xref: /linux/kernel/exit.c (revision f7511d5f66f01fc451747b24e79f3ada7a3af9af)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/binfmts.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pid_namespace.h>
25 #include <linux/ptrace.h>
26 #include <linux/profile.h>
27 #include <linux/mount.h>
28 #include <linux/proc_fs.h>
29 #include <linux/kthread.h>
30 #include <linux/mempolicy.h>
31 #include <linux/taskstats_kern.h>
32 #include <linux/delayacct.h>
33 #include <linux/freezer.h>
34 #include <linux/cgroup.h>
35 #include <linux/syscalls.h>
36 #include <linux/signal.h>
37 #include <linux/posix-timers.h>
38 #include <linux/cn_proc.h>
39 #include <linux/mutex.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 
48 #include <asm/uaccess.h>
49 #include <asm/unistd.h>
50 #include <asm/pgtable.h>
51 #include <asm/mmu_context.h>
52 
53 static void exit_mm(struct task_struct * tsk);
54 
55 static inline int task_detached(struct task_struct *p)
56 {
57 	return p->exit_signal == -1;
58 }
59 
60 static void __unhash_process(struct task_struct *p)
61 {
62 	nr_threads--;
63 	detach_pid(p, PIDTYPE_PID);
64 	if (thread_group_leader(p)) {
65 		detach_pid(p, PIDTYPE_PGID);
66 		detach_pid(p, PIDTYPE_SID);
67 
68 		list_del_rcu(&p->tasks);
69 		__get_cpu_var(process_counts)--;
70 	}
71 	list_del_rcu(&p->thread_group);
72 	remove_parent(p);
73 }
74 
75 /*
76  * This function expects the tasklist_lock write-locked.
77  */
78 static void __exit_signal(struct task_struct *tsk)
79 {
80 	struct signal_struct *sig = tsk->signal;
81 	struct sighand_struct *sighand;
82 
83 	BUG_ON(!sig);
84 	BUG_ON(!atomic_read(&sig->count));
85 
86 	rcu_read_lock();
87 	sighand = rcu_dereference(tsk->sighand);
88 	spin_lock(&sighand->siglock);
89 
90 	posix_cpu_timers_exit(tsk);
91 	if (atomic_dec_and_test(&sig->count))
92 		posix_cpu_timers_exit_group(tsk);
93 	else {
94 		/*
95 		 * If there is any task waiting for the group exit
96 		 * then notify it:
97 		 */
98 		if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
99 			wake_up_process(sig->group_exit_task);
100 
101 		if (tsk == sig->curr_target)
102 			sig->curr_target = next_thread(tsk);
103 		/*
104 		 * Accumulate here the counters for all threads but the
105 		 * group leader as they die, so they can be added into
106 		 * the process-wide totals when those are taken.
107 		 * The group leader stays around as a zombie as long
108 		 * as there are other threads.  When it gets reaped,
109 		 * the exit.c code will add its counts into these totals.
110 		 * We won't ever get here for the group leader, since it
111 		 * will have been the last reference on the signal_struct.
112 		 */
113 		sig->utime = cputime_add(sig->utime, tsk->utime);
114 		sig->stime = cputime_add(sig->stime, tsk->stime);
115 		sig->gtime = cputime_add(sig->gtime, tsk->gtime);
116 		sig->min_flt += tsk->min_flt;
117 		sig->maj_flt += tsk->maj_flt;
118 		sig->nvcsw += tsk->nvcsw;
119 		sig->nivcsw += tsk->nivcsw;
120 		sig->inblock += task_io_get_inblock(tsk);
121 		sig->oublock += task_io_get_oublock(tsk);
122 		sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
123 		sig = NULL; /* Marker for below. */
124 	}
125 
126 	__unhash_process(tsk);
127 
128 	tsk->signal = NULL;
129 	tsk->sighand = NULL;
130 	spin_unlock(&sighand->siglock);
131 	rcu_read_unlock();
132 
133 	__cleanup_sighand(sighand);
134 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
135 	flush_sigqueue(&tsk->pending);
136 	if (sig) {
137 		flush_sigqueue(&sig->shared_pending);
138 		taskstats_tgid_free(sig);
139 		__cleanup_signal(sig);
140 	}
141 }
142 
143 static void delayed_put_task_struct(struct rcu_head *rhp)
144 {
145 	put_task_struct(container_of(rhp, struct task_struct, rcu));
146 }
147 
148 void release_task(struct task_struct * p)
149 {
150 	struct task_struct *leader;
151 	int zap_leader;
152 repeat:
153 	atomic_dec(&p->user->processes);
154 	proc_flush_task(p);
155 	write_lock_irq(&tasklist_lock);
156 	ptrace_unlink(p);
157 	BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
158 	__exit_signal(p);
159 
160 	/*
161 	 * If we are the last non-leader member of the thread
162 	 * group, and the leader is zombie, then notify the
163 	 * group leader's parent process. (if it wants notification.)
164 	 */
165 	zap_leader = 0;
166 	leader = p->group_leader;
167 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
168 		BUG_ON(task_detached(leader));
169 		do_notify_parent(leader, leader->exit_signal);
170 		/*
171 		 * If we were the last child thread and the leader has
172 		 * exited already, and the leader's parent ignores SIGCHLD,
173 		 * then we are the one who should release the leader.
174 		 *
175 		 * do_notify_parent() will have marked it self-reaping in
176 		 * that case.
177 		 */
178 		zap_leader = task_detached(leader);
179 	}
180 
181 	write_unlock_irq(&tasklist_lock);
182 	release_thread(p);
183 	call_rcu(&p->rcu, delayed_put_task_struct);
184 
185 	p = leader;
186 	if (unlikely(zap_leader))
187 		goto repeat;
188 }
189 
190 /*
191  * This checks not only the pgrp, but falls back on the pid if no
192  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
193  * without this...
194  *
195  * The caller must hold rcu lock or the tasklist lock.
196  */
197 struct pid *session_of_pgrp(struct pid *pgrp)
198 {
199 	struct task_struct *p;
200 	struct pid *sid = NULL;
201 
202 	p = pid_task(pgrp, PIDTYPE_PGID);
203 	if (p == NULL)
204 		p = pid_task(pgrp, PIDTYPE_PID);
205 	if (p != NULL)
206 		sid = task_session(p);
207 
208 	return sid;
209 }
210 
211 /*
212  * Determine if a process group is "orphaned", according to the POSIX
213  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
214  * by terminal-generated stop signals.  Newly orphaned process groups are
215  * to receive a SIGHUP and a SIGCONT.
216  *
217  * "I ask you, have you ever known what it is to be an orphan?"
218  */
219 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
220 {
221 	struct task_struct *p;
222 
223 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
224 		if ((p == ignored_task) ||
225 		    (p->exit_state && thread_group_empty(p)) ||
226 		    is_global_init(p->real_parent))
227 			continue;
228 
229 		if (task_pgrp(p->real_parent) != pgrp &&
230 		    task_session(p->real_parent) == task_session(p))
231 			return 0;
232 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
233 
234 	return 1;
235 }
236 
237 int is_current_pgrp_orphaned(void)
238 {
239 	int retval;
240 
241 	read_lock(&tasklist_lock);
242 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
243 	read_unlock(&tasklist_lock);
244 
245 	return retval;
246 }
247 
248 static int has_stopped_jobs(struct pid *pgrp)
249 {
250 	int retval = 0;
251 	struct task_struct *p;
252 
253 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
254 		if (!task_is_stopped(p))
255 			continue;
256 		retval = 1;
257 		break;
258 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
259 	return retval;
260 }
261 
262 /*
263  * Check to see if any process groups have become orphaned as
264  * a result of our exiting, and if they have any stopped jobs,
265  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
266  */
267 static void
268 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
269 {
270 	struct pid *pgrp = task_pgrp(tsk);
271 	struct task_struct *ignored_task = tsk;
272 
273 	if (!parent)
274 		 /* exit: our father is in a different pgrp than
275 		  * we are and we were the only connection outside.
276 		  */
277 		parent = tsk->real_parent;
278 	else
279 		/* reparent: our child is in a different pgrp than
280 		 * we are, and it was the only connection outside.
281 		 */
282 		ignored_task = NULL;
283 
284 	if (task_pgrp(parent) != pgrp &&
285 	    task_session(parent) == task_session(tsk) &&
286 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
287 	    has_stopped_jobs(pgrp)) {
288 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
289 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
290 	}
291 }
292 
293 /**
294  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
295  *
296  * If a kernel thread is launched as a result of a system call, or if
297  * it ever exits, it should generally reparent itself to kthreadd so it
298  * isn't in the way of other processes and is correctly cleaned up on exit.
299  *
300  * The various task state such as scheduling policy and priority may have
301  * been inherited from a user process, so we reset them to sane values here.
302  *
303  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
304  */
305 static void reparent_to_kthreadd(void)
306 {
307 	write_lock_irq(&tasklist_lock);
308 
309 	ptrace_unlink(current);
310 	/* Reparent to init */
311 	remove_parent(current);
312 	current->real_parent = current->parent = kthreadd_task;
313 	add_parent(current);
314 
315 	/* Set the exit signal to SIGCHLD so we signal init on exit */
316 	current->exit_signal = SIGCHLD;
317 
318 	if (task_nice(current) < 0)
319 		set_user_nice(current, 0);
320 	/* cpus_allowed? */
321 	/* rt_priority? */
322 	/* signals? */
323 	security_task_reparent_to_init(current);
324 	memcpy(current->signal->rlim, init_task.signal->rlim,
325 	       sizeof(current->signal->rlim));
326 	atomic_inc(&(INIT_USER->__count));
327 	write_unlock_irq(&tasklist_lock);
328 	switch_uid(INIT_USER);
329 }
330 
331 void __set_special_pids(struct pid *pid)
332 {
333 	struct task_struct *curr = current->group_leader;
334 	pid_t nr = pid_nr(pid);
335 
336 	if (task_session(curr) != pid) {
337 		change_pid(curr, PIDTYPE_SID, pid);
338 		set_task_session(curr, nr);
339 	}
340 	if (task_pgrp(curr) != pid) {
341 		change_pid(curr, PIDTYPE_PGID, pid);
342 		set_task_pgrp(curr, nr);
343 	}
344 }
345 
346 static void set_special_pids(struct pid *pid)
347 {
348 	write_lock_irq(&tasklist_lock);
349 	__set_special_pids(pid);
350 	write_unlock_irq(&tasklist_lock);
351 }
352 
353 /*
354  * Let kernel threads use this to say that they
355  * allow a certain signal (since daemonize() will
356  * have disabled all of them by default).
357  */
358 int allow_signal(int sig)
359 {
360 	if (!valid_signal(sig) || sig < 1)
361 		return -EINVAL;
362 
363 	spin_lock_irq(&current->sighand->siglock);
364 	sigdelset(&current->blocked, sig);
365 	if (!current->mm) {
366 		/* Kernel threads handle their own signals.
367 		   Let the signal code know it'll be handled, so
368 		   that they don't get converted to SIGKILL or
369 		   just silently dropped */
370 		current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
371 	}
372 	recalc_sigpending();
373 	spin_unlock_irq(&current->sighand->siglock);
374 	return 0;
375 }
376 
377 EXPORT_SYMBOL(allow_signal);
378 
379 int disallow_signal(int sig)
380 {
381 	if (!valid_signal(sig) || sig < 1)
382 		return -EINVAL;
383 
384 	spin_lock_irq(&current->sighand->siglock);
385 	current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
386 	recalc_sigpending();
387 	spin_unlock_irq(&current->sighand->siglock);
388 	return 0;
389 }
390 
391 EXPORT_SYMBOL(disallow_signal);
392 
393 /*
394  *	Put all the gunge required to become a kernel thread without
395  *	attached user resources in one place where it belongs.
396  */
397 
398 void daemonize(const char *name, ...)
399 {
400 	va_list args;
401 	struct fs_struct *fs;
402 	sigset_t blocked;
403 
404 	va_start(args, name);
405 	vsnprintf(current->comm, sizeof(current->comm), name, args);
406 	va_end(args);
407 
408 	/*
409 	 * If we were started as result of loading a module, close all of the
410 	 * user space pages.  We don't need them, and if we didn't close them
411 	 * they would be locked into memory.
412 	 */
413 	exit_mm(current);
414 	/*
415 	 * We don't want to have TIF_FREEZE set if the system-wide hibernation
416 	 * or suspend transition begins right now.
417 	 */
418 	current->flags |= PF_NOFREEZE;
419 
420 	if (current->nsproxy != &init_nsproxy) {
421 		get_nsproxy(&init_nsproxy);
422 		switch_task_namespaces(current, &init_nsproxy);
423 	}
424 	set_special_pids(&init_struct_pid);
425 	proc_clear_tty(current);
426 
427 	/* Block and flush all signals */
428 	sigfillset(&blocked);
429 	sigprocmask(SIG_BLOCK, &blocked, NULL);
430 	flush_signals(current);
431 
432 	/* Become as one with the init task */
433 
434 	exit_fs(current);	/* current->fs->count--; */
435 	fs = init_task.fs;
436 	current->fs = fs;
437 	atomic_inc(&fs->count);
438 
439 	exit_files(current);
440 	current->files = init_task.files;
441 	atomic_inc(&current->files->count);
442 
443 	reparent_to_kthreadd();
444 }
445 
446 EXPORT_SYMBOL(daemonize);
447 
448 static void close_files(struct files_struct * files)
449 {
450 	int i, j;
451 	struct fdtable *fdt;
452 
453 	j = 0;
454 
455 	/*
456 	 * It is safe to dereference the fd table without RCU or
457 	 * ->file_lock because this is the last reference to the
458 	 * files structure.
459 	 */
460 	fdt = files_fdtable(files);
461 	for (;;) {
462 		unsigned long set;
463 		i = j * __NFDBITS;
464 		if (i >= fdt->max_fds)
465 			break;
466 		set = fdt->open_fds->fds_bits[j++];
467 		while (set) {
468 			if (set & 1) {
469 				struct file * file = xchg(&fdt->fd[i], NULL);
470 				if (file) {
471 					filp_close(file, files);
472 					cond_resched();
473 				}
474 			}
475 			i++;
476 			set >>= 1;
477 		}
478 	}
479 }
480 
481 struct files_struct *get_files_struct(struct task_struct *task)
482 {
483 	struct files_struct *files;
484 
485 	task_lock(task);
486 	files = task->files;
487 	if (files)
488 		atomic_inc(&files->count);
489 	task_unlock(task);
490 
491 	return files;
492 }
493 
494 void put_files_struct(struct files_struct *files)
495 {
496 	struct fdtable *fdt;
497 
498 	if (atomic_dec_and_test(&files->count)) {
499 		close_files(files);
500 		/*
501 		 * Free the fd and fdset arrays if we expanded them.
502 		 * If the fdtable was embedded, pass files for freeing
503 		 * at the end of the RCU grace period. Otherwise,
504 		 * you can free files immediately.
505 		 */
506 		fdt = files_fdtable(files);
507 		if (fdt != &files->fdtab)
508 			kmem_cache_free(files_cachep, files);
509 		free_fdtable(fdt);
510 	}
511 }
512 
513 void reset_files_struct(struct files_struct *files)
514 {
515 	struct task_struct *tsk = current;
516 	struct files_struct *old;
517 
518 	old = tsk->files;
519 	task_lock(tsk);
520 	tsk->files = files;
521 	task_unlock(tsk);
522 	put_files_struct(old);
523 }
524 
525 void exit_files(struct task_struct *tsk)
526 {
527 	struct files_struct * files = tsk->files;
528 
529 	if (files) {
530 		task_lock(tsk);
531 		tsk->files = NULL;
532 		task_unlock(tsk);
533 		put_files_struct(files);
534 	}
535 }
536 
537 void put_fs_struct(struct fs_struct *fs)
538 {
539 	/* No need to hold fs->lock if we are killing it */
540 	if (atomic_dec_and_test(&fs->count)) {
541 		path_put(&fs->root);
542 		path_put(&fs->pwd);
543 		if (fs->altroot.dentry)
544 			path_put(&fs->altroot);
545 		kmem_cache_free(fs_cachep, fs);
546 	}
547 }
548 
549 void exit_fs(struct task_struct *tsk)
550 {
551 	struct fs_struct * fs = tsk->fs;
552 
553 	if (fs) {
554 		task_lock(tsk);
555 		tsk->fs = NULL;
556 		task_unlock(tsk);
557 		put_fs_struct(fs);
558 	}
559 }
560 
561 EXPORT_SYMBOL_GPL(exit_fs);
562 
563 #ifdef CONFIG_MM_OWNER
564 /*
565  * Task p is exiting and it owned mm, lets find a new owner for it
566  */
567 static inline int
568 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
569 {
570 	/*
571 	 * If there are other users of the mm and the owner (us) is exiting
572 	 * we need to find a new owner to take on the responsibility.
573 	 */
574 	if (!mm)
575 		return 0;
576 	if (atomic_read(&mm->mm_users) <= 1)
577 		return 0;
578 	if (mm->owner != p)
579 		return 0;
580 	return 1;
581 }
582 
583 void mm_update_next_owner(struct mm_struct *mm)
584 {
585 	struct task_struct *c, *g, *p = current;
586 
587 retry:
588 	if (!mm_need_new_owner(mm, p))
589 		return;
590 
591 	read_lock(&tasklist_lock);
592 	/*
593 	 * Search in the children
594 	 */
595 	list_for_each_entry(c, &p->children, sibling) {
596 		if (c->mm == mm)
597 			goto assign_new_owner;
598 	}
599 
600 	/*
601 	 * Search in the siblings
602 	 */
603 	list_for_each_entry(c, &p->parent->children, sibling) {
604 		if (c->mm == mm)
605 			goto assign_new_owner;
606 	}
607 
608 	/*
609 	 * Search through everything else. We should not get
610 	 * here often
611 	 */
612 	do_each_thread(g, c) {
613 		if (c->mm == mm)
614 			goto assign_new_owner;
615 	} while_each_thread(g, c);
616 
617 	read_unlock(&tasklist_lock);
618 	return;
619 
620 assign_new_owner:
621 	BUG_ON(c == p);
622 	get_task_struct(c);
623 	/*
624 	 * The task_lock protects c->mm from changing.
625 	 * We always want mm->owner->mm == mm
626 	 */
627 	task_lock(c);
628 	/*
629 	 * Delay read_unlock() till we have the task_lock()
630 	 * to ensure that c does not slip away underneath us
631 	 */
632 	read_unlock(&tasklist_lock);
633 	if (c->mm != mm) {
634 		task_unlock(c);
635 		put_task_struct(c);
636 		goto retry;
637 	}
638 	cgroup_mm_owner_callbacks(mm->owner, c);
639 	mm->owner = c;
640 	task_unlock(c);
641 	put_task_struct(c);
642 }
643 #endif /* CONFIG_MM_OWNER */
644 
645 /*
646  * Turn us into a lazy TLB process if we
647  * aren't already..
648  */
649 static void exit_mm(struct task_struct * tsk)
650 {
651 	struct mm_struct *mm = tsk->mm;
652 
653 	mm_release(tsk, mm);
654 	if (!mm)
655 		return;
656 	/*
657 	 * Serialize with any possible pending coredump.
658 	 * We must hold mmap_sem around checking core_waiters
659 	 * and clearing tsk->mm.  The core-inducing thread
660 	 * will increment core_waiters for each thread in the
661 	 * group with ->mm != NULL.
662 	 */
663 	down_read(&mm->mmap_sem);
664 	if (mm->core_waiters) {
665 		up_read(&mm->mmap_sem);
666 		down_write(&mm->mmap_sem);
667 		if (!--mm->core_waiters)
668 			complete(mm->core_startup_done);
669 		up_write(&mm->mmap_sem);
670 
671 		wait_for_completion(&mm->core_done);
672 		down_read(&mm->mmap_sem);
673 	}
674 	atomic_inc(&mm->mm_count);
675 	BUG_ON(mm != tsk->active_mm);
676 	/* more a memory barrier than a real lock */
677 	task_lock(tsk);
678 	tsk->mm = NULL;
679 	up_read(&mm->mmap_sem);
680 	enter_lazy_tlb(mm, current);
681 	/* We don't want this task to be frozen prematurely */
682 	clear_freeze_flag(tsk);
683 	task_unlock(tsk);
684 	mm_update_next_owner(mm);
685 	mmput(mm);
686 }
687 
688 static void
689 reparent_thread(struct task_struct *p, struct task_struct *father, int traced)
690 {
691 	if (p->pdeath_signal)
692 		/* We already hold the tasklist_lock here.  */
693 		group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
694 
695 	/* Move the child from its dying parent to the new one.  */
696 	if (unlikely(traced)) {
697 		/* Preserve ptrace links if someone else is tracing this child.  */
698 		list_del_init(&p->ptrace_list);
699 		if (ptrace_reparented(p))
700 			list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
701 	} else {
702 		/* If this child is being traced, then we're the one tracing it
703 		 * anyway, so let go of it.
704 		 */
705 		p->ptrace = 0;
706 		remove_parent(p);
707 		p->parent = p->real_parent;
708 		add_parent(p);
709 
710 		if (task_is_traced(p)) {
711 			/*
712 			 * If it was at a trace stop, turn it into
713 			 * a normal stop since it's no longer being
714 			 * traced.
715 			 */
716 			ptrace_untrace(p);
717 		}
718 	}
719 
720 	/* If this is a threaded reparent there is no need to
721 	 * notify anyone anything has happened.
722 	 */
723 	if (same_thread_group(p->real_parent, father))
724 		return;
725 
726 	/* We don't want people slaying init.  */
727 	if (!task_detached(p))
728 		p->exit_signal = SIGCHLD;
729 
730 	/* If we'd notified the old parent about this child's death,
731 	 * also notify the new parent.
732 	 */
733 	if (!traced && p->exit_state == EXIT_ZOMBIE &&
734 	    !task_detached(p) && thread_group_empty(p))
735 		do_notify_parent(p, p->exit_signal);
736 
737 	kill_orphaned_pgrp(p, father);
738 }
739 
740 /*
741  * When we die, we re-parent all our children.
742  * Try to give them to another thread in our thread
743  * group, and if no such member exists, give it to
744  * the child reaper process (ie "init") in our pid
745  * space.
746  */
747 static void forget_original_parent(struct task_struct *father)
748 {
749 	struct task_struct *p, *n, *reaper = father;
750 	struct list_head ptrace_dead;
751 
752 	INIT_LIST_HEAD(&ptrace_dead);
753 
754 	write_lock_irq(&tasklist_lock);
755 
756 	do {
757 		reaper = next_thread(reaper);
758 		if (reaper == father) {
759 			reaper = task_child_reaper(father);
760 			break;
761 		}
762 	} while (reaper->flags & PF_EXITING);
763 
764 	/*
765 	 * There are only two places where our children can be:
766 	 *
767 	 * - in our child list
768 	 * - in our ptraced child list
769 	 *
770 	 * Search them and reparent children.
771 	 */
772 	list_for_each_entry_safe(p, n, &father->children, sibling) {
773 		int ptrace;
774 
775 		ptrace = p->ptrace;
776 
777 		/* if father isn't the real parent, then ptrace must be enabled */
778 		BUG_ON(father != p->real_parent && !ptrace);
779 
780 		if (father == p->real_parent) {
781 			/* reparent with a reaper, real father it's us */
782 			p->real_parent = reaper;
783 			reparent_thread(p, father, 0);
784 		} else {
785 			/* reparent ptraced task to its real parent */
786 			__ptrace_unlink (p);
787 			if (p->exit_state == EXIT_ZOMBIE && !task_detached(p) &&
788 			    thread_group_empty(p))
789 				do_notify_parent(p, p->exit_signal);
790 		}
791 
792 		/*
793 		 * if the ptraced child is a detached zombie we must collect
794 		 * it before we exit, or it will remain zombie forever since
795 		 * we prevented it from self-reap itself while it was being
796 		 * traced by us, to be able to see it in wait4.
797 		 */
798 		if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && task_detached(p)))
799 			list_add(&p->ptrace_list, &ptrace_dead);
800 	}
801 
802 	list_for_each_entry_safe(p, n, &father->ptrace_children, ptrace_list) {
803 		p->real_parent = reaper;
804 		reparent_thread(p, father, 1);
805 	}
806 
807 	write_unlock_irq(&tasklist_lock);
808 	BUG_ON(!list_empty(&father->children));
809 	BUG_ON(!list_empty(&father->ptrace_children));
810 
811 	list_for_each_entry_safe(p, n, &ptrace_dead, ptrace_list) {
812 		list_del_init(&p->ptrace_list);
813 		release_task(p);
814 	}
815 
816 }
817 
818 /*
819  * Send signals to all our closest relatives so that they know
820  * to properly mourn us..
821  */
822 static void exit_notify(struct task_struct *tsk, int group_dead)
823 {
824 	int state;
825 
826 	/*
827 	 * This does two things:
828 	 *
829   	 * A.  Make init inherit all the child processes
830 	 * B.  Check to see if any process groups have become orphaned
831 	 *	as a result of our exiting, and if they have any stopped
832 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
833 	 */
834 	forget_original_parent(tsk);
835 	exit_task_namespaces(tsk);
836 
837 	write_lock_irq(&tasklist_lock);
838 	if (group_dead)
839 		kill_orphaned_pgrp(tsk->group_leader, NULL);
840 
841 	/* Let father know we died
842 	 *
843 	 * Thread signals are configurable, but you aren't going to use
844 	 * that to send signals to arbitary processes.
845 	 * That stops right now.
846 	 *
847 	 * If the parent exec id doesn't match the exec id we saved
848 	 * when we started then we know the parent has changed security
849 	 * domain.
850 	 *
851 	 * If our self_exec id doesn't match our parent_exec_id then
852 	 * we have changed execution domain as these two values started
853 	 * the same after a fork.
854 	 */
855 	if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
856 	    (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
857 	     tsk->self_exec_id != tsk->parent_exec_id) &&
858 	    !capable(CAP_KILL))
859 		tsk->exit_signal = SIGCHLD;
860 
861 	/* If something other than our normal parent is ptracing us, then
862 	 * send it a SIGCHLD instead of honoring exit_signal.  exit_signal
863 	 * only has special meaning to our real parent.
864 	 */
865 	if (!task_detached(tsk) && thread_group_empty(tsk)) {
866 		int signal = ptrace_reparented(tsk) ?
867 				SIGCHLD : tsk->exit_signal;
868 		do_notify_parent(tsk, signal);
869 	} else if (tsk->ptrace) {
870 		do_notify_parent(tsk, SIGCHLD);
871 	}
872 
873 	state = EXIT_ZOMBIE;
874 	if (task_detached(tsk) && likely(!tsk->ptrace))
875 		state = EXIT_DEAD;
876 	tsk->exit_state = state;
877 
878 	/* mt-exec, de_thread() is waiting for us */
879 	if (thread_group_leader(tsk) &&
880 	    tsk->signal->notify_count < 0 &&
881 	    tsk->signal->group_exit_task)
882 		wake_up_process(tsk->signal->group_exit_task);
883 
884 	write_unlock_irq(&tasklist_lock);
885 
886 	/* If the process is dead, release it - nobody will wait for it */
887 	if (state == EXIT_DEAD)
888 		release_task(tsk);
889 }
890 
891 #ifdef CONFIG_DEBUG_STACK_USAGE
892 static void check_stack_usage(void)
893 {
894 	static DEFINE_SPINLOCK(low_water_lock);
895 	static int lowest_to_date = THREAD_SIZE;
896 	unsigned long *n = end_of_stack(current);
897 	unsigned long free;
898 
899 	while (*n == 0)
900 		n++;
901 	free = (unsigned long)n - (unsigned long)end_of_stack(current);
902 
903 	if (free >= lowest_to_date)
904 		return;
905 
906 	spin_lock(&low_water_lock);
907 	if (free < lowest_to_date) {
908 		printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
909 				"left\n",
910 				current->comm, free);
911 		lowest_to_date = free;
912 	}
913 	spin_unlock(&low_water_lock);
914 }
915 #else
916 static inline void check_stack_usage(void) {}
917 #endif
918 
919 static inline void exit_child_reaper(struct task_struct *tsk)
920 {
921 	if (likely(tsk->group_leader != task_child_reaper(tsk)))
922 		return;
923 
924 	if (tsk->nsproxy->pid_ns == &init_pid_ns)
925 		panic("Attempted to kill init!");
926 
927 	/*
928 	 * @tsk is the last thread in the 'cgroup-init' and is exiting.
929 	 * Terminate all remaining processes in the namespace and reap them
930 	 * before exiting @tsk.
931 	 *
932 	 * Note that @tsk (last thread of cgroup-init) may not necessarily
933 	 * be the child-reaper (i.e main thread of cgroup-init) of the
934 	 * namespace i.e the child_reaper may have already exited.
935 	 *
936 	 * Even after a child_reaper exits, we let it inherit orphaned children,
937 	 * because, pid_ns->child_reaper remains valid as long as there is
938 	 * at least one living sub-thread in the cgroup init.
939 
940 	 * This living sub-thread of the cgroup-init will be notified when
941 	 * a child inherited by the 'child-reaper' exits (do_notify_parent()
942 	 * uses __group_send_sig_info()). Further, when reaping child processes,
943 	 * do_wait() iterates over children of all living sub threads.
944 
945 	 * i.e even though 'child_reaper' thread is listed as the parent of the
946 	 * orphaned children, any living sub-thread in the cgroup-init can
947 	 * perform the role of the child_reaper.
948 	 */
949 	zap_pid_ns_processes(tsk->nsproxy->pid_ns);
950 }
951 
952 NORET_TYPE void do_exit(long code)
953 {
954 	struct task_struct *tsk = current;
955 	int group_dead;
956 
957 	profile_task_exit(tsk);
958 
959 	WARN_ON(atomic_read(&tsk->fs_excl));
960 
961 	if (unlikely(in_interrupt()))
962 		panic("Aiee, killing interrupt handler!");
963 	if (unlikely(!tsk->pid))
964 		panic("Attempted to kill the idle task!");
965 
966 	if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
967 		current->ptrace_message = code;
968 		ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
969 	}
970 
971 	/*
972 	 * We're taking recursive faults here in do_exit. Safest is to just
973 	 * leave this task alone and wait for reboot.
974 	 */
975 	if (unlikely(tsk->flags & PF_EXITING)) {
976 		printk(KERN_ALERT
977 			"Fixing recursive fault but reboot is needed!\n");
978 		/*
979 		 * We can do this unlocked here. The futex code uses
980 		 * this flag just to verify whether the pi state
981 		 * cleanup has been done or not. In the worst case it
982 		 * loops once more. We pretend that the cleanup was
983 		 * done as there is no way to return. Either the
984 		 * OWNER_DIED bit is set by now or we push the blocked
985 		 * task into the wait for ever nirwana as well.
986 		 */
987 		tsk->flags |= PF_EXITPIDONE;
988 		if (tsk->io_context)
989 			exit_io_context();
990 		set_current_state(TASK_UNINTERRUPTIBLE);
991 		schedule();
992 	}
993 
994 	exit_signals(tsk);  /* sets PF_EXITING */
995 	/*
996 	 * tsk->flags are checked in the futex code to protect against
997 	 * an exiting task cleaning up the robust pi futexes.
998 	 */
999 	smp_mb();
1000 	spin_unlock_wait(&tsk->pi_lock);
1001 
1002 	if (unlikely(in_atomic()))
1003 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
1004 				current->comm, task_pid_nr(current),
1005 				preempt_count());
1006 
1007 	acct_update_integrals(tsk);
1008 	if (tsk->mm) {
1009 		update_hiwater_rss(tsk->mm);
1010 		update_hiwater_vm(tsk->mm);
1011 	}
1012 	group_dead = atomic_dec_and_test(&tsk->signal->live);
1013 	if (group_dead) {
1014 		exit_child_reaper(tsk);
1015 		hrtimer_cancel(&tsk->signal->real_timer);
1016 		exit_itimers(tsk->signal);
1017 	}
1018 	acct_collect(code, group_dead);
1019 #ifdef CONFIG_FUTEX
1020 	if (unlikely(tsk->robust_list))
1021 		exit_robust_list(tsk);
1022 #ifdef CONFIG_COMPAT
1023 	if (unlikely(tsk->compat_robust_list))
1024 		compat_exit_robust_list(tsk);
1025 #endif
1026 #endif
1027 	if (group_dead)
1028 		tty_audit_exit();
1029 	if (unlikely(tsk->audit_context))
1030 		audit_free(tsk);
1031 
1032 	tsk->exit_code = code;
1033 	taskstats_exit(tsk, group_dead);
1034 
1035 	exit_mm(tsk);
1036 
1037 	if (group_dead)
1038 		acct_process();
1039 	exit_sem(tsk);
1040 	exit_files(tsk);
1041 	exit_fs(tsk);
1042 	check_stack_usage();
1043 	exit_thread();
1044 	cgroup_exit(tsk, 1);
1045 	exit_keys(tsk);
1046 
1047 	if (group_dead && tsk->signal->leader)
1048 		disassociate_ctty(1);
1049 
1050 	module_put(task_thread_info(tsk)->exec_domain->module);
1051 	if (tsk->binfmt)
1052 		module_put(tsk->binfmt->module);
1053 
1054 	proc_exit_connector(tsk);
1055 	exit_notify(tsk, group_dead);
1056 #ifdef CONFIG_NUMA
1057 	mpol_put(tsk->mempolicy);
1058 	tsk->mempolicy = NULL;
1059 #endif
1060 #ifdef CONFIG_FUTEX
1061 	/*
1062 	 * This must happen late, after the PID is not
1063 	 * hashed anymore:
1064 	 */
1065 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1066 		exit_pi_state_list(tsk);
1067 	if (unlikely(current->pi_state_cache))
1068 		kfree(current->pi_state_cache);
1069 #endif
1070 	/*
1071 	 * Make sure we are holding no locks:
1072 	 */
1073 	debug_check_no_locks_held(tsk);
1074 	/*
1075 	 * We can do this unlocked here. The futex code uses this flag
1076 	 * just to verify whether the pi state cleanup has been done
1077 	 * or not. In the worst case it loops once more.
1078 	 */
1079 	tsk->flags |= PF_EXITPIDONE;
1080 
1081 	if (tsk->io_context)
1082 		exit_io_context();
1083 
1084 	if (tsk->splice_pipe)
1085 		__free_pipe_info(tsk->splice_pipe);
1086 
1087 	preempt_disable();
1088 	/* causes final put_task_struct in finish_task_switch(). */
1089 	tsk->state = TASK_DEAD;
1090 
1091 	schedule();
1092 	BUG();
1093 	/* Avoid "noreturn function does return".  */
1094 	for (;;)
1095 		cpu_relax();	/* For when BUG is null */
1096 }
1097 
1098 EXPORT_SYMBOL_GPL(do_exit);
1099 
1100 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1101 {
1102 	if (comp)
1103 		complete(comp);
1104 
1105 	do_exit(code);
1106 }
1107 
1108 EXPORT_SYMBOL(complete_and_exit);
1109 
1110 asmlinkage long sys_exit(int error_code)
1111 {
1112 	do_exit((error_code&0xff)<<8);
1113 }
1114 
1115 /*
1116  * Take down every thread in the group.  This is called by fatal signals
1117  * as well as by sys_exit_group (below).
1118  */
1119 NORET_TYPE void
1120 do_group_exit(int exit_code)
1121 {
1122 	struct signal_struct *sig = current->signal;
1123 
1124 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1125 
1126 	if (signal_group_exit(sig))
1127 		exit_code = sig->group_exit_code;
1128 	else if (!thread_group_empty(current)) {
1129 		struct sighand_struct *const sighand = current->sighand;
1130 		spin_lock_irq(&sighand->siglock);
1131 		if (signal_group_exit(sig))
1132 			/* Another thread got here before we took the lock.  */
1133 			exit_code = sig->group_exit_code;
1134 		else {
1135 			sig->group_exit_code = exit_code;
1136 			sig->flags = SIGNAL_GROUP_EXIT;
1137 			zap_other_threads(current);
1138 		}
1139 		spin_unlock_irq(&sighand->siglock);
1140 	}
1141 
1142 	do_exit(exit_code);
1143 	/* NOTREACHED */
1144 }
1145 
1146 /*
1147  * this kills every thread in the thread group. Note that any externally
1148  * wait4()-ing process will get the correct exit code - even if this
1149  * thread is not the thread group leader.
1150  */
1151 asmlinkage void sys_exit_group(int error_code)
1152 {
1153 	do_group_exit((error_code & 0xff) << 8);
1154 }
1155 
1156 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1157 {
1158 	struct pid *pid = NULL;
1159 	if (type == PIDTYPE_PID)
1160 		pid = task->pids[type].pid;
1161 	else if (type < PIDTYPE_MAX)
1162 		pid = task->group_leader->pids[type].pid;
1163 	return pid;
1164 }
1165 
1166 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1167 			  struct task_struct *p)
1168 {
1169 	int err;
1170 
1171 	if (type < PIDTYPE_MAX) {
1172 		if (task_pid_type(p, type) != pid)
1173 			return 0;
1174 	}
1175 
1176 	/*
1177 	 * Do not consider detached threads that are
1178 	 * not ptraced:
1179 	 */
1180 	if (task_detached(p) && !p->ptrace)
1181 		return 0;
1182 
1183 	/* Wait for all children (clone and not) if __WALL is set;
1184 	 * otherwise, wait for clone children *only* if __WCLONE is
1185 	 * set; otherwise, wait for non-clone children *only*.  (Note:
1186 	 * A "clone" child here is one that reports to its parent
1187 	 * using a signal other than SIGCHLD.) */
1188 	if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1189 	    && !(options & __WALL))
1190 		return 0;
1191 
1192 	err = security_task_wait(p);
1193 	if (likely(!err))
1194 		return 1;
1195 
1196 	if (type != PIDTYPE_PID)
1197 		return 0;
1198 	/* This child was explicitly requested, abort */
1199 	read_unlock(&tasklist_lock);
1200 	return err;
1201 }
1202 
1203 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1204 			       int why, int status,
1205 			       struct siginfo __user *infop,
1206 			       struct rusage __user *rusagep)
1207 {
1208 	int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1209 
1210 	put_task_struct(p);
1211 	if (!retval)
1212 		retval = put_user(SIGCHLD, &infop->si_signo);
1213 	if (!retval)
1214 		retval = put_user(0, &infop->si_errno);
1215 	if (!retval)
1216 		retval = put_user((short)why, &infop->si_code);
1217 	if (!retval)
1218 		retval = put_user(pid, &infop->si_pid);
1219 	if (!retval)
1220 		retval = put_user(uid, &infop->si_uid);
1221 	if (!retval)
1222 		retval = put_user(status, &infop->si_status);
1223 	if (!retval)
1224 		retval = pid;
1225 	return retval;
1226 }
1227 
1228 /*
1229  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1230  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1231  * the lock and this task is uninteresting.  If we return nonzero, we have
1232  * released the lock and the system call should return.
1233  */
1234 static int wait_task_zombie(struct task_struct *p, int noreap,
1235 			    struct siginfo __user *infop,
1236 			    int __user *stat_addr, struct rusage __user *ru)
1237 {
1238 	unsigned long state;
1239 	int retval, status, traced;
1240 	pid_t pid = task_pid_vnr(p);
1241 
1242 	if (unlikely(noreap)) {
1243 		uid_t uid = p->uid;
1244 		int exit_code = p->exit_code;
1245 		int why, status;
1246 
1247 		get_task_struct(p);
1248 		read_unlock(&tasklist_lock);
1249 		if ((exit_code & 0x7f) == 0) {
1250 			why = CLD_EXITED;
1251 			status = exit_code >> 8;
1252 		} else {
1253 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1254 			status = exit_code & 0x7f;
1255 		}
1256 		return wait_noreap_copyout(p, pid, uid, why,
1257 					   status, infop, ru);
1258 	}
1259 
1260 	/*
1261 	 * Try to move the task's state to DEAD
1262 	 * only one thread is allowed to do this:
1263 	 */
1264 	state = xchg(&p->exit_state, EXIT_DEAD);
1265 	if (state != EXIT_ZOMBIE) {
1266 		BUG_ON(state != EXIT_DEAD);
1267 		return 0;
1268 	}
1269 
1270 	traced = ptrace_reparented(p);
1271 
1272 	if (likely(!traced)) {
1273 		struct signal_struct *psig;
1274 		struct signal_struct *sig;
1275 
1276 		/*
1277 		 * The resource counters for the group leader are in its
1278 		 * own task_struct.  Those for dead threads in the group
1279 		 * are in its signal_struct, as are those for the child
1280 		 * processes it has previously reaped.  All these
1281 		 * accumulate in the parent's signal_struct c* fields.
1282 		 *
1283 		 * We don't bother to take a lock here to protect these
1284 		 * p->signal fields, because they are only touched by
1285 		 * __exit_signal, which runs with tasklist_lock
1286 		 * write-locked anyway, and so is excluded here.  We do
1287 		 * need to protect the access to p->parent->signal fields,
1288 		 * as other threads in the parent group can be right
1289 		 * here reaping other children at the same time.
1290 		 */
1291 		spin_lock_irq(&p->parent->sighand->siglock);
1292 		psig = p->parent->signal;
1293 		sig = p->signal;
1294 		psig->cutime =
1295 			cputime_add(psig->cutime,
1296 			cputime_add(p->utime,
1297 			cputime_add(sig->utime,
1298 				    sig->cutime)));
1299 		psig->cstime =
1300 			cputime_add(psig->cstime,
1301 			cputime_add(p->stime,
1302 			cputime_add(sig->stime,
1303 				    sig->cstime)));
1304 		psig->cgtime =
1305 			cputime_add(psig->cgtime,
1306 			cputime_add(p->gtime,
1307 			cputime_add(sig->gtime,
1308 				    sig->cgtime)));
1309 		psig->cmin_flt +=
1310 			p->min_flt + sig->min_flt + sig->cmin_flt;
1311 		psig->cmaj_flt +=
1312 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1313 		psig->cnvcsw +=
1314 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1315 		psig->cnivcsw +=
1316 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1317 		psig->cinblock +=
1318 			task_io_get_inblock(p) +
1319 			sig->inblock + sig->cinblock;
1320 		psig->coublock +=
1321 			task_io_get_oublock(p) +
1322 			sig->oublock + sig->coublock;
1323 		spin_unlock_irq(&p->parent->sighand->siglock);
1324 	}
1325 
1326 	/*
1327 	 * Now we are sure this task is interesting, and no other
1328 	 * thread can reap it because we set its state to EXIT_DEAD.
1329 	 */
1330 	read_unlock(&tasklist_lock);
1331 
1332 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1333 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1334 		? p->signal->group_exit_code : p->exit_code;
1335 	if (!retval && stat_addr)
1336 		retval = put_user(status, stat_addr);
1337 	if (!retval && infop)
1338 		retval = put_user(SIGCHLD, &infop->si_signo);
1339 	if (!retval && infop)
1340 		retval = put_user(0, &infop->si_errno);
1341 	if (!retval && infop) {
1342 		int why;
1343 
1344 		if ((status & 0x7f) == 0) {
1345 			why = CLD_EXITED;
1346 			status >>= 8;
1347 		} else {
1348 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1349 			status &= 0x7f;
1350 		}
1351 		retval = put_user((short)why, &infop->si_code);
1352 		if (!retval)
1353 			retval = put_user(status, &infop->si_status);
1354 	}
1355 	if (!retval && infop)
1356 		retval = put_user(pid, &infop->si_pid);
1357 	if (!retval && infop)
1358 		retval = put_user(p->uid, &infop->si_uid);
1359 	if (!retval)
1360 		retval = pid;
1361 
1362 	if (traced) {
1363 		write_lock_irq(&tasklist_lock);
1364 		/* We dropped tasklist, ptracer could die and untrace */
1365 		ptrace_unlink(p);
1366 		/*
1367 		 * If this is not a detached task, notify the parent.
1368 		 * If it's still not detached after that, don't release
1369 		 * it now.
1370 		 */
1371 		if (!task_detached(p)) {
1372 			do_notify_parent(p, p->exit_signal);
1373 			if (!task_detached(p)) {
1374 				p->exit_state = EXIT_ZOMBIE;
1375 				p = NULL;
1376 			}
1377 		}
1378 		write_unlock_irq(&tasklist_lock);
1379 	}
1380 	if (p != NULL)
1381 		release_task(p);
1382 
1383 	return retval;
1384 }
1385 
1386 /*
1387  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1388  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1389  * the lock and this task is uninteresting.  If we return nonzero, we have
1390  * released the lock and the system call should return.
1391  */
1392 static int wait_task_stopped(struct task_struct *p,
1393 			     int noreap, struct siginfo __user *infop,
1394 			     int __user *stat_addr, struct rusage __user *ru)
1395 {
1396 	int retval, exit_code, why;
1397 	uid_t uid = 0; /* unneeded, required by compiler */
1398 	pid_t pid;
1399 
1400 	exit_code = 0;
1401 	spin_lock_irq(&p->sighand->siglock);
1402 
1403 	if (unlikely(!task_is_stopped_or_traced(p)))
1404 		goto unlock_sig;
1405 
1406 	if (!(p->ptrace & PT_PTRACED) && p->signal->group_stop_count > 0)
1407 		/*
1408 		 * A group stop is in progress and this is the group leader.
1409 		 * We won't report until all threads have stopped.
1410 		 */
1411 		goto unlock_sig;
1412 
1413 	exit_code = p->exit_code;
1414 	if (!exit_code)
1415 		goto unlock_sig;
1416 
1417 	if (!noreap)
1418 		p->exit_code = 0;
1419 
1420 	uid = p->uid;
1421 unlock_sig:
1422 	spin_unlock_irq(&p->sighand->siglock);
1423 	if (!exit_code)
1424 		return 0;
1425 
1426 	/*
1427 	 * Now we are pretty sure this task is interesting.
1428 	 * Make sure it doesn't get reaped out from under us while we
1429 	 * give up the lock and then examine it below.  We don't want to
1430 	 * keep holding onto the tasklist_lock while we call getrusage and
1431 	 * possibly take page faults for user memory.
1432 	 */
1433 	get_task_struct(p);
1434 	pid = task_pid_vnr(p);
1435 	why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1436 	read_unlock(&tasklist_lock);
1437 
1438 	if (unlikely(noreap))
1439 		return wait_noreap_copyout(p, pid, uid,
1440 					   why, exit_code,
1441 					   infop, ru);
1442 
1443 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1444 	if (!retval && stat_addr)
1445 		retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1446 	if (!retval && infop)
1447 		retval = put_user(SIGCHLD, &infop->si_signo);
1448 	if (!retval && infop)
1449 		retval = put_user(0, &infop->si_errno);
1450 	if (!retval && infop)
1451 		retval = put_user((short)why, &infop->si_code);
1452 	if (!retval && infop)
1453 		retval = put_user(exit_code, &infop->si_status);
1454 	if (!retval && infop)
1455 		retval = put_user(pid, &infop->si_pid);
1456 	if (!retval && infop)
1457 		retval = put_user(uid, &infop->si_uid);
1458 	if (!retval)
1459 		retval = pid;
1460 	put_task_struct(p);
1461 
1462 	BUG_ON(!retval);
1463 	return retval;
1464 }
1465 
1466 /*
1467  * Handle do_wait work for one task in a live, non-stopped state.
1468  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1469  * the lock and this task is uninteresting.  If we return nonzero, we have
1470  * released the lock and the system call should return.
1471  */
1472 static int wait_task_continued(struct task_struct *p, int noreap,
1473 			       struct siginfo __user *infop,
1474 			       int __user *stat_addr, struct rusage __user *ru)
1475 {
1476 	int retval;
1477 	pid_t pid;
1478 	uid_t uid;
1479 
1480 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1481 		return 0;
1482 
1483 	spin_lock_irq(&p->sighand->siglock);
1484 	/* Re-check with the lock held.  */
1485 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1486 		spin_unlock_irq(&p->sighand->siglock);
1487 		return 0;
1488 	}
1489 	if (!noreap)
1490 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1491 	spin_unlock_irq(&p->sighand->siglock);
1492 
1493 	pid = task_pid_vnr(p);
1494 	uid = p->uid;
1495 	get_task_struct(p);
1496 	read_unlock(&tasklist_lock);
1497 
1498 	if (!infop) {
1499 		retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1500 		put_task_struct(p);
1501 		if (!retval && stat_addr)
1502 			retval = put_user(0xffff, stat_addr);
1503 		if (!retval)
1504 			retval = pid;
1505 	} else {
1506 		retval = wait_noreap_copyout(p, pid, uid,
1507 					     CLD_CONTINUED, SIGCONT,
1508 					     infop, ru);
1509 		BUG_ON(retval == 0);
1510 	}
1511 
1512 	return retval;
1513 }
1514 
1515 static long do_wait(enum pid_type type, struct pid *pid, int options,
1516 		    struct siginfo __user *infop, int __user *stat_addr,
1517 		    struct rusage __user *ru)
1518 {
1519 	DECLARE_WAITQUEUE(wait, current);
1520 	struct task_struct *tsk;
1521 	int flag, retval;
1522 
1523 	add_wait_queue(&current->signal->wait_chldexit,&wait);
1524 repeat:
1525 	/* If there is nothing that can match our critier just get out */
1526 	retval = -ECHILD;
1527 	if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1528 		goto end;
1529 
1530 	/*
1531 	 * We will set this flag if we see any child that might later
1532 	 * match our criteria, even if we are not able to reap it yet.
1533 	 */
1534 	flag = retval = 0;
1535 	current->state = TASK_INTERRUPTIBLE;
1536 	read_lock(&tasklist_lock);
1537 	tsk = current;
1538 	do {
1539 		struct task_struct *p;
1540 
1541 		list_for_each_entry(p, &tsk->children, sibling) {
1542 			int ret = eligible_child(type, pid, options, p);
1543 			if (!ret)
1544 				continue;
1545 
1546 			if (unlikely(ret < 0)) {
1547 				retval = ret;
1548 			} else if (task_is_stopped_or_traced(p)) {
1549 				/*
1550 				 * It's stopped now, so it might later
1551 				 * continue, exit, or stop again.
1552 				 */
1553 				flag = 1;
1554 				if (!(p->ptrace & PT_PTRACED) &&
1555 				    !(options & WUNTRACED))
1556 					continue;
1557 
1558 				retval = wait_task_stopped(p,
1559 						(options & WNOWAIT), infop,
1560 						stat_addr, ru);
1561 			} else if (p->exit_state == EXIT_ZOMBIE &&
1562 					!delay_group_leader(p)) {
1563 				/*
1564 				 * We don't reap group leaders with subthreads.
1565 				 */
1566 				if (!likely(options & WEXITED))
1567 					continue;
1568 				retval = wait_task_zombie(p,
1569 						(options & WNOWAIT), infop,
1570 						stat_addr, ru);
1571 			} else if (p->exit_state != EXIT_DEAD) {
1572 				/*
1573 				 * It's running now, so it might later
1574 				 * exit, stop, or stop and then continue.
1575 				 */
1576 				flag = 1;
1577 				if (!unlikely(options & WCONTINUED))
1578 					continue;
1579 				retval = wait_task_continued(p,
1580 						(options & WNOWAIT), infop,
1581 						stat_addr, ru);
1582 			}
1583 			if (retval != 0) /* tasklist_lock released */
1584 				goto end;
1585 		}
1586 		if (!flag) {
1587 			list_for_each_entry(p, &tsk->ptrace_children,
1588 								ptrace_list) {
1589 				flag = eligible_child(type, pid, options, p);
1590 				if (!flag)
1591 					continue;
1592 				if (likely(flag > 0))
1593 					break;
1594 				retval = flag;
1595 				goto end;
1596 			}
1597 		}
1598 		if (options & __WNOTHREAD)
1599 			break;
1600 		tsk = next_thread(tsk);
1601 		BUG_ON(tsk->signal != current->signal);
1602 	} while (tsk != current);
1603 	read_unlock(&tasklist_lock);
1604 
1605 	if (flag) {
1606 		if (options & WNOHANG)
1607 			goto end;
1608 		retval = -ERESTARTSYS;
1609 		if (signal_pending(current))
1610 			goto end;
1611 		schedule();
1612 		goto repeat;
1613 	}
1614 	retval = -ECHILD;
1615 end:
1616 	current->state = TASK_RUNNING;
1617 	remove_wait_queue(&current->signal->wait_chldexit,&wait);
1618 	if (infop) {
1619 		if (retval > 0)
1620 			retval = 0;
1621 		else {
1622 			/*
1623 			 * For a WNOHANG return, clear out all the fields
1624 			 * we would set so the user can easily tell the
1625 			 * difference.
1626 			 */
1627 			if (!retval)
1628 				retval = put_user(0, &infop->si_signo);
1629 			if (!retval)
1630 				retval = put_user(0, &infop->si_errno);
1631 			if (!retval)
1632 				retval = put_user(0, &infop->si_code);
1633 			if (!retval)
1634 				retval = put_user(0, &infop->si_pid);
1635 			if (!retval)
1636 				retval = put_user(0, &infop->si_uid);
1637 			if (!retval)
1638 				retval = put_user(0, &infop->si_status);
1639 		}
1640 	}
1641 	return retval;
1642 }
1643 
1644 asmlinkage long sys_waitid(int which, pid_t upid,
1645 			   struct siginfo __user *infop, int options,
1646 			   struct rusage __user *ru)
1647 {
1648 	struct pid *pid = NULL;
1649 	enum pid_type type;
1650 	long ret;
1651 
1652 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1653 		return -EINVAL;
1654 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1655 		return -EINVAL;
1656 
1657 	switch (which) {
1658 	case P_ALL:
1659 		type = PIDTYPE_MAX;
1660 		break;
1661 	case P_PID:
1662 		type = PIDTYPE_PID;
1663 		if (upid <= 0)
1664 			return -EINVAL;
1665 		break;
1666 	case P_PGID:
1667 		type = PIDTYPE_PGID;
1668 		if (upid <= 0)
1669 			return -EINVAL;
1670 		break;
1671 	default:
1672 		return -EINVAL;
1673 	}
1674 
1675 	if (type < PIDTYPE_MAX)
1676 		pid = find_get_pid(upid);
1677 	ret = do_wait(type, pid, options, infop, NULL, ru);
1678 	put_pid(pid);
1679 
1680 	/* avoid REGPARM breakage on x86: */
1681 	asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1682 	return ret;
1683 }
1684 
1685 asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr,
1686 			  int options, struct rusage __user *ru)
1687 {
1688 	struct pid *pid = NULL;
1689 	enum pid_type type;
1690 	long ret;
1691 
1692 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1693 			__WNOTHREAD|__WCLONE|__WALL))
1694 		return -EINVAL;
1695 
1696 	if (upid == -1)
1697 		type = PIDTYPE_MAX;
1698 	else if (upid < 0) {
1699 		type = PIDTYPE_PGID;
1700 		pid = find_get_pid(-upid);
1701 	} else if (upid == 0) {
1702 		type = PIDTYPE_PGID;
1703 		pid = get_pid(task_pgrp(current));
1704 	} else /* upid > 0 */ {
1705 		type = PIDTYPE_PID;
1706 		pid = find_get_pid(upid);
1707 	}
1708 
1709 	ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1710 	put_pid(pid);
1711 
1712 	/* avoid REGPARM breakage on x86: */
1713 	asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1714 	return ret;
1715 }
1716 
1717 #ifdef __ARCH_WANT_SYS_WAITPID
1718 
1719 /*
1720  * sys_waitpid() remains for compatibility. waitpid() should be
1721  * implemented by calling sys_wait4() from libc.a.
1722  */
1723 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1724 {
1725 	return sys_wait4(pid, stat_addr, options, NULL);
1726 }
1727 
1728 #endif
1729