xref: /linux/kernel/exit.c (revision f2c3c32f45002de19c6dec33f32fd259e82f2557)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   *  linux/kernel/exit.c
4   *
5   *  Copyright (C) 1991, 1992  Linus Torvalds
6   */
7  
8  #include <linux/mm.h>
9  #include <linux/slab.h>
10  #include <linux/sched/autogroup.h>
11  #include <linux/sched/mm.h>
12  #include <linux/sched/stat.h>
13  #include <linux/sched/task.h>
14  #include <linux/sched/task_stack.h>
15  #include <linux/sched/cputime.h>
16  #include <linux/interrupt.h>
17  #include <linux/module.h>
18  #include <linux/capability.h>
19  #include <linux/completion.h>
20  #include <linux/personality.h>
21  #include <linux/tty.h>
22  #include <linux/iocontext.h>
23  #include <linux/key.h>
24  #include <linux/cpu.h>
25  #include <linux/acct.h>
26  #include <linux/tsacct_kern.h>
27  #include <linux/file.h>
28  #include <linux/fdtable.h>
29  #include <linux/freezer.h>
30  #include <linux/binfmts.h>
31  #include <linux/nsproxy.h>
32  #include <linux/pid_namespace.h>
33  #include <linux/ptrace.h>
34  #include <linux/profile.h>
35  #include <linux/mount.h>
36  #include <linux/proc_fs.h>
37  #include <linux/kthread.h>
38  #include <linux/mempolicy.h>
39  #include <linux/taskstats_kern.h>
40  #include <linux/delayacct.h>
41  #include <linux/cgroup.h>
42  #include <linux/syscalls.h>
43  #include <linux/signal.h>
44  #include <linux/posix-timers.h>
45  #include <linux/cn_proc.h>
46  #include <linux/mutex.h>
47  #include <linux/futex.h>
48  #include <linux/pipe_fs_i.h>
49  #include <linux/audit.h> /* for audit_free() */
50  #include <linux/resource.h>
51  #include <linux/blkdev.h>
52  #include <linux/task_io_accounting_ops.h>
53  #include <linux/tracehook.h>
54  #include <linux/fs_struct.h>
55  #include <linux/init_task.h>
56  #include <linux/perf_event.h>
57  #include <trace/events/sched.h>
58  #include <linux/hw_breakpoint.h>
59  #include <linux/oom.h>
60  #include <linux/writeback.h>
61  #include <linux/shm.h>
62  #include <linux/kcov.h>
63  #include <linux/random.h>
64  #include <linux/rcuwait.h>
65  #include <linux/compat.h>
66  #include <linux/io_uring.h>
67  
68  #include <linux/uaccess.h>
69  #include <asm/unistd.h>
70  #include <asm/mmu_context.h>
71  
72  static void __unhash_process(struct task_struct *p, bool group_dead)
73  {
74  	nr_threads--;
75  	detach_pid(p, PIDTYPE_PID);
76  	if (group_dead) {
77  		detach_pid(p, PIDTYPE_TGID);
78  		detach_pid(p, PIDTYPE_PGID);
79  		detach_pid(p, PIDTYPE_SID);
80  
81  		list_del_rcu(&p->tasks);
82  		list_del_init(&p->sibling);
83  		__this_cpu_dec(process_counts);
84  	}
85  	list_del_rcu(&p->thread_group);
86  	list_del_rcu(&p->thread_node);
87  }
88  
89  /*
90   * This function expects the tasklist_lock write-locked.
91   */
92  static void __exit_signal(struct task_struct *tsk)
93  {
94  	struct signal_struct *sig = tsk->signal;
95  	bool group_dead = thread_group_leader(tsk);
96  	struct sighand_struct *sighand;
97  	struct tty_struct *tty;
98  	u64 utime, stime;
99  
100  	sighand = rcu_dereference_check(tsk->sighand,
101  					lockdep_tasklist_lock_is_held());
102  	spin_lock(&sighand->siglock);
103  
104  #ifdef CONFIG_POSIX_TIMERS
105  	posix_cpu_timers_exit(tsk);
106  	if (group_dead)
107  		posix_cpu_timers_exit_group(tsk);
108  #endif
109  
110  	if (group_dead) {
111  		tty = sig->tty;
112  		sig->tty = NULL;
113  	} else {
114  		/*
115  		 * If there is any task waiting for the group exit
116  		 * then notify it:
117  		 */
118  		if (sig->notify_count > 0 && !--sig->notify_count)
119  			wake_up_process(sig->group_exit_task);
120  
121  		if (tsk == sig->curr_target)
122  			sig->curr_target = next_thread(tsk);
123  	}
124  
125  	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
126  			      sizeof(unsigned long long));
127  
128  	/*
129  	 * Accumulate here the counters for all threads as they die. We could
130  	 * skip the group leader because it is the last user of signal_struct,
131  	 * but we want to avoid the race with thread_group_cputime() which can
132  	 * see the empty ->thread_head list.
133  	 */
134  	task_cputime(tsk, &utime, &stime);
135  	write_seqlock(&sig->stats_lock);
136  	sig->utime += utime;
137  	sig->stime += stime;
138  	sig->gtime += task_gtime(tsk);
139  	sig->min_flt += tsk->min_flt;
140  	sig->maj_flt += tsk->maj_flt;
141  	sig->nvcsw += tsk->nvcsw;
142  	sig->nivcsw += tsk->nivcsw;
143  	sig->inblock += task_io_get_inblock(tsk);
144  	sig->oublock += task_io_get_oublock(tsk);
145  	task_io_accounting_add(&sig->ioac, &tsk->ioac);
146  	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
147  	sig->nr_threads--;
148  	__unhash_process(tsk, group_dead);
149  	write_sequnlock(&sig->stats_lock);
150  
151  	/*
152  	 * Do this under ->siglock, we can race with another thread
153  	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
154  	 */
155  	flush_sigqueue(&tsk->pending);
156  	tsk->sighand = NULL;
157  	spin_unlock(&sighand->siglock);
158  
159  	__cleanup_sighand(sighand);
160  	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
161  	if (group_dead) {
162  		flush_sigqueue(&sig->shared_pending);
163  		tty_kref_put(tty);
164  	}
165  }
166  
167  static void delayed_put_task_struct(struct rcu_head *rhp)
168  {
169  	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
170  
171  	perf_event_delayed_put(tsk);
172  	trace_sched_process_free(tsk);
173  	put_task_struct(tsk);
174  }
175  
176  void put_task_struct_rcu_user(struct task_struct *task)
177  {
178  	if (refcount_dec_and_test(&task->rcu_users))
179  		call_rcu(&task->rcu, delayed_put_task_struct);
180  }
181  
182  void release_task(struct task_struct *p)
183  {
184  	struct task_struct *leader;
185  	struct pid *thread_pid;
186  	int zap_leader;
187  repeat:
188  	/* don't need to get the RCU readlock here - the process is dead and
189  	 * can't be modifying its own credentials. But shut RCU-lockdep up */
190  	rcu_read_lock();
191  	atomic_dec(&__task_cred(p)->user->processes);
192  	rcu_read_unlock();
193  
194  	cgroup_release(p);
195  
196  	write_lock_irq(&tasklist_lock);
197  	ptrace_release_task(p);
198  	thread_pid = get_pid(p->thread_pid);
199  	__exit_signal(p);
200  
201  	/*
202  	 * If we are the last non-leader member of the thread
203  	 * group, and the leader is zombie, then notify the
204  	 * group leader's parent process. (if it wants notification.)
205  	 */
206  	zap_leader = 0;
207  	leader = p->group_leader;
208  	if (leader != p && thread_group_empty(leader)
209  			&& leader->exit_state == EXIT_ZOMBIE) {
210  		/*
211  		 * If we were the last child thread and the leader has
212  		 * exited already, and the leader's parent ignores SIGCHLD,
213  		 * then we are the one who should release the leader.
214  		 */
215  		zap_leader = do_notify_parent(leader, leader->exit_signal);
216  		if (zap_leader)
217  			leader->exit_state = EXIT_DEAD;
218  	}
219  
220  	write_unlock_irq(&tasklist_lock);
221  	seccomp_filter_release(p);
222  	proc_flush_pid(thread_pid);
223  	put_pid(thread_pid);
224  	release_thread(p);
225  	put_task_struct_rcu_user(p);
226  
227  	p = leader;
228  	if (unlikely(zap_leader))
229  		goto repeat;
230  }
231  
232  int rcuwait_wake_up(struct rcuwait *w)
233  {
234  	int ret = 0;
235  	struct task_struct *task;
236  
237  	rcu_read_lock();
238  
239  	/*
240  	 * Order condition vs @task, such that everything prior to the load
241  	 * of @task is visible. This is the condition as to why the user called
242  	 * rcuwait_wake() in the first place. Pairs with set_current_state()
243  	 * barrier (A) in rcuwait_wait_event().
244  	 *
245  	 *    WAIT                WAKE
246  	 *    [S] tsk = current	  [S] cond = true
247  	 *        MB (A)	      MB (B)
248  	 *    [L] cond		  [L] tsk
249  	 */
250  	smp_mb(); /* (B) */
251  
252  	task = rcu_dereference(w->task);
253  	if (task)
254  		ret = wake_up_process(task);
255  	rcu_read_unlock();
256  
257  	return ret;
258  }
259  EXPORT_SYMBOL_GPL(rcuwait_wake_up);
260  
261  /*
262   * Determine if a process group is "orphaned", according to the POSIX
263   * definition in 2.2.2.52.  Orphaned process groups are not to be affected
264   * by terminal-generated stop signals.  Newly orphaned process groups are
265   * to receive a SIGHUP and a SIGCONT.
266   *
267   * "I ask you, have you ever known what it is to be an orphan?"
268   */
269  static int will_become_orphaned_pgrp(struct pid *pgrp,
270  					struct task_struct *ignored_task)
271  {
272  	struct task_struct *p;
273  
274  	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
275  		if ((p == ignored_task) ||
276  		    (p->exit_state && thread_group_empty(p)) ||
277  		    is_global_init(p->real_parent))
278  			continue;
279  
280  		if (task_pgrp(p->real_parent) != pgrp &&
281  		    task_session(p->real_parent) == task_session(p))
282  			return 0;
283  	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
284  
285  	return 1;
286  }
287  
288  int is_current_pgrp_orphaned(void)
289  {
290  	int retval;
291  
292  	read_lock(&tasklist_lock);
293  	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
294  	read_unlock(&tasklist_lock);
295  
296  	return retval;
297  }
298  
299  static bool has_stopped_jobs(struct pid *pgrp)
300  {
301  	struct task_struct *p;
302  
303  	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
304  		if (p->signal->flags & SIGNAL_STOP_STOPPED)
305  			return true;
306  	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
307  
308  	return false;
309  }
310  
311  /*
312   * Check to see if any process groups have become orphaned as
313   * a result of our exiting, and if they have any stopped jobs,
314   * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
315   */
316  static void
317  kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
318  {
319  	struct pid *pgrp = task_pgrp(tsk);
320  	struct task_struct *ignored_task = tsk;
321  
322  	if (!parent)
323  		/* exit: our father is in a different pgrp than
324  		 * we are and we were the only connection outside.
325  		 */
326  		parent = tsk->real_parent;
327  	else
328  		/* reparent: our child is in a different pgrp than
329  		 * we are, and it was the only connection outside.
330  		 */
331  		ignored_task = NULL;
332  
333  	if (task_pgrp(parent) != pgrp &&
334  	    task_session(parent) == task_session(tsk) &&
335  	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
336  	    has_stopped_jobs(pgrp)) {
337  		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
338  		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
339  	}
340  }
341  
342  #ifdef CONFIG_MEMCG
343  /*
344   * A task is exiting.   If it owned this mm, find a new owner for the mm.
345   */
346  void mm_update_next_owner(struct mm_struct *mm)
347  {
348  	struct task_struct *c, *g, *p = current;
349  
350  retry:
351  	/*
352  	 * If the exiting or execing task is not the owner, it's
353  	 * someone else's problem.
354  	 */
355  	if (mm->owner != p)
356  		return;
357  	/*
358  	 * The current owner is exiting/execing and there are no other
359  	 * candidates.  Do not leave the mm pointing to a possibly
360  	 * freed task structure.
361  	 */
362  	if (atomic_read(&mm->mm_users) <= 1) {
363  		WRITE_ONCE(mm->owner, NULL);
364  		return;
365  	}
366  
367  	read_lock(&tasklist_lock);
368  	/*
369  	 * Search in the children
370  	 */
371  	list_for_each_entry(c, &p->children, sibling) {
372  		if (c->mm == mm)
373  			goto assign_new_owner;
374  	}
375  
376  	/*
377  	 * Search in the siblings
378  	 */
379  	list_for_each_entry(c, &p->real_parent->children, sibling) {
380  		if (c->mm == mm)
381  			goto assign_new_owner;
382  	}
383  
384  	/*
385  	 * Search through everything else, we should not get here often.
386  	 */
387  	for_each_process(g) {
388  		if (g->flags & PF_KTHREAD)
389  			continue;
390  		for_each_thread(g, c) {
391  			if (c->mm == mm)
392  				goto assign_new_owner;
393  			if (c->mm)
394  				break;
395  		}
396  	}
397  	read_unlock(&tasklist_lock);
398  	/*
399  	 * We found no owner yet mm_users > 1: this implies that we are
400  	 * most likely racing with swapoff (try_to_unuse()) or /proc or
401  	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
402  	 */
403  	WRITE_ONCE(mm->owner, NULL);
404  	return;
405  
406  assign_new_owner:
407  	BUG_ON(c == p);
408  	get_task_struct(c);
409  	/*
410  	 * The task_lock protects c->mm from changing.
411  	 * We always want mm->owner->mm == mm
412  	 */
413  	task_lock(c);
414  	/*
415  	 * Delay read_unlock() till we have the task_lock()
416  	 * to ensure that c does not slip away underneath us
417  	 */
418  	read_unlock(&tasklist_lock);
419  	if (c->mm != mm) {
420  		task_unlock(c);
421  		put_task_struct(c);
422  		goto retry;
423  	}
424  	WRITE_ONCE(mm->owner, c);
425  	task_unlock(c);
426  	put_task_struct(c);
427  }
428  #endif /* CONFIG_MEMCG */
429  
430  /*
431   * Turn us into a lazy TLB process if we
432   * aren't already..
433   */
434  static void exit_mm(void)
435  {
436  	struct mm_struct *mm = current->mm;
437  	struct core_state *core_state;
438  
439  	exit_mm_release(current, mm);
440  	if (!mm)
441  		return;
442  	sync_mm_rss(mm);
443  	/*
444  	 * Serialize with any possible pending coredump.
445  	 * We must hold mmap_lock around checking core_state
446  	 * and clearing tsk->mm.  The core-inducing thread
447  	 * will increment ->nr_threads for each thread in the
448  	 * group with ->mm != NULL.
449  	 */
450  	mmap_read_lock(mm);
451  	core_state = mm->core_state;
452  	if (core_state) {
453  		struct core_thread self;
454  
455  		mmap_read_unlock(mm);
456  
457  		self.task = current;
458  		if (self.task->flags & PF_SIGNALED)
459  			self.next = xchg(&core_state->dumper.next, &self);
460  		else
461  			self.task = NULL;
462  		/*
463  		 * Implies mb(), the result of xchg() must be visible
464  		 * to core_state->dumper.
465  		 */
466  		if (atomic_dec_and_test(&core_state->nr_threads))
467  			complete(&core_state->startup);
468  
469  		for (;;) {
470  			set_current_state(TASK_UNINTERRUPTIBLE);
471  			if (!self.task) /* see coredump_finish() */
472  				break;
473  			freezable_schedule();
474  		}
475  		__set_current_state(TASK_RUNNING);
476  		mmap_read_lock(mm);
477  	}
478  	mmgrab(mm);
479  	BUG_ON(mm != current->active_mm);
480  	/* more a memory barrier than a real lock */
481  	task_lock(current);
482  	/*
483  	 * When a thread stops operating on an address space, the loop
484  	 * in membarrier_private_expedited() may not observe that
485  	 * tsk->mm, and the loop in membarrier_global_expedited() may
486  	 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
487  	 * rq->membarrier_state, so those would not issue an IPI.
488  	 * Membarrier requires a memory barrier after accessing
489  	 * user-space memory, before clearing tsk->mm or the
490  	 * rq->membarrier_state.
491  	 */
492  	smp_mb__after_spinlock();
493  	local_irq_disable();
494  	current->mm = NULL;
495  	membarrier_update_current_mm(NULL);
496  	enter_lazy_tlb(mm, current);
497  	local_irq_enable();
498  	task_unlock(current);
499  	mmap_read_unlock(mm);
500  	mm_update_next_owner(mm);
501  	mmput(mm);
502  	if (test_thread_flag(TIF_MEMDIE))
503  		exit_oom_victim();
504  }
505  
506  static struct task_struct *find_alive_thread(struct task_struct *p)
507  {
508  	struct task_struct *t;
509  
510  	for_each_thread(p, t) {
511  		if (!(t->flags & PF_EXITING))
512  			return t;
513  	}
514  	return NULL;
515  }
516  
517  static struct task_struct *find_child_reaper(struct task_struct *father,
518  						struct list_head *dead)
519  	__releases(&tasklist_lock)
520  	__acquires(&tasklist_lock)
521  {
522  	struct pid_namespace *pid_ns = task_active_pid_ns(father);
523  	struct task_struct *reaper = pid_ns->child_reaper;
524  	struct task_struct *p, *n;
525  
526  	if (likely(reaper != father))
527  		return reaper;
528  
529  	reaper = find_alive_thread(father);
530  	if (reaper) {
531  		pid_ns->child_reaper = reaper;
532  		return reaper;
533  	}
534  
535  	write_unlock_irq(&tasklist_lock);
536  
537  	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
538  		list_del_init(&p->ptrace_entry);
539  		release_task(p);
540  	}
541  
542  	zap_pid_ns_processes(pid_ns);
543  	write_lock_irq(&tasklist_lock);
544  
545  	return father;
546  }
547  
548  /*
549   * When we die, we re-parent all our children, and try to:
550   * 1. give them to another thread in our thread group, if such a member exists
551   * 2. give it to the first ancestor process which prctl'd itself as a
552   *    child_subreaper for its children (like a service manager)
553   * 3. give it to the init process (PID 1) in our pid namespace
554   */
555  static struct task_struct *find_new_reaper(struct task_struct *father,
556  					   struct task_struct *child_reaper)
557  {
558  	struct task_struct *thread, *reaper;
559  
560  	thread = find_alive_thread(father);
561  	if (thread)
562  		return thread;
563  
564  	if (father->signal->has_child_subreaper) {
565  		unsigned int ns_level = task_pid(father)->level;
566  		/*
567  		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
568  		 * We can't check reaper != child_reaper to ensure we do not
569  		 * cross the namespaces, the exiting parent could be injected
570  		 * by setns() + fork().
571  		 * We check pid->level, this is slightly more efficient than
572  		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
573  		 */
574  		for (reaper = father->real_parent;
575  		     task_pid(reaper)->level == ns_level;
576  		     reaper = reaper->real_parent) {
577  			if (reaper == &init_task)
578  				break;
579  			if (!reaper->signal->is_child_subreaper)
580  				continue;
581  			thread = find_alive_thread(reaper);
582  			if (thread)
583  				return thread;
584  		}
585  	}
586  
587  	return child_reaper;
588  }
589  
590  /*
591  * Any that need to be release_task'd are put on the @dead list.
592   */
593  static void reparent_leader(struct task_struct *father, struct task_struct *p,
594  				struct list_head *dead)
595  {
596  	if (unlikely(p->exit_state == EXIT_DEAD))
597  		return;
598  
599  	/* We don't want people slaying init. */
600  	p->exit_signal = SIGCHLD;
601  
602  	/* If it has exited notify the new parent about this child's death. */
603  	if (!p->ptrace &&
604  	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
605  		if (do_notify_parent(p, p->exit_signal)) {
606  			p->exit_state = EXIT_DEAD;
607  			list_add(&p->ptrace_entry, dead);
608  		}
609  	}
610  
611  	kill_orphaned_pgrp(p, father);
612  }
613  
614  /*
615   * This does two things:
616   *
617   * A.  Make init inherit all the child processes
618   * B.  Check to see if any process groups have become orphaned
619   *	as a result of our exiting, and if they have any stopped
620   *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
621   */
622  static void forget_original_parent(struct task_struct *father,
623  					struct list_head *dead)
624  {
625  	struct task_struct *p, *t, *reaper;
626  
627  	if (unlikely(!list_empty(&father->ptraced)))
628  		exit_ptrace(father, dead);
629  
630  	/* Can drop and reacquire tasklist_lock */
631  	reaper = find_child_reaper(father, dead);
632  	if (list_empty(&father->children))
633  		return;
634  
635  	reaper = find_new_reaper(father, reaper);
636  	list_for_each_entry(p, &father->children, sibling) {
637  		for_each_thread(p, t) {
638  			RCU_INIT_POINTER(t->real_parent, reaper);
639  			BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
640  			if (likely(!t->ptrace))
641  				t->parent = t->real_parent;
642  			if (t->pdeath_signal)
643  				group_send_sig_info(t->pdeath_signal,
644  						    SEND_SIG_NOINFO, t,
645  						    PIDTYPE_TGID);
646  		}
647  		/*
648  		 * If this is a threaded reparent there is no need to
649  		 * notify anyone anything has happened.
650  		 */
651  		if (!same_thread_group(reaper, father))
652  			reparent_leader(father, p, dead);
653  	}
654  	list_splice_tail_init(&father->children, &reaper->children);
655  }
656  
657  /*
658   * Send signals to all our closest relatives so that they know
659   * to properly mourn us..
660   */
661  static void exit_notify(struct task_struct *tsk, int group_dead)
662  {
663  	bool autoreap;
664  	struct task_struct *p, *n;
665  	LIST_HEAD(dead);
666  
667  	write_lock_irq(&tasklist_lock);
668  	forget_original_parent(tsk, &dead);
669  
670  	if (group_dead)
671  		kill_orphaned_pgrp(tsk->group_leader, NULL);
672  
673  	tsk->exit_state = EXIT_ZOMBIE;
674  	if (unlikely(tsk->ptrace)) {
675  		int sig = thread_group_leader(tsk) &&
676  				thread_group_empty(tsk) &&
677  				!ptrace_reparented(tsk) ?
678  			tsk->exit_signal : SIGCHLD;
679  		autoreap = do_notify_parent(tsk, sig);
680  	} else if (thread_group_leader(tsk)) {
681  		autoreap = thread_group_empty(tsk) &&
682  			do_notify_parent(tsk, tsk->exit_signal);
683  	} else {
684  		autoreap = true;
685  	}
686  
687  	if (autoreap) {
688  		tsk->exit_state = EXIT_DEAD;
689  		list_add(&tsk->ptrace_entry, &dead);
690  	}
691  
692  	/* mt-exec, de_thread() is waiting for group leader */
693  	if (unlikely(tsk->signal->notify_count < 0))
694  		wake_up_process(tsk->signal->group_exit_task);
695  	write_unlock_irq(&tasklist_lock);
696  
697  	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
698  		list_del_init(&p->ptrace_entry);
699  		release_task(p);
700  	}
701  }
702  
703  #ifdef CONFIG_DEBUG_STACK_USAGE
704  static void check_stack_usage(void)
705  {
706  	static DEFINE_SPINLOCK(low_water_lock);
707  	static int lowest_to_date = THREAD_SIZE;
708  	unsigned long free;
709  
710  	free = stack_not_used(current);
711  
712  	if (free >= lowest_to_date)
713  		return;
714  
715  	spin_lock(&low_water_lock);
716  	if (free < lowest_to_date) {
717  		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
718  			current->comm, task_pid_nr(current), free);
719  		lowest_to_date = free;
720  	}
721  	spin_unlock(&low_water_lock);
722  }
723  #else
724  static inline void check_stack_usage(void) {}
725  #endif
726  
727  void __noreturn do_exit(long code)
728  {
729  	struct task_struct *tsk = current;
730  	int group_dead;
731  
732  	/*
733  	 * We can get here from a kernel oops, sometimes with preemption off.
734  	 * Start by checking for critical errors.
735  	 * Then fix up important state like USER_DS and preemption.
736  	 * Then do everything else.
737  	 */
738  
739  	WARN_ON(blk_needs_flush_plug(tsk));
740  
741  	if (unlikely(in_interrupt()))
742  		panic("Aiee, killing interrupt handler!");
743  	if (unlikely(!tsk->pid))
744  		panic("Attempted to kill the idle task!");
745  
746  	/*
747  	 * If do_exit is called because this processes oopsed, it's possible
748  	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
749  	 * continuing. Amongst other possible reasons, this is to prevent
750  	 * mm_release()->clear_child_tid() from writing to a user-controlled
751  	 * kernel address.
752  	 */
753  	force_uaccess_begin();
754  
755  	if (unlikely(in_atomic())) {
756  		pr_info("note: %s[%d] exited with preempt_count %d\n",
757  			current->comm, task_pid_nr(current),
758  			preempt_count());
759  		preempt_count_set(PREEMPT_ENABLED);
760  	}
761  
762  	profile_task_exit(tsk);
763  	kcov_task_exit(tsk);
764  
765  	ptrace_event(PTRACE_EVENT_EXIT, code);
766  
767  	validate_creds_for_do_exit(tsk);
768  
769  	/*
770  	 * We're taking recursive faults here in do_exit. Safest is to just
771  	 * leave this task alone and wait for reboot.
772  	 */
773  	if (unlikely(tsk->flags & PF_EXITING)) {
774  		pr_alert("Fixing recursive fault but reboot is needed!\n");
775  		futex_exit_recursive(tsk);
776  		set_current_state(TASK_UNINTERRUPTIBLE);
777  		schedule();
778  	}
779  
780  	io_uring_files_cancel(tsk->files);
781  	exit_signals(tsk);  /* sets PF_EXITING */
782  
783  	/* sync mm's RSS info before statistics gathering */
784  	if (tsk->mm)
785  		sync_mm_rss(tsk->mm);
786  	acct_update_integrals(tsk);
787  	group_dead = atomic_dec_and_test(&tsk->signal->live);
788  	if (group_dead) {
789  		/*
790  		 * If the last thread of global init has exited, panic
791  		 * immediately to get a useable coredump.
792  		 */
793  		if (unlikely(is_global_init(tsk)))
794  			panic("Attempted to kill init! exitcode=0x%08x\n",
795  				tsk->signal->group_exit_code ?: (int)code);
796  
797  #ifdef CONFIG_POSIX_TIMERS
798  		hrtimer_cancel(&tsk->signal->real_timer);
799  		exit_itimers(tsk->signal);
800  #endif
801  		if (tsk->mm)
802  			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
803  	}
804  	acct_collect(code, group_dead);
805  	if (group_dead)
806  		tty_audit_exit();
807  	audit_free(tsk);
808  
809  	tsk->exit_code = code;
810  	taskstats_exit(tsk, group_dead);
811  
812  	exit_mm();
813  
814  	if (group_dead)
815  		acct_process();
816  	trace_sched_process_exit(tsk);
817  
818  	exit_sem(tsk);
819  	exit_shm(tsk);
820  	exit_files(tsk);
821  	exit_fs(tsk);
822  	if (group_dead)
823  		disassociate_ctty(1);
824  	exit_task_namespaces(tsk);
825  	exit_task_work(tsk);
826  	exit_thread(tsk);
827  
828  	/*
829  	 * Flush inherited counters to the parent - before the parent
830  	 * gets woken up by child-exit notifications.
831  	 *
832  	 * because of cgroup mode, must be called before cgroup_exit()
833  	 */
834  	perf_event_exit_task(tsk);
835  
836  	sched_autogroup_exit_task(tsk);
837  	cgroup_exit(tsk);
838  
839  	/*
840  	 * FIXME: do that only when needed, using sched_exit tracepoint
841  	 */
842  	flush_ptrace_hw_breakpoint(tsk);
843  
844  	exit_tasks_rcu_start();
845  	exit_notify(tsk, group_dead);
846  	proc_exit_connector(tsk);
847  	mpol_put_task_policy(tsk);
848  #ifdef CONFIG_FUTEX
849  	if (unlikely(current->pi_state_cache))
850  		kfree(current->pi_state_cache);
851  #endif
852  	/*
853  	 * Make sure we are holding no locks:
854  	 */
855  	debug_check_no_locks_held();
856  
857  	if (tsk->io_context)
858  		exit_io_context(tsk);
859  
860  	if (tsk->splice_pipe)
861  		free_pipe_info(tsk->splice_pipe);
862  
863  	if (tsk->task_frag.page)
864  		put_page(tsk->task_frag.page);
865  
866  	validate_creds_for_do_exit(tsk);
867  
868  	check_stack_usage();
869  	preempt_disable();
870  	if (tsk->nr_dirtied)
871  		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
872  	exit_rcu();
873  	exit_tasks_rcu_finish();
874  
875  	lockdep_free_task(tsk);
876  	do_task_dead();
877  }
878  EXPORT_SYMBOL_GPL(do_exit);
879  
880  void complete_and_exit(struct completion *comp, long code)
881  {
882  	if (comp)
883  		complete(comp);
884  
885  	do_exit(code);
886  }
887  EXPORT_SYMBOL(complete_and_exit);
888  
889  SYSCALL_DEFINE1(exit, int, error_code)
890  {
891  	do_exit((error_code&0xff)<<8);
892  }
893  
894  /*
895   * Take down every thread in the group.  This is called by fatal signals
896   * as well as by sys_exit_group (below).
897   */
898  void
899  do_group_exit(int exit_code)
900  {
901  	struct signal_struct *sig = current->signal;
902  
903  	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
904  
905  	if (signal_group_exit(sig))
906  		exit_code = sig->group_exit_code;
907  	else if (!thread_group_empty(current)) {
908  		struct sighand_struct *const sighand = current->sighand;
909  
910  		spin_lock_irq(&sighand->siglock);
911  		if (signal_group_exit(sig))
912  			/* Another thread got here before we took the lock.  */
913  			exit_code = sig->group_exit_code;
914  		else {
915  			sig->group_exit_code = exit_code;
916  			sig->flags = SIGNAL_GROUP_EXIT;
917  			zap_other_threads(current);
918  		}
919  		spin_unlock_irq(&sighand->siglock);
920  	}
921  
922  	do_exit(exit_code);
923  	/* NOTREACHED */
924  }
925  
926  /*
927   * this kills every thread in the thread group. Note that any externally
928   * wait4()-ing process will get the correct exit code - even if this
929   * thread is not the thread group leader.
930   */
931  SYSCALL_DEFINE1(exit_group, int, error_code)
932  {
933  	do_group_exit((error_code & 0xff) << 8);
934  	/* NOTREACHED */
935  	return 0;
936  }
937  
938  struct waitid_info {
939  	pid_t pid;
940  	uid_t uid;
941  	int status;
942  	int cause;
943  };
944  
945  struct wait_opts {
946  	enum pid_type		wo_type;
947  	int			wo_flags;
948  	struct pid		*wo_pid;
949  
950  	struct waitid_info	*wo_info;
951  	int			wo_stat;
952  	struct rusage		*wo_rusage;
953  
954  	wait_queue_entry_t		child_wait;
955  	int			notask_error;
956  };
957  
958  static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
959  {
960  	return	wo->wo_type == PIDTYPE_MAX ||
961  		task_pid_type(p, wo->wo_type) == wo->wo_pid;
962  }
963  
964  static int
965  eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
966  {
967  	if (!eligible_pid(wo, p))
968  		return 0;
969  
970  	/*
971  	 * Wait for all children (clone and not) if __WALL is set or
972  	 * if it is traced by us.
973  	 */
974  	if (ptrace || (wo->wo_flags & __WALL))
975  		return 1;
976  
977  	/*
978  	 * Otherwise, wait for clone children *only* if __WCLONE is set;
979  	 * otherwise, wait for non-clone children *only*.
980  	 *
981  	 * Note: a "clone" child here is one that reports to its parent
982  	 * using a signal other than SIGCHLD, or a non-leader thread which
983  	 * we can only see if it is traced by us.
984  	 */
985  	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
986  		return 0;
987  
988  	return 1;
989  }
990  
991  /*
992   * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
993   * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
994   * the lock and this task is uninteresting.  If we return nonzero, we have
995   * released the lock and the system call should return.
996   */
997  static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
998  {
999  	int state, status;
1000  	pid_t pid = task_pid_vnr(p);
1001  	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1002  	struct waitid_info *infop;
1003  
1004  	if (!likely(wo->wo_flags & WEXITED))
1005  		return 0;
1006  
1007  	if (unlikely(wo->wo_flags & WNOWAIT)) {
1008  		status = p->exit_code;
1009  		get_task_struct(p);
1010  		read_unlock(&tasklist_lock);
1011  		sched_annotate_sleep();
1012  		if (wo->wo_rusage)
1013  			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1014  		put_task_struct(p);
1015  		goto out_info;
1016  	}
1017  	/*
1018  	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1019  	 */
1020  	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1021  		EXIT_TRACE : EXIT_DEAD;
1022  	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1023  		return 0;
1024  	/*
1025  	 * We own this thread, nobody else can reap it.
1026  	 */
1027  	read_unlock(&tasklist_lock);
1028  	sched_annotate_sleep();
1029  
1030  	/*
1031  	 * Check thread_group_leader() to exclude the traced sub-threads.
1032  	 */
1033  	if (state == EXIT_DEAD && thread_group_leader(p)) {
1034  		struct signal_struct *sig = p->signal;
1035  		struct signal_struct *psig = current->signal;
1036  		unsigned long maxrss;
1037  		u64 tgutime, tgstime;
1038  
1039  		/*
1040  		 * The resource counters for the group leader are in its
1041  		 * own task_struct.  Those for dead threads in the group
1042  		 * are in its signal_struct, as are those for the child
1043  		 * processes it has previously reaped.  All these
1044  		 * accumulate in the parent's signal_struct c* fields.
1045  		 *
1046  		 * We don't bother to take a lock here to protect these
1047  		 * p->signal fields because the whole thread group is dead
1048  		 * and nobody can change them.
1049  		 *
1050  		 * psig->stats_lock also protects us from our sub-theads
1051  		 * which can reap other children at the same time. Until
1052  		 * we change k_getrusage()-like users to rely on this lock
1053  		 * we have to take ->siglock as well.
1054  		 *
1055  		 * We use thread_group_cputime_adjusted() to get times for
1056  		 * the thread group, which consolidates times for all threads
1057  		 * in the group including the group leader.
1058  		 */
1059  		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1060  		spin_lock_irq(&current->sighand->siglock);
1061  		write_seqlock(&psig->stats_lock);
1062  		psig->cutime += tgutime + sig->cutime;
1063  		psig->cstime += tgstime + sig->cstime;
1064  		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1065  		psig->cmin_flt +=
1066  			p->min_flt + sig->min_flt + sig->cmin_flt;
1067  		psig->cmaj_flt +=
1068  			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1069  		psig->cnvcsw +=
1070  			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1071  		psig->cnivcsw +=
1072  			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1073  		psig->cinblock +=
1074  			task_io_get_inblock(p) +
1075  			sig->inblock + sig->cinblock;
1076  		psig->coublock +=
1077  			task_io_get_oublock(p) +
1078  			sig->oublock + sig->coublock;
1079  		maxrss = max(sig->maxrss, sig->cmaxrss);
1080  		if (psig->cmaxrss < maxrss)
1081  			psig->cmaxrss = maxrss;
1082  		task_io_accounting_add(&psig->ioac, &p->ioac);
1083  		task_io_accounting_add(&psig->ioac, &sig->ioac);
1084  		write_sequnlock(&psig->stats_lock);
1085  		spin_unlock_irq(&current->sighand->siglock);
1086  	}
1087  
1088  	if (wo->wo_rusage)
1089  		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1090  	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1091  		? p->signal->group_exit_code : p->exit_code;
1092  	wo->wo_stat = status;
1093  
1094  	if (state == EXIT_TRACE) {
1095  		write_lock_irq(&tasklist_lock);
1096  		/* We dropped tasklist, ptracer could die and untrace */
1097  		ptrace_unlink(p);
1098  
1099  		/* If parent wants a zombie, don't release it now */
1100  		state = EXIT_ZOMBIE;
1101  		if (do_notify_parent(p, p->exit_signal))
1102  			state = EXIT_DEAD;
1103  		p->exit_state = state;
1104  		write_unlock_irq(&tasklist_lock);
1105  	}
1106  	if (state == EXIT_DEAD)
1107  		release_task(p);
1108  
1109  out_info:
1110  	infop = wo->wo_info;
1111  	if (infop) {
1112  		if ((status & 0x7f) == 0) {
1113  			infop->cause = CLD_EXITED;
1114  			infop->status = status >> 8;
1115  		} else {
1116  			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1117  			infop->status = status & 0x7f;
1118  		}
1119  		infop->pid = pid;
1120  		infop->uid = uid;
1121  	}
1122  
1123  	return pid;
1124  }
1125  
1126  static int *task_stopped_code(struct task_struct *p, bool ptrace)
1127  {
1128  	if (ptrace) {
1129  		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1130  			return &p->exit_code;
1131  	} else {
1132  		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1133  			return &p->signal->group_exit_code;
1134  	}
1135  	return NULL;
1136  }
1137  
1138  /**
1139   * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1140   * @wo: wait options
1141   * @ptrace: is the wait for ptrace
1142   * @p: task to wait for
1143   *
1144   * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1145   *
1146   * CONTEXT:
1147   * read_lock(&tasklist_lock), which is released if return value is
1148   * non-zero.  Also, grabs and releases @p->sighand->siglock.
1149   *
1150   * RETURNS:
1151   * 0 if wait condition didn't exist and search for other wait conditions
1152   * should continue.  Non-zero return, -errno on failure and @p's pid on
1153   * success, implies that tasklist_lock is released and wait condition
1154   * search should terminate.
1155   */
1156  static int wait_task_stopped(struct wait_opts *wo,
1157  				int ptrace, struct task_struct *p)
1158  {
1159  	struct waitid_info *infop;
1160  	int exit_code, *p_code, why;
1161  	uid_t uid = 0; /* unneeded, required by compiler */
1162  	pid_t pid;
1163  
1164  	/*
1165  	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1166  	 */
1167  	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1168  		return 0;
1169  
1170  	if (!task_stopped_code(p, ptrace))
1171  		return 0;
1172  
1173  	exit_code = 0;
1174  	spin_lock_irq(&p->sighand->siglock);
1175  
1176  	p_code = task_stopped_code(p, ptrace);
1177  	if (unlikely(!p_code))
1178  		goto unlock_sig;
1179  
1180  	exit_code = *p_code;
1181  	if (!exit_code)
1182  		goto unlock_sig;
1183  
1184  	if (!unlikely(wo->wo_flags & WNOWAIT))
1185  		*p_code = 0;
1186  
1187  	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1188  unlock_sig:
1189  	spin_unlock_irq(&p->sighand->siglock);
1190  	if (!exit_code)
1191  		return 0;
1192  
1193  	/*
1194  	 * Now we are pretty sure this task is interesting.
1195  	 * Make sure it doesn't get reaped out from under us while we
1196  	 * give up the lock and then examine it below.  We don't want to
1197  	 * keep holding onto the tasklist_lock while we call getrusage and
1198  	 * possibly take page faults for user memory.
1199  	 */
1200  	get_task_struct(p);
1201  	pid = task_pid_vnr(p);
1202  	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1203  	read_unlock(&tasklist_lock);
1204  	sched_annotate_sleep();
1205  	if (wo->wo_rusage)
1206  		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1207  	put_task_struct(p);
1208  
1209  	if (likely(!(wo->wo_flags & WNOWAIT)))
1210  		wo->wo_stat = (exit_code << 8) | 0x7f;
1211  
1212  	infop = wo->wo_info;
1213  	if (infop) {
1214  		infop->cause = why;
1215  		infop->status = exit_code;
1216  		infop->pid = pid;
1217  		infop->uid = uid;
1218  	}
1219  	return pid;
1220  }
1221  
1222  /*
1223   * Handle do_wait work for one task in a live, non-stopped state.
1224   * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1225   * the lock and this task is uninteresting.  If we return nonzero, we have
1226   * released the lock and the system call should return.
1227   */
1228  static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1229  {
1230  	struct waitid_info *infop;
1231  	pid_t pid;
1232  	uid_t uid;
1233  
1234  	if (!unlikely(wo->wo_flags & WCONTINUED))
1235  		return 0;
1236  
1237  	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1238  		return 0;
1239  
1240  	spin_lock_irq(&p->sighand->siglock);
1241  	/* Re-check with the lock held.  */
1242  	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1243  		spin_unlock_irq(&p->sighand->siglock);
1244  		return 0;
1245  	}
1246  	if (!unlikely(wo->wo_flags & WNOWAIT))
1247  		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1248  	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1249  	spin_unlock_irq(&p->sighand->siglock);
1250  
1251  	pid = task_pid_vnr(p);
1252  	get_task_struct(p);
1253  	read_unlock(&tasklist_lock);
1254  	sched_annotate_sleep();
1255  	if (wo->wo_rusage)
1256  		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1257  	put_task_struct(p);
1258  
1259  	infop = wo->wo_info;
1260  	if (!infop) {
1261  		wo->wo_stat = 0xffff;
1262  	} else {
1263  		infop->cause = CLD_CONTINUED;
1264  		infop->pid = pid;
1265  		infop->uid = uid;
1266  		infop->status = SIGCONT;
1267  	}
1268  	return pid;
1269  }
1270  
1271  /*
1272   * Consider @p for a wait by @parent.
1273   *
1274   * -ECHILD should be in ->notask_error before the first call.
1275   * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1276   * Returns zero if the search for a child should continue;
1277   * then ->notask_error is 0 if @p is an eligible child,
1278   * or still -ECHILD.
1279   */
1280  static int wait_consider_task(struct wait_opts *wo, int ptrace,
1281  				struct task_struct *p)
1282  {
1283  	/*
1284  	 * We can race with wait_task_zombie() from another thread.
1285  	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1286  	 * can't confuse the checks below.
1287  	 */
1288  	int exit_state = READ_ONCE(p->exit_state);
1289  	int ret;
1290  
1291  	if (unlikely(exit_state == EXIT_DEAD))
1292  		return 0;
1293  
1294  	ret = eligible_child(wo, ptrace, p);
1295  	if (!ret)
1296  		return ret;
1297  
1298  	if (unlikely(exit_state == EXIT_TRACE)) {
1299  		/*
1300  		 * ptrace == 0 means we are the natural parent. In this case
1301  		 * we should clear notask_error, debugger will notify us.
1302  		 */
1303  		if (likely(!ptrace))
1304  			wo->notask_error = 0;
1305  		return 0;
1306  	}
1307  
1308  	if (likely(!ptrace) && unlikely(p->ptrace)) {
1309  		/*
1310  		 * If it is traced by its real parent's group, just pretend
1311  		 * the caller is ptrace_do_wait() and reap this child if it
1312  		 * is zombie.
1313  		 *
1314  		 * This also hides group stop state from real parent; otherwise
1315  		 * a single stop can be reported twice as group and ptrace stop.
1316  		 * If a ptracer wants to distinguish these two events for its
1317  		 * own children it should create a separate process which takes
1318  		 * the role of real parent.
1319  		 */
1320  		if (!ptrace_reparented(p))
1321  			ptrace = 1;
1322  	}
1323  
1324  	/* slay zombie? */
1325  	if (exit_state == EXIT_ZOMBIE) {
1326  		/* we don't reap group leaders with subthreads */
1327  		if (!delay_group_leader(p)) {
1328  			/*
1329  			 * A zombie ptracee is only visible to its ptracer.
1330  			 * Notification and reaping will be cascaded to the
1331  			 * real parent when the ptracer detaches.
1332  			 */
1333  			if (unlikely(ptrace) || likely(!p->ptrace))
1334  				return wait_task_zombie(wo, p);
1335  		}
1336  
1337  		/*
1338  		 * Allow access to stopped/continued state via zombie by
1339  		 * falling through.  Clearing of notask_error is complex.
1340  		 *
1341  		 * When !@ptrace:
1342  		 *
1343  		 * If WEXITED is set, notask_error should naturally be
1344  		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1345  		 * so, if there are live subthreads, there are events to
1346  		 * wait for.  If all subthreads are dead, it's still safe
1347  		 * to clear - this function will be called again in finite
1348  		 * amount time once all the subthreads are released and
1349  		 * will then return without clearing.
1350  		 *
1351  		 * When @ptrace:
1352  		 *
1353  		 * Stopped state is per-task and thus can't change once the
1354  		 * target task dies.  Only continued and exited can happen.
1355  		 * Clear notask_error if WCONTINUED | WEXITED.
1356  		 */
1357  		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1358  			wo->notask_error = 0;
1359  	} else {
1360  		/*
1361  		 * @p is alive and it's gonna stop, continue or exit, so
1362  		 * there always is something to wait for.
1363  		 */
1364  		wo->notask_error = 0;
1365  	}
1366  
1367  	/*
1368  	 * Wait for stopped.  Depending on @ptrace, different stopped state
1369  	 * is used and the two don't interact with each other.
1370  	 */
1371  	ret = wait_task_stopped(wo, ptrace, p);
1372  	if (ret)
1373  		return ret;
1374  
1375  	/*
1376  	 * Wait for continued.  There's only one continued state and the
1377  	 * ptracer can consume it which can confuse the real parent.  Don't
1378  	 * use WCONTINUED from ptracer.  You don't need or want it.
1379  	 */
1380  	return wait_task_continued(wo, p);
1381  }
1382  
1383  /*
1384   * Do the work of do_wait() for one thread in the group, @tsk.
1385   *
1386   * -ECHILD should be in ->notask_error before the first call.
1387   * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1388   * Returns zero if the search for a child should continue; then
1389   * ->notask_error is 0 if there were any eligible children,
1390   * or still -ECHILD.
1391   */
1392  static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1393  {
1394  	struct task_struct *p;
1395  
1396  	list_for_each_entry(p, &tsk->children, sibling) {
1397  		int ret = wait_consider_task(wo, 0, p);
1398  
1399  		if (ret)
1400  			return ret;
1401  	}
1402  
1403  	return 0;
1404  }
1405  
1406  static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1407  {
1408  	struct task_struct *p;
1409  
1410  	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1411  		int ret = wait_consider_task(wo, 1, p);
1412  
1413  		if (ret)
1414  			return ret;
1415  	}
1416  
1417  	return 0;
1418  }
1419  
1420  static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1421  				int sync, void *key)
1422  {
1423  	struct wait_opts *wo = container_of(wait, struct wait_opts,
1424  						child_wait);
1425  	struct task_struct *p = key;
1426  
1427  	if (!eligible_pid(wo, p))
1428  		return 0;
1429  
1430  	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1431  		return 0;
1432  
1433  	return default_wake_function(wait, mode, sync, key);
1434  }
1435  
1436  void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1437  {
1438  	__wake_up_sync_key(&parent->signal->wait_chldexit,
1439  			   TASK_INTERRUPTIBLE, p);
1440  }
1441  
1442  static long do_wait(struct wait_opts *wo)
1443  {
1444  	struct task_struct *tsk;
1445  	int retval;
1446  
1447  	trace_sched_process_wait(wo->wo_pid);
1448  
1449  	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1450  	wo->child_wait.private = current;
1451  	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1452  repeat:
1453  	/*
1454  	 * If there is nothing that can match our criteria, just get out.
1455  	 * We will clear ->notask_error to zero if we see any child that
1456  	 * might later match our criteria, even if we are not able to reap
1457  	 * it yet.
1458  	 */
1459  	wo->notask_error = -ECHILD;
1460  	if ((wo->wo_type < PIDTYPE_MAX) &&
1461  	   (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1462  		goto notask;
1463  
1464  	set_current_state(TASK_INTERRUPTIBLE);
1465  	read_lock(&tasklist_lock);
1466  	tsk = current;
1467  	do {
1468  		retval = do_wait_thread(wo, tsk);
1469  		if (retval)
1470  			goto end;
1471  
1472  		retval = ptrace_do_wait(wo, tsk);
1473  		if (retval)
1474  			goto end;
1475  
1476  		if (wo->wo_flags & __WNOTHREAD)
1477  			break;
1478  	} while_each_thread(current, tsk);
1479  	read_unlock(&tasklist_lock);
1480  
1481  notask:
1482  	retval = wo->notask_error;
1483  	if (!retval && !(wo->wo_flags & WNOHANG)) {
1484  		retval = -ERESTARTSYS;
1485  		if (!signal_pending(current)) {
1486  			schedule();
1487  			goto repeat;
1488  		}
1489  	}
1490  end:
1491  	__set_current_state(TASK_RUNNING);
1492  	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1493  	return retval;
1494  }
1495  
1496  static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1497  			  int options, struct rusage *ru)
1498  {
1499  	struct wait_opts wo;
1500  	struct pid *pid = NULL;
1501  	enum pid_type type;
1502  	long ret;
1503  	unsigned int f_flags = 0;
1504  
1505  	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1506  			__WNOTHREAD|__WCLONE|__WALL))
1507  		return -EINVAL;
1508  	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1509  		return -EINVAL;
1510  
1511  	switch (which) {
1512  	case P_ALL:
1513  		type = PIDTYPE_MAX;
1514  		break;
1515  	case P_PID:
1516  		type = PIDTYPE_PID;
1517  		if (upid <= 0)
1518  			return -EINVAL;
1519  
1520  		pid = find_get_pid(upid);
1521  		break;
1522  	case P_PGID:
1523  		type = PIDTYPE_PGID;
1524  		if (upid < 0)
1525  			return -EINVAL;
1526  
1527  		if (upid)
1528  			pid = find_get_pid(upid);
1529  		else
1530  			pid = get_task_pid(current, PIDTYPE_PGID);
1531  		break;
1532  	case P_PIDFD:
1533  		type = PIDTYPE_PID;
1534  		if (upid < 0)
1535  			return -EINVAL;
1536  
1537  		pid = pidfd_get_pid(upid, &f_flags);
1538  		if (IS_ERR(pid))
1539  			return PTR_ERR(pid);
1540  
1541  		break;
1542  	default:
1543  		return -EINVAL;
1544  	}
1545  
1546  	wo.wo_type	= type;
1547  	wo.wo_pid	= pid;
1548  	wo.wo_flags	= options;
1549  	wo.wo_info	= infop;
1550  	wo.wo_rusage	= ru;
1551  	if (f_flags & O_NONBLOCK)
1552  		wo.wo_flags |= WNOHANG;
1553  
1554  	ret = do_wait(&wo);
1555  	if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1556  		ret = -EAGAIN;
1557  
1558  	put_pid(pid);
1559  	return ret;
1560  }
1561  
1562  SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1563  		infop, int, options, struct rusage __user *, ru)
1564  {
1565  	struct rusage r;
1566  	struct waitid_info info = {.status = 0};
1567  	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1568  	int signo = 0;
1569  
1570  	if (err > 0) {
1571  		signo = SIGCHLD;
1572  		err = 0;
1573  		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1574  			return -EFAULT;
1575  	}
1576  	if (!infop)
1577  		return err;
1578  
1579  	if (!user_write_access_begin(infop, sizeof(*infop)))
1580  		return -EFAULT;
1581  
1582  	unsafe_put_user(signo, &infop->si_signo, Efault);
1583  	unsafe_put_user(0, &infop->si_errno, Efault);
1584  	unsafe_put_user(info.cause, &infop->si_code, Efault);
1585  	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1586  	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1587  	unsafe_put_user(info.status, &infop->si_status, Efault);
1588  	user_write_access_end();
1589  	return err;
1590  Efault:
1591  	user_write_access_end();
1592  	return -EFAULT;
1593  }
1594  
1595  long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1596  		  struct rusage *ru)
1597  {
1598  	struct wait_opts wo;
1599  	struct pid *pid = NULL;
1600  	enum pid_type type;
1601  	long ret;
1602  
1603  	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1604  			__WNOTHREAD|__WCLONE|__WALL))
1605  		return -EINVAL;
1606  
1607  	/* -INT_MIN is not defined */
1608  	if (upid == INT_MIN)
1609  		return -ESRCH;
1610  
1611  	if (upid == -1)
1612  		type = PIDTYPE_MAX;
1613  	else if (upid < 0) {
1614  		type = PIDTYPE_PGID;
1615  		pid = find_get_pid(-upid);
1616  	} else if (upid == 0) {
1617  		type = PIDTYPE_PGID;
1618  		pid = get_task_pid(current, PIDTYPE_PGID);
1619  	} else /* upid > 0 */ {
1620  		type = PIDTYPE_PID;
1621  		pid = find_get_pid(upid);
1622  	}
1623  
1624  	wo.wo_type	= type;
1625  	wo.wo_pid	= pid;
1626  	wo.wo_flags	= options | WEXITED;
1627  	wo.wo_info	= NULL;
1628  	wo.wo_stat	= 0;
1629  	wo.wo_rusage	= ru;
1630  	ret = do_wait(&wo);
1631  	put_pid(pid);
1632  	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1633  		ret = -EFAULT;
1634  
1635  	return ret;
1636  }
1637  
1638  int kernel_wait(pid_t pid, int *stat)
1639  {
1640  	struct wait_opts wo = {
1641  		.wo_type	= PIDTYPE_PID,
1642  		.wo_pid		= find_get_pid(pid),
1643  		.wo_flags	= WEXITED,
1644  	};
1645  	int ret;
1646  
1647  	ret = do_wait(&wo);
1648  	if (ret > 0 && wo.wo_stat)
1649  		*stat = wo.wo_stat;
1650  	put_pid(wo.wo_pid);
1651  	return ret;
1652  }
1653  
1654  SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1655  		int, options, struct rusage __user *, ru)
1656  {
1657  	struct rusage r;
1658  	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1659  
1660  	if (err > 0) {
1661  		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1662  			return -EFAULT;
1663  	}
1664  	return err;
1665  }
1666  
1667  #ifdef __ARCH_WANT_SYS_WAITPID
1668  
1669  /*
1670   * sys_waitpid() remains for compatibility. waitpid() should be
1671   * implemented by calling sys_wait4() from libc.a.
1672   */
1673  SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1674  {
1675  	return kernel_wait4(pid, stat_addr, options, NULL);
1676  }
1677  
1678  #endif
1679  
1680  #ifdef CONFIG_COMPAT
1681  COMPAT_SYSCALL_DEFINE4(wait4,
1682  	compat_pid_t, pid,
1683  	compat_uint_t __user *, stat_addr,
1684  	int, options,
1685  	struct compat_rusage __user *, ru)
1686  {
1687  	struct rusage r;
1688  	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1689  	if (err > 0) {
1690  		if (ru && put_compat_rusage(&r, ru))
1691  			return -EFAULT;
1692  	}
1693  	return err;
1694  }
1695  
1696  COMPAT_SYSCALL_DEFINE5(waitid,
1697  		int, which, compat_pid_t, pid,
1698  		struct compat_siginfo __user *, infop, int, options,
1699  		struct compat_rusage __user *, uru)
1700  {
1701  	struct rusage ru;
1702  	struct waitid_info info = {.status = 0};
1703  	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1704  	int signo = 0;
1705  	if (err > 0) {
1706  		signo = SIGCHLD;
1707  		err = 0;
1708  		if (uru) {
1709  			/* kernel_waitid() overwrites everything in ru */
1710  			if (COMPAT_USE_64BIT_TIME)
1711  				err = copy_to_user(uru, &ru, sizeof(ru));
1712  			else
1713  				err = put_compat_rusage(&ru, uru);
1714  			if (err)
1715  				return -EFAULT;
1716  		}
1717  	}
1718  
1719  	if (!infop)
1720  		return err;
1721  
1722  	if (!user_write_access_begin(infop, sizeof(*infop)))
1723  		return -EFAULT;
1724  
1725  	unsafe_put_user(signo, &infop->si_signo, Efault);
1726  	unsafe_put_user(0, &infop->si_errno, Efault);
1727  	unsafe_put_user(info.cause, &infop->si_code, Efault);
1728  	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1729  	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1730  	unsafe_put_user(info.status, &infop->si_status, Efault);
1731  	user_write_access_end();
1732  	return err;
1733  Efault:
1734  	user_write_access_end();
1735  	return -EFAULT;
1736  }
1737  #endif
1738  
1739  /**
1740   * thread_group_exited - check that a thread group has exited
1741   * @pid: tgid of thread group to be checked.
1742   *
1743   * Test if the thread group represented by tgid has exited (all
1744   * threads are zombies, dead or completely gone).
1745   *
1746   * Return: true if the thread group has exited. false otherwise.
1747   */
1748  bool thread_group_exited(struct pid *pid)
1749  {
1750  	struct task_struct *task;
1751  	bool exited;
1752  
1753  	rcu_read_lock();
1754  	task = pid_task(pid, PIDTYPE_PID);
1755  	exited = !task ||
1756  		(READ_ONCE(task->exit_state) && thread_group_empty(task));
1757  	rcu_read_unlock();
1758  
1759  	return exited;
1760  }
1761  EXPORT_SYMBOL(thread_group_exited);
1762  
1763  __weak void abort(void)
1764  {
1765  	BUG();
1766  
1767  	/* if that doesn't kill us, halt */
1768  	panic("Oops failed to kill thread");
1769  }
1770  EXPORT_SYMBOL(abort);
1771