1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/iocontext.h> 16 #include <linux/key.h> 17 #include <linux/security.h> 18 #include <linux/cpu.h> 19 #include <linux/acct.h> 20 #include <linux/tsacct_kern.h> 21 #include <linux/file.h> 22 #include <linux/fdtable.h> 23 #include <linux/binfmts.h> 24 #include <linux/nsproxy.h> 25 #include <linux/pid_namespace.h> 26 #include <linux/ptrace.h> 27 #include <linux/profile.h> 28 #include <linux/mount.h> 29 #include <linux/proc_fs.h> 30 #include <linux/kthread.h> 31 #include <linux/mempolicy.h> 32 #include <linux/taskstats_kern.h> 33 #include <linux/delayacct.h> 34 #include <linux/freezer.h> 35 #include <linux/cgroup.h> 36 #include <linux/syscalls.h> 37 #include <linux/signal.h> 38 #include <linux/posix-timers.h> 39 #include <linux/cn_proc.h> 40 #include <linux/mutex.h> 41 #include <linux/futex.h> 42 #include <linux/pipe_fs_i.h> 43 #include <linux/audit.h> /* for audit_free() */ 44 #include <linux/resource.h> 45 #include <linux/blkdev.h> 46 #include <linux/task_io_accounting_ops.h> 47 #include <linux/tracehook.h> 48 #include <linux/fs_struct.h> 49 #include <linux/init_task.h> 50 #include <linux/perf_event.h> 51 #include <trace/events/sched.h> 52 #include <linux/hw_breakpoint.h> 53 #include <linux/oom.h> 54 55 #include <asm/uaccess.h> 56 #include <asm/unistd.h> 57 #include <asm/pgtable.h> 58 #include <asm/mmu_context.h> 59 60 static void exit_mm(struct task_struct * tsk); 61 62 static void __unhash_process(struct task_struct *p, bool group_dead) 63 { 64 nr_threads--; 65 detach_pid(p, PIDTYPE_PID); 66 if (group_dead) { 67 detach_pid(p, PIDTYPE_PGID); 68 detach_pid(p, PIDTYPE_SID); 69 70 list_del_rcu(&p->tasks); 71 list_del_init(&p->sibling); 72 __get_cpu_var(process_counts)--; 73 } 74 list_del_rcu(&p->thread_group); 75 } 76 77 /* 78 * This function expects the tasklist_lock write-locked. 79 */ 80 static void __exit_signal(struct task_struct *tsk) 81 { 82 struct signal_struct *sig = tsk->signal; 83 bool group_dead = thread_group_leader(tsk); 84 struct sighand_struct *sighand; 85 struct tty_struct *uninitialized_var(tty); 86 87 sighand = rcu_dereference_check(tsk->sighand, 88 rcu_read_lock_held() || 89 lockdep_tasklist_lock_is_held()); 90 spin_lock(&sighand->siglock); 91 92 posix_cpu_timers_exit(tsk); 93 if (group_dead) { 94 posix_cpu_timers_exit_group(tsk); 95 tty = sig->tty; 96 sig->tty = NULL; 97 } else { 98 /* 99 * If there is any task waiting for the group exit 100 * then notify it: 101 */ 102 if (sig->notify_count > 0 && !--sig->notify_count) 103 wake_up_process(sig->group_exit_task); 104 105 if (tsk == sig->curr_target) 106 sig->curr_target = next_thread(tsk); 107 /* 108 * Accumulate here the counters for all threads but the 109 * group leader as they die, so they can be added into 110 * the process-wide totals when those are taken. 111 * The group leader stays around as a zombie as long 112 * as there are other threads. When it gets reaped, 113 * the exit.c code will add its counts into these totals. 114 * We won't ever get here for the group leader, since it 115 * will have been the last reference on the signal_struct. 116 */ 117 sig->utime = cputime_add(sig->utime, tsk->utime); 118 sig->stime = cputime_add(sig->stime, tsk->stime); 119 sig->gtime = cputime_add(sig->gtime, tsk->gtime); 120 sig->min_flt += tsk->min_flt; 121 sig->maj_flt += tsk->maj_flt; 122 sig->nvcsw += tsk->nvcsw; 123 sig->nivcsw += tsk->nivcsw; 124 sig->inblock += task_io_get_inblock(tsk); 125 sig->oublock += task_io_get_oublock(tsk); 126 task_io_accounting_add(&sig->ioac, &tsk->ioac); 127 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 128 } 129 130 sig->nr_threads--; 131 __unhash_process(tsk, group_dead); 132 133 /* 134 * Do this under ->siglock, we can race with another thread 135 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 136 */ 137 flush_sigqueue(&tsk->pending); 138 tsk->sighand = NULL; 139 spin_unlock(&sighand->siglock); 140 141 __cleanup_sighand(sighand); 142 clear_tsk_thread_flag(tsk,TIF_SIGPENDING); 143 if (group_dead) { 144 flush_sigqueue(&sig->shared_pending); 145 tty_kref_put(tty); 146 } 147 } 148 149 static void delayed_put_task_struct(struct rcu_head *rhp) 150 { 151 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 152 153 perf_event_delayed_put(tsk); 154 trace_sched_process_free(tsk); 155 put_task_struct(tsk); 156 } 157 158 159 void release_task(struct task_struct * p) 160 { 161 struct task_struct *leader; 162 int zap_leader; 163 repeat: 164 tracehook_prepare_release_task(p); 165 /* don't need to get the RCU readlock here - the process is dead and 166 * can't be modifying its own credentials. But shut RCU-lockdep up */ 167 rcu_read_lock(); 168 atomic_dec(&__task_cred(p)->user->processes); 169 rcu_read_unlock(); 170 171 proc_flush_task(p); 172 173 write_lock_irq(&tasklist_lock); 174 tracehook_finish_release_task(p); 175 __exit_signal(p); 176 177 /* 178 * If we are the last non-leader member of the thread 179 * group, and the leader is zombie, then notify the 180 * group leader's parent process. (if it wants notification.) 181 */ 182 zap_leader = 0; 183 leader = p->group_leader; 184 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { 185 BUG_ON(task_detached(leader)); 186 do_notify_parent(leader, leader->exit_signal); 187 /* 188 * If we were the last child thread and the leader has 189 * exited already, and the leader's parent ignores SIGCHLD, 190 * then we are the one who should release the leader. 191 * 192 * do_notify_parent() will have marked it self-reaping in 193 * that case. 194 */ 195 zap_leader = task_detached(leader); 196 197 /* 198 * This maintains the invariant that release_task() 199 * only runs on a task in EXIT_DEAD, just for sanity. 200 */ 201 if (zap_leader) 202 leader->exit_state = EXIT_DEAD; 203 } 204 205 write_unlock_irq(&tasklist_lock); 206 release_thread(p); 207 call_rcu(&p->rcu, delayed_put_task_struct); 208 209 p = leader; 210 if (unlikely(zap_leader)) 211 goto repeat; 212 } 213 214 /* 215 * This checks not only the pgrp, but falls back on the pid if no 216 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 217 * without this... 218 * 219 * The caller must hold rcu lock or the tasklist lock. 220 */ 221 struct pid *session_of_pgrp(struct pid *pgrp) 222 { 223 struct task_struct *p; 224 struct pid *sid = NULL; 225 226 p = pid_task(pgrp, PIDTYPE_PGID); 227 if (p == NULL) 228 p = pid_task(pgrp, PIDTYPE_PID); 229 if (p != NULL) 230 sid = task_session(p); 231 232 return sid; 233 } 234 235 /* 236 * Determine if a process group is "orphaned", according to the POSIX 237 * definition in 2.2.2.52. Orphaned process groups are not to be affected 238 * by terminal-generated stop signals. Newly orphaned process groups are 239 * to receive a SIGHUP and a SIGCONT. 240 * 241 * "I ask you, have you ever known what it is to be an orphan?" 242 */ 243 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) 244 { 245 struct task_struct *p; 246 247 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 248 if ((p == ignored_task) || 249 (p->exit_state && thread_group_empty(p)) || 250 is_global_init(p->real_parent)) 251 continue; 252 253 if (task_pgrp(p->real_parent) != pgrp && 254 task_session(p->real_parent) == task_session(p)) 255 return 0; 256 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 257 258 return 1; 259 } 260 261 int is_current_pgrp_orphaned(void) 262 { 263 int retval; 264 265 read_lock(&tasklist_lock); 266 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 267 read_unlock(&tasklist_lock); 268 269 return retval; 270 } 271 272 static int has_stopped_jobs(struct pid *pgrp) 273 { 274 int retval = 0; 275 struct task_struct *p; 276 277 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 278 if (!task_is_stopped(p)) 279 continue; 280 retval = 1; 281 break; 282 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 283 return retval; 284 } 285 286 /* 287 * Check to see if any process groups have become orphaned as 288 * a result of our exiting, and if they have any stopped jobs, 289 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 290 */ 291 static void 292 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 293 { 294 struct pid *pgrp = task_pgrp(tsk); 295 struct task_struct *ignored_task = tsk; 296 297 if (!parent) 298 /* exit: our father is in a different pgrp than 299 * we are and we were the only connection outside. 300 */ 301 parent = tsk->real_parent; 302 else 303 /* reparent: our child is in a different pgrp than 304 * we are, and it was the only connection outside. 305 */ 306 ignored_task = NULL; 307 308 if (task_pgrp(parent) != pgrp && 309 task_session(parent) == task_session(tsk) && 310 will_become_orphaned_pgrp(pgrp, ignored_task) && 311 has_stopped_jobs(pgrp)) { 312 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 313 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 314 } 315 } 316 317 /** 318 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd 319 * 320 * If a kernel thread is launched as a result of a system call, or if 321 * it ever exits, it should generally reparent itself to kthreadd so it 322 * isn't in the way of other processes and is correctly cleaned up on exit. 323 * 324 * The various task state such as scheduling policy and priority may have 325 * been inherited from a user process, so we reset them to sane values here. 326 * 327 * NOTE that reparent_to_kthreadd() gives the caller full capabilities. 328 */ 329 static void reparent_to_kthreadd(void) 330 { 331 write_lock_irq(&tasklist_lock); 332 333 ptrace_unlink(current); 334 /* Reparent to init */ 335 current->real_parent = current->parent = kthreadd_task; 336 list_move_tail(¤t->sibling, ¤t->real_parent->children); 337 338 /* Set the exit signal to SIGCHLD so we signal init on exit */ 339 current->exit_signal = SIGCHLD; 340 341 if (task_nice(current) < 0) 342 set_user_nice(current, 0); 343 /* cpus_allowed? */ 344 /* rt_priority? */ 345 /* signals? */ 346 memcpy(current->signal->rlim, init_task.signal->rlim, 347 sizeof(current->signal->rlim)); 348 349 atomic_inc(&init_cred.usage); 350 commit_creds(&init_cred); 351 write_unlock_irq(&tasklist_lock); 352 } 353 354 void __set_special_pids(struct pid *pid) 355 { 356 struct task_struct *curr = current->group_leader; 357 358 if (task_session(curr) != pid) 359 change_pid(curr, PIDTYPE_SID, pid); 360 361 if (task_pgrp(curr) != pid) 362 change_pid(curr, PIDTYPE_PGID, pid); 363 } 364 365 static void set_special_pids(struct pid *pid) 366 { 367 write_lock_irq(&tasklist_lock); 368 __set_special_pids(pid); 369 write_unlock_irq(&tasklist_lock); 370 } 371 372 /* 373 * Let kernel threads use this to say that they allow a certain signal. 374 * Must not be used if kthread was cloned with CLONE_SIGHAND. 375 */ 376 int allow_signal(int sig) 377 { 378 if (!valid_signal(sig) || sig < 1) 379 return -EINVAL; 380 381 spin_lock_irq(¤t->sighand->siglock); 382 /* This is only needed for daemonize()'ed kthreads */ 383 sigdelset(¤t->blocked, sig); 384 /* 385 * Kernel threads handle their own signals. Let the signal code 386 * know it'll be handled, so that they don't get converted to 387 * SIGKILL or just silently dropped. 388 */ 389 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; 390 recalc_sigpending(); 391 spin_unlock_irq(¤t->sighand->siglock); 392 return 0; 393 } 394 395 EXPORT_SYMBOL(allow_signal); 396 397 int disallow_signal(int sig) 398 { 399 if (!valid_signal(sig) || sig < 1) 400 return -EINVAL; 401 402 spin_lock_irq(¤t->sighand->siglock); 403 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; 404 recalc_sigpending(); 405 spin_unlock_irq(¤t->sighand->siglock); 406 return 0; 407 } 408 409 EXPORT_SYMBOL(disallow_signal); 410 411 /* 412 * Put all the gunge required to become a kernel thread without 413 * attached user resources in one place where it belongs. 414 */ 415 416 void daemonize(const char *name, ...) 417 { 418 va_list args; 419 sigset_t blocked; 420 421 va_start(args, name); 422 vsnprintf(current->comm, sizeof(current->comm), name, args); 423 va_end(args); 424 425 /* 426 * If we were started as result of loading a module, close all of the 427 * user space pages. We don't need them, and if we didn't close them 428 * they would be locked into memory. 429 */ 430 exit_mm(current); 431 /* 432 * We don't want to have TIF_FREEZE set if the system-wide hibernation 433 * or suspend transition begins right now. 434 */ 435 current->flags |= (PF_NOFREEZE | PF_KTHREAD); 436 437 if (current->nsproxy != &init_nsproxy) { 438 get_nsproxy(&init_nsproxy); 439 switch_task_namespaces(current, &init_nsproxy); 440 } 441 set_special_pids(&init_struct_pid); 442 proc_clear_tty(current); 443 444 /* Block and flush all signals */ 445 sigfillset(&blocked); 446 sigprocmask(SIG_BLOCK, &blocked, NULL); 447 flush_signals(current); 448 449 /* Become as one with the init task */ 450 451 daemonize_fs_struct(); 452 exit_files(current); 453 current->files = init_task.files; 454 atomic_inc(¤t->files->count); 455 456 reparent_to_kthreadd(); 457 } 458 459 EXPORT_SYMBOL(daemonize); 460 461 static void close_files(struct files_struct * files) 462 { 463 int i, j; 464 struct fdtable *fdt; 465 466 j = 0; 467 468 /* 469 * It is safe to dereference the fd table without RCU or 470 * ->file_lock because this is the last reference to the 471 * files structure. But use RCU to shut RCU-lockdep up. 472 */ 473 rcu_read_lock(); 474 fdt = files_fdtable(files); 475 rcu_read_unlock(); 476 for (;;) { 477 unsigned long set; 478 i = j * __NFDBITS; 479 if (i >= fdt->max_fds) 480 break; 481 set = fdt->open_fds->fds_bits[j++]; 482 while (set) { 483 if (set & 1) { 484 struct file * file = xchg(&fdt->fd[i], NULL); 485 if (file) { 486 filp_close(file, files); 487 cond_resched(); 488 } 489 } 490 i++; 491 set >>= 1; 492 } 493 } 494 } 495 496 struct files_struct *get_files_struct(struct task_struct *task) 497 { 498 struct files_struct *files; 499 500 task_lock(task); 501 files = task->files; 502 if (files) 503 atomic_inc(&files->count); 504 task_unlock(task); 505 506 return files; 507 } 508 509 void put_files_struct(struct files_struct *files) 510 { 511 struct fdtable *fdt; 512 513 if (atomic_dec_and_test(&files->count)) { 514 close_files(files); 515 /* 516 * Free the fd and fdset arrays if we expanded them. 517 * If the fdtable was embedded, pass files for freeing 518 * at the end of the RCU grace period. Otherwise, 519 * you can free files immediately. 520 */ 521 rcu_read_lock(); 522 fdt = files_fdtable(files); 523 if (fdt != &files->fdtab) 524 kmem_cache_free(files_cachep, files); 525 free_fdtable(fdt); 526 rcu_read_unlock(); 527 } 528 } 529 530 void reset_files_struct(struct files_struct *files) 531 { 532 struct task_struct *tsk = current; 533 struct files_struct *old; 534 535 old = tsk->files; 536 task_lock(tsk); 537 tsk->files = files; 538 task_unlock(tsk); 539 put_files_struct(old); 540 } 541 542 void exit_files(struct task_struct *tsk) 543 { 544 struct files_struct * files = tsk->files; 545 546 if (files) { 547 task_lock(tsk); 548 tsk->files = NULL; 549 task_unlock(tsk); 550 put_files_struct(files); 551 } 552 } 553 554 #ifdef CONFIG_MM_OWNER 555 /* 556 * Task p is exiting and it owned mm, lets find a new owner for it 557 */ 558 static inline int 559 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p) 560 { 561 /* 562 * If there are other users of the mm and the owner (us) is exiting 563 * we need to find a new owner to take on the responsibility. 564 */ 565 if (atomic_read(&mm->mm_users) <= 1) 566 return 0; 567 if (mm->owner != p) 568 return 0; 569 return 1; 570 } 571 572 void mm_update_next_owner(struct mm_struct *mm) 573 { 574 struct task_struct *c, *g, *p = current; 575 576 retry: 577 if (!mm_need_new_owner(mm, p)) 578 return; 579 580 read_lock(&tasklist_lock); 581 /* 582 * Search in the children 583 */ 584 list_for_each_entry(c, &p->children, sibling) { 585 if (c->mm == mm) 586 goto assign_new_owner; 587 } 588 589 /* 590 * Search in the siblings 591 */ 592 list_for_each_entry(c, &p->real_parent->children, sibling) { 593 if (c->mm == mm) 594 goto assign_new_owner; 595 } 596 597 /* 598 * Search through everything else. We should not get 599 * here often 600 */ 601 do_each_thread(g, c) { 602 if (c->mm == mm) 603 goto assign_new_owner; 604 } while_each_thread(g, c); 605 606 read_unlock(&tasklist_lock); 607 /* 608 * We found no owner yet mm_users > 1: this implies that we are 609 * most likely racing with swapoff (try_to_unuse()) or /proc or 610 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 611 */ 612 mm->owner = NULL; 613 return; 614 615 assign_new_owner: 616 BUG_ON(c == p); 617 get_task_struct(c); 618 /* 619 * The task_lock protects c->mm from changing. 620 * We always want mm->owner->mm == mm 621 */ 622 task_lock(c); 623 /* 624 * Delay read_unlock() till we have the task_lock() 625 * to ensure that c does not slip away underneath us 626 */ 627 read_unlock(&tasklist_lock); 628 if (c->mm != mm) { 629 task_unlock(c); 630 put_task_struct(c); 631 goto retry; 632 } 633 mm->owner = c; 634 task_unlock(c); 635 put_task_struct(c); 636 } 637 #endif /* CONFIG_MM_OWNER */ 638 639 /* 640 * Turn us into a lazy TLB process if we 641 * aren't already.. 642 */ 643 static void exit_mm(struct task_struct * tsk) 644 { 645 struct mm_struct *mm = tsk->mm; 646 struct core_state *core_state; 647 648 mm_release(tsk, mm); 649 if (!mm) 650 return; 651 /* 652 * Serialize with any possible pending coredump. 653 * We must hold mmap_sem around checking core_state 654 * and clearing tsk->mm. The core-inducing thread 655 * will increment ->nr_threads for each thread in the 656 * group with ->mm != NULL. 657 */ 658 down_read(&mm->mmap_sem); 659 core_state = mm->core_state; 660 if (core_state) { 661 struct core_thread self; 662 up_read(&mm->mmap_sem); 663 664 self.task = tsk; 665 self.next = xchg(&core_state->dumper.next, &self); 666 /* 667 * Implies mb(), the result of xchg() must be visible 668 * to core_state->dumper. 669 */ 670 if (atomic_dec_and_test(&core_state->nr_threads)) 671 complete(&core_state->startup); 672 673 for (;;) { 674 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 675 if (!self.task) /* see coredump_finish() */ 676 break; 677 schedule(); 678 } 679 __set_task_state(tsk, TASK_RUNNING); 680 down_read(&mm->mmap_sem); 681 } 682 atomic_inc(&mm->mm_count); 683 BUG_ON(mm != tsk->active_mm); 684 /* more a memory barrier than a real lock */ 685 task_lock(tsk); 686 tsk->mm = NULL; 687 up_read(&mm->mmap_sem); 688 enter_lazy_tlb(mm, current); 689 /* We don't want this task to be frozen prematurely */ 690 clear_freeze_flag(tsk); 691 if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) 692 atomic_dec(&mm->oom_disable_count); 693 task_unlock(tsk); 694 mm_update_next_owner(mm); 695 mmput(mm); 696 } 697 698 /* 699 * When we die, we re-parent all our children. 700 * Try to give them to another thread in our thread 701 * group, and if no such member exists, give it to 702 * the child reaper process (ie "init") in our pid 703 * space. 704 */ 705 static struct task_struct *find_new_reaper(struct task_struct *father) 706 __releases(&tasklist_lock) 707 __acquires(&tasklist_lock) 708 { 709 struct pid_namespace *pid_ns = task_active_pid_ns(father); 710 struct task_struct *thread; 711 712 thread = father; 713 while_each_thread(father, thread) { 714 if (thread->flags & PF_EXITING) 715 continue; 716 if (unlikely(pid_ns->child_reaper == father)) 717 pid_ns->child_reaper = thread; 718 return thread; 719 } 720 721 if (unlikely(pid_ns->child_reaper == father)) { 722 write_unlock_irq(&tasklist_lock); 723 if (unlikely(pid_ns == &init_pid_ns)) 724 panic("Attempted to kill init!"); 725 726 zap_pid_ns_processes(pid_ns); 727 write_lock_irq(&tasklist_lock); 728 /* 729 * We can not clear ->child_reaper or leave it alone. 730 * There may by stealth EXIT_DEAD tasks on ->children, 731 * forget_original_parent() must move them somewhere. 732 */ 733 pid_ns->child_reaper = init_pid_ns.child_reaper; 734 } 735 736 return pid_ns->child_reaper; 737 } 738 739 /* 740 * Any that need to be release_task'd are put on the @dead list. 741 */ 742 static void reparent_leader(struct task_struct *father, struct task_struct *p, 743 struct list_head *dead) 744 { 745 list_move_tail(&p->sibling, &p->real_parent->children); 746 747 if (task_detached(p)) 748 return; 749 /* 750 * If this is a threaded reparent there is no need to 751 * notify anyone anything has happened. 752 */ 753 if (same_thread_group(p->real_parent, father)) 754 return; 755 756 /* We don't want people slaying init. */ 757 p->exit_signal = SIGCHLD; 758 759 /* If it has exited notify the new parent about this child's death. */ 760 if (!task_ptrace(p) && 761 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 762 do_notify_parent(p, p->exit_signal); 763 if (task_detached(p)) { 764 p->exit_state = EXIT_DEAD; 765 list_move_tail(&p->sibling, dead); 766 } 767 } 768 769 kill_orphaned_pgrp(p, father); 770 } 771 772 static void forget_original_parent(struct task_struct *father) 773 { 774 struct task_struct *p, *n, *reaper; 775 LIST_HEAD(dead_children); 776 777 write_lock_irq(&tasklist_lock); 778 /* 779 * Note that exit_ptrace() and find_new_reaper() might 780 * drop tasklist_lock and reacquire it. 781 */ 782 exit_ptrace(father); 783 reaper = find_new_reaper(father); 784 785 list_for_each_entry_safe(p, n, &father->children, sibling) { 786 struct task_struct *t = p; 787 do { 788 t->real_parent = reaper; 789 if (t->parent == father) { 790 BUG_ON(task_ptrace(t)); 791 t->parent = t->real_parent; 792 } 793 if (t->pdeath_signal) 794 group_send_sig_info(t->pdeath_signal, 795 SEND_SIG_NOINFO, t); 796 } while_each_thread(p, t); 797 reparent_leader(father, p, &dead_children); 798 } 799 write_unlock_irq(&tasklist_lock); 800 801 BUG_ON(!list_empty(&father->children)); 802 803 list_for_each_entry_safe(p, n, &dead_children, sibling) { 804 list_del_init(&p->sibling); 805 release_task(p); 806 } 807 } 808 809 /* 810 * Send signals to all our closest relatives so that they know 811 * to properly mourn us.. 812 */ 813 static void exit_notify(struct task_struct *tsk, int group_dead) 814 { 815 int signal; 816 void *cookie; 817 818 /* 819 * This does two things: 820 * 821 * A. Make init inherit all the child processes 822 * B. Check to see if any process groups have become orphaned 823 * as a result of our exiting, and if they have any stopped 824 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 825 */ 826 forget_original_parent(tsk); 827 exit_task_namespaces(tsk); 828 829 write_lock_irq(&tasklist_lock); 830 if (group_dead) 831 kill_orphaned_pgrp(tsk->group_leader, NULL); 832 833 /* Let father know we died 834 * 835 * Thread signals are configurable, but you aren't going to use 836 * that to send signals to arbitary processes. 837 * That stops right now. 838 * 839 * If the parent exec id doesn't match the exec id we saved 840 * when we started then we know the parent has changed security 841 * domain. 842 * 843 * If our self_exec id doesn't match our parent_exec_id then 844 * we have changed execution domain as these two values started 845 * the same after a fork. 846 */ 847 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) && 848 (tsk->parent_exec_id != tsk->real_parent->self_exec_id || 849 tsk->self_exec_id != tsk->parent_exec_id)) 850 tsk->exit_signal = SIGCHLD; 851 852 signal = tracehook_notify_death(tsk, &cookie, group_dead); 853 if (signal >= 0) 854 signal = do_notify_parent(tsk, signal); 855 856 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE; 857 858 /* mt-exec, de_thread() is waiting for group leader */ 859 if (unlikely(tsk->signal->notify_count < 0)) 860 wake_up_process(tsk->signal->group_exit_task); 861 write_unlock_irq(&tasklist_lock); 862 863 tracehook_report_death(tsk, signal, cookie, group_dead); 864 865 /* If the process is dead, release it - nobody will wait for it */ 866 if (signal == DEATH_REAP) 867 release_task(tsk); 868 } 869 870 #ifdef CONFIG_DEBUG_STACK_USAGE 871 static void check_stack_usage(void) 872 { 873 static DEFINE_SPINLOCK(low_water_lock); 874 static int lowest_to_date = THREAD_SIZE; 875 unsigned long free; 876 877 free = stack_not_used(current); 878 879 if (free >= lowest_to_date) 880 return; 881 882 spin_lock(&low_water_lock); 883 if (free < lowest_to_date) { 884 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes " 885 "left\n", 886 current->comm, free); 887 lowest_to_date = free; 888 } 889 spin_unlock(&low_water_lock); 890 } 891 #else 892 static inline void check_stack_usage(void) {} 893 #endif 894 895 NORET_TYPE void do_exit(long code) 896 { 897 struct task_struct *tsk = current; 898 int group_dead; 899 900 profile_task_exit(tsk); 901 902 WARN_ON(atomic_read(&tsk->fs_excl)); 903 904 if (unlikely(in_interrupt())) 905 panic("Aiee, killing interrupt handler!"); 906 if (unlikely(!tsk->pid)) 907 panic("Attempted to kill the idle task!"); 908 909 tracehook_report_exit(&code); 910 911 validate_creds_for_do_exit(tsk); 912 913 /* 914 * We're taking recursive faults here in do_exit. Safest is to just 915 * leave this task alone and wait for reboot. 916 */ 917 if (unlikely(tsk->flags & PF_EXITING)) { 918 printk(KERN_ALERT 919 "Fixing recursive fault but reboot is needed!\n"); 920 /* 921 * We can do this unlocked here. The futex code uses 922 * this flag just to verify whether the pi state 923 * cleanup has been done or not. In the worst case it 924 * loops once more. We pretend that the cleanup was 925 * done as there is no way to return. Either the 926 * OWNER_DIED bit is set by now or we push the blocked 927 * task into the wait for ever nirwana as well. 928 */ 929 tsk->flags |= PF_EXITPIDONE; 930 set_current_state(TASK_UNINTERRUPTIBLE); 931 schedule(); 932 } 933 934 exit_irq_thread(); 935 936 exit_signals(tsk); /* sets PF_EXITING */ 937 /* 938 * tsk->flags are checked in the futex code to protect against 939 * an exiting task cleaning up the robust pi futexes. 940 */ 941 smp_mb(); 942 raw_spin_unlock_wait(&tsk->pi_lock); 943 944 if (unlikely(in_atomic())) 945 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", 946 current->comm, task_pid_nr(current), 947 preempt_count()); 948 949 acct_update_integrals(tsk); 950 /* sync mm's RSS info before statistics gathering */ 951 if (tsk->mm) 952 sync_mm_rss(tsk, tsk->mm); 953 group_dead = atomic_dec_and_test(&tsk->signal->live); 954 if (group_dead) { 955 hrtimer_cancel(&tsk->signal->real_timer); 956 exit_itimers(tsk->signal); 957 if (tsk->mm) 958 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 959 } 960 acct_collect(code, group_dead); 961 if (group_dead) 962 tty_audit_exit(); 963 if (unlikely(tsk->audit_context)) 964 audit_free(tsk); 965 966 tsk->exit_code = code; 967 taskstats_exit(tsk, group_dead); 968 969 exit_mm(tsk); 970 971 if (group_dead) 972 acct_process(); 973 trace_sched_process_exit(tsk); 974 975 exit_sem(tsk); 976 exit_files(tsk); 977 exit_fs(tsk); 978 check_stack_usage(); 979 exit_thread(); 980 cgroup_exit(tsk, 1); 981 982 if (group_dead) 983 disassociate_ctty(1); 984 985 module_put(task_thread_info(tsk)->exec_domain->module); 986 987 proc_exit_connector(tsk); 988 989 /* 990 * FIXME: do that only when needed, using sched_exit tracepoint 991 */ 992 flush_ptrace_hw_breakpoint(tsk); 993 /* 994 * Flush inherited counters to the parent - before the parent 995 * gets woken up by child-exit notifications. 996 */ 997 perf_event_exit_task(tsk); 998 999 exit_notify(tsk, group_dead); 1000 #ifdef CONFIG_NUMA 1001 task_lock(tsk); 1002 mpol_put(tsk->mempolicy); 1003 tsk->mempolicy = NULL; 1004 task_unlock(tsk); 1005 #endif 1006 #ifdef CONFIG_FUTEX 1007 if (unlikely(current->pi_state_cache)) 1008 kfree(current->pi_state_cache); 1009 #endif 1010 /* 1011 * Make sure we are holding no locks: 1012 */ 1013 debug_check_no_locks_held(tsk); 1014 /* 1015 * We can do this unlocked here. The futex code uses this flag 1016 * just to verify whether the pi state cleanup has been done 1017 * or not. In the worst case it loops once more. 1018 */ 1019 tsk->flags |= PF_EXITPIDONE; 1020 1021 if (tsk->io_context) 1022 exit_io_context(tsk); 1023 1024 if (tsk->splice_pipe) 1025 __free_pipe_info(tsk->splice_pipe); 1026 1027 validate_creds_for_do_exit(tsk); 1028 1029 preempt_disable(); 1030 exit_rcu(); 1031 /* causes final put_task_struct in finish_task_switch(). */ 1032 tsk->state = TASK_DEAD; 1033 schedule(); 1034 BUG(); 1035 /* Avoid "noreturn function does return". */ 1036 for (;;) 1037 cpu_relax(); /* For when BUG is null */ 1038 } 1039 1040 EXPORT_SYMBOL_GPL(do_exit); 1041 1042 NORET_TYPE void complete_and_exit(struct completion *comp, long code) 1043 { 1044 if (comp) 1045 complete(comp); 1046 1047 do_exit(code); 1048 } 1049 1050 EXPORT_SYMBOL(complete_and_exit); 1051 1052 SYSCALL_DEFINE1(exit, int, error_code) 1053 { 1054 do_exit((error_code&0xff)<<8); 1055 } 1056 1057 /* 1058 * Take down every thread in the group. This is called by fatal signals 1059 * as well as by sys_exit_group (below). 1060 */ 1061 NORET_TYPE void 1062 do_group_exit(int exit_code) 1063 { 1064 struct signal_struct *sig = current->signal; 1065 1066 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 1067 1068 if (signal_group_exit(sig)) 1069 exit_code = sig->group_exit_code; 1070 else if (!thread_group_empty(current)) { 1071 struct sighand_struct *const sighand = current->sighand; 1072 spin_lock_irq(&sighand->siglock); 1073 if (signal_group_exit(sig)) 1074 /* Another thread got here before we took the lock. */ 1075 exit_code = sig->group_exit_code; 1076 else { 1077 sig->group_exit_code = exit_code; 1078 sig->flags = SIGNAL_GROUP_EXIT; 1079 zap_other_threads(current); 1080 } 1081 spin_unlock_irq(&sighand->siglock); 1082 } 1083 1084 do_exit(exit_code); 1085 /* NOTREACHED */ 1086 } 1087 1088 /* 1089 * this kills every thread in the thread group. Note that any externally 1090 * wait4()-ing process will get the correct exit code - even if this 1091 * thread is not the thread group leader. 1092 */ 1093 SYSCALL_DEFINE1(exit_group, int, error_code) 1094 { 1095 do_group_exit((error_code & 0xff) << 8); 1096 /* NOTREACHED */ 1097 return 0; 1098 } 1099 1100 struct wait_opts { 1101 enum pid_type wo_type; 1102 int wo_flags; 1103 struct pid *wo_pid; 1104 1105 struct siginfo __user *wo_info; 1106 int __user *wo_stat; 1107 struct rusage __user *wo_rusage; 1108 1109 wait_queue_t child_wait; 1110 int notask_error; 1111 }; 1112 1113 static inline 1114 struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 1115 { 1116 if (type != PIDTYPE_PID) 1117 task = task->group_leader; 1118 return task->pids[type].pid; 1119 } 1120 1121 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 1122 { 1123 return wo->wo_type == PIDTYPE_MAX || 1124 task_pid_type(p, wo->wo_type) == wo->wo_pid; 1125 } 1126 1127 static int eligible_child(struct wait_opts *wo, struct task_struct *p) 1128 { 1129 if (!eligible_pid(wo, p)) 1130 return 0; 1131 /* Wait for all children (clone and not) if __WALL is set; 1132 * otherwise, wait for clone children *only* if __WCLONE is 1133 * set; otherwise, wait for non-clone children *only*. (Note: 1134 * A "clone" child here is one that reports to its parent 1135 * using a signal other than SIGCHLD.) */ 1136 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 1137 && !(wo->wo_flags & __WALL)) 1138 return 0; 1139 1140 return 1; 1141 } 1142 1143 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, 1144 pid_t pid, uid_t uid, int why, int status) 1145 { 1146 struct siginfo __user *infop; 1147 int retval = wo->wo_rusage 1148 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1149 1150 put_task_struct(p); 1151 infop = wo->wo_info; 1152 if (infop) { 1153 if (!retval) 1154 retval = put_user(SIGCHLD, &infop->si_signo); 1155 if (!retval) 1156 retval = put_user(0, &infop->si_errno); 1157 if (!retval) 1158 retval = put_user((short)why, &infop->si_code); 1159 if (!retval) 1160 retval = put_user(pid, &infop->si_pid); 1161 if (!retval) 1162 retval = put_user(uid, &infop->si_uid); 1163 if (!retval) 1164 retval = put_user(status, &infop->si_status); 1165 } 1166 if (!retval) 1167 retval = pid; 1168 return retval; 1169 } 1170 1171 /* 1172 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1173 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1174 * the lock and this task is uninteresting. If we return nonzero, we have 1175 * released the lock and the system call should return. 1176 */ 1177 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1178 { 1179 unsigned long state; 1180 int retval, status, traced; 1181 pid_t pid = task_pid_vnr(p); 1182 uid_t uid = __task_cred(p)->uid; 1183 struct siginfo __user *infop; 1184 1185 if (!likely(wo->wo_flags & WEXITED)) 1186 return 0; 1187 1188 if (unlikely(wo->wo_flags & WNOWAIT)) { 1189 int exit_code = p->exit_code; 1190 int why; 1191 1192 get_task_struct(p); 1193 read_unlock(&tasklist_lock); 1194 if ((exit_code & 0x7f) == 0) { 1195 why = CLD_EXITED; 1196 status = exit_code >> 8; 1197 } else { 1198 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1199 status = exit_code & 0x7f; 1200 } 1201 return wait_noreap_copyout(wo, p, pid, uid, why, status); 1202 } 1203 1204 /* 1205 * Try to move the task's state to DEAD 1206 * only one thread is allowed to do this: 1207 */ 1208 state = xchg(&p->exit_state, EXIT_DEAD); 1209 if (state != EXIT_ZOMBIE) { 1210 BUG_ON(state != EXIT_DEAD); 1211 return 0; 1212 } 1213 1214 traced = ptrace_reparented(p); 1215 /* 1216 * It can be ptraced but not reparented, check 1217 * !task_detached() to filter out sub-threads. 1218 */ 1219 if (likely(!traced) && likely(!task_detached(p))) { 1220 struct signal_struct *psig; 1221 struct signal_struct *sig; 1222 unsigned long maxrss; 1223 cputime_t tgutime, tgstime; 1224 1225 /* 1226 * The resource counters for the group leader are in its 1227 * own task_struct. Those for dead threads in the group 1228 * are in its signal_struct, as are those for the child 1229 * processes it has previously reaped. All these 1230 * accumulate in the parent's signal_struct c* fields. 1231 * 1232 * We don't bother to take a lock here to protect these 1233 * p->signal fields, because they are only touched by 1234 * __exit_signal, which runs with tasklist_lock 1235 * write-locked anyway, and so is excluded here. We do 1236 * need to protect the access to parent->signal fields, 1237 * as other threads in the parent group can be right 1238 * here reaping other children at the same time. 1239 * 1240 * We use thread_group_times() to get times for the thread 1241 * group, which consolidates times for all threads in the 1242 * group including the group leader. 1243 */ 1244 thread_group_times(p, &tgutime, &tgstime); 1245 spin_lock_irq(&p->real_parent->sighand->siglock); 1246 psig = p->real_parent->signal; 1247 sig = p->signal; 1248 psig->cutime = 1249 cputime_add(psig->cutime, 1250 cputime_add(tgutime, 1251 sig->cutime)); 1252 psig->cstime = 1253 cputime_add(psig->cstime, 1254 cputime_add(tgstime, 1255 sig->cstime)); 1256 psig->cgtime = 1257 cputime_add(psig->cgtime, 1258 cputime_add(p->gtime, 1259 cputime_add(sig->gtime, 1260 sig->cgtime))); 1261 psig->cmin_flt += 1262 p->min_flt + sig->min_flt + sig->cmin_flt; 1263 psig->cmaj_flt += 1264 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1265 psig->cnvcsw += 1266 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1267 psig->cnivcsw += 1268 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1269 psig->cinblock += 1270 task_io_get_inblock(p) + 1271 sig->inblock + sig->cinblock; 1272 psig->coublock += 1273 task_io_get_oublock(p) + 1274 sig->oublock + sig->coublock; 1275 maxrss = max(sig->maxrss, sig->cmaxrss); 1276 if (psig->cmaxrss < maxrss) 1277 psig->cmaxrss = maxrss; 1278 task_io_accounting_add(&psig->ioac, &p->ioac); 1279 task_io_accounting_add(&psig->ioac, &sig->ioac); 1280 spin_unlock_irq(&p->real_parent->sighand->siglock); 1281 } 1282 1283 /* 1284 * Now we are sure this task is interesting, and no other 1285 * thread can reap it because we set its state to EXIT_DEAD. 1286 */ 1287 read_unlock(&tasklist_lock); 1288 1289 retval = wo->wo_rusage 1290 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1291 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1292 ? p->signal->group_exit_code : p->exit_code; 1293 if (!retval && wo->wo_stat) 1294 retval = put_user(status, wo->wo_stat); 1295 1296 infop = wo->wo_info; 1297 if (!retval && infop) 1298 retval = put_user(SIGCHLD, &infop->si_signo); 1299 if (!retval && infop) 1300 retval = put_user(0, &infop->si_errno); 1301 if (!retval && infop) { 1302 int why; 1303 1304 if ((status & 0x7f) == 0) { 1305 why = CLD_EXITED; 1306 status >>= 8; 1307 } else { 1308 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1309 status &= 0x7f; 1310 } 1311 retval = put_user((short)why, &infop->si_code); 1312 if (!retval) 1313 retval = put_user(status, &infop->si_status); 1314 } 1315 if (!retval && infop) 1316 retval = put_user(pid, &infop->si_pid); 1317 if (!retval && infop) 1318 retval = put_user(uid, &infop->si_uid); 1319 if (!retval) 1320 retval = pid; 1321 1322 if (traced) { 1323 write_lock_irq(&tasklist_lock); 1324 /* We dropped tasklist, ptracer could die and untrace */ 1325 ptrace_unlink(p); 1326 /* 1327 * If this is not a detached task, notify the parent. 1328 * If it's still not detached after that, don't release 1329 * it now. 1330 */ 1331 if (!task_detached(p)) { 1332 do_notify_parent(p, p->exit_signal); 1333 if (!task_detached(p)) { 1334 p->exit_state = EXIT_ZOMBIE; 1335 p = NULL; 1336 } 1337 } 1338 write_unlock_irq(&tasklist_lock); 1339 } 1340 if (p != NULL) 1341 release_task(p); 1342 1343 return retval; 1344 } 1345 1346 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1347 { 1348 if (ptrace) { 1349 if (task_is_stopped_or_traced(p)) 1350 return &p->exit_code; 1351 } else { 1352 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1353 return &p->signal->group_exit_code; 1354 } 1355 return NULL; 1356 } 1357 1358 /* 1359 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold 1360 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1361 * the lock and this task is uninteresting. If we return nonzero, we have 1362 * released the lock and the system call should return. 1363 */ 1364 static int wait_task_stopped(struct wait_opts *wo, 1365 int ptrace, struct task_struct *p) 1366 { 1367 struct siginfo __user *infop; 1368 int retval, exit_code, *p_code, why; 1369 uid_t uid = 0; /* unneeded, required by compiler */ 1370 pid_t pid; 1371 1372 /* 1373 * Traditionally we see ptrace'd stopped tasks regardless of options. 1374 */ 1375 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1376 return 0; 1377 1378 exit_code = 0; 1379 spin_lock_irq(&p->sighand->siglock); 1380 1381 p_code = task_stopped_code(p, ptrace); 1382 if (unlikely(!p_code)) 1383 goto unlock_sig; 1384 1385 exit_code = *p_code; 1386 if (!exit_code) 1387 goto unlock_sig; 1388 1389 if (!unlikely(wo->wo_flags & WNOWAIT)) 1390 *p_code = 0; 1391 1392 uid = task_uid(p); 1393 unlock_sig: 1394 spin_unlock_irq(&p->sighand->siglock); 1395 if (!exit_code) 1396 return 0; 1397 1398 /* 1399 * Now we are pretty sure this task is interesting. 1400 * Make sure it doesn't get reaped out from under us while we 1401 * give up the lock and then examine it below. We don't want to 1402 * keep holding onto the tasklist_lock while we call getrusage and 1403 * possibly take page faults for user memory. 1404 */ 1405 get_task_struct(p); 1406 pid = task_pid_vnr(p); 1407 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1408 read_unlock(&tasklist_lock); 1409 1410 if (unlikely(wo->wo_flags & WNOWAIT)) 1411 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code); 1412 1413 retval = wo->wo_rusage 1414 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1415 if (!retval && wo->wo_stat) 1416 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat); 1417 1418 infop = wo->wo_info; 1419 if (!retval && infop) 1420 retval = put_user(SIGCHLD, &infop->si_signo); 1421 if (!retval && infop) 1422 retval = put_user(0, &infop->si_errno); 1423 if (!retval && infop) 1424 retval = put_user((short)why, &infop->si_code); 1425 if (!retval && infop) 1426 retval = put_user(exit_code, &infop->si_status); 1427 if (!retval && infop) 1428 retval = put_user(pid, &infop->si_pid); 1429 if (!retval && infop) 1430 retval = put_user(uid, &infop->si_uid); 1431 if (!retval) 1432 retval = pid; 1433 put_task_struct(p); 1434 1435 BUG_ON(!retval); 1436 return retval; 1437 } 1438 1439 /* 1440 * Handle do_wait work for one task in a live, non-stopped state. 1441 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1442 * the lock and this task is uninteresting. If we return nonzero, we have 1443 * released the lock and the system call should return. 1444 */ 1445 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1446 { 1447 int retval; 1448 pid_t pid; 1449 uid_t uid; 1450 1451 if (!unlikely(wo->wo_flags & WCONTINUED)) 1452 return 0; 1453 1454 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1455 return 0; 1456 1457 spin_lock_irq(&p->sighand->siglock); 1458 /* Re-check with the lock held. */ 1459 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1460 spin_unlock_irq(&p->sighand->siglock); 1461 return 0; 1462 } 1463 if (!unlikely(wo->wo_flags & WNOWAIT)) 1464 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1465 uid = task_uid(p); 1466 spin_unlock_irq(&p->sighand->siglock); 1467 1468 pid = task_pid_vnr(p); 1469 get_task_struct(p); 1470 read_unlock(&tasklist_lock); 1471 1472 if (!wo->wo_info) { 1473 retval = wo->wo_rusage 1474 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1475 put_task_struct(p); 1476 if (!retval && wo->wo_stat) 1477 retval = put_user(0xffff, wo->wo_stat); 1478 if (!retval) 1479 retval = pid; 1480 } else { 1481 retval = wait_noreap_copyout(wo, p, pid, uid, 1482 CLD_CONTINUED, SIGCONT); 1483 BUG_ON(retval == 0); 1484 } 1485 1486 return retval; 1487 } 1488 1489 /* 1490 * Consider @p for a wait by @parent. 1491 * 1492 * -ECHILD should be in ->notask_error before the first call. 1493 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1494 * Returns zero if the search for a child should continue; 1495 * then ->notask_error is 0 if @p is an eligible child, 1496 * or another error from security_task_wait(), or still -ECHILD. 1497 */ 1498 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1499 struct task_struct *p) 1500 { 1501 int ret = eligible_child(wo, p); 1502 if (!ret) 1503 return ret; 1504 1505 ret = security_task_wait(p); 1506 if (unlikely(ret < 0)) { 1507 /* 1508 * If we have not yet seen any eligible child, 1509 * then let this error code replace -ECHILD. 1510 * A permission error will give the user a clue 1511 * to look for security policy problems, rather 1512 * than for mysterious wait bugs. 1513 */ 1514 if (wo->notask_error) 1515 wo->notask_error = ret; 1516 return 0; 1517 } 1518 1519 if (likely(!ptrace) && unlikely(task_ptrace(p))) { 1520 /* 1521 * This child is hidden by ptrace. 1522 * We aren't allowed to see it now, but eventually we will. 1523 */ 1524 wo->notask_error = 0; 1525 return 0; 1526 } 1527 1528 if (p->exit_state == EXIT_DEAD) 1529 return 0; 1530 1531 /* 1532 * We don't reap group leaders with subthreads. 1533 */ 1534 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p)) 1535 return wait_task_zombie(wo, p); 1536 1537 /* 1538 * It's stopped or running now, so it might 1539 * later continue, exit, or stop again. 1540 */ 1541 wo->notask_error = 0; 1542 1543 if (task_stopped_code(p, ptrace)) 1544 return wait_task_stopped(wo, ptrace, p); 1545 1546 return wait_task_continued(wo, p); 1547 } 1548 1549 /* 1550 * Do the work of do_wait() for one thread in the group, @tsk. 1551 * 1552 * -ECHILD should be in ->notask_error before the first call. 1553 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1554 * Returns zero if the search for a child should continue; then 1555 * ->notask_error is 0 if there were any eligible children, 1556 * or another error from security_task_wait(), or still -ECHILD. 1557 */ 1558 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1559 { 1560 struct task_struct *p; 1561 1562 list_for_each_entry(p, &tsk->children, sibling) { 1563 int ret = wait_consider_task(wo, 0, p); 1564 if (ret) 1565 return ret; 1566 } 1567 1568 return 0; 1569 } 1570 1571 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1572 { 1573 struct task_struct *p; 1574 1575 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1576 int ret = wait_consider_task(wo, 1, p); 1577 if (ret) 1578 return ret; 1579 } 1580 1581 return 0; 1582 } 1583 1584 static int child_wait_callback(wait_queue_t *wait, unsigned mode, 1585 int sync, void *key) 1586 { 1587 struct wait_opts *wo = container_of(wait, struct wait_opts, 1588 child_wait); 1589 struct task_struct *p = key; 1590 1591 if (!eligible_pid(wo, p)) 1592 return 0; 1593 1594 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1595 return 0; 1596 1597 return default_wake_function(wait, mode, sync, key); 1598 } 1599 1600 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1601 { 1602 __wake_up_sync_key(&parent->signal->wait_chldexit, 1603 TASK_INTERRUPTIBLE, 1, p); 1604 } 1605 1606 static long do_wait(struct wait_opts *wo) 1607 { 1608 struct task_struct *tsk; 1609 int retval; 1610 1611 trace_sched_process_wait(wo->wo_pid); 1612 1613 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1614 wo->child_wait.private = current; 1615 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1616 repeat: 1617 /* 1618 * If there is nothing that can match our critiera just get out. 1619 * We will clear ->notask_error to zero if we see any child that 1620 * might later match our criteria, even if we are not able to reap 1621 * it yet. 1622 */ 1623 wo->notask_error = -ECHILD; 1624 if ((wo->wo_type < PIDTYPE_MAX) && 1625 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) 1626 goto notask; 1627 1628 set_current_state(TASK_INTERRUPTIBLE); 1629 read_lock(&tasklist_lock); 1630 tsk = current; 1631 do { 1632 retval = do_wait_thread(wo, tsk); 1633 if (retval) 1634 goto end; 1635 1636 retval = ptrace_do_wait(wo, tsk); 1637 if (retval) 1638 goto end; 1639 1640 if (wo->wo_flags & __WNOTHREAD) 1641 break; 1642 } while_each_thread(current, tsk); 1643 read_unlock(&tasklist_lock); 1644 1645 notask: 1646 retval = wo->notask_error; 1647 if (!retval && !(wo->wo_flags & WNOHANG)) { 1648 retval = -ERESTARTSYS; 1649 if (!signal_pending(current)) { 1650 schedule(); 1651 goto repeat; 1652 } 1653 } 1654 end: 1655 __set_current_state(TASK_RUNNING); 1656 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1657 return retval; 1658 } 1659 1660 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1661 infop, int, options, struct rusage __user *, ru) 1662 { 1663 struct wait_opts wo; 1664 struct pid *pid = NULL; 1665 enum pid_type type; 1666 long ret; 1667 1668 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1669 return -EINVAL; 1670 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1671 return -EINVAL; 1672 1673 switch (which) { 1674 case P_ALL: 1675 type = PIDTYPE_MAX; 1676 break; 1677 case P_PID: 1678 type = PIDTYPE_PID; 1679 if (upid <= 0) 1680 return -EINVAL; 1681 break; 1682 case P_PGID: 1683 type = PIDTYPE_PGID; 1684 if (upid <= 0) 1685 return -EINVAL; 1686 break; 1687 default: 1688 return -EINVAL; 1689 } 1690 1691 if (type < PIDTYPE_MAX) 1692 pid = find_get_pid(upid); 1693 1694 wo.wo_type = type; 1695 wo.wo_pid = pid; 1696 wo.wo_flags = options; 1697 wo.wo_info = infop; 1698 wo.wo_stat = NULL; 1699 wo.wo_rusage = ru; 1700 ret = do_wait(&wo); 1701 1702 if (ret > 0) { 1703 ret = 0; 1704 } else if (infop) { 1705 /* 1706 * For a WNOHANG return, clear out all the fields 1707 * we would set so the user can easily tell the 1708 * difference. 1709 */ 1710 if (!ret) 1711 ret = put_user(0, &infop->si_signo); 1712 if (!ret) 1713 ret = put_user(0, &infop->si_errno); 1714 if (!ret) 1715 ret = put_user(0, &infop->si_code); 1716 if (!ret) 1717 ret = put_user(0, &infop->si_pid); 1718 if (!ret) 1719 ret = put_user(0, &infop->si_uid); 1720 if (!ret) 1721 ret = put_user(0, &infop->si_status); 1722 } 1723 1724 put_pid(pid); 1725 1726 /* avoid REGPARM breakage on x86: */ 1727 asmlinkage_protect(5, ret, which, upid, infop, options, ru); 1728 return ret; 1729 } 1730 1731 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1732 int, options, struct rusage __user *, ru) 1733 { 1734 struct wait_opts wo; 1735 struct pid *pid = NULL; 1736 enum pid_type type; 1737 long ret; 1738 1739 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1740 __WNOTHREAD|__WCLONE|__WALL)) 1741 return -EINVAL; 1742 1743 if (upid == -1) 1744 type = PIDTYPE_MAX; 1745 else if (upid < 0) { 1746 type = PIDTYPE_PGID; 1747 pid = find_get_pid(-upid); 1748 } else if (upid == 0) { 1749 type = PIDTYPE_PGID; 1750 pid = get_task_pid(current, PIDTYPE_PGID); 1751 } else /* upid > 0 */ { 1752 type = PIDTYPE_PID; 1753 pid = find_get_pid(upid); 1754 } 1755 1756 wo.wo_type = type; 1757 wo.wo_pid = pid; 1758 wo.wo_flags = options | WEXITED; 1759 wo.wo_info = NULL; 1760 wo.wo_stat = stat_addr; 1761 wo.wo_rusage = ru; 1762 ret = do_wait(&wo); 1763 put_pid(pid); 1764 1765 /* avoid REGPARM breakage on x86: */ 1766 asmlinkage_protect(4, ret, upid, stat_addr, options, ru); 1767 return ret; 1768 } 1769 1770 #ifdef __ARCH_WANT_SYS_WAITPID 1771 1772 /* 1773 * sys_waitpid() remains for compatibility. waitpid() should be 1774 * implemented by calling sys_wait4() from libc.a. 1775 */ 1776 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1777 { 1778 return sys_wait4(pid, stat_addr, options, NULL); 1779 } 1780 1781 #endif 1782