xref: /linux/kernel/exit.c (revision de2fe5e07d58424bc286fff3fd3c1b0bf933cd58)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/config.h>
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/interrupt.h>
11 #include <linux/smp_lock.h>
12 #include <linux/module.h>
13 #include <linux/capability.h>
14 #include <linux/completion.h>
15 #include <linux/personality.h>
16 #include <linux/tty.h>
17 #include <linux/namespace.h>
18 #include <linux/key.h>
19 #include <linux/security.h>
20 #include <linux/cpu.h>
21 #include <linux/acct.h>
22 #include <linux/file.h>
23 #include <linux/binfmts.h>
24 #include <linux/ptrace.h>
25 #include <linux/profile.h>
26 #include <linux/mount.h>
27 #include <linux/proc_fs.h>
28 #include <linux/mempolicy.h>
29 #include <linux/cpuset.h>
30 #include <linux/syscalls.h>
31 #include <linux/signal.h>
32 #include <linux/posix-timers.h>
33 #include <linux/cn_proc.h>
34 #include <linux/mutex.h>
35 #include <linux/futex.h>
36 #include <linux/compat.h>
37 
38 #include <asm/uaccess.h>
39 #include <asm/unistd.h>
40 #include <asm/pgtable.h>
41 #include <asm/mmu_context.h>
42 
43 extern void sem_exit (void);
44 extern struct task_struct *child_reaper;
45 
46 int getrusage(struct task_struct *, int, struct rusage __user *);
47 
48 static void exit_mm(struct task_struct * tsk);
49 
50 static void __unhash_process(struct task_struct *p)
51 {
52 	nr_threads--;
53 	detach_pid(p, PIDTYPE_PID);
54 	if (thread_group_leader(p)) {
55 		detach_pid(p, PIDTYPE_PGID);
56 		detach_pid(p, PIDTYPE_SID);
57 
58 		list_del_init(&p->tasks);
59 		__get_cpu_var(process_counts)--;
60 	}
61 	list_del_rcu(&p->thread_group);
62 	remove_parent(p);
63 }
64 
65 /*
66  * This function expects the tasklist_lock write-locked.
67  */
68 static void __exit_signal(struct task_struct *tsk)
69 {
70 	struct signal_struct *sig = tsk->signal;
71 	struct sighand_struct *sighand;
72 
73 	BUG_ON(!sig);
74 	BUG_ON(!atomic_read(&sig->count));
75 
76 	rcu_read_lock();
77 	sighand = rcu_dereference(tsk->sighand);
78 	spin_lock(&sighand->siglock);
79 
80 	posix_cpu_timers_exit(tsk);
81 	if (atomic_dec_and_test(&sig->count))
82 		posix_cpu_timers_exit_group(tsk);
83 	else {
84 		/*
85 		 * If there is any task waiting for the group exit
86 		 * then notify it:
87 		 */
88 		if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
89 			wake_up_process(sig->group_exit_task);
90 			sig->group_exit_task = NULL;
91 		}
92 		if (tsk == sig->curr_target)
93 			sig->curr_target = next_thread(tsk);
94 		/*
95 		 * Accumulate here the counters for all threads but the
96 		 * group leader as they die, so they can be added into
97 		 * the process-wide totals when those are taken.
98 		 * The group leader stays around as a zombie as long
99 		 * as there are other threads.  When it gets reaped,
100 		 * the exit.c code will add its counts into these totals.
101 		 * We won't ever get here for the group leader, since it
102 		 * will have been the last reference on the signal_struct.
103 		 */
104 		sig->utime = cputime_add(sig->utime, tsk->utime);
105 		sig->stime = cputime_add(sig->stime, tsk->stime);
106 		sig->min_flt += tsk->min_flt;
107 		sig->maj_flt += tsk->maj_flt;
108 		sig->nvcsw += tsk->nvcsw;
109 		sig->nivcsw += tsk->nivcsw;
110 		sig->sched_time += tsk->sched_time;
111 		sig = NULL; /* Marker for below. */
112 	}
113 
114 	__unhash_process(tsk);
115 
116 	tsk->signal = NULL;
117 	tsk->sighand = NULL;
118 	spin_unlock(&sighand->siglock);
119 	rcu_read_unlock();
120 
121 	__cleanup_sighand(sighand);
122 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
123 	flush_sigqueue(&tsk->pending);
124 	if (sig) {
125 		flush_sigqueue(&sig->shared_pending);
126 		__cleanup_signal(sig);
127 	}
128 }
129 
130 void release_task(struct task_struct * p)
131 {
132 	int zap_leader;
133 	task_t *leader;
134 	struct dentry *proc_dentry;
135 
136 repeat:
137 	atomic_dec(&p->user->processes);
138 	spin_lock(&p->proc_lock);
139 	proc_dentry = proc_pid_unhash(p);
140 	write_lock_irq(&tasklist_lock);
141 	ptrace_unlink(p);
142 	BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
143 	__exit_signal(p);
144 
145 	/*
146 	 * If we are the last non-leader member of the thread
147 	 * group, and the leader is zombie, then notify the
148 	 * group leader's parent process. (if it wants notification.)
149 	 */
150 	zap_leader = 0;
151 	leader = p->group_leader;
152 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
153 		BUG_ON(leader->exit_signal == -1);
154 		do_notify_parent(leader, leader->exit_signal);
155 		/*
156 		 * If we were the last child thread and the leader has
157 		 * exited already, and the leader's parent ignores SIGCHLD,
158 		 * then we are the one who should release the leader.
159 		 *
160 		 * do_notify_parent() will have marked it self-reaping in
161 		 * that case.
162 		 */
163 		zap_leader = (leader->exit_signal == -1);
164 	}
165 
166 	sched_exit(p);
167 	write_unlock_irq(&tasklist_lock);
168 	spin_unlock(&p->proc_lock);
169 	proc_pid_flush(proc_dentry);
170 	release_thread(p);
171 	put_task_struct(p);
172 
173 	p = leader;
174 	if (unlikely(zap_leader))
175 		goto repeat;
176 }
177 
178 /*
179  * This checks not only the pgrp, but falls back on the pid if no
180  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
181  * without this...
182  */
183 int session_of_pgrp(int pgrp)
184 {
185 	struct task_struct *p;
186 	int sid = -1;
187 
188 	read_lock(&tasklist_lock);
189 	do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
190 		if (p->signal->session > 0) {
191 			sid = p->signal->session;
192 			goto out;
193 		}
194 	} while_each_task_pid(pgrp, PIDTYPE_PGID, p);
195 	p = find_task_by_pid(pgrp);
196 	if (p)
197 		sid = p->signal->session;
198 out:
199 	read_unlock(&tasklist_lock);
200 
201 	return sid;
202 }
203 
204 /*
205  * Determine if a process group is "orphaned", according to the POSIX
206  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
207  * by terminal-generated stop signals.  Newly orphaned process groups are
208  * to receive a SIGHUP and a SIGCONT.
209  *
210  * "I ask you, have you ever known what it is to be an orphan?"
211  */
212 static int will_become_orphaned_pgrp(int pgrp, task_t *ignored_task)
213 {
214 	struct task_struct *p;
215 	int ret = 1;
216 
217 	do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
218 		if (p == ignored_task
219 				|| p->exit_state
220 				|| p->real_parent->pid == 1)
221 			continue;
222 		if (process_group(p->real_parent) != pgrp
223 			    && p->real_parent->signal->session == p->signal->session) {
224 			ret = 0;
225 			break;
226 		}
227 	} while_each_task_pid(pgrp, PIDTYPE_PGID, p);
228 	return ret;	/* (sighing) "Often!" */
229 }
230 
231 int is_orphaned_pgrp(int pgrp)
232 {
233 	int retval;
234 
235 	read_lock(&tasklist_lock);
236 	retval = will_become_orphaned_pgrp(pgrp, NULL);
237 	read_unlock(&tasklist_lock);
238 
239 	return retval;
240 }
241 
242 static int has_stopped_jobs(int pgrp)
243 {
244 	int retval = 0;
245 	struct task_struct *p;
246 
247 	do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
248 		if (p->state != TASK_STOPPED)
249 			continue;
250 
251 		/* If p is stopped by a debugger on a signal that won't
252 		   stop it, then don't count p as stopped.  This isn't
253 		   perfect but it's a good approximation.  */
254 		if (unlikely (p->ptrace)
255 		    && p->exit_code != SIGSTOP
256 		    && p->exit_code != SIGTSTP
257 		    && p->exit_code != SIGTTOU
258 		    && p->exit_code != SIGTTIN)
259 			continue;
260 
261 		retval = 1;
262 		break;
263 	} while_each_task_pid(pgrp, PIDTYPE_PGID, p);
264 	return retval;
265 }
266 
267 /**
268  * reparent_to_init - Reparent the calling kernel thread to the init task.
269  *
270  * If a kernel thread is launched as a result of a system call, or if
271  * it ever exits, it should generally reparent itself to init so that
272  * it is correctly cleaned up on exit.
273  *
274  * The various task state such as scheduling policy and priority may have
275  * been inherited from a user process, so we reset them to sane values here.
276  *
277  * NOTE that reparent_to_init() gives the caller full capabilities.
278  */
279 static void reparent_to_init(void)
280 {
281 	write_lock_irq(&tasklist_lock);
282 
283 	ptrace_unlink(current);
284 	/* Reparent to init */
285 	remove_parent(current);
286 	current->parent = child_reaper;
287 	current->real_parent = child_reaper;
288 	add_parent(current);
289 
290 	/* Set the exit signal to SIGCHLD so we signal init on exit */
291 	current->exit_signal = SIGCHLD;
292 
293 	if ((current->policy == SCHED_NORMAL ||
294 			current->policy == SCHED_BATCH)
295 				&& (task_nice(current) < 0))
296 		set_user_nice(current, 0);
297 	/* cpus_allowed? */
298 	/* rt_priority? */
299 	/* signals? */
300 	security_task_reparent_to_init(current);
301 	memcpy(current->signal->rlim, init_task.signal->rlim,
302 	       sizeof(current->signal->rlim));
303 	atomic_inc(&(INIT_USER->__count));
304 	write_unlock_irq(&tasklist_lock);
305 	switch_uid(INIT_USER);
306 }
307 
308 void __set_special_pids(pid_t session, pid_t pgrp)
309 {
310 	struct task_struct *curr = current->group_leader;
311 
312 	if (curr->signal->session != session) {
313 		detach_pid(curr, PIDTYPE_SID);
314 		curr->signal->session = session;
315 		attach_pid(curr, PIDTYPE_SID, session);
316 	}
317 	if (process_group(curr) != pgrp) {
318 		detach_pid(curr, PIDTYPE_PGID);
319 		curr->signal->pgrp = pgrp;
320 		attach_pid(curr, PIDTYPE_PGID, pgrp);
321 	}
322 }
323 
324 void set_special_pids(pid_t session, pid_t pgrp)
325 {
326 	write_lock_irq(&tasklist_lock);
327 	__set_special_pids(session, pgrp);
328 	write_unlock_irq(&tasklist_lock);
329 }
330 
331 /*
332  * Let kernel threads use this to say that they
333  * allow a certain signal (since daemonize() will
334  * have disabled all of them by default).
335  */
336 int allow_signal(int sig)
337 {
338 	if (!valid_signal(sig) || sig < 1)
339 		return -EINVAL;
340 
341 	spin_lock_irq(&current->sighand->siglock);
342 	sigdelset(&current->blocked, sig);
343 	if (!current->mm) {
344 		/* Kernel threads handle their own signals.
345 		   Let the signal code know it'll be handled, so
346 		   that they don't get converted to SIGKILL or
347 		   just silently dropped */
348 		current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
349 	}
350 	recalc_sigpending();
351 	spin_unlock_irq(&current->sighand->siglock);
352 	return 0;
353 }
354 
355 EXPORT_SYMBOL(allow_signal);
356 
357 int disallow_signal(int sig)
358 {
359 	if (!valid_signal(sig) || sig < 1)
360 		return -EINVAL;
361 
362 	spin_lock_irq(&current->sighand->siglock);
363 	sigaddset(&current->blocked, sig);
364 	recalc_sigpending();
365 	spin_unlock_irq(&current->sighand->siglock);
366 	return 0;
367 }
368 
369 EXPORT_SYMBOL(disallow_signal);
370 
371 /*
372  *	Put all the gunge required to become a kernel thread without
373  *	attached user resources in one place where it belongs.
374  */
375 
376 void daemonize(const char *name, ...)
377 {
378 	va_list args;
379 	struct fs_struct *fs;
380 	sigset_t blocked;
381 
382 	va_start(args, name);
383 	vsnprintf(current->comm, sizeof(current->comm), name, args);
384 	va_end(args);
385 
386 	/*
387 	 * If we were started as result of loading a module, close all of the
388 	 * user space pages.  We don't need them, and if we didn't close them
389 	 * they would be locked into memory.
390 	 */
391 	exit_mm(current);
392 
393 	set_special_pids(1, 1);
394 	mutex_lock(&tty_mutex);
395 	current->signal->tty = NULL;
396 	mutex_unlock(&tty_mutex);
397 
398 	/* Block and flush all signals */
399 	sigfillset(&blocked);
400 	sigprocmask(SIG_BLOCK, &blocked, NULL);
401 	flush_signals(current);
402 
403 	/* Become as one with the init task */
404 
405 	exit_fs(current);	/* current->fs->count--; */
406 	fs = init_task.fs;
407 	current->fs = fs;
408 	atomic_inc(&fs->count);
409 	exit_namespace(current);
410 	current->namespace = init_task.namespace;
411 	get_namespace(current->namespace);
412  	exit_files(current);
413 	current->files = init_task.files;
414 	atomic_inc(&current->files->count);
415 
416 	reparent_to_init();
417 }
418 
419 EXPORT_SYMBOL(daemonize);
420 
421 static void close_files(struct files_struct * files)
422 {
423 	int i, j;
424 	struct fdtable *fdt;
425 
426 	j = 0;
427 
428 	/*
429 	 * It is safe to dereference the fd table without RCU or
430 	 * ->file_lock because this is the last reference to the
431 	 * files structure.
432 	 */
433 	fdt = files_fdtable(files);
434 	for (;;) {
435 		unsigned long set;
436 		i = j * __NFDBITS;
437 		if (i >= fdt->max_fdset || i >= fdt->max_fds)
438 			break;
439 		set = fdt->open_fds->fds_bits[j++];
440 		while (set) {
441 			if (set & 1) {
442 				struct file * file = xchg(&fdt->fd[i], NULL);
443 				if (file)
444 					filp_close(file, files);
445 			}
446 			i++;
447 			set >>= 1;
448 		}
449 	}
450 }
451 
452 struct files_struct *get_files_struct(struct task_struct *task)
453 {
454 	struct files_struct *files;
455 
456 	task_lock(task);
457 	files = task->files;
458 	if (files)
459 		atomic_inc(&files->count);
460 	task_unlock(task);
461 
462 	return files;
463 }
464 
465 void fastcall put_files_struct(struct files_struct *files)
466 {
467 	struct fdtable *fdt;
468 
469 	if (atomic_dec_and_test(&files->count)) {
470 		close_files(files);
471 		/*
472 		 * Free the fd and fdset arrays if we expanded them.
473 		 * If the fdtable was embedded, pass files for freeing
474 		 * at the end of the RCU grace period. Otherwise,
475 		 * you can free files immediately.
476 		 */
477 		fdt = files_fdtable(files);
478 		if (fdt == &files->fdtab)
479 			fdt->free_files = files;
480 		else
481 			kmem_cache_free(files_cachep, files);
482 		free_fdtable(fdt);
483 	}
484 }
485 
486 EXPORT_SYMBOL(put_files_struct);
487 
488 static inline void __exit_files(struct task_struct *tsk)
489 {
490 	struct files_struct * files = tsk->files;
491 
492 	if (files) {
493 		task_lock(tsk);
494 		tsk->files = NULL;
495 		task_unlock(tsk);
496 		put_files_struct(files);
497 	}
498 }
499 
500 void exit_files(struct task_struct *tsk)
501 {
502 	__exit_files(tsk);
503 }
504 
505 static inline void __put_fs_struct(struct fs_struct *fs)
506 {
507 	/* No need to hold fs->lock if we are killing it */
508 	if (atomic_dec_and_test(&fs->count)) {
509 		dput(fs->root);
510 		mntput(fs->rootmnt);
511 		dput(fs->pwd);
512 		mntput(fs->pwdmnt);
513 		if (fs->altroot) {
514 			dput(fs->altroot);
515 			mntput(fs->altrootmnt);
516 		}
517 		kmem_cache_free(fs_cachep, fs);
518 	}
519 }
520 
521 void put_fs_struct(struct fs_struct *fs)
522 {
523 	__put_fs_struct(fs);
524 }
525 
526 static inline void __exit_fs(struct task_struct *tsk)
527 {
528 	struct fs_struct * fs = tsk->fs;
529 
530 	if (fs) {
531 		task_lock(tsk);
532 		tsk->fs = NULL;
533 		task_unlock(tsk);
534 		__put_fs_struct(fs);
535 	}
536 }
537 
538 void exit_fs(struct task_struct *tsk)
539 {
540 	__exit_fs(tsk);
541 }
542 
543 EXPORT_SYMBOL_GPL(exit_fs);
544 
545 /*
546  * Turn us into a lazy TLB process if we
547  * aren't already..
548  */
549 static void exit_mm(struct task_struct * tsk)
550 {
551 	struct mm_struct *mm = tsk->mm;
552 
553 	mm_release(tsk, mm);
554 	if (!mm)
555 		return;
556 	/*
557 	 * Serialize with any possible pending coredump.
558 	 * We must hold mmap_sem around checking core_waiters
559 	 * and clearing tsk->mm.  The core-inducing thread
560 	 * will increment core_waiters for each thread in the
561 	 * group with ->mm != NULL.
562 	 */
563 	down_read(&mm->mmap_sem);
564 	if (mm->core_waiters) {
565 		up_read(&mm->mmap_sem);
566 		down_write(&mm->mmap_sem);
567 		if (!--mm->core_waiters)
568 			complete(mm->core_startup_done);
569 		up_write(&mm->mmap_sem);
570 
571 		wait_for_completion(&mm->core_done);
572 		down_read(&mm->mmap_sem);
573 	}
574 	atomic_inc(&mm->mm_count);
575 	if (mm != tsk->active_mm) BUG();
576 	/* more a memory barrier than a real lock */
577 	task_lock(tsk);
578 	tsk->mm = NULL;
579 	up_read(&mm->mmap_sem);
580 	enter_lazy_tlb(mm, current);
581 	task_unlock(tsk);
582 	mmput(mm);
583 }
584 
585 static inline void choose_new_parent(task_t *p, task_t *reaper)
586 {
587 	/*
588 	 * Make sure we're not reparenting to ourselves and that
589 	 * the parent is not a zombie.
590 	 */
591 	BUG_ON(p == reaper || reaper->exit_state);
592 	p->real_parent = reaper;
593 }
594 
595 static void reparent_thread(task_t *p, task_t *father, int traced)
596 {
597 	/* We don't want people slaying init.  */
598 	if (p->exit_signal != -1)
599 		p->exit_signal = SIGCHLD;
600 
601 	if (p->pdeath_signal)
602 		/* We already hold the tasklist_lock here.  */
603 		group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
604 
605 	/* Move the child from its dying parent to the new one.  */
606 	if (unlikely(traced)) {
607 		/* Preserve ptrace links if someone else is tracing this child.  */
608 		list_del_init(&p->ptrace_list);
609 		if (p->parent != p->real_parent)
610 			list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
611 	} else {
612 		/* If this child is being traced, then we're the one tracing it
613 		 * anyway, so let go of it.
614 		 */
615 		p->ptrace = 0;
616 		remove_parent(p);
617 		p->parent = p->real_parent;
618 		add_parent(p);
619 
620 		/* If we'd notified the old parent about this child's death,
621 		 * also notify the new parent.
622 		 */
623 		if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
624 		    thread_group_empty(p))
625 			do_notify_parent(p, p->exit_signal);
626 		else if (p->state == TASK_TRACED) {
627 			/*
628 			 * If it was at a trace stop, turn it into
629 			 * a normal stop since it's no longer being
630 			 * traced.
631 			 */
632 			ptrace_untrace(p);
633 		}
634 	}
635 
636 	/*
637 	 * process group orphan check
638 	 * Case ii: Our child is in a different pgrp
639 	 * than we are, and it was the only connection
640 	 * outside, so the child pgrp is now orphaned.
641 	 */
642 	if ((process_group(p) != process_group(father)) &&
643 	    (p->signal->session == father->signal->session)) {
644 		int pgrp = process_group(p);
645 
646 		if (will_become_orphaned_pgrp(pgrp, NULL) && has_stopped_jobs(pgrp)) {
647 			__kill_pg_info(SIGHUP, SEND_SIG_PRIV, pgrp);
648 			__kill_pg_info(SIGCONT, SEND_SIG_PRIV, pgrp);
649 		}
650 	}
651 }
652 
653 /*
654  * When we die, we re-parent all our children.
655  * Try to give them to another thread in our thread
656  * group, and if no such member exists, give it to
657  * the global child reaper process (ie "init")
658  */
659 static void forget_original_parent(struct task_struct * father,
660 					  struct list_head *to_release)
661 {
662 	struct task_struct *p, *reaper = father;
663 	struct list_head *_p, *_n;
664 
665 	do {
666 		reaper = next_thread(reaper);
667 		if (reaper == father) {
668 			reaper = child_reaper;
669 			break;
670 		}
671 	} while (reaper->exit_state);
672 
673 	/*
674 	 * There are only two places where our children can be:
675 	 *
676 	 * - in our child list
677 	 * - in our ptraced child list
678 	 *
679 	 * Search them and reparent children.
680 	 */
681 	list_for_each_safe(_p, _n, &father->children) {
682 		int ptrace;
683 		p = list_entry(_p,struct task_struct,sibling);
684 
685 		ptrace = p->ptrace;
686 
687 		/* if father isn't the real parent, then ptrace must be enabled */
688 		BUG_ON(father != p->real_parent && !ptrace);
689 
690 		if (father == p->real_parent) {
691 			/* reparent with a reaper, real father it's us */
692 			choose_new_parent(p, reaper);
693 			reparent_thread(p, father, 0);
694 		} else {
695 			/* reparent ptraced task to its real parent */
696 			__ptrace_unlink (p);
697 			if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
698 			    thread_group_empty(p))
699 				do_notify_parent(p, p->exit_signal);
700 		}
701 
702 		/*
703 		 * if the ptraced child is a zombie with exit_signal == -1
704 		 * we must collect it before we exit, or it will remain
705 		 * zombie forever since we prevented it from self-reap itself
706 		 * while it was being traced by us, to be able to see it in wait4.
707 		 */
708 		if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
709 			list_add(&p->ptrace_list, to_release);
710 	}
711 	list_for_each_safe(_p, _n, &father->ptrace_children) {
712 		p = list_entry(_p,struct task_struct,ptrace_list);
713 		choose_new_parent(p, reaper);
714 		reparent_thread(p, father, 1);
715 	}
716 }
717 
718 /*
719  * Send signals to all our closest relatives so that they know
720  * to properly mourn us..
721  */
722 static void exit_notify(struct task_struct *tsk)
723 {
724 	int state;
725 	struct task_struct *t;
726 	struct list_head ptrace_dead, *_p, *_n;
727 
728 	if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT)
729 	    && !thread_group_empty(tsk)) {
730 		/*
731 		 * This occurs when there was a race between our exit
732 		 * syscall and a group signal choosing us as the one to
733 		 * wake up.  It could be that we are the only thread
734 		 * alerted to check for pending signals, but another thread
735 		 * should be woken now to take the signal since we will not.
736 		 * Now we'll wake all the threads in the group just to make
737 		 * sure someone gets all the pending signals.
738 		 */
739 		read_lock(&tasklist_lock);
740 		spin_lock_irq(&tsk->sighand->siglock);
741 		for (t = next_thread(tsk); t != tsk; t = next_thread(t))
742 			if (!signal_pending(t) && !(t->flags & PF_EXITING)) {
743 				recalc_sigpending_tsk(t);
744 				if (signal_pending(t))
745 					signal_wake_up(t, 0);
746 			}
747 		spin_unlock_irq(&tsk->sighand->siglock);
748 		read_unlock(&tasklist_lock);
749 	}
750 
751 	write_lock_irq(&tasklist_lock);
752 
753 	/*
754 	 * This does two things:
755 	 *
756   	 * A.  Make init inherit all the child processes
757 	 * B.  Check to see if any process groups have become orphaned
758 	 *	as a result of our exiting, and if they have any stopped
759 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
760 	 */
761 
762 	INIT_LIST_HEAD(&ptrace_dead);
763 	forget_original_parent(tsk, &ptrace_dead);
764 	BUG_ON(!list_empty(&tsk->children));
765 	BUG_ON(!list_empty(&tsk->ptrace_children));
766 
767 	/*
768 	 * Check to see if any process groups have become orphaned
769 	 * as a result of our exiting, and if they have any stopped
770 	 * jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
771 	 *
772 	 * Case i: Our father is in a different pgrp than we are
773 	 * and we were the only connection outside, so our pgrp
774 	 * is about to become orphaned.
775 	 */
776 
777 	t = tsk->real_parent;
778 
779 	if ((process_group(t) != process_group(tsk)) &&
780 	    (t->signal->session == tsk->signal->session) &&
781 	    will_become_orphaned_pgrp(process_group(tsk), tsk) &&
782 	    has_stopped_jobs(process_group(tsk))) {
783 		__kill_pg_info(SIGHUP, SEND_SIG_PRIV, process_group(tsk));
784 		__kill_pg_info(SIGCONT, SEND_SIG_PRIV, process_group(tsk));
785 	}
786 
787 	/* Let father know we died
788 	 *
789 	 * Thread signals are configurable, but you aren't going to use
790 	 * that to send signals to arbitary processes.
791 	 * That stops right now.
792 	 *
793 	 * If the parent exec id doesn't match the exec id we saved
794 	 * when we started then we know the parent has changed security
795 	 * domain.
796 	 *
797 	 * If our self_exec id doesn't match our parent_exec_id then
798 	 * we have changed execution domain as these two values started
799 	 * the same after a fork.
800 	 *
801 	 */
802 
803 	if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
804 	    ( tsk->parent_exec_id != t->self_exec_id  ||
805 	      tsk->self_exec_id != tsk->parent_exec_id)
806 	    && !capable(CAP_KILL))
807 		tsk->exit_signal = SIGCHLD;
808 
809 
810 	/* If something other than our normal parent is ptracing us, then
811 	 * send it a SIGCHLD instead of honoring exit_signal.  exit_signal
812 	 * only has special meaning to our real parent.
813 	 */
814 	if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
815 		int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
816 		do_notify_parent(tsk, signal);
817 	} else if (tsk->ptrace) {
818 		do_notify_parent(tsk, SIGCHLD);
819 	}
820 
821 	state = EXIT_ZOMBIE;
822 	if (tsk->exit_signal == -1 &&
823 	    (likely(tsk->ptrace == 0) ||
824 	     unlikely(tsk->parent->signal->flags & SIGNAL_GROUP_EXIT)))
825 		state = EXIT_DEAD;
826 	tsk->exit_state = state;
827 
828 	write_unlock_irq(&tasklist_lock);
829 
830 	list_for_each_safe(_p, _n, &ptrace_dead) {
831 		list_del_init(_p);
832 		t = list_entry(_p,struct task_struct,ptrace_list);
833 		release_task(t);
834 	}
835 
836 	/* If the process is dead, release it - nobody will wait for it */
837 	if (state == EXIT_DEAD)
838 		release_task(tsk);
839 }
840 
841 fastcall NORET_TYPE void do_exit(long code)
842 {
843 	struct task_struct *tsk = current;
844 	int group_dead;
845 
846 	profile_task_exit(tsk);
847 
848 	WARN_ON(atomic_read(&tsk->fs_excl));
849 
850 	if (unlikely(in_interrupt()))
851 		panic("Aiee, killing interrupt handler!");
852 	if (unlikely(!tsk->pid))
853 		panic("Attempted to kill the idle task!");
854 	if (unlikely(tsk == child_reaper))
855 		panic("Attempted to kill init!");
856 
857 	if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
858 		current->ptrace_message = code;
859 		ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
860 	}
861 
862 	/*
863 	 * We're taking recursive faults here in do_exit. Safest is to just
864 	 * leave this task alone and wait for reboot.
865 	 */
866 	if (unlikely(tsk->flags & PF_EXITING)) {
867 		printk(KERN_ALERT
868 			"Fixing recursive fault but reboot is needed!\n");
869 		if (tsk->io_context)
870 			exit_io_context();
871 		set_current_state(TASK_UNINTERRUPTIBLE);
872 		schedule();
873 	}
874 
875 	tsk->flags |= PF_EXITING;
876 
877 	/*
878 	 * Make sure we don't try to process any timer firings
879 	 * while we are already exiting.
880 	 */
881  	tsk->it_virt_expires = cputime_zero;
882  	tsk->it_prof_expires = cputime_zero;
883 	tsk->it_sched_expires = 0;
884 
885 	if (unlikely(in_atomic()))
886 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
887 				current->comm, current->pid,
888 				preempt_count());
889 
890 	acct_update_integrals(tsk);
891 	if (tsk->mm) {
892 		update_hiwater_rss(tsk->mm);
893 		update_hiwater_vm(tsk->mm);
894 	}
895 	group_dead = atomic_dec_and_test(&tsk->signal->live);
896 	if (group_dead) {
897  		hrtimer_cancel(&tsk->signal->real_timer);
898 		exit_itimers(tsk->signal);
899 		acct_process(code);
900 	}
901 	if (unlikely(tsk->robust_list))
902 		exit_robust_list(tsk);
903 #ifdef CONFIG_COMPAT
904 	if (unlikely(tsk->compat_robust_list))
905 		compat_exit_robust_list(tsk);
906 #endif
907 	exit_mm(tsk);
908 
909 	exit_sem(tsk);
910 	__exit_files(tsk);
911 	__exit_fs(tsk);
912 	exit_namespace(tsk);
913 	exit_thread();
914 	cpuset_exit(tsk);
915 	exit_keys(tsk);
916 
917 	if (group_dead && tsk->signal->leader)
918 		disassociate_ctty(1);
919 
920 	module_put(task_thread_info(tsk)->exec_domain->module);
921 	if (tsk->binfmt)
922 		module_put(tsk->binfmt->module);
923 
924 	tsk->exit_code = code;
925 	proc_exit_connector(tsk);
926 	exit_notify(tsk);
927 #ifdef CONFIG_NUMA
928 	mpol_free(tsk->mempolicy);
929 	tsk->mempolicy = NULL;
930 #endif
931 	/*
932 	 * If DEBUG_MUTEXES is on, make sure we are holding no locks:
933 	 */
934 	mutex_debug_check_no_locks_held(tsk);
935 
936 	if (tsk->io_context)
937 		exit_io_context();
938 
939 	/* PF_DEAD causes final put_task_struct after we schedule. */
940 	preempt_disable();
941 	BUG_ON(tsk->flags & PF_DEAD);
942 	tsk->flags |= PF_DEAD;
943 
944 	schedule();
945 	BUG();
946 	/* Avoid "noreturn function does return".  */
947 	for (;;) ;
948 }
949 
950 EXPORT_SYMBOL_GPL(do_exit);
951 
952 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
953 {
954 	if (comp)
955 		complete(comp);
956 
957 	do_exit(code);
958 }
959 
960 EXPORT_SYMBOL(complete_and_exit);
961 
962 asmlinkage long sys_exit(int error_code)
963 {
964 	do_exit((error_code&0xff)<<8);
965 }
966 
967 /*
968  * Take down every thread in the group.  This is called by fatal signals
969  * as well as by sys_exit_group (below).
970  */
971 NORET_TYPE void
972 do_group_exit(int exit_code)
973 {
974 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
975 
976 	if (current->signal->flags & SIGNAL_GROUP_EXIT)
977 		exit_code = current->signal->group_exit_code;
978 	else if (!thread_group_empty(current)) {
979 		struct signal_struct *const sig = current->signal;
980 		struct sighand_struct *const sighand = current->sighand;
981 		spin_lock_irq(&sighand->siglock);
982 		if (sig->flags & SIGNAL_GROUP_EXIT)
983 			/* Another thread got here before we took the lock.  */
984 			exit_code = sig->group_exit_code;
985 		else {
986 			sig->group_exit_code = exit_code;
987 			zap_other_threads(current);
988 		}
989 		spin_unlock_irq(&sighand->siglock);
990 	}
991 
992 	do_exit(exit_code);
993 	/* NOTREACHED */
994 }
995 
996 /*
997  * this kills every thread in the thread group. Note that any externally
998  * wait4()-ing process will get the correct exit code - even if this
999  * thread is not the thread group leader.
1000  */
1001 asmlinkage void sys_exit_group(int error_code)
1002 {
1003 	do_group_exit((error_code & 0xff) << 8);
1004 }
1005 
1006 static int eligible_child(pid_t pid, int options, task_t *p)
1007 {
1008 	if (pid > 0) {
1009 		if (p->pid != pid)
1010 			return 0;
1011 	} else if (!pid) {
1012 		if (process_group(p) != process_group(current))
1013 			return 0;
1014 	} else if (pid != -1) {
1015 		if (process_group(p) != -pid)
1016 			return 0;
1017 	}
1018 
1019 	/*
1020 	 * Do not consider detached threads that are
1021 	 * not ptraced:
1022 	 */
1023 	if (p->exit_signal == -1 && !p->ptrace)
1024 		return 0;
1025 
1026 	/* Wait for all children (clone and not) if __WALL is set;
1027 	 * otherwise, wait for clone children *only* if __WCLONE is
1028 	 * set; otherwise, wait for non-clone children *only*.  (Note:
1029 	 * A "clone" child here is one that reports to its parent
1030 	 * using a signal other than SIGCHLD.) */
1031 	if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1032 	    && !(options & __WALL))
1033 		return 0;
1034 	/*
1035 	 * Do not consider thread group leaders that are
1036 	 * in a non-empty thread group:
1037 	 */
1038 	if (current->tgid != p->tgid && delay_group_leader(p))
1039 		return 2;
1040 
1041 	if (security_task_wait(p))
1042 		return 0;
1043 
1044 	return 1;
1045 }
1046 
1047 static int wait_noreap_copyout(task_t *p, pid_t pid, uid_t uid,
1048 			       int why, int status,
1049 			       struct siginfo __user *infop,
1050 			       struct rusage __user *rusagep)
1051 {
1052 	int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1053 	put_task_struct(p);
1054 	if (!retval)
1055 		retval = put_user(SIGCHLD, &infop->si_signo);
1056 	if (!retval)
1057 		retval = put_user(0, &infop->si_errno);
1058 	if (!retval)
1059 		retval = put_user((short)why, &infop->si_code);
1060 	if (!retval)
1061 		retval = put_user(pid, &infop->si_pid);
1062 	if (!retval)
1063 		retval = put_user(uid, &infop->si_uid);
1064 	if (!retval)
1065 		retval = put_user(status, &infop->si_status);
1066 	if (!retval)
1067 		retval = pid;
1068 	return retval;
1069 }
1070 
1071 /*
1072  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1073  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1074  * the lock and this task is uninteresting.  If we return nonzero, we have
1075  * released the lock and the system call should return.
1076  */
1077 static int wait_task_zombie(task_t *p, int noreap,
1078 			    struct siginfo __user *infop,
1079 			    int __user *stat_addr, struct rusage __user *ru)
1080 {
1081 	unsigned long state;
1082 	int retval;
1083 	int status;
1084 
1085 	if (unlikely(noreap)) {
1086 		pid_t pid = p->pid;
1087 		uid_t uid = p->uid;
1088 		int exit_code = p->exit_code;
1089 		int why, status;
1090 
1091 		if (unlikely(p->exit_state != EXIT_ZOMBIE))
1092 			return 0;
1093 		if (unlikely(p->exit_signal == -1 && p->ptrace == 0))
1094 			return 0;
1095 		get_task_struct(p);
1096 		read_unlock(&tasklist_lock);
1097 		if ((exit_code & 0x7f) == 0) {
1098 			why = CLD_EXITED;
1099 			status = exit_code >> 8;
1100 		} else {
1101 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1102 			status = exit_code & 0x7f;
1103 		}
1104 		return wait_noreap_copyout(p, pid, uid, why,
1105 					   status, infop, ru);
1106 	}
1107 
1108 	/*
1109 	 * Try to move the task's state to DEAD
1110 	 * only one thread is allowed to do this:
1111 	 */
1112 	state = xchg(&p->exit_state, EXIT_DEAD);
1113 	if (state != EXIT_ZOMBIE) {
1114 		BUG_ON(state != EXIT_DEAD);
1115 		return 0;
1116 	}
1117 	if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) {
1118 		/*
1119 		 * This can only happen in a race with a ptraced thread
1120 		 * dying on another processor.
1121 		 */
1122 		return 0;
1123 	}
1124 
1125 	if (likely(p->real_parent == p->parent) && likely(p->signal)) {
1126 		struct signal_struct *psig;
1127 		struct signal_struct *sig;
1128 
1129 		/*
1130 		 * The resource counters for the group leader are in its
1131 		 * own task_struct.  Those for dead threads in the group
1132 		 * are in its signal_struct, as are those for the child
1133 		 * processes it has previously reaped.  All these
1134 		 * accumulate in the parent's signal_struct c* fields.
1135 		 *
1136 		 * We don't bother to take a lock here to protect these
1137 		 * p->signal fields, because they are only touched by
1138 		 * __exit_signal, which runs with tasklist_lock
1139 		 * write-locked anyway, and so is excluded here.  We do
1140 		 * need to protect the access to p->parent->signal fields,
1141 		 * as other threads in the parent group can be right
1142 		 * here reaping other children at the same time.
1143 		 */
1144 		spin_lock_irq(&p->parent->sighand->siglock);
1145 		psig = p->parent->signal;
1146 		sig = p->signal;
1147 		psig->cutime =
1148 			cputime_add(psig->cutime,
1149 			cputime_add(p->utime,
1150 			cputime_add(sig->utime,
1151 				    sig->cutime)));
1152 		psig->cstime =
1153 			cputime_add(psig->cstime,
1154 			cputime_add(p->stime,
1155 			cputime_add(sig->stime,
1156 				    sig->cstime)));
1157 		psig->cmin_flt +=
1158 			p->min_flt + sig->min_flt + sig->cmin_flt;
1159 		psig->cmaj_flt +=
1160 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1161 		psig->cnvcsw +=
1162 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1163 		psig->cnivcsw +=
1164 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1165 		spin_unlock_irq(&p->parent->sighand->siglock);
1166 	}
1167 
1168 	/*
1169 	 * Now we are sure this task is interesting, and no other
1170 	 * thread can reap it because we set its state to EXIT_DEAD.
1171 	 */
1172 	read_unlock(&tasklist_lock);
1173 
1174 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1175 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1176 		? p->signal->group_exit_code : p->exit_code;
1177 	if (!retval && stat_addr)
1178 		retval = put_user(status, stat_addr);
1179 	if (!retval && infop)
1180 		retval = put_user(SIGCHLD, &infop->si_signo);
1181 	if (!retval && infop)
1182 		retval = put_user(0, &infop->si_errno);
1183 	if (!retval && infop) {
1184 		int why;
1185 
1186 		if ((status & 0x7f) == 0) {
1187 			why = CLD_EXITED;
1188 			status >>= 8;
1189 		} else {
1190 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1191 			status &= 0x7f;
1192 		}
1193 		retval = put_user((short)why, &infop->si_code);
1194 		if (!retval)
1195 			retval = put_user(status, &infop->si_status);
1196 	}
1197 	if (!retval && infop)
1198 		retval = put_user(p->pid, &infop->si_pid);
1199 	if (!retval && infop)
1200 		retval = put_user(p->uid, &infop->si_uid);
1201 	if (retval) {
1202 		// TODO: is this safe?
1203 		p->exit_state = EXIT_ZOMBIE;
1204 		return retval;
1205 	}
1206 	retval = p->pid;
1207 	if (p->real_parent != p->parent) {
1208 		write_lock_irq(&tasklist_lock);
1209 		/* Double-check with lock held.  */
1210 		if (p->real_parent != p->parent) {
1211 			__ptrace_unlink(p);
1212 			// TODO: is this safe?
1213 			p->exit_state = EXIT_ZOMBIE;
1214 			/*
1215 			 * If this is not a detached task, notify the parent.
1216 			 * If it's still not detached after that, don't release
1217 			 * it now.
1218 			 */
1219 			if (p->exit_signal != -1) {
1220 				do_notify_parent(p, p->exit_signal);
1221 				if (p->exit_signal != -1)
1222 					p = NULL;
1223 			}
1224 		}
1225 		write_unlock_irq(&tasklist_lock);
1226 	}
1227 	if (p != NULL)
1228 		release_task(p);
1229 	BUG_ON(!retval);
1230 	return retval;
1231 }
1232 
1233 /*
1234  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1235  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1236  * the lock and this task is uninteresting.  If we return nonzero, we have
1237  * released the lock and the system call should return.
1238  */
1239 static int wait_task_stopped(task_t *p, int delayed_group_leader, int noreap,
1240 			     struct siginfo __user *infop,
1241 			     int __user *stat_addr, struct rusage __user *ru)
1242 {
1243 	int retval, exit_code;
1244 
1245 	if (!p->exit_code)
1246 		return 0;
1247 	if (delayed_group_leader && !(p->ptrace & PT_PTRACED) &&
1248 	    p->signal && p->signal->group_stop_count > 0)
1249 		/*
1250 		 * A group stop is in progress and this is the group leader.
1251 		 * We won't report until all threads have stopped.
1252 		 */
1253 		return 0;
1254 
1255 	/*
1256 	 * Now we are pretty sure this task is interesting.
1257 	 * Make sure it doesn't get reaped out from under us while we
1258 	 * give up the lock and then examine it below.  We don't want to
1259 	 * keep holding onto the tasklist_lock while we call getrusage and
1260 	 * possibly take page faults for user memory.
1261 	 */
1262 	get_task_struct(p);
1263 	read_unlock(&tasklist_lock);
1264 
1265 	if (unlikely(noreap)) {
1266 		pid_t pid = p->pid;
1267 		uid_t uid = p->uid;
1268 		int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1269 
1270 		exit_code = p->exit_code;
1271 		if (unlikely(!exit_code) ||
1272 		    unlikely(p->state & TASK_TRACED))
1273 			goto bail_ref;
1274 		return wait_noreap_copyout(p, pid, uid,
1275 					   why, (exit_code << 8) | 0x7f,
1276 					   infop, ru);
1277 	}
1278 
1279 	write_lock_irq(&tasklist_lock);
1280 
1281 	/*
1282 	 * This uses xchg to be atomic with the thread resuming and setting
1283 	 * it.  It must also be done with the write lock held to prevent a
1284 	 * race with the EXIT_ZOMBIE case.
1285 	 */
1286 	exit_code = xchg(&p->exit_code, 0);
1287 	if (unlikely(p->exit_state)) {
1288 		/*
1289 		 * The task resumed and then died.  Let the next iteration
1290 		 * catch it in EXIT_ZOMBIE.  Note that exit_code might
1291 		 * already be zero here if it resumed and did _exit(0).
1292 		 * The task itself is dead and won't touch exit_code again;
1293 		 * other processors in this function are locked out.
1294 		 */
1295 		p->exit_code = exit_code;
1296 		exit_code = 0;
1297 	}
1298 	if (unlikely(exit_code == 0)) {
1299 		/*
1300 		 * Another thread in this function got to it first, or it
1301 		 * resumed, or it resumed and then died.
1302 		 */
1303 		write_unlock_irq(&tasklist_lock);
1304 bail_ref:
1305 		put_task_struct(p);
1306 		/*
1307 		 * We are returning to the wait loop without having successfully
1308 		 * removed the process and having released the lock. We cannot
1309 		 * continue, since the "p" task pointer is potentially stale.
1310 		 *
1311 		 * Return -EAGAIN, and do_wait() will restart the loop from the
1312 		 * beginning. Do _not_ re-acquire the lock.
1313 		 */
1314 		return -EAGAIN;
1315 	}
1316 
1317 	/* move to end of parent's list to avoid starvation */
1318 	remove_parent(p);
1319 	add_parent(p);
1320 
1321 	write_unlock_irq(&tasklist_lock);
1322 
1323 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1324 	if (!retval && stat_addr)
1325 		retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1326 	if (!retval && infop)
1327 		retval = put_user(SIGCHLD, &infop->si_signo);
1328 	if (!retval && infop)
1329 		retval = put_user(0, &infop->si_errno);
1330 	if (!retval && infop)
1331 		retval = put_user((short)((p->ptrace & PT_PTRACED)
1332 					  ? CLD_TRAPPED : CLD_STOPPED),
1333 				  &infop->si_code);
1334 	if (!retval && infop)
1335 		retval = put_user(exit_code, &infop->si_status);
1336 	if (!retval && infop)
1337 		retval = put_user(p->pid, &infop->si_pid);
1338 	if (!retval && infop)
1339 		retval = put_user(p->uid, &infop->si_uid);
1340 	if (!retval)
1341 		retval = p->pid;
1342 	put_task_struct(p);
1343 
1344 	BUG_ON(!retval);
1345 	return retval;
1346 }
1347 
1348 /*
1349  * Handle do_wait work for one task in a live, non-stopped state.
1350  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1351  * the lock and this task is uninteresting.  If we return nonzero, we have
1352  * released the lock and the system call should return.
1353  */
1354 static int wait_task_continued(task_t *p, int noreap,
1355 			       struct siginfo __user *infop,
1356 			       int __user *stat_addr, struct rusage __user *ru)
1357 {
1358 	int retval;
1359 	pid_t pid;
1360 	uid_t uid;
1361 
1362 	if (unlikely(!p->signal))
1363 		return 0;
1364 
1365 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1366 		return 0;
1367 
1368 	spin_lock_irq(&p->sighand->siglock);
1369 	/* Re-check with the lock held.  */
1370 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1371 		spin_unlock_irq(&p->sighand->siglock);
1372 		return 0;
1373 	}
1374 	if (!noreap)
1375 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1376 	spin_unlock_irq(&p->sighand->siglock);
1377 
1378 	pid = p->pid;
1379 	uid = p->uid;
1380 	get_task_struct(p);
1381 	read_unlock(&tasklist_lock);
1382 
1383 	if (!infop) {
1384 		retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1385 		put_task_struct(p);
1386 		if (!retval && stat_addr)
1387 			retval = put_user(0xffff, stat_addr);
1388 		if (!retval)
1389 			retval = p->pid;
1390 	} else {
1391 		retval = wait_noreap_copyout(p, pid, uid,
1392 					     CLD_CONTINUED, SIGCONT,
1393 					     infop, ru);
1394 		BUG_ON(retval == 0);
1395 	}
1396 
1397 	return retval;
1398 }
1399 
1400 
1401 static inline int my_ptrace_child(struct task_struct *p)
1402 {
1403 	if (!(p->ptrace & PT_PTRACED))
1404 		return 0;
1405 	if (!(p->ptrace & PT_ATTACHED))
1406 		return 1;
1407 	/*
1408 	 * This child was PTRACE_ATTACH'd.  We should be seeing it only if
1409 	 * we are the attacher.  If we are the real parent, this is a race
1410 	 * inside ptrace_attach.  It is waiting for the tasklist_lock,
1411 	 * which we have to switch the parent links, but has already set
1412 	 * the flags in p->ptrace.
1413 	 */
1414 	return (p->parent != p->real_parent);
1415 }
1416 
1417 static long do_wait(pid_t pid, int options, struct siginfo __user *infop,
1418 		    int __user *stat_addr, struct rusage __user *ru)
1419 {
1420 	DECLARE_WAITQUEUE(wait, current);
1421 	struct task_struct *tsk;
1422 	int flag, retval;
1423 
1424 	add_wait_queue(&current->signal->wait_chldexit,&wait);
1425 repeat:
1426 	/*
1427 	 * We will set this flag if we see any child that might later
1428 	 * match our criteria, even if we are not able to reap it yet.
1429 	 */
1430 	flag = 0;
1431 	current->state = TASK_INTERRUPTIBLE;
1432 	read_lock(&tasklist_lock);
1433 	tsk = current;
1434 	do {
1435 		struct task_struct *p;
1436 		struct list_head *_p;
1437 		int ret;
1438 
1439 		list_for_each(_p,&tsk->children) {
1440 			p = list_entry(_p,struct task_struct,sibling);
1441 
1442 			ret = eligible_child(pid, options, p);
1443 			if (!ret)
1444 				continue;
1445 
1446 			switch (p->state) {
1447 			case TASK_TRACED:
1448 				/*
1449 				 * When we hit the race with PTRACE_ATTACH,
1450 				 * we will not report this child.  But the
1451 				 * race means it has not yet been moved to
1452 				 * our ptrace_children list, so we need to
1453 				 * set the flag here to avoid a spurious ECHILD
1454 				 * when the race happens with the only child.
1455 				 */
1456 				flag = 1;
1457 				if (!my_ptrace_child(p))
1458 					continue;
1459 				/*FALLTHROUGH*/
1460 			case TASK_STOPPED:
1461 				/*
1462 				 * It's stopped now, so it might later
1463 				 * continue, exit, or stop again.
1464 				 */
1465 				flag = 1;
1466 				if (!(options & WUNTRACED) &&
1467 				    !my_ptrace_child(p))
1468 					continue;
1469 				retval = wait_task_stopped(p, ret == 2,
1470 							   (options & WNOWAIT),
1471 							   infop,
1472 							   stat_addr, ru);
1473 				if (retval == -EAGAIN)
1474 					goto repeat;
1475 				if (retval != 0) /* He released the lock.  */
1476 					goto end;
1477 				break;
1478 			default:
1479 			// case EXIT_DEAD:
1480 				if (p->exit_state == EXIT_DEAD)
1481 					continue;
1482 			// case EXIT_ZOMBIE:
1483 				if (p->exit_state == EXIT_ZOMBIE) {
1484 					/*
1485 					 * Eligible but we cannot release
1486 					 * it yet:
1487 					 */
1488 					if (ret == 2)
1489 						goto check_continued;
1490 					if (!likely(options & WEXITED))
1491 						continue;
1492 					retval = wait_task_zombie(
1493 						p, (options & WNOWAIT),
1494 						infop, stat_addr, ru);
1495 					/* He released the lock.  */
1496 					if (retval != 0)
1497 						goto end;
1498 					break;
1499 				}
1500 check_continued:
1501 				/*
1502 				 * It's running now, so it might later
1503 				 * exit, stop, or stop and then continue.
1504 				 */
1505 				flag = 1;
1506 				if (!unlikely(options & WCONTINUED))
1507 					continue;
1508 				retval = wait_task_continued(
1509 					p, (options & WNOWAIT),
1510 					infop, stat_addr, ru);
1511 				if (retval != 0) /* He released the lock.  */
1512 					goto end;
1513 				break;
1514 			}
1515 		}
1516 		if (!flag) {
1517 			list_for_each(_p, &tsk->ptrace_children) {
1518 				p = list_entry(_p, struct task_struct,
1519 						ptrace_list);
1520 				if (!eligible_child(pid, options, p))
1521 					continue;
1522 				flag = 1;
1523 				break;
1524 			}
1525 		}
1526 		if (options & __WNOTHREAD)
1527 			break;
1528 		tsk = next_thread(tsk);
1529 		if (tsk->signal != current->signal)
1530 			BUG();
1531 	} while (tsk != current);
1532 
1533 	read_unlock(&tasklist_lock);
1534 	if (flag) {
1535 		retval = 0;
1536 		if (options & WNOHANG)
1537 			goto end;
1538 		retval = -ERESTARTSYS;
1539 		if (signal_pending(current))
1540 			goto end;
1541 		schedule();
1542 		goto repeat;
1543 	}
1544 	retval = -ECHILD;
1545 end:
1546 	current->state = TASK_RUNNING;
1547 	remove_wait_queue(&current->signal->wait_chldexit,&wait);
1548 	if (infop) {
1549 		if (retval > 0)
1550 		retval = 0;
1551 		else {
1552 			/*
1553 			 * For a WNOHANG return, clear out all the fields
1554 			 * we would set so the user can easily tell the
1555 			 * difference.
1556 			 */
1557 			if (!retval)
1558 				retval = put_user(0, &infop->si_signo);
1559 			if (!retval)
1560 				retval = put_user(0, &infop->si_errno);
1561 			if (!retval)
1562 				retval = put_user(0, &infop->si_code);
1563 			if (!retval)
1564 				retval = put_user(0, &infop->si_pid);
1565 			if (!retval)
1566 				retval = put_user(0, &infop->si_uid);
1567 			if (!retval)
1568 				retval = put_user(0, &infop->si_status);
1569 		}
1570 	}
1571 	return retval;
1572 }
1573 
1574 asmlinkage long sys_waitid(int which, pid_t pid,
1575 			   struct siginfo __user *infop, int options,
1576 			   struct rusage __user *ru)
1577 {
1578 	long ret;
1579 
1580 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1581 		return -EINVAL;
1582 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1583 		return -EINVAL;
1584 
1585 	switch (which) {
1586 	case P_ALL:
1587 		pid = -1;
1588 		break;
1589 	case P_PID:
1590 		if (pid <= 0)
1591 			return -EINVAL;
1592 		break;
1593 	case P_PGID:
1594 		if (pid <= 0)
1595 			return -EINVAL;
1596 		pid = -pid;
1597 		break;
1598 	default:
1599 		return -EINVAL;
1600 	}
1601 
1602 	ret = do_wait(pid, options, infop, NULL, ru);
1603 
1604 	/* avoid REGPARM breakage on x86: */
1605 	prevent_tail_call(ret);
1606 	return ret;
1607 }
1608 
1609 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr,
1610 			  int options, struct rusage __user *ru)
1611 {
1612 	long ret;
1613 
1614 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1615 			__WNOTHREAD|__WCLONE|__WALL))
1616 		return -EINVAL;
1617 	ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru);
1618 
1619 	/* avoid REGPARM breakage on x86: */
1620 	prevent_tail_call(ret);
1621 	return ret;
1622 }
1623 
1624 #ifdef __ARCH_WANT_SYS_WAITPID
1625 
1626 /*
1627  * sys_waitpid() remains for compatibility. waitpid() should be
1628  * implemented by calling sys_wait4() from libc.a.
1629  */
1630 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1631 {
1632 	return sys_wait4(pid, stat_addr, options, NULL);
1633 }
1634 
1635 #endif
1636