xref: /linux/kernel/exit.c (revision f3d9478b2ce468c3115b02ecae7e975990697f15)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/config.h>
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/interrupt.h>
11 #include <linux/smp_lock.h>
12 #include <linux/module.h>
13 #include <linux/capability.h>
14 #include <linux/completion.h>
15 #include <linux/personality.h>
16 #include <linux/tty.h>
17 #include <linux/namespace.h>
18 #include <linux/key.h>
19 #include <linux/security.h>
20 #include <linux/cpu.h>
21 #include <linux/acct.h>
22 #include <linux/file.h>
23 #include <linux/binfmts.h>
24 #include <linux/ptrace.h>
25 #include <linux/profile.h>
26 #include <linux/mount.h>
27 #include <linux/proc_fs.h>
28 #include <linux/mempolicy.h>
29 #include <linux/cpuset.h>
30 #include <linux/syscalls.h>
31 #include <linux/signal.h>
32 #include <linux/posix-timers.h>
33 #include <linux/cn_proc.h>
34 #include <linux/mutex.h>
35 #include <linux/futex.h>
36 #include <linux/compat.h>
37 #include <linux/pipe_fs_i.h>
38 #include <linux/audit.h> /* for audit_free() */
39 
40 #include <asm/uaccess.h>
41 #include <asm/unistd.h>
42 #include <asm/pgtable.h>
43 #include <asm/mmu_context.h>
44 
45 extern void sem_exit (void);
46 extern struct task_struct *child_reaper;
47 
48 int getrusage(struct task_struct *, int, struct rusage __user *);
49 
50 static void exit_mm(struct task_struct * tsk);
51 
52 static void __unhash_process(struct task_struct *p)
53 {
54 	nr_threads--;
55 	detach_pid(p, PIDTYPE_PID);
56 	if (thread_group_leader(p)) {
57 		detach_pid(p, PIDTYPE_PGID);
58 		detach_pid(p, PIDTYPE_SID);
59 
60 		list_del_rcu(&p->tasks);
61 		__get_cpu_var(process_counts)--;
62 	}
63 	list_del_rcu(&p->thread_group);
64 	remove_parent(p);
65 }
66 
67 /*
68  * This function expects the tasklist_lock write-locked.
69  */
70 static void __exit_signal(struct task_struct *tsk)
71 {
72 	struct signal_struct *sig = tsk->signal;
73 	struct sighand_struct *sighand;
74 
75 	BUG_ON(!sig);
76 	BUG_ON(!atomic_read(&sig->count));
77 
78 	rcu_read_lock();
79 	sighand = rcu_dereference(tsk->sighand);
80 	spin_lock(&sighand->siglock);
81 
82 	posix_cpu_timers_exit(tsk);
83 	if (atomic_dec_and_test(&sig->count))
84 		posix_cpu_timers_exit_group(tsk);
85 	else {
86 		/*
87 		 * If there is any task waiting for the group exit
88 		 * then notify it:
89 		 */
90 		if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
91 			wake_up_process(sig->group_exit_task);
92 			sig->group_exit_task = NULL;
93 		}
94 		if (tsk == sig->curr_target)
95 			sig->curr_target = next_thread(tsk);
96 		/*
97 		 * Accumulate here the counters for all threads but the
98 		 * group leader as they die, so they can be added into
99 		 * the process-wide totals when those are taken.
100 		 * The group leader stays around as a zombie as long
101 		 * as there are other threads.  When it gets reaped,
102 		 * the exit.c code will add its counts into these totals.
103 		 * We won't ever get here for the group leader, since it
104 		 * will have been the last reference on the signal_struct.
105 		 */
106 		sig->utime = cputime_add(sig->utime, tsk->utime);
107 		sig->stime = cputime_add(sig->stime, tsk->stime);
108 		sig->min_flt += tsk->min_flt;
109 		sig->maj_flt += tsk->maj_flt;
110 		sig->nvcsw += tsk->nvcsw;
111 		sig->nivcsw += tsk->nivcsw;
112 		sig->sched_time += tsk->sched_time;
113 		sig = NULL; /* Marker for below. */
114 	}
115 
116 	__unhash_process(tsk);
117 
118 	tsk->signal = NULL;
119 	tsk->sighand = NULL;
120 	spin_unlock(&sighand->siglock);
121 	rcu_read_unlock();
122 
123 	__cleanup_sighand(sighand);
124 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
125 	flush_sigqueue(&tsk->pending);
126 	if (sig) {
127 		flush_sigqueue(&sig->shared_pending);
128 		__cleanup_signal(sig);
129 	}
130 }
131 
132 static void delayed_put_task_struct(struct rcu_head *rhp)
133 {
134 	put_task_struct(container_of(rhp, struct task_struct, rcu));
135 }
136 
137 void release_task(struct task_struct * p)
138 {
139 	int zap_leader;
140 	task_t *leader;
141 	struct dentry *proc_dentry;
142 
143 repeat:
144 	atomic_dec(&p->user->processes);
145 	spin_lock(&p->proc_lock);
146 	proc_dentry = proc_pid_unhash(p);
147 	write_lock_irq(&tasklist_lock);
148 	ptrace_unlink(p);
149 	BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
150 	__exit_signal(p);
151 
152 	/*
153 	 * If we are the last non-leader member of the thread
154 	 * group, and the leader is zombie, then notify the
155 	 * group leader's parent process. (if it wants notification.)
156 	 */
157 	zap_leader = 0;
158 	leader = p->group_leader;
159 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
160 		BUG_ON(leader->exit_signal == -1);
161 		do_notify_parent(leader, leader->exit_signal);
162 		/*
163 		 * If we were the last child thread and the leader has
164 		 * exited already, and the leader's parent ignores SIGCHLD,
165 		 * then we are the one who should release the leader.
166 		 *
167 		 * do_notify_parent() will have marked it self-reaping in
168 		 * that case.
169 		 */
170 		zap_leader = (leader->exit_signal == -1);
171 	}
172 
173 	sched_exit(p);
174 	write_unlock_irq(&tasklist_lock);
175 	spin_unlock(&p->proc_lock);
176 	proc_pid_flush(proc_dentry);
177 	release_thread(p);
178 	call_rcu(&p->rcu, delayed_put_task_struct);
179 
180 	p = leader;
181 	if (unlikely(zap_leader))
182 		goto repeat;
183 }
184 
185 /*
186  * This checks not only the pgrp, but falls back on the pid if no
187  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
188  * without this...
189  */
190 int session_of_pgrp(int pgrp)
191 {
192 	struct task_struct *p;
193 	int sid = -1;
194 
195 	read_lock(&tasklist_lock);
196 	do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
197 		if (p->signal->session > 0) {
198 			sid = p->signal->session;
199 			goto out;
200 		}
201 	} while_each_task_pid(pgrp, PIDTYPE_PGID, p);
202 	p = find_task_by_pid(pgrp);
203 	if (p)
204 		sid = p->signal->session;
205 out:
206 	read_unlock(&tasklist_lock);
207 
208 	return sid;
209 }
210 
211 /*
212  * Determine if a process group is "orphaned", according to the POSIX
213  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
214  * by terminal-generated stop signals.  Newly orphaned process groups are
215  * to receive a SIGHUP and a SIGCONT.
216  *
217  * "I ask you, have you ever known what it is to be an orphan?"
218  */
219 static int will_become_orphaned_pgrp(int pgrp, task_t *ignored_task)
220 {
221 	struct task_struct *p;
222 	int ret = 1;
223 
224 	do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
225 		if (p == ignored_task
226 				|| p->exit_state
227 				|| p->real_parent->pid == 1)
228 			continue;
229 		if (process_group(p->real_parent) != pgrp
230 			    && p->real_parent->signal->session == p->signal->session) {
231 			ret = 0;
232 			break;
233 		}
234 	} while_each_task_pid(pgrp, PIDTYPE_PGID, p);
235 	return ret;	/* (sighing) "Often!" */
236 }
237 
238 int is_orphaned_pgrp(int pgrp)
239 {
240 	int retval;
241 
242 	read_lock(&tasklist_lock);
243 	retval = will_become_orphaned_pgrp(pgrp, NULL);
244 	read_unlock(&tasklist_lock);
245 
246 	return retval;
247 }
248 
249 static int has_stopped_jobs(int pgrp)
250 {
251 	int retval = 0;
252 	struct task_struct *p;
253 
254 	do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
255 		if (p->state != TASK_STOPPED)
256 			continue;
257 
258 		/* If p is stopped by a debugger on a signal that won't
259 		   stop it, then don't count p as stopped.  This isn't
260 		   perfect but it's a good approximation.  */
261 		if (unlikely (p->ptrace)
262 		    && p->exit_code != SIGSTOP
263 		    && p->exit_code != SIGTSTP
264 		    && p->exit_code != SIGTTOU
265 		    && p->exit_code != SIGTTIN)
266 			continue;
267 
268 		retval = 1;
269 		break;
270 	} while_each_task_pid(pgrp, PIDTYPE_PGID, p);
271 	return retval;
272 }
273 
274 /**
275  * reparent_to_init - Reparent the calling kernel thread to the init task.
276  *
277  * If a kernel thread is launched as a result of a system call, or if
278  * it ever exits, it should generally reparent itself to init so that
279  * it is correctly cleaned up on exit.
280  *
281  * The various task state such as scheduling policy and priority may have
282  * been inherited from a user process, so we reset them to sane values here.
283  *
284  * NOTE that reparent_to_init() gives the caller full capabilities.
285  */
286 static void reparent_to_init(void)
287 {
288 	write_lock_irq(&tasklist_lock);
289 
290 	ptrace_unlink(current);
291 	/* Reparent to init */
292 	remove_parent(current);
293 	current->parent = child_reaper;
294 	current->real_parent = child_reaper;
295 	add_parent(current);
296 
297 	/* Set the exit signal to SIGCHLD so we signal init on exit */
298 	current->exit_signal = SIGCHLD;
299 
300 	if ((current->policy == SCHED_NORMAL ||
301 			current->policy == SCHED_BATCH)
302 				&& (task_nice(current) < 0))
303 		set_user_nice(current, 0);
304 	/* cpus_allowed? */
305 	/* rt_priority? */
306 	/* signals? */
307 	security_task_reparent_to_init(current);
308 	memcpy(current->signal->rlim, init_task.signal->rlim,
309 	       sizeof(current->signal->rlim));
310 	atomic_inc(&(INIT_USER->__count));
311 	write_unlock_irq(&tasklist_lock);
312 	switch_uid(INIT_USER);
313 }
314 
315 void __set_special_pids(pid_t session, pid_t pgrp)
316 {
317 	struct task_struct *curr = current->group_leader;
318 
319 	if (curr->signal->session != session) {
320 		detach_pid(curr, PIDTYPE_SID);
321 		curr->signal->session = session;
322 		attach_pid(curr, PIDTYPE_SID, session);
323 	}
324 	if (process_group(curr) != pgrp) {
325 		detach_pid(curr, PIDTYPE_PGID);
326 		curr->signal->pgrp = pgrp;
327 		attach_pid(curr, PIDTYPE_PGID, pgrp);
328 	}
329 }
330 
331 void set_special_pids(pid_t session, pid_t pgrp)
332 {
333 	write_lock_irq(&tasklist_lock);
334 	__set_special_pids(session, pgrp);
335 	write_unlock_irq(&tasklist_lock);
336 }
337 
338 /*
339  * Let kernel threads use this to say that they
340  * allow a certain signal (since daemonize() will
341  * have disabled all of them by default).
342  */
343 int allow_signal(int sig)
344 {
345 	if (!valid_signal(sig) || sig < 1)
346 		return -EINVAL;
347 
348 	spin_lock_irq(&current->sighand->siglock);
349 	sigdelset(&current->blocked, sig);
350 	if (!current->mm) {
351 		/* Kernel threads handle their own signals.
352 		   Let the signal code know it'll be handled, so
353 		   that they don't get converted to SIGKILL or
354 		   just silently dropped */
355 		current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
356 	}
357 	recalc_sigpending();
358 	spin_unlock_irq(&current->sighand->siglock);
359 	return 0;
360 }
361 
362 EXPORT_SYMBOL(allow_signal);
363 
364 int disallow_signal(int sig)
365 {
366 	if (!valid_signal(sig) || sig < 1)
367 		return -EINVAL;
368 
369 	spin_lock_irq(&current->sighand->siglock);
370 	sigaddset(&current->blocked, sig);
371 	recalc_sigpending();
372 	spin_unlock_irq(&current->sighand->siglock);
373 	return 0;
374 }
375 
376 EXPORT_SYMBOL(disallow_signal);
377 
378 /*
379  *	Put all the gunge required to become a kernel thread without
380  *	attached user resources in one place where it belongs.
381  */
382 
383 void daemonize(const char *name, ...)
384 {
385 	va_list args;
386 	struct fs_struct *fs;
387 	sigset_t blocked;
388 
389 	va_start(args, name);
390 	vsnprintf(current->comm, sizeof(current->comm), name, args);
391 	va_end(args);
392 
393 	/*
394 	 * If we were started as result of loading a module, close all of the
395 	 * user space pages.  We don't need them, and if we didn't close them
396 	 * they would be locked into memory.
397 	 */
398 	exit_mm(current);
399 
400 	set_special_pids(1, 1);
401 	mutex_lock(&tty_mutex);
402 	current->signal->tty = NULL;
403 	mutex_unlock(&tty_mutex);
404 
405 	/* Block and flush all signals */
406 	sigfillset(&blocked);
407 	sigprocmask(SIG_BLOCK, &blocked, NULL);
408 	flush_signals(current);
409 
410 	/* Become as one with the init task */
411 
412 	exit_fs(current);	/* current->fs->count--; */
413 	fs = init_task.fs;
414 	current->fs = fs;
415 	atomic_inc(&fs->count);
416 	exit_namespace(current);
417 	current->namespace = init_task.namespace;
418 	get_namespace(current->namespace);
419  	exit_files(current);
420 	current->files = init_task.files;
421 	atomic_inc(&current->files->count);
422 
423 	reparent_to_init();
424 }
425 
426 EXPORT_SYMBOL(daemonize);
427 
428 static void close_files(struct files_struct * files)
429 {
430 	int i, j;
431 	struct fdtable *fdt;
432 
433 	j = 0;
434 
435 	/*
436 	 * It is safe to dereference the fd table without RCU or
437 	 * ->file_lock because this is the last reference to the
438 	 * files structure.
439 	 */
440 	fdt = files_fdtable(files);
441 	for (;;) {
442 		unsigned long set;
443 		i = j * __NFDBITS;
444 		if (i >= fdt->max_fdset || i >= fdt->max_fds)
445 			break;
446 		set = fdt->open_fds->fds_bits[j++];
447 		while (set) {
448 			if (set & 1) {
449 				struct file * file = xchg(&fdt->fd[i], NULL);
450 				if (file)
451 					filp_close(file, files);
452 			}
453 			i++;
454 			set >>= 1;
455 		}
456 	}
457 }
458 
459 struct files_struct *get_files_struct(struct task_struct *task)
460 {
461 	struct files_struct *files;
462 
463 	task_lock(task);
464 	files = task->files;
465 	if (files)
466 		atomic_inc(&files->count);
467 	task_unlock(task);
468 
469 	return files;
470 }
471 
472 void fastcall put_files_struct(struct files_struct *files)
473 {
474 	struct fdtable *fdt;
475 
476 	if (atomic_dec_and_test(&files->count)) {
477 		close_files(files);
478 		/*
479 		 * Free the fd and fdset arrays if we expanded them.
480 		 * If the fdtable was embedded, pass files for freeing
481 		 * at the end of the RCU grace period. Otherwise,
482 		 * you can free files immediately.
483 		 */
484 		fdt = files_fdtable(files);
485 		if (fdt == &files->fdtab)
486 			fdt->free_files = files;
487 		else
488 			kmem_cache_free(files_cachep, files);
489 		free_fdtable(fdt);
490 	}
491 }
492 
493 EXPORT_SYMBOL(put_files_struct);
494 
495 static inline void __exit_files(struct task_struct *tsk)
496 {
497 	struct files_struct * files = tsk->files;
498 
499 	if (files) {
500 		task_lock(tsk);
501 		tsk->files = NULL;
502 		task_unlock(tsk);
503 		put_files_struct(files);
504 	}
505 }
506 
507 void exit_files(struct task_struct *tsk)
508 {
509 	__exit_files(tsk);
510 }
511 
512 static inline void __put_fs_struct(struct fs_struct *fs)
513 {
514 	/* No need to hold fs->lock if we are killing it */
515 	if (atomic_dec_and_test(&fs->count)) {
516 		dput(fs->root);
517 		mntput(fs->rootmnt);
518 		dput(fs->pwd);
519 		mntput(fs->pwdmnt);
520 		if (fs->altroot) {
521 			dput(fs->altroot);
522 			mntput(fs->altrootmnt);
523 		}
524 		kmem_cache_free(fs_cachep, fs);
525 	}
526 }
527 
528 void put_fs_struct(struct fs_struct *fs)
529 {
530 	__put_fs_struct(fs);
531 }
532 
533 static inline void __exit_fs(struct task_struct *tsk)
534 {
535 	struct fs_struct * fs = tsk->fs;
536 
537 	if (fs) {
538 		task_lock(tsk);
539 		tsk->fs = NULL;
540 		task_unlock(tsk);
541 		__put_fs_struct(fs);
542 	}
543 }
544 
545 void exit_fs(struct task_struct *tsk)
546 {
547 	__exit_fs(tsk);
548 }
549 
550 EXPORT_SYMBOL_GPL(exit_fs);
551 
552 /*
553  * Turn us into a lazy TLB process if we
554  * aren't already..
555  */
556 static void exit_mm(struct task_struct * tsk)
557 {
558 	struct mm_struct *mm = tsk->mm;
559 
560 	mm_release(tsk, mm);
561 	if (!mm)
562 		return;
563 	/*
564 	 * Serialize with any possible pending coredump.
565 	 * We must hold mmap_sem around checking core_waiters
566 	 * and clearing tsk->mm.  The core-inducing thread
567 	 * will increment core_waiters for each thread in the
568 	 * group with ->mm != NULL.
569 	 */
570 	down_read(&mm->mmap_sem);
571 	if (mm->core_waiters) {
572 		up_read(&mm->mmap_sem);
573 		down_write(&mm->mmap_sem);
574 		if (!--mm->core_waiters)
575 			complete(mm->core_startup_done);
576 		up_write(&mm->mmap_sem);
577 
578 		wait_for_completion(&mm->core_done);
579 		down_read(&mm->mmap_sem);
580 	}
581 	atomic_inc(&mm->mm_count);
582 	if (mm != tsk->active_mm) BUG();
583 	/* more a memory barrier than a real lock */
584 	task_lock(tsk);
585 	tsk->mm = NULL;
586 	up_read(&mm->mmap_sem);
587 	enter_lazy_tlb(mm, current);
588 	task_unlock(tsk);
589 	mmput(mm);
590 }
591 
592 static inline void choose_new_parent(task_t *p, task_t *reaper)
593 {
594 	/*
595 	 * Make sure we're not reparenting to ourselves and that
596 	 * the parent is not a zombie.
597 	 */
598 	BUG_ON(p == reaper || reaper->exit_state);
599 	p->real_parent = reaper;
600 }
601 
602 static void reparent_thread(task_t *p, task_t *father, int traced)
603 {
604 	/* We don't want people slaying init.  */
605 	if (p->exit_signal != -1)
606 		p->exit_signal = SIGCHLD;
607 
608 	if (p->pdeath_signal)
609 		/* We already hold the tasklist_lock here.  */
610 		group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
611 
612 	/* Move the child from its dying parent to the new one.  */
613 	if (unlikely(traced)) {
614 		/* Preserve ptrace links if someone else is tracing this child.  */
615 		list_del_init(&p->ptrace_list);
616 		if (p->parent != p->real_parent)
617 			list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
618 	} else {
619 		/* If this child is being traced, then we're the one tracing it
620 		 * anyway, so let go of it.
621 		 */
622 		p->ptrace = 0;
623 		remove_parent(p);
624 		p->parent = p->real_parent;
625 		add_parent(p);
626 
627 		/* If we'd notified the old parent about this child's death,
628 		 * also notify the new parent.
629 		 */
630 		if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
631 		    thread_group_empty(p))
632 			do_notify_parent(p, p->exit_signal);
633 		else if (p->state == TASK_TRACED) {
634 			/*
635 			 * If it was at a trace stop, turn it into
636 			 * a normal stop since it's no longer being
637 			 * traced.
638 			 */
639 			ptrace_untrace(p);
640 		}
641 	}
642 
643 	/*
644 	 * process group orphan check
645 	 * Case ii: Our child is in a different pgrp
646 	 * than we are, and it was the only connection
647 	 * outside, so the child pgrp is now orphaned.
648 	 */
649 	if ((process_group(p) != process_group(father)) &&
650 	    (p->signal->session == father->signal->session)) {
651 		int pgrp = process_group(p);
652 
653 		if (will_become_orphaned_pgrp(pgrp, NULL) && has_stopped_jobs(pgrp)) {
654 			__kill_pg_info(SIGHUP, SEND_SIG_PRIV, pgrp);
655 			__kill_pg_info(SIGCONT, SEND_SIG_PRIV, pgrp);
656 		}
657 	}
658 }
659 
660 /*
661  * When we die, we re-parent all our children.
662  * Try to give them to another thread in our thread
663  * group, and if no such member exists, give it to
664  * the global child reaper process (ie "init")
665  */
666 static void forget_original_parent(struct task_struct * father,
667 					  struct list_head *to_release)
668 {
669 	struct task_struct *p, *reaper = father;
670 	struct list_head *_p, *_n;
671 
672 	do {
673 		reaper = next_thread(reaper);
674 		if (reaper == father) {
675 			reaper = child_reaper;
676 			break;
677 		}
678 	} while (reaper->exit_state);
679 
680 	/*
681 	 * There are only two places where our children can be:
682 	 *
683 	 * - in our child list
684 	 * - in our ptraced child list
685 	 *
686 	 * Search them and reparent children.
687 	 */
688 	list_for_each_safe(_p, _n, &father->children) {
689 		int ptrace;
690 		p = list_entry(_p,struct task_struct,sibling);
691 
692 		ptrace = p->ptrace;
693 
694 		/* if father isn't the real parent, then ptrace must be enabled */
695 		BUG_ON(father != p->real_parent && !ptrace);
696 
697 		if (father == p->real_parent) {
698 			/* reparent with a reaper, real father it's us */
699 			choose_new_parent(p, reaper);
700 			reparent_thread(p, father, 0);
701 		} else {
702 			/* reparent ptraced task to its real parent */
703 			__ptrace_unlink (p);
704 			if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
705 			    thread_group_empty(p))
706 				do_notify_parent(p, p->exit_signal);
707 		}
708 
709 		/*
710 		 * if the ptraced child is a zombie with exit_signal == -1
711 		 * we must collect it before we exit, or it will remain
712 		 * zombie forever since we prevented it from self-reap itself
713 		 * while it was being traced by us, to be able to see it in wait4.
714 		 */
715 		if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
716 			list_add(&p->ptrace_list, to_release);
717 	}
718 	list_for_each_safe(_p, _n, &father->ptrace_children) {
719 		p = list_entry(_p,struct task_struct,ptrace_list);
720 		choose_new_parent(p, reaper);
721 		reparent_thread(p, father, 1);
722 	}
723 }
724 
725 /*
726  * Send signals to all our closest relatives so that they know
727  * to properly mourn us..
728  */
729 static void exit_notify(struct task_struct *tsk)
730 {
731 	int state;
732 	struct task_struct *t;
733 	struct list_head ptrace_dead, *_p, *_n;
734 
735 	if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT)
736 	    && !thread_group_empty(tsk)) {
737 		/*
738 		 * This occurs when there was a race between our exit
739 		 * syscall and a group signal choosing us as the one to
740 		 * wake up.  It could be that we are the only thread
741 		 * alerted to check for pending signals, but another thread
742 		 * should be woken now to take the signal since we will not.
743 		 * Now we'll wake all the threads in the group just to make
744 		 * sure someone gets all the pending signals.
745 		 */
746 		read_lock(&tasklist_lock);
747 		spin_lock_irq(&tsk->sighand->siglock);
748 		for (t = next_thread(tsk); t != tsk; t = next_thread(t))
749 			if (!signal_pending(t) && !(t->flags & PF_EXITING)) {
750 				recalc_sigpending_tsk(t);
751 				if (signal_pending(t))
752 					signal_wake_up(t, 0);
753 			}
754 		spin_unlock_irq(&tsk->sighand->siglock);
755 		read_unlock(&tasklist_lock);
756 	}
757 
758 	write_lock_irq(&tasklist_lock);
759 
760 	/*
761 	 * This does two things:
762 	 *
763   	 * A.  Make init inherit all the child processes
764 	 * B.  Check to see if any process groups have become orphaned
765 	 *	as a result of our exiting, and if they have any stopped
766 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
767 	 */
768 
769 	INIT_LIST_HEAD(&ptrace_dead);
770 	forget_original_parent(tsk, &ptrace_dead);
771 	BUG_ON(!list_empty(&tsk->children));
772 	BUG_ON(!list_empty(&tsk->ptrace_children));
773 
774 	/*
775 	 * Check to see if any process groups have become orphaned
776 	 * as a result of our exiting, and if they have any stopped
777 	 * jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
778 	 *
779 	 * Case i: Our father is in a different pgrp than we are
780 	 * and we were the only connection outside, so our pgrp
781 	 * is about to become orphaned.
782 	 */
783 
784 	t = tsk->real_parent;
785 
786 	if ((process_group(t) != process_group(tsk)) &&
787 	    (t->signal->session == tsk->signal->session) &&
788 	    will_become_orphaned_pgrp(process_group(tsk), tsk) &&
789 	    has_stopped_jobs(process_group(tsk))) {
790 		__kill_pg_info(SIGHUP, SEND_SIG_PRIV, process_group(tsk));
791 		__kill_pg_info(SIGCONT, SEND_SIG_PRIV, process_group(tsk));
792 	}
793 
794 	/* Let father know we died
795 	 *
796 	 * Thread signals are configurable, but you aren't going to use
797 	 * that to send signals to arbitary processes.
798 	 * That stops right now.
799 	 *
800 	 * If the parent exec id doesn't match the exec id we saved
801 	 * when we started then we know the parent has changed security
802 	 * domain.
803 	 *
804 	 * If our self_exec id doesn't match our parent_exec_id then
805 	 * we have changed execution domain as these two values started
806 	 * the same after a fork.
807 	 *
808 	 */
809 
810 	if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
811 	    ( tsk->parent_exec_id != t->self_exec_id  ||
812 	      tsk->self_exec_id != tsk->parent_exec_id)
813 	    && !capable(CAP_KILL))
814 		tsk->exit_signal = SIGCHLD;
815 
816 
817 	/* If something other than our normal parent is ptracing us, then
818 	 * send it a SIGCHLD instead of honoring exit_signal.  exit_signal
819 	 * only has special meaning to our real parent.
820 	 */
821 	if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
822 		int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
823 		do_notify_parent(tsk, signal);
824 	} else if (tsk->ptrace) {
825 		do_notify_parent(tsk, SIGCHLD);
826 	}
827 
828 	state = EXIT_ZOMBIE;
829 	if (tsk->exit_signal == -1 &&
830 	    (likely(tsk->ptrace == 0) ||
831 	     unlikely(tsk->parent->signal->flags & SIGNAL_GROUP_EXIT)))
832 		state = EXIT_DEAD;
833 	tsk->exit_state = state;
834 
835 	write_unlock_irq(&tasklist_lock);
836 
837 	list_for_each_safe(_p, _n, &ptrace_dead) {
838 		list_del_init(_p);
839 		t = list_entry(_p,struct task_struct,ptrace_list);
840 		release_task(t);
841 	}
842 
843 	/* If the process is dead, release it - nobody will wait for it */
844 	if (state == EXIT_DEAD)
845 		release_task(tsk);
846 }
847 
848 fastcall NORET_TYPE void do_exit(long code)
849 {
850 	struct task_struct *tsk = current;
851 	int group_dead;
852 
853 	profile_task_exit(tsk);
854 
855 	WARN_ON(atomic_read(&tsk->fs_excl));
856 
857 	if (unlikely(in_interrupt()))
858 		panic("Aiee, killing interrupt handler!");
859 	if (unlikely(!tsk->pid))
860 		panic("Attempted to kill the idle task!");
861 	if (unlikely(tsk == child_reaper))
862 		panic("Attempted to kill init!");
863 
864 	if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
865 		current->ptrace_message = code;
866 		ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
867 	}
868 
869 	/*
870 	 * We're taking recursive faults here in do_exit. Safest is to just
871 	 * leave this task alone and wait for reboot.
872 	 */
873 	if (unlikely(tsk->flags & PF_EXITING)) {
874 		printk(KERN_ALERT
875 			"Fixing recursive fault but reboot is needed!\n");
876 		if (tsk->io_context)
877 			exit_io_context();
878 		set_current_state(TASK_UNINTERRUPTIBLE);
879 		schedule();
880 	}
881 
882 	tsk->flags |= PF_EXITING;
883 
884 	if (unlikely(in_atomic()))
885 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
886 				current->comm, current->pid,
887 				preempt_count());
888 
889 	acct_update_integrals(tsk);
890 	if (tsk->mm) {
891 		update_hiwater_rss(tsk->mm);
892 		update_hiwater_vm(tsk->mm);
893 	}
894 	group_dead = atomic_dec_and_test(&tsk->signal->live);
895 	if (group_dead) {
896  		hrtimer_cancel(&tsk->signal->real_timer);
897 		exit_itimers(tsk->signal);
898 		acct_process(code);
899 	}
900 	if (unlikely(tsk->robust_list))
901 		exit_robust_list(tsk);
902 #ifdef CONFIG_COMPAT
903 	if (unlikely(tsk->compat_robust_list))
904 		compat_exit_robust_list(tsk);
905 #endif
906 	if (unlikely(tsk->audit_context))
907 		audit_free(tsk);
908 	exit_mm(tsk);
909 
910 	exit_sem(tsk);
911 	__exit_files(tsk);
912 	__exit_fs(tsk);
913 	exit_namespace(tsk);
914 	exit_thread();
915 	cpuset_exit(tsk);
916 	exit_keys(tsk);
917 
918 	if (group_dead && tsk->signal->leader)
919 		disassociate_ctty(1);
920 
921 	module_put(task_thread_info(tsk)->exec_domain->module);
922 	if (tsk->binfmt)
923 		module_put(tsk->binfmt->module);
924 
925 	tsk->exit_code = code;
926 	proc_exit_connector(tsk);
927 	exit_notify(tsk);
928 #ifdef CONFIG_NUMA
929 	mpol_free(tsk->mempolicy);
930 	tsk->mempolicy = NULL;
931 #endif
932 	/*
933 	 * If DEBUG_MUTEXES is on, make sure we are holding no locks:
934 	 */
935 	mutex_debug_check_no_locks_held(tsk);
936 
937 	if (tsk->io_context)
938 		exit_io_context();
939 
940 	if (tsk->splice_pipe)
941 		__free_pipe_info(tsk->splice_pipe);
942 
943 	/* PF_DEAD causes final put_task_struct after we schedule. */
944 	preempt_disable();
945 	BUG_ON(tsk->flags & PF_DEAD);
946 	tsk->flags |= PF_DEAD;
947 
948 	schedule();
949 	BUG();
950 	/* Avoid "noreturn function does return".  */
951 	for (;;) ;
952 }
953 
954 EXPORT_SYMBOL_GPL(do_exit);
955 
956 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
957 {
958 	if (comp)
959 		complete(comp);
960 
961 	do_exit(code);
962 }
963 
964 EXPORT_SYMBOL(complete_and_exit);
965 
966 asmlinkage long sys_exit(int error_code)
967 {
968 	do_exit((error_code&0xff)<<8);
969 }
970 
971 /*
972  * Take down every thread in the group.  This is called by fatal signals
973  * as well as by sys_exit_group (below).
974  */
975 NORET_TYPE void
976 do_group_exit(int exit_code)
977 {
978 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
979 
980 	if (current->signal->flags & SIGNAL_GROUP_EXIT)
981 		exit_code = current->signal->group_exit_code;
982 	else if (!thread_group_empty(current)) {
983 		struct signal_struct *const sig = current->signal;
984 		struct sighand_struct *const sighand = current->sighand;
985 		spin_lock_irq(&sighand->siglock);
986 		if (sig->flags & SIGNAL_GROUP_EXIT)
987 			/* Another thread got here before we took the lock.  */
988 			exit_code = sig->group_exit_code;
989 		else {
990 			sig->group_exit_code = exit_code;
991 			zap_other_threads(current);
992 		}
993 		spin_unlock_irq(&sighand->siglock);
994 	}
995 
996 	do_exit(exit_code);
997 	/* NOTREACHED */
998 }
999 
1000 /*
1001  * this kills every thread in the thread group. Note that any externally
1002  * wait4()-ing process will get the correct exit code - even if this
1003  * thread is not the thread group leader.
1004  */
1005 asmlinkage void sys_exit_group(int error_code)
1006 {
1007 	do_group_exit((error_code & 0xff) << 8);
1008 }
1009 
1010 static int eligible_child(pid_t pid, int options, task_t *p)
1011 {
1012 	if (pid > 0) {
1013 		if (p->pid != pid)
1014 			return 0;
1015 	} else if (!pid) {
1016 		if (process_group(p) != process_group(current))
1017 			return 0;
1018 	} else if (pid != -1) {
1019 		if (process_group(p) != -pid)
1020 			return 0;
1021 	}
1022 
1023 	/*
1024 	 * Do not consider detached threads that are
1025 	 * not ptraced:
1026 	 */
1027 	if (p->exit_signal == -1 && !p->ptrace)
1028 		return 0;
1029 
1030 	/* Wait for all children (clone and not) if __WALL is set;
1031 	 * otherwise, wait for clone children *only* if __WCLONE is
1032 	 * set; otherwise, wait for non-clone children *only*.  (Note:
1033 	 * A "clone" child here is one that reports to its parent
1034 	 * using a signal other than SIGCHLD.) */
1035 	if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1036 	    && !(options & __WALL))
1037 		return 0;
1038 	/*
1039 	 * Do not consider thread group leaders that are
1040 	 * in a non-empty thread group:
1041 	 */
1042 	if (current->tgid != p->tgid && delay_group_leader(p))
1043 		return 2;
1044 
1045 	if (security_task_wait(p))
1046 		return 0;
1047 
1048 	return 1;
1049 }
1050 
1051 static int wait_noreap_copyout(task_t *p, pid_t pid, uid_t uid,
1052 			       int why, int status,
1053 			       struct siginfo __user *infop,
1054 			       struct rusage __user *rusagep)
1055 {
1056 	int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1057 	put_task_struct(p);
1058 	if (!retval)
1059 		retval = put_user(SIGCHLD, &infop->si_signo);
1060 	if (!retval)
1061 		retval = put_user(0, &infop->si_errno);
1062 	if (!retval)
1063 		retval = put_user((short)why, &infop->si_code);
1064 	if (!retval)
1065 		retval = put_user(pid, &infop->si_pid);
1066 	if (!retval)
1067 		retval = put_user(uid, &infop->si_uid);
1068 	if (!retval)
1069 		retval = put_user(status, &infop->si_status);
1070 	if (!retval)
1071 		retval = pid;
1072 	return retval;
1073 }
1074 
1075 /*
1076  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1077  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1078  * the lock and this task is uninteresting.  If we return nonzero, we have
1079  * released the lock and the system call should return.
1080  */
1081 static int wait_task_zombie(task_t *p, int noreap,
1082 			    struct siginfo __user *infop,
1083 			    int __user *stat_addr, struct rusage __user *ru)
1084 {
1085 	unsigned long state;
1086 	int retval;
1087 	int status;
1088 
1089 	if (unlikely(noreap)) {
1090 		pid_t pid = p->pid;
1091 		uid_t uid = p->uid;
1092 		int exit_code = p->exit_code;
1093 		int why, status;
1094 
1095 		if (unlikely(p->exit_state != EXIT_ZOMBIE))
1096 			return 0;
1097 		if (unlikely(p->exit_signal == -1 && p->ptrace == 0))
1098 			return 0;
1099 		get_task_struct(p);
1100 		read_unlock(&tasklist_lock);
1101 		if ((exit_code & 0x7f) == 0) {
1102 			why = CLD_EXITED;
1103 			status = exit_code >> 8;
1104 		} else {
1105 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1106 			status = exit_code & 0x7f;
1107 		}
1108 		return wait_noreap_copyout(p, pid, uid, why,
1109 					   status, infop, ru);
1110 	}
1111 
1112 	/*
1113 	 * Try to move the task's state to DEAD
1114 	 * only one thread is allowed to do this:
1115 	 */
1116 	state = xchg(&p->exit_state, EXIT_DEAD);
1117 	if (state != EXIT_ZOMBIE) {
1118 		BUG_ON(state != EXIT_DEAD);
1119 		return 0;
1120 	}
1121 	if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) {
1122 		/*
1123 		 * This can only happen in a race with a ptraced thread
1124 		 * dying on another processor.
1125 		 */
1126 		return 0;
1127 	}
1128 
1129 	if (likely(p->real_parent == p->parent) && likely(p->signal)) {
1130 		struct signal_struct *psig;
1131 		struct signal_struct *sig;
1132 
1133 		/*
1134 		 * The resource counters for the group leader are in its
1135 		 * own task_struct.  Those for dead threads in the group
1136 		 * are in its signal_struct, as are those for the child
1137 		 * processes it has previously reaped.  All these
1138 		 * accumulate in the parent's signal_struct c* fields.
1139 		 *
1140 		 * We don't bother to take a lock here to protect these
1141 		 * p->signal fields, because they are only touched by
1142 		 * __exit_signal, which runs with tasklist_lock
1143 		 * write-locked anyway, and so is excluded here.  We do
1144 		 * need to protect the access to p->parent->signal fields,
1145 		 * as other threads in the parent group can be right
1146 		 * here reaping other children at the same time.
1147 		 */
1148 		spin_lock_irq(&p->parent->sighand->siglock);
1149 		psig = p->parent->signal;
1150 		sig = p->signal;
1151 		psig->cutime =
1152 			cputime_add(psig->cutime,
1153 			cputime_add(p->utime,
1154 			cputime_add(sig->utime,
1155 				    sig->cutime)));
1156 		psig->cstime =
1157 			cputime_add(psig->cstime,
1158 			cputime_add(p->stime,
1159 			cputime_add(sig->stime,
1160 				    sig->cstime)));
1161 		psig->cmin_flt +=
1162 			p->min_flt + sig->min_flt + sig->cmin_flt;
1163 		psig->cmaj_flt +=
1164 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1165 		psig->cnvcsw +=
1166 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1167 		psig->cnivcsw +=
1168 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1169 		spin_unlock_irq(&p->parent->sighand->siglock);
1170 	}
1171 
1172 	/*
1173 	 * Now we are sure this task is interesting, and no other
1174 	 * thread can reap it because we set its state to EXIT_DEAD.
1175 	 */
1176 	read_unlock(&tasklist_lock);
1177 
1178 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1179 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1180 		? p->signal->group_exit_code : p->exit_code;
1181 	if (!retval && stat_addr)
1182 		retval = put_user(status, stat_addr);
1183 	if (!retval && infop)
1184 		retval = put_user(SIGCHLD, &infop->si_signo);
1185 	if (!retval && infop)
1186 		retval = put_user(0, &infop->si_errno);
1187 	if (!retval && infop) {
1188 		int why;
1189 
1190 		if ((status & 0x7f) == 0) {
1191 			why = CLD_EXITED;
1192 			status >>= 8;
1193 		} else {
1194 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1195 			status &= 0x7f;
1196 		}
1197 		retval = put_user((short)why, &infop->si_code);
1198 		if (!retval)
1199 			retval = put_user(status, &infop->si_status);
1200 	}
1201 	if (!retval && infop)
1202 		retval = put_user(p->pid, &infop->si_pid);
1203 	if (!retval && infop)
1204 		retval = put_user(p->uid, &infop->si_uid);
1205 	if (retval) {
1206 		// TODO: is this safe?
1207 		p->exit_state = EXIT_ZOMBIE;
1208 		return retval;
1209 	}
1210 	retval = p->pid;
1211 	if (p->real_parent != p->parent) {
1212 		write_lock_irq(&tasklist_lock);
1213 		/* Double-check with lock held.  */
1214 		if (p->real_parent != p->parent) {
1215 			__ptrace_unlink(p);
1216 			// TODO: is this safe?
1217 			p->exit_state = EXIT_ZOMBIE;
1218 			/*
1219 			 * If this is not a detached task, notify the parent.
1220 			 * If it's still not detached after that, don't release
1221 			 * it now.
1222 			 */
1223 			if (p->exit_signal != -1) {
1224 				do_notify_parent(p, p->exit_signal);
1225 				if (p->exit_signal != -1)
1226 					p = NULL;
1227 			}
1228 		}
1229 		write_unlock_irq(&tasklist_lock);
1230 	}
1231 	if (p != NULL)
1232 		release_task(p);
1233 	BUG_ON(!retval);
1234 	return retval;
1235 }
1236 
1237 /*
1238  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1239  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1240  * the lock and this task is uninteresting.  If we return nonzero, we have
1241  * released the lock and the system call should return.
1242  */
1243 static int wait_task_stopped(task_t *p, int delayed_group_leader, int noreap,
1244 			     struct siginfo __user *infop,
1245 			     int __user *stat_addr, struct rusage __user *ru)
1246 {
1247 	int retval, exit_code;
1248 
1249 	if (!p->exit_code)
1250 		return 0;
1251 	if (delayed_group_leader && !(p->ptrace & PT_PTRACED) &&
1252 	    p->signal && p->signal->group_stop_count > 0)
1253 		/*
1254 		 * A group stop is in progress and this is the group leader.
1255 		 * We won't report until all threads have stopped.
1256 		 */
1257 		return 0;
1258 
1259 	/*
1260 	 * Now we are pretty sure this task is interesting.
1261 	 * Make sure it doesn't get reaped out from under us while we
1262 	 * give up the lock and then examine it below.  We don't want to
1263 	 * keep holding onto the tasklist_lock while we call getrusage and
1264 	 * possibly take page faults for user memory.
1265 	 */
1266 	get_task_struct(p);
1267 	read_unlock(&tasklist_lock);
1268 
1269 	if (unlikely(noreap)) {
1270 		pid_t pid = p->pid;
1271 		uid_t uid = p->uid;
1272 		int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1273 
1274 		exit_code = p->exit_code;
1275 		if (unlikely(!exit_code) ||
1276 		    unlikely(p->state & TASK_TRACED))
1277 			goto bail_ref;
1278 		return wait_noreap_copyout(p, pid, uid,
1279 					   why, (exit_code << 8) | 0x7f,
1280 					   infop, ru);
1281 	}
1282 
1283 	write_lock_irq(&tasklist_lock);
1284 
1285 	/*
1286 	 * This uses xchg to be atomic with the thread resuming and setting
1287 	 * it.  It must also be done with the write lock held to prevent a
1288 	 * race with the EXIT_ZOMBIE case.
1289 	 */
1290 	exit_code = xchg(&p->exit_code, 0);
1291 	if (unlikely(p->exit_state)) {
1292 		/*
1293 		 * The task resumed and then died.  Let the next iteration
1294 		 * catch it in EXIT_ZOMBIE.  Note that exit_code might
1295 		 * already be zero here if it resumed and did _exit(0).
1296 		 * The task itself is dead and won't touch exit_code again;
1297 		 * other processors in this function are locked out.
1298 		 */
1299 		p->exit_code = exit_code;
1300 		exit_code = 0;
1301 	}
1302 	if (unlikely(exit_code == 0)) {
1303 		/*
1304 		 * Another thread in this function got to it first, or it
1305 		 * resumed, or it resumed and then died.
1306 		 */
1307 		write_unlock_irq(&tasklist_lock);
1308 bail_ref:
1309 		put_task_struct(p);
1310 		/*
1311 		 * We are returning to the wait loop without having successfully
1312 		 * removed the process and having released the lock. We cannot
1313 		 * continue, since the "p" task pointer is potentially stale.
1314 		 *
1315 		 * Return -EAGAIN, and do_wait() will restart the loop from the
1316 		 * beginning. Do _not_ re-acquire the lock.
1317 		 */
1318 		return -EAGAIN;
1319 	}
1320 
1321 	/* move to end of parent's list to avoid starvation */
1322 	remove_parent(p);
1323 	add_parent(p);
1324 
1325 	write_unlock_irq(&tasklist_lock);
1326 
1327 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1328 	if (!retval && stat_addr)
1329 		retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1330 	if (!retval && infop)
1331 		retval = put_user(SIGCHLD, &infop->si_signo);
1332 	if (!retval && infop)
1333 		retval = put_user(0, &infop->si_errno);
1334 	if (!retval && infop)
1335 		retval = put_user((short)((p->ptrace & PT_PTRACED)
1336 					  ? CLD_TRAPPED : CLD_STOPPED),
1337 				  &infop->si_code);
1338 	if (!retval && infop)
1339 		retval = put_user(exit_code, &infop->si_status);
1340 	if (!retval && infop)
1341 		retval = put_user(p->pid, &infop->si_pid);
1342 	if (!retval && infop)
1343 		retval = put_user(p->uid, &infop->si_uid);
1344 	if (!retval)
1345 		retval = p->pid;
1346 	put_task_struct(p);
1347 
1348 	BUG_ON(!retval);
1349 	return retval;
1350 }
1351 
1352 /*
1353  * Handle do_wait work for one task in a live, non-stopped state.
1354  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1355  * the lock and this task is uninteresting.  If we return nonzero, we have
1356  * released the lock and the system call should return.
1357  */
1358 static int wait_task_continued(task_t *p, int noreap,
1359 			       struct siginfo __user *infop,
1360 			       int __user *stat_addr, struct rusage __user *ru)
1361 {
1362 	int retval;
1363 	pid_t pid;
1364 	uid_t uid;
1365 
1366 	if (unlikely(!p->signal))
1367 		return 0;
1368 
1369 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1370 		return 0;
1371 
1372 	spin_lock_irq(&p->sighand->siglock);
1373 	/* Re-check with the lock held.  */
1374 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1375 		spin_unlock_irq(&p->sighand->siglock);
1376 		return 0;
1377 	}
1378 	if (!noreap)
1379 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1380 	spin_unlock_irq(&p->sighand->siglock);
1381 
1382 	pid = p->pid;
1383 	uid = p->uid;
1384 	get_task_struct(p);
1385 	read_unlock(&tasklist_lock);
1386 
1387 	if (!infop) {
1388 		retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1389 		put_task_struct(p);
1390 		if (!retval && stat_addr)
1391 			retval = put_user(0xffff, stat_addr);
1392 		if (!retval)
1393 			retval = p->pid;
1394 	} else {
1395 		retval = wait_noreap_copyout(p, pid, uid,
1396 					     CLD_CONTINUED, SIGCONT,
1397 					     infop, ru);
1398 		BUG_ON(retval == 0);
1399 	}
1400 
1401 	return retval;
1402 }
1403 
1404 
1405 static inline int my_ptrace_child(struct task_struct *p)
1406 {
1407 	if (!(p->ptrace & PT_PTRACED))
1408 		return 0;
1409 	if (!(p->ptrace & PT_ATTACHED))
1410 		return 1;
1411 	/*
1412 	 * This child was PTRACE_ATTACH'd.  We should be seeing it only if
1413 	 * we are the attacher.  If we are the real parent, this is a race
1414 	 * inside ptrace_attach.  It is waiting for the tasklist_lock,
1415 	 * which we have to switch the parent links, but has already set
1416 	 * the flags in p->ptrace.
1417 	 */
1418 	return (p->parent != p->real_parent);
1419 }
1420 
1421 static long do_wait(pid_t pid, int options, struct siginfo __user *infop,
1422 		    int __user *stat_addr, struct rusage __user *ru)
1423 {
1424 	DECLARE_WAITQUEUE(wait, current);
1425 	struct task_struct *tsk;
1426 	int flag, retval;
1427 
1428 	add_wait_queue(&current->signal->wait_chldexit,&wait);
1429 repeat:
1430 	/*
1431 	 * We will set this flag if we see any child that might later
1432 	 * match our criteria, even if we are not able to reap it yet.
1433 	 */
1434 	flag = 0;
1435 	current->state = TASK_INTERRUPTIBLE;
1436 	read_lock(&tasklist_lock);
1437 	tsk = current;
1438 	do {
1439 		struct task_struct *p;
1440 		struct list_head *_p;
1441 		int ret;
1442 
1443 		list_for_each(_p,&tsk->children) {
1444 			p = list_entry(_p,struct task_struct,sibling);
1445 
1446 			ret = eligible_child(pid, options, p);
1447 			if (!ret)
1448 				continue;
1449 
1450 			switch (p->state) {
1451 			case TASK_TRACED:
1452 				/*
1453 				 * When we hit the race with PTRACE_ATTACH,
1454 				 * we will not report this child.  But the
1455 				 * race means it has not yet been moved to
1456 				 * our ptrace_children list, so we need to
1457 				 * set the flag here to avoid a spurious ECHILD
1458 				 * when the race happens with the only child.
1459 				 */
1460 				flag = 1;
1461 				if (!my_ptrace_child(p))
1462 					continue;
1463 				/*FALLTHROUGH*/
1464 			case TASK_STOPPED:
1465 				/*
1466 				 * It's stopped now, so it might later
1467 				 * continue, exit, or stop again.
1468 				 */
1469 				flag = 1;
1470 				if (!(options & WUNTRACED) &&
1471 				    !my_ptrace_child(p))
1472 					continue;
1473 				retval = wait_task_stopped(p, ret == 2,
1474 							   (options & WNOWAIT),
1475 							   infop,
1476 							   stat_addr, ru);
1477 				if (retval == -EAGAIN)
1478 					goto repeat;
1479 				if (retval != 0) /* He released the lock.  */
1480 					goto end;
1481 				break;
1482 			default:
1483 			// case EXIT_DEAD:
1484 				if (p->exit_state == EXIT_DEAD)
1485 					continue;
1486 			// case EXIT_ZOMBIE:
1487 				if (p->exit_state == EXIT_ZOMBIE) {
1488 					/*
1489 					 * Eligible but we cannot release
1490 					 * it yet:
1491 					 */
1492 					if (ret == 2)
1493 						goto check_continued;
1494 					if (!likely(options & WEXITED))
1495 						continue;
1496 					retval = wait_task_zombie(
1497 						p, (options & WNOWAIT),
1498 						infop, stat_addr, ru);
1499 					/* He released the lock.  */
1500 					if (retval != 0)
1501 						goto end;
1502 					break;
1503 				}
1504 check_continued:
1505 				/*
1506 				 * It's running now, so it might later
1507 				 * exit, stop, or stop and then continue.
1508 				 */
1509 				flag = 1;
1510 				if (!unlikely(options & WCONTINUED))
1511 					continue;
1512 				retval = wait_task_continued(
1513 					p, (options & WNOWAIT),
1514 					infop, stat_addr, ru);
1515 				if (retval != 0) /* He released the lock.  */
1516 					goto end;
1517 				break;
1518 			}
1519 		}
1520 		if (!flag) {
1521 			list_for_each(_p, &tsk->ptrace_children) {
1522 				p = list_entry(_p, struct task_struct,
1523 						ptrace_list);
1524 				if (!eligible_child(pid, options, p))
1525 					continue;
1526 				flag = 1;
1527 				break;
1528 			}
1529 		}
1530 		if (options & __WNOTHREAD)
1531 			break;
1532 		tsk = next_thread(tsk);
1533 		if (tsk->signal != current->signal)
1534 			BUG();
1535 	} while (tsk != current);
1536 
1537 	read_unlock(&tasklist_lock);
1538 	if (flag) {
1539 		retval = 0;
1540 		if (options & WNOHANG)
1541 			goto end;
1542 		retval = -ERESTARTSYS;
1543 		if (signal_pending(current))
1544 			goto end;
1545 		schedule();
1546 		goto repeat;
1547 	}
1548 	retval = -ECHILD;
1549 end:
1550 	current->state = TASK_RUNNING;
1551 	remove_wait_queue(&current->signal->wait_chldexit,&wait);
1552 	if (infop) {
1553 		if (retval > 0)
1554 		retval = 0;
1555 		else {
1556 			/*
1557 			 * For a WNOHANG return, clear out all the fields
1558 			 * we would set so the user can easily tell the
1559 			 * difference.
1560 			 */
1561 			if (!retval)
1562 				retval = put_user(0, &infop->si_signo);
1563 			if (!retval)
1564 				retval = put_user(0, &infop->si_errno);
1565 			if (!retval)
1566 				retval = put_user(0, &infop->si_code);
1567 			if (!retval)
1568 				retval = put_user(0, &infop->si_pid);
1569 			if (!retval)
1570 				retval = put_user(0, &infop->si_uid);
1571 			if (!retval)
1572 				retval = put_user(0, &infop->si_status);
1573 		}
1574 	}
1575 	return retval;
1576 }
1577 
1578 asmlinkage long sys_waitid(int which, pid_t pid,
1579 			   struct siginfo __user *infop, int options,
1580 			   struct rusage __user *ru)
1581 {
1582 	long ret;
1583 
1584 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1585 		return -EINVAL;
1586 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1587 		return -EINVAL;
1588 
1589 	switch (which) {
1590 	case P_ALL:
1591 		pid = -1;
1592 		break;
1593 	case P_PID:
1594 		if (pid <= 0)
1595 			return -EINVAL;
1596 		break;
1597 	case P_PGID:
1598 		if (pid <= 0)
1599 			return -EINVAL;
1600 		pid = -pid;
1601 		break;
1602 	default:
1603 		return -EINVAL;
1604 	}
1605 
1606 	ret = do_wait(pid, options, infop, NULL, ru);
1607 
1608 	/* avoid REGPARM breakage on x86: */
1609 	prevent_tail_call(ret);
1610 	return ret;
1611 }
1612 
1613 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr,
1614 			  int options, struct rusage __user *ru)
1615 {
1616 	long ret;
1617 
1618 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1619 			__WNOTHREAD|__WCLONE|__WALL))
1620 		return -EINVAL;
1621 	ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru);
1622 
1623 	/* avoid REGPARM breakage on x86: */
1624 	prevent_tail_call(ret);
1625 	return ret;
1626 }
1627 
1628 #ifdef __ARCH_WANT_SYS_WAITPID
1629 
1630 /*
1631  * sys_waitpid() remains for compatibility. waitpid() should be
1632  * implemented by calling sys_wait4() from libc.a.
1633  */
1634 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1635 {
1636 	return sys_wait4(pid, stat_addr, options, NULL);
1637 }
1638 
1639 #endif
1640