1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/mnt_namespace.h> 16 #include <linux/key.h> 17 #include <linux/security.h> 18 #include <linux/cpu.h> 19 #include <linux/acct.h> 20 #include <linux/tsacct_kern.h> 21 #include <linux/file.h> 22 #include <linux/binfmts.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pid_namespace.h> 25 #include <linux/ptrace.h> 26 #include <linux/profile.h> 27 #include <linux/mount.h> 28 #include <linux/proc_fs.h> 29 #include <linux/kthread.h> 30 #include <linux/mempolicy.h> 31 #include <linux/taskstats_kern.h> 32 #include <linux/delayacct.h> 33 #include <linux/freezer.h> 34 #include <linux/cgroup.h> 35 #include <linux/syscalls.h> 36 #include <linux/signal.h> 37 #include <linux/posix-timers.h> 38 #include <linux/cn_proc.h> 39 #include <linux/mutex.h> 40 #include <linux/futex.h> 41 #include <linux/compat.h> 42 #include <linux/pipe_fs_i.h> 43 #include <linux/audit.h> /* for audit_free() */ 44 #include <linux/resource.h> 45 #include <linux/blkdev.h> 46 #include <linux/task_io_accounting_ops.h> 47 48 #include <asm/uaccess.h> 49 #include <asm/unistd.h> 50 #include <asm/pgtable.h> 51 #include <asm/mmu_context.h> 52 53 static void exit_mm(struct task_struct * tsk); 54 55 static inline int task_detached(struct task_struct *p) 56 { 57 return p->exit_signal == -1; 58 } 59 60 static void __unhash_process(struct task_struct *p) 61 { 62 nr_threads--; 63 detach_pid(p, PIDTYPE_PID); 64 if (thread_group_leader(p)) { 65 detach_pid(p, PIDTYPE_PGID); 66 detach_pid(p, PIDTYPE_SID); 67 68 list_del_rcu(&p->tasks); 69 __get_cpu_var(process_counts)--; 70 } 71 list_del_rcu(&p->thread_group); 72 remove_parent(p); 73 } 74 75 /* 76 * This function expects the tasklist_lock write-locked. 77 */ 78 static void __exit_signal(struct task_struct *tsk) 79 { 80 struct signal_struct *sig = tsk->signal; 81 struct sighand_struct *sighand; 82 83 BUG_ON(!sig); 84 BUG_ON(!atomic_read(&sig->count)); 85 86 rcu_read_lock(); 87 sighand = rcu_dereference(tsk->sighand); 88 spin_lock(&sighand->siglock); 89 90 posix_cpu_timers_exit(tsk); 91 if (atomic_dec_and_test(&sig->count)) 92 posix_cpu_timers_exit_group(tsk); 93 else { 94 /* 95 * If there is any task waiting for the group exit 96 * then notify it: 97 */ 98 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) 99 wake_up_process(sig->group_exit_task); 100 101 if (tsk == sig->curr_target) 102 sig->curr_target = next_thread(tsk); 103 /* 104 * Accumulate here the counters for all threads but the 105 * group leader as they die, so they can be added into 106 * the process-wide totals when those are taken. 107 * The group leader stays around as a zombie as long 108 * as there are other threads. When it gets reaped, 109 * the exit.c code will add its counts into these totals. 110 * We won't ever get here for the group leader, since it 111 * will have been the last reference on the signal_struct. 112 */ 113 sig->utime = cputime_add(sig->utime, tsk->utime); 114 sig->stime = cputime_add(sig->stime, tsk->stime); 115 sig->gtime = cputime_add(sig->gtime, tsk->gtime); 116 sig->min_flt += tsk->min_flt; 117 sig->maj_flt += tsk->maj_flt; 118 sig->nvcsw += tsk->nvcsw; 119 sig->nivcsw += tsk->nivcsw; 120 sig->inblock += task_io_get_inblock(tsk); 121 sig->oublock += task_io_get_oublock(tsk); 122 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 123 sig = NULL; /* Marker for below. */ 124 } 125 126 __unhash_process(tsk); 127 128 tsk->signal = NULL; 129 tsk->sighand = NULL; 130 spin_unlock(&sighand->siglock); 131 rcu_read_unlock(); 132 133 __cleanup_sighand(sighand); 134 clear_tsk_thread_flag(tsk,TIF_SIGPENDING); 135 flush_sigqueue(&tsk->pending); 136 if (sig) { 137 flush_sigqueue(&sig->shared_pending); 138 taskstats_tgid_free(sig); 139 __cleanup_signal(sig); 140 } 141 } 142 143 static void delayed_put_task_struct(struct rcu_head *rhp) 144 { 145 put_task_struct(container_of(rhp, struct task_struct, rcu)); 146 } 147 148 void release_task(struct task_struct * p) 149 { 150 struct task_struct *leader; 151 int zap_leader; 152 repeat: 153 atomic_dec(&p->user->processes); 154 proc_flush_task(p); 155 write_lock_irq(&tasklist_lock); 156 ptrace_unlink(p); 157 BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children)); 158 __exit_signal(p); 159 160 /* 161 * If we are the last non-leader member of the thread 162 * group, and the leader is zombie, then notify the 163 * group leader's parent process. (if it wants notification.) 164 */ 165 zap_leader = 0; 166 leader = p->group_leader; 167 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { 168 BUG_ON(task_detached(leader)); 169 do_notify_parent(leader, leader->exit_signal); 170 /* 171 * If we were the last child thread and the leader has 172 * exited already, and the leader's parent ignores SIGCHLD, 173 * then we are the one who should release the leader. 174 * 175 * do_notify_parent() will have marked it self-reaping in 176 * that case. 177 */ 178 zap_leader = task_detached(leader); 179 } 180 181 write_unlock_irq(&tasklist_lock); 182 release_thread(p); 183 call_rcu(&p->rcu, delayed_put_task_struct); 184 185 p = leader; 186 if (unlikely(zap_leader)) 187 goto repeat; 188 } 189 190 /* 191 * This checks not only the pgrp, but falls back on the pid if no 192 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 193 * without this... 194 * 195 * The caller must hold rcu lock or the tasklist lock. 196 */ 197 struct pid *session_of_pgrp(struct pid *pgrp) 198 { 199 struct task_struct *p; 200 struct pid *sid = NULL; 201 202 p = pid_task(pgrp, PIDTYPE_PGID); 203 if (p == NULL) 204 p = pid_task(pgrp, PIDTYPE_PID); 205 if (p != NULL) 206 sid = task_session(p); 207 208 return sid; 209 } 210 211 /* 212 * Determine if a process group is "orphaned", according to the POSIX 213 * definition in 2.2.2.52. Orphaned process groups are not to be affected 214 * by terminal-generated stop signals. Newly orphaned process groups are 215 * to receive a SIGHUP and a SIGCONT. 216 * 217 * "I ask you, have you ever known what it is to be an orphan?" 218 */ 219 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) 220 { 221 struct task_struct *p; 222 223 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 224 if ((p == ignored_task) || 225 (p->exit_state && thread_group_empty(p)) || 226 is_global_init(p->real_parent)) 227 continue; 228 229 if (task_pgrp(p->real_parent) != pgrp && 230 task_session(p->real_parent) == task_session(p)) 231 return 0; 232 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 233 234 return 1; 235 } 236 237 int is_current_pgrp_orphaned(void) 238 { 239 int retval; 240 241 read_lock(&tasklist_lock); 242 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 243 read_unlock(&tasklist_lock); 244 245 return retval; 246 } 247 248 static int has_stopped_jobs(struct pid *pgrp) 249 { 250 int retval = 0; 251 struct task_struct *p; 252 253 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 254 if (!task_is_stopped(p)) 255 continue; 256 retval = 1; 257 break; 258 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 259 return retval; 260 } 261 262 /* 263 * Check to see if any process groups have become orphaned as 264 * a result of our exiting, and if they have any stopped jobs, 265 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 266 */ 267 static void 268 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 269 { 270 struct pid *pgrp = task_pgrp(tsk); 271 struct task_struct *ignored_task = tsk; 272 273 if (!parent) 274 /* exit: our father is in a different pgrp than 275 * we are and we were the only connection outside. 276 */ 277 parent = tsk->real_parent; 278 else 279 /* reparent: our child is in a different pgrp than 280 * we are, and it was the only connection outside. 281 */ 282 ignored_task = NULL; 283 284 if (task_pgrp(parent) != pgrp && 285 task_session(parent) == task_session(tsk) && 286 will_become_orphaned_pgrp(pgrp, ignored_task) && 287 has_stopped_jobs(pgrp)) { 288 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 289 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 290 } 291 } 292 293 /** 294 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd 295 * 296 * If a kernel thread is launched as a result of a system call, or if 297 * it ever exits, it should generally reparent itself to kthreadd so it 298 * isn't in the way of other processes and is correctly cleaned up on exit. 299 * 300 * The various task state such as scheduling policy and priority may have 301 * been inherited from a user process, so we reset them to sane values here. 302 * 303 * NOTE that reparent_to_kthreadd() gives the caller full capabilities. 304 */ 305 static void reparent_to_kthreadd(void) 306 { 307 write_lock_irq(&tasklist_lock); 308 309 ptrace_unlink(current); 310 /* Reparent to init */ 311 remove_parent(current); 312 current->real_parent = current->parent = kthreadd_task; 313 add_parent(current); 314 315 /* Set the exit signal to SIGCHLD so we signal init on exit */ 316 current->exit_signal = SIGCHLD; 317 318 if (task_nice(current) < 0) 319 set_user_nice(current, 0); 320 /* cpus_allowed? */ 321 /* rt_priority? */ 322 /* signals? */ 323 security_task_reparent_to_init(current); 324 memcpy(current->signal->rlim, init_task.signal->rlim, 325 sizeof(current->signal->rlim)); 326 atomic_inc(&(INIT_USER->__count)); 327 write_unlock_irq(&tasklist_lock); 328 switch_uid(INIT_USER); 329 } 330 331 void __set_special_pids(struct pid *pid) 332 { 333 struct task_struct *curr = current->group_leader; 334 pid_t nr = pid_nr(pid); 335 336 if (task_session(curr) != pid) { 337 change_pid(curr, PIDTYPE_SID, pid); 338 set_task_session(curr, nr); 339 } 340 if (task_pgrp(curr) != pid) { 341 change_pid(curr, PIDTYPE_PGID, pid); 342 set_task_pgrp(curr, nr); 343 } 344 } 345 346 static void set_special_pids(struct pid *pid) 347 { 348 write_lock_irq(&tasklist_lock); 349 __set_special_pids(pid); 350 write_unlock_irq(&tasklist_lock); 351 } 352 353 /* 354 * Let kernel threads use this to say that they 355 * allow a certain signal (since daemonize() will 356 * have disabled all of them by default). 357 */ 358 int allow_signal(int sig) 359 { 360 if (!valid_signal(sig) || sig < 1) 361 return -EINVAL; 362 363 spin_lock_irq(¤t->sighand->siglock); 364 sigdelset(¤t->blocked, sig); 365 if (!current->mm) { 366 /* Kernel threads handle their own signals. 367 Let the signal code know it'll be handled, so 368 that they don't get converted to SIGKILL or 369 just silently dropped */ 370 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; 371 } 372 recalc_sigpending(); 373 spin_unlock_irq(¤t->sighand->siglock); 374 return 0; 375 } 376 377 EXPORT_SYMBOL(allow_signal); 378 379 int disallow_signal(int sig) 380 { 381 if (!valid_signal(sig) || sig < 1) 382 return -EINVAL; 383 384 spin_lock_irq(¤t->sighand->siglock); 385 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; 386 recalc_sigpending(); 387 spin_unlock_irq(¤t->sighand->siglock); 388 return 0; 389 } 390 391 EXPORT_SYMBOL(disallow_signal); 392 393 /* 394 * Put all the gunge required to become a kernel thread without 395 * attached user resources in one place where it belongs. 396 */ 397 398 void daemonize(const char *name, ...) 399 { 400 va_list args; 401 struct fs_struct *fs; 402 sigset_t blocked; 403 404 va_start(args, name); 405 vsnprintf(current->comm, sizeof(current->comm), name, args); 406 va_end(args); 407 408 /* 409 * If we were started as result of loading a module, close all of the 410 * user space pages. We don't need them, and if we didn't close them 411 * they would be locked into memory. 412 */ 413 exit_mm(current); 414 /* 415 * We don't want to have TIF_FREEZE set if the system-wide hibernation 416 * or suspend transition begins right now. 417 */ 418 current->flags |= PF_NOFREEZE; 419 420 if (current->nsproxy != &init_nsproxy) { 421 get_nsproxy(&init_nsproxy); 422 switch_task_namespaces(current, &init_nsproxy); 423 } 424 set_special_pids(&init_struct_pid); 425 proc_clear_tty(current); 426 427 /* Block and flush all signals */ 428 sigfillset(&blocked); 429 sigprocmask(SIG_BLOCK, &blocked, NULL); 430 flush_signals(current); 431 432 /* Become as one with the init task */ 433 434 exit_fs(current); /* current->fs->count--; */ 435 fs = init_task.fs; 436 current->fs = fs; 437 atomic_inc(&fs->count); 438 439 exit_files(current); 440 current->files = init_task.files; 441 atomic_inc(¤t->files->count); 442 443 reparent_to_kthreadd(); 444 } 445 446 EXPORT_SYMBOL(daemonize); 447 448 static void close_files(struct files_struct * files) 449 { 450 int i, j; 451 struct fdtable *fdt; 452 453 j = 0; 454 455 /* 456 * It is safe to dereference the fd table without RCU or 457 * ->file_lock because this is the last reference to the 458 * files structure. 459 */ 460 fdt = files_fdtable(files); 461 for (;;) { 462 unsigned long set; 463 i = j * __NFDBITS; 464 if (i >= fdt->max_fds) 465 break; 466 set = fdt->open_fds->fds_bits[j++]; 467 while (set) { 468 if (set & 1) { 469 struct file * file = xchg(&fdt->fd[i], NULL); 470 if (file) { 471 filp_close(file, files); 472 cond_resched(); 473 } 474 } 475 i++; 476 set >>= 1; 477 } 478 } 479 } 480 481 struct files_struct *get_files_struct(struct task_struct *task) 482 { 483 struct files_struct *files; 484 485 task_lock(task); 486 files = task->files; 487 if (files) 488 atomic_inc(&files->count); 489 task_unlock(task); 490 491 return files; 492 } 493 494 void put_files_struct(struct files_struct *files) 495 { 496 struct fdtable *fdt; 497 498 if (atomic_dec_and_test(&files->count)) { 499 close_files(files); 500 /* 501 * Free the fd and fdset arrays if we expanded them. 502 * If the fdtable was embedded, pass files for freeing 503 * at the end of the RCU grace period. Otherwise, 504 * you can free files immediately. 505 */ 506 fdt = files_fdtable(files); 507 if (fdt != &files->fdtab) 508 kmem_cache_free(files_cachep, files); 509 free_fdtable(fdt); 510 } 511 } 512 513 void reset_files_struct(struct files_struct *files) 514 { 515 struct task_struct *tsk = current; 516 struct files_struct *old; 517 518 old = tsk->files; 519 task_lock(tsk); 520 tsk->files = files; 521 task_unlock(tsk); 522 put_files_struct(old); 523 } 524 525 void exit_files(struct task_struct *tsk) 526 { 527 struct files_struct * files = tsk->files; 528 529 if (files) { 530 task_lock(tsk); 531 tsk->files = NULL; 532 task_unlock(tsk); 533 put_files_struct(files); 534 } 535 } 536 537 void put_fs_struct(struct fs_struct *fs) 538 { 539 /* No need to hold fs->lock if we are killing it */ 540 if (atomic_dec_and_test(&fs->count)) { 541 path_put(&fs->root); 542 path_put(&fs->pwd); 543 if (fs->altroot.dentry) 544 path_put(&fs->altroot); 545 kmem_cache_free(fs_cachep, fs); 546 } 547 } 548 549 void exit_fs(struct task_struct *tsk) 550 { 551 struct fs_struct * fs = tsk->fs; 552 553 if (fs) { 554 task_lock(tsk); 555 tsk->fs = NULL; 556 task_unlock(tsk); 557 put_fs_struct(fs); 558 } 559 } 560 561 EXPORT_SYMBOL_GPL(exit_fs); 562 563 #ifdef CONFIG_MM_OWNER 564 /* 565 * Task p is exiting and it owned mm, lets find a new owner for it 566 */ 567 static inline int 568 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p) 569 { 570 /* 571 * If there are other users of the mm and the owner (us) is exiting 572 * we need to find a new owner to take on the responsibility. 573 */ 574 if (!mm) 575 return 0; 576 if (atomic_read(&mm->mm_users) <= 1) 577 return 0; 578 if (mm->owner != p) 579 return 0; 580 return 1; 581 } 582 583 void mm_update_next_owner(struct mm_struct *mm) 584 { 585 struct task_struct *c, *g, *p = current; 586 587 retry: 588 if (!mm_need_new_owner(mm, p)) 589 return; 590 591 read_lock(&tasklist_lock); 592 /* 593 * Search in the children 594 */ 595 list_for_each_entry(c, &p->children, sibling) { 596 if (c->mm == mm) 597 goto assign_new_owner; 598 } 599 600 /* 601 * Search in the siblings 602 */ 603 list_for_each_entry(c, &p->parent->children, sibling) { 604 if (c->mm == mm) 605 goto assign_new_owner; 606 } 607 608 /* 609 * Search through everything else. We should not get 610 * here often 611 */ 612 do_each_thread(g, c) { 613 if (c->mm == mm) 614 goto assign_new_owner; 615 } while_each_thread(g, c); 616 617 read_unlock(&tasklist_lock); 618 return; 619 620 assign_new_owner: 621 BUG_ON(c == p); 622 get_task_struct(c); 623 /* 624 * The task_lock protects c->mm from changing. 625 * We always want mm->owner->mm == mm 626 */ 627 task_lock(c); 628 /* 629 * Delay read_unlock() till we have the task_lock() 630 * to ensure that c does not slip away underneath us 631 */ 632 read_unlock(&tasklist_lock); 633 if (c->mm != mm) { 634 task_unlock(c); 635 put_task_struct(c); 636 goto retry; 637 } 638 cgroup_mm_owner_callbacks(mm->owner, c); 639 mm->owner = c; 640 task_unlock(c); 641 put_task_struct(c); 642 } 643 #endif /* CONFIG_MM_OWNER */ 644 645 /* 646 * Turn us into a lazy TLB process if we 647 * aren't already.. 648 */ 649 static void exit_mm(struct task_struct * tsk) 650 { 651 struct mm_struct *mm = tsk->mm; 652 653 mm_release(tsk, mm); 654 if (!mm) 655 return; 656 /* 657 * Serialize with any possible pending coredump. 658 * We must hold mmap_sem around checking core_waiters 659 * and clearing tsk->mm. The core-inducing thread 660 * will increment core_waiters for each thread in the 661 * group with ->mm != NULL. 662 */ 663 down_read(&mm->mmap_sem); 664 if (mm->core_waiters) { 665 up_read(&mm->mmap_sem); 666 down_write(&mm->mmap_sem); 667 if (!--mm->core_waiters) 668 complete(mm->core_startup_done); 669 up_write(&mm->mmap_sem); 670 671 wait_for_completion(&mm->core_done); 672 down_read(&mm->mmap_sem); 673 } 674 atomic_inc(&mm->mm_count); 675 BUG_ON(mm != tsk->active_mm); 676 /* more a memory barrier than a real lock */ 677 task_lock(tsk); 678 tsk->mm = NULL; 679 up_read(&mm->mmap_sem); 680 enter_lazy_tlb(mm, current); 681 /* We don't want this task to be frozen prematurely */ 682 clear_freeze_flag(tsk); 683 task_unlock(tsk); 684 mm_update_next_owner(mm); 685 mmput(mm); 686 } 687 688 static void 689 reparent_thread(struct task_struct *p, struct task_struct *father, int traced) 690 { 691 if (p->pdeath_signal) 692 /* We already hold the tasklist_lock here. */ 693 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p); 694 695 /* Move the child from its dying parent to the new one. */ 696 if (unlikely(traced)) { 697 /* Preserve ptrace links if someone else is tracing this child. */ 698 list_del_init(&p->ptrace_list); 699 if (ptrace_reparented(p)) 700 list_add(&p->ptrace_list, &p->real_parent->ptrace_children); 701 } else { 702 /* If this child is being traced, then we're the one tracing it 703 * anyway, so let go of it. 704 */ 705 p->ptrace = 0; 706 remove_parent(p); 707 p->parent = p->real_parent; 708 add_parent(p); 709 710 if (task_is_traced(p)) { 711 /* 712 * If it was at a trace stop, turn it into 713 * a normal stop since it's no longer being 714 * traced. 715 */ 716 ptrace_untrace(p); 717 } 718 } 719 720 /* If this is a threaded reparent there is no need to 721 * notify anyone anything has happened. 722 */ 723 if (same_thread_group(p->real_parent, father)) 724 return; 725 726 /* We don't want people slaying init. */ 727 if (!task_detached(p)) 728 p->exit_signal = SIGCHLD; 729 730 /* If we'd notified the old parent about this child's death, 731 * also notify the new parent. 732 */ 733 if (!traced && p->exit_state == EXIT_ZOMBIE && 734 !task_detached(p) && thread_group_empty(p)) 735 do_notify_parent(p, p->exit_signal); 736 737 kill_orphaned_pgrp(p, father); 738 } 739 740 /* 741 * When we die, we re-parent all our children. 742 * Try to give them to another thread in our thread 743 * group, and if no such member exists, give it to 744 * the child reaper process (ie "init") in our pid 745 * space. 746 */ 747 static void forget_original_parent(struct task_struct *father) 748 { 749 struct task_struct *p, *n, *reaper = father; 750 struct list_head ptrace_dead; 751 752 INIT_LIST_HEAD(&ptrace_dead); 753 754 write_lock_irq(&tasklist_lock); 755 756 do { 757 reaper = next_thread(reaper); 758 if (reaper == father) { 759 reaper = task_child_reaper(father); 760 break; 761 } 762 } while (reaper->flags & PF_EXITING); 763 764 /* 765 * There are only two places where our children can be: 766 * 767 * - in our child list 768 * - in our ptraced child list 769 * 770 * Search them and reparent children. 771 */ 772 list_for_each_entry_safe(p, n, &father->children, sibling) { 773 int ptrace; 774 775 ptrace = p->ptrace; 776 777 /* if father isn't the real parent, then ptrace must be enabled */ 778 BUG_ON(father != p->real_parent && !ptrace); 779 780 if (father == p->real_parent) { 781 /* reparent with a reaper, real father it's us */ 782 p->real_parent = reaper; 783 reparent_thread(p, father, 0); 784 } else { 785 /* reparent ptraced task to its real parent */ 786 __ptrace_unlink (p); 787 if (p->exit_state == EXIT_ZOMBIE && !task_detached(p) && 788 thread_group_empty(p)) 789 do_notify_parent(p, p->exit_signal); 790 } 791 792 /* 793 * if the ptraced child is a detached zombie we must collect 794 * it before we exit, or it will remain zombie forever since 795 * we prevented it from self-reap itself while it was being 796 * traced by us, to be able to see it in wait4. 797 */ 798 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && task_detached(p))) 799 list_add(&p->ptrace_list, &ptrace_dead); 800 } 801 802 list_for_each_entry_safe(p, n, &father->ptrace_children, ptrace_list) { 803 p->real_parent = reaper; 804 reparent_thread(p, father, 1); 805 } 806 807 write_unlock_irq(&tasklist_lock); 808 BUG_ON(!list_empty(&father->children)); 809 BUG_ON(!list_empty(&father->ptrace_children)); 810 811 list_for_each_entry_safe(p, n, &ptrace_dead, ptrace_list) { 812 list_del_init(&p->ptrace_list); 813 release_task(p); 814 } 815 816 } 817 818 /* 819 * Send signals to all our closest relatives so that they know 820 * to properly mourn us.. 821 */ 822 static void exit_notify(struct task_struct *tsk, int group_dead) 823 { 824 int state; 825 826 /* 827 * This does two things: 828 * 829 * A. Make init inherit all the child processes 830 * B. Check to see if any process groups have become orphaned 831 * as a result of our exiting, and if they have any stopped 832 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 833 */ 834 forget_original_parent(tsk); 835 exit_task_namespaces(tsk); 836 837 write_lock_irq(&tasklist_lock); 838 if (group_dead) 839 kill_orphaned_pgrp(tsk->group_leader, NULL); 840 841 /* Let father know we died 842 * 843 * Thread signals are configurable, but you aren't going to use 844 * that to send signals to arbitary processes. 845 * That stops right now. 846 * 847 * If the parent exec id doesn't match the exec id we saved 848 * when we started then we know the parent has changed security 849 * domain. 850 * 851 * If our self_exec id doesn't match our parent_exec_id then 852 * we have changed execution domain as these two values started 853 * the same after a fork. 854 */ 855 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) && 856 (tsk->parent_exec_id != tsk->real_parent->self_exec_id || 857 tsk->self_exec_id != tsk->parent_exec_id) && 858 !capable(CAP_KILL)) 859 tsk->exit_signal = SIGCHLD; 860 861 /* If something other than our normal parent is ptracing us, then 862 * send it a SIGCHLD instead of honoring exit_signal. exit_signal 863 * only has special meaning to our real parent. 864 */ 865 if (!task_detached(tsk) && thread_group_empty(tsk)) { 866 int signal = ptrace_reparented(tsk) ? 867 SIGCHLD : tsk->exit_signal; 868 do_notify_parent(tsk, signal); 869 } else if (tsk->ptrace) { 870 do_notify_parent(tsk, SIGCHLD); 871 } 872 873 state = EXIT_ZOMBIE; 874 if (task_detached(tsk) && likely(!tsk->ptrace)) 875 state = EXIT_DEAD; 876 tsk->exit_state = state; 877 878 /* mt-exec, de_thread() is waiting for us */ 879 if (thread_group_leader(tsk) && 880 tsk->signal->notify_count < 0 && 881 tsk->signal->group_exit_task) 882 wake_up_process(tsk->signal->group_exit_task); 883 884 write_unlock_irq(&tasklist_lock); 885 886 /* If the process is dead, release it - nobody will wait for it */ 887 if (state == EXIT_DEAD) 888 release_task(tsk); 889 } 890 891 #ifdef CONFIG_DEBUG_STACK_USAGE 892 static void check_stack_usage(void) 893 { 894 static DEFINE_SPINLOCK(low_water_lock); 895 static int lowest_to_date = THREAD_SIZE; 896 unsigned long *n = end_of_stack(current); 897 unsigned long free; 898 899 while (*n == 0) 900 n++; 901 free = (unsigned long)n - (unsigned long)end_of_stack(current); 902 903 if (free >= lowest_to_date) 904 return; 905 906 spin_lock(&low_water_lock); 907 if (free < lowest_to_date) { 908 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes " 909 "left\n", 910 current->comm, free); 911 lowest_to_date = free; 912 } 913 spin_unlock(&low_water_lock); 914 } 915 #else 916 static inline void check_stack_usage(void) {} 917 #endif 918 919 static inline void exit_child_reaper(struct task_struct *tsk) 920 { 921 if (likely(tsk->group_leader != task_child_reaper(tsk))) 922 return; 923 924 if (tsk->nsproxy->pid_ns == &init_pid_ns) 925 panic("Attempted to kill init!"); 926 927 /* 928 * @tsk is the last thread in the 'cgroup-init' and is exiting. 929 * Terminate all remaining processes in the namespace and reap them 930 * before exiting @tsk. 931 * 932 * Note that @tsk (last thread of cgroup-init) may not necessarily 933 * be the child-reaper (i.e main thread of cgroup-init) of the 934 * namespace i.e the child_reaper may have already exited. 935 * 936 * Even after a child_reaper exits, we let it inherit orphaned children, 937 * because, pid_ns->child_reaper remains valid as long as there is 938 * at least one living sub-thread in the cgroup init. 939 940 * This living sub-thread of the cgroup-init will be notified when 941 * a child inherited by the 'child-reaper' exits (do_notify_parent() 942 * uses __group_send_sig_info()). Further, when reaping child processes, 943 * do_wait() iterates over children of all living sub threads. 944 945 * i.e even though 'child_reaper' thread is listed as the parent of the 946 * orphaned children, any living sub-thread in the cgroup-init can 947 * perform the role of the child_reaper. 948 */ 949 zap_pid_ns_processes(tsk->nsproxy->pid_ns); 950 } 951 952 NORET_TYPE void do_exit(long code) 953 { 954 struct task_struct *tsk = current; 955 int group_dead; 956 957 profile_task_exit(tsk); 958 959 WARN_ON(atomic_read(&tsk->fs_excl)); 960 961 if (unlikely(in_interrupt())) 962 panic("Aiee, killing interrupt handler!"); 963 if (unlikely(!tsk->pid)) 964 panic("Attempted to kill the idle task!"); 965 966 if (unlikely(current->ptrace & PT_TRACE_EXIT)) { 967 current->ptrace_message = code; 968 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP); 969 } 970 971 /* 972 * We're taking recursive faults here in do_exit. Safest is to just 973 * leave this task alone and wait for reboot. 974 */ 975 if (unlikely(tsk->flags & PF_EXITING)) { 976 printk(KERN_ALERT 977 "Fixing recursive fault but reboot is needed!\n"); 978 /* 979 * We can do this unlocked here. The futex code uses 980 * this flag just to verify whether the pi state 981 * cleanup has been done or not. In the worst case it 982 * loops once more. We pretend that the cleanup was 983 * done as there is no way to return. Either the 984 * OWNER_DIED bit is set by now or we push the blocked 985 * task into the wait for ever nirwana as well. 986 */ 987 tsk->flags |= PF_EXITPIDONE; 988 if (tsk->io_context) 989 exit_io_context(); 990 set_current_state(TASK_UNINTERRUPTIBLE); 991 schedule(); 992 } 993 994 exit_signals(tsk); /* sets PF_EXITING */ 995 /* 996 * tsk->flags are checked in the futex code to protect against 997 * an exiting task cleaning up the robust pi futexes. 998 */ 999 smp_mb(); 1000 spin_unlock_wait(&tsk->pi_lock); 1001 1002 if (unlikely(in_atomic())) 1003 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", 1004 current->comm, task_pid_nr(current), 1005 preempt_count()); 1006 1007 acct_update_integrals(tsk); 1008 if (tsk->mm) { 1009 update_hiwater_rss(tsk->mm); 1010 update_hiwater_vm(tsk->mm); 1011 } 1012 group_dead = atomic_dec_and_test(&tsk->signal->live); 1013 if (group_dead) { 1014 exit_child_reaper(tsk); 1015 hrtimer_cancel(&tsk->signal->real_timer); 1016 exit_itimers(tsk->signal); 1017 } 1018 acct_collect(code, group_dead); 1019 #ifdef CONFIG_FUTEX 1020 if (unlikely(tsk->robust_list)) 1021 exit_robust_list(tsk); 1022 #ifdef CONFIG_COMPAT 1023 if (unlikely(tsk->compat_robust_list)) 1024 compat_exit_robust_list(tsk); 1025 #endif 1026 #endif 1027 if (group_dead) 1028 tty_audit_exit(); 1029 if (unlikely(tsk->audit_context)) 1030 audit_free(tsk); 1031 1032 tsk->exit_code = code; 1033 taskstats_exit(tsk, group_dead); 1034 1035 exit_mm(tsk); 1036 1037 if (group_dead) 1038 acct_process(); 1039 exit_sem(tsk); 1040 exit_files(tsk); 1041 exit_fs(tsk); 1042 check_stack_usage(); 1043 exit_thread(); 1044 cgroup_exit(tsk, 1); 1045 exit_keys(tsk); 1046 1047 if (group_dead && tsk->signal->leader) 1048 disassociate_ctty(1); 1049 1050 module_put(task_thread_info(tsk)->exec_domain->module); 1051 if (tsk->binfmt) 1052 module_put(tsk->binfmt->module); 1053 1054 proc_exit_connector(tsk); 1055 exit_notify(tsk, group_dead); 1056 #ifdef CONFIG_NUMA 1057 mpol_put(tsk->mempolicy); 1058 tsk->mempolicy = NULL; 1059 #endif 1060 #ifdef CONFIG_FUTEX 1061 /* 1062 * This must happen late, after the PID is not 1063 * hashed anymore: 1064 */ 1065 if (unlikely(!list_empty(&tsk->pi_state_list))) 1066 exit_pi_state_list(tsk); 1067 if (unlikely(current->pi_state_cache)) 1068 kfree(current->pi_state_cache); 1069 #endif 1070 /* 1071 * Make sure we are holding no locks: 1072 */ 1073 debug_check_no_locks_held(tsk); 1074 /* 1075 * We can do this unlocked here. The futex code uses this flag 1076 * just to verify whether the pi state cleanup has been done 1077 * or not. In the worst case it loops once more. 1078 */ 1079 tsk->flags |= PF_EXITPIDONE; 1080 1081 if (tsk->io_context) 1082 exit_io_context(); 1083 1084 if (tsk->splice_pipe) 1085 __free_pipe_info(tsk->splice_pipe); 1086 1087 preempt_disable(); 1088 /* causes final put_task_struct in finish_task_switch(). */ 1089 tsk->state = TASK_DEAD; 1090 1091 schedule(); 1092 BUG(); 1093 /* Avoid "noreturn function does return". */ 1094 for (;;) 1095 cpu_relax(); /* For when BUG is null */ 1096 } 1097 1098 EXPORT_SYMBOL_GPL(do_exit); 1099 1100 NORET_TYPE void complete_and_exit(struct completion *comp, long code) 1101 { 1102 if (comp) 1103 complete(comp); 1104 1105 do_exit(code); 1106 } 1107 1108 EXPORT_SYMBOL(complete_and_exit); 1109 1110 asmlinkage long sys_exit(int error_code) 1111 { 1112 do_exit((error_code&0xff)<<8); 1113 } 1114 1115 /* 1116 * Take down every thread in the group. This is called by fatal signals 1117 * as well as by sys_exit_group (below). 1118 */ 1119 NORET_TYPE void 1120 do_group_exit(int exit_code) 1121 { 1122 struct signal_struct *sig = current->signal; 1123 1124 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 1125 1126 if (signal_group_exit(sig)) 1127 exit_code = sig->group_exit_code; 1128 else if (!thread_group_empty(current)) { 1129 struct sighand_struct *const sighand = current->sighand; 1130 spin_lock_irq(&sighand->siglock); 1131 if (signal_group_exit(sig)) 1132 /* Another thread got here before we took the lock. */ 1133 exit_code = sig->group_exit_code; 1134 else { 1135 sig->group_exit_code = exit_code; 1136 sig->flags = SIGNAL_GROUP_EXIT; 1137 zap_other_threads(current); 1138 } 1139 spin_unlock_irq(&sighand->siglock); 1140 } 1141 1142 do_exit(exit_code); 1143 /* NOTREACHED */ 1144 } 1145 1146 /* 1147 * this kills every thread in the thread group. Note that any externally 1148 * wait4()-ing process will get the correct exit code - even if this 1149 * thread is not the thread group leader. 1150 */ 1151 asmlinkage void sys_exit_group(int error_code) 1152 { 1153 do_group_exit((error_code & 0xff) << 8); 1154 } 1155 1156 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 1157 { 1158 struct pid *pid = NULL; 1159 if (type == PIDTYPE_PID) 1160 pid = task->pids[type].pid; 1161 else if (type < PIDTYPE_MAX) 1162 pid = task->group_leader->pids[type].pid; 1163 return pid; 1164 } 1165 1166 static int eligible_child(enum pid_type type, struct pid *pid, int options, 1167 struct task_struct *p) 1168 { 1169 int err; 1170 1171 if (type < PIDTYPE_MAX) { 1172 if (task_pid_type(p, type) != pid) 1173 return 0; 1174 } 1175 1176 /* 1177 * Do not consider detached threads that are 1178 * not ptraced: 1179 */ 1180 if (task_detached(p) && !p->ptrace) 1181 return 0; 1182 1183 /* Wait for all children (clone and not) if __WALL is set; 1184 * otherwise, wait for clone children *only* if __WCLONE is 1185 * set; otherwise, wait for non-clone children *only*. (Note: 1186 * A "clone" child here is one that reports to its parent 1187 * using a signal other than SIGCHLD.) */ 1188 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0)) 1189 && !(options & __WALL)) 1190 return 0; 1191 1192 err = security_task_wait(p); 1193 if (likely(!err)) 1194 return 1; 1195 1196 if (type != PIDTYPE_PID) 1197 return 0; 1198 /* This child was explicitly requested, abort */ 1199 read_unlock(&tasklist_lock); 1200 return err; 1201 } 1202 1203 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid, 1204 int why, int status, 1205 struct siginfo __user *infop, 1206 struct rusage __user *rusagep) 1207 { 1208 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0; 1209 1210 put_task_struct(p); 1211 if (!retval) 1212 retval = put_user(SIGCHLD, &infop->si_signo); 1213 if (!retval) 1214 retval = put_user(0, &infop->si_errno); 1215 if (!retval) 1216 retval = put_user((short)why, &infop->si_code); 1217 if (!retval) 1218 retval = put_user(pid, &infop->si_pid); 1219 if (!retval) 1220 retval = put_user(uid, &infop->si_uid); 1221 if (!retval) 1222 retval = put_user(status, &infop->si_status); 1223 if (!retval) 1224 retval = pid; 1225 return retval; 1226 } 1227 1228 /* 1229 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1230 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1231 * the lock and this task is uninteresting. If we return nonzero, we have 1232 * released the lock and the system call should return. 1233 */ 1234 static int wait_task_zombie(struct task_struct *p, int noreap, 1235 struct siginfo __user *infop, 1236 int __user *stat_addr, struct rusage __user *ru) 1237 { 1238 unsigned long state; 1239 int retval, status, traced; 1240 pid_t pid = task_pid_vnr(p); 1241 1242 if (unlikely(noreap)) { 1243 uid_t uid = p->uid; 1244 int exit_code = p->exit_code; 1245 int why, status; 1246 1247 get_task_struct(p); 1248 read_unlock(&tasklist_lock); 1249 if ((exit_code & 0x7f) == 0) { 1250 why = CLD_EXITED; 1251 status = exit_code >> 8; 1252 } else { 1253 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1254 status = exit_code & 0x7f; 1255 } 1256 return wait_noreap_copyout(p, pid, uid, why, 1257 status, infop, ru); 1258 } 1259 1260 /* 1261 * Try to move the task's state to DEAD 1262 * only one thread is allowed to do this: 1263 */ 1264 state = xchg(&p->exit_state, EXIT_DEAD); 1265 if (state != EXIT_ZOMBIE) { 1266 BUG_ON(state != EXIT_DEAD); 1267 return 0; 1268 } 1269 1270 traced = ptrace_reparented(p); 1271 1272 if (likely(!traced)) { 1273 struct signal_struct *psig; 1274 struct signal_struct *sig; 1275 1276 /* 1277 * The resource counters for the group leader are in its 1278 * own task_struct. Those for dead threads in the group 1279 * are in its signal_struct, as are those for the child 1280 * processes it has previously reaped. All these 1281 * accumulate in the parent's signal_struct c* fields. 1282 * 1283 * We don't bother to take a lock here to protect these 1284 * p->signal fields, because they are only touched by 1285 * __exit_signal, which runs with tasklist_lock 1286 * write-locked anyway, and so is excluded here. We do 1287 * need to protect the access to p->parent->signal fields, 1288 * as other threads in the parent group can be right 1289 * here reaping other children at the same time. 1290 */ 1291 spin_lock_irq(&p->parent->sighand->siglock); 1292 psig = p->parent->signal; 1293 sig = p->signal; 1294 psig->cutime = 1295 cputime_add(psig->cutime, 1296 cputime_add(p->utime, 1297 cputime_add(sig->utime, 1298 sig->cutime))); 1299 psig->cstime = 1300 cputime_add(psig->cstime, 1301 cputime_add(p->stime, 1302 cputime_add(sig->stime, 1303 sig->cstime))); 1304 psig->cgtime = 1305 cputime_add(psig->cgtime, 1306 cputime_add(p->gtime, 1307 cputime_add(sig->gtime, 1308 sig->cgtime))); 1309 psig->cmin_flt += 1310 p->min_flt + sig->min_flt + sig->cmin_flt; 1311 psig->cmaj_flt += 1312 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1313 psig->cnvcsw += 1314 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1315 psig->cnivcsw += 1316 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1317 psig->cinblock += 1318 task_io_get_inblock(p) + 1319 sig->inblock + sig->cinblock; 1320 psig->coublock += 1321 task_io_get_oublock(p) + 1322 sig->oublock + sig->coublock; 1323 spin_unlock_irq(&p->parent->sighand->siglock); 1324 } 1325 1326 /* 1327 * Now we are sure this task is interesting, and no other 1328 * thread can reap it because we set its state to EXIT_DEAD. 1329 */ 1330 read_unlock(&tasklist_lock); 1331 1332 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1333 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1334 ? p->signal->group_exit_code : p->exit_code; 1335 if (!retval && stat_addr) 1336 retval = put_user(status, stat_addr); 1337 if (!retval && infop) 1338 retval = put_user(SIGCHLD, &infop->si_signo); 1339 if (!retval && infop) 1340 retval = put_user(0, &infop->si_errno); 1341 if (!retval && infop) { 1342 int why; 1343 1344 if ((status & 0x7f) == 0) { 1345 why = CLD_EXITED; 1346 status >>= 8; 1347 } else { 1348 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1349 status &= 0x7f; 1350 } 1351 retval = put_user((short)why, &infop->si_code); 1352 if (!retval) 1353 retval = put_user(status, &infop->si_status); 1354 } 1355 if (!retval && infop) 1356 retval = put_user(pid, &infop->si_pid); 1357 if (!retval && infop) 1358 retval = put_user(p->uid, &infop->si_uid); 1359 if (!retval) 1360 retval = pid; 1361 1362 if (traced) { 1363 write_lock_irq(&tasklist_lock); 1364 /* We dropped tasklist, ptracer could die and untrace */ 1365 ptrace_unlink(p); 1366 /* 1367 * If this is not a detached task, notify the parent. 1368 * If it's still not detached after that, don't release 1369 * it now. 1370 */ 1371 if (!task_detached(p)) { 1372 do_notify_parent(p, p->exit_signal); 1373 if (!task_detached(p)) { 1374 p->exit_state = EXIT_ZOMBIE; 1375 p = NULL; 1376 } 1377 } 1378 write_unlock_irq(&tasklist_lock); 1379 } 1380 if (p != NULL) 1381 release_task(p); 1382 1383 return retval; 1384 } 1385 1386 /* 1387 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold 1388 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1389 * the lock and this task is uninteresting. If we return nonzero, we have 1390 * released the lock and the system call should return. 1391 */ 1392 static int wait_task_stopped(struct task_struct *p, 1393 int noreap, struct siginfo __user *infop, 1394 int __user *stat_addr, struct rusage __user *ru) 1395 { 1396 int retval, exit_code, why; 1397 uid_t uid = 0; /* unneeded, required by compiler */ 1398 pid_t pid; 1399 1400 exit_code = 0; 1401 spin_lock_irq(&p->sighand->siglock); 1402 1403 if (unlikely(!task_is_stopped_or_traced(p))) 1404 goto unlock_sig; 1405 1406 if (!(p->ptrace & PT_PTRACED) && p->signal->group_stop_count > 0) 1407 /* 1408 * A group stop is in progress and this is the group leader. 1409 * We won't report until all threads have stopped. 1410 */ 1411 goto unlock_sig; 1412 1413 exit_code = p->exit_code; 1414 if (!exit_code) 1415 goto unlock_sig; 1416 1417 if (!noreap) 1418 p->exit_code = 0; 1419 1420 uid = p->uid; 1421 unlock_sig: 1422 spin_unlock_irq(&p->sighand->siglock); 1423 if (!exit_code) 1424 return 0; 1425 1426 /* 1427 * Now we are pretty sure this task is interesting. 1428 * Make sure it doesn't get reaped out from under us while we 1429 * give up the lock and then examine it below. We don't want to 1430 * keep holding onto the tasklist_lock while we call getrusage and 1431 * possibly take page faults for user memory. 1432 */ 1433 get_task_struct(p); 1434 pid = task_pid_vnr(p); 1435 why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED; 1436 read_unlock(&tasklist_lock); 1437 1438 if (unlikely(noreap)) 1439 return wait_noreap_copyout(p, pid, uid, 1440 why, exit_code, 1441 infop, ru); 1442 1443 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1444 if (!retval && stat_addr) 1445 retval = put_user((exit_code << 8) | 0x7f, stat_addr); 1446 if (!retval && infop) 1447 retval = put_user(SIGCHLD, &infop->si_signo); 1448 if (!retval && infop) 1449 retval = put_user(0, &infop->si_errno); 1450 if (!retval && infop) 1451 retval = put_user((short)why, &infop->si_code); 1452 if (!retval && infop) 1453 retval = put_user(exit_code, &infop->si_status); 1454 if (!retval && infop) 1455 retval = put_user(pid, &infop->si_pid); 1456 if (!retval && infop) 1457 retval = put_user(uid, &infop->si_uid); 1458 if (!retval) 1459 retval = pid; 1460 put_task_struct(p); 1461 1462 BUG_ON(!retval); 1463 return retval; 1464 } 1465 1466 /* 1467 * Handle do_wait work for one task in a live, non-stopped state. 1468 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1469 * the lock and this task is uninteresting. If we return nonzero, we have 1470 * released the lock and the system call should return. 1471 */ 1472 static int wait_task_continued(struct task_struct *p, int noreap, 1473 struct siginfo __user *infop, 1474 int __user *stat_addr, struct rusage __user *ru) 1475 { 1476 int retval; 1477 pid_t pid; 1478 uid_t uid; 1479 1480 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1481 return 0; 1482 1483 spin_lock_irq(&p->sighand->siglock); 1484 /* Re-check with the lock held. */ 1485 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1486 spin_unlock_irq(&p->sighand->siglock); 1487 return 0; 1488 } 1489 if (!noreap) 1490 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1491 spin_unlock_irq(&p->sighand->siglock); 1492 1493 pid = task_pid_vnr(p); 1494 uid = p->uid; 1495 get_task_struct(p); 1496 read_unlock(&tasklist_lock); 1497 1498 if (!infop) { 1499 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1500 put_task_struct(p); 1501 if (!retval && stat_addr) 1502 retval = put_user(0xffff, stat_addr); 1503 if (!retval) 1504 retval = pid; 1505 } else { 1506 retval = wait_noreap_copyout(p, pid, uid, 1507 CLD_CONTINUED, SIGCONT, 1508 infop, ru); 1509 BUG_ON(retval == 0); 1510 } 1511 1512 return retval; 1513 } 1514 1515 static long do_wait(enum pid_type type, struct pid *pid, int options, 1516 struct siginfo __user *infop, int __user *stat_addr, 1517 struct rusage __user *ru) 1518 { 1519 DECLARE_WAITQUEUE(wait, current); 1520 struct task_struct *tsk; 1521 int flag, retval; 1522 1523 add_wait_queue(¤t->signal->wait_chldexit,&wait); 1524 repeat: 1525 /* If there is nothing that can match our critier just get out */ 1526 retval = -ECHILD; 1527 if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type]))) 1528 goto end; 1529 1530 /* 1531 * We will set this flag if we see any child that might later 1532 * match our criteria, even if we are not able to reap it yet. 1533 */ 1534 flag = retval = 0; 1535 current->state = TASK_INTERRUPTIBLE; 1536 read_lock(&tasklist_lock); 1537 tsk = current; 1538 do { 1539 struct task_struct *p; 1540 1541 list_for_each_entry(p, &tsk->children, sibling) { 1542 int ret = eligible_child(type, pid, options, p); 1543 if (!ret) 1544 continue; 1545 1546 if (unlikely(ret < 0)) { 1547 retval = ret; 1548 } else if (task_is_stopped_or_traced(p)) { 1549 /* 1550 * It's stopped now, so it might later 1551 * continue, exit, or stop again. 1552 */ 1553 flag = 1; 1554 if (!(p->ptrace & PT_PTRACED) && 1555 !(options & WUNTRACED)) 1556 continue; 1557 1558 retval = wait_task_stopped(p, 1559 (options & WNOWAIT), infop, 1560 stat_addr, ru); 1561 } else if (p->exit_state == EXIT_ZOMBIE && 1562 !delay_group_leader(p)) { 1563 /* 1564 * We don't reap group leaders with subthreads. 1565 */ 1566 if (!likely(options & WEXITED)) 1567 continue; 1568 retval = wait_task_zombie(p, 1569 (options & WNOWAIT), infop, 1570 stat_addr, ru); 1571 } else if (p->exit_state != EXIT_DEAD) { 1572 /* 1573 * It's running now, so it might later 1574 * exit, stop, or stop and then continue. 1575 */ 1576 flag = 1; 1577 if (!unlikely(options & WCONTINUED)) 1578 continue; 1579 retval = wait_task_continued(p, 1580 (options & WNOWAIT), infop, 1581 stat_addr, ru); 1582 } 1583 if (retval != 0) /* tasklist_lock released */ 1584 goto end; 1585 } 1586 if (!flag) { 1587 list_for_each_entry(p, &tsk->ptrace_children, 1588 ptrace_list) { 1589 flag = eligible_child(type, pid, options, p); 1590 if (!flag) 1591 continue; 1592 if (likely(flag > 0)) 1593 break; 1594 retval = flag; 1595 goto end; 1596 } 1597 } 1598 if (options & __WNOTHREAD) 1599 break; 1600 tsk = next_thread(tsk); 1601 BUG_ON(tsk->signal != current->signal); 1602 } while (tsk != current); 1603 read_unlock(&tasklist_lock); 1604 1605 if (flag) { 1606 if (options & WNOHANG) 1607 goto end; 1608 retval = -ERESTARTSYS; 1609 if (signal_pending(current)) 1610 goto end; 1611 schedule(); 1612 goto repeat; 1613 } 1614 retval = -ECHILD; 1615 end: 1616 current->state = TASK_RUNNING; 1617 remove_wait_queue(¤t->signal->wait_chldexit,&wait); 1618 if (infop) { 1619 if (retval > 0) 1620 retval = 0; 1621 else { 1622 /* 1623 * For a WNOHANG return, clear out all the fields 1624 * we would set so the user can easily tell the 1625 * difference. 1626 */ 1627 if (!retval) 1628 retval = put_user(0, &infop->si_signo); 1629 if (!retval) 1630 retval = put_user(0, &infop->si_errno); 1631 if (!retval) 1632 retval = put_user(0, &infop->si_code); 1633 if (!retval) 1634 retval = put_user(0, &infop->si_pid); 1635 if (!retval) 1636 retval = put_user(0, &infop->si_uid); 1637 if (!retval) 1638 retval = put_user(0, &infop->si_status); 1639 } 1640 } 1641 return retval; 1642 } 1643 1644 asmlinkage long sys_waitid(int which, pid_t upid, 1645 struct siginfo __user *infop, int options, 1646 struct rusage __user *ru) 1647 { 1648 struct pid *pid = NULL; 1649 enum pid_type type; 1650 long ret; 1651 1652 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1653 return -EINVAL; 1654 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1655 return -EINVAL; 1656 1657 switch (which) { 1658 case P_ALL: 1659 type = PIDTYPE_MAX; 1660 break; 1661 case P_PID: 1662 type = PIDTYPE_PID; 1663 if (upid <= 0) 1664 return -EINVAL; 1665 break; 1666 case P_PGID: 1667 type = PIDTYPE_PGID; 1668 if (upid <= 0) 1669 return -EINVAL; 1670 break; 1671 default: 1672 return -EINVAL; 1673 } 1674 1675 if (type < PIDTYPE_MAX) 1676 pid = find_get_pid(upid); 1677 ret = do_wait(type, pid, options, infop, NULL, ru); 1678 put_pid(pid); 1679 1680 /* avoid REGPARM breakage on x86: */ 1681 asmlinkage_protect(5, ret, which, upid, infop, options, ru); 1682 return ret; 1683 } 1684 1685 asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr, 1686 int options, struct rusage __user *ru) 1687 { 1688 struct pid *pid = NULL; 1689 enum pid_type type; 1690 long ret; 1691 1692 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1693 __WNOTHREAD|__WCLONE|__WALL)) 1694 return -EINVAL; 1695 1696 if (upid == -1) 1697 type = PIDTYPE_MAX; 1698 else if (upid < 0) { 1699 type = PIDTYPE_PGID; 1700 pid = find_get_pid(-upid); 1701 } else if (upid == 0) { 1702 type = PIDTYPE_PGID; 1703 pid = get_pid(task_pgrp(current)); 1704 } else /* upid > 0 */ { 1705 type = PIDTYPE_PID; 1706 pid = find_get_pid(upid); 1707 } 1708 1709 ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru); 1710 put_pid(pid); 1711 1712 /* avoid REGPARM breakage on x86: */ 1713 asmlinkage_protect(4, ret, upid, stat_addr, options, ru); 1714 return ret; 1715 } 1716 1717 #ifdef __ARCH_WANT_SYS_WAITPID 1718 1719 /* 1720 * sys_waitpid() remains for compatibility. waitpid() should be 1721 * implemented by calling sys_wait4() from libc.a. 1722 */ 1723 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options) 1724 { 1725 return sys_wait4(pid, stat_addr, options, NULL); 1726 } 1727 1728 #endif 1729