_count:
1295 	atomic_dec(&p->cred->user->processes);
1296 	exit_creds(p);
1297 bad_fork_free:
1298 	free_task(p);
1299 fork_out:
1300 	return ERR_PTR(retval);
1301 }
1302 
1303 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1304 {
1305 	memset(regs, 0, sizeof(struct pt_regs));
1306 	return regs;
1307 }
1308 
1309 struct task_struct * __cpuinit fork_idle(int cpu)
1310 {
1311 	struct task_struct *task;
1312 	struct pt_regs regs;
1313 
1314 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1315 			    &init_struct_pid, 0);
1316 	if (!IS_ERR(task))
1317 		init_idle(task, cpu);
1318 
1319 	return task;
1320 }
1321 
1322 /*
1323  *  Ok, this is the main fork-routine.
1324  *
1325  * It copies the process, and if successful kick-starts
1326  * it and waits for it to finish using the VM if required.
1327  */
1328 long do_fork(unsigned long clone_flags,
1329 	      unsigned long stack_start,
1330 	      struct pt_regs *regs,
1331 	      unsigned long stack_size,
1332 	      int __user *parent_tidptr,
1333 	      int __user *child_tidptr)
1334 {
1335 	struct task_struct *p;
1336 	int trace = 0;
1337 	long nr;
1338 
1339 	/*
1340 	 * Do some preliminary argument and permissions checking before we
1341 	 * actually start allocating stuff
1342 	 */
1343 	if (clone_flags & CLONE_NEWUSER) {
1344 		if (clone_flags & CLONE_THREAD)
1345 			return -EINVAL;
1346 		/* hopefully this check will go away when userns support is
1347 		 * complete
1348 		 */
1349 		if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1350 				!capable(CAP_SETGID))
1351 			return -EPERM;
1352 	}
1353 
1354 	/*
1355 	 * We hope to recycle these flags after 2.6.26
1356 	 */
1357 	if (unlikely(clone_flags & CLONE_STOPPED)) {
1358 		static int __read_mostly count = 100;
1359 
1360 		if (count > 0 && printk_ratelimit()) {
1361 			char comm[TASK_COMM_LEN];
1362 
1363 			count--;
1364 			printk(KERN_INFO "fork(): process `%s' used deprecated "
1365 					"clone flags 0x%lx\n",
1366 				get_task_comm(comm, current),
1367 				clone_flags & CLONE_STOPPED);
1368 		}
1369 	}
1370 
1371 	/*
1372 	 * When called from kernel_thread, don't do user tracing stuff.
1373 	 */
1374 	if (likely(user_mode(regs)))
1375 		trace = tracehook_prepare_clone(clone_flags);
1376 
1377 	p = copy_process(clone_flags, stack_start, regs, stack_size,
1378 			 child_tidptr, NULL, trace);
1379 	/*
1380 	 * Do this prior waking up the new thread - the thread pointer
1381 	 * might get invalid after that point, if the thread exits quickly.
1382 	 */
1383 	if (!IS_ERR(p)) {
1384 		struct completion vfork;
1385 
1386 		trace_sched_process_fork(current, p);
1387 
1388 		nr = task_pid_vnr(p);
1389 
1390 		if (clone_flags & CLONE_PARENT_SETTID)
1391 			put_user(nr, parent_tidptr);
1392 
1393 		if (clone_flags & CLONE_VFORK) {
1394 			p->vfork_done = &vfork;
1395 			init_completion(&vfork);
1396 		}
1397 
1398 		audit_finish_fork(p);
1399 		tracehook_report_clone(regs, clone_flags, nr, p);
1400 
1401 		/*
1402 		 * We set PF_STARTING at creation in case tracing wants to
1403 		 * use this to distinguish a fully live task from one that
1404 		 * hasn't gotten to tracehook_report_clone() yet.  Now we
1405 		 * clear it and set the child going.
1406 		 */
1407 		p->flags &= ~PF_STARTING;
1408 
1409 		if (unlikely(clone_flags & CLONE_STOPPED)) {
1410 			/*
1411 			 * We'll start up with an immediate SIGSTOP.
1412 			 */
1413 			sigaddset(&p->pending.signal, SIGSTOP);
1414 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1415 			__set_task_state(p, TASK_STOPPED);
1416 		} else {
1417 			wake_up_new_task(p, clone_flags);
1418 		}
1419 
1420 		tracehook_report_clone_complete(trace, regs,
1421 						clone_flags, nr, p);
1422 
1423 		if (clone_flags & CLONE_VFORK) {
1424 			freezer_do_not_count();
1425 			wait_for_completion(&vfork);
1426 			freezer_count();
1427 			tracehook_report_vfork_done(p, nr);
1428 		}
1429 	} else {
1430 		nr = PTR_ERR(p);
1431 	}
1432 	return nr;
1433 }
1434 
1435 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1436 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1437 #endif
1438 
1439 static void sighand_ctor(void *data)
1440 {
1441 	struct sighand_struct *sighand = data;
1442 
1443 	spin_lock_init(&sighand->siglock);
1444 	init_waitqueue_head(&sighand->signalfd_wqh);
1445 }
1446 
1447 void __init proc_caches_init(void)
1448 {
1449 	sighand_cachep = kmem_cache_create("sighand_cache",
1450 			sizeof(struct sighand_struct), 0,
1451 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1452 			SLAB_NOTRACK, sighand_ctor);
1453 	signal_cachep = kmem_cache_create("signal_cache",
1454 			sizeof(struct signal_struct), 0,
1455 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1456 	files_cachep = kmem_cache_create("files_cache",
1457 			sizeof(struct files_struct), 0,
1458 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1459 	fs_cachep = kmem_cache_create("fs_cache",
1460 			sizeof(struct fs_struct), 0,
1461 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1462 	mm_cachep = kmem_cache_create("mm_struct",
1463 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1464 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1465 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1466 	mmap_init();
1467 }
1468 
1469 /*
1470  * Check constraints on flags passed to the unshare system call and
1471  * force unsharing of additional process context as appropriate.
1472  */
1473 static void check_unshare_flags(unsigned long *flags_ptr)
1474 {
1475 	/*
1476 	 * If unsharing a thread from a thread group, must also
1477 	 * unshare vm.
1478 	 */
1479 	if (*flags_ptr & CLONE_THREAD)
1480 		*flags_ptr |= CLONE_VM;
1481 
1482 	/*
1483 	 * If unsharing vm, must also unshare signal handlers.
1484 	 */
1485 	if (*flags_ptr & CLONE_VM)
1486 		*flags_ptr |= CLONE_SIGHAND;
1487 
1488 	/*
1489 	 * If unsharing signal handlers and the task was created
1490 	 * using CLONE_THREAD, then must unshare the thread
1491 	 */
1492 	if ((*flags_ptr & CLONE_SIGHAND) &&
1493 	    (atomic_read(&current->signal->count) > 1))
1494 		*flags_ptr |= CLONE_THREAD;
1495 
1496 	/*
1497 	 * If unsharing namespace, must also unshare filesystem information.
1498 	 */
1499 	if (*flags_ptr & CLONE_NEWNS)
1500 		*flags_ptr |= CLONE_FS;
1501 }
1502 
1503 /*
1504  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1505  */
1506 static int unshare_thread(unsigned long unshare_flags)
1507 {
1508 	if (unshare_flags & CLONE_THREAD)
1509 		return -EINVAL;
1510 
1511 	return 0;
1512 }
1513 
1514 /*
1515  * Unshare the filesystem structure if it is being shared
1516  */
1517 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1518 {
1519 	struct fs_struct *fs = current->fs;
1520 
1521 	if (!(unshare_flags & CLONE_FS) || !fs)
1522 		return 0;
1523 
1524 	/* don't need lock here; in the worst case we'll do useless copy */
1525 	if (fs->users == 1)
1526 		return 0;
1527 
1528 	*new_fsp = copy_fs_struct(fs);
1529 	if (!*new_fsp)
1530 		return -ENOMEM;
1531 
1532 	return 0;
1533 }
1534 
1535 /*
1536  * Unsharing of sighand is not supported yet
1537  */
1538 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1539 {
1540 	struct sighand_struct *sigh = current->sighand;
1541 
1542 	if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1543 		return -EINVAL;
1544 	else
1545 		return 0;
1546 }
1547 
1548 /*
1549  * Unshare vm if it is being shared
1550  */
1551 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1552 {
1553 	struct mm_struct *mm = current->mm;
1554 
1555 	if ((unshare_flags & CLONE_VM) &&
1556 	    (mm && atomic_read(&mm->mm_users) > 1)) {
1557 		return -EINVAL;
1558 	}
1559 
1560 	return 0;
1561 }
1562 
1563 /*
1564  * Unshare file descriptor table if it is being shared
1565  */
1566 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1567 {
1568 	struct files_struct *fd = current->files;
1569 	int error = 0;
1570 
1571 	if ((unshare_flags & CLONE_FILES) &&
1572 	    (fd && atomic_read(&fd->count) > 1)) {
1573 		*new_fdp = dup_fd(fd, &error);
1574 		if (!*new_fdp)
1575 			return error;
1576 	}
1577 
1578 	return 0;
1579 }
1580 
1581 /*
1582  * unshare allows a process to 'unshare' part of the process
1583  * context which was originally shared using clone.  copy_*
1584  * functions used by do_fork() cannot be used here directly
1585  * because they modify an inactive task_struct that is being
1586  * constructed. Here we are modifying the current, active,
1587  * task_struct.
1588  */
1589 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1590 {
1591 	int err = 0;
1592 	struct fs_struct *fs, *new_fs = NULL;
1593 	struct sighand_struct *new_sigh = NULL;
1594 	struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1595 	struct files_struct *fd, *new_fd = NULL;
1596 	struct nsproxy *new_nsproxy = NULL;
1597 	int do_sysvsem = 0;
1598 
1599 	check_unshare_flags(&unshare_flags);
1600 
1601 	/* Return -EINVAL for all unsupported flags */
1602 	err = -EINVAL;
1603 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1604 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1605 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1606 		goto bad_unshare_out;
1607 
1608 	/*
1609 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1610 	 * to a new ipc namespace, the semaphore arrays from the old
1611 	 * namespace are unreachable.
1612 	 */
1613 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1614 		do_sysvsem = 1;
1615 	if ((err = unshare_thread(unshare_flags)))
1616 		goto bad_unshare_out;
1617 	if ((err = unshare_fs(unshare_flags, &new_fs)))
1618 		goto bad_unshare_cleanup_thread;
1619 	if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1620 		goto bad_unshare_cleanup_fs;
1621 	if ((err = unshare_vm(unshare_flags, &new_mm)))
1622 		goto bad_unshare_cleanup_sigh;
1623 	if ((err = unshare_fd(unshare_flags, &new_fd)))
1624 		goto bad_unshare_cleanup_vm;
1625 	if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1626 			new_fs)))
1627 		goto bad_unshare_cleanup_fd;
1628 
1629 	if (new_fs ||  new_mm || new_fd || do_sysvsem || new_nsproxy) {
1630 		if (do_sysvsem) {
1631 			/*
1632 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1633 			 */
1634 			exit_sem(current);
1635 		}
1636 
1637 		if (new_nsproxy) {
1638 			switch_task_namespaces(current, new_nsproxy);
1639 			new_nsproxy = NULL;
1640 		}
1641 
1642 		task_lock(current);
1643 
1644 		if (new_fs) {
1645 			fs = current->fs;
1646 			write_lock(&fs->lock);
1647 			current->fs = new_fs;
1648 			if (--fs->users)
1649 				new_fs = NULL;
1650 			else
1651 				new_fs = fs;
1652 			write_unlock(&fs->lock);
1653 		}
1654 
1655 		if (new_mm) {
1656 			mm = current->mm;
1657 			active_mm = current->active_mm;
1658 			current->mm = new_mm;
1659 			current->active_mm = new_mm;
1660 			activate_mm(active_mm, new_mm);
1661 			new_mm = mm;
1662 		}
1663 
1664 		if (new_fd) {
1665 			fd = current->files;
1666 			current->files = new_fd;
1667 			new_fd = fd;
1668 		}
1669 
1670 		task_unlock(current);
1671 	}
1672 
1673 	if (new_nsproxy)
1674 		put_nsproxy(new_nsproxy);
1675 
1676 bad_unshare_cleanup_fd:
1677 	if (new_fd)
1678 		put_files_struct(new_fd);
1679 
1680 bad_unshare_cleanup_vm:
1681 	if (new_mm)
1682 		mmput(new_mm);
1683 
1684 bad_unshare_cleanup_sigh:
1685 	if (new_sigh)
1686 		if (atomic_dec_and_test(&new_sigh->count))
1687 			kmem_cache_free(sighand_cachep, new_sigh);
1688 
1689 bad_unshare_cleanup_fs:
1690 	if (new_fs)
1691 		free_fs_struct(new_fs);
1692 
1693 bad_unshare_cleanup_thread:
1694 bad_unshare_out:
1695 	return err;
1696 }
1697 
1698 /*
1699  *	Helper to unshare the files of the current task.
1700  *	We don't want to expose copy_files internals to
1701  *	the exec layer of the kernel.
1702  */
1703 
1704 int unshare_files(struct files_struct **displaced)
1705 {
1706 	struct task_struct *task = current;
1707 	struct files_struct *copy = NULL;
1708 	int error;
1709 
1710 	error = unshare_fd(CLONE_FILES, &copy);
1711 	if (error || !copy) {
1712 		*displaced = NULL;
1713 		return error;
1714 	}
1715 	*displaced = task->files;
1716 	task_lock(task);
1717 	task->files = copy;
1718 	task_unlock(task);
1719 	return 0;
1720 }
1721