1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/sched/autogroup.h> 10 #include <linux/sched/mm.h> 11 #include <linux/sched/stat.h> 12 #include <linux/sched/task.h> 13 #include <linux/sched/task_stack.h> 14 #include <linux/sched/cputime.h> 15 #include <linux/interrupt.h> 16 #include <linux/module.h> 17 #include <linux/capability.h> 18 #include <linux/completion.h> 19 #include <linux/personality.h> 20 #include <linux/tty.h> 21 #include <linux/iocontext.h> 22 #include <linux/key.h> 23 #include <linux/cpu.h> 24 #include <linux/acct.h> 25 #include <linux/tsacct_kern.h> 26 #include <linux/file.h> 27 #include <linux/fdtable.h> 28 #include <linux/freezer.h> 29 #include <linux/binfmts.h> 30 #include <linux/nsproxy.h> 31 #include <linux/pid_namespace.h> 32 #include <linux/ptrace.h> 33 #include <linux/profile.h> 34 #include <linux/mount.h> 35 #include <linux/proc_fs.h> 36 #include <linux/kthread.h> 37 #include <linux/mempolicy.h> 38 #include <linux/taskstats_kern.h> 39 #include <linux/delayacct.h> 40 #include <linux/cgroup.h> 41 #include <linux/syscalls.h> 42 #include <linux/signal.h> 43 #include <linux/posix-timers.h> 44 #include <linux/cn_proc.h> 45 #include <linux/mutex.h> 46 #include <linux/futex.h> 47 #include <linux/pipe_fs_i.h> 48 #include <linux/audit.h> /* for audit_free() */ 49 #include <linux/resource.h> 50 #include <linux/blkdev.h> 51 #include <linux/task_io_accounting_ops.h> 52 #include <linux/tracehook.h> 53 #include <linux/fs_struct.h> 54 #include <linux/userfaultfd_k.h> 55 #include <linux/init_task.h> 56 #include <linux/perf_event.h> 57 #include <trace/events/sched.h> 58 #include <linux/hw_breakpoint.h> 59 #include <linux/oom.h> 60 #include <linux/writeback.h> 61 #include <linux/shm.h> 62 #include <linux/kcov.h> 63 #include <linux/random.h> 64 #include <linux/rcuwait.h> 65 66 #include <linux/uaccess.h> 67 #include <asm/unistd.h> 68 #include <asm/pgtable.h> 69 #include <asm/mmu_context.h> 70 71 static void __unhash_process(struct task_struct *p, bool group_dead) 72 { 73 nr_threads--; 74 detach_pid(p, PIDTYPE_PID); 75 if (group_dead) { 76 detach_pid(p, PIDTYPE_PGID); 77 detach_pid(p, PIDTYPE_SID); 78 79 list_del_rcu(&p->tasks); 80 list_del_init(&p->sibling); 81 __this_cpu_dec(process_counts); 82 } 83 list_del_rcu(&p->thread_group); 84 list_del_rcu(&p->thread_node); 85 } 86 87 /* 88 * This function expects the tasklist_lock write-locked. 89 */ 90 static void __exit_signal(struct task_struct *tsk) 91 { 92 struct signal_struct *sig = tsk->signal; 93 bool group_dead = thread_group_leader(tsk); 94 struct sighand_struct *sighand; 95 struct tty_struct *uninitialized_var(tty); 96 u64 utime, stime; 97 98 sighand = rcu_dereference_check(tsk->sighand, 99 lockdep_tasklist_lock_is_held()); 100 spin_lock(&sighand->siglock); 101 102 #ifdef CONFIG_POSIX_TIMERS 103 posix_cpu_timers_exit(tsk); 104 if (group_dead) { 105 posix_cpu_timers_exit_group(tsk); 106 } else { 107 /* 108 * This can only happen if the caller is de_thread(). 109 * FIXME: this is the temporary hack, we should teach 110 * posix-cpu-timers to handle this case correctly. 111 */ 112 if (unlikely(has_group_leader_pid(tsk))) 113 posix_cpu_timers_exit_group(tsk); 114 } 115 #endif 116 117 if (group_dead) { 118 tty = sig->tty; 119 sig->tty = NULL; 120 } else { 121 /* 122 * If there is any task waiting for the group exit 123 * then notify it: 124 */ 125 if (sig->notify_count > 0 && !--sig->notify_count) 126 wake_up_process(sig->group_exit_task); 127 128 if (tsk == sig->curr_target) 129 sig->curr_target = next_thread(tsk); 130 } 131 132 add_device_randomness((const void*) &tsk->se.sum_exec_runtime, 133 sizeof(unsigned long long)); 134 135 /* 136 * Accumulate here the counters for all threads as they die. We could 137 * skip the group leader because it is the last user of signal_struct, 138 * but we want to avoid the race with thread_group_cputime() which can 139 * see the empty ->thread_head list. 140 */ 141 task_cputime(tsk, &utime, &stime); 142 write_seqlock(&sig->stats_lock); 143 sig->utime += utime; 144 sig->stime += stime; 145 sig->gtime += task_gtime(tsk); 146 sig->min_flt += tsk->min_flt; 147 sig->maj_flt += tsk->maj_flt; 148 sig->nvcsw += tsk->nvcsw; 149 sig->nivcsw += tsk->nivcsw; 150 sig->inblock += task_io_get_inblock(tsk); 151 sig->oublock += task_io_get_oublock(tsk); 152 task_io_accounting_add(&sig->ioac, &tsk->ioac); 153 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 154 sig->nr_threads--; 155 __unhash_process(tsk, group_dead); 156 write_sequnlock(&sig->stats_lock); 157 158 /* 159 * Do this under ->siglock, we can race with another thread 160 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 161 */ 162 flush_sigqueue(&tsk->pending); 163 tsk->sighand = NULL; 164 spin_unlock(&sighand->siglock); 165 166 __cleanup_sighand(sighand); 167 clear_tsk_thread_flag(tsk, TIF_SIGPENDING); 168 if (group_dead) { 169 flush_sigqueue(&sig->shared_pending); 170 tty_kref_put(tty); 171 } 172 } 173 174 static void delayed_put_task_struct(struct rcu_head *rhp) 175 { 176 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 177 178 perf_event_delayed_put(tsk); 179 trace_sched_process_free(tsk); 180 put_task_struct(tsk); 181 } 182 183 184 void release_task(struct task_struct *p) 185 { 186 struct task_struct *leader; 187 int zap_leader; 188 repeat: 189 /* don't need to get the RCU readlock here - the process is dead and 190 * can't be modifying its own credentials. But shut RCU-lockdep up */ 191 rcu_read_lock(); 192 atomic_dec(&__task_cred(p)->user->processes); 193 rcu_read_unlock(); 194 195 proc_flush_task(p); 196 197 write_lock_irq(&tasklist_lock); 198 ptrace_release_task(p); 199 __exit_signal(p); 200 201 /* 202 * If we are the last non-leader member of the thread 203 * group, and the leader is zombie, then notify the 204 * group leader's parent process. (if it wants notification.) 205 */ 206 zap_leader = 0; 207 leader = p->group_leader; 208 if (leader != p && thread_group_empty(leader) 209 && leader->exit_state == EXIT_ZOMBIE) { 210 /* 211 * If we were the last child thread and the leader has 212 * exited already, and the leader's parent ignores SIGCHLD, 213 * then we are the one who should release the leader. 214 */ 215 zap_leader = do_notify_parent(leader, leader->exit_signal); 216 if (zap_leader) 217 leader->exit_state = EXIT_DEAD; 218 } 219 220 write_unlock_irq(&tasklist_lock); 221 release_thread(p); 222 call_rcu(&p->rcu, delayed_put_task_struct); 223 224 p = leader; 225 if (unlikely(zap_leader)) 226 goto repeat; 227 } 228 229 /* 230 * Note that if this function returns a valid task_struct pointer (!NULL) 231 * task->usage must remain >0 for the duration of the RCU critical section. 232 */ 233 struct task_struct *task_rcu_dereference(struct task_struct **ptask) 234 { 235 struct sighand_struct *sighand; 236 struct task_struct *task; 237 238 /* 239 * We need to verify that release_task() was not called and thus 240 * delayed_put_task_struct() can't run and drop the last reference 241 * before rcu_read_unlock(). We check task->sighand != NULL, 242 * but we can read the already freed and reused memory. 243 */ 244 retry: 245 task = rcu_dereference(*ptask); 246 if (!task) 247 return NULL; 248 249 probe_kernel_address(&task->sighand, sighand); 250 251 /* 252 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task 253 * was already freed we can not miss the preceding update of this 254 * pointer. 255 */ 256 smp_rmb(); 257 if (unlikely(task != READ_ONCE(*ptask))) 258 goto retry; 259 260 /* 261 * We've re-checked that "task == *ptask", now we have two different 262 * cases: 263 * 264 * 1. This is actually the same task/task_struct. In this case 265 * sighand != NULL tells us it is still alive. 266 * 267 * 2. This is another task which got the same memory for task_struct. 268 * We can't know this of course, and we can not trust 269 * sighand != NULL. 270 * 271 * In this case we actually return a random value, but this is 272 * correct. 273 * 274 * If we return NULL - we can pretend that we actually noticed that 275 * *ptask was updated when the previous task has exited. Or pretend 276 * that probe_slab_address(&sighand) reads NULL. 277 * 278 * If we return the new task (because sighand is not NULL for any 279 * reason) - this is fine too. This (new) task can't go away before 280 * another gp pass. 281 * 282 * And note: We could even eliminate the false positive if re-read 283 * task->sighand once again to avoid the falsely NULL. But this case 284 * is very unlikely so we don't care. 285 */ 286 if (!sighand) 287 return NULL; 288 289 return task; 290 } 291 292 void rcuwait_wake_up(struct rcuwait *w) 293 { 294 struct task_struct *task; 295 296 rcu_read_lock(); 297 298 /* 299 * Order condition vs @task, such that everything prior to the load 300 * of @task is visible. This is the condition as to why the user called 301 * rcuwait_trywake() in the first place. Pairs with set_current_state() 302 * barrier (A) in rcuwait_wait_event(). 303 * 304 * WAIT WAKE 305 * [S] tsk = current [S] cond = true 306 * MB (A) MB (B) 307 * [L] cond [L] tsk 308 */ 309 smp_rmb(); /* (B) */ 310 311 /* 312 * Avoid using task_rcu_dereference() magic as long as we are careful, 313 * see comment in rcuwait_wait_event() regarding ->exit_state. 314 */ 315 task = rcu_dereference(w->task); 316 if (task) 317 wake_up_process(task); 318 rcu_read_unlock(); 319 } 320 321 struct task_struct *try_get_task_struct(struct task_struct **ptask) 322 { 323 struct task_struct *task; 324 325 rcu_read_lock(); 326 task = task_rcu_dereference(ptask); 327 if (task) 328 get_task_struct(task); 329 rcu_read_unlock(); 330 331 return task; 332 } 333 334 /* 335 * Determine if a process group is "orphaned", according to the POSIX 336 * definition in 2.2.2.52. Orphaned process groups are not to be affected 337 * by terminal-generated stop signals. Newly orphaned process groups are 338 * to receive a SIGHUP and a SIGCONT. 339 * 340 * "I ask you, have you ever known what it is to be an orphan?" 341 */ 342 static int will_become_orphaned_pgrp(struct pid *pgrp, 343 struct task_struct *ignored_task) 344 { 345 struct task_struct *p; 346 347 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 348 if ((p == ignored_task) || 349 (p->exit_state && thread_group_empty(p)) || 350 is_global_init(p->real_parent)) 351 continue; 352 353 if (task_pgrp(p->real_parent) != pgrp && 354 task_session(p->real_parent) == task_session(p)) 355 return 0; 356 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 357 358 return 1; 359 } 360 361 int is_current_pgrp_orphaned(void) 362 { 363 int retval; 364 365 read_lock(&tasklist_lock); 366 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 367 read_unlock(&tasklist_lock); 368 369 return retval; 370 } 371 372 static bool has_stopped_jobs(struct pid *pgrp) 373 { 374 struct task_struct *p; 375 376 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 377 if (p->signal->flags & SIGNAL_STOP_STOPPED) 378 return true; 379 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 380 381 return false; 382 } 383 384 /* 385 * Check to see if any process groups have become orphaned as 386 * a result of our exiting, and if they have any stopped jobs, 387 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 388 */ 389 static void 390 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 391 { 392 struct pid *pgrp = task_pgrp(tsk); 393 struct task_struct *ignored_task = tsk; 394 395 if (!parent) 396 /* exit: our father is in a different pgrp than 397 * we are and we were the only connection outside. 398 */ 399 parent = tsk->real_parent; 400 else 401 /* reparent: our child is in a different pgrp than 402 * we are, and it was the only connection outside. 403 */ 404 ignored_task = NULL; 405 406 if (task_pgrp(parent) != pgrp && 407 task_session(parent) == task_session(tsk) && 408 will_become_orphaned_pgrp(pgrp, ignored_task) && 409 has_stopped_jobs(pgrp)) { 410 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 411 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 412 } 413 } 414 415 #ifdef CONFIG_MEMCG 416 /* 417 * A task is exiting. If it owned this mm, find a new owner for the mm. 418 */ 419 void mm_update_next_owner(struct mm_struct *mm) 420 { 421 struct task_struct *c, *g, *p = current; 422 423 retry: 424 /* 425 * If the exiting or execing task is not the owner, it's 426 * someone else's problem. 427 */ 428 if (mm->owner != p) 429 return; 430 /* 431 * The current owner is exiting/execing and there are no other 432 * candidates. Do not leave the mm pointing to a possibly 433 * freed task structure. 434 */ 435 if (atomic_read(&mm->mm_users) <= 1) { 436 mm->owner = NULL; 437 return; 438 } 439 440 read_lock(&tasklist_lock); 441 /* 442 * Search in the children 443 */ 444 list_for_each_entry(c, &p->children, sibling) { 445 if (c->mm == mm) 446 goto assign_new_owner; 447 } 448 449 /* 450 * Search in the siblings 451 */ 452 list_for_each_entry(c, &p->real_parent->children, sibling) { 453 if (c->mm == mm) 454 goto assign_new_owner; 455 } 456 457 /* 458 * Search through everything else, we should not get here often. 459 */ 460 for_each_process(g) { 461 if (g->flags & PF_KTHREAD) 462 continue; 463 for_each_thread(g, c) { 464 if (c->mm == mm) 465 goto assign_new_owner; 466 if (c->mm) 467 break; 468 } 469 } 470 read_unlock(&tasklist_lock); 471 /* 472 * We found no owner yet mm_users > 1: this implies that we are 473 * most likely racing with swapoff (try_to_unuse()) or /proc or 474 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 475 */ 476 mm->owner = NULL; 477 return; 478 479 assign_new_owner: 480 BUG_ON(c == p); 481 get_task_struct(c); 482 /* 483 * The task_lock protects c->mm from changing. 484 * We always want mm->owner->mm == mm 485 */ 486 task_lock(c); 487 /* 488 * Delay read_unlock() till we have the task_lock() 489 * to ensure that c does not slip away underneath us 490 */ 491 read_unlock(&tasklist_lock); 492 if (c->mm != mm) { 493 task_unlock(c); 494 put_task_struct(c); 495 goto retry; 496 } 497 mm->owner = c; 498 task_unlock(c); 499 put_task_struct(c); 500 } 501 #endif /* CONFIG_MEMCG */ 502 503 /* 504 * Turn us into a lazy TLB process if we 505 * aren't already.. 506 */ 507 static void exit_mm(void) 508 { 509 struct mm_struct *mm = current->mm; 510 struct core_state *core_state; 511 512 mm_release(current, mm); 513 if (!mm) 514 return; 515 sync_mm_rss(mm); 516 /* 517 * Serialize with any possible pending coredump. 518 * We must hold mmap_sem around checking core_state 519 * and clearing tsk->mm. The core-inducing thread 520 * will increment ->nr_threads for each thread in the 521 * group with ->mm != NULL. 522 */ 523 down_read(&mm->mmap_sem); 524 core_state = mm->core_state; 525 if (core_state) { 526 struct core_thread self; 527 528 up_read(&mm->mmap_sem); 529 530 self.task = current; 531 self.next = xchg(&core_state->dumper.next, &self); 532 /* 533 * Implies mb(), the result of xchg() must be visible 534 * to core_state->dumper. 535 */ 536 if (atomic_dec_and_test(&core_state->nr_threads)) 537 complete(&core_state->startup); 538 539 for (;;) { 540 set_current_state(TASK_UNINTERRUPTIBLE); 541 if (!self.task) /* see coredump_finish() */ 542 break; 543 freezable_schedule(); 544 } 545 __set_current_state(TASK_RUNNING); 546 down_read(&mm->mmap_sem); 547 } 548 mmgrab(mm); 549 BUG_ON(mm != current->active_mm); 550 /* more a memory barrier than a real lock */ 551 task_lock(current); 552 current->mm = NULL; 553 up_read(&mm->mmap_sem); 554 enter_lazy_tlb(mm, current); 555 task_unlock(current); 556 mm_update_next_owner(mm); 557 mmput(mm); 558 if (test_thread_flag(TIF_MEMDIE)) 559 exit_oom_victim(); 560 } 561 562 static struct task_struct *find_alive_thread(struct task_struct *p) 563 { 564 struct task_struct *t; 565 566 for_each_thread(p, t) { 567 if (!(t->flags & PF_EXITING)) 568 return t; 569 } 570 return NULL; 571 } 572 573 static struct task_struct *find_child_reaper(struct task_struct *father) 574 __releases(&tasklist_lock) 575 __acquires(&tasklist_lock) 576 { 577 struct pid_namespace *pid_ns = task_active_pid_ns(father); 578 struct task_struct *reaper = pid_ns->child_reaper; 579 580 if (likely(reaper != father)) 581 return reaper; 582 583 reaper = find_alive_thread(father); 584 if (reaper) { 585 pid_ns->child_reaper = reaper; 586 return reaper; 587 } 588 589 write_unlock_irq(&tasklist_lock); 590 if (unlikely(pid_ns == &init_pid_ns)) { 591 panic("Attempted to kill init! exitcode=0x%08x\n", 592 father->signal->group_exit_code ?: father->exit_code); 593 } 594 zap_pid_ns_processes(pid_ns); 595 write_lock_irq(&tasklist_lock); 596 597 return father; 598 } 599 600 /* 601 * When we die, we re-parent all our children, and try to: 602 * 1. give them to another thread in our thread group, if such a member exists 603 * 2. give it to the first ancestor process which prctl'd itself as a 604 * child_subreaper for its children (like a service manager) 605 * 3. give it to the init process (PID 1) in our pid namespace 606 */ 607 static struct task_struct *find_new_reaper(struct task_struct *father, 608 struct task_struct *child_reaper) 609 { 610 struct task_struct *thread, *reaper; 611 612 thread = find_alive_thread(father); 613 if (thread) 614 return thread; 615 616 if (father->signal->has_child_subreaper) { 617 unsigned int ns_level = task_pid(father)->level; 618 /* 619 * Find the first ->is_child_subreaper ancestor in our pid_ns. 620 * We can't check reaper != child_reaper to ensure we do not 621 * cross the namespaces, the exiting parent could be injected 622 * by setns() + fork(). 623 * We check pid->level, this is slightly more efficient than 624 * task_active_pid_ns(reaper) != task_active_pid_ns(father). 625 */ 626 for (reaper = father->real_parent; 627 task_pid(reaper)->level == ns_level; 628 reaper = reaper->real_parent) { 629 if (reaper == &init_task) 630 break; 631 if (!reaper->signal->is_child_subreaper) 632 continue; 633 thread = find_alive_thread(reaper); 634 if (thread) 635 return thread; 636 } 637 } 638 639 return child_reaper; 640 } 641 642 /* 643 * Any that need to be release_task'd are put on the @dead list. 644 */ 645 static void reparent_leader(struct task_struct *father, struct task_struct *p, 646 struct list_head *dead) 647 { 648 if (unlikely(p->exit_state == EXIT_DEAD)) 649 return; 650 651 /* We don't want people slaying init. */ 652 p->exit_signal = SIGCHLD; 653 654 /* If it has exited notify the new parent about this child's death. */ 655 if (!p->ptrace && 656 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 657 if (do_notify_parent(p, p->exit_signal)) { 658 p->exit_state = EXIT_DEAD; 659 list_add(&p->ptrace_entry, dead); 660 } 661 } 662 663 kill_orphaned_pgrp(p, father); 664 } 665 666 /* 667 * This does two things: 668 * 669 * A. Make init inherit all the child processes 670 * B. Check to see if any process groups have become orphaned 671 * as a result of our exiting, and if they have any stopped 672 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 673 */ 674 static void forget_original_parent(struct task_struct *father, 675 struct list_head *dead) 676 { 677 struct task_struct *p, *t, *reaper; 678 679 if (unlikely(!list_empty(&father->ptraced))) 680 exit_ptrace(father, dead); 681 682 /* Can drop and reacquire tasklist_lock */ 683 reaper = find_child_reaper(father); 684 if (list_empty(&father->children)) 685 return; 686 687 reaper = find_new_reaper(father, reaper); 688 list_for_each_entry(p, &father->children, sibling) { 689 for_each_thread(p, t) { 690 t->real_parent = reaper; 691 BUG_ON((!t->ptrace) != (t->parent == father)); 692 if (likely(!t->ptrace)) 693 t->parent = t->real_parent; 694 if (t->pdeath_signal) 695 group_send_sig_info(t->pdeath_signal, 696 SEND_SIG_NOINFO, t); 697 } 698 /* 699 * If this is a threaded reparent there is no need to 700 * notify anyone anything has happened. 701 */ 702 if (!same_thread_group(reaper, father)) 703 reparent_leader(father, p, dead); 704 } 705 list_splice_tail_init(&father->children, &reaper->children); 706 } 707 708 /* 709 * Send signals to all our closest relatives so that they know 710 * to properly mourn us.. 711 */ 712 static void exit_notify(struct task_struct *tsk, int group_dead) 713 { 714 bool autoreap; 715 struct task_struct *p, *n; 716 LIST_HEAD(dead); 717 718 write_lock_irq(&tasklist_lock); 719 forget_original_parent(tsk, &dead); 720 721 if (group_dead) 722 kill_orphaned_pgrp(tsk->group_leader, NULL); 723 724 if (unlikely(tsk->ptrace)) { 725 int sig = thread_group_leader(tsk) && 726 thread_group_empty(tsk) && 727 !ptrace_reparented(tsk) ? 728 tsk->exit_signal : SIGCHLD; 729 autoreap = do_notify_parent(tsk, sig); 730 } else if (thread_group_leader(tsk)) { 731 autoreap = thread_group_empty(tsk) && 732 do_notify_parent(tsk, tsk->exit_signal); 733 } else { 734 autoreap = true; 735 } 736 737 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE; 738 if (tsk->exit_state == EXIT_DEAD) 739 list_add(&tsk->ptrace_entry, &dead); 740 741 /* mt-exec, de_thread() is waiting for group leader */ 742 if (unlikely(tsk->signal->notify_count < 0)) 743 wake_up_process(tsk->signal->group_exit_task); 744 write_unlock_irq(&tasklist_lock); 745 746 list_for_each_entry_safe(p, n, &dead, ptrace_entry) { 747 list_del_init(&p->ptrace_entry); 748 release_task(p); 749 } 750 } 751 752 #ifdef CONFIG_DEBUG_STACK_USAGE 753 static void check_stack_usage(void) 754 { 755 static DEFINE_SPINLOCK(low_water_lock); 756 static int lowest_to_date = THREAD_SIZE; 757 unsigned long free; 758 759 free = stack_not_used(current); 760 761 if (free >= lowest_to_date) 762 return; 763 764 spin_lock(&low_water_lock); 765 if (free < lowest_to_date) { 766 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n", 767 current->comm, task_pid_nr(current), free); 768 lowest_to_date = free; 769 } 770 spin_unlock(&low_water_lock); 771 } 772 #else 773 static inline void check_stack_usage(void) {} 774 #endif 775 776 void __noreturn do_exit(long code) 777 { 778 struct task_struct *tsk = current; 779 int group_dead; 780 TASKS_RCU(int tasks_rcu_i); 781 782 profile_task_exit(tsk); 783 kcov_task_exit(tsk); 784 785 WARN_ON(blk_needs_flush_plug(tsk)); 786 787 if (unlikely(in_interrupt())) 788 panic("Aiee, killing interrupt handler!"); 789 if (unlikely(!tsk->pid)) 790 panic("Attempted to kill the idle task!"); 791 792 /* 793 * If do_exit is called because this processes oopsed, it's possible 794 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before 795 * continuing. Amongst other possible reasons, this is to prevent 796 * mm_release()->clear_child_tid() from writing to a user-controlled 797 * kernel address. 798 */ 799 set_fs(USER_DS); 800 801 ptrace_event(PTRACE_EVENT_EXIT, code); 802 803 validate_creds_for_do_exit(tsk); 804 805 /* 806 * We're taking recursive faults here in do_exit. Safest is to just 807 * leave this task alone and wait for reboot. 808 */ 809 if (unlikely(tsk->flags & PF_EXITING)) { 810 pr_alert("Fixing recursive fault but reboot is needed!\n"); 811 /* 812 * We can do this unlocked here. The futex code uses 813 * this flag just to verify whether the pi state 814 * cleanup has been done or not. In the worst case it 815 * loops once more. We pretend that the cleanup was 816 * done as there is no way to return. Either the 817 * OWNER_DIED bit is set by now or we push the blocked 818 * task into the wait for ever nirwana as well. 819 */ 820 tsk->flags |= PF_EXITPIDONE; 821 set_current_state(TASK_UNINTERRUPTIBLE); 822 schedule(); 823 } 824 825 exit_signals(tsk); /* sets PF_EXITING */ 826 /* 827 * Ensure that all new tsk->pi_lock acquisitions must observe 828 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner(). 829 */ 830 smp_mb(); 831 /* 832 * Ensure that we must observe the pi_state in exit_mm() -> 833 * mm_release() -> exit_pi_state_list(). 834 */ 835 raw_spin_unlock_wait(&tsk->pi_lock); 836 837 if (unlikely(in_atomic())) { 838 pr_info("note: %s[%d] exited with preempt_count %d\n", 839 current->comm, task_pid_nr(current), 840 preempt_count()); 841 preempt_count_set(PREEMPT_ENABLED); 842 } 843 844 /* sync mm's RSS info before statistics gathering */ 845 if (tsk->mm) 846 sync_mm_rss(tsk->mm); 847 acct_update_integrals(tsk); 848 group_dead = atomic_dec_and_test(&tsk->signal->live); 849 if (group_dead) { 850 #ifdef CONFIG_POSIX_TIMERS 851 hrtimer_cancel(&tsk->signal->real_timer); 852 exit_itimers(tsk->signal); 853 #endif 854 if (tsk->mm) 855 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 856 } 857 acct_collect(code, group_dead); 858 if (group_dead) 859 tty_audit_exit(); 860 audit_free(tsk); 861 862 tsk->exit_code = code; 863 taskstats_exit(tsk, group_dead); 864 865 exit_mm(); 866 867 if (group_dead) 868 acct_process(); 869 trace_sched_process_exit(tsk); 870 871 exit_sem(tsk); 872 exit_shm(tsk); 873 exit_files(tsk); 874 exit_fs(tsk); 875 if (group_dead) 876 disassociate_ctty(1); 877 exit_task_namespaces(tsk); 878 exit_task_work(tsk); 879 exit_thread(tsk); 880 881 /* 882 * Flush inherited counters to the parent - before the parent 883 * gets woken up by child-exit notifications. 884 * 885 * because of cgroup mode, must be called before cgroup_exit() 886 */ 887 perf_event_exit_task(tsk); 888 889 sched_autogroup_exit_task(tsk); 890 cgroup_exit(tsk); 891 892 /* 893 * FIXME: do that only when needed, using sched_exit tracepoint 894 */ 895 flush_ptrace_hw_breakpoint(tsk); 896 897 TASKS_RCU(preempt_disable()); 898 TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu)); 899 TASKS_RCU(preempt_enable()); 900 exit_notify(tsk, group_dead); 901 proc_exit_connector(tsk); 902 mpol_put_task_policy(tsk); 903 #ifdef CONFIG_FUTEX 904 if (unlikely(current->pi_state_cache)) 905 kfree(current->pi_state_cache); 906 #endif 907 /* 908 * Make sure we are holding no locks: 909 */ 910 debug_check_no_locks_held(); 911 /* 912 * We can do this unlocked here. The futex code uses this flag 913 * just to verify whether the pi state cleanup has been done 914 * or not. In the worst case it loops once more. 915 */ 916 tsk->flags |= PF_EXITPIDONE; 917 918 if (tsk->io_context) 919 exit_io_context(tsk); 920 921 if (tsk->splice_pipe) 922 free_pipe_info(tsk->splice_pipe); 923 924 if (tsk->task_frag.page) 925 put_page(tsk->task_frag.page); 926 927 validate_creds_for_do_exit(tsk); 928 929 check_stack_usage(); 930 preempt_disable(); 931 if (tsk->nr_dirtied) 932 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 933 exit_rcu(); 934 TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i)); 935 936 do_task_dead(); 937 } 938 EXPORT_SYMBOL_GPL(do_exit); 939 940 void complete_and_exit(struct completion *comp, long code) 941 { 942 if (comp) 943 complete(comp); 944 945 do_exit(code); 946 } 947 EXPORT_SYMBOL(complete_and_exit); 948 949 SYSCALL_DEFINE1(exit, int, error_code) 950 { 951 do_exit((error_code&0xff)<<8); 952 } 953 954 /* 955 * Take down every thread in the group. This is called by fatal signals 956 * as well as by sys_exit_group (below). 957 */ 958 void 959 do_group_exit(int exit_code) 960 { 961 struct signal_struct *sig = current->signal; 962 963 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 964 965 if (signal_group_exit(sig)) 966 exit_code = sig->group_exit_code; 967 else if (!thread_group_empty(current)) { 968 struct sighand_struct *const sighand = current->sighand; 969 970 spin_lock_irq(&sighand->siglock); 971 if (signal_group_exit(sig)) 972 /* Another thread got here before we took the lock. */ 973 exit_code = sig->group_exit_code; 974 else { 975 sig->group_exit_code = exit_code; 976 sig->flags = SIGNAL_GROUP_EXIT; 977 zap_other_threads(current); 978 } 979 spin_unlock_irq(&sighand->siglock); 980 } 981 982 do_exit(exit_code); 983 /* NOTREACHED */ 984 } 985 986 /* 987 * this kills every thread in the thread group. Note that any externally 988 * wait4()-ing process will get the correct exit code - even if this 989 * thread is not the thread group leader. 990 */ 991 SYSCALL_DEFINE1(exit_group, int, error_code) 992 { 993 do_group_exit((error_code & 0xff) << 8); 994 /* NOTREACHED */ 995 return 0; 996 } 997 998 struct wait_opts { 999 enum pid_type wo_type; 1000 int wo_flags; 1001 struct pid *wo_pid; 1002 1003 struct siginfo __user *wo_info; 1004 int __user *wo_stat; 1005 struct rusage __user *wo_rusage; 1006 1007 wait_queue_t child_wait; 1008 int notask_error; 1009 }; 1010 1011 static inline 1012 struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 1013 { 1014 if (type != PIDTYPE_PID) 1015 task = task->group_leader; 1016 return task->pids[type].pid; 1017 } 1018 1019 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 1020 { 1021 return wo->wo_type == PIDTYPE_MAX || 1022 task_pid_type(p, wo->wo_type) == wo->wo_pid; 1023 } 1024 1025 static int 1026 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p) 1027 { 1028 if (!eligible_pid(wo, p)) 1029 return 0; 1030 1031 /* 1032 * Wait for all children (clone and not) if __WALL is set or 1033 * if it is traced by us. 1034 */ 1035 if (ptrace || (wo->wo_flags & __WALL)) 1036 return 1; 1037 1038 /* 1039 * Otherwise, wait for clone children *only* if __WCLONE is set; 1040 * otherwise, wait for non-clone children *only*. 1041 * 1042 * Note: a "clone" child here is one that reports to its parent 1043 * using a signal other than SIGCHLD, or a non-leader thread which 1044 * we can only see if it is traced by us. 1045 */ 1046 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 1047 return 0; 1048 1049 return 1; 1050 } 1051 1052 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, 1053 pid_t pid, uid_t uid, int why, int status) 1054 { 1055 struct siginfo __user *infop; 1056 int retval = wo->wo_rusage 1057 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1058 1059 put_task_struct(p); 1060 infop = wo->wo_info; 1061 if (infop) { 1062 if (!retval) 1063 retval = put_user(SIGCHLD, &infop->si_signo); 1064 if (!retval) 1065 retval = put_user(0, &infop->si_errno); 1066 if (!retval) 1067 retval = put_user((short)why, &infop->si_code); 1068 if (!retval) 1069 retval = put_user(pid, &infop->si_pid); 1070 if (!retval) 1071 retval = put_user(uid, &infop->si_uid); 1072 if (!retval) 1073 retval = put_user(status, &infop->si_status); 1074 } 1075 if (!retval) 1076 retval = pid; 1077 return retval; 1078 } 1079 1080 /* 1081 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1082 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1083 * the lock and this task is uninteresting. If we return nonzero, we have 1084 * released the lock and the system call should return. 1085 */ 1086 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1087 { 1088 int state, retval, status; 1089 pid_t pid = task_pid_vnr(p); 1090 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1091 struct siginfo __user *infop; 1092 1093 if (!likely(wo->wo_flags & WEXITED)) 1094 return 0; 1095 1096 if (unlikely(wo->wo_flags & WNOWAIT)) { 1097 int exit_code = p->exit_code; 1098 int why; 1099 1100 get_task_struct(p); 1101 read_unlock(&tasklist_lock); 1102 sched_annotate_sleep(); 1103 1104 if ((exit_code & 0x7f) == 0) { 1105 why = CLD_EXITED; 1106 status = exit_code >> 8; 1107 } else { 1108 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1109 status = exit_code & 0x7f; 1110 } 1111 return wait_noreap_copyout(wo, p, pid, uid, why, status); 1112 } 1113 /* 1114 * Move the task's state to DEAD/TRACE, only one thread can do this. 1115 */ 1116 state = (ptrace_reparented(p) && thread_group_leader(p)) ? 1117 EXIT_TRACE : EXIT_DEAD; 1118 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 1119 return 0; 1120 /* 1121 * We own this thread, nobody else can reap it. 1122 */ 1123 read_unlock(&tasklist_lock); 1124 sched_annotate_sleep(); 1125 1126 /* 1127 * Check thread_group_leader() to exclude the traced sub-threads. 1128 */ 1129 if (state == EXIT_DEAD && thread_group_leader(p)) { 1130 struct signal_struct *sig = p->signal; 1131 struct signal_struct *psig = current->signal; 1132 unsigned long maxrss; 1133 u64 tgutime, tgstime; 1134 1135 /* 1136 * The resource counters for the group leader are in its 1137 * own task_struct. Those for dead threads in the group 1138 * are in its signal_struct, as are those for the child 1139 * processes it has previously reaped. All these 1140 * accumulate in the parent's signal_struct c* fields. 1141 * 1142 * We don't bother to take a lock here to protect these 1143 * p->signal fields because the whole thread group is dead 1144 * and nobody can change them. 1145 * 1146 * psig->stats_lock also protects us from our sub-theads 1147 * which can reap other children at the same time. Until 1148 * we change k_getrusage()-like users to rely on this lock 1149 * we have to take ->siglock as well. 1150 * 1151 * We use thread_group_cputime_adjusted() to get times for 1152 * the thread group, which consolidates times for all threads 1153 * in the group including the group leader. 1154 */ 1155 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1156 spin_lock_irq(¤t->sighand->siglock); 1157 write_seqlock(&psig->stats_lock); 1158 psig->cutime += tgutime + sig->cutime; 1159 psig->cstime += tgstime + sig->cstime; 1160 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1161 psig->cmin_flt += 1162 p->min_flt + sig->min_flt + sig->cmin_flt; 1163 psig->cmaj_flt += 1164 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1165 psig->cnvcsw += 1166 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1167 psig->cnivcsw += 1168 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1169 psig->cinblock += 1170 task_io_get_inblock(p) + 1171 sig->inblock + sig->cinblock; 1172 psig->coublock += 1173 task_io_get_oublock(p) + 1174 sig->oublock + sig->coublock; 1175 maxrss = max(sig->maxrss, sig->cmaxrss); 1176 if (psig->cmaxrss < maxrss) 1177 psig->cmaxrss = maxrss; 1178 task_io_accounting_add(&psig->ioac, &p->ioac); 1179 task_io_accounting_add(&psig->ioac, &sig->ioac); 1180 write_sequnlock(&psig->stats_lock); 1181 spin_unlock_irq(¤t->sighand->siglock); 1182 } 1183 1184 retval = wo->wo_rusage 1185 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1186 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1187 ? p->signal->group_exit_code : p->exit_code; 1188 if (!retval && wo->wo_stat) 1189 retval = put_user(status, wo->wo_stat); 1190 1191 infop = wo->wo_info; 1192 if (!retval && infop) 1193 retval = put_user(SIGCHLD, &infop->si_signo); 1194 if (!retval && infop) 1195 retval = put_user(0, &infop->si_errno); 1196 if (!retval && infop) { 1197 int why; 1198 1199 if ((status & 0x7f) == 0) { 1200 why = CLD_EXITED; 1201 status >>= 8; 1202 } else { 1203 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1204 status &= 0x7f; 1205 } 1206 retval = put_user((short)why, &infop->si_code); 1207 if (!retval) 1208 retval = put_user(status, &infop->si_status); 1209 } 1210 if (!retval && infop) 1211 retval = put_user(pid, &infop->si_pid); 1212 if (!retval && infop) 1213 retval = put_user(uid, &infop->si_uid); 1214 if (!retval) 1215 retval = pid; 1216 1217 if (state == EXIT_TRACE) { 1218 write_lock_irq(&tasklist_lock); 1219 /* We dropped tasklist, ptracer could die and untrace */ 1220 ptrace_unlink(p); 1221 1222 /* If parent wants a zombie, don't release it now */ 1223 state = EXIT_ZOMBIE; 1224 if (do_notify_parent(p, p->exit_signal)) 1225 state = EXIT_DEAD; 1226 p->exit_state = state; 1227 write_unlock_irq(&tasklist_lock); 1228 } 1229 if (state == EXIT_DEAD) 1230 release_task(p); 1231 1232 return retval; 1233 } 1234 1235 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1236 { 1237 if (ptrace) { 1238 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING)) 1239 return &p->exit_code; 1240 } else { 1241 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1242 return &p->signal->group_exit_code; 1243 } 1244 return NULL; 1245 } 1246 1247 /** 1248 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1249 * @wo: wait options 1250 * @ptrace: is the wait for ptrace 1251 * @p: task to wait for 1252 * 1253 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1254 * 1255 * CONTEXT: 1256 * read_lock(&tasklist_lock), which is released if return value is 1257 * non-zero. Also, grabs and releases @p->sighand->siglock. 1258 * 1259 * RETURNS: 1260 * 0 if wait condition didn't exist and search for other wait conditions 1261 * should continue. Non-zero return, -errno on failure and @p's pid on 1262 * success, implies that tasklist_lock is released and wait condition 1263 * search should terminate. 1264 */ 1265 static int wait_task_stopped(struct wait_opts *wo, 1266 int ptrace, struct task_struct *p) 1267 { 1268 struct siginfo __user *infop; 1269 int retval, exit_code, *p_code, why; 1270 uid_t uid = 0; /* unneeded, required by compiler */ 1271 pid_t pid; 1272 1273 /* 1274 * Traditionally we see ptrace'd stopped tasks regardless of options. 1275 */ 1276 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1277 return 0; 1278 1279 if (!task_stopped_code(p, ptrace)) 1280 return 0; 1281 1282 exit_code = 0; 1283 spin_lock_irq(&p->sighand->siglock); 1284 1285 p_code = task_stopped_code(p, ptrace); 1286 if (unlikely(!p_code)) 1287 goto unlock_sig; 1288 1289 exit_code = *p_code; 1290 if (!exit_code) 1291 goto unlock_sig; 1292 1293 if (!unlikely(wo->wo_flags & WNOWAIT)) 1294 *p_code = 0; 1295 1296 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1297 unlock_sig: 1298 spin_unlock_irq(&p->sighand->siglock); 1299 if (!exit_code) 1300 return 0; 1301 1302 /* 1303 * Now we are pretty sure this task is interesting. 1304 * Make sure it doesn't get reaped out from under us while we 1305 * give up the lock and then examine it below. We don't want to 1306 * keep holding onto the tasklist_lock while we call getrusage and 1307 * possibly take page faults for user memory. 1308 */ 1309 get_task_struct(p); 1310 pid = task_pid_vnr(p); 1311 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1312 read_unlock(&tasklist_lock); 1313 sched_annotate_sleep(); 1314 1315 if (unlikely(wo->wo_flags & WNOWAIT)) 1316 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code); 1317 1318 retval = wo->wo_rusage 1319 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1320 if (!retval && wo->wo_stat) 1321 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat); 1322 1323 infop = wo->wo_info; 1324 if (!retval && infop) 1325 retval = put_user(SIGCHLD, &infop->si_signo); 1326 if (!retval && infop) 1327 retval = put_user(0, &infop->si_errno); 1328 if (!retval && infop) 1329 retval = put_user((short)why, &infop->si_code); 1330 if (!retval && infop) 1331 retval = put_user(exit_code, &infop->si_status); 1332 if (!retval && infop) 1333 retval = put_user(pid, &infop->si_pid); 1334 if (!retval && infop) 1335 retval = put_user(uid, &infop->si_uid); 1336 if (!retval) 1337 retval = pid; 1338 put_task_struct(p); 1339 1340 BUG_ON(!retval); 1341 return retval; 1342 } 1343 1344 /* 1345 * Handle do_wait work for one task in a live, non-stopped state. 1346 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1347 * the lock and this task is uninteresting. If we return nonzero, we have 1348 * released the lock and the system call should return. 1349 */ 1350 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1351 { 1352 int retval; 1353 pid_t pid; 1354 uid_t uid; 1355 1356 if (!unlikely(wo->wo_flags & WCONTINUED)) 1357 return 0; 1358 1359 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1360 return 0; 1361 1362 spin_lock_irq(&p->sighand->siglock); 1363 /* Re-check with the lock held. */ 1364 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1365 spin_unlock_irq(&p->sighand->siglock); 1366 return 0; 1367 } 1368 if (!unlikely(wo->wo_flags & WNOWAIT)) 1369 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1370 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1371 spin_unlock_irq(&p->sighand->siglock); 1372 1373 pid = task_pid_vnr(p); 1374 get_task_struct(p); 1375 read_unlock(&tasklist_lock); 1376 sched_annotate_sleep(); 1377 1378 if (!wo->wo_info) { 1379 retval = wo->wo_rusage 1380 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1381 put_task_struct(p); 1382 if (!retval && wo->wo_stat) 1383 retval = put_user(0xffff, wo->wo_stat); 1384 if (!retval) 1385 retval = pid; 1386 } else { 1387 retval = wait_noreap_copyout(wo, p, pid, uid, 1388 CLD_CONTINUED, SIGCONT); 1389 BUG_ON(retval == 0); 1390 } 1391 1392 return retval; 1393 } 1394 1395 /* 1396 * Consider @p for a wait by @parent. 1397 * 1398 * -ECHILD should be in ->notask_error before the first call. 1399 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1400 * Returns zero if the search for a child should continue; 1401 * then ->notask_error is 0 if @p is an eligible child, 1402 * or still -ECHILD. 1403 */ 1404 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1405 struct task_struct *p) 1406 { 1407 /* 1408 * We can race with wait_task_zombie() from another thread. 1409 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition 1410 * can't confuse the checks below. 1411 */ 1412 int exit_state = ACCESS_ONCE(p->exit_state); 1413 int ret; 1414 1415 if (unlikely(exit_state == EXIT_DEAD)) 1416 return 0; 1417 1418 ret = eligible_child(wo, ptrace, p); 1419 if (!ret) 1420 return ret; 1421 1422 if (unlikely(exit_state == EXIT_TRACE)) { 1423 /* 1424 * ptrace == 0 means we are the natural parent. In this case 1425 * we should clear notask_error, debugger will notify us. 1426 */ 1427 if (likely(!ptrace)) 1428 wo->notask_error = 0; 1429 return 0; 1430 } 1431 1432 if (likely(!ptrace) && unlikely(p->ptrace)) { 1433 /* 1434 * If it is traced by its real parent's group, just pretend 1435 * the caller is ptrace_do_wait() and reap this child if it 1436 * is zombie. 1437 * 1438 * This also hides group stop state from real parent; otherwise 1439 * a single stop can be reported twice as group and ptrace stop. 1440 * If a ptracer wants to distinguish these two events for its 1441 * own children it should create a separate process which takes 1442 * the role of real parent. 1443 */ 1444 if (!ptrace_reparented(p)) 1445 ptrace = 1; 1446 } 1447 1448 /* slay zombie? */ 1449 if (exit_state == EXIT_ZOMBIE) { 1450 /* we don't reap group leaders with subthreads */ 1451 if (!delay_group_leader(p)) { 1452 /* 1453 * A zombie ptracee is only visible to its ptracer. 1454 * Notification and reaping will be cascaded to the 1455 * real parent when the ptracer detaches. 1456 */ 1457 if (unlikely(ptrace) || likely(!p->ptrace)) 1458 return wait_task_zombie(wo, p); 1459 } 1460 1461 /* 1462 * Allow access to stopped/continued state via zombie by 1463 * falling through. Clearing of notask_error is complex. 1464 * 1465 * When !@ptrace: 1466 * 1467 * If WEXITED is set, notask_error should naturally be 1468 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1469 * so, if there are live subthreads, there are events to 1470 * wait for. If all subthreads are dead, it's still safe 1471 * to clear - this function will be called again in finite 1472 * amount time once all the subthreads are released and 1473 * will then return without clearing. 1474 * 1475 * When @ptrace: 1476 * 1477 * Stopped state is per-task and thus can't change once the 1478 * target task dies. Only continued and exited can happen. 1479 * Clear notask_error if WCONTINUED | WEXITED. 1480 */ 1481 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1482 wo->notask_error = 0; 1483 } else { 1484 /* 1485 * @p is alive and it's gonna stop, continue or exit, so 1486 * there always is something to wait for. 1487 */ 1488 wo->notask_error = 0; 1489 } 1490 1491 /* 1492 * Wait for stopped. Depending on @ptrace, different stopped state 1493 * is used and the two don't interact with each other. 1494 */ 1495 ret = wait_task_stopped(wo, ptrace, p); 1496 if (ret) 1497 return ret; 1498 1499 /* 1500 * Wait for continued. There's only one continued state and the 1501 * ptracer can consume it which can confuse the real parent. Don't 1502 * use WCONTINUED from ptracer. You don't need or want it. 1503 */ 1504 return wait_task_continued(wo, p); 1505 } 1506 1507 /* 1508 * Do the work of do_wait() for one thread in the group, @tsk. 1509 * 1510 * -ECHILD should be in ->notask_error before the first call. 1511 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1512 * Returns zero if the search for a child should continue; then 1513 * ->notask_error is 0 if there were any eligible children, 1514 * or still -ECHILD. 1515 */ 1516 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1517 { 1518 struct task_struct *p; 1519 1520 list_for_each_entry(p, &tsk->children, sibling) { 1521 int ret = wait_consider_task(wo, 0, p); 1522 1523 if (ret) 1524 return ret; 1525 } 1526 1527 return 0; 1528 } 1529 1530 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1531 { 1532 struct task_struct *p; 1533 1534 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1535 int ret = wait_consider_task(wo, 1, p); 1536 1537 if (ret) 1538 return ret; 1539 } 1540 1541 return 0; 1542 } 1543 1544 static int child_wait_callback(wait_queue_t *wait, unsigned mode, 1545 int sync, void *key) 1546 { 1547 struct wait_opts *wo = container_of(wait, struct wait_opts, 1548 child_wait); 1549 struct task_struct *p = key; 1550 1551 if (!eligible_pid(wo, p)) 1552 return 0; 1553 1554 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1555 return 0; 1556 1557 return default_wake_function(wait, mode, sync, key); 1558 } 1559 1560 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1561 { 1562 __wake_up_sync_key(&parent->signal->wait_chldexit, 1563 TASK_INTERRUPTIBLE, 1, p); 1564 } 1565 1566 static long do_wait(struct wait_opts *wo) 1567 { 1568 struct task_struct *tsk; 1569 int retval; 1570 1571 trace_sched_process_wait(wo->wo_pid); 1572 1573 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1574 wo->child_wait.private = current; 1575 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1576 repeat: 1577 /* 1578 * If there is nothing that can match our criteria, just get out. 1579 * We will clear ->notask_error to zero if we see any child that 1580 * might later match our criteria, even if we are not able to reap 1581 * it yet. 1582 */ 1583 wo->notask_error = -ECHILD; 1584 if ((wo->wo_type < PIDTYPE_MAX) && 1585 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) 1586 goto notask; 1587 1588 set_current_state(TASK_INTERRUPTIBLE); 1589 read_lock(&tasklist_lock); 1590 tsk = current; 1591 do { 1592 retval = do_wait_thread(wo, tsk); 1593 if (retval) 1594 goto end; 1595 1596 retval = ptrace_do_wait(wo, tsk); 1597 if (retval) 1598 goto end; 1599 1600 if (wo->wo_flags & __WNOTHREAD) 1601 break; 1602 } while_each_thread(current, tsk); 1603 read_unlock(&tasklist_lock); 1604 1605 notask: 1606 retval = wo->notask_error; 1607 if (!retval && !(wo->wo_flags & WNOHANG)) { 1608 retval = -ERESTARTSYS; 1609 if (!signal_pending(current)) { 1610 schedule(); 1611 goto repeat; 1612 } 1613 } 1614 end: 1615 __set_current_state(TASK_RUNNING); 1616 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1617 return retval; 1618 } 1619 1620 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1621 infop, int, options, struct rusage __user *, ru) 1622 { 1623 struct wait_opts wo; 1624 struct pid *pid = NULL; 1625 enum pid_type type; 1626 long ret; 1627 1628 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED| 1629 __WNOTHREAD|__WCLONE|__WALL)) 1630 return -EINVAL; 1631 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1632 return -EINVAL; 1633 1634 switch (which) { 1635 case P_ALL: 1636 type = PIDTYPE_MAX; 1637 break; 1638 case P_PID: 1639 type = PIDTYPE_PID; 1640 if (upid <= 0) 1641 return -EINVAL; 1642 break; 1643 case P_PGID: 1644 type = PIDTYPE_PGID; 1645 if (upid <= 0) 1646 return -EINVAL; 1647 break; 1648 default: 1649 return -EINVAL; 1650 } 1651 1652 if (type < PIDTYPE_MAX) 1653 pid = find_get_pid(upid); 1654 1655 wo.wo_type = type; 1656 wo.wo_pid = pid; 1657 wo.wo_flags = options; 1658 wo.wo_info = infop; 1659 wo.wo_stat = NULL; 1660 wo.wo_rusage = ru; 1661 ret = do_wait(&wo); 1662 1663 if (ret > 0) { 1664 ret = 0; 1665 } else if (infop) { 1666 /* 1667 * For a WNOHANG return, clear out all the fields 1668 * we would set so the user can easily tell the 1669 * difference. 1670 */ 1671 if (!ret) 1672 ret = put_user(0, &infop->si_signo); 1673 if (!ret) 1674 ret = put_user(0, &infop->si_errno); 1675 if (!ret) 1676 ret = put_user(0, &infop->si_code); 1677 if (!ret) 1678 ret = put_user(0, &infop->si_pid); 1679 if (!ret) 1680 ret = put_user(0, &infop->si_uid); 1681 if (!ret) 1682 ret = put_user(0, &infop->si_status); 1683 } 1684 1685 put_pid(pid); 1686 return ret; 1687 } 1688 1689 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1690 int, options, struct rusage __user *, ru) 1691 { 1692 struct wait_opts wo; 1693 struct pid *pid = NULL; 1694 enum pid_type type; 1695 long ret; 1696 1697 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1698 __WNOTHREAD|__WCLONE|__WALL)) 1699 return -EINVAL; 1700 1701 if (upid == -1) 1702 type = PIDTYPE_MAX; 1703 else if (upid < 0) { 1704 type = PIDTYPE_PGID; 1705 pid = find_get_pid(-upid); 1706 } else if (upid == 0) { 1707 type = PIDTYPE_PGID; 1708 pid = get_task_pid(current, PIDTYPE_PGID); 1709 } else /* upid > 0 */ { 1710 type = PIDTYPE_PID; 1711 pid = find_get_pid(upid); 1712 } 1713 1714 wo.wo_type = type; 1715 wo.wo_pid = pid; 1716 wo.wo_flags = options | WEXITED; 1717 wo.wo_info = NULL; 1718 wo.wo_stat = stat_addr; 1719 wo.wo_rusage = ru; 1720 ret = do_wait(&wo); 1721 put_pid(pid); 1722 1723 return ret; 1724 } 1725 1726 #ifdef __ARCH_WANT_SYS_WAITPID 1727 1728 /* 1729 * sys_waitpid() remains for compatibility. waitpid() should be 1730 * implemented by calling sys_wait4() from libc.a. 1731 */ 1732 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1733 { 1734 return sys_wait4(pid, stat_addr, options, NULL); 1735 } 1736 1737 #endif 1738