1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/smp_lock.h> 11 #include <linux/module.h> 12 #include <linux/capability.h> 13 #include <linux/completion.h> 14 #include <linux/personality.h> 15 #include <linux/tty.h> 16 #include <linux/mnt_namespace.h> 17 #include <linux/key.h> 18 #include <linux/security.h> 19 #include <linux/cpu.h> 20 #include <linux/acct.h> 21 #include <linux/tsacct_kern.h> 22 #include <linux/file.h> 23 #include <linux/binfmts.h> 24 #include <linux/nsproxy.h> 25 #include <linux/pid_namespace.h> 26 #include <linux/ptrace.h> 27 #include <linux/profile.h> 28 #include <linux/mount.h> 29 #include <linux/proc_fs.h> 30 #include <linux/mempolicy.h> 31 #include <linux/taskstats_kern.h> 32 #include <linux/delayacct.h> 33 #include <linux/cpuset.h> 34 #include <linux/syscalls.h> 35 #include <linux/signal.h> 36 #include <linux/posix-timers.h> 37 #include <linux/cn_proc.h> 38 #include <linux/mutex.h> 39 #include <linux/futex.h> 40 #include <linux/compat.h> 41 #include <linux/pipe_fs_i.h> 42 #include <linux/audit.h> /* for audit_free() */ 43 #include <linux/resource.h> 44 #include <linux/blkdev.h> 45 46 #include <asm/uaccess.h> 47 #include <asm/unistd.h> 48 #include <asm/pgtable.h> 49 #include <asm/mmu_context.h> 50 51 extern void sem_exit (void); 52 53 static void exit_mm(struct task_struct * tsk); 54 55 static void __unhash_process(struct task_struct *p) 56 { 57 nr_threads--; 58 detach_pid(p, PIDTYPE_PID); 59 if (thread_group_leader(p)) { 60 detach_pid(p, PIDTYPE_PGID); 61 detach_pid(p, PIDTYPE_SID); 62 63 list_del_rcu(&p->tasks); 64 __get_cpu_var(process_counts)--; 65 } 66 list_del_rcu(&p->thread_group); 67 remove_parent(p); 68 } 69 70 /* 71 * This function expects the tasklist_lock write-locked. 72 */ 73 static void __exit_signal(struct task_struct *tsk) 74 { 75 struct signal_struct *sig = tsk->signal; 76 struct sighand_struct *sighand; 77 78 BUG_ON(!sig); 79 BUG_ON(!atomic_read(&sig->count)); 80 81 rcu_read_lock(); 82 sighand = rcu_dereference(tsk->sighand); 83 spin_lock(&sighand->siglock); 84 85 posix_cpu_timers_exit(tsk); 86 if (atomic_dec_and_test(&sig->count)) 87 posix_cpu_timers_exit_group(tsk); 88 else { 89 /* 90 * If there is any task waiting for the group exit 91 * then notify it: 92 */ 93 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) { 94 wake_up_process(sig->group_exit_task); 95 sig->group_exit_task = NULL; 96 } 97 if (tsk == sig->curr_target) 98 sig->curr_target = next_thread(tsk); 99 /* 100 * Accumulate here the counters for all threads but the 101 * group leader as they die, so they can be added into 102 * the process-wide totals when those are taken. 103 * The group leader stays around as a zombie as long 104 * as there are other threads. When it gets reaped, 105 * the exit.c code will add its counts into these totals. 106 * We won't ever get here for the group leader, since it 107 * will have been the last reference on the signal_struct. 108 */ 109 sig->utime = cputime_add(sig->utime, tsk->utime); 110 sig->stime = cputime_add(sig->stime, tsk->stime); 111 sig->min_flt += tsk->min_flt; 112 sig->maj_flt += tsk->maj_flt; 113 sig->nvcsw += tsk->nvcsw; 114 sig->nivcsw += tsk->nivcsw; 115 sig->sched_time += tsk->sched_time; 116 sig = NULL; /* Marker for below. */ 117 } 118 119 __unhash_process(tsk); 120 121 tsk->signal = NULL; 122 tsk->sighand = NULL; 123 spin_unlock(&sighand->siglock); 124 rcu_read_unlock(); 125 126 __cleanup_sighand(sighand); 127 clear_tsk_thread_flag(tsk,TIF_SIGPENDING); 128 flush_sigqueue(&tsk->pending); 129 if (sig) { 130 flush_sigqueue(&sig->shared_pending); 131 taskstats_tgid_free(sig); 132 __cleanup_signal(sig); 133 } 134 } 135 136 static void delayed_put_task_struct(struct rcu_head *rhp) 137 { 138 put_task_struct(container_of(rhp, struct task_struct, rcu)); 139 } 140 141 void release_task(struct task_struct * p) 142 { 143 struct task_struct *leader; 144 int zap_leader; 145 repeat: 146 atomic_dec(&p->user->processes); 147 write_lock_irq(&tasklist_lock); 148 ptrace_unlink(p); 149 BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children)); 150 __exit_signal(p); 151 152 /* 153 * If we are the last non-leader member of the thread 154 * group, and the leader is zombie, then notify the 155 * group leader's parent process. (if it wants notification.) 156 */ 157 zap_leader = 0; 158 leader = p->group_leader; 159 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { 160 BUG_ON(leader->exit_signal == -1); 161 do_notify_parent(leader, leader->exit_signal); 162 /* 163 * If we were the last child thread and the leader has 164 * exited already, and the leader's parent ignores SIGCHLD, 165 * then we are the one who should release the leader. 166 * 167 * do_notify_parent() will have marked it self-reaping in 168 * that case. 169 */ 170 zap_leader = (leader->exit_signal == -1); 171 } 172 173 sched_exit(p); 174 write_unlock_irq(&tasklist_lock); 175 proc_flush_task(p); 176 release_thread(p); 177 call_rcu(&p->rcu, delayed_put_task_struct); 178 179 p = leader; 180 if (unlikely(zap_leader)) 181 goto repeat; 182 } 183 184 /* 185 * This checks not only the pgrp, but falls back on the pid if no 186 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 187 * without this... 188 * 189 * The caller must hold rcu lock or the tasklist lock. 190 */ 191 struct pid *session_of_pgrp(struct pid *pgrp) 192 { 193 struct task_struct *p; 194 struct pid *sid = NULL; 195 196 p = pid_task(pgrp, PIDTYPE_PGID); 197 if (p == NULL) 198 p = pid_task(pgrp, PIDTYPE_PID); 199 if (p != NULL) 200 sid = task_session(p); 201 202 return sid; 203 } 204 205 /* 206 * Determine if a process group is "orphaned", according to the POSIX 207 * definition in 2.2.2.52. Orphaned process groups are not to be affected 208 * by terminal-generated stop signals. Newly orphaned process groups are 209 * to receive a SIGHUP and a SIGCONT. 210 * 211 * "I ask you, have you ever known what it is to be an orphan?" 212 */ 213 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) 214 { 215 struct task_struct *p; 216 int ret = 1; 217 218 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 219 if (p == ignored_task 220 || p->exit_state 221 || is_init(p->real_parent)) 222 continue; 223 if (task_pgrp(p->real_parent) != pgrp && 224 task_session(p->real_parent) == task_session(p)) { 225 ret = 0; 226 break; 227 } 228 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 229 return ret; /* (sighing) "Often!" */ 230 } 231 232 int is_current_pgrp_orphaned(void) 233 { 234 int retval; 235 236 read_lock(&tasklist_lock); 237 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 238 read_unlock(&tasklist_lock); 239 240 return retval; 241 } 242 243 static int has_stopped_jobs(struct pid *pgrp) 244 { 245 int retval = 0; 246 struct task_struct *p; 247 248 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 249 if (p->state != TASK_STOPPED) 250 continue; 251 retval = 1; 252 break; 253 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 254 return retval; 255 } 256 257 /** 258 * reparent_to_init - Reparent the calling kernel thread to the init task of the pid space that the thread belongs to. 259 * 260 * If a kernel thread is launched as a result of a system call, or if 261 * it ever exits, it should generally reparent itself to init so that 262 * it is correctly cleaned up on exit. 263 * 264 * The various task state such as scheduling policy and priority may have 265 * been inherited from a user process, so we reset them to sane values here. 266 * 267 * NOTE that reparent_to_init() gives the caller full capabilities. 268 */ 269 static void reparent_to_init(void) 270 { 271 write_lock_irq(&tasklist_lock); 272 273 ptrace_unlink(current); 274 /* Reparent to init */ 275 remove_parent(current); 276 current->parent = child_reaper(current); 277 current->real_parent = child_reaper(current); 278 add_parent(current); 279 280 /* Set the exit signal to SIGCHLD so we signal init on exit */ 281 current->exit_signal = SIGCHLD; 282 283 if (!has_rt_policy(current) && (task_nice(current) < 0)) 284 set_user_nice(current, 0); 285 /* cpus_allowed? */ 286 /* rt_priority? */ 287 /* signals? */ 288 security_task_reparent_to_init(current); 289 memcpy(current->signal->rlim, init_task.signal->rlim, 290 sizeof(current->signal->rlim)); 291 atomic_inc(&(INIT_USER->__count)); 292 write_unlock_irq(&tasklist_lock); 293 switch_uid(INIT_USER); 294 } 295 296 void __set_special_pids(pid_t session, pid_t pgrp) 297 { 298 struct task_struct *curr = current->group_leader; 299 300 if (process_session(curr) != session) { 301 detach_pid(curr, PIDTYPE_SID); 302 set_signal_session(curr->signal, session); 303 attach_pid(curr, PIDTYPE_SID, session); 304 } 305 if (process_group(curr) != pgrp) { 306 detach_pid(curr, PIDTYPE_PGID); 307 curr->signal->pgrp = pgrp; 308 attach_pid(curr, PIDTYPE_PGID, pgrp); 309 } 310 } 311 312 static void set_special_pids(pid_t session, pid_t pgrp) 313 { 314 write_lock_irq(&tasklist_lock); 315 __set_special_pids(session, pgrp); 316 write_unlock_irq(&tasklist_lock); 317 } 318 319 /* 320 * Let kernel threads use this to say that they 321 * allow a certain signal (since daemonize() will 322 * have disabled all of them by default). 323 */ 324 int allow_signal(int sig) 325 { 326 if (!valid_signal(sig) || sig < 1) 327 return -EINVAL; 328 329 spin_lock_irq(¤t->sighand->siglock); 330 sigdelset(¤t->blocked, sig); 331 if (!current->mm) { 332 /* Kernel threads handle their own signals. 333 Let the signal code know it'll be handled, so 334 that they don't get converted to SIGKILL or 335 just silently dropped */ 336 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; 337 } 338 recalc_sigpending(); 339 spin_unlock_irq(¤t->sighand->siglock); 340 return 0; 341 } 342 343 EXPORT_SYMBOL(allow_signal); 344 345 int disallow_signal(int sig) 346 { 347 if (!valid_signal(sig) || sig < 1) 348 return -EINVAL; 349 350 spin_lock_irq(¤t->sighand->siglock); 351 sigaddset(¤t->blocked, sig); 352 recalc_sigpending(); 353 spin_unlock_irq(¤t->sighand->siglock); 354 return 0; 355 } 356 357 EXPORT_SYMBOL(disallow_signal); 358 359 /* 360 * Put all the gunge required to become a kernel thread without 361 * attached user resources in one place where it belongs. 362 */ 363 364 void daemonize(const char *name, ...) 365 { 366 va_list args; 367 struct fs_struct *fs; 368 sigset_t blocked; 369 370 va_start(args, name); 371 vsnprintf(current->comm, sizeof(current->comm), name, args); 372 va_end(args); 373 374 /* 375 * If we were started as result of loading a module, close all of the 376 * user space pages. We don't need them, and if we didn't close them 377 * they would be locked into memory. 378 */ 379 exit_mm(current); 380 381 set_special_pids(1, 1); 382 proc_clear_tty(current); 383 384 /* Block and flush all signals */ 385 sigfillset(&blocked); 386 sigprocmask(SIG_BLOCK, &blocked, NULL); 387 flush_signals(current); 388 389 /* Become as one with the init task */ 390 391 exit_fs(current); /* current->fs->count--; */ 392 fs = init_task.fs; 393 current->fs = fs; 394 atomic_inc(&fs->count); 395 396 exit_task_namespaces(current); 397 current->nsproxy = init_task.nsproxy; 398 get_task_namespaces(current); 399 400 exit_files(current); 401 current->files = init_task.files; 402 atomic_inc(¤t->files->count); 403 404 reparent_to_init(); 405 } 406 407 EXPORT_SYMBOL(daemonize); 408 409 static void close_files(struct files_struct * files) 410 { 411 int i, j; 412 struct fdtable *fdt; 413 414 j = 0; 415 416 /* 417 * It is safe to dereference the fd table without RCU or 418 * ->file_lock because this is the last reference to the 419 * files structure. 420 */ 421 fdt = files_fdtable(files); 422 for (;;) { 423 unsigned long set; 424 i = j * __NFDBITS; 425 if (i >= fdt->max_fds) 426 break; 427 set = fdt->open_fds->fds_bits[j++]; 428 while (set) { 429 if (set & 1) { 430 struct file * file = xchg(&fdt->fd[i], NULL); 431 if (file) { 432 filp_close(file, files); 433 cond_resched(); 434 } 435 } 436 i++; 437 set >>= 1; 438 } 439 } 440 } 441 442 struct files_struct *get_files_struct(struct task_struct *task) 443 { 444 struct files_struct *files; 445 446 task_lock(task); 447 files = task->files; 448 if (files) 449 atomic_inc(&files->count); 450 task_unlock(task); 451 452 return files; 453 } 454 455 void fastcall put_files_struct(struct files_struct *files) 456 { 457 struct fdtable *fdt; 458 459 if (atomic_dec_and_test(&files->count)) { 460 close_files(files); 461 /* 462 * Free the fd and fdset arrays if we expanded them. 463 * If the fdtable was embedded, pass files for freeing 464 * at the end of the RCU grace period. Otherwise, 465 * you can free files immediately. 466 */ 467 fdt = files_fdtable(files); 468 if (fdt != &files->fdtab) 469 kmem_cache_free(files_cachep, files); 470 free_fdtable(fdt); 471 } 472 } 473 474 EXPORT_SYMBOL(put_files_struct); 475 476 void reset_files_struct(struct task_struct *tsk, struct files_struct *files) 477 { 478 struct files_struct *old; 479 480 old = tsk->files; 481 task_lock(tsk); 482 tsk->files = files; 483 task_unlock(tsk); 484 put_files_struct(old); 485 } 486 EXPORT_SYMBOL(reset_files_struct); 487 488 static inline void __exit_files(struct task_struct *tsk) 489 { 490 struct files_struct * files = tsk->files; 491 492 if (files) { 493 task_lock(tsk); 494 tsk->files = NULL; 495 task_unlock(tsk); 496 put_files_struct(files); 497 } 498 } 499 500 void exit_files(struct task_struct *tsk) 501 { 502 __exit_files(tsk); 503 } 504 505 static inline void __put_fs_struct(struct fs_struct *fs) 506 { 507 /* No need to hold fs->lock if we are killing it */ 508 if (atomic_dec_and_test(&fs->count)) { 509 dput(fs->root); 510 mntput(fs->rootmnt); 511 dput(fs->pwd); 512 mntput(fs->pwdmnt); 513 if (fs->altroot) { 514 dput(fs->altroot); 515 mntput(fs->altrootmnt); 516 } 517 kmem_cache_free(fs_cachep, fs); 518 } 519 } 520 521 void put_fs_struct(struct fs_struct *fs) 522 { 523 __put_fs_struct(fs); 524 } 525 526 static inline void __exit_fs(struct task_struct *tsk) 527 { 528 struct fs_struct * fs = tsk->fs; 529 530 if (fs) { 531 task_lock(tsk); 532 tsk->fs = NULL; 533 task_unlock(tsk); 534 __put_fs_struct(fs); 535 } 536 } 537 538 void exit_fs(struct task_struct *tsk) 539 { 540 __exit_fs(tsk); 541 } 542 543 EXPORT_SYMBOL_GPL(exit_fs); 544 545 /* 546 * Turn us into a lazy TLB process if we 547 * aren't already.. 548 */ 549 static void exit_mm(struct task_struct * tsk) 550 { 551 struct mm_struct *mm = tsk->mm; 552 553 mm_release(tsk, mm); 554 if (!mm) 555 return; 556 /* 557 * Serialize with any possible pending coredump. 558 * We must hold mmap_sem around checking core_waiters 559 * and clearing tsk->mm. The core-inducing thread 560 * will increment core_waiters for each thread in the 561 * group with ->mm != NULL. 562 */ 563 down_read(&mm->mmap_sem); 564 if (mm->core_waiters) { 565 up_read(&mm->mmap_sem); 566 down_write(&mm->mmap_sem); 567 if (!--mm->core_waiters) 568 complete(mm->core_startup_done); 569 up_write(&mm->mmap_sem); 570 571 wait_for_completion(&mm->core_done); 572 down_read(&mm->mmap_sem); 573 } 574 atomic_inc(&mm->mm_count); 575 BUG_ON(mm != tsk->active_mm); 576 /* more a memory barrier than a real lock */ 577 task_lock(tsk); 578 tsk->mm = NULL; 579 up_read(&mm->mmap_sem); 580 enter_lazy_tlb(mm, current); 581 task_unlock(tsk); 582 mmput(mm); 583 } 584 585 static inline void 586 choose_new_parent(struct task_struct *p, struct task_struct *reaper) 587 { 588 /* 589 * Make sure we're not reparenting to ourselves and that 590 * the parent is not a zombie. 591 */ 592 BUG_ON(p == reaper || reaper->exit_state); 593 p->real_parent = reaper; 594 } 595 596 static void 597 reparent_thread(struct task_struct *p, struct task_struct *father, int traced) 598 { 599 if (p->pdeath_signal) 600 /* We already hold the tasklist_lock here. */ 601 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p); 602 603 /* Move the child from its dying parent to the new one. */ 604 if (unlikely(traced)) { 605 /* Preserve ptrace links if someone else is tracing this child. */ 606 list_del_init(&p->ptrace_list); 607 if (p->parent != p->real_parent) 608 list_add(&p->ptrace_list, &p->real_parent->ptrace_children); 609 } else { 610 /* If this child is being traced, then we're the one tracing it 611 * anyway, so let go of it. 612 */ 613 p->ptrace = 0; 614 remove_parent(p); 615 p->parent = p->real_parent; 616 add_parent(p); 617 618 if (p->state == TASK_TRACED) { 619 /* 620 * If it was at a trace stop, turn it into 621 * a normal stop since it's no longer being 622 * traced. 623 */ 624 ptrace_untrace(p); 625 } 626 } 627 628 /* If this is a threaded reparent there is no need to 629 * notify anyone anything has happened. 630 */ 631 if (p->real_parent->group_leader == father->group_leader) 632 return; 633 634 /* We don't want people slaying init. */ 635 if (p->exit_signal != -1) 636 p->exit_signal = SIGCHLD; 637 638 /* If we'd notified the old parent about this child's death, 639 * also notify the new parent. 640 */ 641 if (!traced && p->exit_state == EXIT_ZOMBIE && 642 p->exit_signal != -1 && thread_group_empty(p)) 643 do_notify_parent(p, p->exit_signal); 644 645 /* 646 * process group orphan check 647 * Case ii: Our child is in a different pgrp 648 * than we are, and it was the only connection 649 * outside, so the child pgrp is now orphaned. 650 */ 651 if ((task_pgrp(p) != task_pgrp(father)) && 652 (task_session(p) == task_session(father))) { 653 struct pid *pgrp = task_pgrp(p); 654 655 if (will_become_orphaned_pgrp(pgrp, NULL) && 656 has_stopped_jobs(pgrp)) { 657 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 658 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 659 } 660 } 661 } 662 663 /* 664 * When we die, we re-parent all our children. 665 * Try to give them to another thread in our thread 666 * group, and if no such member exists, give it to 667 * the child reaper process (ie "init") in our pid 668 * space. 669 */ 670 static void 671 forget_original_parent(struct task_struct *father, struct list_head *to_release) 672 { 673 struct task_struct *p, *reaper = father; 674 struct list_head *_p, *_n; 675 676 do { 677 reaper = next_thread(reaper); 678 if (reaper == father) { 679 reaper = child_reaper(father); 680 break; 681 } 682 } while (reaper->exit_state); 683 684 /* 685 * There are only two places where our children can be: 686 * 687 * - in our child list 688 * - in our ptraced child list 689 * 690 * Search them and reparent children. 691 */ 692 list_for_each_safe(_p, _n, &father->children) { 693 int ptrace; 694 p = list_entry(_p, struct task_struct, sibling); 695 696 ptrace = p->ptrace; 697 698 /* if father isn't the real parent, then ptrace must be enabled */ 699 BUG_ON(father != p->real_parent && !ptrace); 700 701 if (father == p->real_parent) { 702 /* reparent with a reaper, real father it's us */ 703 choose_new_parent(p, reaper); 704 reparent_thread(p, father, 0); 705 } else { 706 /* reparent ptraced task to its real parent */ 707 __ptrace_unlink (p); 708 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 && 709 thread_group_empty(p)) 710 do_notify_parent(p, p->exit_signal); 711 } 712 713 /* 714 * if the ptraced child is a zombie with exit_signal == -1 715 * we must collect it before we exit, or it will remain 716 * zombie forever since we prevented it from self-reap itself 717 * while it was being traced by us, to be able to see it in wait4. 718 */ 719 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1)) 720 list_add(&p->ptrace_list, to_release); 721 } 722 list_for_each_safe(_p, _n, &father->ptrace_children) { 723 p = list_entry(_p, struct task_struct, ptrace_list); 724 choose_new_parent(p, reaper); 725 reparent_thread(p, father, 1); 726 } 727 } 728 729 /* 730 * Send signals to all our closest relatives so that they know 731 * to properly mourn us.. 732 */ 733 static void exit_notify(struct task_struct *tsk) 734 { 735 int state; 736 struct task_struct *t; 737 struct list_head ptrace_dead, *_p, *_n; 738 struct pid *pgrp; 739 740 if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT) 741 && !thread_group_empty(tsk)) { 742 /* 743 * This occurs when there was a race between our exit 744 * syscall and a group signal choosing us as the one to 745 * wake up. It could be that we are the only thread 746 * alerted to check for pending signals, but another thread 747 * should be woken now to take the signal since we will not. 748 * Now we'll wake all the threads in the group just to make 749 * sure someone gets all the pending signals. 750 */ 751 read_lock(&tasklist_lock); 752 spin_lock_irq(&tsk->sighand->siglock); 753 for (t = next_thread(tsk); t != tsk; t = next_thread(t)) 754 if (!signal_pending(t) && !(t->flags & PF_EXITING)) { 755 recalc_sigpending_tsk(t); 756 if (signal_pending(t)) 757 signal_wake_up(t, 0); 758 } 759 spin_unlock_irq(&tsk->sighand->siglock); 760 read_unlock(&tasklist_lock); 761 } 762 763 write_lock_irq(&tasklist_lock); 764 765 /* 766 * This does two things: 767 * 768 * A. Make init inherit all the child processes 769 * B. Check to see if any process groups have become orphaned 770 * as a result of our exiting, and if they have any stopped 771 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 772 */ 773 774 INIT_LIST_HEAD(&ptrace_dead); 775 forget_original_parent(tsk, &ptrace_dead); 776 BUG_ON(!list_empty(&tsk->children)); 777 BUG_ON(!list_empty(&tsk->ptrace_children)); 778 779 /* 780 * Check to see if any process groups have become orphaned 781 * as a result of our exiting, and if they have any stopped 782 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 783 * 784 * Case i: Our father is in a different pgrp than we are 785 * and we were the only connection outside, so our pgrp 786 * is about to become orphaned. 787 */ 788 789 t = tsk->real_parent; 790 791 pgrp = task_pgrp(tsk); 792 if ((task_pgrp(t) != pgrp) && 793 (task_session(t) == task_session(tsk)) && 794 will_become_orphaned_pgrp(pgrp, tsk) && 795 has_stopped_jobs(pgrp)) { 796 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 797 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 798 } 799 800 /* Let father know we died 801 * 802 * Thread signals are configurable, but you aren't going to use 803 * that to send signals to arbitary processes. 804 * That stops right now. 805 * 806 * If the parent exec id doesn't match the exec id we saved 807 * when we started then we know the parent has changed security 808 * domain. 809 * 810 * If our self_exec id doesn't match our parent_exec_id then 811 * we have changed execution domain as these two values started 812 * the same after a fork. 813 * 814 */ 815 816 if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 && 817 ( tsk->parent_exec_id != t->self_exec_id || 818 tsk->self_exec_id != tsk->parent_exec_id) 819 && !capable(CAP_KILL)) 820 tsk->exit_signal = SIGCHLD; 821 822 823 /* If something other than our normal parent is ptracing us, then 824 * send it a SIGCHLD instead of honoring exit_signal. exit_signal 825 * only has special meaning to our real parent. 826 */ 827 if (tsk->exit_signal != -1 && thread_group_empty(tsk)) { 828 int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD; 829 do_notify_parent(tsk, signal); 830 } else if (tsk->ptrace) { 831 do_notify_parent(tsk, SIGCHLD); 832 } 833 834 state = EXIT_ZOMBIE; 835 if (tsk->exit_signal == -1 && 836 (likely(tsk->ptrace == 0) || 837 unlikely(tsk->parent->signal->flags & SIGNAL_GROUP_EXIT))) 838 state = EXIT_DEAD; 839 tsk->exit_state = state; 840 841 write_unlock_irq(&tasklist_lock); 842 843 list_for_each_safe(_p, _n, &ptrace_dead) { 844 list_del_init(_p); 845 t = list_entry(_p, struct task_struct, ptrace_list); 846 release_task(t); 847 } 848 849 /* If the process is dead, release it - nobody will wait for it */ 850 if (state == EXIT_DEAD) 851 release_task(tsk); 852 } 853 854 fastcall NORET_TYPE void do_exit(long code) 855 { 856 struct task_struct *tsk = current; 857 int group_dead; 858 859 profile_task_exit(tsk); 860 861 WARN_ON(atomic_read(&tsk->fs_excl)); 862 863 if (unlikely(in_interrupt())) 864 panic("Aiee, killing interrupt handler!"); 865 if (unlikely(!tsk->pid)) 866 panic("Attempted to kill the idle task!"); 867 if (unlikely(tsk == child_reaper(tsk))) { 868 if (tsk->nsproxy->pid_ns != &init_pid_ns) 869 tsk->nsproxy->pid_ns->child_reaper = init_pid_ns.child_reaper; 870 else 871 panic("Attempted to kill init!"); 872 } 873 874 875 if (unlikely(current->ptrace & PT_TRACE_EXIT)) { 876 current->ptrace_message = code; 877 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP); 878 } 879 880 /* 881 * We're taking recursive faults here in do_exit. Safest is to just 882 * leave this task alone and wait for reboot. 883 */ 884 if (unlikely(tsk->flags & PF_EXITING)) { 885 printk(KERN_ALERT 886 "Fixing recursive fault but reboot is needed!\n"); 887 if (tsk->io_context) 888 exit_io_context(); 889 set_current_state(TASK_UNINTERRUPTIBLE); 890 schedule(); 891 } 892 893 tsk->flags |= PF_EXITING; 894 895 if (unlikely(in_atomic())) 896 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", 897 current->comm, current->pid, 898 preempt_count()); 899 900 acct_update_integrals(tsk); 901 if (tsk->mm) { 902 update_hiwater_rss(tsk->mm); 903 update_hiwater_vm(tsk->mm); 904 } 905 group_dead = atomic_dec_and_test(&tsk->signal->live); 906 if (group_dead) { 907 hrtimer_cancel(&tsk->signal->real_timer); 908 exit_itimers(tsk->signal); 909 } 910 acct_collect(code, group_dead); 911 if (unlikely(tsk->robust_list)) 912 exit_robust_list(tsk); 913 #if defined(CONFIG_FUTEX) && defined(CONFIG_COMPAT) 914 if (unlikely(tsk->compat_robust_list)) 915 compat_exit_robust_list(tsk); 916 #endif 917 if (unlikely(tsk->audit_context)) 918 audit_free(tsk); 919 920 taskstats_exit(tsk, group_dead); 921 922 exit_mm(tsk); 923 924 if (group_dead) 925 acct_process(); 926 exit_sem(tsk); 927 __exit_files(tsk); 928 __exit_fs(tsk); 929 exit_thread(); 930 cpuset_exit(tsk); 931 exit_keys(tsk); 932 933 if (group_dead && tsk->signal->leader) 934 disassociate_ctty(1); 935 936 module_put(task_thread_info(tsk)->exec_domain->module); 937 if (tsk->binfmt) 938 module_put(tsk->binfmt->module); 939 940 tsk->exit_code = code; 941 proc_exit_connector(tsk); 942 exit_task_namespaces(tsk); 943 exit_notify(tsk); 944 #ifdef CONFIG_NUMA 945 mpol_free(tsk->mempolicy); 946 tsk->mempolicy = NULL; 947 #endif 948 /* 949 * This must happen late, after the PID is not 950 * hashed anymore: 951 */ 952 if (unlikely(!list_empty(&tsk->pi_state_list))) 953 exit_pi_state_list(tsk); 954 if (unlikely(current->pi_state_cache)) 955 kfree(current->pi_state_cache); 956 /* 957 * Make sure we are holding no locks: 958 */ 959 debug_check_no_locks_held(tsk); 960 961 if (tsk->io_context) 962 exit_io_context(); 963 964 if (tsk->splice_pipe) 965 __free_pipe_info(tsk->splice_pipe); 966 967 preempt_disable(); 968 /* causes final put_task_struct in finish_task_switch(). */ 969 tsk->state = TASK_DEAD; 970 971 schedule(); 972 BUG(); 973 /* Avoid "noreturn function does return". */ 974 for (;;) 975 cpu_relax(); /* For when BUG is null */ 976 } 977 978 EXPORT_SYMBOL_GPL(do_exit); 979 980 NORET_TYPE void complete_and_exit(struct completion *comp, long code) 981 { 982 if (comp) 983 complete(comp); 984 985 do_exit(code); 986 } 987 988 EXPORT_SYMBOL(complete_and_exit); 989 990 asmlinkage long sys_exit(int error_code) 991 { 992 do_exit((error_code&0xff)<<8); 993 } 994 995 /* 996 * Take down every thread in the group. This is called by fatal signals 997 * as well as by sys_exit_group (below). 998 */ 999 NORET_TYPE void 1000 do_group_exit(int exit_code) 1001 { 1002 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 1003 1004 if (current->signal->flags & SIGNAL_GROUP_EXIT) 1005 exit_code = current->signal->group_exit_code; 1006 else if (!thread_group_empty(current)) { 1007 struct signal_struct *const sig = current->signal; 1008 struct sighand_struct *const sighand = current->sighand; 1009 spin_lock_irq(&sighand->siglock); 1010 if (sig->flags & SIGNAL_GROUP_EXIT) 1011 /* Another thread got here before we took the lock. */ 1012 exit_code = sig->group_exit_code; 1013 else { 1014 sig->group_exit_code = exit_code; 1015 zap_other_threads(current); 1016 } 1017 spin_unlock_irq(&sighand->siglock); 1018 } 1019 1020 do_exit(exit_code); 1021 /* NOTREACHED */ 1022 } 1023 1024 /* 1025 * this kills every thread in the thread group. Note that any externally 1026 * wait4()-ing process will get the correct exit code - even if this 1027 * thread is not the thread group leader. 1028 */ 1029 asmlinkage void sys_exit_group(int error_code) 1030 { 1031 do_group_exit((error_code & 0xff) << 8); 1032 } 1033 1034 static int eligible_child(pid_t pid, int options, struct task_struct *p) 1035 { 1036 int err; 1037 1038 if (pid > 0) { 1039 if (p->pid != pid) 1040 return 0; 1041 } else if (!pid) { 1042 if (process_group(p) != process_group(current)) 1043 return 0; 1044 } else if (pid != -1) { 1045 if (process_group(p) != -pid) 1046 return 0; 1047 } 1048 1049 /* 1050 * Do not consider detached threads that are 1051 * not ptraced: 1052 */ 1053 if (p->exit_signal == -1 && !p->ptrace) 1054 return 0; 1055 1056 /* Wait for all children (clone and not) if __WALL is set; 1057 * otherwise, wait for clone children *only* if __WCLONE is 1058 * set; otherwise, wait for non-clone children *only*. (Note: 1059 * A "clone" child here is one that reports to its parent 1060 * using a signal other than SIGCHLD.) */ 1061 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0)) 1062 && !(options & __WALL)) 1063 return 0; 1064 /* 1065 * Do not consider thread group leaders that are 1066 * in a non-empty thread group: 1067 */ 1068 if (delay_group_leader(p)) 1069 return 2; 1070 1071 err = security_task_wait(p); 1072 if (err) 1073 return err; 1074 1075 return 1; 1076 } 1077 1078 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid, 1079 int why, int status, 1080 struct siginfo __user *infop, 1081 struct rusage __user *rusagep) 1082 { 1083 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0; 1084 1085 put_task_struct(p); 1086 if (!retval) 1087 retval = put_user(SIGCHLD, &infop->si_signo); 1088 if (!retval) 1089 retval = put_user(0, &infop->si_errno); 1090 if (!retval) 1091 retval = put_user((short)why, &infop->si_code); 1092 if (!retval) 1093 retval = put_user(pid, &infop->si_pid); 1094 if (!retval) 1095 retval = put_user(uid, &infop->si_uid); 1096 if (!retval) 1097 retval = put_user(status, &infop->si_status); 1098 if (!retval) 1099 retval = pid; 1100 return retval; 1101 } 1102 1103 /* 1104 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1105 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1106 * the lock and this task is uninteresting. If we return nonzero, we have 1107 * released the lock and the system call should return. 1108 */ 1109 static int wait_task_zombie(struct task_struct *p, int noreap, 1110 struct siginfo __user *infop, 1111 int __user *stat_addr, struct rusage __user *ru) 1112 { 1113 unsigned long state; 1114 int retval; 1115 int status; 1116 1117 if (unlikely(noreap)) { 1118 pid_t pid = p->pid; 1119 uid_t uid = p->uid; 1120 int exit_code = p->exit_code; 1121 int why, status; 1122 1123 if (unlikely(p->exit_state != EXIT_ZOMBIE)) 1124 return 0; 1125 if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) 1126 return 0; 1127 get_task_struct(p); 1128 read_unlock(&tasklist_lock); 1129 if ((exit_code & 0x7f) == 0) { 1130 why = CLD_EXITED; 1131 status = exit_code >> 8; 1132 } else { 1133 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1134 status = exit_code & 0x7f; 1135 } 1136 return wait_noreap_copyout(p, pid, uid, why, 1137 status, infop, ru); 1138 } 1139 1140 /* 1141 * Try to move the task's state to DEAD 1142 * only one thread is allowed to do this: 1143 */ 1144 state = xchg(&p->exit_state, EXIT_DEAD); 1145 if (state != EXIT_ZOMBIE) { 1146 BUG_ON(state != EXIT_DEAD); 1147 return 0; 1148 } 1149 if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) { 1150 /* 1151 * This can only happen in a race with a ptraced thread 1152 * dying on another processor. 1153 */ 1154 return 0; 1155 } 1156 1157 if (likely(p->real_parent == p->parent) && likely(p->signal)) { 1158 struct signal_struct *psig; 1159 struct signal_struct *sig; 1160 1161 /* 1162 * The resource counters for the group leader are in its 1163 * own task_struct. Those for dead threads in the group 1164 * are in its signal_struct, as are those for the child 1165 * processes it has previously reaped. All these 1166 * accumulate in the parent's signal_struct c* fields. 1167 * 1168 * We don't bother to take a lock here to protect these 1169 * p->signal fields, because they are only touched by 1170 * __exit_signal, which runs with tasklist_lock 1171 * write-locked anyway, and so is excluded here. We do 1172 * need to protect the access to p->parent->signal fields, 1173 * as other threads in the parent group can be right 1174 * here reaping other children at the same time. 1175 */ 1176 spin_lock_irq(&p->parent->sighand->siglock); 1177 psig = p->parent->signal; 1178 sig = p->signal; 1179 psig->cutime = 1180 cputime_add(psig->cutime, 1181 cputime_add(p->utime, 1182 cputime_add(sig->utime, 1183 sig->cutime))); 1184 psig->cstime = 1185 cputime_add(psig->cstime, 1186 cputime_add(p->stime, 1187 cputime_add(sig->stime, 1188 sig->cstime))); 1189 psig->cmin_flt += 1190 p->min_flt + sig->min_flt + sig->cmin_flt; 1191 psig->cmaj_flt += 1192 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1193 psig->cnvcsw += 1194 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1195 psig->cnivcsw += 1196 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1197 spin_unlock_irq(&p->parent->sighand->siglock); 1198 } 1199 1200 /* 1201 * Now we are sure this task is interesting, and no other 1202 * thread can reap it because we set its state to EXIT_DEAD. 1203 */ 1204 read_unlock(&tasklist_lock); 1205 1206 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1207 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1208 ? p->signal->group_exit_code : p->exit_code; 1209 if (!retval && stat_addr) 1210 retval = put_user(status, stat_addr); 1211 if (!retval && infop) 1212 retval = put_user(SIGCHLD, &infop->si_signo); 1213 if (!retval && infop) 1214 retval = put_user(0, &infop->si_errno); 1215 if (!retval && infop) { 1216 int why; 1217 1218 if ((status & 0x7f) == 0) { 1219 why = CLD_EXITED; 1220 status >>= 8; 1221 } else { 1222 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1223 status &= 0x7f; 1224 } 1225 retval = put_user((short)why, &infop->si_code); 1226 if (!retval) 1227 retval = put_user(status, &infop->si_status); 1228 } 1229 if (!retval && infop) 1230 retval = put_user(p->pid, &infop->si_pid); 1231 if (!retval && infop) 1232 retval = put_user(p->uid, &infop->si_uid); 1233 if (retval) { 1234 // TODO: is this safe? 1235 p->exit_state = EXIT_ZOMBIE; 1236 return retval; 1237 } 1238 retval = p->pid; 1239 if (p->real_parent != p->parent) { 1240 write_lock_irq(&tasklist_lock); 1241 /* Double-check with lock held. */ 1242 if (p->real_parent != p->parent) { 1243 __ptrace_unlink(p); 1244 // TODO: is this safe? 1245 p->exit_state = EXIT_ZOMBIE; 1246 /* 1247 * If this is not a detached task, notify the parent. 1248 * If it's still not detached after that, don't release 1249 * it now. 1250 */ 1251 if (p->exit_signal != -1) { 1252 do_notify_parent(p, p->exit_signal); 1253 if (p->exit_signal != -1) 1254 p = NULL; 1255 } 1256 } 1257 write_unlock_irq(&tasklist_lock); 1258 } 1259 if (p != NULL) 1260 release_task(p); 1261 BUG_ON(!retval); 1262 return retval; 1263 } 1264 1265 /* 1266 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold 1267 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1268 * the lock and this task is uninteresting. If we return nonzero, we have 1269 * released the lock and the system call should return. 1270 */ 1271 static int wait_task_stopped(struct task_struct *p, int delayed_group_leader, 1272 int noreap, struct siginfo __user *infop, 1273 int __user *stat_addr, struct rusage __user *ru) 1274 { 1275 int retval, exit_code; 1276 1277 if (!p->exit_code) 1278 return 0; 1279 if (delayed_group_leader && !(p->ptrace & PT_PTRACED) && 1280 p->signal && p->signal->group_stop_count > 0) 1281 /* 1282 * A group stop is in progress and this is the group leader. 1283 * We won't report until all threads have stopped. 1284 */ 1285 return 0; 1286 1287 /* 1288 * Now we are pretty sure this task is interesting. 1289 * Make sure it doesn't get reaped out from under us while we 1290 * give up the lock and then examine it below. We don't want to 1291 * keep holding onto the tasklist_lock while we call getrusage and 1292 * possibly take page faults for user memory. 1293 */ 1294 get_task_struct(p); 1295 read_unlock(&tasklist_lock); 1296 1297 if (unlikely(noreap)) { 1298 pid_t pid = p->pid; 1299 uid_t uid = p->uid; 1300 int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED; 1301 1302 exit_code = p->exit_code; 1303 if (unlikely(!exit_code) || 1304 unlikely(p->state & TASK_TRACED)) 1305 goto bail_ref; 1306 return wait_noreap_copyout(p, pid, uid, 1307 why, (exit_code << 8) | 0x7f, 1308 infop, ru); 1309 } 1310 1311 write_lock_irq(&tasklist_lock); 1312 1313 /* 1314 * This uses xchg to be atomic with the thread resuming and setting 1315 * it. It must also be done with the write lock held to prevent a 1316 * race with the EXIT_ZOMBIE case. 1317 */ 1318 exit_code = xchg(&p->exit_code, 0); 1319 if (unlikely(p->exit_state)) { 1320 /* 1321 * The task resumed and then died. Let the next iteration 1322 * catch it in EXIT_ZOMBIE. Note that exit_code might 1323 * already be zero here if it resumed and did _exit(0). 1324 * The task itself is dead and won't touch exit_code again; 1325 * other processors in this function are locked out. 1326 */ 1327 p->exit_code = exit_code; 1328 exit_code = 0; 1329 } 1330 if (unlikely(exit_code == 0)) { 1331 /* 1332 * Another thread in this function got to it first, or it 1333 * resumed, or it resumed and then died. 1334 */ 1335 write_unlock_irq(&tasklist_lock); 1336 bail_ref: 1337 put_task_struct(p); 1338 /* 1339 * We are returning to the wait loop without having successfully 1340 * removed the process and having released the lock. We cannot 1341 * continue, since the "p" task pointer is potentially stale. 1342 * 1343 * Return -EAGAIN, and do_wait() will restart the loop from the 1344 * beginning. Do _not_ re-acquire the lock. 1345 */ 1346 return -EAGAIN; 1347 } 1348 1349 /* move to end of parent's list to avoid starvation */ 1350 remove_parent(p); 1351 add_parent(p); 1352 1353 write_unlock_irq(&tasklist_lock); 1354 1355 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1356 if (!retval && stat_addr) 1357 retval = put_user((exit_code << 8) | 0x7f, stat_addr); 1358 if (!retval && infop) 1359 retval = put_user(SIGCHLD, &infop->si_signo); 1360 if (!retval && infop) 1361 retval = put_user(0, &infop->si_errno); 1362 if (!retval && infop) 1363 retval = put_user((short)((p->ptrace & PT_PTRACED) 1364 ? CLD_TRAPPED : CLD_STOPPED), 1365 &infop->si_code); 1366 if (!retval && infop) 1367 retval = put_user(exit_code, &infop->si_status); 1368 if (!retval && infop) 1369 retval = put_user(p->pid, &infop->si_pid); 1370 if (!retval && infop) 1371 retval = put_user(p->uid, &infop->si_uid); 1372 if (!retval) 1373 retval = p->pid; 1374 put_task_struct(p); 1375 1376 BUG_ON(!retval); 1377 return retval; 1378 } 1379 1380 /* 1381 * Handle do_wait work for one task in a live, non-stopped state. 1382 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1383 * the lock and this task is uninteresting. If we return nonzero, we have 1384 * released the lock and the system call should return. 1385 */ 1386 static int wait_task_continued(struct task_struct *p, int noreap, 1387 struct siginfo __user *infop, 1388 int __user *stat_addr, struct rusage __user *ru) 1389 { 1390 int retval; 1391 pid_t pid; 1392 uid_t uid; 1393 1394 if (unlikely(!p->signal)) 1395 return 0; 1396 1397 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1398 return 0; 1399 1400 spin_lock_irq(&p->sighand->siglock); 1401 /* Re-check with the lock held. */ 1402 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1403 spin_unlock_irq(&p->sighand->siglock); 1404 return 0; 1405 } 1406 if (!noreap) 1407 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1408 spin_unlock_irq(&p->sighand->siglock); 1409 1410 pid = p->pid; 1411 uid = p->uid; 1412 get_task_struct(p); 1413 read_unlock(&tasklist_lock); 1414 1415 if (!infop) { 1416 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; 1417 put_task_struct(p); 1418 if (!retval && stat_addr) 1419 retval = put_user(0xffff, stat_addr); 1420 if (!retval) 1421 retval = p->pid; 1422 } else { 1423 retval = wait_noreap_copyout(p, pid, uid, 1424 CLD_CONTINUED, SIGCONT, 1425 infop, ru); 1426 BUG_ON(retval == 0); 1427 } 1428 1429 return retval; 1430 } 1431 1432 1433 static inline int my_ptrace_child(struct task_struct *p) 1434 { 1435 if (!(p->ptrace & PT_PTRACED)) 1436 return 0; 1437 if (!(p->ptrace & PT_ATTACHED)) 1438 return 1; 1439 /* 1440 * This child was PTRACE_ATTACH'd. We should be seeing it only if 1441 * we are the attacher. If we are the real parent, this is a race 1442 * inside ptrace_attach. It is waiting for the tasklist_lock, 1443 * which we have to switch the parent links, but has already set 1444 * the flags in p->ptrace. 1445 */ 1446 return (p->parent != p->real_parent); 1447 } 1448 1449 static long do_wait(pid_t pid, int options, struct siginfo __user *infop, 1450 int __user *stat_addr, struct rusage __user *ru) 1451 { 1452 DECLARE_WAITQUEUE(wait, current); 1453 struct task_struct *tsk; 1454 int flag, retval; 1455 int allowed, denied; 1456 1457 add_wait_queue(¤t->signal->wait_chldexit,&wait); 1458 repeat: 1459 /* 1460 * We will set this flag if we see any child that might later 1461 * match our criteria, even if we are not able to reap it yet. 1462 */ 1463 flag = 0; 1464 allowed = denied = 0; 1465 current->state = TASK_INTERRUPTIBLE; 1466 read_lock(&tasklist_lock); 1467 tsk = current; 1468 do { 1469 struct task_struct *p; 1470 struct list_head *_p; 1471 int ret; 1472 1473 list_for_each(_p,&tsk->children) { 1474 p = list_entry(_p, struct task_struct, sibling); 1475 1476 ret = eligible_child(pid, options, p); 1477 if (!ret) 1478 continue; 1479 1480 if (unlikely(ret < 0)) { 1481 denied = ret; 1482 continue; 1483 } 1484 allowed = 1; 1485 1486 switch (p->state) { 1487 case TASK_TRACED: 1488 /* 1489 * When we hit the race with PTRACE_ATTACH, 1490 * we will not report this child. But the 1491 * race means it has not yet been moved to 1492 * our ptrace_children list, so we need to 1493 * set the flag here to avoid a spurious ECHILD 1494 * when the race happens with the only child. 1495 */ 1496 flag = 1; 1497 if (!my_ptrace_child(p)) 1498 continue; 1499 /*FALLTHROUGH*/ 1500 case TASK_STOPPED: 1501 /* 1502 * It's stopped now, so it might later 1503 * continue, exit, or stop again. 1504 */ 1505 flag = 1; 1506 if (!(options & WUNTRACED) && 1507 !my_ptrace_child(p)) 1508 continue; 1509 retval = wait_task_stopped(p, ret == 2, 1510 (options & WNOWAIT), 1511 infop, 1512 stat_addr, ru); 1513 if (retval == -EAGAIN) 1514 goto repeat; 1515 if (retval != 0) /* He released the lock. */ 1516 goto end; 1517 break; 1518 default: 1519 // case EXIT_DEAD: 1520 if (p->exit_state == EXIT_DEAD) 1521 continue; 1522 // case EXIT_ZOMBIE: 1523 if (p->exit_state == EXIT_ZOMBIE) { 1524 /* 1525 * Eligible but we cannot release 1526 * it yet: 1527 */ 1528 if (ret == 2) 1529 goto check_continued; 1530 if (!likely(options & WEXITED)) 1531 continue; 1532 retval = wait_task_zombie( 1533 p, (options & WNOWAIT), 1534 infop, stat_addr, ru); 1535 /* He released the lock. */ 1536 if (retval != 0) 1537 goto end; 1538 break; 1539 } 1540 check_continued: 1541 /* 1542 * It's running now, so it might later 1543 * exit, stop, or stop and then continue. 1544 */ 1545 flag = 1; 1546 if (!unlikely(options & WCONTINUED)) 1547 continue; 1548 retval = wait_task_continued( 1549 p, (options & WNOWAIT), 1550 infop, stat_addr, ru); 1551 if (retval != 0) /* He released the lock. */ 1552 goto end; 1553 break; 1554 } 1555 } 1556 if (!flag) { 1557 list_for_each(_p, &tsk->ptrace_children) { 1558 p = list_entry(_p, struct task_struct, 1559 ptrace_list); 1560 if (!eligible_child(pid, options, p)) 1561 continue; 1562 flag = 1; 1563 break; 1564 } 1565 } 1566 if (options & __WNOTHREAD) 1567 break; 1568 tsk = next_thread(tsk); 1569 BUG_ON(tsk->signal != current->signal); 1570 } while (tsk != current); 1571 1572 read_unlock(&tasklist_lock); 1573 if (flag) { 1574 retval = 0; 1575 if (options & WNOHANG) 1576 goto end; 1577 retval = -ERESTARTSYS; 1578 if (signal_pending(current)) 1579 goto end; 1580 schedule(); 1581 goto repeat; 1582 } 1583 retval = -ECHILD; 1584 if (unlikely(denied) && !allowed) 1585 retval = denied; 1586 end: 1587 current->state = TASK_RUNNING; 1588 remove_wait_queue(¤t->signal->wait_chldexit,&wait); 1589 if (infop) { 1590 if (retval > 0) 1591 retval = 0; 1592 else { 1593 /* 1594 * For a WNOHANG return, clear out all the fields 1595 * we would set so the user can easily tell the 1596 * difference. 1597 */ 1598 if (!retval) 1599 retval = put_user(0, &infop->si_signo); 1600 if (!retval) 1601 retval = put_user(0, &infop->si_errno); 1602 if (!retval) 1603 retval = put_user(0, &infop->si_code); 1604 if (!retval) 1605 retval = put_user(0, &infop->si_pid); 1606 if (!retval) 1607 retval = put_user(0, &infop->si_uid); 1608 if (!retval) 1609 retval = put_user(0, &infop->si_status); 1610 } 1611 } 1612 return retval; 1613 } 1614 1615 asmlinkage long sys_waitid(int which, pid_t pid, 1616 struct siginfo __user *infop, int options, 1617 struct rusage __user *ru) 1618 { 1619 long ret; 1620 1621 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1622 return -EINVAL; 1623 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1624 return -EINVAL; 1625 1626 switch (which) { 1627 case P_ALL: 1628 pid = -1; 1629 break; 1630 case P_PID: 1631 if (pid <= 0) 1632 return -EINVAL; 1633 break; 1634 case P_PGID: 1635 if (pid <= 0) 1636 return -EINVAL; 1637 pid = -pid; 1638 break; 1639 default: 1640 return -EINVAL; 1641 } 1642 1643 ret = do_wait(pid, options, infop, NULL, ru); 1644 1645 /* avoid REGPARM breakage on x86: */ 1646 prevent_tail_call(ret); 1647 return ret; 1648 } 1649 1650 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr, 1651 int options, struct rusage __user *ru) 1652 { 1653 long ret; 1654 1655 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1656 __WNOTHREAD|__WCLONE|__WALL)) 1657 return -EINVAL; 1658 ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru); 1659 1660 /* avoid REGPARM breakage on x86: */ 1661 prevent_tail_call(ret); 1662 return ret; 1663 } 1664 1665 #ifdef __ARCH_WANT_SYS_WAITPID 1666 1667 /* 1668 * sys_waitpid() remains for compatibility. waitpid() should be 1669 * implemented by calling sys_wait4() from libc.a. 1670 */ 1671 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options) 1672 { 1673 return sys_wait4(pid, stat_addr, options, NULL); 1674 } 1675 1676 #endif 1677