xref: /linux/kernel/exit.c (revision ea8d7647f9ddf1f81e2027ed305299797299aa03)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/freezer.h>
29 #include <linux/binfmts.h>
30 #include <linux/nsproxy.h>
31 #include <linux/pid_namespace.h>
32 #include <linux/ptrace.h>
33 #include <linux/profile.h>
34 #include <linux/mount.h>
35 #include <linux/proc_fs.h>
36 #include <linux/kthread.h>
37 #include <linux/mempolicy.h>
38 #include <linux/taskstats_kern.h>
39 #include <linux/delayacct.h>
40 #include <linux/cgroup.h>
41 #include <linux/syscalls.h>
42 #include <linux/signal.h>
43 #include <linux/posix-timers.h>
44 #include <linux/cn_proc.h>
45 #include <linux/mutex.h>
46 #include <linux/futex.h>
47 #include <linux/pipe_fs_i.h>
48 #include <linux/audit.h> /* for audit_free() */
49 #include <linux/resource.h>
50 #include <linux/task_io_accounting_ops.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_work.h>
53 #include <linux/fs_struct.h>
54 #include <linux/init_task.h>
55 #include <linux/perf_event.h>
56 #include <trace/events/sched.h>
57 #include <linux/hw_breakpoint.h>
58 #include <linux/oom.h>
59 #include <linux/writeback.h>
60 #include <linux/shm.h>
61 #include <linux/kcov.h>
62 #include <linux/kmsan.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66 #include <linux/io_uring.h>
67 #include <linux/kprobes.h>
68 #include <linux/rethook.h>
69 #include <linux/sysfs.h>
70 #include <linux/user_events.h>
71 #include <linux/uaccess.h>
72 #include <linux/pidfs.h>
73 
74 #include <uapi/linux/wait.h>
75 
76 #include <asm/unistd.h>
77 #include <asm/mmu_context.h>
78 
79 #include "exit.h"
80 
81 /*
82  * The default value should be high enough to not crash a system that randomly
83  * crashes its kernel from time to time, but low enough to at least not permit
84  * overflowing 32-bit refcounts or the ldsem writer count.
85  */
86 static unsigned int oops_limit = 10000;
87 
88 #ifdef CONFIG_SYSCTL
89 static const struct ctl_table kern_exit_table[] = {
90 	{
91 		.procname       = "oops_limit",
92 		.data           = &oops_limit,
93 		.maxlen         = sizeof(oops_limit),
94 		.mode           = 0644,
95 		.proc_handler   = proc_douintvec,
96 	},
97 };
98 
99 static __init int kernel_exit_sysctls_init(void)
100 {
101 	register_sysctl_init("kernel", kern_exit_table);
102 	return 0;
103 }
104 late_initcall(kernel_exit_sysctls_init);
105 #endif
106 
107 static atomic_t oops_count = ATOMIC_INIT(0);
108 
109 #ifdef CONFIG_SYSFS
110 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
111 			       char *page)
112 {
113 	return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
114 }
115 
116 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
117 
118 static __init int kernel_exit_sysfs_init(void)
119 {
120 	sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
121 	return 0;
122 }
123 late_initcall(kernel_exit_sysfs_init);
124 #endif
125 
126 /*
127  * For things release_task() would like to do *after* tasklist_lock is released.
128  */
129 struct release_task_post {
130 	struct pid *pids[PIDTYPE_MAX];
131 };
132 
133 static void __unhash_process(struct release_task_post *post, struct task_struct *p,
134 			     bool group_dead)
135 {
136 	nr_threads--;
137 	detach_pid(post->pids, p, PIDTYPE_PID);
138 	if (group_dead) {
139 		detach_pid(post->pids, p, PIDTYPE_TGID);
140 		detach_pid(post->pids, p, PIDTYPE_PGID);
141 		detach_pid(post->pids, p, PIDTYPE_SID);
142 
143 		list_del_rcu(&p->tasks);
144 		list_del_init(&p->sibling);
145 		__this_cpu_dec(process_counts);
146 	}
147 	list_del_rcu(&p->thread_node);
148 }
149 
150 /*
151  * This function expects the tasklist_lock write-locked.
152  */
153 static void __exit_signal(struct release_task_post *post, struct task_struct *tsk)
154 {
155 	struct signal_struct *sig = tsk->signal;
156 	bool group_dead = thread_group_leader(tsk);
157 	struct sighand_struct *sighand;
158 	struct tty_struct *tty;
159 	u64 utime, stime;
160 
161 	sighand = rcu_dereference_check(tsk->sighand,
162 					lockdep_tasklist_lock_is_held());
163 	spin_lock(&sighand->siglock);
164 
165 #ifdef CONFIG_POSIX_TIMERS
166 	posix_cpu_timers_exit(tsk);
167 	if (group_dead)
168 		posix_cpu_timers_exit_group(tsk);
169 #endif
170 
171 	if (group_dead) {
172 		tty = sig->tty;
173 		sig->tty = NULL;
174 	} else {
175 		/*
176 		 * If there is any task waiting for the group exit
177 		 * then notify it:
178 		 */
179 		if (sig->notify_count > 0 && !--sig->notify_count)
180 			wake_up_process(sig->group_exec_task);
181 
182 		if (tsk == sig->curr_target)
183 			sig->curr_target = next_thread(tsk);
184 	}
185 
186 	/*
187 	 * Accumulate here the counters for all threads as they die. We could
188 	 * skip the group leader because it is the last user of signal_struct,
189 	 * but we want to avoid the race with thread_group_cputime() which can
190 	 * see the empty ->thread_head list.
191 	 */
192 	task_cputime(tsk, &utime, &stime);
193 	write_seqlock(&sig->stats_lock);
194 	sig->utime += utime;
195 	sig->stime += stime;
196 	sig->gtime += task_gtime(tsk);
197 	sig->min_flt += tsk->min_flt;
198 	sig->maj_flt += tsk->maj_flt;
199 	sig->nvcsw += tsk->nvcsw;
200 	sig->nivcsw += tsk->nivcsw;
201 	sig->inblock += task_io_get_inblock(tsk);
202 	sig->oublock += task_io_get_oublock(tsk);
203 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
204 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
205 	sig->nr_threads--;
206 	__unhash_process(post, tsk, group_dead);
207 	write_sequnlock(&sig->stats_lock);
208 
209 	tsk->sighand = NULL;
210 	spin_unlock(&sighand->siglock);
211 
212 	__cleanup_sighand(sighand);
213 	if (group_dead)
214 		tty_kref_put(tty);
215 }
216 
217 static void delayed_put_task_struct(struct rcu_head *rhp)
218 {
219 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
220 
221 	kprobe_flush_task(tsk);
222 	rethook_flush_task(tsk);
223 	perf_event_delayed_put(tsk);
224 	trace_sched_process_free(tsk);
225 	put_task_struct(tsk);
226 }
227 
228 void put_task_struct_rcu_user(struct task_struct *task)
229 {
230 	if (refcount_dec_and_test(&task->rcu_users))
231 		call_rcu(&task->rcu, delayed_put_task_struct);
232 }
233 
234 void __weak release_thread(struct task_struct *dead_task)
235 {
236 }
237 
238 void release_task(struct task_struct *p)
239 {
240 	struct release_task_post post;
241 	struct task_struct *leader;
242 	struct pid *thread_pid;
243 	int zap_leader;
244 repeat:
245 	memset(&post, 0, sizeof(post));
246 
247 	/* don't need to get the RCU readlock here - the process is dead and
248 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
249 	rcu_read_lock();
250 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
251 	rcu_read_unlock();
252 
253 	pidfs_exit(p);
254 	cgroup_release(p);
255 
256 	thread_pid = get_pid(p->thread_pid);
257 
258 	write_lock_irq(&tasklist_lock);
259 	ptrace_release_task(p);
260 	__exit_signal(&post, p);
261 
262 	/*
263 	 * If we are the last non-leader member of the thread
264 	 * group, and the leader is zombie, then notify the
265 	 * group leader's parent process. (if it wants notification.)
266 	 */
267 	zap_leader = 0;
268 	leader = p->group_leader;
269 	if (leader != p && thread_group_empty(leader)
270 			&& leader->exit_state == EXIT_ZOMBIE) {
271 		/*
272 		 * If we were the last child thread and the leader has
273 		 * exited already, and the leader's parent ignores SIGCHLD,
274 		 * then we are the one who should release the leader.
275 		 */
276 		zap_leader = do_notify_parent(leader, leader->exit_signal);
277 		if (zap_leader)
278 			leader->exit_state = EXIT_DEAD;
279 	}
280 
281 	write_unlock_irq(&tasklist_lock);
282 	proc_flush_pid(thread_pid);
283 	put_pid(thread_pid);
284 	add_device_randomness(&p->se.sum_exec_runtime,
285 			      sizeof(p->se.sum_exec_runtime));
286 	free_pids(post.pids);
287 	release_thread(p);
288 	/*
289 	 * This task was already removed from the process/thread/pid lists
290 	 * and lock_task_sighand(p) can't succeed. Nobody else can touch
291 	 * ->pending or, if group dead, signal->shared_pending. We can call
292 	 * flush_sigqueue() lockless.
293 	 */
294 	flush_sigqueue(&p->pending);
295 	if (thread_group_leader(p))
296 		flush_sigqueue(&p->signal->shared_pending);
297 
298 	put_task_struct_rcu_user(p);
299 
300 	p = leader;
301 	if (unlikely(zap_leader))
302 		goto repeat;
303 }
304 
305 int rcuwait_wake_up(struct rcuwait *w)
306 {
307 	int ret = 0;
308 	struct task_struct *task;
309 
310 	rcu_read_lock();
311 
312 	/*
313 	 * Order condition vs @task, such that everything prior to the load
314 	 * of @task is visible. This is the condition as to why the user called
315 	 * rcuwait_wake() in the first place. Pairs with set_current_state()
316 	 * barrier (A) in rcuwait_wait_event().
317 	 *
318 	 *    WAIT                WAKE
319 	 *    [S] tsk = current	  [S] cond = true
320 	 *        MB (A)	      MB (B)
321 	 *    [L] cond		  [L] tsk
322 	 */
323 	smp_mb(); /* (B) */
324 
325 	task = rcu_dereference(w->task);
326 	if (task)
327 		ret = wake_up_process(task);
328 	rcu_read_unlock();
329 
330 	return ret;
331 }
332 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
333 
334 /*
335  * Determine if a process group is "orphaned", according to the POSIX
336  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
337  * by terminal-generated stop signals.  Newly orphaned process groups are
338  * to receive a SIGHUP and a SIGCONT.
339  *
340  * "I ask you, have you ever known what it is to be an orphan?"
341  */
342 static int will_become_orphaned_pgrp(struct pid *pgrp,
343 					struct task_struct *ignored_task)
344 {
345 	struct task_struct *p;
346 
347 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
348 		if ((p == ignored_task) ||
349 		    (p->exit_state && thread_group_empty(p)) ||
350 		    is_global_init(p->real_parent))
351 			continue;
352 
353 		if (task_pgrp(p->real_parent) != pgrp &&
354 		    task_session(p->real_parent) == task_session(p))
355 			return 0;
356 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
357 
358 	return 1;
359 }
360 
361 int is_current_pgrp_orphaned(void)
362 {
363 	int retval;
364 
365 	read_lock(&tasklist_lock);
366 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
367 	read_unlock(&tasklist_lock);
368 
369 	return retval;
370 }
371 
372 static bool has_stopped_jobs(struct pid *pgrp)
373 {
374 	struct task_struct *p;
375 
376 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
377 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
378 			return true;
379 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
380 
381 	return false;
382 }
383 
384 /*
385  * Check to see if any process groups have become orphaned as
386  * a result of our exiting, and if they have any stopped jobs,
387  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
388  */
389 static void
390 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
391 {
392 	struct pid *pgrp = task_pgrp(tsk);
393 	struct task_struct *ignored_task = tsk;
394 
395 	if (!parent)
396 		/* exit: our father is in a different pgrp than
397 		 * we are and we were the only connection outside.
398 		 */
399 		parent = tsk->real_parent;
400 	else
401 		/* reparent: our child is in a different pgrp than
402 		 * we are, and it was the only connection outside.
403 		 */
404 		ignored_task = NULL;
405 
406 	if (task_pgrp(parent) != pgrp &&
407 	    task_session(parent) == task_session(tsk) &&
408 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
409 	    has_stopped_jobs(pgrp)) {
410 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
411 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
412 	}
413 }
414 
415 static void coredump_task_exit(struct task_struct *tsk)
416 {
417 	struct core_state *core_state;
418 
419 	/*
420 	 * Serialize with any possible pending coredump.
421 	 * We must hold siglock around checking core_state
422 	 * and setting PF_POSTCOREDUMP.  The core-inducing thread
423 	 * will increment ->nr_threads for each thread in the
424 	 * group without PF_POSTCOREDUMP set.
425 	 */
426 	spin_lock_irq(&tsk->sighand->siglock);
427 	tsk->flags |= PF_POSTCOREDUMP;
428 	core_state = tsk->signal->core_state;
429 	spin_unlock_irq(&tsk->sighand->siglock);
430 	if (core_state) {
431 		struct core_thread self;
432 
433 		self.task = current;
434 		if (self.task->flags & PF_SIGNALED)
435 			self.next = xchg(&core_state->dumper.next, &self);
436 		else
437 			self.task = NULL;
438 		/*
439 		 * Implies mb(), the result of xchg() must be visible
440 		 * to core_state->dumper.
441 		 */
442 		if (atomic_dec_and_test(&core_state->nr_threads))
443 			complete(&core_state->startup);
444 
445 		for (;;) {
446 			set_current_state(TASK_IDLE|TASK_FREEZABLE);
447 			if (!self.task) /* see coredump_finish() */
448 				break;
449 			schedule();
450 		}
451 		__set_current_state(TASK_RUNNING);
452 	}
453 }
454 
455 #ifdef CONFIG_MEMCG
456 /* drops tasklist_lock if succeeds */
457 static bool __try_to_set_owner(struct task_struct *tsk, struct mm_struct *mm)
458 {
459 	bool ret = false;
460 
461 	task_lock(tsk);
462 	if (likely(tsk->mm == mm)) {
463 		/* tsk can't pass exit_mm/exec_mmap and exit */
464 		read_unlock(&tasklist_lock);
465 		WRITE_ONCE(mm->owner, tsk);
466 		lru_gen_migrate_mm(mm);
467 		ret = true;
468 	}
469 	task_unlock(tsk);
470 	return ret;
471 }
472 
473 static bool try_to_set_owner(struct task_struct *g, struct mm_struct *mm)
474 {
475 	struct task_struct *t;
476 
477 	for_each_thread(g, t) {
478 		struct mm_struct *t_mm = READ_ONCE(t->mm);
479 		if (t_mm == mm) {
480 			if (__try_to_set_owner(t, mm))
481 				return true;
482 		} else if (t_mm)
483 			break;
484 	}
485 
486 	return false;
487 }
488 
489 /*
490  * A task is exiting.   If it owned this mm, find a new owner for the mm.
491  */
492 void mm_update_next_owner(struct mm_struct *mm)
493 {
494 	struct task_struct *g, *p = current;
495 
496 	/*
497 	 * If the exiting or execing task is not the owner, it's
498 	 * someone else's problem.
499 	 */
500 	if (mm->owner != p)
501 		return;
502 	/*
503 	 * The current owner is exiting/execing and there are no other
504 	 * candidates.  Do not leave the mm pointing to a possibly
505 	 * freed task structure.
506 	 */
507 	if (atomic_read(&mm->mm_users) <= 1) {
508 		WRITE_ONCE(mm->owner, NULL);
509 		return;
510 	}
511 
512 	read_lock(&tasklist_lock);
513 	/*
514 	 * Search in the children
515 	 */
516 	list_for_each_entry(g, &p->children, sibling) {
517 		if (try_to_set_owner(g, mm))
518 			goto ret;
519 	}
520 	/*
521 	 * Search in the siblings
522 	 */
523 	list_for_each_entry(g, &p->real_parent->children, sibling) {
524 		if (try_to_set_owner(g, mm))
525 			goto ret;
526 	}
527 	/*
528 	 * Search through everything else, we should not get here often.
529 	 */
530 	for_each_process(g) {
531 		if (atomic_read(&mm->mm_users) <= 1)
532 			break;
533 		if (g->flags & PF_KTHREAD)
534 			continue;
535 		if (try_to_set_owner(g, mm))
536 			goto ret;
537 	}
538 	read_unlock(&tasklist_lock);
539 	/*
540 	 * We found no owner yet mm_users > 1: this implies that we are
541 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
542 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
543 	 */
544 	WRITE_ONCE(mm->owner, NULL);
545  ret:
546 	return;
547 
548 }
549 #endif /* CONFIG_MEMCG */
550 
551 /*
552  * Turn us into a lazy TLB process if we
553  * aren't already..
554  */
555 static void exit_mm(void)
556 {
557 	struct mm_struct *mm = current->mm;
558 
559 	exit_mm_release(current, mm);
560 	if (!mm)
561 		return;
562 	mmap_read_lock(mm);
563 	mmgrab_lazy_tlb(mm);
564 	BUG_ON(mm != current->active_mm);
565 	/* more a memory barrier than a real lock */
566 	task_lock(current);
567 	/*
568 	 * When a thread stops operating on an address space, the loop
569 	 * in membarrier_private_expedited() may not observe that
570 	 * tsk->mm, and the loop in membarrier_global_expedited() may
571 	 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
572 	 * rq->membarrier_state, so those would not issue an IPI.
573 	 * Membarrier requires a memory barrier after accessing
574 	 * user-space memory, before clearing tsk->mm or the
575 	 * rq->membarrier_state.
576 	 */
577 	smp_mb__after_spinlock();
578 	local_irq_disable();
579 	current->mm = NULL;
580 	membarrier_update_current_mm(NULL);
581 	enter_lazy_tlb(mm, current);
582 	local_irq_enable();
583 	task_unlock(current);
584 	mmap_read_unlock(mm);
585 	mm_update_next_owner(mm);
586 	mmput(mm);
587 	if (test_thread_flag(TIF_MEMDIE))
588 		exit_oom_victim();
589 }
590 
591 static struct task_struct *find_alive_thread(struct task_struct *p)
592 {
593 	struct task_struct *t;
594 
595 	for_each_thread(p, t) {
596 		if (!(t->flags & PF_EXITING))
597 			return t;
598 	}
599 	return NULL;
600 }
601 
602 static struct task_struct *find_child_reaper(struct task_struct *father,
603 						struct list_head *dead)
604 	__releases(&tasklist_lock)
605 	__acquires(&tasklist_lock)
606 {
607 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
608 	struct task_struct *reaper = pid_ns->child_reaper;
609 	struct task_struct *p, *n;
610 
611 	if (likely(reaper != father))
612 		return reaper;
613 
614 	reaper = find_alive_thread(father);
615 	if (reaper) {
616 		pid_ns->child_reaper = reaper;
617 		return reaper;
618 	}
619 
620 	write_unlock_irq(&tasklist_lock);
621 
622 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
623 		list_del_init(&p->ptrace_entry);
624 		release_task(p);
625 	}
626 
627 	zap_pid_ns_processes(pid_ns);
628 	write_lock_irq(&tasklist_lock);
629 
630 	return father;
631 }
632 
633 /*
634  * When we die, we re-parent all our children, and try to:
635  * 1. give them to another thread in our thread group, if such a member exists
636  * 2. give it to the first ancestor process which prctl'd itself as a
637  *    child_subreaper for its children (like a service manager)
638  * 3. give it to the init process (PID 1) in our pid namespace
639  */
640 static struct task_struct *find_new_reaper(struct task_struct *father,
641 					   struct task_struct *child_reaper)
642 {
643 	struct task_struct *thread, *reaper;
644 
645 	thread = find_alive_thread(father);
646 	if (thread)
647 		return thread;
648 
649 	if (father->signal->has_child_subreaper) {
650 		unsigned int ns_level = task_pid(father)->level;
651 		/*
652 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
653 		 * We can't check reaper != child_reaper to ensure we do not
654 		 * cross the namespaces, the exiting parent could be injected
655 		 * by setns() + fork().
656 		 * We check pid->level, this is slightly more efficient than
657 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
658 		 */
659 		for (reaper = father->real_parent;
660 		     task_pid(reaper)->level == ns_level;
661 		     reaper = reaper->real_parent) {
662 			if (reaper == &init_task)
663 				break;
664 			if (!reaper->signal->is_child_subreaper)
665 				continue;
666 			thread = find_alive_thread(reaper);
667 			if (thread)
668 				return thread;
669 		}
670 	}
671 
672 	return child_reaper;
673 }
674 
675 /*
676 * Any that need to be release_task'd are put on the @dead list.
677  */
678 static void reparent_leader(struct task_struct *father, struct task_struct *p,
679 				struct list_head *dead)
680 {
681 	if (unlikely(p->exit_state == EXIT_DEAD))
682 		return;
683 
684 	/* We don't want people slaying init. */
685 	p->exit_signal = SIGCHLD;
686 
687 	/* If it has exited notify the new parent about this child's death. */
688 	if (!p->ptrace &&
689 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
690 		if (do_notify_parent(p, p->exit_signal)) {
691 			p->exit_state = EXIT_DEAD;
692 			list_add(&p->ptrace_entry, dead);
693 		}
694 	}
695 
696 	kill_orphaned_pgrp(p, father);
697 }
698 
699 /*
700  * This does two things:
701  *
702  * A.  Make init inherit all the child processes
703  * B.  Check to see if any process groups have become orphaned
704  *	as a result of our exiting, and if they have any stopped
705  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
706  */
707 static void forget_original_parent(struct task_struct *father,
708 					struct list_head *dead)
709 {
710 	struct task_struct *p, *t, *reaper;
711 
712 	if (unlikely(!list_empty(&father->ptraced)))
713 		exit_ptrace(father, dead);
714 
715 	/* Can drop and reacquire tasklist_lock */
716 	reaper = find_child_reaper(father, dead);
717 	if (list_empty(&father->children))
718 		return;
719 
720 	reaper = find_new_reaper(father, reaper);
721 	list_for_each_entry(p, &father->children, sibling) {
722 		for_each_thread(p, t) {
723 			RCU_INIT_POINTER(t->real_parent, reaper);
724 			BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
725 			if (likely(!t->ptrace))
726 				t->parent = t->real_parent;
727 			if (t->pdeath_signal)
728 				group_send_sig_info(t->pdeath_signal,
729 						    SEND_SIG_NOINFO, t,
730 						    PIDTYPE_TGID);
731 		}
732 		/*
733 		 * If this is a threaded reparent there is no need to
734 		 * notify anyone anything has happened.
735 		 */
736 		if (!same_thread_group(reaper, father))
737 			reparent_leader(father, p, dead);
738 	}
739 	list_splice_tail_init(&father->children, &reaper->children);
740 }
741 
742 /*
743  * Send signals to all our closest relatives so that they know
744  * to properly mourn us..
745  */
746 static void exit_notify(struct task_struct *tsk, int group_dead)
747 {
748 	bool autoreap;
749 	struct task_struct *p, *n;
750 	LIST_HEAD(dead);
751 
752 	write_lock_irq(&tasklist_lock);
753 	forget_original_parent(tsk, &dead);
754 
755 	if (group_dead)
756 		kill_orphaned_pgrp(tsk->group_leader, NULL);
757 
758 	tsk->exit_state = EXIT_ZOMBIE;
759 	/*
760 	 * Ignore thread-group leaders that exited before all
761 	 * subthreads did.
762 	 */
763 	if (!delay_group_leader(tsk))
764 		do_notify_pidfd(tsk);
765 
766 	if (unlikely(tsk->ptrace)) {
767 		int sig = thread_group_leader(tsk) &&
768 				thread_group_empty(tsk) &&
769 				!ptrace_reparented(tsk) ?
770 			tsk->exit_signal : SIGCHLD;
771 		autoreap = do_notify_parent(tsk, sig);
772 	} else if (thread_group_leader(tsk)) {
773 		autoreap = thread_group_empty(tsk) &&
774 			do_notify_parent(tsk, tsk->exit_signal);
775 	} else {
776 		autoreap = true;
777 	}
778 
779 	if (autoreap) {
780 		tsk->exit_state = EXIT_DEAD;
781 		list_add(&tsk->ptrace_entry, &dead);
782 	}
783 
784 	/* mt-exec, de_thread() is waiting for group leader */
785 	if (unlikely(tsk->signal->notify_count < 0))
786 		wake_up_process(tsk->signal->group_exec_task);
787 	write_unlock_irq(&tasklist_lock);
788 
789 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
790 		list_del_init(&p->ptrace_entry);
791 		release_task(p);
792 	}
793 }
794 
795 #ifdef CONFIG_DEBUG_STACK_USAGE
796 unsigned long stack_not_used(struct task_struct *p)
797 {
798 	unsigned long *n = end_of_stack(p);
799 
800 	do {	/* Skip over canary */
801 # ifdef CONFIG_STACK_GROWSUP
802 		n--;
803 # else
804 		n++;
805 # endif
806 	} while (!*n);
807 
808 # ifdef CONFIG_STACK_GROWSUP
809 	return (unsigned long)end_of_stack(p) - (unsigned long)n;
810 # else
811 	return (unsigned long)n - (unsigned long)end_of_stack(p);
812 # endif
813 }
814 
815 /* Count the maximum pages reached in kernel stacks */
816 static inline void kstack_histogram(unsigned long used_stack)
817 {
818 #ifdef CONFIG_VM_EVENT_COUNTERS
819 	if (used_stack <= 1024)
820 		count_vm_event(KSTACK_1K);
821 #if THREAD_SIZE > 1024
822 	else if (used_stack <= 2048)
823 		count_vm_event(KSTACK_2K);
824 #endif
825 #if THREAD_SIZE > 2048
826 	else if (used_stack <= 4096)
827 		count_vm_event(KSTACK_4K);
828 #endif
829 #if THREAD_SIZE > 4096
830 	else if (used_stack <= 8192)
831 		count_vm_event(KSTACK_8K);
832 #endif
833 #if THREAD_SIZE > 8192
834 	else if (used_stack <= 16384)
835 		count_vm_event(KSTACK_16K);
836 #endif
837 #if THREAD_SIZE > 16384
838 	else if (used_stack <= 32768)
839 		count_vm_event(KSTACK_32K);
840 #endif
841 #if THREAD_SIZE > 32768
842 	else if (used_stack <= 65536)
843 		count_vm_event(KSTACK_64K);
844 #endif
845 #if THREAD_SIZE > 65536
846 	else
847 		count_vm_event(KSTACK_REST);
848 #endif
849 #endif /* CONFIG_VM_EVENT_COUNTERS */
850 }
851 
852 static void check_stack_usage(void)
853 {
854 	static DEFINE_SPINLOCK(low_water_lock);
855 	static int lowest_to_date = THREAD_SIZE;
856 	unsigned long free;
857 
858 	free = stack_not_used(current);
859 	kstack_histogram(THREAD_SIZE - free);
860 
861 	if (free >= lowest_to_date)
862 		return;
863 
864 	spin_lock(&low_water_lock);
865 	if (free < lowest_to_date) {
866 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
867 			current->comm, task_pid_nr(current), free);
868 		lowest_to_date = free;
869 	}
870 	spin_unlock(&low_water_lock);
871 }
872 #else
873 static inline void check_stack_usage(void) {}
874 #endif
875 
876 static void synchronize_group_exit(struct task_struct *tsk, long code)
877 {
878 	struct sighand_struct *sighand = tsk->sighand;
879 	struct signal_struct *signal = tsk->signal;
880 
881 	spin_lock_irq(&sighand->siglock);
882 	signal->quick_threads--;
883 	if ((signal->quick_threads == 0) &&
884 	    !(signal->flags & SIGNAL_GROUP_EXIT)) {
885 		signal->flags = SIGNAL_GROUP_EXIT;
886 		signal->group_exit_code = code;
887 		signal->group_stop_count = 0;
888 	}
889 	spin_unlock_irq(&sighand->siglock);
890 }
891 
892 void __noreturn do_exit(long code)
893 {
894 	struct task_struct *tsk = current;
895 	int group_dead;
896 
897 	WARN_ON(irqs_disabled());
898 
899 	synchronize_group_exit(tsk, code);
900 
901 	WARN_ON(tsk->plug);
902 
903 	kcov_task_exit(tsk);
904 	kmsan_task_exit(tsk);
905 
906 	coredump_task_exit(tsk);
907 	ptrace_event(PTRACE_EVENT_EXIT, code);
908 	user_events_exit(tsk);
909 
910 	io_uring_files_cancel();
911 	exit_signals(tsk);  /* sets PF_EXITING */
912 
913 	seccomp_filter_release(tsk);
914 
915 	acct_update_integrals(tsk);
916 	group_dead = atomic_dec_and_test(&tsk->signal->live);
917 	if (group_dead) {
918 		/*
919 		 * If the last thread of global init has exited, panic
920 		 * immediately to get a useable coredump.
921 		 */
922 		if (unlikely(is_global_init(tsk)))
923 			panic("Attempted to kill init! exitcode=0x%08x\n",
924 				tsk->signal->group_exit_code ?: (int)code);
925 
926 #ifdef CONFIG_POSIX_TIMERS
927 		hrtimer_cancel(&tsk->signal->real_timer);
928 		exit_itimers(tsk);
929 #endif
930 		if (tsk->mm)
931 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
932 	}
933 	acct_collect(code, group_dead);
934 	if (group_dead)
935 		tty_audit_exit();
936 	audit_free(tsk);
937 
938 	tsk->exit_code = code;
939 	taskstats_exit(tsk, group_dead);
940 
941 	exit_mm();
942 
943 	if (group_dead)
944 		acct_process();
945 	trace_sched_process_exit(tsk);
946 
947 	exit_sem(tsk);
948 	exit_shm(tsk);
949 	exit_files(tsk);
950 	exit_fs(tsk);
951 	if (group_dead)
952 		disassociate_ctty(1);
953 	exit_task_namespaces(tsk);
954 	exit_task_work(tsk);
955 	exit_thread(tsk);
956 
957 	/*
958 	 * Flush inherited counters to the parent - before the parent
959 	 * gets woken up by child-exit notifications.
960 	 *
961 	 * because of cgroup mode, must be called before cgroup_exit()
962 	 */
963 	perf_event_exit_task(tsk);
964 
965 	sched_autogroup_exit_task(tsk);
966 	cgroup_exit(tsk);
967 
968 	/*
969 	 * FIXME: do that only when needed, using sched_exit tracepoint
970 	 */
971 	flush_ptrace_hw_breakpoint(tsk);
972 
973 	exit_tasks_rcu_start();
974 	exit_notify(tsk, group_dead);
975 	proc_exit_connector(tsk);
976 	mpol_put_task_policy(tsk);
977 #ifdef CONFIG_FUTEX
978 	if (unlikely(current->pi_state_cache))
979 		kfree(current->pi_state_cache);
980 #endif
981 	/*
982 	 * Make sure we are holding no locks:
983 	 */
984 	debug_check_no_locks_held();
985 
986 	if (tsk->io_context)
987 		exit_io_context(tsk);
988 
989 	if (tsk->splice_pipe)
990 		free_pipe_info(tsk->splice_pipe);
991 
992 	if (tsk->task_frag.page)
993 		put_page(tsk->task_frag.page);
994 
995 	exit_task_stack_account(tsk);
996 
997 	check_stack_usage();
998 	preempt_disable();
999 	if (tsk->nr_dirtied)
1000 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
1001 	exit_rcu();
1002 	exit_tasks_rcu_finish();
1003 
1004 	lockdep_free_task(tsk);
1005 	do_task_dead();
1006 }
1007 
1008 void __noreturn make_task_dead(int signr)
1009 {
1010 	/*
1011 	 * Take the task off the cpu after something catastrophic has
1012 	 * happened.
1013 	 *
1014 	 * We can get here from a kernel oops, sometimes with preemption off.
1015 	 * Start by checking for critical errors.
1016 	 * Then fix up important state like USER_DS and preemption.
1017 	 * Then do everything else.
1018 	 */
1019 	struct task_struct *tsk = current;
1020 	unsigned int limit;
1021 
1022 	if (unlikely(in_interrupt()))
1023 		panic("Aiee, killing interrupt handler!");
1024 	if (unlikely(!tsk->pid))
1025 		panic("Attempted to kill the idle task!");
1026 
1027 	if (unlikely(irqs_disabled())) {
1028 		pr_info("note: %s[%d] exited with irqs disabled\n",
1029 			current->comm, task_pid_nr(current));
1030 		local_irq_enable();
1031 	}
1032 	if (unlikely(in_atomic())) {
1033 		pr_info("note: %s[%d] exited with preempt_count %d\n",
1034 			current->comm, task_pid_nr(current),
1035 			preempt_count());
1036 		preempt_count_set(PREEMPT_ENABLED);
1037 	}
1038 
1039 	/*
1040 	 * Every time the system oopses, if the oops happens while a reference
1041 	 * to an object was held, the reference leaks.
1042 	 * If the oops doesn't also leak memory, repeated oopsing can cause
1043 	 * reference counters to wrap around (if they're not using refcount_t).
1044 	 * This means that repeated oopsing can make unexploitable-looking bugs
1045 	 * exploitable through repeated oopsing.
1046 	 * To make sure this can't happen, place an upper bound on how often the
1047 	 * kernel may oops without panic().
1048 	 */
1049 	limit = READ_ONCE(oops_limit);
1050 	if (atomic_inc_return(&oops_count) >= limit && limit)
1051 		panic("Oopsed too often (kernel.oops_limit is %d)", limit);
1052 
1053 	/*
1054 	 * We're taking recursive faults here in make_task_dead. Safest is to just
1055 	 * leave this task alone and wait for reboot.
1056 	 */
1057 	if (unlikely(tsk->flags & PF_EXITING)) {
1058 		pr_alert("Fixing recursive fault but reboot is needed!\n");
1059 		futex_exit_recursive(tsk);
1060 		tsk->exit_state = EXIT_DEAD;
1061 		refcount_inc(&tsk->rcu_users);
1062 		do_task_dead();
1063 	}
1064 
1065 	do_exit(signr);
1066 }
1067 
1068 SYSCALL_DEFINE1(exit, int, error_code)
1069 {
1070 	do_exit((error_code&0xff)<<8);
1071 }
1072 
1073 /*
1074  * Take down every thread in the group.  This is called by fatal signals
1075  * as well as by sys_exit_group (below).
1076  */
1077 void __noreturn
1078 do_group_exit(int exit_code)
1079 {
1080 	struct signal_struct *sig = current->signal;
1081 
1082 	if (sig->flags & SIGNAL_GROUP_EXIT)
1083 		exit_code = sig->group_exit_code;
1084 	else if (sig->group_exec_task)
1085 		exit_code = 0;
1086 	else {
1087 		struct sighand_struct *const sighand = current->sighand;
1088 
1089 		spin_lock_irq(&sighand->siglock);
1090 		if (sig->flags & SIGNAL_GROUP_EXIT)
1091 			/* Another thread got here before we took the lock.  */
1092 			exit_code = sig->group_exit_code;
1093 		else if (sig->group_exec_task)
1094 			exit_code = 0;
1095 		else {
1096 			sig->group_exit_code = exit_code;
1097 			sig->flags = SIGNAL_GROUP_EXIT;
1098 			zap_other_threads(current);
1099 		}
1100 		spin_unlock_irq(&sighand->siglock);
1101 	}
1102 
1103 	do_exit(exit_code);
1104 	/* NOTREACHED */
1105 }
1106 
1107 /*
1108  * this kills every thread in the thread group. Note that any externally
1109  * wait4()-ing process will get the correct exit code - even if this
1110  * thread is not the thread group leader.
1111  */
1112 SYSCALL_DEFINE1(exit_group, int, error_code)
1113 {
1114 	do_group_exit((error_code & 0xff) << 8);
1115 	/* NOTREACHED */
1116 	return 0;
1117 }
1118 
1119 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1120 {
1121 	return	wo->wo_type == PIDTYPE_MAX ||
1122 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1123 }
1124 
1125 static int
1126 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1127 {
1128 	if (!eligible_pid(wo, p))
1129 		return 0;
1130 
1131 	/*
1132 	 * Wait for all children (clone and not) if __WALL is set or
1133 	 * if it is traced by us.
1134 	 */
1135 	if (ptrace || (wo->wo_flags & __WALL))
1136 		return 1;
1137 
1138 	/*
1139 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
1140 	 * otherwise, wait for non-clone children *only*.
1141 	 *
1142 	 * Note: a "clone" child here is one that reports to its parent
1143 	 * using a signal other than SIGCHLD, or a non-leader thread which
1144 	 * we can only see if it is traced by us.
1145 	 */
1146 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1147 		return 0;
1148 
1149 	return 1;
1150 }
1151 
1152 /*
1153  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1154  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1155  * the lock and this task is uninteresting.  If we return nonzero, we have
1156  * released the lock and the system call should return.
1157  */
1158 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1159 {
1160 	int state, status;
1161 	pid_t pid = task_pid_vnr(p);
1162 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1163 	struct waitid_info *infop;
1164 
1165 	if (!likely(wo->wo_flags & WEXITED))
1166 		return 0;
1167 
1168 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1169 		status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1170 			? p->signal->group_exit_code : p->exit_code;
1171 		get_task_struct(p);
1172 		read_unlock(&tasklist_lock);
1173 		sched_annotate_sleep();
1174 		if (wo->wo_rusage)
1175 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1176 		put_task_struct(p);
1177 		goto out_info;
1178 	}
1179 	/*
1180 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1181 	 */
1182 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1183 		EXIT_TRACE : EXIT_DEAD;
1184 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1185 		return 0;
1186 	/*
1187 	 * We own this thread, nobody else can reap it.
1188 	 */
1189 	read_unlock(&tasklist_lock);
1190 	sched_annotate_sleep();
1191 
1192 	/*
1193 	 * Check thread_group_leader() to exclude the traced sub-threads.
1194 	 */
1195 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1196 		struct signal_struct *sig = p->signal;
1197 		struct signal_struct *psig = current->signal;
1198 		unsigned long maxrss;
1199 		u64 tgutime, tgstime;
1200 
1201 		/*
1202 		 * The resource counters for the group leader are in its
1203 		 * own task_struct.  Those for dead threads in the group
1204 		 * are in its signal_struct, as are those for the child
1205 		 * processes it has previously reaped.  All these
1206 		 * accumulate in the parent's signal_struct c* fields.
1207 		 *
1208 		 * We don't bother to take a lock here to protect these
1209 		 * p->signal fields because the whole thread group is dead
1210 		 * and nobody can change them.
1211 		 *
1212 		 * psig->stats_lock also protects us from our sub-threads
1213 		 * which can reap other children at the same time.
1214 		 *
1215 		 * We use thread_group_cputime_adjusted() to get times for
1216 		 * the thread group, which consolidates times for all threads
1217 		 * in the group including the group leader.
1218 		 */
1219 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1220 		write_seqlock_irq(&psig->stats_lock);
1221 		psig->cutime += tgutime + sig->cutime;
1222 		psig->cstime += tgstime + sig->cstime;
1223 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1224 		psig->cmin_flt +=
1225 			p->min_flt + sig->min_flt + sig->cmin_flt;
1226 		psig->cmaj_flt +=
1227 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1228 		psig->cnvcsw +=
1229 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1230 		psig->cnivcsw +=
1231 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1232 		psig->cinblock +=
1233 			task_io_get_inblock(p) +
1234 			sig->inblock + sig->cinblock;
1235 		psig->coublock +=
1236 			task_io_get_oublock(p) +
1237 			sig->oublock + sig->coublock;
1238 		maxrss = max(sig->maxrss, sig->cmaxrss);
1239 		if (psig->cmaxrss < maxrss)
1240 			psig->cmaxrss = maxrss;
1241 		task_io_accounting_add(&psig->ioac, &p->ioac);
1242 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1243 		write_sequnlock_irq(&psig->stats_lock);
1244 	}
1245 
1246 	if (wo->wo_rusage)
1247 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1248 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1249 		? p->signal->group_exit_code : p->exit_code;
1250 	wo->wo_stat = status;
1251 
1252 	if (state == EXIT_TRACE) {
1253 		write_lock_irq(&tasklist_lock);
1254 		/* We dropped tasklist, ptracer could die and untrace */
1255 		ptrace_unlink(p);
1256 
1257 		/* If parent wants a zombie, don't release it now */
1258 		state = EXIT_ZOMBIE;
1259 		if (do_notify_parent(p, p->exit_signal))
1260 			state = EXIT_DEAD;
1261 		p->exit_state = state;
1262 		write_unlock_irq(&tasklist_lock);
1263 	}
1264 	if (state == EXIT_DEAD)
1265 		release_task(p);
1266 
1267 out_info:
1268 	infop = wo->wo_info;
1269 	if (infop) {
1270 		if ((status & 0x7f) == 0) {
1271 			infop->cause = CLD_EXITED;
1272 			infop->status = status >> 8;
1273 		} else {
1274 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1275 			infop->status = status & 0x7f;
1276 		}
1277 		infop->pid = pid;
1278 		infop->uid = uid;
1279 	}
1280 
1281 	return pid;
1282 }
1283 
1284 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1285 {
1286 	if (ptrace) {
1287 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1288 			return &p->exit_code;
1289 	} else {
1290 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1291 			return &p->signal->group_exit_code;
1292 	}
1293 	return NULL;
1294 }
1295 
1296 /**
1297  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1298  * @wo: wait options
1299  * @ptrace: is the wait for ptrace
1300  * @p: task to wait for
1301  *
1302  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1303  *
1304  * CONTEXT:
1305  * read_lock(&tasklist_lock), which is released if return value is
1306  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1307  *
1308  * RETURNS:
1309  * 0 if wait condition didn't exist and search for other wait conditions
1310  * should continue.  Non-zero return, -errno on failure and @p's pid on
1311  * success, implies that tasklist_lock is released and wait condition
1312  * search should terminate.
1313  */
1314 static int wait_task_stopped(struct wait_opts *wo,
1315 				int ptrace, struct task_struct *p)
1316 {
1317 	struct waitid_info *infop;
1318 	int exit_code, *p_code, why;
1319 	uid_t uid = 0; /* unneeded, required by compiler */
1320 	pid_t pid;
1321 
1322 	/*
1323 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1324 	 */
1325 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1326 		return 0;
1327 
1328 	if (!task_stopped_code(p, ptrace))
1329 		return 0;
1330 
1331 	exit_code = 0;
1332 	spin_lock_irq(&p->sighand->siglock);
1333 
1334 	p_code = task_stopped_code(p, ptrace);
1335 	if (unlikely(!p_code))
1336 		goto unlock_sig;
1337 
1338 	exit_code = *p_code;
1339 	if (!exit_code)
1340 		goto unlock_sig;
1341 
1342 	if (!unlikely(wo->wo_flags & WNOWAIT))
1343 		*p_code = 0;
1344 
1345 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1346 unlock_sig:
1347 	spin_unlock_irq(&p->sighand->siglock);
1348 	if (!exit_code)
1349 		return 0;
1350 
1351 	/*
1352 	 * Now we are pretty sure this task is interesting.
1353 	 * Make sure it doesn't get reaped out from under us while we
1354 	 * give up the lock and then examine it below.  We don't want to
1355 	 * keep holding onto the tasklist_lock while we call getrusage and
1356 	 * possibly take page faults for user memory.
1357 	 */
1358 	get_task_struct(p);
1359 	pid = task_pid_vnr(p);
1360 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1361 	read_unlock(&tasklist_lock);
1362 	sched_annotate_sleep();
1363 	if (wo->wo_rusage)
1364 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1365 	put_task_struct(p);
1366 
1367 	if (likely(!(wo->wo_flags & WNOWAIT)))
1368 		wo->wo_stat = (exit_code << 8) | 0x7f;
1369 
1370 	infop = wo->wo_info;
1371 	if (infop) {
1372 		infop->cause = why;
1373 		infop->status = exit_code;
1374 		infop->pid = pid;
1375 		infop->uid = uid;
1376 	}
1377 	return pid;
1378 }
1379 
1380 /*
1381  * Handle do_wait work for one task in a live, non-stopped state.
1382  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1383  * the lock and this task is uninteresting.  If we return nonzero, we have
1384  * released the lock and the system call should return.
1385  */
1386 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1387 {
1388 	struct waitid_info *infop;
1389 	pid_t pid;
1390 	uid_t uid;
1391 
1392 	if (!unlikely(wo->wo_flags & WCONTINUED))
1393 		return 0;
1394 
1395 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1396 		return 0;
1397 
1398 	spin_lock_irq(&p->sighand->siglock);
1399 	/* Re-check with the lock held.  */
1400 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1401 		spin_unlock_irq(&p->sighand->siglock);
1402 		return 0;
1403 	}
1404 	if (!unlikely(wo->wo_flags & WNOWAIT))
1405 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1406 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1407 	spin_unlock_irq(&p->sighand->siglock);
1408 
1409 	pid = task_pid_vnr(p);
1410 	get_task_struct(p);
1411 	read_unlock(&tasklist_lock);
1412 	sched_annotate_sleep();
1413 	if (wo->wo_rusage)
1414 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1415 	put_task_struct(p);
1416 
1417 	infop = wo->wo_info;
1418 	if (!infop) {
1419 		wo->wo_stat = 0xffff;
1420 	} else {
1421 		infop->cause = CLD_CONTINUED;
1422 		infop->pid = pid;
1423 		infop->uid = uid;
1424 		infop->status = SIGCONT;
1425 	}
1426 	return pid;
1427 }
1428 
1429 /*
1430  * Consider @p for a wait by @parent.
1431  *
1432  * -ECHILD should be in ->notask_error before the first call.
1433  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1434  * Returns zero if the search for a child should continue;
1435  * then ->notask_error is 0 if @p is an eligible child,
1436  * or still -ECHILD.
1437  */
1438 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1439 				struct task_struct *p)
1440 {
1441 	/*
1442 	 * We can race with wait_task_zombie() from another thread.
1443 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1444 	 * can't confuse the checks below.
1445 	 */
1446 	int exit_state = READ_ONCE(p->exit_state);
1447 	int ret;
1448 
1449 	if (unlikely(exit_state == EXIT_DEAD))
1450 		return 0;
1451 
1452 	ret = eligible_child(wo, ptrace, p);
1453 	if (!ret)
1454 		return ret;
1455 
1456 	if (unlikely(exit_state == EXIT_TRACE)) {
1457 		/*
1458 		 * ptrace == 0 means we are the natural parent. In this case
1459 		 * we should clear notask_error, debugger will notify us.
1460 		 */
1461 		if (likely(!ptrace))
1462 			wo->notask_error = 0;
1463 		return 0;
1464 	}
1465 
1466 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1467 		/*
1468 		 * If it is traced by its real parent's group, just pretend
1469 		 * the caller is ptrace_do_wait() and reap this child if it
1470 		 * is zombie.
1471 		 *
1472 		 * This also hides group stop state from real parent; otherwise
1473 		 * a single stop can be reported twice as group and ptrace stop.
1474 		 * If a ptracer wants to distinguish these two events for its
1475 		 * own children it should create a separate process which takes
1476 		 * the role of real parent.
1477 		 */
1478 		if (!ptrace_reparented(p))
1479 			ptrace = 1;
1480 	}
1481 
1482 	/* slay zombie? */
1483 	if (exit_state == EXIT_ZOMBIE) {
1484 		/* we don't reap group leaders with subthreads */
1485 		if (!delay_group_leader(p)) {
1486 			/*
1487 			 * A zombie ptracee is only visible to its ptracer.
1488 			 * Notification and reaping will be cascaded to the
1489 			 * real parent when the ptracer detaches.
1490 			 */
1491 			if (unlikely(ptrace) || likely(!p->ptrace))
1492 				return wait_task_zombie(wo, p);
1493 		}
1494 
1495 		/*
1496 		 * Allow access to stopped/continued state via zombie by
1497 		 * falling through.  Clearing of notask_error is complex.
1498 		 *
1499 		 * When !@ptrace:
1500 		 *
1501 		 * If WEXITED is set, notask_error should naturally be
1502 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1503 		 * so, if there are live subthreads, there are events to
1504 		 * wait for.  If all subthreads are dead, it's still safe
1505 		 * to clear - this function will be called again in finite
1506 		 * amount time once all the subthreads are released and
1507 		 * will then return without clearing.
1508 		 *
1509 		 * When @ptrace:
1510 		 *
1511 		 * Stopped state is per-task and thus can't change once the
1512 		 * target task dies.  Only continued and exited can happen.
1513 		 * Clear notask_error if WCONTINUED | WEXITED.
1514 		 */
1515 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1516 			wo->notask_error = 0;
1517 	} else {
1518 		/*
1519 		 * @p is alive and it's gonna stop, continue or exit, so
1520 		 * there always is something to wait for.
1521 		 */
1522 		wo->notask_error = 0;
1523 	}
1524 
1525 	/*
1526 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1527 	 * is used and the two don't interact with each other.
1528 	 */
1529 	ret = wait_task_stopped(wo, ptrace, p);
1530 	if (ret)
1531 		return ret;
1532 
1533 	/*
1534 	 * Wait for continued.  There's only one continued state and the
1535 	 * ptracer can consume it which can confuse the real parent.  Don't
1536 	 * use WCONTINUED from ptracer.  You don't need or want it.
1537 	 */
1538 	return wait_task_continued(wo, p);
1539 }
1540 
1541 /*
1542  * Do the work of do_wait() for one thread in the group, @tsk.
1543  *
1544  * -ECHILD should be in ->notask_error before the first call.
1545  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1546  * Returns zero if the search for a child should continue; then
1547  * ->notask_error is 0 if there were any eligible children,
1548  * or still -ECHILD.
1549  */
1550 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1551 {
1552 	struct task_struct *p;
1553 
1554 	list_for_each_entry(p, &tsk->children, sibling) {
1555 		int ret = wait_consider_task(wo, 0, p);
1556 
1557 		if (ret)
1558 			return ret;
1559 	}
1560 
1561 	return 0;
1562 }
1563 
1564 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1565 {
1566 	struct task_struct *p;
1567 
1568 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1569 		int ret = wait_consider_task(wo, 1, p);
1570 
1571 		if (ret)
1572 			return ret;
1573 	}
1574 
1575 	return 0;
1576 }
1577 
1578 bool pid_child_should_wake(struct wait_opts *wo, struct task_struct *p)
1579 {
1580 	if (!eligible_pid(wo, p))
1581 		return false;
1582 
1583 	if ((wo->wo_flags & __WNOTHREAD) && wo->child_wait.private != p->parent)
1584 		return false;
1585 
1586 	return true;
1587 }
1588 
1589 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1590 				int sync, void *key)
1591 {
1592 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1593 						child_wait);
1594 	struct task_struct *p = key;
1595 
1596 	if (pid_child_should_wake(wo, p))
1597 		return default_wake_function(wait, mode, sync, key);
1598 
1599 	return 0;
1600 }
1601 
1602 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1603 {
1604 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1605 			   TASK_INTERRUPTIBLE, p);
1606 }
1607 
1608 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1609 				 struct task_struct *target)
1610 {
1611 	struct task_struct *parent =
1612 		!ptrace ? target->real_parent : target->parent;
1613 
1614 	return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1615 				     same_thread_group(current, parent));
1616 }
1617 
1618 /*
1619  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1620  * and tracee lists to find the target task.
1621  */
1622 static int do_wait_pid(struct wait_opts *wo)
1623 {
1624 	bool ptrace;
1625 	struct task_struct *target;
1626 	int retval;
1627 
1628 	ptrace = false;
1629 	target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1630 	if (target && is_effectively_child(wo, ptrace, target)) {
1631 		retval = wait_consider_task(wo, ptrace, target);
1632 		if (retval)
1633 			return retval;
1634 	}
1635 
1636 	ptrace = true;
1637 	target = pid_task(wo->wo_pid, PIDTYPE_PID);
1638 	if (target && target->ptrace &&
1639 	    is_effectively_child(wo, ptrace, target)) {
1640 		retval = wait_consider_task(wo, ptrace, target);
1641 		if (retval)
1642 			return retval;
1643 	}
1644 
1645 	return 0;
1646 }
1647 
1648 long __do_wait(struct wait_opts *wo)
1649 {
1650 	long retval;
1651 
1652 	/*
1653 	 * If there is nothing that can match our criteria, just get out.
1654 	 * We will clear ->notask_error to zero if we see any child that
1655 	 * might later match our criteria, even if we are not able to reap
1656 	 * it yet.
1657 	 */
1658 	wo->notask_error = -ECHILD;
1659 	if ((wo->wo_type < PIDTYPE_MAX) &&
1660 	   (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1661 		goto notask;
1662 
1663 	read_lock(&tasklist_lock);
1664 
1665 	if (wo->wo_type == PIDTYPE_PID) {
1666 		retval = do_wait_pid(wo);
1667 		if (retval)
1668 			return retval;
1669 	} else {
1670 		struct task_struct *tsk = current;
1671 
1672 		do {
1673 			retval = do_wait_thread(wo, tsk);
1674 			if (retval)
1675 				return retval;
1676 
1677 			retval = ptrace_do_wait(wo, tsk);
1678 			if (retval)
1679 				return retval;
1680 
1681 			if (wo->wo_flags & __WNOTHREAD)
1682 				break;
1683 		} while_each_thread(current, tsk);
1684 	}
1685 	read_unlock(&tasklist_lock);
1686 
1687 notask:
1688 	retval = wo->notask_error;
1689 	if (!retval && !(wo->wo_flags & WNOHANG))
1690 		return -ERESTARTSYS;
1691 
1692 	return retval;
1693 }
1694 
1695 static long do_wait(struct wait_opts *wo)
1696 {
1697 	int retval;
1698 
1699 	trace_sched_process_wait(wo->wo_pid);
1700 
1701 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1702 	wo->child_wait.private = current;
1703 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1704 
1705 	do {
1706 		set_current_state(TASK_INTERRUPTIBLE);
1707 		retval = __do_wait(wo);
1708 		if (retval != -ERESTARTSYS)
1709 			break;
1710 		if (signal_pending(current))
1711 			break;
1712 		schedule();
1713 	} while (1);
1714 
1715 	__set_current_state(TASK_RUNNING);
1716 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1717 	return retval;
1718 }
1719 
1720 int kernel_waitid_prepare(struct wait_opts *wo, int which, pid_t upid,
1721 			  struct waitid_info *infop, int options,
1722 			  struct rusage *ru)
1723 {
1724 	unsigned int f_flags = 0;
1725 	struct pid *pid = NULL;
1726 	enum pid_type type;
1727 
1728 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1729 			__WNOTHREAD|__WCLONE|__WALL))
1730 		return -EINVAL;
1731 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1732 		return -EINVAL;
1733 
1734 	switch (which) {
1735 	case P_ALL:
1736 		type = PIDTYPE_MAX;
1737 		break;
1738 	case P_PID:
1739 		type = PIDTYPE_PID;
1740 		if (upid <= 0)
1741 			return -EINVAL;
1742 
1743 		pid = find_get_pid(upid);
1744 		break;
1745 	case P_PGID:
1746 		type = PIDTYPE_PGID;
1747 		if (upid < 0)
1748 			return -EINVAL;
1749 
1750 		if (upid)
1751 			pid = find_get_pid(upid);
1752 		else
1753 			pid = get_task_pid(current, PIDTYPE_PGID);
1754 		break;
1755 	case P_PIDFD:
1756 		type = PIDTYPE_PID;
1757 		if (upid < 0)
1758 			return -EINVAL;
1759 
1760 		pid = pidfd_get_pid(upid, &f_flags);
1761 		if (IS_ERR(pid))
1762 			return PTR_ERR(pid);
1763 
1764 		break;
1765 	default:
1766 		return -EINVAL;
1767 	}
1768 
1769 	wo->wo_type	= type;
1770 	wo->wo_pid	= pid;
1771 	wo->wo_flags	= options;
1772 	wo->wo_info	= infop;
1773 	wo->wo_rusage	= ru;
1774 	if (f_flags & O_NONBLOCK)
1775 		wo->wo_flags |= WNOHANG;
1776 
1777 	return 0;
1778 }
1779 
1780 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1781 			  int options, struct rusage *ru)
1782 {
1783 	struct wait_opts wo;
1784 	long ret;
1785 
1786 	ret = kernel_waitid_prepare(&wo, which, upid, infop, options, ru);
1787 	if (ret)
1788 		return ret;
1789 
1790 	ret = do_wait(&wo);
1791 	if (!ret && !(options & WNOHANG) && (wo.wo_flags & WNOHANG))
1792 		ret = -EAGAIN;
1793 
1794 	put_pid(wo.wo_pid);
1795 	return ret;
1796 }
1797 
1798 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1799 		infop, int, options, struct rusage __user *, ru)
1800 {
1801 	struct rusage r;
1802 	struct waitid_info info = {.status = 0};
1803 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1804 	int signo = 0;
1805 
1806 	if (err > 0) {
1807 		signo = SIGCHLD;
1808 		err = 0;
1809 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1810 			return -EFAULT;
1811 	}
1812 	if (!infop)
1813 		return err;
1814 
1815 	if (!user_write_access_begin(infop, sizeof(*infop)))
1816 		return -EFAULT;
1817 
1818 	unsafe_put_user(signo, &infop->si_signo, Efault);
1819 	unsafe_put_user(0, &infop->si_errno, Efault);
1820 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1821 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1822 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1823 	unsafe_put_user(info.status, &infop->si_status, Efault);
1824 	user_write_access_end();
1825 	return err;
1826 Efault:
1827 	user_write_access_end();
1828 	return -EFAULT;
1829 }
1830 
1831 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1832 		  struct rusage *ru)
1833 {
1834 	struct wait_opts wo;
1835 	struct pid *pid = NULL;
1836 	enum pid_type type;
1837 	long ret;
1838 
1839 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1840 			__WNOTHREAD|__WCLONE|__WALL))
1841 		return -EINVAL;
1842 
1843 	/* -INT_MIN is not defined */
1844 	if (upid == INT_MIN)
1845 		return -ESRCH;
1846 
1847 	if (upid == -1)
1848 		type = PIDTYPE_MAX;
1849 	else if (upid < 0) {
1850 		type = PIDTYPE_PGID;
1851 		pid = find_get_pid(-upid);
1852 	} else if (upid == 0) {
1853 		type = PIDTYPE_PGID;
1854 		pid = get_task_pid(current, PIDTYPE_PGID);
1855 	} else /* upid > 0 */ {
1856 		type = PIDTYPE_PID;
1857 		pid = find_get_pid(upid);
1858 	}
1859 
1860 	wo.wo_type	= type;
1861 	wo.wo_pid	= pid;
1862 	wo.wo_flags	= options | WEXITED;
1863 	wo.wo_info	= NULL;
1864 	wo.wo_stat	= 0;
1865 	wo.wo_rusage	= ru;
1866 	ret = do_wait(&wo);
1867 	put_pid(pid);
1868 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1869 		ret = -EFAULT;
1870 
1871 	return ret;
1872 }
1873 
1874 int kernel_wait(pid_t pid, int *stat)
1875 {
1876 	struct wait_opts wo = {
1877 		.wo_type	= PIDTYPE_PID,
1878 		.wo_pid		= find_get_pid(pid),
1879 		.wo_flags	= WEXITED,
1880 	};
1881 	int ret;
1882 
1883 	ret = do_wait(&wo);
1884 	if (ret > 0 && wo.wo_stat)
1885 		*stat = wo.wo_stat;
1886 	put_pid(wo.wo_pid);
1887 	return ret;
1888 }
1889 
1890 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1891 		int, options, struct rusage __user *, ru)
1892 {
1893 	struct rusage r;
1894 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1895 
1896 	if (err > 0) {
1897 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1898 			return -EFAULT;
1899 	}
1900 	return err;
1901 }
1902 
1903 #ifdef __ARCH_WANT_SYS_WAITPID
1904 
1905 /*
1906  * sys_waitpid() remains for compatibility. waitpid() should be
1907  * implemented by calling sys_wait4() from libc.a.
1908  */
1909 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1910 {
1911 	return kernel_wait4(pid, stat_addr, options, NULL);
1912 }
1913 
1914 #endif
1915 
1916 #ifdef CONFIG_COMPAT
1917 COMPAT_SYSCALL_DEFINE4(wait4,
1918 	compat_pid_t, pid,
1919 	compat_uint_t __user *, stat_addr,
1920 	int, options,
1921 	struct compat_rusage __user *, ru)
1922 {
1923 	struct rusage r;
1924 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1925 	if (err > 0) {
1926 		if (ru && put_compat_rusage(&r, ru))
1927 			return -EFAULT;
1928 	}
1929 	return err;
1930 }
1931 
1932 COMPAT_SYSCALL_DEFINE5(waitid,
1933 		int, which, compat_pid_t, pid,
1934 		struct compat_siginfo __user *, infop, int, options,
1935 		struct compat_rusage __user *, uru)
1936 {
1937 	struct rusage ru;
1938 	struct waitid_info info = {.status = 0};
1939 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1940 	int signo = 0;
1941 	if (err > 0) {
1942 		signo = SIGCHLD;
1943 		err = 0;
1944 		if (uru) {
1945 			/* kernel_waitid() overwrites everything in ru */
1946 			if (COMPAT_USE_64BIT_TIME)
1947 				err = copy_to_user(uru, &ru, sizeof(ru));
1948 			else
1949 				err = put_compat_rusage(&ru, uru);
1950 			if (err)
1951 				return -EFAULT;
1952 		}
1953 	}
1954 
1955 	if (!infop)
1956 		return err;
1957 
1958 	if (!user_write_access_begin(infop, sizeof(*infop)))
1959 		return -EFAULT;
1960 
1961 	unsafe_put_user(signo, &infop->si_signo, Efault);
1962 	unsafe_put_user(0, &infop->si_errno, Efault);
1963 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1964 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1965 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1966 	unsafe_put_user(info.status, &infop->si_status, Efault);
1967 	user_write_access_end();
1968 	return err;
1969 Efault:
1970 	user_write_access_end();
1971 	return -EFAULT;
1972 }
1973 #endif
1974 
1975 /*
1976  * This needs to be __function_aligned as GCC implicitly makes any
1977  * implementation of abort() cold and drops alignment specified by
1978  * -falign-functions=N.
1979  *
1980  * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11
1981  */
1982 __weak __function_aligned void abort(void)
1983 {
1984 	BUG();
1985 
1986 	/* if that doesn't kill us, halt */
1987 	panic("Oops failed to kill thread");
1988 }
1989 EXPORT_SYMBOL(abort);
1990