1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/mnt_namespace.h> 16 #include <linux/key.h> 17 #include <linux/security.h> 18 #include <linux/cpu.h> 19 #include <linux/acct.h> 20 #include <linux/tsacct_kern.h> 21 #include <linux/file.h> 22 #include <linux/binfmts.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pid_namespace.h> 25 #include <linux/ptrace.h> 26 #include <linux/profile.h> 27 #include <linux/mount.h> 28 #include <linux/proc_fs.h> 29 #include <linux/kthread.h> 30 #include <linux/mempolicy.h> 31 #include <linux/taskstats_kern.h> 32 #include <linux/delayacct.h> 33 #include <linux/freezer.h> 34 #include <linux/cgroup.h> 35 #include <linux/syscalls.h> 36 #include <linux/signal.h> 37 #include <linux/posix-timers.h> 38 #include <linux/cn_proc.h> 39 #include <linux/mutex.h> 40 #include <linux/futex.h> 41 #include <linux/compat.h> 42 #include <linux/pipe_fs_i.h> 43 #include <linux/audit.h> /* for audit_free() */ 44 #include <linux/resource.h> 45 #include <linux/blkdev.h> 46 #include <linux/task_io_accounting_ops.h> 47 48 #include <asm/uaccess.h> 49 #include <asm/unistd.h> 50 #include <asm/pgtable.h> 51 #include <asm/mmu_context.h> 52 53 static void exit_mm(struct task_struct * tsk); 54 55 static void __unhash_process(struct task_struct *p) 56 { 57 nr_threads--; 58 detach_pid(p, PIDTYPE_PID); 59 if (thread_group_leader(p)) { 60 detach_pid(p, PIDTYPE_PGID); 61 detach_pid(p, PIDTYPE_SID); 62 63 list_del_rcu(&p->tasks); 64 __get_cpu_var(process_counts)--; 65 } 66 list_del_rcu(&p->thread_group); 67 remove_parent(p); 68 } 69 70 /* 71 * This function expects the tasklist_lock write-locked. 72 */ 73 static void __exit_signal(struct task_struct *tsk) 74 { 75 struct signal_struct *sig = tsk->signal; 76 struct sighand_struct *sighand; 77 78 BUG_ON(!sig); 79 BUG_ON(!atomic_read(&sig->count)); 80 81 rcu_read_lock(); 82 sighand = rcu_dereference(tsk->sighand); 83 spin_lock(&sighand->siglock); 84 85 posix_cpu_timers_exit(tsk); 86 if (atomic_dec_and_test(&sig->count)) 87 posix_cpu_timers_exit_group(tsk); 88 else { 89 /* 90 * If there is any task waiting for the group exit 91 * then notify it: 92 */ 93 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) 94 wake_up_process(sig->group_exit_task); 95 96 if (tsk == sig->curr_target) 97 sig->curr_target = next_thread(tsk); 98 /* 99 * Accumulate here the counters for all threads but the 100 * group leader as they die, so they can be added into 101 * the process-wide totals when those are taken. 102 * The group leader stays around as a zombie as long 103 * as there are other threads. When it gets reaped, 104 * the exit.c code will add its counts into these totals. 105 * We won't ever get here for the group leader, since it 106 * will have been the last reference on the signal_struct. 107 */ 108 sig->utime = cputime_add(sig->utime, tsk->utime); 109 sig->stime = cputime_add(sig->stime, tsk->stime); 110 sig->gtime = cputime_add(sig->gtime, tsk->gtime); 111 sig->min_flt += tsk->min_flt; 112 sig->maj_flt += tsk->maj_flt; 113 sig->nvcsw += tsk->nvcsw; 114 sig->nivcsw += tsk->nivcsw; 115 sig->inblock += task_io_get_inblock(tsk); 116 sig->oublock += task_io_get_oublock(tsk); 117 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 118 sig = NULL; /* Marker for below. */ 119 } 120 121 __unhash_process(tsk); 122 123 tsk->signal = NULL; 124 tsk->sighand = NULL; 125 spin_unlock(&sighand->siglock); 126 rcu_read_unlock(); 127 128 __cleanup_sighand(sighand); 129 clear_tsk_thread_flag(tsk,TIF_SIGPENDING); 130 flush_sigqueue(&tsk->pending); 131 if (sig) { 132 flush_sigqueue(&sig->shared_pending); 133 taskstats_tgid_free(sig); 134 __cleanup_signal(sig); 135 } 136 } 137 138 static void delayed_put_task_struct(struct rcu_head *rhp) 139 { 140 put_task_struct(container_of(rhp, struct task_struct, rcu)); 141 } 142 143 void release_task(struct task_struct * p) 144 { 145 struct task_struct *leader; 146 int zap_leader; 147 repeat: 148 atomic_dec(&p->user->processes); 149 proc_flush_task(p); 150 write_lock_irq(&tasklist_lock); 151 ptrace_unlink(p); 152 BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children)); 153 __exit_signal(p); 154 155 /* 156 * If we are the last non-leader member of the thread 157 * group, and the leader is zombie, then notify the 158 * group leader's parent process. (if it wants notification.) 159 */ 160 zap_leader = 0; 161 leader = p->group_leader; 162 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { 163 BUG_ON(leader->exit_signal == -1); 164 do_notify_parent(leader, leader->exit_signal); 165 /* 166 * If we were the last child thread and the leader has 167 * exited already, and the leader's parent ignores SIGCHLD, 168 * then we are the one who should release the leader. 169 * 170 * do_notify_parent() will have marked it self-reaping in 171 * that case. 172 */ 173 zap_leader = (leader->exit_signal == -1); 174 } 175 176 write_unlock_irq(&tasklist_lock); 177 release_thread(p); 178 call_rcu(&p->rcu, delayed_put_task_struct); 179 180 p = leader; 181 if (unlikely(zap_leader)) 182 goto repeat; 183 } 184 185 /* 186 * This checks not only the pgrp, but falls back on the pid if no 187 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 188 * without this... 189 * 190 * The caller must hold rcu lock or the tasklist lock. 191 */ 192 struct pid *session_of_pgrp(struct pid *pgrp) 193 { 194 struct task_struct *p; 195 struct pid *sid = NULL; 196 197 p = pid_task(pgrp, PIDTYPE_PGID); 198 if (p == NULL) 199 p = pid_task(pgrp, PIDTYPE_PID); 200 if (p != NULL) 201 sid = task_session(p); 202 203 return sid; 204 } 205 206 /* 207 * Determine if a process group is "orphaned", according to the POSIX 208 * definition in 2.2.2.52. Orphaned process groups are not to be affected 209 * by terminal-generated stop signals. Newly orphaned process groups are 210 * to receive a SIGHUP and a SIGCONT. 211 * 212 * "I ask you, have you ever known what it is to be an orphan?" 213 */ 214 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) 215 { 216 struct task_struct *p; 217 int ret = 1; 218 219 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 220 if (p == ignored_task 221 || p->exit_state 222 || is_global_init(p->real_parent)) 223 continue; 224 if (task_pgrp(p->real_parent) != pgrp && 225 task_session(p->real_parent) == task_session(p)) { 226 ret = 0; 227 break; 228 } 229 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 230 return ret; /* (sighing) "Often!" */ 231 } 232 233 int is_current_pgrp_orphaned(void) 234 { 235 int retval; 236 237 read_lock(&tasklist_lock); 238 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 239 read_unlock(&tasklist_lock); 240 241 return retval; 242 } 243 244 static int has_stopped_jobs(struct pid *pgrp) 245 { 246 int retval = 0; 247 struct task_struct *p; 248 249 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 250 if (!task_is_stopped(p)) 251 continue; 252 retval = 1; 253 break; 254 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 255 return retval; 256 } 257 258 /** 259 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd 260 * 261 * If a kernel thread is launched as a result of a system call, or if 262 * it ever exits, it should generally reparent itself to kthreadd so it 263 * isn't in the way of other processes and is correctly cleaned up on exit. 264 * 265 * The various task state such as scheduling policy and priority may have 266 * been inherited from a user process, so we reset them to sane values here. 267 * 268 * NOTE that reparent_to_kthreadd() gives the caller full capabilities. 269 */ 270 static void reparent_to_kthreadd(void) 271 { 272 write_lock_irq(&tasklist_lock); 273 274 ptrace_unlink(current); 275 /* Reparent to init */ 276 remove_parent(current); 277 current->real_parent = current->parent = kthreadd_task; 278 add_parent(current); 279 280 /* Set the exit signal to SIGCHLD so we signal init on exit */ 281 current->exit_signal = SIGCHLD; 282 283 if (task_nice(current) < 0) 284 set_user_nice(current, 0); 285 /* cpus_allowed? */ 286 /* rt_priority? */ 287 /* signals? */ 288 security_task_reparent_to_init(current); 289 memcpy(current->signal->rlim, init_task.signal->rlim, 290 sizeof(current->signal->rlim)); 291 atomic_inc(&(INIT_USER->__count)); 292 write_unlock_irq(&tasklist_lock); 293 switch_uid(INIT_USER); 294 } 295 296 void __set_special_pids(struct pid *pid) 297 { 298 struct task_struct *curr = current->group_leader; 299 pid_t nr = pid_nr(pid); 300 301 if (task_session(curr) != pid) { 302 detach_pid(curr, PIDTYPE_SID); 303 attach_pid(curr, PIDTYPE_SID, pid); 304 set_task_session(curr, nr); 305 } 306 if (task_pgrp(curr) != pid) { 307 detach_pid(curr, PIDTYPE_PGID); 308 attach_pid(curr, PIDTYPE_PGID, pid); 309 set_task_pgrp(curr, nr); 310 } 311 } 312 313 static void set_special_pids(struct pid *pid) 314 { 315 write_lock_irq(&tasklist_lock); 316 __set_special_pids(pid); 317 write_unlock_irq(&tasklist_lock); 318 } 319 320 /* 321 * Let kernel threads use this to say that they 322 * allow a certain signal (since daemonize() will 323 * have disabled all of them by default). 324 */ 325 int allow_signal(int sig) 326 { 327 if (!valid_signal(sig) || sig < 1) 328 return -EINVAL; 329 330 spin_lock_irq(¤t->sighand->siglock); 331 sigdelset(¤t->blocked, sig); 332 if (!current->mm) { 333 /* Kernel threads handle their own signals. 334 Let the signal code know it'll be handled, so 335 that they don't get converted to SIGKILL or 336 just silently dropped */ 337 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; 338 } 339 recalc_sigpending(); 340 spin_unlock_irq(¤t->sighand->siglock); 341 return 0; 342 } 343 344 EXPORT_SYMBOL(allow_signal); 345 346 int disallow_signal(int sig) 347 { 348 if (!valid_signal(sig) || sig < 1) 349 return -EINVAL; 350 351 spin_lock_irq(¤t->sighand->siglock); 352 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; 353 recalc_sigpending(); 354 spin_unlock_irq(¤t->sighand->siglock); 355 return 0; 356 } 357 358 EXPORT_SYMBOL(disallow_signal); 359 360 /* 361 * Put all the gunge required to become a kernel thread without 362 * attached user resources in one place where it belongs. 363 */ 364 365 void daemonize(const char *name, ...) 366 { 367 va_list args; 368 struct fs_struct *fs; 369 sigset_t blocked; 370 371 va_start(args, name); 372 vsnprintf(current->comm, sizeof(current->comm), name, args); 373 va_end(args); 374 375 /* 376 * If we were started as result of loading a module, close all of the 377 * user space pages. We don't need them, and if we didn't close them 378 * they would be locked into memory. 379 */ 380 exit_mm(current); 381 /* 382 * We don't want to have TIF_FREEZE set if the system-wide hibernation 383 * or suspend transition begins right now. 384 */ 385 current->flags |= PF_NOFREEZE; 386 387 if (current->nsproxy != &init_nsproxy) { 388 get_nsproxy(&init_nsproxy); 389 switch_task_namespaces(current, &init_nsproxy); 390 } 391 set_special_pids(&init_struct_pid); 392 proc_clear_tty(current); 393 394 /* Block and flush all signals */ 395 sigfillset(&blocked); 396 sigprocmask(SIG_BLOCK, &blocked, NULL); 397 flush_signals(current); 398 399 /* Become as one with the init task */ 400 401 exit_fs(current); /* current->fs->count--; */ 402 fs = init_task.fs; 403 current->fs = fs; 404 atomic_inc(&fs->count); 405 406 exit_files(current); 407 current->files = init_task.files; 408 atomic_inc(¤t->files->count); 409 410 reparent_to_kthreadd(); 411 } 412 413 EXPORT_SYMBOL(daemonize); 414 415 static void close_files(struct files_struct * files) 416 { 417 int i, j; 418 struct fdtable *fdt; 419 420 j = 0; 421 422 /* 423 * It is safe to dereference the fd table without RCU or 424 * ->file_lock because this is the last reference to the 425 * files structure. 426 */ 427 fdt = files_fdtable(files); 428 for (;;) { 429 unsigned long set; 430 i = j * __NFDBITS; 431 if (i >= fdt->max_fds) 432 break; 433 set = fdt->open_fds->fds_bits[j++]; 434 while (set) { 435 if (set & 1) { 436 struct file * file = xchg(&fdt->fd[i], NULL); 437 if (file) { 438 filp_close(file, files); 439 cond_resched(); 440 } 441 } 442 i++; 443 set >>= 1; 444 } 445 } 446 } 447 448 struct files_struct *get_files_struct(struct task_struct *task) 449 { 450 struct files_struct *files; 451 452 task_lock(task); 453 files = task->files; 454 if (files) 455 atomic_inc(&files->count); 456 task_unlock(task); 457 458 return files; 459 } 460 461 void put_files_struct(struct files_struct *files) 462 { 463 struct fdtable *fdt; 464 465 if (atomic_dec_and_test(&files->count)) { 466 close_files(files); 467 /* 468 * Free the fd and fdset arrays if we expanded them. 469 * If the fdtable was embedded, pass files for freeing 470 * at the end of the RCU grace period. Otherwise, 471 * you can free files immediately. 472 */ 473 fdt = files_fdtable(files); 474 if (fdt != &files->fdtab) 475 kmem_cache_free(files_cachep, files); 476 free_fdtable(fdt); 477 } 478 } 479 480 EXPORT_SYMBOL(put_files_struct); 481 482 void reset_files_struct(struct task_struct *tsk, struct files_struct *files) 483 { 484 struct files_struct *old; 485 486 old = tsk->files; 487 task_lock(tsk); 488 tsk->files = files; 489 task_unlock(tsk); 490 put_files_struct(old); 491 } 492 EXPORT_SYMBOL(reset_files_struct); 493 494 static void __exit_files(struct task_struct *tsk) 495 { 496 struct files_struct * files = tsk->files; 497 498 if (files) { 499 task_lock(tsk); 500 tsk->files = NULL; 501 task_unlock(tsk); 502 put_files_struct(files); 503 } 504 } 505 506 void exit_files(struct task_struct *tsk) 507 { 508 __exit_files(tsk); 509 } 510 511 static void __put_fs_struct(struct fs_struct *fs) 512 { 513 /* No need to hold fs->lock if we are killing it */ 514 if (atomic_dec_and_test(&fs->count)) { 515 dput(fs->root); 516 mntput(fs->rootmnt); 517 dput(fs->pwd); 518 mntput(fs->pwdmnt); 519 if (fs->altroot) { 520 dput(fs->altroot); 521 mntput(fs->altrootmnt); 522 } 523 kmem_cache_free(fs_cachep, fs); 524 } 525 } 526 527 void put_fs_struct(struct fs_struct *fs) 528 { 529 __put_fs_struct(fs); 530 } 531 532 static void __exit_fs(struct task_struct *tsk) 533 { 534 struct fs_struct * fs = tsk->fs; 535 536 if (fs) { 537 task_lock(tsk); 538 tsk->fs = NULL; 539 task_unlock(tsk); 540 __put_fs_struct(fs); 541 } 542 } 543 544 void exit_fs(struct task_struct *tsk) 545 { 546 __exit_fs(tsk); 547 } 548 549 EXPORT_SYMBOL_GPL(exit_fs); 550 551 /* 552 * Turn us into a lazy TLB process if we 553 * aren't already.. 554 */ 555 static void exit_mm(struct task_struct * tsk) 556 { 557 struct mm_struct *mm = tsk->mm; 558 559 mm_release(tsk, mm); 560 if (!mm) 561 return; 562 /* 563 * Serialize with any possible pending coredump. 564 * We must hold mmap_sem around checking core_waiters 565 * and clearing tsk->mm. The core-inducing thread 566 * will increment core_waiters for each thread in the 567 * group with ->mm != NULL. 568 */ 569 down_read(&mm->mmap_sem); 570 if (mm->core_waiters) { 571 up_read(&mm->mmap_sem); 572 down_write(&mm->mmap_sem); 573 if (!--mm->core_waiters) 574 complete(mm->core_startup_done); 575 up_write(&mm->mmap_sem); 576 577 wait_for_completion(&mm->core_done); 578 down_read(&mm->mmap_sem); 579 } 580 atomic_inc(&mm->mm_count); 581 BUG_ON(mm != tsk->active_mm); 582 /* more a memory barrier than a real lock */ 583 task_lock(tsk); 584 tsk->mm = NULL; 585 up_read(&mm->mmap_sem); 586 enter_lazy_tlb(mm, current); 587 /* We don't want this task to be frozen prematurely */ 588 clear_freeze_flag(tsk); 589 task_unlock(tsk); 590 mmput(mm); 591 } 592 593 static void 594 reparent_thread(struct task_struct *p, struct task_struct *father, int traced) 595 { 596 if (p->pdeath_signal) 597 /* We already hold the tasklist_lock here. */ 598 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p); 599 600 /* Move the child from its dying parent to the new one. */ 601 if (unlikely(traced)) { 602 /* Preserve ptrace links if someone else is tracing this child. */ 603 list_del_init(&p->ptrace_list); 604 if (p->parent != p->real_parent) 605 list_add(&p->ptrace_list, &p->real_parent->ptrace_children); 606 } else { 607 /* If this child is being traced, then we're the one tracing it 608 * anyway, so let go of it. 609 */ 610 p->ptrace = 0; 611 remove_parent(p); 612 p->parent = p->real_parent; 613 add_parent(p); 614 615 if (task_is_traced(p)) { 616 /* 617 * If it was at a trace stop, turn it into 618 * a normal stop since it's no longer being 619 * traced. 620 */ 621 ptrace_untrace(p); 622 } 623 } 624 625 /* If this is a threaded reparent there is no need to 626 * notify anyone anything has happened. 627 */ 628 if (p->real_parent->group_leader == father->group_leader) 629 return; 630 631 /* We don't want people slaying init. */ 632 if (p->exit_signal != -1) 633 p->exit_signal = SIGCHLD; 634 635 /* If we'd notified the old parent about this child's death, 636 * also notify the new parent. 637 */ 638 if (!traced && p->exit_state == EXIT_ZOMBIE && 639 p->exit_signal != -1 && thread_group_empty(p)) 640 do_notify_parent(p, p->exit_signal); 641 642 /* 643 * process group orphan check 644 * Case ii: Our child is in a different pgrp 645 * than we are, and it was the only connection 646 * outside, so the child pgrp is now orphaned. 647 */ 648 if ((task_pgrp(p) != task_pgrp(father)) && 649 (task_session(p) == task_session(father))) { 650 struct pid *pgrp = task_pgrp(p); 651 652 if (will_become_orphaned_pgrp(pgrp, NULL) && 653 has_stopped_jobs(pgrp)) { 654 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 655 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 656 } 657 } 658 } 659 660 /* 661 * When we die, we re-parent all our children. 662 * Try to give them to another thread in our thread 663 * group, and if no such member exists, give it to 664 * the child reaper process (ie "init") in our pid 665 * space. 666 */ 667 static void forget_original_parent(struct task_struct *father) 668 { 669 struct task_struct *p, *n, *reaper = father; 670 struct list_head ptrace_dead; 671 672 INIT_LIST_HEAD(&ptrace_dead); 673 674 write_lock_irq(&tasklist_lock); 675 676 do { 677 reaper = next_thread(reaper); 678 if (reaper == father) { 679 reaper = task_child_reaper(father); 680 break; 681 } 682 } while (reaper->flags & PF_EXITING); 683 684 /* 685 * There are only two places where our children can be: 686 * 687 * - in our child list 688 * - in our ptraced child list 689 * 690 * Search them and reparent children. 691 */ 692 list_for_each_entry_safe(p, n, &father->children, sibling) { 693 int ptrace; 694 695 ptrace = p->ptrace; 696 697 /* if father isn't the real parent, then ptrace must be enabled */ 698 BUG_ON(father != p->real_parent && !ptrace); 699 700 if (father == p->real_parent) { 701 /* reparent with a reaper, real father it's us */ 702 p->real_parent = reaper; 703 reparent_thread(p, father, 0); 704 } else { 705 /* reparent ptraced task to its real parent */ 706 __ptrace_unlink (p); 707 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 && 708 thread_group_empty(p)) 709 do_notify_parent(p, p->exit_signal); 710 } 711 712 /* 713 * if the ptraced child is a zombie with exit_signal == -1 714 * we must collect it before we exit, or it will remain 715 * zombie forever since we prevented it from self-reap itself 716 * while it was being traced by us, to be able to see it in wait4. 717 */ 718 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1)) 719 list_add(&p->ptrace_list, &ptrace_dead); 720 } 721 722 list_for_each_entry_safe(p, n, &father->ptrace_children, ptrace_list) { 723 p->real_parent = reaper; 724 reparent_thread(p, father, 1); 725 } 726 727 write_unlock_irq(&tasklist_lock); 728 BUG_ON(!list_empty(&father->children)); 729 BUG_ON(!list_empty(&father->ptrace_children)); 730 731 list_for_each_entry_safe(p, n, &ptrace_dead, ptrace_list) { 732 list_del_init(&p->ptrace_list); 733 release_task(p); 734 } 735 736 } 737 738 /* 739 * Send signals to all our closest relatives so that they know 740 * to properly mourn us.. 741 */ 742 static void exit_notify(struct task_struct *tsk) 743 { 744 int state; 745 struct task_struct *t; 746 struct pid *pgrp; 747 748 /* 749 * This does two things: 750 * 751 * A. Make init inherit all the child processes 752 * B. Check to see if any process groups have become orphaned 753 * as a result of our exiting, and if they have any stopped 754 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 755 */ 756 forget_original_parent(tsk); 757 exit_task_namespaces(tsk); 758 759 write_lock_irq(&tasklist_lock); 760 /* 761 * Check to see if any process groups have become orphaned 762 * as a result of our exiting, and if they have any stopped 763 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 764 * 765 * Case i: Our father is in a different pgrp than we are 766 * and we were the only connection outside, so our pgrp 767 * is about to become orphaned. 768 */ 769 t = tsk->real_parent; 770 771 pgrp = task_pgrp(tsk); 772 if ((task_pgrp(t) != pgrp) && 773 (task_session(t) == task_session(tsk)) && 774 will_become_orphaned_pgrp(pgrp, tsk) && 775 has_stopped_jobs(pgrp)) { 776 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 777 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 778 } 779 780 /* Let father know we died 781 * 782 * Thread signals are configurable, but you aren't going to use 783 * that to send signals to arbitary processes. 784 * That stops right now. 785 * 786 * If the parent exec id doesn't match the exec id we saved 787 * when we started then we know the parent has changed security 788 * domain. 789 * 790 * If our self_exec id doesn't match our parent_exec_id then 791 * we have changed execution domain as these two values started 792 * the same after a fork. 793 */ 794 if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 && 795 ( tsk->parent_exec_id != t->self_exec_id || 796 tsk->self_exec_id != tsk->parent_exec_id) 797 && !capable(CAP_KILL)) 798 tsk->exit_signal = SIGCHLD; 799 800 801 /* If something other than our normal parent is ptracing us, then 802 * send it a SIGCHLD instead of honoring exit_signal. exit_signal 803 * only has special meaning to our real parent. 804 */ 805 if (tsk->exit_signal != -1 && thread_group_empty(tsk)) { 806 int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD; 807 do_notify_parent(tsk, signal); 808 } else if (tsk->ptrace) { 809 do_notify_parent(tsk, SIGCHLD); 810 } 811 812 state = EXIT_ZOMBIE; 813 if (tsk->exit_signal == -1 && likely(!tsk->ptrace)) 814 state = EXIT_DEAD; 815 tsk->exit_state = state; 816 817 if (thread_group_leader(tsk) && 818 tsk->signal->notify_count < 0 && 819 tsk->signal->group_exit_task) 820 wake_up_process(tsk->signal->group_exit_task); 821 822 write_unlock_irq(&tasklist_lock); 823 824 /* If the process is dead, release it - nobody will wait for it */ 825 if (state == EXIT_DEAD) 826 release_task(tsk); 827 } 828 829 #ifdef CONFIG_DEBUG_STACK_USAGE 830 static void check_stack_usage(void) 831 { 832 static DEFINE_SPINLOCK(low_water_lock); 833 static int lowest_to_date = THREAD_SIZE; 834 unsigned long *n = end_of_stack(current); 835 unsigned long free; 836 837 while (*n == 0) 838 n++; 839 free = (unsigned long)n - (unsigned long)end_of_stack(current); 840 841 if (free >= lowest_to_date) 842 return; 843 844 spin_lock(&low_water_lock); 845 if (free < lowest_to_date) { 846 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes " 847 "left\n", 848 current->comm, free); 849 lowest_to_date = free; 850 } 851 spin_unlock(&low_water_lock); 852 } 853 #else 854 static inline void check_stack_usage(void) {} 855 #endif 856 857 static inline void exit_child_reaper(struct task_struct *tsk) 858 { 859 if (likely(tsk->group_leader != task_child_reaper(tsk))) 860 return; 861 862 if (tsk->nsproxy->pid_ns == &init_pid_ns) 863 panic("Attempted to kill init!"); 864 865 /* 866 * @tsk is the last thread in the 'cgroup-init' and is exiting. 867 * Terminate all remaining processes in the namespace and reap them 868 * before exiting @tsk. 869 * 870 * Note that @tsk (last thread of cgroup-init) may not necessarily 871 * be the child-reaper (i.e main thread of cgroup-init) of the 872 * namespace i.e the child_reaper may have already exited. 873 * 874 * Even after a child_reaper exits, we let it inherit orphaned children, 875 * because, pid_ns->child_reaper remains valid as long as there is 876 * at least one living sub-thread in the cgroup init. 877 878 * This living sub-thread of the cgroup-init will be notified when 879 * a child inherited by the 'child-reaper' exits (do_notify_parent() 880 * uses __group_send_sig_info()). Further, when reaping child processes, 881 * do_wait() iterates over children of all living sub threads. 882 883 * i.e even though 'child_reaper' thread is listed as the parent of the 884 * orphaned children, any living sub-thread in the cgroup-init can 885 * perform the role of the child_reaper. 886 */ 887 zap_pid_ns_processes(tsk->nsproxy->pid_ns); 888 } 889 890 NORET_TYPE void do_exit(long code) 891 { 892 struct task_struct *tsk = current; 893 int group_dead; 894 895 profile_task_exit(tsk); 896 897 WARN_ON(atomic_read(&tsk->fs_excl)); 898 899 if (unlikely(in_interrupt())) 900 panic("Aiee, killing interrupt handler!"); 901 if (unlikely(!tsk->pid)) 902 panic("Attempted to kill the idle task!"); 903 904 if (unlikely(current->ptrace & PT_TRACE_EXIT)) { 905 current->ptrace_message = code; 906 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP); 907 } 908 909 /* 910 * We're taking recursive faults here in do_exit. Safest is to just 911 * leave this task alone and wait for reboot. 912 */ 913 if (unlikely(tsk->flags & PF_EXITING)) { 914 printk(KERN_ALERT 915 "Fixing recursive fault but reboot is needed!\n"); 916 /* 917 * We can do this unlocked here. The futex code uses 918 * this flag just to verify whether the pi state 919 * cleanup has been done or not. In the worst case it 920 * loops once more. We pretend that the cleanup was 921 * done as there is no way to return. Either the 922 * OWNER_DIED bit is set by now or we push the blocked 923 * task into the wait for ever nirwana as well. 924 */ 925 tsk->flags |= PF_EXITPIDONE; 926 if (tsk->io_context) 927 exit_io_context(); 928 set_current_state(TASK_UNINTERRUPTIBLE); 929 schedule(); 930 } 931 932 exit_signals(tsk); /* sets PF_EXITING */ 933 /* 934 * tsk->flags are checked in the futex code to protect against 935 * an exiting task cleaning up the robust pi futexes. 936 */ 937 smp_mb(); 938 spin_unlock_wait(&tsk->pi_lock); 939 940 if (unlikely(in_atomic())) 941 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", 942 current->comm, task_pid_nr(current), 943 preempt_count()); 944 945 acct_update_integrals(tsk); 946 if (tsk->mm) { 947 update_hiwater_rss(tsk->mm); 948 update_hiwater_vm(tsk->mm); 949 } 950 group_dead = atomic_dec_and_test(&tsk->signal->live); 951 if (group_dead) { 952 exit_child_reaper(tsk); 953 hrtimer_cancel(&tsk->signal->real_timer); 954 exit_itimers(tsk->signal); 955 } 956 acct_collect(code, group_dead); 957 #ifdef CONFIG_FUTEX 958 if (unlikely(tsk->robust_list)) 959 exit_robust_list(tsk); 960 #ifdef CONFIG_COMPAT 961 if (unlikely(tsk->compat_robust_list)) 962 compat_exit_robust_list(tsk); 963 #endif 964 #endif 965 if (group_dead) 966 tty_audit_exit(); 967 if (unlikely(tsk->audit_context)) 968 audit_free(tsk); 969 970 tsk->exit_code = code; 971 taskstats_exit(tsk, group_dead); 972 973 exit_mm(tsk); 974 975 if (group_dead) 976 acct_process(); 977 exit_sem(tsk); 978 __exit_files(tsk); 979 __exit_fs(tsk); 980 check_stack_usage(); 981 exit_thread(); 982 cgroup_exit(tsk, 1); 983 exit_keys(tsk); 984 985 if (group_dead && tsk->signal->leader) 986 disassociate_ctty(1); 987 988 module_put(task_thread_info(tsk)->exec_domain->module); 989 if (tsk->binfmt) 990 module_put(tsk->binfmt->module); 991 992 proc_exit_connector(tsk); 993 exit_notify(tsk); 994 #ifdef CONFIG_NUMA 995 mpol_free(tsk->mempolicy); 996 tsk->mempolicy = NULL; 997 #endif 998 #ifdef CONFIG_FUTEX 999 /* 1000 * This must happen late, after the PID is not 1001 * hashed anymore: 1002 */ 1003 if (unlikely(!list_empty(&tsk->pi_state_list))) 1004 exit_pi_state_list(tsk); 1005 if (unlikely(current->pi_state_cache)) 1006 kfree(current->pi_state_cache); 1007 #endif 1008 /* 1009 * Make sure we are holding no locks: 1010 */ 1011 debug_check_no_locks_held(tsk); 1012 /* 1013 * We can do this unlocked here. The futex code uses this flag 1014 * just to verify whether the pi state cleanup has been done 1015 * or not. In the worst case it loops once more. 1016 */ 1017 tsk->flags |= PF_EXITPIDONE; 1018 1019 if (tsk->io_context) 1020 exit_io_context(); 1021 1022 if (tsk->splice_pipe) 1023 __free_pipe_info(tsk->splice_pipe); 1024 1025 preempt_disable(); 1026 /* causes final put_task_struct in finish_task_switch(). */ 1027 tsk->state = TASK_DEAD; 1028 1029 schedule(); 1030 BUG(); 1031 /* Avoid "noreturn function does return". */ 1032 for (;;) 1033 cpu_relax(); /* For when BUG is null */ 1034 } 1035 1036 EXPORT_SYMBOL_GPL(do_exit); 1037 1038 NORET_TYPE void complete_and_exit(struct completion *comp, long code) 1039 { 1040 if (comp) 1041 complete(comp); 1042 1043 do_exit(code); 1044 } 1045 1046 EXPORT_SYMBOL(complete_and_exit); 1047 1048 asmlinkage long sys_exit(int error_code) 1049 { 1050 do_exit((error_code&0xff)<<8); 1051 } 1052 1053 /* 1054 * Take down every thread in the group. This is called by fatal signals 1055 * as well as by sys_exit_group (below). 1056 */ 1057 NORET_TYPE void 1058 do_group_exit(int exit_code) 1059 { 1060 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 1061 1062 if (current->signal->flags & SIGNAL_GROUP_EXIT) 1063 exit_code = current->signal->group_exit_code; 1064 else if (!thread_group_empty(current)) { 1065 struct signal_struct *const sig = current->signal; 1066 struct sighand_struct *const sighand = current->sighand; 1067 spin_lock_irq(&sighand->siglock); 1068 if (signal_group_exit(sig)) 1069 /* Another thread got here before we took the lock. */ 1070 exit_code = sig->group_exit_code; 1071 else { 1072 sig->group_exit_code = exit_code; 1073 sig->flags = SIGNAL_GROUP_EXIT; 1074 zap_other_threads(current); 1075 } 1076 spin_unlock_irq(&sighand->siglock); 1077 } 1078 1079 do_exit(exit_code); 1080 /* NOTREACHED */ 1081 } 1082 1083 /* 1084 * this kills every thread in the thread group. Note that any externally 1085 * wait4()-ing process will get the correct exit code - even if this 1086 * thread is not the thread group leader. 1087 */ 1088 asmlinkage void sys_exit_group(int error_code) 1089 { 1090 do_group_exit((error_code & 0xff) << 8); 1091 } 1092 1093 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 1094 { 1095 struct pid *pid = NULL; 1096 if (type == PIDTYPE_PID) 1097 pid = task->pids[type].pid; 1098 else if (type < PIDTYPE_MAX) 1099 pid = task->group_leader->pids[type].pid; 1100 return pid; 1101 } 1102 1103 static int eligible_child(enum pid_type type, struct pid *pid, int options, 1104 struct task_struct *p) 1105 { 1106 int err; 1107 1108 if (type < PIDTYPE_MAX) { 1109 if (task_pid_type(p, type) != pid) 1110 return 0; 1111 } 1112 1113 /* 1114 * Do not consider detached threads that are 1115 * not ptraced: 1116 */ 1117 if (p->exit_signal == -1 && !p->ptrace) 1118 return 0; 1119 1120 /* Wait for all children (clone and not) if __WALL is set; 1121 * otherwise, wait for clone children *only* if __WCLONE is 1122 * set; otherwise, wait for non-clone children *only*. (Note: 1123 * A "clone" child here is one that reports to its parent 1124 * using a signal other than SIGCHLD.) */ 1125 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0)) 1126 && !(options & __WALL)) 1127 return 0; 1128 1129 err = security_task_wait(p); 1130 if (likely(!err)) 1131 return 1; 1132 1133 if (type != PIDTYPE_PID) 1134 return 0; 1135 /* This child was explicitly requested, abort */ 1136 read_unlock(&tasklist_lock); 1137 return err; 1138 } 1139 1140 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid, 1141 int why, int status, 1142 struct siginfo __user *infop, 1143 struct rusage __user *rusagep) 1144 { 1145 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0; 1146 1147 put_task_struct(p); 1148 if (!retval) 1149 retval = put_user(SIGCHLD, &infop->si_signo); 1150 if (!retval) 1151 retval = put_user(0, &infop->si_errno); 1152 if (!retval) 1153 retval = put_user((short)why, &infop->si_code); 1154 if (!retval) 1155 retval = put_user(pid, &infop->si_pid); 1156 if (!retval) 1157 retval = put_user(uid, &infop->si_uid); 1158 if (!retval) 1159 retval = put_user(status, &infop->si_status); 1160 if (!retval) 1161 retval = pid; 1162 return retval; 1163 } 1164 1165 /* 1166 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1167 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1168 * the lock and this task is uninteresting. If we return nonzero, we have 1169 * released the lock and the system call should return. 1170 */ 1171 static int wait_task_zombie(struct task_struct *p, int noreap, 1172 struct siginfo __user *infop, 1173 int __user *stat_addr, struct rusage __user *ru) 1174 { 1175 unsigned long state; 1176 int retval, status, traced; 1177 pid_t pid = task_pid_vnr(p); 1178 1179 if (unlikely(noreap)) { 1180 uid_t uid = p->uid; 1181 int exit_code = p->exit_code; 1182 int why, status; 1183 1184 get_task_struct(p); 1185 read_unlock(&tasklist_lock); 1186 if ((exit_code & 0x7f) == 0) { 1187 why = CLD_EXITED; 1188 status = exit_code >> 8; 1189 } else { 1190 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1191 status = exit_code & 0x7f; 1192 } 1193 return wait_noreap_copyout(p, pid, uid, why, 1194 status, infop, ru); 1195 } 1196 1197 /* 1198 * Try to move the task's state to DEAD 1199 * only one thread is allowed to do this: 1200 */ 1201 state = xchg(&p->exit_state, EXIT_DEAD); 1202 if (state != EXIT_ZOMBIE) { 1203 BUG_ON(state != EXIT_DEAD); 1204 return 0; 1205 } 1206 1207 /* traced means p->ptrace, but not vice versa */ 1208 traced = (p->real_parent != p->parent); 1209 1210 if (likely(!traced)) { 1211 struct signal_struct *psig; 1212 struct signal_struct *sig; 1213 1214 /* 1215 * The resource counters for the group leader are in its 1216 * own task_struct. Those for dead threads in the group 1217 * are in its signal_struct, as are those for the child 1218 * processes it has previously reaped. All these 1219 * accumulate in the parent's signal_struct c* fields. 1220 * 1221 * We don't bother to take a lock here to protect these 1222 * p->signal fields, because they are only touched by 1223 * __exit_signal, which runs with tasklist_lock 1224 * write-locked anyway, and so is excluded here. We do 1225 * need to protect the access to p->parent->signal fields, 1226 * as other threads in the parent group can be right 1227 * here reaping other children at the same time. 1228 */ 1229 spin_lock_irq(&p->parent->sighand->siglock); 1230 psig = p->parent->signal; 1231 sig = p->signal; 1232 psig->cutime = 1233 cputime_add(psig->cutime, 1234 cputime_add(p->utime, 1235 cputime_add(sig->utime, 1236 sig->cutime))); 1237 psig->cstime = 1238 cputime_add(psig->cstime, 1239 cputime_add(p->stime, 1240 cputime_add(sig->stime, 1241 sig->cstime))); 1242 psig->cgtime = 1243 cputime_add(psig->cgtime, 1244 cputime_add(p->gtime, 1245 cputime_add(sig->gtime, 1246 sig->cgtime))); 1247 psig->cmin_flt += 1248 p->min_flt + sig->min_flt + sig->cmin_flt; 1249 psig->cmaj_flt += 1250 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1251 psig->cnvcsw += 1252 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1253 psig->cnivcsw += 1254 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1255 psig->cinblock += 1256 task_io_get_inblock(p) + 1257 sig->inblock + sig->cinblock; 1258 psig->coublock += 1259 task_io_get_oublock(p) + 1260 sig->oublock + sig->coublock; 1261 spin_unlock_irq(&p->parent->sighand->siglock); 1262 } 1263 1264 /* 1265 * Now we are sure this task is interesting, and no other 1266 * thread can reap it because we set its state to EXIT_DEAD. 1267 */ 1268 read_unlock(&tasklist_lock); 1269 1270 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1271 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1272 ? p->signal->group_exit_code : p->exit_code; 1273 if (!retval && stat_addr) 1274 retval = put_user(status, stat_addr); 1275 if (!retval && infop) 1276 retval = put_user(SIGCHLD, &infop->si_signo); 1277 if (!retval && infop) 1278 retval = put_user(0, &infop->si_errno); 1279 if (!retval && infop) { 1280 int why; 1281 1282 if ((status & 0x7f) == 0) { 1283 why = CLD_EXITED; 1284 status >>= 8; 1285 } else { 1286 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1287 status &= 0x7f; 1288 } 1289 retval = put_user((short)why, &infop->si_code); 1290 if (!retval) 1291 retval = put_user(status, &infop->si_status); 1292 } 1293 if (!retval && infop) 1294 retval = put_user(pid, &infop->si_pid); 1295 if (!retval && infop) 1296 retval = put_user(p->uid, &infop->si_uid); 1297 if (!retval) 1298 retval = pid; 1299 1300 if (traced) { 1301 write_lock_irq(&tasklist_lock); 1302 /* We dropped tasklist, ptracer could die and untrace */ 1303 ptrace_unlink(p); 1304 /* 1305 * If this is not a detached task, notify the parent. 1306 * If it's still not detached after that, don't release 1307 * it now. 1308 */ 1309 if (p->exit_signal != -1) { 1310 do_notify_parent(p, p->exit_signal); 1311 if (p->exit_signal != -1) { 1312 p->exit_state = EXIT_ZOMBIE; 1313 p = NULL; 1314 } 1315 } 1316 write_unlock_irq(&tasklist_lock); 1317 } 1318 if (p != NULL) 1319 release_task(p); 1320 1321 return retval; 1322 } 1323 1324 /* 1325 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold 1326 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1327 * the lock and this task is uninteresting. If we return nonzero, we have 1328 * released the lock and the system call should return. 1329 */ 1330 static int wait_task_stopped(struct task_struct *p, 1331 int noreap, struct siginfo __user *infop, 1332 int __user *stat_addr, struct rusage __user *ru) 1333 { 1334 int retval, exit_code, why; 1335 uid_t uid = 0; /* unneeded, required by compiler */ 1336 pid_t pid; 1337 1338 exit_code = 0; 1339 spin_lock_irq(&p->sighand->siglock); 1340 1341 if (unlikely(!task_is_stopped_or_traced(p))) 1342 goto unlock_sig; 1343 1344 if (!(p->ptrace & PT_PTRACED) && p->signal->group_stop_count > 0) 1345 /* 1346 * A group stop is in progress and this is the group leader. 1347 * We won't report until all threads have stopped. 1348 */ 1349 goto unlock_sig; 1350 1351 exit_code = p->exit_code; 1352 if (!exit_code) 1353 goto unlock_sig; 1354 1355 if (!noreap) 1356 p->exit_code = 0; 1357 1358 uid = p->uid; 1359 unlock_sig: 1360 spin_unlock_irq(&p->sighand->siglock); 1361 if (!exit_code) 1362 return 0; 1363 1364 /* 1365 * Now we are pretty sure this task is interesting. 1366 * Make sure it doesn't get reaped out from under us while we 1367 * give up the lock and then examine it below. We don't want to 1368 * keep holding onto the tasklist_lock while we call getrusage and 1369 * possibly take page faults for user memory. 1370 */ 1371 get_task_struct(p); 1372 pid = task_pid_vnr(p); 1373 why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED; 1374 read_unlock(&tasklist_lock); 1375 1376 if (unlikely(noreap)) 1377 return wait_noreap_copyout(p, pid, uid, 1378 why, exit_code, 1379 infop, ru); 1380 1381 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1382 if (!retval && stat_addr) 1383 retval = put_user((exit_code << 8) | 0x7f, stat_addr); 1384 if (!retval && infop) 1385 retval = put_user(SIGCHLD, &infop->si_signo); 1386 if (!retval && infop) 1387 retval = put_user(0, &infop->si_errno); 1388 if (!retval && infop) 1389 retval = put_user(why, &infop->si_code); 1390 if (!retval && infop) 1391 retval = put_user(exit_code, &infop->si_status); 1392 if (!retval && infop) 1393 retval = put_user(pid, &infop->si_pid); 1394 if (!retval && infop) 1395 retval = put_user(uid, &infop->si_uid); 1396 if (!retval) 1397 retval = pid; 1398 put_task_struct(p); 1399 1400 BUG_ON(!retval); 1401 return retval; 1402 } 1403 1404 /* 1405 * Handle do_wait work for one task in a live, non-stopped state. 1406 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1407 * the lock and this task is uninteresting. If we return nonzero, we have 1408 * released the lock and the system call should return. 1409 */ 1410 static int wait_task_continued(struct task_struct *p, int noreap, 1411 struct siginfo __user *infop, 1412 int __user *stat_addr, struct rusage __user *ru) 1413 { 1414 int retval; 1415 pid_t pid; 1416 uid_t uid; 1417 1418 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1419 return 0; 1420 1421 spin_lock_irq(&p->sighand->siglock); 1422 /* Re-check with the lock held. */ 1423 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1424 spin_unlock_irq(&p->sighand->siglock); 1425 return 0; 1426 } 1427 if (!noreap) 1428 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1429 spin_unlock_irq(&p->sighand->siglock); 1430 1431 pid = task_pid_vnr(p); 1432 uid = p->uid; 1433 get_task_struct(p); 1434 read_unlock(&tasklist_lock); 1435 1436 if (!infop) { 1437 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1438 put_task_struct(p); 1439 if (!retval && stat_addr) 1440 retval = put_user(0xffff, stat_addr); 1441 if (!retval) 1442 retval = pid; 1443 } else { 1444 retval = wait_noreap_copyout(p, pid, uid, 1445 CLD_CONTINUED, SIGCONT, 1446 infop, ru); 1447 BUG_ON(retval == 0); 1448 } 1449 1450 return retval; 1451 } 1452 1453 static long do_wait(enum pid_type type, struct pid *pid, int options, 1454 struct siginfo __user *infop, int __user *stat_addr, 1455 struct rusage __user *ru) 1456 { 1457 DECLARE_WAITQUEUE(wait, current); 1458 struct task_struct *tsk; 1459 int flag, retval; 1460 1461 add_wait_queue(¤t->signal->wait_chldexit,&wait); 1462 repeat: 1463 /* If there is nothing that can match our critier just get out */ 1464 retval = -ECHILD; 1465 if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type]))) 1466 goto end; 1467 1468 /* 1469 * We will set this flag if we see any child that might later 1470 * match our criteria, even if we are not able to reap it yet. 1471 */ 1472 flag = retval = 0; 1473 current->state = TASK_INTERRUPTIBLE; 1474 read_lock(&tasklist_lock); 1475 tsk = current; 1476 do { 1477 struct task_struct *p; 1478 1479 list_for_each_entry(p, &tsk->children, sibling) { 1480 int ret = eligible_child(type, pid, options, p); 1481 if (!ret) 1482 continue; 1483 1484 if (unlikely(ret < 0)) { 1485 retval = ret; 1486 } else if (task_is_stopped_or_traced(p)) { 1487 /* 1488 * It's stopped now, so it might later 1489 * continue, exit, or stop again. 1490 */ 1491 flag = 1; 1492 if (!(p->ptrace & PT_PTRACED) && 1493 !(options & WUNTRACED)) 1494 continue; 1495 1496 retval = wait_task_stopped(p, 1497 (options & WNOWAIT), infop, 1498 stat_addr, ru); 1499 } else if (p->exit_state == EXIT_ZOMBIE && 1500 !delay_group_leader(p)) { 1501 /* 1502 * We don't reap group leaders with subthreads. 1503 */ 1504 if (!likely(options & WEXITED)) 1505 continue; 1506 retval = wait_task_zombie(p, 1507 (options & WNOWAIT), infop, 1508 stat_addr, ru); 1509 } else if (p->exit_state != EXIT_DEAD) { 1510 /* 1511 * It's running now, so it might later 1512 * exit, stop, or stop and then continue. 1513 */ 1514 flag = 1; 1515 if (!unlikely(options & WCONTINUED)) 1516 continue; 1517 retval = wait_task_continued(p, 1518 (options & WNOWAIT), infop, 1519 stat_addr, ru); 1520 } 1521 if (retval != 0) /* tasklist_lock released */ 1522 goto end; 1523 } 1524 if (!flag) { 1525 list_for_each_entry(p, &tsk->ptrace_children, 1526 ptrace_list) { 1527 flag = eligible_child(type, pid, options, p); 1528 if (!flag) 1529 continue; 1530 if (likely(flag > 0)) 1531 break; 1532 retval = flag; 1533 goto end; 1534 } 1535 } 1536 if (options & __WNOTHREAD) 1537 break; 1538 tsk = next_thread(tsk); 1539 BUG_ON(tsk->signal != current->signal); 1540 } while (tsk != current); 1541 read_unlock(&tasklist_lock); 1542 1543 if (flag) { 1544 if (options & WNOHANG) 1545 goto end; 1546 retval = -ERESTARTSYS; 1547 if (signal_pending(current)) 1548 goto end; 1549 schedule(); 1550 goto repeat; 1551 } 1552 retval = -ECHILD; 1553 end: 1554 current->state = TASK_RUNNING; 1555 remove_wait_queue(¤t->signal->wait_chldexit,&wait); 1556 if (infop) { 1557 if (retval > 0) 1558 retval = 0; 1559 else { 1560 /* 1561 * For a WNOHANG return, clear out all the fields 1562 * we would set so the user can easily tell the 1563 * difference. 1564 */ 1565 if (!retval) 1566 retval = put_user(0, &infop->si_signo); 1567 if (!retval) 1568 retval = put_user(0, &infop->si_errno); 1569 if (!retval) 1570 retval = put_user(0, &infop->si_code); 1571 if (!retval) 1572 retval = put_user(0, &infop->si_pid); 1573 if (!retval) 1574 retval = put_user(0, &infop->si_uid); 1575 if (!retval) 1576 retval = put_user(0, &infop->si_status); 1577 } 1578 } 1579 return retval; 1580 } 1581 1582 asmlinkage long sys_waitid(int which, pid_t upid, 1583 struct siginfo __user *infop, int options, 1584 struct rusage __user *ru) 1585 { 1586 struct pid *pid = NULL; 1587 enum pid_type type; 1588 long ret; 1589 1590 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1591 return -EINVAL; 1592 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1593 return -EINVAL; 1594 1595 switch (which) { 1596 case P_ALL: 1597 type = PIDTYPE_MAX; 1598 break; 1599 case P_PID: 1600 type = PIDTYPE_PID; 1601 if (upid <= 0) 1602 return -EINVAL; 1603 break; 1604 case P_PGID: 1605 type = PIDTYPE_PGID; 1606 if (upid <= 0) 1607 return -EINVAL; 1608 break; 1609 default: 1610 return -EINVAL; 1611 } 1612 1613 if (type < PIDTYPE_MAX) 1614 pid = find_get_pid(upid); 1615 ret = do_wait(type, pid, options, infop, NULL, ru); 1616 put_pid(pid); 1617 1618 /* avoid REGPARM breakage on x86: */ 1619 prevent_tail_call(ret); 1620 return ret; 1621 } 1622 1623 asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr, 1624 int options, struct rusage __user *ru) 1625 { 1626 struct pid *pid = NULL; 1627 enum pid_type type; 1628 long ret; 1629 1630 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1631 __WNOTHREAD|__WCLONE|__WALL)) 1632 return -EINVAL; 1633 1634 if (upid == -1) 1635 type = PIDTYPE_MAX; 1636 else if (upid < 0) { 1637 type = PIDTYPE_PGID; 1638 pid = find_get_pid(-upid); 1639 } else if (upid == 0) { 1640 type = PIDTYPE_PGID; 1641 pid = get_pid(task_pgrp(current)); 1642 } else /* upid > 0 */ { 1643 type = PIDTYPE_PID; 1644 pid = find_get_pid(upid); 1645 } 1646 1647 ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru); 1648 put_pid(pid); 1649 1650 /* avoid REGPARM breakage on x86: */ 1651 prevent_tail_call(ret); 1652 return ret; 1653 } 1654 1655 #ifdef __ARCH_WANT_SYS_WAITPID 1656 1657 /* 1658 * sys_waitpid() remains for compatibility. waitpid() should be 1659 * implemented by calling sys_wait4() from libc.a. 1660 */ 1661 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options) 1662 { 1663 return sys_wait4(pid, stat_addr, options, NULL); 1664 } 1665 1666 #endif 1667