xref: /linux/kernel/exit.c (revision dd5648c9f53b5cbd9f948d752624400545f979fb)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 
55 #include <asm/uaccess.h>
56 #include <asm/unistd.h>
57 #include <asm/pgtable.h>
58 #include <asm/mmu_context.h>
59 
60 static void exit_mm(struct task_struct * tsk);
61 
62 static void __unhash_process(struct task_struct *p, bool group_dead)
63 {
64 	nr_threads--;
65 	detach_pid(p, PIDTYPE_PID);
66 	if (group_dead) {
67 		detach_pid(p, PIDTYPE_PGID);
68 		detach_pid(p, PIDTYPE_SID);
69 
70 		list_del_rcu(&p->tasks);
71 		list_del_init(&p->sibling);
72 		__get_cpu_var(process_counts)--;
73 	}
74 	list_del_rcu(&p->thread_group);
75 }
76 
77 /*
78  * This function expects the tasklist_lock write-locked.
79  */
80 static void __exit_signal(struct task_struct *tsk)
81 {
82 	struct signal_struct *sig = tsk->signal;
83 	bool group_dead = thread_group_leader(tsk);
84 	struct sighand_struct *sighand;
85 	struct tty_struct *uninitialized_var(tty);
86 
87 	sighand = rcu_dereference_check(tsk->sighand,
88 					rcu_read_lock_held() ||
89 					lockdep_tasklist_lock_is_held());
90 	spin_lock(&sighand->siglock);
91 
92 	posix_cpu_timers_exit(tsk);
93 	if (group_dead) {
94 		posix_cpu_timers_exit_group(tsk);
95 		tty = sig->tty;
96 		sig->tty = NULL;
97 	} else {
98 		/*
99 		 * If there is any task waiting for the group exit
100 		 * then notify it:
101 		 */
102 		if (sig->notify_count > 0 && !--sig->notify_count)
103 			wake_up_process(sig->group_exit_task);
104 
105 		if (tsk == sig->curr_target)
106 			sig->curr_target = next_thread(tsk);
107 		/*
108 		 * Accumulate here the counters for all threads but the
109 		 * group leader as they die, so they can be added into
110 		 * the process-wide totals when those are taken.
111 		 * The group leader stays around as a zombie as long
112 		 * as there are other threads.  When it gets reaped,
113 		 * the exit.c code will add its counts into these totals.
114 		 * We won't ever get here for the group leader, since it
115 		 * will have been the last reference on the signal_struct.
116 		 */
117 		sig->utime = cputime_add(sig->utime, tsk->utime);
118 		sig->stime = cputime_add(sig->stime, tsk->stime);
119 		sig->gtime = cputime_add(sig->gtime, tsk->gtime);
120 		sig->min_flt += tsk->min_flt;
121 		sig->maj_flt += tsk->maj_flt;
122 		sig->nvcsw += tsk->nvcsw;
123 		sig->nivcsw += tsk->nivcsw;
124 		sig->inblock += task_io_get_inblock(tsk);
125 		sig->oublock += task_io_get_oublock(tsk);
126 		task_io_accounting_add(&sig->ioac, &tsk->ioac);
127 		sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
128 	}
129 
130 	sig->nr_threads--;
131 	__unhash_process(tsk, group_dead);
132 
133 	/*
134 	 * Do this under ->siglock, we can race with another thread
135 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
136 	 */
137 	flush_sigqueue(&tsk->pending);
138 	tsk->sighand = NULL;
139 	spin_unlock(&sighand->siglock);
140 
141 	__cleanup_sighand(sighand);
142 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
143 	if (group_dead) {
144 		flush_sigqueue(&sig->shared_pending);
145 		tty_kref_put(tty);
146 	}
147 }
148 
149 static void delayed_put_task_struct(struct rcu_head *rhp)
150 {
151 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
152 
153 	perf_event_delayed_put(tsk);
154 	trace_sched_process_free(tsk);
155 	put_task_struct(tsk);
156 }
157 
158 
159 void release_task(struct task_struct * p)
160 {
161 	struct task_struct *leader;
162 	int zap_leader;
163 repeat:
164 	tracehook_prepare_release_task(p);
165 	/* don't need to get the RCU readlock here - the process is dead and
166 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
167 	rcu_read_lock();
168 	atomic_dec(&__task_cred(p)->user->processes);
169 	rcu_read_unlock();
170 
171 	proc_flush_task(p);
172 
173 	write_lock_irq(&tasklist_lock);
174 	tracehook_finish_release_task(p);
175 	__exit_signal(p);
176 
177 	/*
178 	 * If we are the last non-leader member of the thread
179 	 * group, and the leader is zombie, then notify the
180 	 * group leader's parent process. (if it wants notification.)
181 	 */
182 	zap_leader = 0;
183 	leader = p->group_leader;
184 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
185 		BUG_ON(task_detached(leader));
186 		do_notify_parent(leader, leader->exit_signal);
187 		/*
188 		 * If we were the last child thread and the leader has
189 		 * exited already, and the leader's parent ignores SIGCHLD,
190 		 * then we are the one who should release the leader.
191 		 *
192 		 * do_notify_parent() will have marked it self-reaping in
193 		 * that case.
194 		 */
195 		zap_leader = task_detached(leader);
196 
197 		/*
198 		 * This maintains the invariant that release_task()
199 		 * only runs on a task in EXIT_DEAD, just for sanity.
200 		 */
201 		if (zap_leader)
202 			leader->exit_state = EXIT_DEAD;
203 	}
204 
205 	write_unlock_irq(&tasklist_lock);
206 	release_thread(p);
207 	call_rcu(&p->rcu, delayed_put_task_struct);
208 
209 	p = leader;
210 	if (unlikely(zap_leader))
211 		goto repeat;
212 }
213 
214 /*
215  * This checks not only the pgrp, but falls back on the pid if no
216  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
217  * without this...
218  *
219  * The caller must hold rcu lock or the tasklist lock.
220  */
221 struct pid *session_of_pgrp(struct pid *pgrp)
222 {
223 	struct task_struct *p;
224 	struct pid *sid = NULL;
225 
226 	p = pid_task(pgrp, PIDTYPE_PGID);
227 	if (p == NULL)
228 		p = pid_task(pgrp, PIDTYPE_PID);
229 	if (p != NULL)
230 		sid = task_session(p);
231 
232 	return sid;
233 }
234 
235 /*
236  * Determine if a process group is "orphaned", according to the POSIX
237  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
238  * by terminal-generated stop signals.  Newly orphaned process groups are
239  * to receive a SIGHUP and a SIGCONT.
240  *
241  * "I ask you, have you ever known what it is to be an orphan?"
242  */
243 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
244 {
245 	struct task_struct *p;
246 
247 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
248 		if ((p == ignored_task) ||
249 		    (p->exit_state && thread_group_empty(p)) ||
250 		    is_global_init(p->real_parent))
251 			continue;
252 
253 		if (task_pgrp(p->real_parent) != pgrp &&
254 		    task_session(p->real_parent) == task_session(p))
255 			return 0;
256 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
257 
258 	return 1;
259 }
260 
261 int is_current_pgrp_orphaned(void)
262 {
263 	int retval;
264 
265 	read_lock(&tasklist_lock);
266 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
267 	read_unlock(&tasklist_lock);
268 
269 	return retval;
270 }
271 
272 static int has_stopped_jobs(struct pid *pgrp)
273 {
274 	int retval = 0;
275 	struct task_struct *p;
276 
277 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
278 		if (!task_is_stopped(p))
279 			continue;
280 		retval = 1;
281 		break;
282 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
283 	return retval;
284 }
285 
286 /*
287  * Check to see if any process groups have become orphaned as
288  * a result of our exiting, and if they have any stopped jobs,
289  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
290  */
291 static void
292 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
293 {
294 	struct pid *pgrp = task_pgrp(tsk);
295 	struct task_struct *ignored_task = tsk;
296 
297 	if (!parent)
298 		 /* exit: our father is in a different pgrp than
299 		  * we are and we were the only connection outside.
300 		  */
301 		parent = tsk->real_parent;
302 	else
303 		/* reparent: our child is in a different pgrp than
304 		 * we are, and it was the only connection outside.
305 		 */
306 		ignored_task = NULL;
307 
308 	if (task_pgrp(parent) != pgrp &&
309 	    task_session(parent) == task_session(tsk) &&
310 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
311 	    has_stopped_jobs(pgrp)) {
312 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
313 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
314 	}
315 }
316 
317 /**
318  * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
319  *
320  * If a kernel thread is launched as a result of a system call, or if
321  * it ever exits, it should generally reparent itself to kthreadd so it
322  * isn't in the way of other processes and is correctly cleaned up on exit.
323  *
324  * The various task state such as scheduling policy and priority may have
325  * been inherited from a user process, so we reset them to sane values here.
326  *
327  * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
328  */
329 static void reparent_to_kthreadd(void)
330 {
331 	write_lock_irq(&tasklist_lock);
332 
333 	ptrace_unlink(current);
334 	/* Reparent to init */
335 	current->real_parent = current->parent = kthreadd_task;
336 	list_move_tail(&current->sibling, &current->real_parent->children);
337 
338 	/* Set the exit signal to SIGCHLD so we signal init on exit */
339 	current->exit_signal = SIGCHLD;
340 
341 	if (task_nice(current) < 0)
342 		set_user_nice(current, 0);
343 	/* cpus_allowed? */
344 	/* rt_priority? */
345 	/* signals? */
346 	memcpy(current->signal->rlim, init_task.signal->rlim,
347 	       sizeof(current->signal->rlim));
348 
349 	atomic_inc(&init_cred.usage);
350 	commit_creds(&init_cred);
351 	write_unlock_irq(&tasklist_lock);
352 }
353 
354 void __set_special_pids(struct pid *pid)
355 {
356 	struct task_struct *curr = current->group_leader;
357 
358 	if (task_session(curr) != pid)
359 		change_pid(curr, PIDTYPE_SID, pid);
360 
361 	if (task_pgrp(curr) != pid)
362 		change_pid(curr, PIDTYPE_PGID, pid);
363 }
364 
365 static void set_special_pids(struct pid *pid)
366 {
367 	write_lock_irq(&tasklist_lock);
368 	__set_special_pids(pid);
369 	write_unlock_irq(&tasklist_lock);
370 }
371 
372 /*
373  * Let kernel threads use this to say that they allow a certain signal.
374  * Must not be used if kthread was cloned with CLONE_SIGHAND.
375  */
376 int allow_signal(int sig)
377 {
378 	if (!valid_signal(sig) || sig < 1)
379 		return -EINVAL;
380 
381 	spin_lock_irq(&current->sighand->siglock);
382 	/* This is only needed for daemonize()'ed kthreads */
383 	sigdelset(&current->blocked, sig);
384 	/*
385 	 * Kernel threads handle their own signals. Let the signal code
386 	 * know it'll be handled, so that they don't get converted to
387 	 * SIGKILL or just silently dropped.
388 	 */
389 	current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
390 	recalc_sigpending();
391 	spin_unlock_irq(&current->sighand->siglock);
392 	return 0;
393 }
394 
395 EXPORT_SYMBOL(allow_signal);
396 
397 int disallow_signal(int sig)
398 {
399 	if (!valid_signal(sig) || sig < 1)
400 		return -EINVAL;
401 
402 	spin_lock_irq(&current->sighand->siglock);
403 	current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
404 	recalc_sigpending();
405 	spin_unlock_irq(&current->sighand->siglock);
406 	return 0;
407 }
408 
409 EXPORT_SYMBOL(disallow_signal);
410 
411 /*
412  *	Put all the gunge required to become a kernel thread without
413  *	attached user resources in one place where it belongs.
414  */
415 
416 void daemonize(const char *name, ...)
417 {
418 	va_list args;
419 	sigset_t blocked;
420 
421 	va_start(args, name);
422 	vsnprintf(current->comm, sizeof(current->comm), name, args);
423 	va_end(args);
424 
425 	/*
426 	 * If we were started as result of loading a module, close all of the
427 	 * user space pages.  We don't need them, and if we didn't close them
428 	 * they would be locked into memory.
429 	 */
430 	exit_mm(current);
431 	/*
432 	 * We don't want to have TIF_FREEZE set if the system-wide hibernation
433 	 * or suspend transition begins right now.
434 	 */
435 	current->flags |= (PF_NOFREEZE | PF_KTHREAD);
436 
437 	if (current->nsproxy != &init_nsproxy) {
438 		get_nsproxy(&init_nsproxy);
439 		switch_task_namespaces(current, &init_nsproxy);
440 	}
441 	set_special_pids(&init_struct_pid);
442 	proc_clear_tty(current);
443 
444 	/* Block and flush all signals */
445 	sigfillset(&blocked);
446 	sigprocmask(SIG_BLOCK, &blocked, NULL);
447 	flush_signals(current);
448 
449 	/* Become as one with the init task */
450 
451 	daemonize_fs_struct();
452 	exit_files(current);
453 	current->files = init_task.files;
454 	atomic_inc(&current->files->count);
455 
456 	reparent_to_kthreadd();
457 }
458 
459 EXPORT_SYMBOL(daemonize);
460 
461 static void close_files(struct files_struct * files)
462 {
463 	int i, j;
464 	struct fdtable *fdt;
465 
466 	j = 0;
467 
468 	/*
469 	 * It is safe to dereference the fd table without RCU or
470 	 * ->file_lock because this is the last reference to the
471 	 * files structure.  But use RCU to shut RCU-lockdep up.
472 	 */
473 	rcu_read_lock();
474 	fdt = files_fdtable(files);
475 	rcu_read_unlock();
476 	for (;;) {
477 		unsigned long set;
478 		i = j * __NFDBITS;
479 		if (i >= fdt->max_fds)
480 			break;
481 		set = fdt->open_fds->fds_bits[j++];
482 		while (set) {
483 			if (set & 1) {
484 				struct file * file = xchg(&fdt->fd[i], NULL);
485 				if (file) {
486 					filp_close(file, files);
487 					cond_resched();
488 				}
489 			}
490 			i++;
491 			set >>= 1;
492 		}
493 	}
494 }
495 
496 struct files_struct *get_files_struct(struct task_struct *task)
497 {
498 	struct files_struct *files;
499 
500 	task_lock(task);
501 	files = task->files;
502 	if (files)
503 		atomic_inc(&files->count);
504 	task_unlock(task);
505 
506 	return files;
507 }
508 
509 void put_files_struct(struct files_struct *files)
510 {
511 	struct fdtable *fdt;
512 
513 	if (atomic_dec_and_test(&files->count)) {
514 		close_files(files);
515 		/*
516 		 * Free the fd and fdset arrays if we expanded them.
517 		 * If the fdtable was embedded, pass files for freeing
518 		 * at the end of the RCU grace period. Otherwise,
519 		 * you can free files immediately.
520 		 */
521 		rcu_read_lock();
522 		fdt = files_fdtable(files);
523 		if (fdt != &files->fdtab)
524 			kmem_cache_free(files_cachep, files);
525 		free_fdtable(fdt);
526 		rcu_read_unlock();
527 	}
528 }
529 
530 void reset_files_struct(struct files_struct *files)
531 {
532 	struct task_struct *tsk = current;
533 	struct files_struct *old;
534 
535 	old = tsk->files;
536 	task_lock(tsk);
537 	tsk->files = files;
538 	task_unlock(tsk);
539 	put_files_struct(old);
540 }
541 
542 void exit_files(struct task_struct *tsk)
543 {
544 	struct files_struct * files = tsk->files;
545 
546 	if (files) {
547 		task_lock(tsk);
548 		tsk->files = NULL;
549 		task_unlock(tsk);
550 		put_files_struct(files);
551 	}
552 }
553 
554 #ifdef CONFIG_MM_OWNER
555 /*
556  * Task p is exiting and it owned mm, lets find a new owner for it
557  */
558 static inline int
559 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
560 {
561 	/*
562 	 * If there are other users of the mm and the owner (us) is exiting
563 	 * we need to find a new owner to take on the responsibility.
564 	 */
565 	if (atomic_read(&mm->mm_users) <= 1)
566 		return 0;
567 	if (mm->owner != p)
568 		return 0;
569 	return 1;
570 }
571 
572 void mm_update_next_owner(struct mm_struct *mm)
573 {
574 	struct task_struct *c, *g, *p = current;
575 
576 retry:
577 	if (!mm_need_new_owner(mm, p))
578 		return;
579 
580 	read_lock(&tasklist_lock);
581 	/*
582 	 * Search in the children
583 	 */
584 	list_for_each_entry(c, &p->children, sibling) {
585 		if (c->mm == mm)
586 			goto assign_new_owner;
587 	}
588 
589 	/*
590 	 * Search in the siblings
591 	 */
592 	list_for_each_entry(c, &p->real_parent->children, sibling) {
593 		if (c->mm == mm)
594 			goto assign_new_owner;
595 	}
596 
597 	/*
598 	 * Search through everything else. We should not get
599 	 * here often
600 	 */
601 	do_each_thread(g, c) {
602 		if (c->mm == mm)
603 			goto assign_new_owner;
604 	} while_each_thread(g, c);
605 
606 	read_unlock(&tasklist_lock);
607 	/*
608 	 * We found no owner yet mm_users > 1: this implies that we are
609 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
610 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
611 	 */
612 	mm->owner = NULL;
613 	return;
614 
615 assign_new_owner:
616 	BUG_ON(c == p);
617 	get_task_struct(c);
618 	/*
619 	 * The task_lock protects c->mm from changing.
620 	 * We always want mm->owner->mm == mm
621 	 */
622 	task_lock(c);
623 	/*
624 	 * Delay read_unlock() till we have the task_lock()
625 	 * to ensure that c does not slip away underneath us
626 	 */
627 	read_unlock(&tasklist_lock);
628 	if (c->mm != mm) {
629 		task_unlock(c);
630 		put_task_struct(c);
631 		goto retry;
632 	}
633 	mm->owner = c;
634 	task_unlock(c);
635 	put_task_struct(c);
636 }
637 #endif /* CONFIG_MM_OWNER */
638 
639 /*
640  * Turn us into a lazy TLB process if we
641  * aren't already..
642  */
643 static void exit_mm(struct task_struct * tsk)
644 {
645 	struct mm_struct *mm = tsk->mm;
646 	struct core_state *core_state;
647 
648 	mm_release(tsk, mm);
649 	if (!mm)
650 		return;
651 	/*
652 	 * Serialize with any possible pending coredump.
653 	 * We must hold mmap_sem around checking core_state
654 	 * and clearing tsk->mm.  The core-inducing thread
655 	 * will increment ->nr_threads for each thread in the
656 	 * group with ->mm != NULL.
657 	 */
658 	down_read(&mm->mmap_sem);
659 	core_state = mm->core_state;
660 	if (core_state) {
661 		struct core_thread self;
662 		up_read(&mm->mmap_sem);
663 
664 		self.task = tsk;
665 		self.next = xchg(&core_state->dumper.next, &self);
666 		/*
667 		 * Implies mb(), the result of xchg() must be visible
668 		 * to core_state->dumper.
669 		 */
670 		if (atomic_dec_and_test(&core_state->nr_threads))
671 			complete(&core_state->startup);
672 
673 		for (;;) {
674 			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
675 			if (!self.task) /* see coredump_finish() */
676 				break;
677 			schedule();
678 		}
679 		__set_task_state(tsk, TASK_RUNNING);
680 		down_read(&mm->mmap_sem);
681 	}
682 	atomic_inc(&mm->mm_count);
683 	BUG_ON(mm != tsk->active_mm);
684 	/* more a memory barrier than a real lock */
685 	task_lock(tsk);
686 	tsk->mm = NULL;
687 	up_read(&mm->mmap_sem);
688 	enter_lazy_tlb(mm, current);
689 	/* We don't want this task to be frozen prematurely */
690 	clear_freeze_flag(tsk);
691 	if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
692 		atomic_dec(&mm->oom_disable_count);
693 	task_unlock(tsk);
694 	mm_update_next_owner(mm);
695 	mmput(mm);
696 }
697 
698 /*
699  * When we die, we re-parent all our children.
700  * Try to give them to another thread in our thread
701  * group, and if no such member exists, give it to
702  * the child reaper process (ie "init") in our pid
703  * space.
704  */
705 static struct task_struct *find_new_reaper(struct task_struct *father)
706 	__releases(&tasklist_lock)
707 	__acquires(&tasklist_lock)
708 {
709 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
710 	struct task_struct *thread;
711 
712 	thread = father;
713 	while_each_thread(father, thread) {
714 		if (thread->flags & PF_EXITING)
715 			continue;
716 		if (unlikely(pid_ns->child_reaper == father))
717 			pid_ns->child_reaper = thread;
718 		return thread;
719 	}
720 
721 	if (unlikely(pid_ns->child_reaper == father)) {
722 		write_unlock_irq(&tasklist_lock);
723 		if (unlikely(pid_ns == &init_pid_ns))
724 			panic("Attempted to kill init!");
725 
726 		zap_pid_ns_processes(pid_ns);
727 		write_lock_irq(&tasklist_lock);
728 		/*
729 		 * We can not clear ->child_reaper or leave it alone.
730 		 * There may by stealth EXIT_DEAD tasks on ->children,
731 		 * forget_original_parent() must move them somewhere.
732 		 */
733 		pid_ns->child_reaper = init_pid_ns.child_reaper;
734 	}
735 
736 	return pid_ns->child_reaper;
737 }
738 
739 /*
740 * Any that need to be release_task'd are put on the @dead list.
741  */
742 static void reparent_leader(struct task_struct *father, struct task_struct *p,
743 				struct list_head *dead)
744 {
745 	list_move_tail(&p->sibling, &p->real_parent->children);
746 
747 	if (task_detached(p))
748 		return;
749 	/*
750 	 * If this is a threaded reparent there is no need to
751 	 * notify anyone anything has happened.
752 	 */
753 	if (same_thread_group(p->real_parent, father))
754 		return;
755 
756 	/* We don't want people slaying init.  */
757 	p->exit_signal = SIGCHLD;
758 
759 	/* If it has exited notify the new parent about this child's death. */
760 	if (!task_ptrace(p) &&
761 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
762 		do_notify_parent(p, p->exit_signal);
763 		if (task_detached(p)) {
764 			p->exit_state = EXIT_DEAD;
765 			list_move_tail(&p->sibling, dead);
766 		}
767 	}
768 
769 	kill_orphaned_pgrp(p, father);
770 }
771 
772 static void forget_original_parent(struct task_struct *father)
773 {
774 	struct task_struct *p, *n, *reaper;
775 	LIST_HEAD(dead_children);
776 
777 	write_lock_irq(&tasklist_lock);
778 	/*
779 	 * Note that exit_ptrace() and find_new_reaper() might
780 	 * drop tasklist_lock and reacquire it.
781 	 */
782 	exit_ptrace(father);
783 	reaper = find_new_reaper(father);
784 
785 	list_for_each_entry_safe(p, n, &father->children, sibling) {
786 		struct task_struct *t = p;
787 		do {
788 			t->real_parent = reaper;
789 			if (t->parent == father) {
790 				BUG_ON(task_ptrace(t));
791 				t->parent = t->real_parent;
792 			}
793 			if (t->pdeath_signal)
794 				group_send_sig_info(t->pdeath_signal,
795 						    SEND_SIG_NOINFO, t);
796 		} while_each_thread(p, t);
797 		reparent_leader(father, p, &dead_children);
798 	}
799 	write_unlock_irq(&tasklist_lock);
800 
801 	BUG_ON(!list_empty(&father->children));
802 
803 	list_for_each_entry_safe(p, n, &dead_children, sibling) {
804 		list_del_init(&p->sibling);
805 		release_task(p);
806 	}
807 }
808 
809 /*
810  * Send signals to all our closest relatives so that they know
811  * to properly mourn us..
812  */
813 static void exit_notify(struct task_struct *tsk, int group_dead)
814 {
815 	int signal;
816 	void *cookie;
817 
818 	/*
819 	 * This does two things:
820 	 *
821   	 * A.  Make init inherit all the child processes
822 	 * B.  Check to see if any process groups have become orphaned
823 	 *	as a result of our exiting, and if they have any stopped
824 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
825 	 */
826 	forget_original_parent(tsk);
827 	exit_task_namespaces(tsk);
828 
829 	write_lock_irq(&tasklist_lock);
830 	if (group_dead)
831 		kill_orphaned_pgrp(tsk->group_leader, NULL);
832 
833 	/* Let father know we died
834 	 *
835 	 * Thread signals are configurable, but you aren't going to use
836 	 * that to send signals to arbitary processes.
837 	 * That stops right now.
838 	 *
839 	 * If the parent exec id doesn't match the exec id we saved
840 	 * when we started then we know the parent has changed security
841 	 * domain.
842 	 *
843 	 * If our self_exec id doesn't match our parent_exec_id then
844 	 * we have changed execution domain as these two values started
845 	 * the same after a fork.
846 	 */
847 	if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
848 	    (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
849 	     tsk->self_exec_id != tsk->parent_exec_id))
850 		tsk->exit_signal = SIGCHLD;
851 
852 	signal = tracehook_notify_death(tsk, &cookie, group_dead);
853 	if (signal >= 0)
854 		signal = do_notify_parent(tsk, signal);
855 
856 	tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
857 
858 	/* mt-exec, de_thread() is waiting for group leader */
859 	if (unlikely(tsk->signal->notify_count < 0))
860 		wake_up_process(tsk->signal->group_exit_task);
861 	write_unlock_irq(&tasklist_lock);
862 
863 	tracehook_report_death(tsk, signal, cookie, group_dead);
864 
865 	/* If the process is dead, release it - nobody will wait for it */
866 	if (signal == DEATH_REAP)
867 		release_task(tsk);
868 }
869 
870 #ifdef CONFIG_DEBUG_STACK_USAGE
871 static void check_stack_usage(void)
872 {
873 	static DEFINE_SPINLOCK(low_water_lock);
874 	static int lowest_to_date = THREAD_SIZE;
875 	unsigned long free;
876 
877 	free = stack_not_used(current);
878 
879 	if (free >= lowest_to_date)
880 		return;
881 
882 	spin_lock(&low_water_lock);
883 	if (free < lowest_to_date) {
884 		printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
885 				"left\n",
886 				current->comm, free);
887 		lowest_to_date = free;
888 	}
889 	spin_unlock(&low_water_lock);
890 }
891 #else
892 static inline void check_stack_usage(void) {}
893 #endif
894 
895 NORET_TYPE void do_exit(long code)
896 {
897 	struct task_struct *tsk = current;
898 	int group_dead;
899 
900 	profile_task_exit(tsk);
901 
902 	WARN_ON(atomic_read(&tsk->fs_excl));
903 
904 	if (unlikely(in_interrupt()))
905 		panic("Aiee, killing interrupt handler!");
906 	if (unlikely(!tsk->pid))
907 		panic("Attempted to kill the idle task!");
908 
909 	tracehook_report_exit(&code);
910 
911 	validate_creds_for_do_exit(tsk);
912 
913 	/*
914 	 * We're taking recursive faults here in do_exit. Safest is to just
915 	 * leave this task alone and wait for reboot.
916 	 */
917 	if (unlikely(tsk->flags & PF_EXITING)) {
918 		printk(KERN_ALERT
919 			"Fixing recursive fault but reboot is needed!\n");
920 		/*
921 		 * We can do this unlocked here. The futex code uses
922 		 * this flag just to verify whether the pi state
923 		 * cleanup has been done or not. In the worst case it
924 		 * loops once more. We pretend that the cleanup was
925 		 * done as there is no way to return. Either the
926 		 * OWNER_DIED bit is set by now or we push the blocked
927 		 * task into the wait for ever nirwana as well.
928 		 */
929 		tsk->flags |= PF_EXITPIDONE;
930 		set_current_state(TASK_UNINTERRUPTIBLE);
931 		schedule();
932 	}
933 
934 	exit_irq_thread();
935 
936 	exit_signals(tsk);  /* sets PF_EXITING */
937 	/*
938 	 * tsk->flags are checked in the futex code to protect against
939 	 * an exiting task cleaning up the robust pi futexes.
940 	 */
941 	smp_mb();
942 	raw_spin_unlock_wait(&tsk->pi_lock);
943 
944 	if (unlikely(in_atomic()))
945 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
946 				current->comm, task_pid_nr(current),
947 				preempt_count());
948 
949 	acct_update_integrals(tsk);
950 	/* sync mm's RSS info before statistics gathering */
951 	if (tsk->mm)
952 		sync_mm_rss(tsk, tsk->mm);
953 	group_dead = atomic_dec_and_test(&tsk->signal->live);
954 	if (group_dead) {
955 		hrtimer_cancel(&tsk->signal->real_timer);
956 		exit_itimers(tsk->signal);
957 		if (tsk->mm)
958 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
959 	}
960 	acct_collect(code, group_dead);
961 	if (group_dead)
962 		tty_audit_exit();
963 	if (unlikely(tsk->audit_context))
964 		audit_free(tsk);
965 
966 	tsk->exit_code = code;
967 	taskstats_exit(tsk, group_dead);
968 
969 	exit_mm(tsk);
970 
971 	if (group_dead)
972 		acct_process();
973 	trace_sched_process_exit(tsk);
974 
975 	exit_sem(tsk);
976 	exit_files(tsk);
977 	exit_fs(tsk);
978 	check_stack_usage();
979 	exit_thread();
980 	cgroup_exit(tsk, 1);
981 
982 	if (group_dead)
983 		disassociate_ctty(1);
984 
985 	module_put(task_thread_info(tsk)->exec_domain->module);
986 
987 	proc_exit_connector(tsk);
988 
989 	/*
990 	 * FIXME: do that only when needed, using sched_exit tracepoint
991 	 */
992 	flush_ptrace_hw_breakpoint(tsk);
993 	/*
994 	 * Flush inherited counters to the parent - before the parent
995 	 * gets woken up by child-exit notifications.
996 	 */
997 	perf_event_exit_task(tsk);
998 
999 	exit_notify(tsk, group_dead);
1000 #ifdef CONFIG_NUMA
1001 	task_lock(tsk);
1002 	mpol_put(tsk->mempolicy);
1003 	tsk->mempolicy = NULL;
1004 	task_unlock(tsk);
1005 #endif
1006 #ifdef CONFIG_FUTEX
1007 	if (unlikely(current->pi_state_cache))
1008 		kfree(current->pi_state_cache);
1009 #endif
1010 	/*
1011 	 * Make sure we are holding no locks:
1012 	 */
1013 	debug_check_no_locks_held(tsk);
1014 	/*
1015 	 * We can do this unlocked here. The futex code uses this flag
1016 	 * just to verify whether the pi state cleanup has been done
1017 	 * or not. In the worst case it loops once more.
1018 	 */
1019 	tsk->flags |= PF_EXITPIDONE;
1020 
1021 	if (tsk->io_context)
1022 		exit_io_context(tsk);
1023 
1024 	if (tsk->splice_pipe)
1025 		__free_pipe_info(tsk->splice_pipe);
1026 
1027 	validate_creds_for_do_exit(tsk);
1028 
1029 	preempt_disable();
1030 	exit_rcu();
1031 	/* causes final put_task_struct in finish_task_switch(). */
1032 	tsk->state = TASK_DEAD;
1033 	schedule();
1034 	BUG();
1035 	/* Avoid "noreturn function does return".  */
1036 	for (;;)
1037 		cpu_relax();	/* For when BUG is null */
1038 }
1039 
1040 EXPORT_SYMBOL_GPL(do_exit);
1041 
1042 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1043 {
1044 	if (comp)
1045 		complete(comp);
1046 
1047 	do_exit(code);
1048 }
1049 
1050 EXPORT_SYMBOL(complete_and_exit);
1051 
1052 SYSCALL_DEFINE1(exit, int, error_code)
1053 {
1054 	do_exit((error_code&0xff)<<8);
1055 }
1056 
1057 /*
1058  * Take down every thread in the group.  This is called by fatal signals
1059  * as well as by sys_exit_group (below).
1060  */
1061 NORET_TYPE void
1062 do_group_exit(int exit_code)
1063 {
1064 	struct signal_struct *sig = current->signal;
1065 
1066 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1067 
1068 	if (signal_group_exit(sig))
1069 		exit_code = sig->group_exit_code;
1070 	else if (!thread_group_empty(current)) {
1071 		struct sighand_struct *const sighand = current->sighand;
1072 		spin_lock_irq(&sighand->siglock);
1073 		if (signal_group_exit(sig))
1074 			/* Another thread got here before we took the lock.  */
1075 			exit_code = sig->group_exit_code;
1076 		else {
1077 			sig->group_exit_code = exit_code;
1078 			sig->flags = SIGNAL_GROUP_EXIT;
1079 			zap_other_threads(current);
1080 		}
1081 		spin_unlock_irq(&sighand->siglock);
1082 	}
1083 
1084 	do_exit(exit_code);
1085 	/* NOTREACHED */
1086 }
1087 
1088 /*
1089  * this kills every thread in the thread group. Note that any externally
1090  * wait4()-ing process will get the correct exit code - even if this
1091  * thread is not the thread group leader.
1092  */
1093 SYSCALL_DEFINE1(exit_group, int, error_code)
1094 {
1095 	do_group_exit((error_code & 0xff) << 8);
1096 	/* NOTREACHED */
1097 	return 0;
1098 }
1099 
1100 struct wait_opts {
1101 	enum pid_type		wo_type;
1102 	int			wo_flags;
1103 	struct pid		*wo_pid;
1104 
1105 	struct siginfo __user	*wo_info;
1106 	int __user		*wo_stat;
1107 	struct rusage __user	*wo_rusage;
1108 
1109 	wait_queue_t		child_wait;
1110 	int			notask_error;
1111 };
1112 
1113 static inline
1114 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1115 {
1116 	if (type != PIDTYPE_PID)
1117 		task = task->group_leader;
1118 	return task->pids[type].pid;
1119 }
1120 
1121 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1122 {
1123 	return	wo->wo_type == PIDTYPE_MAX ||
1124 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1125 }
1126 
1127 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1128 {
1129 	if (!eligible_pid(wo, p))
1130 		return 0;
1131 	/* Wait for all children (clone and not) if __WALL is set;
1132 	 * otherwise, wait for clone children *only* if __WCLONE is
1133 	 * set; otherwise, wait for non-clone children *only*.  (Note:
1134 	 * A "clone" child here is one that reports to its parent
1135 	 * using a signal other than SIGCHLD.) */
1136 	if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1137 	    && !(wo->wo_flags & __WALL))
1138 		return 0;
1139 
1140 	return 1;
1141 }
1142 
1143 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1144 				pid_t pid, uid_t uid, int why, int status)
1145 {
1146 	struct siginfo __user *infop;
1147 	int retval = wo->wo_rusage
1148 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1149 
1150 	put_task_struct(p);
1151 	infop = wo->wo_info;
1152 	if (infop) {
1153 		if (!retval)
1154 			retval = put_user(SIGCHLD, &infop->si_signo);
1155 		if (!retval)
1156 			retval = put_user(0, &infop->si_errno);
1157 		if (!retval)
1158 			retval = put_user((short)why, &infop->si_code);
1159 		if (!retval)
1160 			retval = put_user(pid, &infop->si_pid);
1161 		if (!retval)
1162 			retval = put_user(uid, &infop->si_uid);
1163 		if (!retval)
1164 			retval = put_user(status, &infop->si_status);
1165 	}
1166 	if (!retval)
1167 		retval = pid;
1168 	return retval;
1169 }
1170 
1171 /*
1172  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1173  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1174  * the lock and this task is uninteresting.  If we return nonzero, we have
1175  * released the lock and the system call should return.
1176  */
1177 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1178 {
1179 	unsigned long state;
1180 	int retval, status, traced;
1181 	pid_t pid = task_pid_vnr(p);
1182 	uid_t uid = __task_cred(p)->uid;
1183 	struct siginfo __user *infop;
1184 
1185 	if (!likely(wo->wo_flags & WEXITED))
1186 		return 0;
1187 
1188 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1189 		int exit_code = p->exit_code;
1190 		int why;
1191 
1192 		get_task_struct(p);
1193 		read_unlock(&tasklist_lock);
1194 		if ((exit_code & 0x7f) == 0) {
1195 			why = CLD_EXITED;
1196 			status = exit_code >> 8;
1197 		} else {
1198 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1199 			status = exit_code & 0x7f;
1200 		}
1201 		return wait_noreap_copyout(wo, p, pid, uid, why, status);
1202 	}
1203 
1204 	/*
1205 	 * Try to move the task's state to DEAD
1206 	 * only one thread is allowed to do this:
1207 	 */
1208 	state = xchg(&p->exit_state, EXIT_DEAD);
1209 	if (state != EXIT_ZOMBIE) {
1210 		BUG_ON(state != EXIT_DEAD);
1211 		return 0;
1212 	}
1213 
1214 	traced = ptrace_reparented(p);
1215 	/*
1216 	 * It can be ptraced but not reparented, check
1217 	 * !task_detached() to filter out sub-threads.
1218 	 */
1219 	if (likely(!traced) && likely(!task_detached(p))) {
1220 		struct signal_struct *psig;
1221 		struct signal_struct *sig;
1222 		unsigned long maxrss;
1223 		cputime_t tgutime, tgstime;
1224 
1225 		/*
1226 		 * The resource counters for the group leader are in its
1227 		 * own task_struct.  Those for dead threads in the group
1228 		 * are in its signal_struct, as are those for the child
1229 		 * processes it has previously reaped.  All these
1230 		 * accumulate in the parent's signal_struct c* fields.
1231 		 *
1232 		 * We don't bother to take a lock here to protect these
1233 		 * p->signal fields, because they are only touched by
1234 		 * __exit_signal, which runs with tasklist_lock
1235 		 * write-locked anyway, and so is excluded here.  We do
1236 		 * need to protect the access to parent->signal fields,
1237 		 * as other threads in the parent group can be right
1238 		 * here reaping other children at the same time.
1239 		 *
1240 		 * We use thread_group_times() to get times for the thread
1241 		 * group, which consolidates times for all threads in the
1242 		 * group including the group leader.
1243 		 */
1244 		thread_group_times(p, &tgutime, &tgstime);
1245 		spin_lock_irq(&p->real_parent->sighand->siglock);
1246 		psig = p->real_parent->signal;
1247 		sig = p->signal;
1248 		psig->cutime =
1249 			cputime_add(psig->cutime,
1250 			cputime_add(tgutime,
1251 				    sig->cutime));
1252 		psig->cstime =
1253 			cputime_add(psig->cstime,
1254 			cputime_add(tgstime,
1255 				    sig->cstime));
1256 		psig->cgtime =
1257 			cputime_add(psig->cgtime,
1258 			cputime_add(p->gtime,
1259 			cputime_add(sig->gtime,
1260 				    sig->cgtime)));
1261 		psig->cmin_flt +=
1262 			p->min_flt + sig->min_flt + sig->cmin_flt;
1263 		psig->cmaj_flt +=
1264 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1265 		psig->cnvcsw +=
1266 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1267 		psig->cnivcsw +=
1268 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1269 		psig->cinblock +=
1270 			task_io_get_inblock(p) +
1271 			sig->inblock + sig->cinblock;
1272 		psig->coublock +=
1273 			task_io_get_oublock(p) +
1274 			sig->oublock + sig->coublock;
1275 		maxrss = max(sig->maxrss, sig->cmaxrss);
1276 		if (psig->cmaxrss < maxrss)
1277 			psig->cmaxrss = maxrss;
1278 		task_io_accounting_add(&psig->ioac, &p->ioac);
1279 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1280 		spin_unlock_irq(&p->real_parent->sighand->siglock);
1281 	}
1282 
1283 	/*
1284 	 * Now we are sure this task is interesting, and no other
1285 	 * thread can reap it because we set its state to EXIT_DEAD.
1286 	 */
1287 	read_unlock(&tasklist_lock);
1288 
1289 	retval = wo->wo_rusage
1290 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1291 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1292 		? p->signal->group_exit_code : p->exit_code;
1293 	if (!retval && wo->wo_stat)
1294 		retval = put_user(status, wo->wo_stat);
1295 
1296 	infop = wo->wo_info;
1297 	if (!retval && infop)
1298 		retval = put_user(SIGCHLD, &infop->si_signo);
1299 	if (!retval && infop)
1300 		retval = put_user(0, &infop->si_errno);
1301 	if (!retval && infop) {
1302 		int why;
1303 
1304 		if ((status & 0x7f) == 0) {
1305 			why = CLD_EXITED;
1306 			status >>= 8;
1307 		} else {
1308 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1309 			status &= 0x7f;
1310 		}
1311 		retval = put_user((short)why, &infop->si_code);
1312 		if (!retval)
1313 			retval = put_user(status, &infop->si_status);
1314 	}
1315 	if (!retval && infop)
1316 		retval = put_user(pid, &infop->si_pid);
1317 	if (!retval && infop)
1318 		retval = put_user(uid, &infop->si_uid);
1319 	if (!retval)
1320 		retval = pid;
1321 
1322 	if (traced) {
1323 		write_lock_irq(&tasklist_lock);
1324 		/* We dropped tasklist, ptracer could die and untrace */
1325 		ptrace_unlink(p);
1326 		/*
1327 		 * If this is not a detached task, notify the parent.
1328 		 * If it's still not detached after that, don't release
1329 		 * it now.
1330 		 */
1331 		if (!task_detached(p)) {
1332 			do_notify_parent(p, p->exit_signal);
1333 			if (!task_detached(p)) {
1334 				p->exit_state = EXIT_ZOMBIE;
1335 				p = NULL;
1336 			}
1337 		}
1338 		write_unlock_irq(&tasklist_lock);
1339 	}
1340 	if (p != NULL)
1341 		release_task(p);
1342 
1343 	return retval;
1344 }
1345 
1346 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1347 {
1348 	if (ptrace) {
1349 		if (task_is_stopped_or_traced(p))
1350 			return &p->exit_code;
1351 	} else {
1352 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1353 			return &p->signal->group_exit_code;
1354 	}
1355 	return NULL;
1356 }
1357 
1358 /*
1359  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1360  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1361  * the lock and this task is uninteresting.  If we return nonzero, we have
1362  * released the lock and the system call should return.
1363  */
1364 static int wait_task_stopped(struct wait_opts *wo,
1365 				int ptrace, struct task_struct *p)
1366 {
1367 	struct siginfo __user *infop;
1368 	int retval, exit_code, *p_code, why;
1369 	uid_t uid = 0; /* unneeded, required by compiler */
1370 	pid_t pid;
1371 
1372 	/*
1373 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1374 	 */
1375 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1376 		return 0;
1377 
1378 	exit_code = 0;
1379 	spin_lock_irq(&p->sighand->siglock);
1380 
1381 	p_code = task_stopped_code(p, ptrace);
1382 	if (unlikely(!p_code))
1383 		goto unlock_sig;
1384 
1385 	exit_code = *p_code;
1386 	if (!exit_code)
1387 		goto unlock_sig;
1388 
1389 	if (!unlikely(wo->wo_flags & WNOWAIT))
1390 		*p_code = 0;
1391 
1392 	uid = task_uid(p);
1393 unlock_sig:
1394 	spin_unlock_irq(&p->sighand->siglock);
1395 	if (!exit_code)
1396 		return 0;
1397 
1398 	/*
1399 	 * Now we are pretty sure this task is interesting.
1400 	 * Make sure it doesn't get reaped out from under us while we
1401 	 * give up the lock and then examine it below.  We don't want to
1402 	 * keep holding onto the tasklist_lock while we call getrusage and
1403 	 * possibly take page faults for user memory.
1404 	 */
1405 	get_task_struct(p);
1406 	pid = task_pid_vnr(p);
1407 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1408 	read_unlock(&tasklist_lock);
1409 
1410 	if (unlikely(wo->wo_flags & WNOWAIT))
1411 		return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1412 
1413 	retval = wo->wo_rusage
1414 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1415 	if (!retval && wo->wo_stat)
1416 		retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1417 
1418 	infop = wo->wo_info;
1419 	if (!retval && infop)
1420 		retval = put_user(SIGCHLD, &infop->si_signo);
1421 	if (!retval && infop)
1422 		retval = put_user(0, &infop->si_errno);
1423 	if (!retval && infop)
1424 		retval = put_user((short)why, &infop->si_code);
1425 	if (!retval && infop)
1426 		retval = put_user(exit_code, &infop->si_status);
1427 	if (!retval && infop)
1428 		retval = put_user(pid, &infop->si_pid);
1429 	if (!retval && infop)
1430 		retval = put_user(uid, &infop->si_uid);
1431 	if (!retval)
1432 		retval = pid;
1433 	put_task_struct(p);
1434 
1435 	BUG_ON(!retval);
1436 	return retval;
1437 }
1438 
1439 /*
1440  * Handle do_wait work for one task in a live, non-stopped state.
1441  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1442  * the lock and this task is uninteresting.  If we return nonzero, we have
1443  * released the lock and the system call should return.
1444  */
1445 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1446 {
1447 	int retval;
1448 	pid_t pid;
1449 	uid_t uid;
1450 
1451 	if (!unlikely(wo->wo_flags & WCONTINUED))
1452 		return 0;
1453 
1454 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1455 		return 0;
1456 
1457 	spin_lock_irq(&p->sighand->siglock);
1458 	/* Re-check with the lock held.  */
1459 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1460 		spin_unlock_irq(&p->sighand->siglock);
1461 		return 0;
1462 	}
1463 	if (!unlikely(wo->wo_flags & WNOWAIT))
1464 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1465 	uid = task_uid(p);
1466 	spin_unlock_irq(&p->sighand->siglock);
1467 
1468 	pid = task_pid_vnr(p);
1469 	get_task_struct(p);
1470 	read_unlock(&tasklist_lock);
1471 
1472 	if (!wo->wo_info) {
1473 		retval = wo->wo_rusage
1474 			? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1475 		put_task_struct(p);
1476 		if (!retval && wo->wo_stat)
1477 			retval = put_user(0xffff, wo->wo_stat);
1478 		if (!retval)
1479 			retval = pid;
1480 	} else {
1481 		retval = wait_noreap_copyout(wo, p, pid, uid,
1482 					     CLD_CONTINUED, SIGCONT);
1483 		BUG_ON(retval == 0);
1484 	}
1485 
1486 	return retval;
1487 }
1488 
1489 /*
1490  * Consider @p for a wait by @parent.
1491  *
1492  * -ECHILD should be in ->notask_error before the first call.
1493  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1494  * Returns zero if the search for a child should continue;
1495  * then ->notask_error is 0 if @p is an eligible child,
1496  * or another error from security_task_wait(), or still -ECHILD.
1497  */
1498 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1499 				struct task_struct *p)
1500 {
1501 	int ret = eligible_child(wo, p);
1502 	if (!ret)
1503 		return ret;
1504 
1505 	ret = security_task_wait(p);
1506 	if (unlikely(ret < 0)) {
1507 		/*
1508 		 * If we have not yet seen any eligible child,
1509 		 * then let this error code replace -ECHILD.
1510 		 * A permission error will give the user a clue
1511 		 * to look for security policy problems, rather
1512 		 * than for mysterious wait bugs.
1513 		 */
1514 		if (wo->notask_error)
1515 			wo->notask_error = ret;
1516 		return 0;
1517 	}
1518 
1519 	if (likely(!ptrace) && unlikely(task_ptrace(p))) {
1520 		/*
1521 		 * This child is hidden by ptrace.
1522 		 * We aren't allowed to see it now, but eventually we will.
1523 		 */
1524 		wo->notask_error = 0;
1525 		return 0;
1526 	}
1527 
1528 	if (p->exit_state == EXIT_DEAD)
1529 		return 0;
1530 
1531 	/*
1532 	 * We don't reap group leaders with subthreads.
1533 	 */
1534 	if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1535 		return wait_task_zombie(wo, p);
1536 
1537 	/*
1538 	 * It's stopped or running now, so it might
1539 	 * later continue, exit, or stop again.
1540 	 */
1541 	wo->notask_error = 0;
1542 
1543 	if (task_stopped_code(p, ptrace))
1544 		return wait_task_stopped(wo, ptrace, p);
1545 
1546 	return wait_task_continued(wo, p);
1547 }
1548 
1549 /*
1550  * Do the work of do_wait() for one thread in the group, @tsk.
1551  *
1552  * -ECHILD should be in ->notask_error before the first call.
1553  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1554  * Returns zero if the search for a child should continue; then
1555  * ->notask_error is 0 if there were any eligible children,
1556  * or another error from security_task_wait(), or still -ECHILD.
1557  */
1558 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1559 {
1560 	struct task_struct *p;
1561 
1562 	list_for_each_entry(p, &tsk->children, sibling) {
1563 		int ret = wait_consider_task(wo, 0, p);
1564 		if (ret)
1565 			return ret;
1566 	}
1567 
1568 	return 0;
1569 }
1570 
1571 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1572 {
1573 	struct task_struct *p;
1574 
1575 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1576 		int ret = wait_consider_task(wo, 1, p);
1577 		if (ret)
1578 			return ret;
1579 	}
1580 
1581 	return 0;
1582 }
1583 
1584 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1585 				int sync, void *key)
1586 {
1587 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1588 						child_wait);
1589 	struct task_struct *p = key;
1590 
1591 	if (!eligible_pid(wo, p))
1592 		return 0;
1593 
1594 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1595 		return 0;
1596 
1597 	return default_wake_function(wait, mode, sync, key);
1598 }
1599 
1600 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1601 {
1602 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1603 				TASK_INTERRUPTIBLE, 1, p);
1604 }
1605 
1606 static long do_wait(struct wait_opts *wo)
1607 {
1608 	struct task_struct *tsk;
1609 	int retval;
1610 
1611 	trace_sched_process_wait(wo->wo_pid);
1612 
1613 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1614 	wo->child_wait.private = current;
1615 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1616 repeat:
1617 	/*
1618 	 * If there is nothing that can match our critiera just get out.
1619 	 * We will clear ->notask_error to zero if we see any child that
1620 	 * might later match our criteria, even if we are not able to reap
1621 	 * it yet.
1622 	 */
1623 	wo->notask_error = -ECHILD;
1624 	if ((wo->wo_type < PIDTYPE_MAX) &&
1625 	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1626 		goto notask;
1627 
1628 	set_current_state(TASK_INTERRUPTIBLE);
1629 	read_lock(&tasklist_lock);
1630 	tsk = current;
1631 	do {
1632 		retval = do_wait_thread(wo, tsk);
1633 		if (retval)
1634 			goto end;
1635 
1636 		retval = ptrace_do_wait(wo, tsk);
1637 		if (retval)
1638 			goto end;
1639 
1640 		if (wo->wo_flags & __WNOTHREAD)
1641 			break;
1642 	} while_each_thread(current, tsk);
1643 	read_unlock(&tasklist_lock);
1644 
1645 notask:
1646 	retval = wo->notask_error;
1647 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1648 		retval = -ERESTARTSYS;
1649 		if (!signal_pending(current)) {
1650 			schedule();
1651 			goto repeat;
1652 		}
1653 	}
1654 end:
1655 	__set_current_state(TASK_RUNNING);
1656 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1657 	return retval;
1658 }
1659 
1660 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1661 		infop, int, options, struct rusage __user *, ru)
1662 {
1663 	struct wait_opts wo;
1664 	struct pid *pid = NULL;
1665 	enum pid_type type;
1666 	long ret;
1667 
1668 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1669 		return -EINVAL;
1670 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1671 		return -EINVAL;
1672 
1673 	switch (which) {
1674 	case P_ALL:
1675 		type = PIDTYPE_MAX;
1676 		break;
1677 	case P_PID:
1678 		type = PIDTYPE_PID;
1679 		if (upid <= 0)
1680 			return -EINVAL;
1681 		break;
1682 	case P_PGID:
1683 		type = PIDTYPE_PGID;
1684 		if (upid <= 0)
1685 			return -EINVAL;
1686 		break;
1687 	default:
1688 		return -EINVAL;
1689 	}
1690 
1691 	if (type < PIDTYPE_MAX)
1692 		pid = find_get_pid(upid);
1693 
1694 	wo.wo_type	= type;
1695 	wo.wo_pid	= pid;
1696 	wo.wo_flags	= options;
1697 	wo.wo_info	= infop;
1698 	wo.wo_stat	= NULL;
1699 	wo.wo_rusage	= ru;
1700 	ret = do_wait(&wo);
1701 
1702 	if (ret > 0) {
1703 		ret = 0;
1704 	} else if (infop) {
1705 		/*
1706 		 * For a WNOHANG return, clear out all the fields
1707 		 * we would set so the user can easily tell the
1708 		 * difference.
1709 		 */
1710 		if (!ret)
1711 			ret = put_user(0, &infop->si_signo);
1712 		if (!ret)
1713 			ret = put_user(0, &infop->si_errno);
1714 		if (!ret)
1715 			ret = put_user(0, &infop->si_code);
1716 		if (!ret)
1717 			ret = put_user(0, &infop->si_pid);
1718 		if (!ret)
1719 			ret = put_user(0, &infop->si_uid);
1720 		if (!ret)
1721 			ret = put_user(0, &infop->si_status);
1722 	}
1723 
1724 	put_pid(pid);
1725 
1726 	/* avoid REGPARM breakage on x86: */
1727 	asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1728 	return ret;
1729 }
1730 
1731 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1732 		int, options, struct rusage __user *, ru)
1733 {
1734 	struct wait_opts wo;
1735 	struct pid *pid = NULL;
1736 	enum pid_type type;
1737 	long ret;
1738 
1739 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1740 			__WNOTHREAD|__WCLONE|__WALL))
1741 		return -EINVAL;
1742 
1743 	if (upid == -1)
1744 		type = PIDTYPE_MAX;
1745 	else if (upid < 0) {
1746 		type = PIDTYPE_PGID;
1747 		pid = find_get_pid(-upid);
1748 	} else if (upid == 0) {
1749 		type = PIDTYPE_PGID;
1750 		pid = get_task_pid(current, PIDTYPE_PGID);
1751 	} else /* upid > 0 */ {
1752 		type = PIDTYPE_PID;
1753 		pid = find_get_pid(upid);
1754 	}
1755 
1756 	wo.wo_type	= type;
1757 	wo.wo_pid	= pid;
1758 	wo.wo_flags	= options | WEXITED;
1759 	wo.wo_info	= NULL;
1760 	wo.wo_stat	= stat_addr;
1761 	wo.wo_rusage	= ru;
1762 	ret = do_wait(&wo);
1763 	put_pid(pid);
1764 
1765 	/* avoid REGPARM breakage on x86: */
1766 	asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1767 	return ret;
1768 }
1769 
1770 #ifdef __ARCH_WANT_SYS_WAITPID
1771 
1772 /*
1773  * sys_waitpid() remains for compatibility. waitpid() should be
1774  * implemented by calling sys_wait4() from libc.a.
1775  */
1776 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1777 {
1778 	return sys_wait4(pid, stat_addr, options, NULL);
1779 }
1780 
1781 #endif
1782