1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/exit.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/slab.h> 10 #include <linux/sched/autogroup.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/stat.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/sched/cputime.h> 16 #include <linux/interrupt.h> 17 #include <linux/module.h> 18 #include <linux/capability.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/tty.h> 22 #include <linux/iocontext.h> 23 #include <linux/key.h> 24 #include <linux/cpu.h> 25 #include <linux/acct.h> 26 #include <linux/tsacct_kern.h> 27 #include <linux/file.h> 28 #include <linux/freezer.h> 29 #include <linux/binfmts.h> 30 #include <linux/nsproxy.h> 31 #include <linux/pid_namespace.h> 32 #include <linux/ptrace.h> 33 #include <linux/profile.h> 34 #include <linux/mount.h> 35 #include <linux/proc_fs.h> 36 #include <linux/kthread.h> 37 #include <linux/mempolicy.h> 38 #include <linux/taskstats_kern.h> 39 #include <linux/delayacct.h> 40 #include <linux/cgroup.h> 41 #include <linux/syscalls.h> 42 #include <linux/signal.h> 43 #include <linux/posix-timers.h> 44 #include <linux/cn_proc.h> 45 #include <linux/mutex.h> 46 #include <linux/futex.h> 47 #include <linux/pipe_fs_i.h> 48 #include <linux/audit.h> /* for audit_free() */ 49 #include <linux/resource.h> 50 #include <linux/task_io_accounting_ops.h> 51 #include <linux/blkdev.h> 52 #include <linux/task_work.h> 53 #include <linux/fs_struct.h> 54 #include <linux/init_task.h> 55 #include <linux/perf_event.h> 56 #include <trace/events/sched.h> 57 #include <linux/hw_breakpoint.h> 58 #include <linux/oom.h> 59 #include <linux/writeback.h> 60 #include <linux/shm.h> 61 #include <linux/kcov.h> 62 #include <linux/kmsan.h> 63 #include <linux/random.h> 64 #include <linux/rcuwait.h> 65 #include <linux/compat.h> 66 #include <linux/io_uring.h> 67 #include <linux/kprobes.h> 68 #include <linux/rethook.h> 69 #include <linux/sysfs.h> 70 #include <linux/user_events.h> 71 #include <linux/uaccess.h> 72 #include <linux/pidfs.h> 73 74 #include <uapi/linux/wait.h> 75 76 #include <asm/unistd.h> 77 #include <asm/mmu_context.h> 78 79 #include "exit.h" 80 81 /* 82 * The default value should be high enough to not crash a system that randomly 83 * crashes its kernel from time to time, but low enough to at least not permit 84 * overflowing 32-bit refcounts or the ldsem writer count. 85 */ 86 static unsigned int oops_limit = 10000; 87 88 #ifdef CONFIG_SYSCTL 89 static const struct ctl_table kern_exit_table[] = { 90 { 91 .procname = "oops_limit", 92 .data = &oops_limit, 93 .maxlen = sizeof(oops_limit), 94 .mode = 0644, 95 .proc_handler = proc_douintvec, 96 }, 97 }; 98 99 static __init int kernel_exit_sysctls_init(void) 100 { 101 register_sysctl_init("kernel", kern_exit_table); 102 return 0; 103 } 104 late_initcall(kernel_exit_sysctls_init); 105 #endif 106 107 static atomic_t oops_count = ATOMIC_INIT(0); 108 109 #ifdef CONFIG_SYSFS 110 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr, 111 char *page) 112 { 113 return sysfs_emit(page, "%d\n", atomic_read(&oops_count)); 114 } 115 116 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count); 117 118 static __init int kernel_exit_sysfs_init(void) 119 { 120 sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL); 121 return 0; 122 } 123 late_initcall(kernel_exit_sysfs_init); 124 #endif 125 126 /* 127 * For things release_task() would like to do *after* tasklist_lock is released. 128 */ 129 struct release_task_post { 130 struct pid *pids[PIDTYPE_MAX]; 131 }; 132 133 static void __unhash_process(struct release_task_post *post, struct task_struct *p, 134 bool group_dead) 135 { 136 nr_threads--; 137 detach_pid(post->pids, p, PIDTYPE_PID); 138 if (group_dead) { 139 detach_pid(post->pids, p, PIDTYPE_TGID); 140 detach_pid(post->pids, p, PIDTYPE_PGID); 141 detach_pid(post->pids, p, PIDTYPE_SID); 142 143 list_del_rcu(&p->tasks); 144 list_del_init(&p->sibling); 145 __this_cpu_dec(process_counts); 146 } 147 list_del_rcu(&p->thread_node); 148 } 149 150 /* 151 * This function expects the tasklist_lock write-locked. 152 */ 153 static void __exit_signal(struct release_task_post *post, struct task_struct *tsk) 154 { 155 struct signal_struct *sig = tsk->signal; 156 bool group_dead = thread_group_leader(tsk); 157 struct sighand_struct *sighand; 158 struct tty_struct *tty; 159 u64 utime, stime; 160 161 sighand = rcu_dereference_check(tsk->sighand, 162 lockdep_tasklist_lock_is_held()); 163 spin_lock(&sighand->siglock); 164 165 #ifdef CONFIG_POSIX_TIMERS 166 posix_cpu_timers_exit(tsk); 167 if (group_dead) 168 posix_cpu_timers_exit_group(tsk); 169 #endif 170 171 if (group_dead) { 172 tty = sig->tty; 173 sig->tty = NULL; 174 } else { 175 /* 176 * If there is any task waiting for the group exit 177 * then notify it: 178 */ 179 if (sig->notify_count > 0 && !--sig->notify_count) 180 wake_up_process(sig->group_exec_task); 181 182 if (tsk == sig->curr_target) 183 sig->curr_target = next_thread(tsk); 184 } 185 186 /* 187 * Accumulate here the counters for all threads as they die. We could 188 * skip the group leader because it is the last user of signal_struct, 189 * but we want to avoid the race with thread_group_cputime() which can 190 * see the empty ->thread_head list. 191 */ 192 task_cputime(tsk, &utime, &stime); 193 write_seqlock(&sig->stats_lock); 194 sig->utime += utime; 195 sig->stime += stime; 196 sig->gtime += task_gtime(tsk); 197 sig->min_flt += tsk->min_flt; 198 sig->maj_flt += tsk->maj_flt; 199 sig->nvcsw += tsk->nvcsw; 200 sig->nivcsw += tsk->nivcsw; 201 sig->inblock += task_io_get_inblock(tsk); 202 sig->oublock += task_io_get_oublock(tsk); 203 task_io_accounting_add(&sig->ioac, &tsk->ioac); 204 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 205 sig->nr_threads--; 206 __unhash_process(post, tsk, group_dead); 207 write_sequnlock(&sig->stats_lock); 208 209 tsk->sighand = NULL; 210 spin_unlock(&sighand->siglock); 211 212 __cleanup_sighand(sighand); 213 if (group_dead) 214 tty_kref_put(tty); 215 } 216 217 static void delayed_put_task_struct(struct rcu_head *rhp) 218 { 219 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 220 221 kprobe_flush_task(tsk); 222 rethook_flush_task(tsk); 223 perf_event_delayed_put(tsk); 224 trace_sched_process_free(tsk); 225 put_task_struct(tsk); 226 } 227 228 void put_task_struct_rcu_user(struct task_struct *task) 229 { 230 if (refcount_dec_and_test(&task->rcu_users)) 231 call_rcu(&task->rcu, delayed_put_task_struct); 232 } 233 234 void __weak release_thread(struct task_struct *dead_task) 235 { 236 } 237 238 void release_task(struct task_struct *p) 239 { 240 struct release_task_post post; 241 struct task_struct *leader; 242 struct pid *thread_pid; 243 int zap_leader; 244 repeat: 245 memset(&post, 0, sizeof(post)); 246 247 /* don't need to get the RCU readlock here - the process is dead and 248 * can't be modifying its own credentials. But shut RCU-lockdep up */ 249 rcu_read_lock(); 250 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 251 rcu_read_unlock(); 252 253 pidfs_exit(p); 254 cgroup_release(p); 255 256 thread_pid = get_pid(p->thread_pid); 257 258 write_lock_irq(&tasklist_lock); 259 ptrace_release_task(p); 260 __exit_signal(&post, p); 261 262 /* 263 * If we are the last non-leader member of the thread 264 * group, and the leader is zombie, then notify the 265 * group leader's parent process. (if it wants notification.) 266 */ 267 zap_leader = 0; 268 leader = p->group_leader; 269 if (leader != p && thread_group_empty(leader) 270 && leader->exit_state == EXIT_ZOMBIE) { 271 /* 272 * If we were the last child thread and the leader has 273 * exited already, and the leader's parent ignores SIGCHLD, 274 * then we are the one who should release the leader. 275 */ 276 zap_leader = do_notify_parent(leader, leader->exit_signal); 277 if (zap_leader) 278 leader->exit_state = EXIT_DEAD; 279 } 280 281 write_unlock_irq(&tasklist_lock); 282 proc_flush_pid(thread_pid); 283 put_pid(thread_pid); 284 add_device_randomness(&p->se.sum_exec_runtime, 285 sizeof(p->se.sum_exec_runtime)); 286 free_pids(post.pids); 287 release_thread(p); 288 /* 289 * This task was already removed from the process/thread/pid lists 290 * and lock_task_sighand(p) can't succeed. Nobody else can touch 291 * ->pending or, if group dead, signal->shared_pending. We can call 292 * flush_sigqueue() lockless. 293 */ 294 flush_sigqueue(&p->pending); 295 if (thread_group_leader(p)) 296 flush_sigqueue(&p->signal->shared_pending); 297 298 put_task_struct_rcu_user(p); 299 300 p = leader; 301 if (unlikely(zap_leader)) 302 goto repeat; 303 } 304 305 int rcuwait_wake_up(struct rcuwait *w) 306 { 307 int ret = 0; 308 struct task_struct *task; 309 310 rcu_read_lock(); 311 312 /* 313 * Order condition vs @task, such that everything prior to the load 314 * of @task is visible. This is the condition as to why the user called 315 * rcuwait_wake() in the first place. Pairs with set_current_state() 316 * barrier (A) in rcuwait_wait_event(). 317 * 318 * WAIT WAKE 319 * [S] tsk = current [S] cond = true 320 * MB (A) MB (B) 321 * [L] cond [L] tsk 322 */ 323 smp_mb(); /* (B) */ 324 325 task = rcu_dereference(w->task); 326 if (task) 327 ret = wake_up_process(task); 328 rcu_read_unlock(); 329 330 return ret; 331 } 332 EXPORT_SYMBOL_GPL(rcuwait_wake_up); 333 334 /* 335 * Determine if a process group is "orphaned", according to the POSIX 336 * definition in 2.2.2.52. Orphaned process groups are not to be affected 337 * by terminal-generated stop signals. Newly orphaned process groups are 338 * to receive a SIGHUP and a SIGCONT. 339 * 340 * "I ask you, have you ever known what it is to be an orphan?" 341 */ 342 static int will_become_orphaned_pgrp(struct pid *pgrp, 343 struct task_struct *ignored_task) 344 { 345 struct task_struct *p; 346 347 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 348 if ((p == ignored_task) || 349 (p->exit_state && thread_group_empty(p)) || 350 is_global_init(p->real_parent)) 351 continue; 352 353 if (task_pgrp(p->real_parent) != pgrp && 354 task_session(p->real_parent) == task_session(p)) 355 return 0; 356 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 357 358 return 1; 359 } 360 361 int is_current_pgrp_orphaned(void) 362 { 363 int retval; 364 365 read_lock(&tasklist_lock); 366 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 367 read_unlock(&tasklist_lock); 368 369 return retval; 370 } 371 372 static bool has_stopped_jobs(struct pid *pgrp) 373 { 374 struct task_struct *p; 375 376 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 377 if (p->signal->flags & SIGNAL_STOP_STOPPED) 378 return true; 379 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 380 381 return false; 382 } 383 384 /* 385 * Check to see if any process groups have become orphaned as 386 * a result of our exiting, and if they have any stopped jobs, 387 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 388 */ 389 static void 390 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 391 { 392 struct pid *pgrp = task_pgrp(tsk); 393 struct task_struct *ignored_task = tsk; 394 395 if (!parent) 396 /* exit: our father is in a different pgrp than 397 * we are and we were the only connection outside. 398 */ 399 parent = tsk->real_parent; 400 else 401 /* reparent: our child is in a different pgrp than 402 * we are, and it was the only connection outside. 403 */ 404 ignored_task = NULL; 405 406 if (task_pgrp(parent) != pgrp && 407 task_session(parent) == task_session(tsk) && 408 will_become_orphaned_pgrp(pgrp, ignored_task) && 409 has_stopped_jobs(pgrp)) { 410 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 411 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 412 } 413 } 414 415 static void coredump_task_exit(struct task_struct *tsk) 416 { 417 struct core_state *core_state; 418 419 /* 420 * Serialize with any possible pending coredump. 421 * We must hold siglock around checking core_state 422 * and setting PF_POSTCOREDUMP. The core-inducing thread 423 * will increment ->nr_threads for each thread in the 424 * group without PF_POSTCOREDUMP set. 425 */ 426 spin_lock_irq(&tsk->sighand->siglock); 427 tsk->flags |= PF_POSTCOREDUMP; 428 core_state = tsk->signal->core_state; 429 spin_unlock_irq(&tsk->sighand->siglock); 430 if (core_state) { 431 struct core_thread self; 432 433 self.task = current; 434 if (self.task->flags & PF_SIGNALED) 435 self.next = xchg(&core_state->dumper.next, &self); 436 else 437 self.task = NULL; 438 /* 439 * Implies mb(), the result of xchg() must be visible 440 * to core_state->dumper. 441 */ 442 if (atomic_dec_and_test(&core_state->nr_threads)) 443 complete(&core_state->startup); 444 445 for (;;) { 446 set_current_state(TASK_IDLE|TASK_FREEZABLE); 447 if (!self.task) /* see coredump_finish() */ 448 break; 449 schedule(); 450 } 451 __set_current_state(TASK_RUNNING); 452 } 453 } 454 455 #ifdef CONFIG_MEMCG 456 /* drops tasklist_lock if succeeds */ 457 static bool __try_to_set_owner(struct task_struct *tsk, struct mm_struct *mm) 458 { 459 bool ret = false; 460 461 task_lock(tsk); 462 if (likely(tsk->mm == mm)) { 463 /* tsk can't pass exit_mm/exec_mmap and exit */ 464 read_unlock(&tasklist_lock); 465 WRITE_ONCE(mm->owner, tsk); 466 lru_gen_migrate_mm(mm); 467 ret = true; 468 } 469 task_unlock(tsk); 470 return ret; 471 } 472 473 static bool try_to_set_owner(struct task_struct *g, struct mm_struct *mm) 474 { 475 struct task_struct *t; 476 477 for_each_thread(g, t) { 478 struct mm_struct *t_mm = READ_ONCE(t->mm); 479 if (t_mm == mm) { 480 if (__try_to_set_owner(t, mm)) 481 return true; 482 } else if (t_mm) 483 break; 484 } 485 486 return false; 487 } 488 489 /* 490 * A task is exiting. If it owned this mm, find a new owner for the mm. 491 */ 492 void mm_update_next_owner(struct mm_struct *mm) 493 { 494 struct task_struct *g, *p = current; 495 496 /* 497 * If the exiting or execing task is not the owner, it's 498 * someone else's problem. 499 */ 500 if (mm->owner != p) 501 return; 502 /* 503 * The current owner is exiting/execing and there are no other 504 * candidates. Do not leave the mm pointing to a possibly 505 * freed task structure. 506 */ 507 if (atomic_read(&mm->mm_users) <= 1) { 508 WRITE_ONCE(mm->owner, NULL); 509 return; 510 } 511 512 read_lock(&tasklist_lock); 513 /* 514 * Search in the children 515 */ 516 list_for_each_entry(g, &p->children, sibling) { 517 if (try_to_set_owner(g, mm)) 518 goto ret; 519 } 520 /* 521 * Search in the siblings 522 */ 523 list_for_each_entry(g, &p->real_parent->children, sibling) { 524 if (try_to_set_owner(g, mm)) 525 goto ret; 526 } 527 /* 528 * Search through everything else, we should not get here often. 529 */ 530 for_each_process(g) { 531 if (atomic_read(&mm->mm_users) <= 1) 532 break; 533 if (g->flags & PF_KTHREAD) 534 continue; 535 if (try_to_set_owner(g, mm)) 536 goto ret; 537 } 538 read_unlock(&tasklist_lock); 539 /* 540 * We found no owner yet mm_users > 1: this implies that we are 541 * most likely racing with swapoff (try_to_unuse()) or /proc or 542 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 543 */ 544 WRITE_ONCE(mm->owner, NULL); 545 ret: 546 return; 547 548 } 549 #endif /* CONFIG_MEMCG */ 550 551 /* 552 * Turn us into a lazy TLB process if we 553 * aren't already.. 554 */ 555 static void exit_mm(void) 556 { 557 struct mm_struct *mm = current->mm; 558 559 exit_mm_release(current, mm); 560 if (!mm) 561 return; 562 mmap_read_lock(mm); 563 mmgrab_lazy_tlb(mm); 564 BUG_ON(mm != current->active_mm); 565 /* more a memory barrier than a real lock */ 566 task_lock(current); 567 /* 568 * When a thread stops operating on an address space, the loop 569 * in membarrier_private_expedited() may not observe that 570 * tsk->mm, and the loop in membarrier_global_expedited() may 571 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED 572 * rq->membarrier_state, so those would not issue an IPI. 573 * Membarrier requires a memory barrier after accessing 574 * user-space memory, before clearing tsk->mm or the 575 * rq->membarrier_state. 576 */ 577 smp_mb__after_spinlock(); 578 local_irq_disable(); 579 current->mm = NULL; 580 membarrier_update_current_mm(NULL); 581 enter_lazy_tlb(mm, current); 582 local_irq_enable(); 583 task_unlock(current); 584 mmap_read_unlock(mm); 585 mm_update_next_owner(mm); 586 mmput(mm); 587 if (test_thread_flag(TIF_MEMDIE)) 588 exit_oom_victim(); 589 } 590 591 static struct task_struct *find_alive_thread(struct task_struct *p) 592 { 593 struct task_struct *t; 594 595 for_each_thread(p, t) { 596 if (!(t->flags & PF_EXITING)) 597 return t; 598 } 599 return NULL; 600 } 601 602 static struct task_struct *find_child_reaper(struct task_struct *father, 603 struct list_head *dead) 604 __releases(&tasklist_lock) 605 __acquires(&tasklist_lock) 606 { 607 struct pid_namespace *pid_ns = task_active_pid_ns(father); 608 struct task_struct *reaper = pid_ns->child_reaper; 609 struct task_struct *p, *n; 610 611 if (likely(reaper != father)) 612 return reaper; 613 614 reaper = find_alive_thread(father); 615 if (reaper) { 616 pid_ns->child_reaper = reaper; 617 return reaper; 618 } 619 620 write_unlock_irq(&tasklist_lock); 621 622 list_for_each_entry_safe(p, n, dead, ptrace_entry) { 623 list_del_init(&p->ptrace_entry); 624 release_task(p); 625 } 626 627 zap_pid_ns_processes(pid_ns); 628 write_lock_irq(&tasklist_lock); 629 630 return father; 631 } 632 633 /* 634 * When we die, we re-parent all our children, and try to: 635 * 1. give them to another thread in our thread group, if such a member exists 636 * 2. give it to the first ancestor process which prctl'd itself as a 637 * child_subreaper for its children (like a service manager) 638 * 3. give it to the init process (PID 1) in our pid namespace 639 */ 640 static struct task_struct *find_new_reaper(struct task_struct *father, 641 struct task_struct *child_reaper) 642 { 643 struct task_struct *thread, *reaper; 644 645 thread = find_alive_thread(father); 646 if (thread) 647 return thread; 648 649 if (father->signal->has_child_subreaper) { 650 unsigned int ns_level = task_pid(father)->level; 651 /* 652 * Find the first ->is_child_subreaper ancestor in our pid_ns. 653 * We can't check reaper != child_reaper to ensure we do not 654 * cross the namespaces, the exiting parent could be injected 655 * by setns() + fork(). 656 * We check pid->level, this is slightly more efficient than 657 * task_active_pid_ns(reaper) != task_active_pid_ns(father). 658 */ 659 for (reaper = father->real_parent; 660 task_pid(reaper)->level == ns_level; 661 reaper = reaper->real_parent) { 662 if (reaper == &init_task) 663 break; 664 if (!reaper->signal->is_child_subreaper) 665 continue; 666 thread = find_alive_thread(reaper); 667 if (thread) 668 return thread; 669 } 670 } 671 672 return child_reaper; 673 } 674 675 /* 676 * Any that need to be release_task'd are put on the @dead list. 677 */ 678 static void reparent_leader(struct task_struct *father, struct task_struct *p, 679 struct list_head *dead) 680 { 681 if (unlikely(p->exit_state == EXIT_DEAD)) 682 return; 683 684 /* We don't want people slaying init. */ 685 p->exit_signal = SIGCHLD; 686 687 /* If it has exited notify the new parent about this child's death. */ 688 if (!p->ptrace && 689 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 690 if (do_notify_parent(p, p->exit_signal)) { 691 p->exit_state = EXIT_DEAD; 692 list_add(&p->ptrace_entry, dead); 693 } 694 } 695 696 kill_orphaned_pgrp(p, father); 697 } 698 699 /* 700 * This does two things: 701 * 702 * A. Make init inherit all the child processes 703 * B. Check to see if any process groups have become orphaned 704 * as a result of our exiting, and if they have any stopped 705 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 706 */ 707 static void forget_original_parent(struct task_struct *father, 708 struct list_head *dead) 709 { 710 struct task_struct *p, *t, *reaper; 711 712 if (unlikely(!list_empty(&father->ptraced))) 713 exit_ptrace(father, dead); 714 715 /* Can drop and reacquire tasklist_lock */ 716 reaper = find_child_reaper(father, dead); 717 if (list_empty(&father->children)) 718 return; 719 720 reaper = find_new_reaper(father, reaper); 721 list_for_each_entry(p, &father->children, sibling) { 722 for_each_thread(p, t) { 723 RCU_INIT_POINTER(t->real_parent, reaper); 724 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father)); 725 if (likely(!t->ptrace)) 726 t->parent = t->real_parent; 727 if (t->pdeath_signal) 728 group_send_sig_info(t->pdeath_signal, 729 SEND_SIG_NOINFO, t, 730 PIDTYPE_TGID); 731 } 732 /* 733 * If this is a threaded reparent there is no need to 734 * notify anyone anything has happened. 735 */ 736 if (!same_thread_group(reaper, father)) 737 reparent_leader(father, p, dead); 738 } 739 list_splice_tail_init(&father->children, &reaper->children); 740 } 741 742 /* 743 * Send signals to all our closest relatives so that they know 744 * to properly mourn us.. 745 */ 746 static void exit_notify(struct task_struct *tsk, int group_dead) 747 { 748 bool autoreap; 749 struct task_struct *p, *n; 750 LIST_HEAD(dead); 751 752 write_lock_irq(&tasklist_lock); 753 forget_original_parent(tsk, &dead); 754 755 if (group_dead) 756 kill_orphaned_pgrp(tsk->group_leader, NULL); 757 758 tsk->exit_state = EXIT_ZOMBIE; 759 /* 760 * Ignore thread-group leaders that exited before all 761 * subthreads did. 762 */ 763 if (!delay_group_leader(tsk)) 764 do_notify_pidfd(tsk); 765 766 if (unlikely(tsk->ptrace)) { 767 int sig = thread_group_leader(tsk) && 768 thread_group_empty(tsk) && 769 !ptrace_reparented(tsk) ? 770 tsk->exit_signal : SIGCHLD; 771 autoreap = do_notify_parent(tsk, sig); 772 } else if (thread_group_leader(tsk)) { 773 autoreap = thread_group_empty(tsk) && 774 do_notify_parent(tsk, tsk->exit_signal); 775 } else { 776 autoreap = true; 777 } 778 779 if (autoreap) { 780 tsk->exit_state = EXIT_DEAD; 781 list_add(&tsk->ptrace_entry, &dead); 782 } 783 784 /* mt-exec, de_thread() is waiting for group leader */ 785 if (unlikely(tsk->signal->notify_count < 0)) 786 wake_up_process(tsk->signal->group_exec_task); 787 write_unlock_irq(&tasklist_lock); 788 789 list_for_each_entry_safe(p, n, &dead, ptrace_entry) { 790 list_del_init(&p->ptrace_entry); 791 release_task(p); 792 } 793 } 794 795 #ifdef CONFIG_DEBUG_STACK_USAGE 796 unsigned long stack_not_used(struct task_struct *p) 797 { 798 unsigned long *n = end_of_stack(p); 799 800 do { /* Skip over canary */ 801 # ifdef CONFIG_STACK_GROWSUP 802 n--; 803 # else 804 n++; 805 # endif 806 } while (!*n); 807 808 # ifdef CONFIG_STACK_GROWSUP 809 return (unsigned long)end_of_stack(p) - (unsigned long)n; 810 # else 811 return (unsigned long)n - (unsigned long)end_of_stack(p); 812 # endif 813 } 814 815 /* Count the maximum pages reached in kernel stacks */ 816 static inline void kstack_histogram(unsigned long used_stack) 817 { 818 #ifdef CONFIG_VM_EVENT_COUNTERS 819 if (used_stack <= 1024) 820 count_vm_event(KSTACK_1K); 821 #if THREAD_SIZE > 1024 822 else if (used_stack <= 2048) 823 count_vm_event(KSTACK_2K); 824 #endif 825 #if THREAD_SIZE > 2048 826 else if (used_stack <= 4096) 827 count_vm_event(KSTACK_4K); 828 #endif 829 #if THREAD_SIZE > 4096 830 else if (used_stack <= 8192) 831 count_vm_event(KSTACK_8K); 832 #endif 833 #if THREAD_SIZE > 8192 834 else if (used_stack <= 16384) 835 count_vm_event(KSTACK_16K); 836 #endif 837 #if THREAD_SIZE > 16384 838 else if (used_stack <= 32768) 839 count_vm_event(KSTACK_32K); 840 #endif 841 #if THREAD_SIZE > 32768 842 else if (used_stack <= 65536) 843 count_vm_event(KSTACK_64K); 844 #endif 845 #if THREAD_SIZE > 65536 846 else 847 count_vm_event(KSTACK_REST); 848 #endif 849 #endif /* CONFIG_VM_EVENT_COUNTERS */ 850 } 851 852 static void check_stack_usage(void) 853 { 854 static DEFINE_SPINLOCK(low_water_lock); 855 static int lowest_to_date = THREAD_SIZE; 856 unsigned long free; 857 858 free = stack_not_used(current); 859 kstack_histogram(THREAD_SIZE - free); 860 861 if (free >= lowest_to_date) 862 return; 863 864 spin_lock(&low_water_lock); 865 if (free < lowest_to_date) { 866 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n", 867 current->comm, task_pid_nr(current), free); 868 lowest_to_date = free; 869 } 870 spin_unlock(&low_water_lock); 871 } 872 #else 873 static inline void check_stack_usage(void) {} 874 #endif 875 876 static void synchronize_group_exit(struct task_struct *tsk, long code) 877 { 878 struct sighand_struct *sighand = tsk->sighand; 879 struct signal_struct *signal = tsk->signal; 880 881 spin_lock_irq(&sighand->siglock); 882 signal->quick_threads--; 883 if ((signal->quick_threads == 0) && 884 !(signal->flags & SIGNAL_GROUP_EXIT)) { 885 signal->flags = SIGNAL_GROUP_EXIT; 886 signal->group_exit_code = code; 887 signal->group_stop_count = 0; 888 } 889 spin_unlock_irq(&sighand->siglock); 890 } 891 892 void __noreturn do_exit(long code) 893 { 894 struct task_struct *tsk = current; 895 int group_dead; 896 897 WARN_ON(irqs_disabled()); 898 899 synchronize_group_exit(tsk, code); 900 901 WARN_ON(tsk->plug); 902 903 kcov_task_exit(tsk); 904 kmsan_task_exit(tsk); 905 906 coredump_task_exit(tsk); 907 ptrace_event(PTRACE_EVENT_EXIT, code); 908 user_events_exit(tsk); 909 910 io_uring_files_cancel(); 911 exit_signals(tsk); /* sets PF_EXITING */ 912 913 seccomp_filter_release(tsk); 914 915 acct_update_integrals(tsk); 916 group_dead = atomic_dec_and_test(&tsk->signal->live); 917 if (group_dead) { 918 /* 919 * If the last thread of global init has exited, panic 920 * immediately to get a useable coredump. 921 */ 922 if (unlikely(is_global_init(tsk))) 923 panic("Attempted to kill init! exitcode=0x%08x\n", 924 tsk->signal->group_exit_code ?: (int)code); 925 926 #ifdef CONFIG_POSIX_TIMERS 927 hrtimer_cancel(&tsk->signal->real_timer); 928 exit_itimers(tsk); 929 #endif 930 if (tsk->mm) 931 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 932 } 933 acct_collect(code, group_dead); 934 if (group_dead) 935 tty_audit_exit(); 936 audit_free(tsk); 937 938 tsk->exit_code = code; 939 taskstats_exit(tsk, group_dead); 940 941 exit_mm(); 942 943 if (group_dead) 944 acct_process(); 945 trace_sched_process_exit(tsk); 946 947 exit_sem(tsk); 948 exit_shm(tsk); 949 exit_files(tsk); 950 exit_fs(tsk); 951 if (group_dead) 952 disassociate_ctty(1); 953 exit_task_namespaces(tsk); 954 exit_task_work(tsk); 955 exit_thread(tsk); 956 957 /* 958 * Flush inherited counters to the parent - before the parent 959 * gets woken up by child-exit notifications. 960 * 961 * because of cgroup mode, must be called before cgroup_exit() 962 */ 963 perf_event_exit_task(tsk); 964 965 sched_autogroup_exit_task(tsk); 966 cgroup_exit(tsk); 967 968 /* 969 * FIXME: do that only when needed, using sched_exit tracepoint 970 */ 971 flush_ptrace_hw_breakpoint(tsk); 972 973 exit_tasks_rcu_start(); 974 exit_notify(tsk, group_dead); 975 proc_exit_connector(tsk); 976 mpol_put_task_policy(tsk); 977 #ifdef CONFIG_FUTEX 978 if (unlikely(current->pi_state_cache)) 979 kfree(current->pi_state_cache); 980 #endif 981 /* 982 * Make sure we are holding no locks: 983 */ 984 debug_check_no_locks_held(); 985 986 if (tsk->io_context) 987 exit_io_context(tsk); 988 989 if (tsk->splice_pipe) 990 free_pipe_info(tsk->splice_pipe); 991 992 if (tsk->task_frag.page) 993 put_page(tsk->task_frag.page); 994 995 exit_task_stack_account(tsk); 996 997 check_stack_usage(); 998 preempt_disable(); 999 if (tsk->nr_dirtied) 1000 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 1001 exit_rcu(); 1002 exit_tasks_rcu_finish(); 1003 1004 lockdep_free_task(tsk); 1005 do_task_dead(); 1006 } 1007 1008 void __noreturn make_task_dead(int signr) 1009 { 1010 /* 1011 * Take the task off the cpu after something catastrophic has 1012 * happened. 1013 * 1014 * We can get here from a kernel oops, sometimes with preemption off. 1015 * Start by checking for critical errors. 1016 * Then fix up important state like USER_DS and preemption. 1017 * Then do everything else. 1018 */ 1019 struct task_struct *tsk = current; 1020 unsigned int limit; 1021 1022 if (unlikely(in_interrupt())) 1023 panic("Aiee, killing interrupt handler!"); 1024 if (unlikely(!tsk->pid)) 1025 panic("Attempted to kill the idle task!"); 1026 1027 if (unlikely(irqs_disabled())) { 1028 pr_info("note: %s[%d] exited with irqs disabled\n", 1029 current->comm, task_pid_nr(current)); 1030 local_irq_enable(); 1031 } 1032 if (unlikely(in_atomic())) { 1033 pr_info("note: %s[%d] exited with preempt_count %d\n", 1034 current->comm, task_pid_nr(current), 1035 preempt_count()); 1036 preempt_count_set(PREEMPT_ENABLED); 1037 } 1038 1039 /* 1040 * Every time the system oopses, if the oops happens while a reference 1041 * to an object was held, the reference leaks. 1042 * If the oops doesn't also leak memory, repeated oopsing can cause 1043 * reference counters to wrap around (if they're not using refcount_t). 1044 * This means that repeated oopsing can make unexploitable-looking bugs 1045 * exploitable through repeated oopsing. 1046 * To make sure this can't happen, place an upper bound on how often the 1047 * kernel may oops without panic(). 1048 */ 1049 limit = READ_ONCE(oops_limit); 1050 if (atomic_inc_return(&oops_count) >= limit && limit) 1051 panic("Oopsed too often (kernel.oops_limit is %d)", limit); 1052 1053 /* 1054 * We're taking recursive faults here in make_task_dead. Safest is to just 1055 * leave this task alone and wait for reboot. 1056 */ 1057 if (unlikely(tsk->flags & PF_EXITING)) { 1058 pr_alert("Fixing recursive fault but reboot is needed!\n"); 1059 futex_exit_recursive(tsk); 1060 tsk->exit_state = EXIT_DEAD; 1061 refcount_inc(&tsk->rcu_users); 1062 do_task_dead(); 1063 } 1064 1065 do_exit(signr); 1066 } 1067 1068 SYSCALL_DEFINE1(exit, int, error_code) 1069 { 1070 do_exit((error_code&0xff)<<8); 1071 } 1072 1073 /* 1074 * Take down every thread in the group. This is called by fatal signals 1075 * as well as by sys_exit_group (below). 1076 */ 1077 void __noreturn 1078 do_group_exit(int exit_code) 1079 { 1080 struct signal_struct *sig = current->signal; 1081 1082 if (sig->flags & SIGNAL_GROUP_EXIT) 1083 exit_code = sig->group_exit_code; 1084 else if (sig->group_exec_task) 1085 exit_code = 0; 1086 else { 1087 struct sighand_struct *const sighand = current->sighand; 1088 1089 spin_lock_irq(&sighand->siglock); 1090 if (sig->flags & SIGNAL_GROUP_EXIT) 1091 /* Another thread got here before we took the lock. */ 1092 exit_code = sig->group_exit_code; 1093 else if (sig->group_exec_task) 1094 exit_code = 0; 1095 else { 1096 sig->group_exit_code = exit_code; 1097 sig->flags = SIGNAL_GROUP_EXIT; 1098 zap_other_threads(current); 1099 } 1100 spin_unlock_irq(&sighand->siglock); 1101 } 1102 1103 do_exit(exit_code); 1104 /* NOTREACHED */ 1105 } 1106 1107 /* 1108 * this kills every thread in the thread group. Note that any externally 1109 * wait4()-ing process will get the correct exit code - even if this 1110 * thread is not the thread group leader. 1111 */ 1112 SYSCALL_DEFINE1(exit_group, int, error_code) 1113 { 1114 do_group_exit((error_code & 0xff) << 8); 1115 /* NOTREACHED */ 1116 return 0; 1117 } 1118 1119 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 1120 { 1121 return wo->wo_type == PIDTYPE_MAX || 1122 task_pid_type(p, wo->wo_type) == wo->wo_pid; 1123 } 1124 1125 static int 1126 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p) 1127 { 1128 if (!eligible_pid(wo, p)) 1129 return 0; 1130 1131 /* 1132 * Wait for all children (clone and not) if __WALL is set or 1133 * if it is traced by us. 1134 */ 1135 if (ptrace || (wo->wo_flags & __WALL)) 1136 return 1; 1137 1138 /* 1139 * Otherwise, wait for clone children *only* if __WCLONE is set; 1140 * otherwise, wait for non-clone children *only*. 1141 * 1142 * Note: a "clone" child here is one that reports to its parent 1143 * using a signal other than SIGCHLD, or a non-leader thread which 1144 * we can only see if it is traced by us. 1145 */ 1146 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 1147 return 0; 1148 1149 return 1; 1150 } 1151 1152 /* 1153 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1154 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1155 * the lock and this task is uninteresting. If we return nonzero, we have 1156 * released the lock and the system call should return. 1157 */ 1158 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1159 { 1160 int state, status; 1161 pid_t pid = task_pid_vnr(p); 1162 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1163 struct waitid_info *infop; 1164 1165 if (!likely(wo->wo_flags & WEXITED)) 1166 return 0; 1167 1168 if (unlikely(wo->wo_flags & WNOWAIT)) { 1169 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1170 ? p->signal->group_exit_code : p->exit_code; 1171 get_task_struct(p); 1172 read_unlock(&tasklist_lock); 1173 sched_annotate_sleep(); 1174 if (wo->wo_rusage) 1175 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1176 put_task_struct(p); 1177 goto out_info; 1178 } 1179 /* 1180 * Move the task's state to DEAD/TRACE, only one thread can do this. 1181 */ 1182 state = (ptrace_reparented(p) && thread_group_leader(p)) ? 1183 EXIT_TRACE : EXIT_DEAD; 1184 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 1185 return 0; 1186 /* 1187 * We own this thread, nobody else can reap it. 1188 */ 1189 read_unlock(&tasklist_lock); 1190 sched_annotate_sleep(); 1191 1192 /* 1193 * Check thread_group_leader() to exclude the traced sub-threads. 1194 */ 1195 if (state == EXIT_DEAD && thread_group_leader(p)) { 1196 struct signal_struct *sig = p->signal; 1197 struct signal_struct *psig = current->signal; 1198 unsigned long maxrss; 1199 u64 tgutime, tgstime; 1200 1201 /* 1202 * The resource counters for the group leader are in its 1203 * own task_struct. Those for dead threads in the group 1204 * are in its signal_struct, as are those for the child 1205 * processes it has previously reaped. All these 1206 * accumulate in the parent's signal_struct c* fields. 1207 * 1208 * We don't bother to take a lock here to protect these 1209 * p->signal fields because the whole thread group is dead 1210 * and nobody can change them. 1211 * 1212 * psig->stats_lock also protects us from our sub-threads 1213 * which can reap other children at the same time. 1214 * 1215 * We use thread_group_cputime_adjusted() to get times for 1216 * the thread group, which consolidates times for all threads 1217 * in the group including the group leader. 1218 */ 1219 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1220 write_seqlock_irq(&psig->stats_lock); 1221 psig->cutime += tgutime + sig->cutime; 1222 psig->cstime += tgstime + sig->cstime; 1223 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1224 psig->cmin_flt += 1225 p->min_flt + sig->min_flt + sig->cmin_flt; 1226 psig->cmaj_flt += 1227 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1228 psig->cnvcsw += 1229 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1230 psig->cnivcsw += 1231 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1232 psig->cinblock += 1233 task_io_get_inblock(p) + 1234 sig->inblock + sig->cinblock; 1235 psig->coublock += 1236 task_io_get_oublock(p) + 1237 sig->oublock + sig->coublock; 1238 maxrss = max(sig->maxrss, sig->cmaxrss); 1239 if (psig->cmaxrss < maxrss) 1240 psig->cmaxrss = maxrss; 1241 task_io_accounting_add(&psig->ioac, &p->ioac); 1242 task_io_accounting_add(&psig->ioac, &sig->ioac); 1243 write_sequnlock_irq(&psig->stats_lock); 1244 } 1245 1246 if (wo->wo_rusage) 1247 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1248 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1249 ? p->signal->group_exit_code : p->exit_code; 1250 wo->wo_stat = status; 1251 1252 if (state == EXIT_TRACE) { 1253 write_lock_irq(&tasklist_lock); 1254 /* We dropped tasklist, ptracer could die and untrace */ 1255 ptrace_unlink(p); 1256 1257 /* If parent wants a zombie, don't release it now */ 1258 state = EXIT_ZOMBIE; 1259 if (do_notify_parent(p, p->exit_signal)) 1260 state = EXIT_DEAD; 1261 p->exit_state = state; 1262 write_unlock_irq(&tasklist_lock); 1263 } 1264 if (state == EXIT_DEAD) 1265 release_task(p); 1266 1267 out_info: 1268 infop = wo->wo_info; 1269 if (infop) { 1270 if ((status & 0x7f) == 0) { 1271 infop->cause = CLD_EXITED; 1272 infop->status = status >> 8; 1273 } else { 1274 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1275 infop->status = status & 0x7f; 1276 } 1277 infop->pid = pid; 1278 infop->uid = uid; 1279 } 1280 1281 return pid; 1282 } 1283 1284 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1285 { 1286 if (ptrace) { 1287 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING)) 1288 return &p->exit_code; 1289 } else { 1290 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1291 return &p->signal->group_exit_code; 1292 } 1293 return NULL; 1294 } 1295 1296 /** 1297 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1298 * @wo: wait options 1299 * @ptrace: is the wait for ptrace 1300 * @p: task to wait for 1301 * 1302 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1303 * 1304 * CONTEXT: 1305 * read_lock(&tasklist_lock), which is released if return value is 1306 * non-zero. Also, grabs and releases @p->sighand->siglock. 1307 * 1308 * RETURNS: 1309 * 0 if wait condition didn't exist and search for other wait conditions 1310 * should continue. Non-zero return, -errno on failure and @p's pid on 1311 * success, implies that tasklist_lock is released and wait condition 1312 * search should terminate. 1313 */ 1314 static int wait_task_stopped(struct wait_opts *wo, 1315 int ptrace, struct task_struct *p) 1316 { 1317 struct waitid_info *infop; 1318 int exit_code, *p_code, why; 1319 uid_t uid = 0; /* unneeded, required by compiler */ 1320 pid_t pid; 1321 1322 /* 1323 * Traditionally we see ptrace'd stopped tasks regardless of options. 1324 */ 1325 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1326 return 0; 1327 1328 if (!task_stopped_code(p, ptrace)) 1329 return 0; 1330 1331 exit_code = 0; 1332 spin_lock_irq(&p->sighand->siglock); 1333 1334 p_code = task_stopped_code(p, ptrace); 1335 if (unlikely(!p_code)) 1336 goto unlock_sig; 1337 1338 exit_code = *p_code; 1339 if (!exit_code) 1340 goto unlock_sig; 1341 1342 if (!unlikely(wo->wo_flags & WNOWAIT)) 1343 *p_code = 0; 1344 1345 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1346 unlock_sig: 1347 spin_unlock_irq(&p->sighand->siglock); 1348 if (!exit_code) 1349 return 0; 1350 1351 /* 1352 * Now we are pretty sure this task is interesting. 1353 * Make sure it doesn't get reaped out from under us while we 1354 * give up the lock and then examine it below. We don't want to 1355 * keep holding onto the tasklist_lock while we call getrusage and 1356 * possibly take page faults for user memory. 1357 */ 1358 get_task_struct(p); 1359 pid = task_pid_vnr(p); 1360 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1361 read_unlock(&tasklist_lock); 1362 sched_annotate_sleep(); 1363 if (wo->wo_rusage) 1364 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1365 put_task_struct(p); 1366 1367 if (likely(!(wo->wo_flags & WNOWAIT))) 1368 wo->wo_stat = (exit_code << 8) | 0x7f; 1369 1370 infop = wo->wo_info; 1371 if (infop) { 1372 infop->cause = why; 1373 infop->status = exit_code; 1374 infop->pid = pid; 1375 infop->uid = uid; 1376 } 1377 return pid; 1378 } 1379 1380 /* 1381 * Handle do_wait work for one task in a live, non-stopped state. 1382 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1383 * the lock and this task is uninteresting. If we return nonzero, we have 1384 * released the lock and the system call should return. 1385 */ 1386 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1387 { 1388 struct waitid_info *infop; 1389 pid_t pid; 1390 uid_t uid; 1391 1392 if (!unlikely(wo->wo_flags & WCONTINUED)) 1393 return 0; 1394 1395 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1396 return 0; 1397 1398 spin_lock_irq(&p->sighand->siglock); 1399 /* Re-check with the lock held. */ 1400 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1401 spin_unlock_irq(&p->sighand->siglock); 1402 return 0; 1403 } 1404 if (!unlikely(wo->wo_flags & WNOWAIT)) 1405 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1406 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1407 spin_unlock_irq(&p->sighand->siglock); 1408 1409 pid = task_pid_vnr(p); 1410 get_task_struct(p); 1411 read_unlock(&tasklist_lock); 1412 sched_annotate_sleep(); 1413 if (wo->wo_rusage) 1414 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1415 put_task_struct(p); 1416 1417 infop = wo->wo_info; 1418 if (!infop) { 1419 wo->wo_stat = 0xffff; 1420 } else { 1421 infop->cause = CLD_CONTINUED; 1422 infop->pid = pid; 1423 infop->uid = uid; 1424 infop->status = SIGCONT; 1425 } 1426 return pid; 1427 } 1428 1429 /* 1430 * Consider @p for a wait by @parent. 1431 * 1432 * -ECHILD should be in ->notask_error before the first call. 1433 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1434 * Returns zero if the search for a child should continue; 1435 * then ->notask_error is 0 if @p is an eligible child, 1436 * or still -ECHILD. 1437 */ 1438 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1439 struct task_struct *p) 1440 { 1441 /* 1442 * We can race with wait_task_zombie() from another thread. 1443 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition 1444 * can't confuse the checks below. 1445 */ 1446 int exit_state = READ_ONCE(p->exit_state); 1447 int ret; 1448 1449 if (unlikely(exit_state == EXIT_DEAD)) 1450 return 0; 1451 1452 ret = eligible_child(wo, ptrace, p); 1453 if (!ret) 1454 return ret; 1455 1456 if (unlikely(exit_state == EXIT_TRACE)) { 1457 /* 1458 * ptrace == 0 means we are the natural parent. In this case 1459 * we should clear notask_error, debugger will notify us. 1460 */ 1461 if (likely(!ptrace)) 1462 wo->notask_error = 0; 1463 return 0; 1464 } 1465 1466 if (likely(!ptrace) && unlikely(p->ptrace)) { 1467 /* 1468 * If it is traced by its real parent's group, just pretend 1469 * the caller is ptrace_do_wait() and reap this child if it 1470 * is zombie. 1471 * 1472 * This also hides group stop state from real parent; otherwise 1473 * a single stop can be reported twice as group and ptrace stop. 1474 * If a ptracer wants to distinguish these two events for its 1475 * own children it should create a separate process which takes 1476 * the role of real parent. 1477 */ 1478 if (!ptrace_reparented(p)) 1479 ptrace = 1; 1480 } 1481 1482 /* slay zombie? */ 1483 if (exit_state == EXIT_ZOMBIE) { 1484 /* we don't reap group leaders with subthreads */ 1485 if (!delay_group_leader(p)) { 1486 /* 1487 * A zombie ptracee is only visible to its ptracer. 1488 * Notification and reaping will be cascaded to the 1489 * real parent when the ptracer detaches. 1490 */ 1491 if (unlikely(ptrace) || likely(!p->ptrace)) 1492 return wait_task_zombie(wo, p); 1493 } 1494 1495 /* 1496 * Allow access to stopped/continued state via zombie by 1497 * falling through. Clearing of notask_error is complex. 1498 * 1499 * When !@ptrace: 1500 * 1501 * If WEXITED is set, notask_error should naturally be 1502 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1503 * so, if there are live subthreads, there are events to 1504 * wait for. If all subthreads are dead, it's still safe 1505 * to clear - this function will be called again in finite 1506 * amount time once all the subthreads are released and 1507 * will then return without clearing. 1508 * 1509 * When @ptrace: 1510 * 1511 * Stopped state is per-task and thus can't change once the 1512 * target task dies. Only continued and exited can happen. 1513 * Clear notask_error if WCONTINUED | WEXITED. 1514 */ 1515 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1516 wo->notask_error = 0; 1517 } else { 1518 /* 1519 * @p is alive and it's gonna stop, continue or exit, so 1520 * there always is something to wait for. 1521 */ 1522 wo->notask_error = 0; 1523 } 1524 1525 /* 1526 * Wait for stopped. Depending on @ptrace, different stopped state 1527 * is used and the two don't interact with each other. 1528 */ 1529 ret = wait_task_stopped(wo, ptrace, p); 1530 if (ret) 1531 return ret; 1532 1533 /* 1534 * Wait for continued. There's only one continued state and the 1535 * ptracer can consume it which can confuse the real parent. Don't 1536 * use WCONTINUED from ptracer. You don't need or want it. 1537 */ 1538 return wait_task_continued(wo, p); 1539 } 1540 1541 /* 1542 * Do the work of do_wait() for one thread in the group, @tsk. 1543 * 1544 * -ECHILD should be in ->notask_error before the first call. 1545 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1546 * Returns zero if the search for a child should continue; then 1547 * ->notask_error is 0 if there were any eligible children, 1548 * or still -ECHILD. 1549 */ 1550 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1551 { 1552 struct task_struct *p; 1553 1554 list_for_each_entry(p, &tsk->children, sibling) { 1555 int ret = wait_consider_task(wo, 0, p); 1556 1557 if (ret) 1558 return ret; 1559 } 1560 1561 return 0; 1562 } 1563 1564 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1565 { 1566 struct task_struct *p; 1567 1568 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1569 int ret = wait_consider_task(wo, 1, p); 1570 1571 if (ret) 1572 return ret; 1573 } 1574 1575 return 0; 1576 } 1577 1578 bool pid_child_should_wake(struct wait_opts *wo, struct task_struct *p) 1579 { 1580 if (!eligible_pid(wo, p)) 1581 return false; 1582 1583 if ((wo->wo_flags & __WNOTHREAD) && wo->child_wait.private != p->parent) 1584 return false; 1585 1586 return true; 1587 } 1588 1589 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode, 1590 int sync, void *key) 1591 { 1592 struct wait_opts *wo = container_of(wait, struct wait_opts, 1593 child_wait); 1594 struct task_struct *p = key; 1595 1596 if (pid_child_should_wake(wo, p)) 1597 return default_wake_function(wait, mode, sync, key); 1598 1599 return 0; 1600 } 1601 1602 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1603 { 1604 __wake_up_sync_key(&parent->signal->wait_chldexit, 1605 TASK_INTERRUPTIBLE, p); 1606 } 1607 1608 static bool is_effectively_child(struct wait_opts *wo, bool ptrace, 1609 struct task_struct *target) 1610 { 1611 struct task_struct *parent = 1612 !ptrace ? target->real_parent : target->parent; 1613 1614 return current == parent || (!(wo->wo_flags & __WNOTHREAD) && 1615 same_thread_group(current, parent)); 1616 } 1617 1618 /* 1619 * Optimization for waiting on PIDTYPE_PID. No need to iterate through child 1620 * and tracee lists to find the target task. 1621 */ 1622 static int do_wait_pid(struct wait_opts *wo) 1623 { 1624 bool ptrace; 1625 struct task_struct *target; 1626 int retval; 1627 1628 ptrace = false; 1629 target = pid_task(wo->wo_pid, PIDTYPE_TGID); 1630 if (target && is_effectively_child(wo, ptrace, target)) { 1631 retval = wait_consider_task(wo, ptrace, target); 1632 if (retval) 1633 return retval; 1634 } 1635 1636 ptrace = true; 1637 target = pid_task(wo->wo_pid, PIDTYPE_PID); 1638 if (target && target->ptrace && 1639 is_effectively_child(wo, ptrace, target)) { 1640 retval = wait_consider_task(wo, ptrace, target); 1641 if (retval) 1642 return retval; 1643 } 1644 1645 return 0; 1646 } 1647 1648 long __do_wait(struct wait_opts *wo) 1649 { 1650 long retval; 1651 1652 /* 1653 * If there is nothing that can match our criteria, just get out. 1654 * We will clear ->notask_error to zero if we see any child that 1655 * might later match our criteria, even if we are not able to reap 1656 * it yet. 1657 */ 1658 wo->notask_error = -ECHILD; 1659 if ((wo->wo_type < PIDTYPE_MAX) && 1660 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type))) 1661 goto notask; 1662 1663 read_lock(&tasklist_lock); 1664 1665 if (wo->wo_type == PIDTYPE_PID) { 1666 retval = do_wait_pid(wo); 1667 if (retval) 1668 return retval; 1669 } else { 1670 struct task_struct *tsk = current; 1671 1672 do { 1673 retval = do_wait_thread(wo, tsk); 1674 if (retval) 1675 return retval; 1676 1677 retval = ptrace_do_wait(wo, tsk); 1678 if (retval) 1679 return retval; 1680 1681 if (wo->wo_flags & __WNOTHREAD) 1682 break; 1683 } while_each_thread(current, tsk); 1684 } 1685 read_unlock(&tasklist_lock); 1686 1687 notask: 1688 retval = wo->notask_error; 1689 if (!retval && !(wo->wo_flags & WNOHANG)) 1690 return -ERESTARTSYS; 1691 1692 return retval; 1693 } 1694 1695 static long do_wait(struct wait_opts *wo) 1696 { 1697 int retval; 1698 1699 trace_sched_process_wait(wo->wo_pid); 1700 1701 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1702 wo->child_wait.private = current; 1703 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1704 1705 do { 1706 set_current_state(TASK_INTERRUPTIBLE); 1707 retval = __do_wait(wo); 1708 if (retval != -ERESTARTSYS) 1709 break; 1710 if (signal_pending(current)) 1711 break; 1712 schedule(); 1713 } while (1); 1714 1715 __set_current_state(TASK_RUNNING); 1716 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1717 return retval; 1718 } 1719 1720 int kernel_waitid_prepare(struct wait_opts *wo, int which, pid_t upid, 1721 struct waitid_info *infop, int options, 1722 struct rusage *ru) 1723 { 1724 unsigned int f_flags = 0; 1725 struct pid *pid = NULL; 1726 enum pid_type type; 1727 1728 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED| 1729 __WNOTHREAD|__WCLONE|__WALL)) 1730 return -EINVAL; 1731 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1732 return -EINVAL; 1733 1734 switch (which) { 1735 case P_ALL: 1736 type = PIDTYPE_MAX; 1737 break; 1738 case P_PID: 1739 type = PIDTYPE_PID; 1740 if (upid <= 0) 1741 return -EINVAL; 1742 1743 pid = find_get_pid(upid); 1744 break; 1745 case P_PGID: 1746 type = PIDTYPE_PGID; 1747 if (upid < 0) 1748 return -EINVAL; 1749 1750 if (upid) 1751 pid = find_get_pid(upid); 1752 else 1753 pid = get_task_pid(current, PIDTYPE_PGID); 1754 break; 1755 case P_PIDFD: 1756 type = PIDTYPE_PID; 1757 if (upid < 0) 1758 return -EINVAL; 1759 1760 pid = pidfd_get_pid(upid, &f_flags); 1761 if (IS_ERR(pid)) 1762 return PTR_ERR(pid); 1763 1764 break; 1765 default: 1766 return -EINVAL; 1767 } 1768 1769 wo->wo_type = type; 1770 wo->wo_pid = pid; 1771 wo->wo_flags = options; 1772 wo->wo_info = infop; 1773 wo->wo_rusage = ru; 1774 if (f_flags & O_NONBLOCK) 1775 wo->wo_flags |= WNOHANG; 1776 1777 return 0; 1778 } 1779 1780 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop, 1781 int options, struct rusage *ru) 1782 { 1783 struct wait_opts wo; 1784 long ret; 1785 1786 ret = kernel_waitid_prepare(&wo, which, upid, infop, options, ru); 1787 if (ret) 1788 return ret; 1789 1790 ret = do_wait(&wo); 1791 if (!ret && !(options & WNOHANG) && (wo.wo_flags & WNOHANG)) 1792 ret = -EAGAIN; 1793 1794 put_pid(wo.wo_pid); 1795 return ret; 1796 } 1797 1798 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1799 infop, int, options, struct rusage __user *, ru) 1800 { 1801 struct rusage r; 1802 struct waitid_info info = {.status = 0}; 1803 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL); 1804 int signo = 0; 1805 1806 if (err > 0) { 1807 signo = SIGCHLD; 1808 err = 0; 1809 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1810 return -EFAULT; 1811 } 1812 if (!infop) 1813 return err; 1814 1815 if (!user_write_access_begin(infop, sizeof(*infop))) 1816 return -EFAULT; 1817 1818 unsafe_put_user(signo, &infop->si_signo, Efault); 1819 unsafe_put_user(0, &infop->si_errno, Efault); 1820 unsafe_put_user(info.cause, &infop->si_code, Efault); 1821 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1822 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1823 unsafe_put_user(info.status, &infop->si_status, Efault); 1824 user_write_access_end(); 1825 return err; 1826 Efault: 1827 user_write_access_end(); 1828 return -EFAULT; 1829 } 1830 1831 long kernel_wait4(pid_t upid, int __user *stat_addr, int options, 1832 struct rusage *ru) 1833 { 1834 struct wait_opts wo; 1835 struct pid *pid = NULL; 1836 enum pid_type type; 1837 long ret; 1838 1839 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1840 __WNOTHREAD|__WCLONE|__WALL)) 1841 return -EINVAL; 1842 1843 /* -INT_MIN is not defined */ 1844 if (upid == INT_MIN) 1845 return -ESRCH; 1846 1847 if (upid == -1) 1848 type = PIDTYPE_MAX; 1849 else if (upid < 0) { 1850 type = PIDTYPE_PGID; 1851 pid = find_get_pid(-upid); 1852 } else if (upid == 0) { 1853 type = PIDTYPE_PGID; 1854 pid = get_task_pid(current, PIDTYPE_PGID); 1855 } else /* upid > 0 */ { 1856 type = PIDTYPE_PID; 1857 pid = find_get_pid(upid); 1858 } 1859 1860 wo.wo_type = type; 1861 wo.wo_pid = pid; 1862 wo.wo_flags = options | WEXITED; 1863 wo.wo_info = NULL; 1864 wo.wo_stat = 0; 1865 wo.wo_rusage = ru; 1866 ret = do_wait(&wo); 1867 put_pid(pid); 1868 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr)) 1869 ret = -EFAULT; 1870 1871 return ret; 1872 } 1873 1874 int kernel_wait(pid_t pid, int *stat) 1875 { 1876 struct wait_opts wo = { 1877 .wo_type = PIDTYPE_PID, 1878 .wo_pid = find_get_pid(pid), 1879 .wo_flags = WEXITED, 1880 }; 1881 int ret; 1882 1883 ret = do_wait(&wo); 1884 if (ret > 0 && wo.wo_stat) 1885 *stat = wo.wo_stat; 1886 put_pid(wo.wo_pid); 1887 return ret; 1888 } 1889 1890 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1891 int, options, struct rusage __user *, ru) 1892 { 1893 struct rusage r; 1894 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL); 1895 1896 if (err > 0) { 1897 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1898 return -EFAULT; 1899 } 1900 return err; 1901 } 1902 1903 #ifdef __ARCH_WANT_SYS_WAITPID 1904 1905 /* 1906 * sys_waitpid() remains for compatibility. waitpid() should be 1907 * implemented by calling sys_wait4() from libc.a. 1908 */ 1909 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1910 { 1911 return kernel_wait4(pid, stat_addr, options, NULL); 1912 } 1913 1914 #endif 1915 1916 #ifdef CONFIG_COMPAT 1917 COMPAT_SYSCALL_DEFINE4(wait4, 1918 compat_pid_t, pid, 1919 compat_uint_t __user *, stat_addr, 1920 int, options, 1921 struct compat_rusage __user *, ru) 1922 { 1923 struct rusage r; 1924 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL); 1925 if (err > 0) { 1926 if (ru && put_compat_rusage(&r, ru)) 1927 return -EFAULT; 1928 } 1929 return err; 1930 } 1931 1932 COMPAT_SYSCALL_DEFINE5(waitid, 1933 int, which, compat_pid_t, pid, 1934 struct compat_siginfo __user *, infop, int, options, 1935 struct compat_rusage __user *, uru) 1936 { 1937 struct rusage ru; 1938 struct waitid_info info = {.status = 0}; 1939 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL); 1940 int signo = 0; 1941 if (err > 0) { 1942 signo = SIGCHLD; 1943 err = 0; 1944 if (uru) { 1945 /* kernel_waitid() overwrites everything in ru */ 1946 if (COMPAT_USE_64BIT_TIME) 1947 err = copy_to_user(uru, &ru, sizeof(ru)); 1948 else 1949 err = put_compat_rusage(&ru, uru); 1950 if (err) 1951 return -EFAULT; 1952 } 1953 } 1954 1955 if (!infop) 1956 return err; 1957 1958 if (!user_write_access_begin(infop, sizeof(*infop))) 1959 return -EFAULT; 1960 1961 unsafe_put_user(signo, &infop->si_signo, Efault); 1962 unsafe_put_user(0, &infop->si_errno, Efault); 1963 unsafe_put_user(info.cause, &infop->si_code, Efault); 1964 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1965 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1966 unsafe_put_user(info.status, &infop->si_status, Efault); 1967 user_write_access_end(); 1968 return err; 1969 Efault: 1970 user_write_access_end(); 1971 return -EFAULT; 1972 } 1973 #endif 1974 1975 /* 1976 * This needs to be __function_aligned as GCC implicitly makes any 1977 * implementation of abort() cold and drops alignment specified by 1978 * -falign-functions=N. 1979 * 1980 * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11 1981 */ 1982 __weak __function_aligned void abort(void) 1983 { 1984 BUG(); 1985 1986 /* if that doesn't kill us, halt */ 1987 panic("Oops failed to kill thread"); 1988 } 1989 EXPORT_SYMBOL(abort); 1990