1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/exit.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/slab.h> 10 #include <linux/sched/autogroup.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/stat.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/sched/cputime.h> 16 #include <linux/interrupt.h> 17 #include <linux/module.h> 18 #include <linux/capability.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/tty.h> 22 #include <linux/iocontext.h> 23 #include <linux/key.h> 24 #include <linux/cpu.h> 25 #include <linux/acct.h> 26 #include <linux/tsacct_kern.h> 27 #include <linux/file.h> 28 #include <linux/fdtable.h> 29 #include <linux/freezer.h> 30 #include <linux/binfmts.h> 31 #include <linux/nsproxy.h> 32 #include <linux/pid_namespace.h> 33 #include <linux/ptrace.h> 34 #include <linux/profile.h> 35 #include <linux/mount.h> 36 #include <linux/proc_fs.h> 37 #include <linux/kthread.h> 38 #include <linux/mempolicy.h> 39 #include <linux/taskstats_kern.h> 40 #include <linux/delayacct.h> 41 #include <linux/cgroup.h> 42 #include <linux/syscalls.h> 43 #include <linux/signal.h> 44 #include <linux/posix-timers.h> 45 #include <linux/cn_proc.h> 46 #include <linux/mutex.h> 47 #include <linux/futex.h> 48 #include <linux/pipe_fs_i.h> 49 #include <linux/audit.h> /* for audit_free() */ 50 #include <linux/resource.h> 51 #include <linux/task_io_accounting_ops.h> 52 #include <linux/tracehook.h> 53 #include <linux/fs_struct.h> 54 #include <linux/init_task.h> 55 #include <linux/perf_event.h> 56 #include <trace/events/sched.h> 57 #include <linux/hw_breakpoint.h> 58 #include <linux/oom.h> 59 #include <linux/writeback.h> 60 #include <linux/shm.h> 61 #include <linux/kcov.h> 62 #include <linux/random.h> 63 #include <linux/rcuwait.h> 64 #include <linux/compat.h> 65 #include <linux/io_uring.h> 66 #include <linux/kprobes.h> 67 68 #include <linux/uaccess.h> 69 #include <asm/unistd.h> 70 #include <asm/mmu_context.h> 71 72 static void __unhash_process(struct task_struct *p, bool group_dead) 73 { 74 nr_threads--; 75 detach_pid(p, PIDTYPE_PID); 76 if (group_dead) { 77 detach_pid(p, PIDTYPE_TGID); 78 detach_pid(p, PIDTYPE_PGID); 79 detach_pid(p, PIDTYPE_SID); 80 81 list_del_rcu(&p->tasks); 82 list_del_init(&p->sibling); 83 __this_cpu_dec(process_counts); 84 } 85 list_del_rcu(&p->thread_group); 86 list_del_rcu(&p->thread_node); 87 } 88 89 /* 90 * This function expects the tasklist_lock write-locked. 91 */ 92 static void __exit_signal(struct task_struct *tsk) 93 { 94 struct signal_struct *sig = tsk->signal; 95 bool group_dead = thread_group_leader(tsk); 96 struct sighand_struct *sighand; 97 struct tty_struct *tty; 98 u64 utime, stime; 99 100 sighand = rcu_dereference_check(tsk->sighand, 101 lockdep_tasklist_lock_is_held()); 102 spin_lock(&sighand->siglock); 103 104 #ifdef CONFIG_POSIX_TIMERS 105 posix_cpu_timers_exit(tsk); 106 if (group_dead) 107 posix_cpu_timers_exit_group(tsk); 108 #endif 109 110 if (group_dead) { 111 tty = sig->tty; 112 sig->tty = NULL; 113 } else { 114 /* 115 * If there is any task waiting for the group exit 116 * then notify it: 117 */ 118 if (sig->notify_count > 0 && !--sig->notify_count) 119 wake_up_process(sig->group_exit_task); 120 121 if (tsk == sig->curr_target) 122 sig->curr_target = next_thread(tsk); 123 } 124 125 add_device_randomness((const void*) &tsk->se.sum_exec_runtime, 126 sizeof(unsigned long long)); 127 128 /* 129 * Accumulate here the counters for all threads as they die. We could 130 * skip the group leader because it is the last user of signal_struct, 131 * but we want to avoid the race with thread_group_cputime() which can 132 * see the empty ->thread_head list. 133 */ 134 task_cputime(tsk, &utime, &stime); 135 write_seqlock(&sig->stats_lock); 136 sig->utime += utime; 137 sig->stime += stime; 138 sig->gtime += task_gtime(tsk); 139 sig->min_flt += tsk->min_flt; 140 sig->maj_flt += tsk->maj_flt; 141 sig->nvcsw += tsk->nvcsw; 142 sig->nivcsw += tsk->nivcsw; 143 sig->inblock += task_io_get_inblock(tsk); 144 sig->oublock += task_io_get_oublock(tsk); 145 task_io_accounting_add(&sig->ioac, &tsk->ioac); 146 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 147 sig->nr_threads--; 148 __unhash_process(tsk, group_dead); 149 write_sequnlock(&sig->stats_lock); 150 151 /* 152 * Do this under ->siglock, we can race with another thread 153 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 154 */ 155 flush_sigqueue(&tsk->pending); 156 tsk->sighand = NULL; 157 spin_unlock(&sighand->siglock); 158 159 __cleanup_sighand(sighand); 160 clear_tsk_thread_flag(tsk, TIF_SIGPENDING); 161 if (group_dead) { 162 flush_sigqueue(&sig->shared_pending); 163 tty_kref_put(tty); 164 } 165 } 166 167 static void delayed_put_task_struct(struct rcu_head *rhp) 168 { 169 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 170 171 kprobe_flush_task(tsk); 172 perf_event_delayed_put(tsk); 173 trace_sched_process_free(tsk); 174 put_task_struct(tsk); 175 } 176 177 void put_task_struct_rcu_user(struct task_struct *task) 178 { 179 if (refcount_dec_and_test(&task->rcu_users)) 180 call_rcu(&task->rcu, delayed_put_task_struct); 181 } 182 183 void release_task(struct task_struct *p) 184 { 185 struct task_struct *leader; 186 struct pid *thread_pid; 187 int zap_leader; 188 repeat: 189 /* don't need to get the RCU readlock here - the process is dead and 190 * can't be modifying its own credentials. But shut RCU-lockdep up */ 191 rcu_read_lock(); 192 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 193 rcu_read_unlock(); 194 195 cgroup_release(p); 196 197 write_lock_irq(&tasklist_lock); 198 ptrace_release_task(p); 199 thread_pid = get_pid(p->thread_pid); 200 __exit_signal(p); 201 202 /* 203 * If we are the last non-leader member of the thread 204 * group, and the leader is zombie, then notify the 205 * group leader's parent process. (if it wants notification.) 206 */ 207 zap_leader = 0; 208 leader = p->group_leader; 209 if (leader != p && thread_group_empty(leader) 210 && leader->exit_state == EXIT_ZOMBIE) { 211 /* 212 * If we were the last child thread and the leader has 213 * exited already, and the leader's parent ignores SIGCHLD, 214 * then we are the one who should release the leader. 215 */ 216 zap_leader = do_notify_parent(leader, leader->exit_signal); 217 if (zap_leader) 218 leader->exit_state = EXIT_DEAD; 219 } 220 221 write_unlock_irq(&tasklist_lock); 222 seccomp_filter_release(p); 223 proc_flush_pid(thread_pid); 224 put_pid(thread_pid); 225 release_thread(p); 226 put_task_struct_rcu_user(p); 227 228 p = leader; 229 if (unlikely(zap_leader)) 230 goto repeat; 231 } 232 233 int rcuwait_wake_up(struct rcuwait *w) 234 { 235 int ret = 0; 236 struct task_struct *task; 237 238 rcu_read_lock(); 239 240 /* 241 * Order condition vs @task, such that everything prior to the load 242 * of @task is visible. This is the condition as to why the user called 243 * rcuwait_wake() in the first place. Pairs with set_current_state() 244 * barrier (A) in rcuwait_wait_event(). 245 * 246 * WAIT WAKE 247 * [S] tsk = current [S] cond = true 248 * MB (A) MB (B) 249 * [L] cond [L] tsk 250 */ 251 smp_mb(); /* (B) */ 252 253 task = rcu_dereference(w->task); 254 if (task) 255 ret = wake_up_process(task); 256 rcu_read_unlock(); 257 258 return ret; 259 } 260 EXPORT_SYMBOL_GPL(rcuwait_wake_up); 261 262 /* 263 * Determine if a process group is "orphaned", according to the POSIX 264 * definition in 2.2.2.52. Orphaned process groups are not to be affected 265 * by terminal-generated stop signals. Newly orphaned process groups are 266 * to receive a SIGHUP and a SIGCONT. 267 * 268 * "I ask you, have you ever known what it is to be an orphan?" 269 */ 270 static int will_become_orphaned_pgrp(struct pid *pgrp, 271 struct task_struct *ignored_task) 272 { 273 struct task_struct *p; 274 275 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 276 if ((p == ignored_task) || 277 (p->exit_state && thread_group_empty(p)) || 278 is_global_init(p->real_parent)) 279 continue; 280 281 if (task_pgrp(p->real_parent) != pgrp && 282 task_session(p->real_parent) == task_session(p)) 283 return 0; 284 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 285 286 return 1; 287 } 288 289 int is_current_pgrp_orphaned(void) 290 { 291 int retval; 292 293 read_lock(&tasklist_lock); 294 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 295 read_unlock(&tasklist_lock); 296 297 return retval; 298 } 299 300 static bool has_stopped_jobs(struct pid *pgrp) 301 { 302 struct task_struct *p; 303 304 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 305 if (p->signal->flags & SIGNAL_STOP_STOPPED) 306 return true; 307 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 308 309 return false; 310 } 311 312 /* 313 * Check to see if any process groups have become orphaned as 314 * a result of our exiting, and if they have any stopped jobs, 315 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 316 */ 317 static void 318 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 319 { 320 struct pid *pgrp = task_pgrp(tsk); 321 struct task_struct *ignored_task = tsk; 322 323 if (!parent) 324 /* exit: our father is in a different pgrp than 325 * we are and we were the only connection outside. 326 */ 327 parent = tsk->real_parent; 328 else 329 /* reparent: our child is in a different pgrp than 330 * we are, and it was the only connection outside. 331 */ 332 ignored_task = NULL; 333 334 if (task_pgrp(parent) != pgrp && 335 task_session(parent) == task_session(tsk) && 336 will_become_orphaned_pgrp(pgrp, ignored_task) && 337 has_stopped_jobs(pgrp)) { 338 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 339 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 340 } 341 } 342 343 static void coredump_task_exit(struct task_struct *tsk) 344 { 345 struct core_state *core_state; 346 347 /* 348 * Serialize with any possible pending coredump. 349 * We must hold siglock around checking core_state 350 * and setting PF_POSTCOREDUMP. The core-inducing thread 351 * will increment ->nr_threads for each thread in the 352 * group without PF_POSTCOREDUMP set. 353 */ 354 spin_lock_irq(&tsk->sighand->siglock); 355 tsk->flags |= PF_POSTCOREDUMP; 356 core_state = tsk->signal->core_state; 357 spin_unlock_irq(&tsk->sighand->siglock); 358 if (core_state) { 359 struct core_thread self; 360 361 self.task = current; 362 if (self.task->flags & PF_SIGNALED) 363 self.next = xchg(&core_state->dumper.next, &self); 364 else 365 self.task = NULL; 366 /* 367 * Implies mb(), the result of xchg() must be visible 368 * to core_state->dumper. 369 */ 370 if (atomic_dec_and_test(&core_state->nr_threads)) 371 complete(&core_state->startup); 372 373 for (;;) { 374 set_current_state(TASK_UNINTERRUPTIBLE); 375 if (!self.task) /* see coredump_finish() */ 376 break; 377 freezable_schedule(); 378 } 379 __set_current_state(TASK_RUNNING); 380 } 381 } 382 383 #ifdef CONFIG_MEMCG 384 /* 385 * A task is exiting. If it owned this mm, find a new owner for the mm. 386 */ 387 void mm_update_next_owner(struct mm_struct *mm) 388 { 389 struct task_struct *c, *g, *p = current; 390 391 retry: 392 /* 393 * If the exiting or execing task is not the owner, it's 394 * someone else's problem. 395 */ 396 if (mm->owner != p) 397 return; 398 /* 399 * The current owner is exiting/execing and there are no other 400 * candidates. Do not leave the mm pointing to a possibly 401 * freed task structure. 402 */ 403 if (atomic_read(&mm->mm_users) <= 1) { 404 WRITE_ONCE(mm->owner, NULL); 405 return; 406 } 407 408 read_lock(&tasklist_lock); 409 /* 410 * Search in the children 411 */ 412 list_for_each_entry(c, &p->children, sibling) { 413 if (c->mm == mm) 414 goto assign_new_owner; 415 } 416 417 /* 418 * Search in the siblings 419 */ 420 list_for_each_entry(c, &p->real_parent->children, sibling) { 421 if (c->mm == mm) 422 goto assign_new_owner; 423 } 424 425 /* 426 * Search through everything else, we should not get here often. 427 */ 428 for_each_process(g) { 429 if (g->flags & PF_KTHREAD) 430 continue; 431 for_each_thread(g, c) { 432 if (c->mm == mm) 433 goto assign_new_owner; 434 if (c->mm) 435 break; 436 } 437 } 438 read_unlock(&tasklist_lock); 439 /* 440 * We found no owner yet mm_users > 1: this implies that we are 441 * most likely racing with swapoff (try_to_unuse()) or /proc or 442 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 443 */ 444 WRITE_ONCE(mm->owner, NULL); 445 return; 446 447 assign_new_owner: 448 BUG_ON(c == p); 449 get_task_struct(c); 450 /* 451 * The task_lock protects c->mm from changing. 452 * We always want mm->owner->mm == mm 453 */ 454 task_lock(c); 455 /* 456 * Delay read_unlock() till we have the task_lock() 457 * to ensure that c does not slip away underneath us 458 */ 459 read_unlock(&tasklist_lock); 460 if (c->mm != mm) { 461 task_unlock(c); 462 put_task_struct(c); 463 goto retry; 464 } 465 WRITE_ONCE(mm->owner, c); 466 task_unlock(c); 467 put_task_struct(c); 468 } 469 #endif /* CONFIG_MEMCG */ 470 471 /* 472 * Turn us into a lazy TLB process if we 473 * aren't already.. 474 */ 475 static void exit_mm(void) 476 { 477 struct mm_struct *mm = current->mm; 478 479 exit_mm_release(current, mm); 480 if (!mm) 481 return; 482 sync_mm_rss(mm); 483 mmap_read_lock(mm); 484 mmgrab(mm); 485 BUG_ON(mm != current->active_mm); 486 /* more a memory barrier than a real lock */ 487 task_lock(current); 488 /* 489 * When a thread stops operating on an address space, the loop 490 * in membarrier_private_expedited() may not observe that 491 * tsk->mm, and the loop in membarrier_global_expedited() may 492 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED 493 * rq->membarrier_state, so those would not issue an IPI. 494 * Membarrier requires a memory barrier after accessing 495 * user-space memory, before clearing tsk->mm or the 496 * rq->membarrier_state. 497 */ 498 smp_mb__after_spinlock(); 499 local_irq_disable(); 500 current->mm = NULL; 501 membarrier_update_current_mm(NULL); 502 enter_lazy_tlb(mm, current); 503 local_irq_enable(); 504 task_unlock(current); 505 mmap_read_unlock(mm); 506 mm_update_next_owner(mm); 507 mmput(mm); 508 if (test_thread_flag(TIF_MEMDIE)) 509 exit_oom_victim(); 510 } 511 512 static struct task_struct *find_alive_thread(struct task_struct *p) 513 { 514 struct task_struct *t; 515 516 for_each_thread(p, t) { 517 if (!(t->flags & PF_EXITING)) 518 return t; 519 } 520 return NULL; 521 } 522 523 static struct task_struct *find_child_reaper(struct task_struct *father, 524 struct list_head *dead) 525 __releases(&tasklist_lock) 526 __acquires(&tasklist_lock) 527 { 528 struct pid_namespace *pid_ns = task_active_pid_ns(father); 529 struct task_struct *reaper = pid_ns->child_reaper; 530 struct task_struct *p, *n; 531 532 if (likely(reaper != father)) 533 return reaper; 534 535 reaper = find_alive_thread(father); 536 if (reaper) { 537 pid_ns->child_reaper = reaper; 538 return reaper; 539 } 540 541 write_unlock_irq(&tasklist_lock); 542 543 list_for_each_entry_safe(p, n, dead, ptrace_entry) { 544 list_del_init(&p->ptrace_entry); 545 release_task(p); 546 } 547 548 zap_pid_ns_processes(pid_ns); 549 write_lock_irq(&tasklist_lock); 550 551 return father; 552 } 553 554 /* 555 * When we die, we re-parent all our children, and try to: 556 * 1. give them to another thread in our thread group, if such a member exists 557 * 2. give it to the first ancestor process which prctl'd itself as a 558 * child_subreaper for its children (like a service manager) 559 * 3. give it to the init process (PID 1) in our pid namespace 560 */ 561 static struct task_struct *find_new_reaper(struct task_struct *father, 562 struct task_struct *child_reaper) 563 { 564 struct task_struct *thread, *reaper; 565 566 thread = find_alive_thread(father); 567 if (thread) 568 return thread; 569 570 if (father->signal->has_child_subreaper) { 571 unsigned int ns_level = task_pid(father)->level; 572 /* 573 * Find the first ->is_child_subreaper ancestor in our pid_ns. 574 * We can't check reaper != child_reaper to ensure we do not 575 * cross the namespaces, the exiting parent could be injected 576 * by setns() + fork(). 577 * We check pid->level, this is slightly more efficient than 578 * task_active_pid_ns(reaper) != task_active_pid_ns(father). 579 */ 580 for (reaper = father->real_parent; 581 task_pid(reaper)->level == ns_level; 582 reaper = reaper->real_parent) { 583 if (reaper == &init_task) 584 break; 585 if (!reaper->signal->is_child_subreaper) 586 continue; 587 thread = find_alive_thread(reaper); 588 if (thread) 589 return thread; 590 } 591 } 592 593 return child_reaper; 594 } 595 596 /* 597 * Any that need to be release_task'd are put on the @dead list. 598 */ 599 static void reparent_leader(struct task_struct *father, struct task_struct *p, 600 struct list_head *dead) 601 { 602 if (unlikely(p->exit_state == EXIT_DEAD)) 603 return; 604 605 /* We don't want people slaying init. */ 606 p->exit_signal = SIGCHLD; 607 608 /* If it has exited notify the new parent about this child's death. */ 609 if (!p->ptrace && 610 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 611 if (do_notify_parent(p, p->exit_signal)) { 612 p->exit_state = EXIT_DEAD; 613 list_add(&p->ptrace_entry, dead); 614 } 615 } 616 617 kill_orphaned_pgrp(p, father); 618 } 619 620 /* 621 * This does two things: 622 * 623 * A. Make init inherit all the child processes 624 * B. Check to see if any process groups have become orphaned 625 * as a result of our exiting, and if they have any stopped 626 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 627 */ 628 static void forget_original_parent(struct task_struct *father, 629 struct list_head *dead) 630 { 631 struct task_struct *p, *t, *reaper; 632 633 if (unlikely(!list_empty(&father->ptraced))) 634 exit_ptrace(father, dead); 635 636 /* Can drop and reacquire tasklist_lock */ 637 reaper = find_child_reaper(father, dead); 638 if (list_empty(&father->children)) 639 return; 640 641 reaper = find_new_reaper(father, reaper); 642 list_for_each_entry(p, &father->children, sibling) { 643 for_each_thread(p, t) { 644 RCU_INIT_POINTER(t->real_parent, reaper); 645 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father)); 646 if (likely(!t->ptrace)) 647 t->parent = t->real_parent; 648 if (t->pdeath_signal) 649 group_send_sig_info(t->pdeath_signal, 650 SEND_SIG_NOINFO, t, 651 PIDTYPE_TGID); 652 } 653 /* 654 * If this is a threaded reparent there is no need to 655 * notify anyone anything has happened. 656 */ 657 if (!same_thread_group(reaper, father)) 658 reparent_leader(father, p, dead); 659 } 660 list_splice_tail_init(&father->children, &reaper->children); 661 } 662 663 /* 664 * Send signals to all our closest relatives so that they know 665 * to properly mourn us.. 666 */ 667 static void exit_notify(struct task_struct *tsk, int group_dead) 668 { 669 bool autoreap; 670 struct task_struct *p, *n; 671 LIST_HEAD(dead); 672 673 write_lock_irq(&tasklist_lock); 674 forget_original_parent(tsk, &dead); 675 676 if (group_dead) 677 kill_orphaned_pgrp(tsk->group_leader, NULL); 678 679 tsk->exit_state = EXIT_ZOMBIE; 680 if (unlikely(tsk->ptrace)) { 681 int sig = thread_group_leader(tsk) && 682 thread_group_empty(tsk) && 683 !ptrace_reparented(tsk) ? 684 tsk->exit_signal : SIGCHLD; 685 autoreap = do_notify_parent(tsk, sig); 686 } else if (thread_group_leader(tsk)) { 687 autoreap = thread_group_empty(tsk) && 688 do_notify_parent(tsk, tsk->exit_signal); 689 } else { 690 autoreap = true; 691 } 692 693 if (autoreap) { 694 tsk->exit_state = EXIT_DEAD; 695 list_add(&tsk->ptrace_entry, &dead); 696 } 697 698 /* mt-exec, de_thread() is waiting for group leader */ 699 if (unlikely(tsk->signal->notify_count < 0)) 700 wake_up_process(tsk->signal->group_exit_task); 701 write_unlock_irq(&tasklist_lock); 702 703 list_for_each_entry_safe(p, n, &dead, ptrace_entry) { 704 list_del_init(&p->ptrace_entry); 705 release_task(p); 706 } 707 } 708 709 #ifdef CONFIG_DEBUG_STACK_USAGE 710 static void check_stack_usage(void) 711 { 712 static DEFINE_SPINLOCK(low_water_lock); 713 static int lowest_to_date = THREAD_SIZE; 714 unsigned long free; 715 716 free = stack_not_used(current); 717 718 if (free >= lowest_to_date) 719 return; 720 721 spin_lock(&low_water_lock); 722 if (free < lowest_to_date) { 723 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n", 724 current->comm, task_pid_nr(current), free); 725 lowest_to_date = free; 726 } 727 spin_unlock(&low_water_lock); 728 } 729 #else 730 static inline void check_stack_usage(void) {} 731 #endif 732 733 void __noreturn do_exit(long code) 734 { 735 struct task_struct *tsk = current; 736 int group_dead; 737 738 WARN_ON(blk_needs_flush_plug(tsk)); 739 740 profile_task_exit(tsk); 741 kcov_task_exit(tsk); 742 743 coredump_task_exit(tsk); 744 ptrace_event(PTRACE_EVENT_EXIT, code); 745 746 validate_creds_for_do_exit(tsk); 747 748 io_uring_files_cancel(); 749 exit_signals(tsk); /* sets PF_EXITING */ 750 751 /* sync mm's RSS info before statistics gathering */ 752 if (tsk->mm) 753 sync_mm_rss(tsk->mm); 754 acct_update_integrals(tsk); 755 group_dead = atomic_dec_and_test(&tsk->signal->live); 756 if (group_dead) { 757 /* 758 * If the last thread of global init has exited, panic 759 * immediately to get a useable coredump. 760 */ 761 if (unlikely(is_global_init(tsk))) 762 panic("Attempted to kill init! exitcode=0x%08x\n", 763 tsk->signal->group_exit_code ?: (int)code); 764 765 #ifdef CONFIG_POSIX_TIMERS 766 hrtimer_cancel(&tsk->signal->real_timer); 767 exit_itimers(tsk->signal); 768 #endif 769 if (tsk->mm) 770 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 771 } 772 acct_collect(code, group_dead); 773 if (group_dead) 774 tty_audit_exit(); 775 audit_free(tsk); 776 777 tsk->exit_code = code; 778 taskstats_exit(tsk, group_dead); 779 780 exit_mm(); 781 782 if (group_dead) 783 acct_process(); 784 trace_sched_process_exit(tsk); 785 786 exit_sem(tsk); 787 exit_shm(tsk); 788 exit_files(tsk); 789 exit_fs(tsk); 790 if (group_dead) 791 disassociate_ctty(1); 792 exit_task_namespaces(tsk); 793 exit_task_work(tsk); 794 exit_thread(tsk); 795 796 /* 797 * Flush inherited counters to the parent - before the parent 798 * gets woken up by child-exit notifications. 799 * 800 * because of cgroup mode, must be called before cgroup_exit() 801 */ 802 perf_event_exit_task(tsk); 803 804 sched_autogroup_exit_task(tsk); 805 cgroup_exit(tsk); 806 807 /* 808 * FIXME: do that only when needed, using sched_exit tracepoint 809 */ 810 flush_ptrace_hw_breakpoint(tsk); 811 812 exit_tasks_rcu_start(); 813 exit_notify(tsk, group_dead); 814 proc_exit_connector(tsk); 815 mpol_put_task_policy(tsk); 816 #ifdef CONFIG_FUTEX 817 if (unlikely(current->pi_state_cache)) 818 kfree(current->pi_state_cache); 819 #endif 820 /* 821 * Make sure we are holding no locks: 822 */ 823 debug_check_no_locks_held(); 824 825 if (tsk->io_context) 826 exit_io_context(tsk); 827 828 if (tsk->splice_pipe) 829 free_pipe_info(tsk->splice_pipe); 830 831 if (tsk->task_frag.page) 832 put_page(tsk->task_frag.page); 833 834 validate_creds_for_do_exit(tsk); 835 836 check_stack_usage(); 837 preempt_disable(); 838 if (tsk->nr_dirtied) 839 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 840 exit_rcu(); 841 exit_tasks_rcu_finish(); 842 843 lockdep_free_task(tsk); 844 do_task_dead(); 845 } 846 847 void __noreturn make_task_dead(int signr) 848 { 849 /* 850 * Take the task off the cpu after something catastrophic has 851 * happened. 852 * 853 * We can get here from a kernel oops, sometimes with preemption off. 854 * Start by checking for critical errors. 855 * Then fix up important state like USER_DS and preemption. 856 * Then do everything else. 857 */ 858 struct task_struct *tsk = current; 859 860 if (unlikely(in_interrupt())) 861 panic("Aiee, killing interrupt handler!"); 862 if (unlikely(!tsk->pid)) 863 panic("Attempted to kill the idle task!"); 864 865 /* 866 * If make_task_dead is called because this processes oopsed, it's possible 867 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before 868 * continuing. Amongst other possible reasons, this is to prevent 869 * mm_release()->clear_child_tid() from writing to a user-controlled 870 * kernel address. 871 */ 872 force_uaccess_begin(); 873 874 if (unlikely(in_atomic())) { 875 pr_info("note: %s[%d] exited with preempt_count %d\n", 876 current->comm, task_pid_nr(current), 877 preempt_count()); 878 preempt_count_set(PREEMPT_ENABLED); 879 } 880 881 /* 882 * We're taking recursive faults here in make_task_dead. Safest is to just 883 * leave this task alone and wait for reboot. 884 */ 885 if (unlikely(tsk->flags & PF_EXITING)) { 886 pr_alert("Fixing recursive fault but reboot is needed!\n"); 887 futex_exit_recursive(tsk); 888 do_task_dead(); 889 } 890 891 do_exit(signr); 892 } 893 894 void complete_and_exit(struct completion *comp, long code) 895 { 896 if (comp) 897 complete(comp); 898 899 do_exit(code); 900 } 901 EXPORT_SYMBOL(complete_and_exit); 902 903 SYSCALL_DEFINE1(exit, int, error_code) 904 { 905 do_exit((error_code&0xff)<<8); 906 } 907 908 /* 909 * Take down every thread in the group. This is called by fatal signals 910 * as well as by sys_exit_group (below). 911 */ 912 void 913 do_group_exit(int exit_code) 914 { 915 struct signal_struct *sig = current->signal; 916 917 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 918 919 if (signal_group_exit(sig)) 920 exit_code = sig->group_exit_code; 921 else if (!thread_group_empty(current)) { 922 struct sighand_struct *const sighand = current->sighand; 923 924 spin_lock_irq(&sighand->siglock); 925 if (signal_group_exit(sig)) 926 /* Another thread got here before we took the lock. */ 927 exit_code = sig->group_exit_code; 928 else { 929 sig->group_exit_code = exit_code; 930 sig->flags = SIGNAL_GROUP_EXIT; 931 zap_other_threads(current); 932 } 933 spin_unlock_irq(&sighand->siglock); 934 } 935 936 do_exit(exit_code); 937 /* NOTREACHED */ 938 } 939 940 /* 941 * this kills every thread in the thread group. Note that any externally 942 * wait4()-ing process will get the correct exit code - even if this 943 * thread is not the thread group leader. 944 */ 945 SYSCALL_DEFINE1(exit_group, int, error_code) 946 { 947 do_group_exit((error_code & 0xff) << 8); 948 /* NOTREACHED */ 949 return 0; 950 } 951 952 struct waitid_info { 953 pid_t pid; 954 uid_t uid; 955 int status; 956 int cause; 957 }; 958 959 struct wait_opts { 960 enum pid_type wo_type; 961 int wo_flags; 962 struct pid *wo_pid; 963 964 struct waitid_info *wo_info; 965 int wo_stat; 966 struct rusage *wo_rusage; 967 968 wait_queue_entry_t child_wait; 969 int notask_error; 970 }; 971 972 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 973 { 974 return wo->wo_type == PIDTYPE_MAX || 975 task_pid_type(p, wo->wo_type) == wo->wo_pid; 976 } 977 978 static int 979 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p) 980 { 981 if (!eligible_pid(wo, p)) 982 return 0; 983 984 /* 985 * Wait for all children (clone and not) if __WALL is set or 986 * if it is traced by us. 987 */ 988 if (ptrace || (wo->wo_flags & __WALL)) 989 return 1; 990 991 /* 992 * Otherwise, wait for clone children *only* if __WCLONE is set; 993 * otherwise, wait for non-clone children *only*. 994 * 995 * Note: a "clone" child here is one that reports to its parent 996 * using a signal other than SIGCHLD, or a non-leader thread which 997 * we can only see if it is traced by us. 998 */ 999 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 1000 return 0; 1001 1002 return 1; 1003 } 1004 1005 /* 1006 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1007 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1008 * the lock and this task is uninteresting. If we return nonzero, we have 1009 * released the lock and the system call should return. 1010 */ 1011 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1012 { 1013 int state, status; 1014 pid_t pid = task_pid_vnr(p); 1015 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1016 struct waitid_info *infop; 1017 1018 if (!likely(wo->wo_flags & WEXITED)) 1019 return 0; 1020 1021 if (unlikely(wo->wo_flags & WNOWAIT)) { 1022 status = p->exit_code; 1023 get_task_struct(p); 1024 read_unlock(&tasklist_lock); 1025 sched_annotate_sleep(); 1026 if (wo->wo_rusage) 1027 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1028 put_task_struct(p); 1029 goto out_info; 1030 } 1031 /* 1032 * Move the task's state to DEAD/TRACE, only one thread can do this. 1033 */ 1034 state = (ptrace_reparented(p) && thread_group_leader(p)) ? 1035 EXIT_TRACE : EXIT_DEAD; 1036 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 1037 return 0; 1038 /* 1039 * We own this thread, nobody else can reap it. 1040 */ 1041 read_unlock(&tasklist_lock); 1042 sched_annotate_sleep(); 1043 1044 /* 1045 * Check thread_group_leader() to exclude the traced sub-threads. 1046 */ 1047 if (state == EXIT_DEAD && thread_group_leader(p)) { 1048 struct signal_struct *sig = p->signal; 1049 struct signal_struct *psig = current->signal; 1050 unsigned long maxrss; 1051 u64 tgutime, tgstime; 1052 1053 /* 1054 * The resource counters for the group leader are in its 1055 * own task_struct. Those for dead threads in the group 1056 * are in its signal_struct, as are those for the child 1057 * processes it has previously reaped. All these 1058 * accumulate in the parent's signal_struct c* fields. 1059 * 1060 * We don't bother to take a lock here to protect these 1061 * p->signal fields because the whole thread group is dead 1062 * and nobody can change them. 1063 * 1064 * psig->stats_lock also protects us from our sub-theads 1065 * which can reap other children at the same time. Until 1066 * we change k_getrusage()-like users to rely on this lock 1067 * we have to take ->siglock as well. 1068 * 1069 * We use thread_group_cputime_adjusted() to get times for 1070 * the thread group, which consolidates times for all threads 1071 * in the group including the group leader. 1072 */ 1073 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1074 spin_lock_irq(¤t->sighand->siglock); 1075 write_seqlock(&psig->stats_lock); 1076 psig->cutime += tgutime + sig->cutime; 1077 psig->cstime += tgstime + sig->cstime; 1078 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1079 psig->cmin_flt += 1080 p->min_flt + sig->min_flt + sig->cmin_flt; 1081 psig->cmaj_flt += 1082 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1083 psig->cnvcsw += 1084 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1085 psig->cnivcsw += 1086 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1087 psig->cinblock += 1088 task_io_get_inblock(p) + 1089 sig->inblock + sig->cinblock; 1090 psig->coublock += 1091 task_io_get_oublock(p) + 1092 sig->oublock + sig->coublock; 1093 maxrss = max(sig->maxrss, sig->cmaxrss); 1094 if (psig->cmaxrss < maxrss) 1095 psig->cmaxrss = maxrss; 1096 task_io_accounting_add(&psig->ioac, &p->ioac); 1097 task_io_accounting_add(&psig->ioac, &sig->ioac); 1098 write_sequnlock(&psig->stats_lock); 1099 spin_unlock_irq(¤t->sighand->siglock); 1100 } 1101 1102 if (wo->wo_rusage) 1103 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1104 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1105 ? p->signal->group_exit_code : p->exit_code; 1106 wo->wo_stat = status; 1107 1108 if (state == EXIT_TRACE) { 1109 write_lock_irq(&tasklist_lock); 1110 /* We dropped tasklist, ptracer could die and untrace */ 1111 ptrace_unlink(p); 1112 1113 /* If parent wants a zombie, don't release it now */ 1114 state = EXIT_ZOMBIE; 1115 if (do_notify_parent(p, p->exit_signal)) 1116 state = EXIT_DEAD; 1117 p->exit_state = state; 1118 write_unlock_irq(&tasklist_lock); 1119 } 1120 if (state == EXIT_DEAD) 1121 release_task(p); 1122 1123 out_info: 1124 infop = wo->wo_info; 1125 if (infop) { 1126 if ((status & 0x7f) == 0) { 1127 infop->cause = CLD_EXITED; 1128 infop->status = status >> 8; 1129 } else { 1130 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1131 infop->status = status & 0x7f; 1132 } 1133 infop->pid = pid; 1134 infop->uid = uid; 1135 } 1136 1137 return pid; 1138 } 1139 1140 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1141 { 1142 if (ptrace) { 1143 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING)) 1144 return &p->exit_code; 1145 } else { 1146 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1147 return &p->signal->group_exit_code; 1148 } 1149 return NULL; 1150 } 1151 1152 /** 1153 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1154 * @wo: wait options 1155 * @ptrace: is the wait for ptrace 1156 * @p: task to wait for 1157 * 1158 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1159 * 1160 * CONTEXT: 1161 * read_lock(&tasklist_lock), which is released if return value is 1162 * non-zero. Also, grabs and releases @p->sighand->siglock. 1163 * 1164 * RETURNS: 1165 * 0 if wait condition didn't exist and search for other wait conditions 1166 * should continue. Non-zero return, -errno on failure and @p's pid on 1167 * success, implies that tasklist_lock is released and wait condition 1168 * search should terminate. 1169 */ 1170 static int wait_task_stopped(struct wait_opts *wo, 1171 int ptrace, struct task_struct *p) 1172 { 1173 struct waitid_info *infop; 1174 int exit_code, *p_code, why; 1175 uid_t uid = 0; /* unneeded, required by compiler */ 1176 pid_t pid; 1177 1178 /* 1179 * Traditionally we see ptrace'd stopped tasks regardless of options. 1180 */ 1181 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1182 return 0; 1183 1184 if (!task_stopped_code(p, ptrace)) 1185 return 0; 1186 1187 exit_code = 0; 1188 spin_lock_irq(&p->sighand->siglock); 1189 1190 p_code = task_stopped_code(p, ptrace); 1191 if (unlikely(!p_code)) 1192 goto unlock_sig; 1193 1194 exit_code = *p_code; 1195 if (!exit_code) 1196 goto unlock_sig; 1197 1198 if (!unlikely(wo->wo_flags & WNOWAIT)) 1199 *p_code = 0; 1200 1201 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1202 unlock_sig: 1203 spin_unlock_irq(&p->sighand->siglock); 1204 if (!exit_code) 1205 return 0; 1206 1207 /* 1208 * Now we are pretty sure this task is interesting. 1209 * Make sure it doesn't get reaped out from under us while we 1210 * give up the lock and then examine it below. We don't want to 1211 * keep holding onto the tasklist_lock while we call getrusage and 1212 * possibly take page faults for user memory. 1213 */ 1214 get_task_struct(p); 1215 pid = task_pid_vnr(p); 1216 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1217 read_unlock(&tasklist_lock); 1218 sched_annotate_sleep(); 1219 if (wo->wo_rusage) 1220 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1221 put_task_struct(p); 1222 1223 if (likely(!(wo->wo_flags & WNOWAIT))) 1224 wo->wo_stat = (exit_code << 8) | 0x7f; 1225 1226 infop = wo->wo_info; 1227 if (infop) { 1228 infop->cause = why; 1229 infop->status = exit_code; 1230 infop->pid = pid; 1231 infop->uid = uid; 1232 } 1233 return pid; 1234 } 1235 1236 /* 1237 * Handle do_wait work for one task in a live, non-stopped state. 1238 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1239 * the lock and this task is uninteresting. If we return nonzero, we have 1240 * released the lock and the system call should return. 1241 */ 1242 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1243 { 1244 struct waitid_info *infop; 1245 pid_t pid; 1246 uid_t uid; 1247 1248 if (!unlikely(wo->wo_flags & WCONTINUED)) 1249 return 0; 1250 1251 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1252 return 0; 1253 1254 spin_lock_irq(&p->sighand->siglock); 1255 /* Re-check with the lock held. */ 1256 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1257 spin_unlock_irq(&p->sighand->siglock); 1258 return 0; 1259 } 1260 if (!unlikely(wo->wo_flags & WNOWAIT)) 1261 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1262 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1263 spin_unlock_irq(&p->sighand->siglock); 1264 1265 pid = task_pid_vnr(p); 1266 get_task_struct(p); 1267 read_unlock(&tasklist_lock); 1268 sched_annotate_sleep(); 1269 if (wo->wo_rusage) 1270 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1271 put_task_struct(p); 1272 1273 infop = wo->wo_info; 1274 if (!infop) { 1275 wo->wo_stat = 0xffff; 1276 } else { 1277 infop->cause = CLD_CONTINUED; 1278 infop->pid = pid; 1279 infop->uid = uid; 1280 infop->status = SIGCONT; 1281 } 1282 return pid; 1283 } 1284 1285 /* 1286 * Consider @p for a wait by @parent. 1287 * 1288 * -ECHILD should be in ->notask_error before the first call. 1289 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1290 * Returns zero if the search for a child should continue; 1291 * then ->notask_error is 0 if @p is an eligible child, 1292 * or still -ECHILD. 1293 */ 1294 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1295 struct task_struct *p) 1296 { 1297 /* 1298 * We can race with wait_task_zombie() from another thread. 1299 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition 1300 * can't confuse the checks below. 1301 */ 1302 int exit_state = READ_ONCE(p->exit_state); 1303 int ret; 1304 1305 if (unlikely(exit_state == EXIT_DEAD)) 1306 return 0; 1307 1308 ret = eligible_child(wo, ptrace, p); 1309 if (!ret) 1310 return ret; 1311 1312 if (unlikely(exit_state == EXIT_TRACE)) { 1313 /* 1314 * ptrace == 0 means we are the natural parent. In this case 1315 * we should clear notask_error, debugger will notify us. 1316 */ 1317 if (likely(!ptrace)) 1318 wo->notask_error = 0; 1319 return 0; 1320 } 1321 1322 if (likely(!ptrace) && unlikely(p->ptrace)) { 1323 /* 1324 * If it is traced by its real parent's group, just pretend 1325 * the caller is ptrace_do_wait() and reap this child if it 1326 * is zombie. 1327 * 1328 * This also hides group stop state from real parent; otherwise 1329 * a single stop can be reported twice as group and ptrace stop. 1330 * If a ptracer wants to distinguish these two events for its 1331 * own children it should create a separate process which takes 1332 * the role of real parent. 1333 */ 1334 if (!ptrace_reparented(p)) 1335 ptrace = 1; 1336 } 1337 1338 /* slay zombie? */ 1339 if (exit_state == EXIT_ZOMBIE) { 1340 /* we don't reap group leaders with subthreads */ 1341 if (!delay_group_leader(p)) { 1342 /* 1343 * A zombie ptracee is only visible to its ptracer. 1344 * Notification and reaping will be cascaded to the 1345 * real parent when the ptracer detaches. 1346 */ 1347 if (unlikely(ptrace) || likely(!p->ptrace)) 1348 return wait_task_zombie(wo, p); 1349 } 1350 1351 /* 1352 * Allow access to stopped/continued state via zombie by 1353 * falling through. Clearing of notask_error is complex. 1354 * 1355 * When !@ptrace: 1356 * 1357 * If WEXITED is set, notask_error should naturally be 1358 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1359 * so, if there are live subthreads, there are events to 1360 * wait for. If all subthreads are dead, it's still safe 1361 * to clear - this function will be called again in finite 1362 * amount time once all the subthreads are released and 1363 * will then return without clearing. 1364 * 1365 * When @ptrace: 1366 * 1367 * Stopped state is per-task and thus can't change once the 1368 * target task dies. Only continued and exited can happen. 1369 * Clear notask_error if WCONTINUED | WEXITED. 1370 */ 1371 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1372 wo->notask_error = 0; 1373 } else { 1374 /* 1375 * @p is alive and it's gonna stop, continue or exit, so 1376 * there always is something to wait for. 1377 */ 1378 wo->notask_error = 0; 1379 } 1380 1381 /* 1382 * Wait for stopped. Depending on @ptrace, different stopped state 1383 * is used and the two don't interact with each other. 1384 */ 1385 ret = wait_task_stopped(wo, ptrace, p); 1386 if (ret) 1387 return ret; 1388 1389 /* 1390 * Wait for continued. There's only one continued state and the 1391 * ptracer can consume it which can confuse the real parent. Don't 1392 * use WCONTINUED from ptracer. You don't need or want it. 1393 */ 1394 return wait_task_continued(wo, p); 1395 } 1396 1397 /* 1398 * Do the work of do_wait() for one thread in the group, @tsk. 1399 * 1400 * -ECHILD should be in ->notask_error before the first call. 1401 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1402 * Returns zero if the search for a child should continue; then 1403 * ->notask_error is 0 if there were any eligible children, 1404 * or still -ECHILD. 1405 */ 1406 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1407 { 1408 struct task_struct *p; 1409 1410 list_for_each_entry(p, &tsk->children, sibling) { 1411 int ret = wait_consider_task(wo, 0, p); 1412 1413 if (ret) 1414 return ret; 1415 } 1416 1417 return 0; 1418 } 1419 1420 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1421 { 1422 struct task_struct *p; 1423 1424 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1425 int ret = wait_consider_task(wo, 1, p); 1426 1427 if (ret) 1428 return ret; 1429 } 1430 1431 return 0; 1432 } 1433 1434 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode, 1435 int sync, void *key) 1436 { 1437 struct wait_opts *wo = container_of(wait, struct wait_opts, 1438 child_wait); 1439 struct task_struct *p = key; 1440 1441 if (!eligible_pid(wo, p)) 1442 return 0; 1443 1444 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1445 return 0; 1446 1447 return default_wake_function(wait, mode, sync, key); 1448 } 1449 1450 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1451 { 1452 __wake_up_sync_key(&parent->signal->wait_chldexit, 1453 TASK_INTERRUPTIBLE, p); 1454 } 1455 1456 static bool is_effectively_child(struct wait_opts *wo, bool ptrace, 1457 struct task_struct *target) 1458 { 1459 struct task_struct *parent = 1460 !ptrace ? target->real_parent : target->parent; 1461 1462 return current == parent || (!(wo->wo_flags & __WNOTHREAD) && 1463 same_thread_group(current, parent)); 1464 } 1465 1466 /* 1467 * Optimization for waiting on PIDTYPE_PID. No need to iterate through child 1468 * and tracee lists to find the target task. 1469 */ 1470 static int do_wait_pid(struct wait_opts *wo) 1471 { 1472 bool ptrace; 1473 struct task_struct *target; 1474 int retval; 1475 1476 ptrace = false; 1477 target = pid_task(wo->wo_pid, PIDTYPE_TGID); 1478 if (target && is_effectively_child(wo, ptrace, target)) { 1479 retval = wait_consider_task(wo, ptrace, target); 1480 if (retval) 1481 return retval; 1482 } 1483 1484 ptrace = true; 1485 target = pid_task(wo->wo_pid, PIDTYPE_PID); 1486 if (target && target->ptrace && 1487 is_effectively_child(wo, ptrace, target)) { 1488 retval = wait_consider_task(wo, ptrace, target); 1489 if (retval) 1490 return retval; 1491 } 1492 1493 return 0; 1494 } 1495 1496 static long do_wait(struct wait_opts *wo) 1497 { 1498 int retval; 1499 1500 trace_sched_process_wait(wo->wo_pid); 1501 1502 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1503 wo->child_wait.private = current; 1504 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1505 repeat: 1506 /* 1507 * If there is nothing that can match our criteria, just get out. 1508 * We will clear ->notask_error to zero if we see any child that 1509 * might later match our criteria, even if we are not able to reap 1510 * it yet. 1511 */ 1512 wo->notask_error = -ECHILD; 1513 if ((wo->wo_type < PIDTYPE_MAX) && 1514 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type))) 1515 goto notask; 1516 1517 set_current_state(TASK_INTERRUPTIBLE); 1518 read_lock(&tasklist_lock); 1519 1520 if (wo->wo_type == PIDTYPE_PID) { 1521 retval = do_wait_pid(wo); 1522 if (retval) 1523 goto end; 1524 } else { 1525 struct task_struct *tsk = current; 1526 1527 do { 1528 retval = do_wait_thread(wo, tsk); 1529 if (retval) 1530 goto end; 1531 1532 retval = ptrace_do_wait(wo, tsk); 1533 if (retval) 1534 goto end; 1535 1536 if (wo->wo_flags & __WNOTHREAD) 1537 break; 1538 } while_each_thread(current, tsk); 1539 } 1540 read_unlock(&tasklist_lock); 1541 1542 notask: 1543 retval = wo->notask_error; 1544 if (!retval && !(wo->wo_flags & WNOHANG)) { 1545 retval = -ERESTARTSYS; 1546 if (!signal_pending(current)) { 1547 schedule(); 1548 goto repeat; 1549 } 1550 } 1551 end: 1552 __set_current_state(TASK_RUNNING); 1553 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1554 return retval; 1555 } 1556 1557 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop, 1558 int options, struct rusage *ru) 1559 { 1560 struct wait_opts wo; 1561 struct pid *pid = NULL; 1562 enum pid_type type; 1563 long ret; 1564 unsigned int f_flags = 0; 1565 1566 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED| 1567 __WNOTHREAD|__WCLONE|__WALL)) 1568 return -EINVAL; 1569 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1570 return -EINVAL; 1571 1572 switch (which) { 1573 case P_ALL: 1574 type = PIDTYPE_MAX; 1575 break; 1576 case P_PID: 1577 type = PIDTYPE_PID; 1578 if (upid <= 0) 1579 return -EINVAL; 1580 1581 pid = find_get_pid(upid); 1582 break; 1583 case P_PGID: 1584 type = PIDTYPE_PGID; 1585 if (upid < 0) 1586 return -EINVAL; 1587 1588 if (upid) 1589 pid = find_get_pid(upid); 1590 else 1591 pid = get_task_pid(current, PIDTYPE_PGID); 1592 break; 1593 case P_PIDFD: 1594 type = PIDTYPE_PID; 1595 if (upid < 0) 1596 return -EINVAL; 1597 1598 pid = pidfd_get_pid(upid, &f_flags); 1599 if (IS_ERR(pid)) 1600 return PTR_ERR(pid); 1601 1602 break; 1603 default: 1604 return -EINVAL; 1605 } 1606 1607 wo.wo_type = type; 1608 wo.wo_pid = pid; 1609 wo.wo_flags = options; 1610 wo.wo_info = infop; 1611 wo.wo_rusage = ru; 1612 if (f_flags & O_NONBLOCK) 1613 wo.wo_flags |= WNOHANG; 1614 1615 ret = do_wait(&wo); 1616 if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK)) 1617 ret = -EAGAIN; 1618 1619 put_pid(pid); 1620 return ret; 1621 } 1622 1623 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1624 infop, int, options, struct rusage __user *, ru) 1625 { 1626 struct rusage r; 1627 struct waitid_info info = {.status = 0}; 1628 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL); 1629 int signo = 0; 1630 1631 if (err > 0) { 1632 signo = SIGCHLD; 1633 err = 0; 1634 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1635 return -EFAULT; 1636 } 1637 if (!infop) 1638 return err; 1639 1640 if (!user_write_access_begin(infop, sizeof(*infop))) 1641 return -EFAULT; 1642 1643 unsafe_put_user(signo, &infop->si_signo, Efault); 1644 unsafe_put_user(0, &infop->si_errno, Efault); 1645 unsafe_put_user(info.cause, &infop->si_code, Efault); 1646 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1647 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1648 unsafe_put_user(info.status, &infop->si_status, Efault); 1649 user_write_access_end(); 1650 return err; 1651 Efault: 1652 user_write_access_end(); 1653 return -EFAULT; 1654 } 1655 1656 long kernel_wait4(pid_t upid, int __user *stat_addr, int options, 1657 struct rusage *ru) 1658 { 1659 struct wait_opts wo; 1660 struct pid *pid = NULL; 1661 enum pid_type type; 1662 long ret; 1663 1664 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1665 __WNOTHREAD|__WCLONE|__WALL)) 1666 return -EINVAL; 1667 1668 /* -INT_MIN is not defined */ 1669 if (upid == INT_MIN) 1670 return -ESRCH; 1671 1672 if (upid == -1) 1673 type = PIDTYPE_MAX; 1674 else if (upid < 0) { 1675 type = PIDTYPE_PGID; 1676 pid = find_get_pid(-upid); 1677 } else if (upid == 0) { 1678 type = PIDTYPE_PGID; 1679 pid = get_task_pid(current, PIDTYPE_PGID); 1680 } else /* upid > 0 */ { 1681 type = PIDTYPE_PID; 1682 pid = find_get_pid(upid); 1683 } 1684 1685 wo.wo_type = type; 1686 wo.wo_pid = pid; 1687 wo.wo_flags = options | WEXITED; 1688 wo.wo_info = NULL; 1689 wo.wo_stat = 0; 1690 wo.wo_rusage = ru; 1691 ret = do_wait(&wo); 1692 put_pid(pid); 1693 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr)) 1694 ret = -EFAULT; 1695 1696 return ret; 1697 } 1698 1699 int kernel_wait(pid_t pid, int *stat) 1700 { 1701 struct wait_opts wo = { 1702 .wo_type = PIDTYPE_PID, 1703 .wo_pid = find_get_pid(pid), 1704 .wo_flags = WEXITED, 1705 }; 1706 int ret; 1707 1708 ret = do_wait(&wo); 1709 if (ret > 0 && wo.wo_stat) 1710 *stat = wo.wo_stat; 1711 put_pid(wo.wo_pid); 1712 return ret; 1713 } 1714 1715 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1716 int, options, struct rusage __user *, ru) 1717 { 1718 struct rusage r; 1719 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL); 1720 1721 if (err > 0) { 1722 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1723 return -EFAULT; 1724 } 1725 return err; 1726 } 1727 1728 #ifdef __ARCH_WANT_SYS_WAITPID 1729 1730 /* 1731 * sys_waitpid() remains for compatibility. waitpid() should be 1732 * implemented by calling sys_wait4() from libc.a. 1733 */ 1734 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1735 { 1736 return kernel_wait4(pid, stat_addr, options, NULL); 1737 } 1738 1739 #endif 1740 1741 #ifdef CONFIG_COMPAT 1742 COMPAT_SYSCALL_DEFINE4(wait4, 1743 compat_pid_t, pid, 1744 compat_uint_t __user *, stat_addr, 1745 int, options, 1746 struct compat_rusage __user *, ru) 1747 { 1748 struct rusage r; 1749 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL); 1750 if (err > 0) { 1751 if (ru && put_compat_rusage(&r, ru)) 1752 return -EFAULT; 1753 } 1754 return err; 1755 } 1756 1757 COMPAT_SYSCALL_DEFINE5(waitid, 1758 int, which, compat_pid_t, pid, 1759 struct compat_siginfo __user *, infop, int, options, 1760 struct compat_rusage __user *, uru) 1761 { 1762 struct rusage ru; 1763 struct waitid_info info = {.status = 0}; 1764 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL); 1765 int signo = 0; 1766 if (err > 0) { 1767 signo = SIGCHLD; 1768 err = 0; 1769 if (uru) { 1770 /* kernel_waitid() overwrites everything in ru */ 1771 if (COMPAT_USE_64BIT_TIME) 1772 err = copy_to_user(uru, &ru, sizeof(ru)); 1773 else 1774 err = put_compat_rusage(&ru, uru); 1775 if (err) 1776 return -EFAULT; 1777 } 1778 } 1779 1780 if (!infop) 1781 return err; 1782 1783 if (!user_write_access_begin(infop, sizeof(*infop))) 1784 return -EFAULT; 1785 1786 unsafe_put_user(signo, &infop->si_signo, Efault); 1787 unsafe_put_user(0, &infop->si_errno, Efault); 1788 unsafe_put_user(info.cause, &infop->si_code, Efault); 1789 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1790 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1791 unsafe_put_user(info.status, &infop->si_status, Efault); 1792 user_write_access_end(); 1793 return err; 1794 Efault: 1795 user_write_access_end(); 1796 return -EFAULT; 1797 } 1798 #endif 1799 1800 /** 1801 * thread_group_exited - check that a thread group has exited 1802 * @pid: tgid of thread group to be checked. 1803 * 1804 * Test if the thread group represented by tgid has exited (all 1805 * threads are zombies, dead or completely gone). 1806 * 1807 * Return: true if the thread group has exited. false otherwise. 1808 */ 1809 bool thread_group_exited(struct pid *pid) 1810 { 1811 struct task_struct *task; 1812 bool exited; 1813 1814 rcu_read_lock(); 1815 task = pid_task(pid, PIDTYPE_PID); 1816 exited = !task || 1817 (READ_ONCE(task->exit_state) && thread_group_empty(task)); 1818 rcu_read_unlock(); 1819 1820 return exited; 1821 } 1822 EXPORT_SYMBOL(thread_group_exited); 1823 1824 __weak void abort(void) 1825 { 1826 BUG(); 1827 1828 /* if that doesn't kill us, halt */ 1829 panic("Oops failed to kill thread"); 1830 } 1831 EXPORT_SYMBOL(abort); 1832