1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/exit.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/slab.h> 10 #include <linux/sched/autogroup.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/stat.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/sched/cputime.h> 16 #include <linux/interrupt.h> 17 #include <linux/module.h> 18 #include <linux/capability.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/tty.h> 22 #include <linux/iocontext.h> 23 #include <linux/key.h> 24 #include <linux/cpu.h> 25 #include <linux/acct.h> 26 #include <linux/tsacct_kern.h> 27 #include <linux/file.h> 28 #include <linux/freezer.h> 29 #include <linux/binfmts.h> 30 #include <linux/nsproxy.h> 31 #include <linux/pid_namespace.h> 32 #include <linux/ptrace.h> 33 #include <linux/profile.h> 34 #include <linux/mount.h> 35 #include <linux/proc_fs.h> 36 #include <linux/kthread.h> 37 #include <linux/mempolicy.h> 38 #include <linux/taskstats_kern.h> 39 #include <linux/delayacct.h> 40 #include <linux/cgroup.h> 41 #include <linux/syscalls.h> 42 #include <linux/signal.h> 43 #include <linux/posix-timers.h> 44 #include <linux/cn_proc.h> 45 #include <linux/mutex.h> 46 #include <linux/futex.h> 47 #include <linux/pipe_fs_i.h> 48 #include <linux/audit.h> /* for audit_free() */ 49 #include <linux/resource.h> 50 #include <linux/task_io_accounting_ops.h> 51 #include <linux/blkdev.h> 52 #include <linux/task_work.h> 53 #include <linux/fs_struct.h> 54 #include <linux/init_task.h> 55 #include <linux/perf_event.h> 56 #include <trace/events/sched.h> 57 #include <linux/hw_breakpoint.h> 58 #include <linux/oom.h> 59 #include <linux/writeback.h> 60 #include <linux/shm.h> 61 #include <linux/kcov.h> 62 #include <linux/kmsan.h> 63 #include <linux/random.h> 64 #include <linux/rcuwait.h> 65 #include <linux/compat.h> 66 #include <linux/io_uring.h> 67 #include <linux/kprobes.h> 68 #include <linux/rethook.h> 69 #include <linux/sysfs.h> 70 #include <linux/user_events.h> 71 #include <linux/unwind_deferred.h> 72 #include <linux/uaccess.h> 73 #include <linux/pidfs.h> 74 75 #include <uapi/linux/wait.h> 76 77 #include <asm/unistd.h> 78 #include <asm/mmu_context.h> 79 80 #include "exit.h" 81 82 /* 83 * The default value should be high enough to not crash a system that randomly 84 * crashes its kernel from time to time, but low enough to at least not permit 85 * overflowing 32-bit refcounts or the ldsem writer count. 86 */ 87 static unsigned int oops_limit = 10000; 88 89 #ifdef CONFIG_SYSCTL 90 static const struct ctl_table kern_exit_table[] = { 91 { 92 .procname = "oops_limit", 93 .data = &oops_limit, 94 .maxlen = sizeof(oops_limit), 95 .mode = 0644, 96 .proc_handler = proc_douintvec, 97 }, 98 }; 99 100 static __init int kernel_exit_sysctls_init(void) 101 { 102 register_sysctl_init("kernel", kern_exit_table); 103 return 0; 104 } 105 late_initcall(kernel_exit_sysctls_init); 106 #endif 107 108 static atomic_t oops_count = ATOMIC_INIT(0); 109 110 #ifdef CONFIG_SYSFS 111 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr, 112 char *page) 113 { 114 return sysfs_emit(page, "%d\n", atomic_read(&oops_count)); 115 } 116 117 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count); 118 119 static __init int kernel_exit_sysfs_init(void) 120 { 121 sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL); 122 return 0; 123 } 124 late_initcall(kernel_exit_sysfs_init); 125 #endif 126 127 /* 128 * For things release_task() would like to do *after* tasklist_lock is released. 129 */ 130 struct release_task_post { 131 struct pid *pids[PIDTYPE_MAX]; 132 }; 133 134 static void __unhash_process(struct release_task_post *post, struct task_struct *p, 135 bool group_dead) 136 { 137 struct pid *pid = task_pid(p); 138 139 nr_threads--; 140 141 detach_pid(post->pids, p, PIDTYPE_PID); 142 wake_up_all(&pid->wait_pidfd); 143 144 if (group_dead) { 145 detach_pid(post->pids, p, PIDTYPE_TGID); 146 detach_pid(post->pids, p, PIDTYPE_PGID); 147 detach_pid(post->pids, p, PIDTYPE_SID); 148 149 list_del_rcu(&p->tasks); 150 list_del_init(&p->sibling); 151 __this_cpu_dec(process_counts); 152 } 153 list_del_rcu(&p->thread_node); 154 } 155 156 /* 157 * This function expects the tasklist_lock write-locked. 158 */ 159 static void __exit_signal(struct release_task_post *post, struct task_struct *tsk) 160 { 161 struct signal_struct *sig = tsk->signal; 162 bool group_dead = thread_group_leader(tsk); 163 struct sighand_struct *sighand; 164 struct tty_struct *tty; 165 u64 utime, stime; 166 167 sighand = rcu_dereference_check(tsk->sighand, 168 lockdep_tasklist_lock_is_held()); 169 spin_lock(&sighand->siglock); 170 171 #ifdef CONFIG_POSIX_TIMERS 172 posix_cpu_timers_exit(tsk); 173 if (group_dead) 174 posix_cpu_timers_exit_group(tsk); 175 #endif 176 177 if (group_dead) { 178 tty = sig->tty; 179 sig->tty = NULL; 180 } else { 181 /* 182 * If there is any task waiting for the group exit 183 * then notify it: 184 */ 185 if (sig->notify_count > 0 && !--sig->notify_count) 186 wake_up_process(sig->group_exec_task); 187 188 if (tsk == sig->curr_target) 189 sig->curr_target = next_thread(tsk); 190 } 191 192 /* 193 * Accumulate here the counters for all threads as they die. We could 194 * skip the group leader because it is the last user of signal_struct, 195 * but we want to avoid the race with thread_group_cputime() which can 196 * see the empty ->thread_head list. 197 */ 198 task_cputime(tsk, &utime, &stime); 199 write_seqlock(&sig->stats_lock); 200 sig->utime += utime; 201 sig->stime += stime; 202 sig->gtime += task_gtime(tsk); 203 sig->min_flt += tsk->min_flt; 204 sig->maj_flt += tsk->maj_flt; 205 sig->nvcsw += tsk->nvcsw; 206 sig->nivcsw += tsk->nivcsw; 207 sig->inblock += task_io_get_inblock(tsk); 208 sig->oublock += task_io_get_oublock(tsk); 209 task_io_accounting_add(&sig->ioac, &tsk->ioac); 210 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 211 sig->nr_threads--; 212 __unhash_process(post, tsk, group_dead); 213 write_sequnlock(&sig->stats_lock); 214 215 tsk->sighand = NULL; 216 spin_unlock(&sighand->siglock); 217 218 __cleanup_sighand(sighand); 219 if (group_dead) 220 tty_kref_put(tty); 221 } 222 223 static void delayed_put_task_struct(struct rcu_head *rhp) 224 { 225 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 226 227 kprobe_flush_task(tsk); 228 rethook_flush_task(tsk); 229 perf_event_delayed_put(tsk); 230 trace_sched_process_free(tsk); 231 put_task_struct(tsk); 232 } 233 234 void put_task_struct_rcu_user(struct task_struct *task) 235 { 236 if (refcount_dec_and_test(&task->rcu_users)) 237 call_rcu(&task->rcu, delayed_put_task_struct); 238 } 239 240 void __weak release_thread(struct task_struct *dead_task) 241 { 242 } 243 244 void release_task(struct task_struct *p) 245 { 246 struct release_task_post post; 247 struct task_struct *leader; 248 struct pid *thread_pid; 249 int zap_leader; 250 repeat: 251 memset(&post, 0, sizeof(post)); 252 253 /* don't need to get the RCU readlock here - the process is dead and 254 * can't be modifying its own credentials. But shut RCU-lockdep up */ 255 rcu_read_lock(); 256 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 257 rcu_read_unlock(); 258 259 pidfs_exit(p); 260 cgroup_task_release(p); 261 262 /* Retrieve @thread_pid before __unhash_process() may set it to NULL. */ 263 thread_pid = task_pid(p); 264 265 write_lock_irq(&tasklist_lock); 266 ptrace_release_task(p); 267 __exit_signal(&post, p); 268 269 /* 270 * If we are the last non-leader member of the thread 271 * group, and the leader is zombie, then notify the 272 * group leader's parent process. (if it wants notification.) 273 */ 274 zap_leader = 0; 275 leader = p->group_leader; 276 if (leader != p && thread_group_empty(leader) 277 && leader->exit_state == EXIT_ZOMBIE) { 278 /* for pidfs_exit() and do_notify_parent() */ 279 if (leader->signal->flags & SIGNAL_GROUP_EXIT) 280 leader->exit_code = leader->signal->group_exit_code; 281 /* 282 * If we were the last child thread and the leader has 283 * exited already, and the leader's parent ignores SIGCHLD, 284 * then we are the one who should release the leader. 285 */ 286 zap_leader = do_notify_parent(leader, leader->exit_signal); 287 if (zap_leader) 288 leader->exit_state = EXIT_DEAD; 289 } 290 291 write_unlock_irq(&tasklist_lock); 292 /* @thread_pid can't go away until free_pids() below */ 293 proc_flush_pid(thread_pid); 294 exit_cred_namespaces(p); 295 add_device_randomness(&p->se.sum_exec_runtime, 296 sizeof(p->se.sum_exec_runtime)); 297 free_pids(post.pids); 298 release_thread(p); 299 /* 300 * This task was already removed from the process/thread/pid lists 301 * and lock_task_sighand(p) can't succeed. Nobody else can touch 302 * ->pending or, if group dead, signal->shared_pending. We can call 303 * flush_sigqueue() lockless. 304 */ 305 flush_sigqueue(&p->pending); 306 if (thread_group_leader(p)) 307 flush_sigqueue(&p->signal->shared_pending); 308 309 put_task_struct_rcu_user(p); 310 311 p = leader; 312 if (unlikely(zap_leader)) 313 goto repeat; 314 } 315 316 int rcuwait_wake_up(struct rcuwait *w) 317 { 318 int ret = 0; 319 struct task_struct *task; 320 321 rcu_read_lock(); 322 323 /* 324 * Order condition vs @task, such that everything prior to the load 325 * of @task is visible. This is the condition as to why the user called 326 * rcuwait_wake() in the first place. Pairs with set_current_state() 327 * barrier (A) in rcuwait_wait_event(). 328 * 329 * WAIT WAKE 330 * [S] tsk = current [S] cond = true 331 * MB (A) MB (B) 332 * [L] cond [L] tsk 333 */ 334 smp_mb(); /* (B) */ 335 336 task = rcu_dereference(w->task); 337 if (task) 338 ret = wake_up_process(task); 339 rcu_read_unlock(); 340 341 return ret; 342 } 343 EXPORT_SYMBOL_GPL(rcuwait_wake_up); 344 345 /* 346 * Determine if a process group is "orphaned", according to the POSIX 347 * definition in 2.2.2.52. Orphaned process groups are not to be affected 348 * by terminal-generated stop signals. Newly orphaned process groups are 349 * to receive a SIGHUP and a SIGCONT. 350 * 351 * "I ask you, have you ever known what it is to be an orphan?" 352 */ 353 static int will_become_orphaned_pgrp(struct pid *pgrp, 354 struct task_struct *ignored_task) 355 { 356 struct task_struct *p; 357 358 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 359 if ((p == ignored_task) || 360 (p->exit_state && thread_group_empty(p)) || 361 is_global_init(p->real_parent)) 362 continue; 363 364 if (task_pgrp(p->real_parent) != pgrp && 365 task_session(p->real_parent) == task_session(p)) 366 return 0; 367 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 368 369 return 1; 370 } 371 372 int is_current_pgrp_orphaned(void) 373 { 374 int retval; 375 376 read_lock(&tasklist_lock); 377 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 378 read_unlock(&tasklist_lock); 379 380 return retval; 381 } 382 383 static bool has_stopped_jobs(struct pid *pgrp) 384 { 385 struct task_struct *p; 386 387 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 388 if (p->signal->flags & SIGNAL_STOP_STOPPED) 389 return true; 390 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 391 392 return false; 393 } 394 395 /* 396 * Check to see if any process groups have become orphaned as 397 * a result of our exiting, and if they have any stopped jobs, 398 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 399 */ 400 static void 401 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 402 { 403 struct pid *pgrp = task_pgrp(tsk); 404 struct task_struct *ignored_task = tsk; 405 406 if (!parent) 407 /* exit: our father is in a different pgrp than 408 * we are and we were the only connection outside. 409 */ 410 parent = tsk->real_parent; 411 else 412 /* reparent: our child is in a different pgrp than 413 * we are, and it was the only connection outside. 414 */ 415 ignored_task = NULL; 416 417 if (task_pgrp(parent) != pgrp && 418 task_session(parent) == task_session(tsk) && 419 will_become_orphaned_pgrp(pgrp, ignored_task) && 420 has_stopped_jobs(pgrp)) { 421 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 422 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 423 } 424 } 425 426 static void coredump_task_exit(struct task_struct *tsk, 427 struct core_state *core_state) 428 { 429 struct core_thread self; 430 431 self.task = tsk; 432 if (self.task->flags & PF_SIGNALED) 433 self.next = xchg(&core_state->dumper.next, &self); 434 else 435 self.task = NULL; 436 /* 437 * Implies mb(), the result of xchg() must be visible 438 * to core_state->dumper. 439 */ 440 if (atomic_dec_and_test(&core_state->nr_threads)) 441 complete(&core_state->startup); 442 443 for (;;) { 444 set_current_state(TASK_IDLE|TASK_FREEZABLE); 445 if (!self.task) /* see coredump_finish() */ 446 break; 447 schedule(); 448 } 449 __set_current_state(TASK_RUNNING); 450 } 451 452 #ifdef CONFIG_MEMCG 453 /* drops tasklist_lock if succeeds */ 454 static bool __try_to_set_owner(struct task_struct *tsk, struct mm_struct *mm) 455 { 456 bool ret = false; 457 458 task_lock(tsk); 459 if (likely(tsk->mm == mm)) { 460 /* tsk can't pass exit_mm/exec_mmap and exit */ 461 read_unlock(&tasklist_lock); 462 WRITE_ONCE(mm->owner, tsk); 463 lru_gen_migrate_mm(mm); 464 ret = true; 465 } 466 task_unlock(tsk); 467 return ret; 468 } 469 470 static bool try_to_set_owner(struct task_struct *g, struct mm_struct *mm) 471 { 472 struct task_struct *t; 473 474 for_each_thread(g, t) { 475 struct mm_struct *t_mm = READ_ONCE(t->mm); 476 if (t_mm == mm) { 477 if (__try_to_set_owner(t, mm)) 478 return true; 479 } else if (t_mm) 480 break; 481 } 482 483 return false; 484 } 485 486 /* 487 * A task is exiting. If it owned this mm, find a new owner for the mm. 488 */ 489 void mm_update_next_owner(struct mm_struct *mm) 490 { 491 struct task_struct *g, *p = current; 492 493 /* 494 * If the exiting or execing task is not the owner, it's 495 * someone else's problem. 496 */ 497 if (mm->owner != p) 498 return; 499 /* 500 * The current owner is exiting/execing and there are no other 501 * candidates. Do not leave the mm pointing to a possibly 502 * freed task structure. 503 */ 504 if (atomic_read(&mm->mm_users) <= 1) { 505 WRITE_ONCE(mm->owner, NULL); 506 return; 507 } 508 509 read_lock(&tasklist_lock); 510 /* 511 * Search in the children 512 */ 513 list_for_each_entry(g, &p->children, sibling) { 514 if (try_to_set_owner(g, mm)) 515 goto ret; 516 } 517 /* 518 * Search in the siblings 519 */ 520 list_for_each_entry(g, &p->real_parent->children, sibling) { 521 if (try_to_set_owner(g, mm)) 522 goto ret; 523 } 524 /* 525 * Search through everything else, we should not get here often. 526 */ 527 for_each_process(g) { 528 if (atomic_read(&mm->mm_users) <= 1) 529 break; 530 if (g->flags & PF_KTHREAD) 531 continue; 532 if (try_to_set_owner(g, mm)) 533 goto ret; 534 } 535 read_unlock(&tasklist_lock); 536 /* 537 * We found no owner yet mm_users > 1: this implies that we are 538 * most likely racing with swapoff (try_to_unuse()) or /proc or 539 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 540 */ 541 WRITE_ONCE(mm->owner, NULL); 542 ret: 543 return; 544 545 } 546 #endif /* CONFIG_MEMCG */ 547 548 /* 549 * Turn us into a lazy TLB process if we 550 * aren't already.. 551 */ 552 static void exit_mm(void) 553 { 554 struct mm_struct *mm = current->mm; 555 556 exit_mm_release(current, mm); 557 if (!mm) 558 return; 559 mmap_read_lock(mm); 560 mmgrab_lazy_tlb(mm); 561 BUG_ON(mm != current->active_mm); 562 /* more a memory barrier than a real lock */ 563 task_lock(current); 564 /* 565 * When a thread stops operating on an address space, the loop 566 * in membarrier_private_expedited() may not observe that 567 * tsk->mm, and the loop in membarrier_global_expedited() may 568 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED 569 * rq->membarrier_state, so those would not issue an IPI. 570 * Membarrier requires a memory barrier after accessing 571 * user-space memory, before clearing tsk->mm or the 572 * rq->membarrier_state. 573 */ 574 smp_mb__after_spinlock(); 575 local_irq_disable(); 576 current->mm = NULL; 577 membarrier_update_current_mm(NULL); 578 enter_lazy_tlb(mm, current); 579 local_irq_enable(); 580 task_unlock(current); 581 mmap_read_unlock(mm); 582 mm_update_next_owner(mm); 583 mmput(mm); 584 if (test_thread_flag(TIF_MEMDIE)) 585 exit_oom_victim(); 586 } 587 588 static struct task_struct *find_alive_thread(struct task_struct *p) 589 { 590 struct task_struct *t; 591 592 for_each_thread(p, t) { 593 if (!(t->flags & PF_EXITING)) 594 return t; 595 } 596 return NULL; 597 } 598 599 static struct task_struct *find_child_reaper(struct task_struct *father, 600 struct list_head *dead) 601 __releases(&tasklist_lock) 602 __acquires(&tasklist_lock) 603 { 604 struct pid_namespace *pid_ns = task_active_pid_ns(father); 605 struct task_struct *reaper = pid_ns->child_reaper; 606 struct task_struct *p, *n; 607 608 if (likely(reaper != father)) 609 return reaper; 610 611 reaper = find_alive_thread(father); 612 if (reaper) { 613 pid_ns->child_reaper = reaper; 614 return reaper; 615 } 616 617 write_unlock_irq(&tasklist_lock); 618 619 list_for_each_entry_safe(p, n, dead, ptrace_entry) { 620 list_del_init(&p->ptrace_entry); 621 release_task(p); 622 } 623 624 zap_pid_ns_processes(pid_ns); 625 write_lock_irq(&tasklist_lock); 626 627 return father; 628 } 629 630 /* 631 * When we die, we re-parent all our children, and try to: 632 * 1. give them to another thread in our thread group, if such a member exists 633 * 2. give it to the first ancestor process which prctl'd itself as a 634 * child_subreaper for its children (like a service manager) 635 * 3. give it to the init process (PID 1) in our pid namespace 636 */ 637 static struct task_struct *find_new_reaper(struct task_struct *father, 638 struct task_struct *child_reaper) 639 { 640 struct task_struct *thread, *reaper; 641 642 thread = find_alive_thread(father); 643 if (thread) 644 return thread; 645 646 if (father->signal->has_child_subreaper) { 647 unsigned int ns_level = task_pid(father)->level; 648 /* 649 * Find the first ->is_child_subreaper ancestor in our pid_ns. 650 * We can't check reaper != child_reaper to ensure we do not 651 * cross the namespaces, the exiting parent could be injected 652 * by setns() + fork(). 653 * We check pid->level, this is slightly more efficient than 654 * task_active_pid_ns(reaper) != task_active_pid_ns(father). 655 */ 656 for (reaper = father->real_parent; 657 task_pid(reaper)->level == ns_level; 658 reaper = reaper->real_parent) { 659 if (reaper == &init_task) 660 break; 661 if (!reaper->signal->is_child_subreaper) 662 continue; 663 thread = find_alive_thread(reaper); 664 if (thread) 665 return thread; 666 } 667 } 668 669 return child_reaper; 670 } 671 672 /* 673 * Any that need to be release_task'd are put on the @dead list. 674 */ 675 static void reparent_leader(struct task_struct *father, struct task_struct *p, 676 struct list_head *dead) 677 { 678 if (unlikely(p->exit_state == EXIT_DEAD)) 679 return; 680 681 /* We don't want people slaying init. */ 682 p->exit_signal = SIGCHLD; 683 684 /* If it has exited notify the new parent about this child's death. */ 685 if (!p->ptrace && 686 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 687 if (do_notify_parent(p, p->exit_signal)) { 688 p->exit_state = EXIT_DEAD; 689 list_add(&p->ptrace_entry, dead); 690 } 691 } 692 693 kill_orphaned_pgrp(p, father); 694 } 695 696 /* 697 * Make init inherit all the child processes 698 */ 699 static void forget_original_parent(struct task_struct *father, 700 struct list_head *dead) 701 { 702 struct task_struct *p, *t, *reaper; 703 704 if (unlikely(!list_empty(&father->ptraced))) 705 exit_ptrace(father, dead); 706 707 /* Can drop and reacquire tasklist_lock */ 708 reaper = find_child_reaper(father, dead); 709 if (list_empty(&father->children)) 710 return; 711 712 reaper = find_new_reaper(father, reaper); 713 list_for_each_entry(p, &father->children, sibling) { 714 for_each_thread(p, t) { 715 RCU_INIT_POINTER(t->real_parent, reaper); 716 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father)); 717 if (likely(!t->ptrace)) 718 t->parent = t->real_parent; 719 if (t->pdeath_signal) 720 group_send_sig_info(t->pdeath_signal, 721 SEND_SIG_NOINFO, t, 722 PIDTYPE_TGID); 723 } 724 /* 725 * If this is a threaded reparent there is no need to 726 * notify anyone anything has happened. 727 */ 728 if (!same_thread_group(reaper, father)) 729 reparent_leader(father, p, dead); 730 } 731 list_splice_tail_init(&father->children, &reaper->children); 732 } 733 734 /* 735 * Send signals to all our closest relatives so that they know 736 * to properly mourn us.. 737 */ 738 static void exit_notify(struct task_struct *tsk, int group_dead) 739 { 740 bool autoreap; 741 struct task_struct *p, *n; 742 LIST_HEAD(dead); 743 744 write_lock_irq(&tasklist_lock); 745 forget_original_parent(tsk, &dead); 746 747 if (group_dead) 748 kill_orphaned_pgrp(tsk->group_leader, NULL); 749 750 tsk->exit_state = EXIT_ZOMBIE; 751 752 if (unlikely(tsk->ptrace)) { 753 int sig = thread_group_leader(tsk) && 754 thread_group_empty(tsk) && 755 !ptrace_reparented(tsk) ? 756 tsk->exit_signal : SIGCHLD; 757 autoreap = do_notify_parent(tsk, sig); 758 } else if (thread_group_leader(tsk)) { 759 autoreap = thread_group_empty(tsk) && 760 do_notify_parent(tsk, tsk->exit_signal); 761 } else { 762 autoreap = true; 763 /* untraced sub-thread */ 764 do_notify_pidfd(tsk); 765 } 766 767 if (autoreap) { 768 tsk->exit_state = EXIT_DEAD; 769 list_add(&tsk->ptrace_entry, &dead); 770 } 771 772 /* mt-exec, de_thread() is waiting for group leader */ 773 if (unlikely(tsk->signal->notify_count < 0)) 774 wake_up_process(tsk->signal->group_exec_task); 775 write_unlock_irq(&tasklist_lock); 776 777 list_for_each_entry_safe(p, n, &dead, ptrace_entry) { 778 list_del_init(&p->ptrace_entry); 779 release_task(p); 780 } 781 } 782 783 #ifdef CONFIG_DEBUG_STACK_USAGE 784 #ifdef CONFIG_STACK_GROWSUP 785 unsigned long stack_not_used(struct task_struct *p) 786 { 787 unsigned long *n = end_of_stack(p); 788 789 do { /* Skip over canary */ 790 n--; 791 } while (!*n); 792 793 return (unsigned long)end_of_stack(p) - (unsigned long)n; 794 } 795 #else /* !CONFIG_STACK_GROWSUP */ 796 unsigned long stack_not_used(struct task_struct *p) 797 { 798 unsigned long *n = end_of_stack(p); 799 800 do { /* Skip over canary */ 801 n++; 802 } while (!*n); 803 804 return (unsigned long)n - (unsigned long)end_of_stack(p); 805 } 806 #endif /* CONFIG_STACK_GROWSUP */ 807 808 /* Count the maximum pages reached in kernel stacks */ 809 static inline void kstack_histogram(unsigned long used_stack) 810 { 811 #ifdef CONFIG_VM_EVENT_COUNTERS 812 if (used_stack <= 1024) 813 count_vm_event(KSTACK_1K); 814 #if THREAD_SIZE > 1024 815 else if (used_stack <= 2048) 816 count_vm_event(KSTACK_2K); 817 #endif 818 #if THREAD_SIZE > 2048 819 else if (used_stack <= 4096) 820 count_vm_event(KSTACK_4K); 821 #endif 822 #if THREAD_SIZE > 4096 823 else if (used_stack <= 8192) 824 count_vm_event(KSTACK_8K); 825 #endif 826 #if THREAD_SIZE > 8192 827 else if (used_stack <= 16384) 828 count_vm_event(KSTACK_16K); 829 #endif 830 #if THREAD_SIZE > 16384 831 else if (used_stack <= 32768) 832 count_vm_event(KSTACK_32K); 833 #endif 834 #if THREAD_SIZE > 32768 835 else if (used_stack <= 65536) 836 count_vm_event(KSTACK_64K); 837 #endif 838 #if THREAD_SIZE > 65536 839 else 840 count_vm_event(KSTACK_REST); 841 #endif 842 #endif /* CONFIG_VM_EVENT_COUNTERS */ 843 } 844 845 static void check_stack_usage(void) 846 { 847 static DEFINE_SPINLOCK(low_water_lock); 848 static int lowest_to_date = THREAD_SIZE; 849 unsigned long free; 850 851 free = stack_not_used(current); 852 kstack_histogram(THREAD_SIZE - free); 853 854 if (free >= lowest_to_date) 855 return; 856 857 spin_lock(&low_water_lock); 858 if (free < lowest_to_date) { 859 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n", 860 current->comm, task_pid_nr(current), free); 861 lowest_to_date = free; 862 } 863 spin_unlock(&low_water_lock); 864 } 865 #else /* !CONFIG_DEBUG_STACK_USAGE */ 866 static inline void check_stack_usage(void) {} 867 #endif /* CONFIG_DEBUG_STACK_USAGE */ 868 869 static void synchronize_group_exit(struct task_struct *tsk, long code) 870 { 871 struct sighand_struct *sighand = tsk->sighand; 872 struct signal_struct *signal = tsk->signal; 873 struct core_state *core_state; 874 875 spin_lock_irq(&sighand->siglock); 876 signal->quick_threads--; 877 if ((signal->quick_threads == 0) && 878 !(signal->flags & SIGNAL_GROUP_EXIT)) { 879 signal->flags = SIGNAL_GROUP_EXIT; 880 signal->group_exit_code = code; 881 signal->group_stop_count = 0; 882 } 883 /* 884 * Serialize with any possible pending coredump. 885 * We must hold siglock around checking core_state 886 * and setting PF_POSTCOREDUMP. The core-inducing thread 887 * will increment ->nr_threads for each thread in the 888 * group without PF_POSTCOREDUMP set. 889 */ 890 tsk->flags |= PF_POSTCOREDUMP; 891 core_state = signal->core_state; 892 spin_unlock_irq(&sighand->siglock); 893 894 if (unlikely(core_state)) 895 coredump_task_exit(tsk, core_state); 896 } 897 898 void __noreturn do_exit(long code) 899 { 900 struct task_struct *tsk = current; 901 int group_dead; 902 903 WARN_ON(irqs_disabled()); 904 WARN_ON(tsk->plug); 905 906 kcov_task_exit(tsk); 907 kmsan_task_exit(tsk); 908 909 synchronize_group_exit(tsk, code); 910 ptrace_event(PTRACE_EVENT_EXIT, code); 911 user_events_exit(tsk); 912 913 io_uring_files_cancel(); 914 sched_mm_cid_exit(tsk); 915 exit_signals(tsk); /* sets PF_EXITING */ 916 917 seccomp_filter_release(tsk); 918 919 acct_update_integrals(tsk); 920 group_dead = atomic_dec_and_test(&tsk->signal->live); 921 if (group_dead) { 922 /* 923 * If the last thread of global init has exited, panic 924 * immediately to get a useable coredump. 925 */ 926 if (unlikely(is_global_init(tsk))) 927 panic("Attempted to kill init! exitcode=0x%08x\n", 928 tsk->signal->group_exit_code ?: (int)code); 929 930 #ifdef CONFIG_POSIX_TIMERS 931 hrtimer_cancel(&tsk->signal->real_timer); 932 exit_itimers(tsk); 933 #endif 934 if (tsk->mm) 935 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 936 } 937 acct_collect(code, group_dead); 938 if (group_dead) 939 tty_audit_exit(); 940 audit_free(tsk); 941 942 tsk->exit_code = code; 943 taskstats_exit(tsk, group_dead); 944 trace_sched_process_exit(tsk, group_dead); 945 946 /* 947 * Since sampling can touch ->mm, make sure to stop everything before we 948 * tear it down. 949 * 950 * Also flushes inherited counters to the parent - before the parent 951 * gets woken up by child-exit notifications. 952 */ 953 perf_event_exit_task(tsk); 954 /* 955 * PF_EXITING (above) ensures unwind_deferred_request() will no 956 * longer add new unwinds. While exit_mm() (below) will destroy the 957 * abaility to do unwinds. So flush any pending unwinds here. 958 */ 959 unwind_deferred_task_exit(tsk); 960 961 exit_mm(); 962 963 if (group_dead) 964 acct_process(); 965 966 exit_sem(tsk); 967 exit_shm(tsk); 968 exit_files(tsk); 969 exit_fs(tsk); 970 if (group_dead) 971 disassociate_ctty(1); 972 exit_nsproxy_namespaces(tsk); 973 exit_task_work(tsk); 974 exit_thread(tsk); 975 976 sched_autogroup_exit_task(tsk); 977 cgroup_task_exit(tsk); 978 979 /* 980 * FIXME: do that only when needed, using sched_exit tracepoint 981 */ 982 flush_ptrace_hw_breakpoint(tsk); 983 984 exit_tasks_rcu_start(); 985 exit_notify(tsk, group_dead); 986 proc_exit_connector(tsk); 987 mpol_put_task_policy(tsk); 988 #ifdef CONFIG_FUTEX 989 if (unlikely(current->pi_state_cache)) 990 kfree(current->pi_state_cache); 991 #endif 992 /* 993 * Make sure we are holding no locks: 994 */ 995 debug_check_no_locks_held(); 996 997 if (tsk->io_context) 998 exit_io_context(tsk); 999 1000 if (tsk->splice_pipe) 1001 free_pipe_info(tsk->splice_pipe); 1002 1003 if (tsk->task_frag.page) 1004 put_page(tsk->task_frag.page); 1005 1006 exit_task_stack_account(tsk); 1007 1008 check_stack_usage(); 1009 preempt_disable(); 1010 if (tsk->nr_dirtied) 1011 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 1012 exit_rcu(); 1013 exit_tasks_rcu_finish(); 1014 1015 lockdep_free_task(tsk); 1016 do_task_dead(); 1017 } 1018 1019 void __noreturn make_task_dead(int signr) 1020 { 1021 /* 1022 * Take the task off the cpu after something catastrophic has 1023 * happened. 1024 * 1025 * We can get here from a kernel oops, sometimes with preemption off. 1026 * Start by checking for critical errors. 1027 * Then fix up important state like USER_DS and preemption. 1028 * Then do everything else. 1029 */ 1030 struct task_struct *tsk = current; 1031 unsigned int limit; 1032 1033 if (unlikely(in_interrupt())) 1034 panic("Aiee, killing interrupt handler!"); 1035 if (unlikely(!tsk->pid)) 1036 panic("Attempted to kill the idle task!"); 1037 1038 if (unlikely(irqs_disabled())) { 1039 pr_info("note: %s[%d] exited with irqs disabled\n", 1040 current->comm, task_pid_nr(current)); 1041 local_irq_enable(); 1042 } 1043 if (unlikely(in_atomic())) { 1044 pr_info("note: %s[%d] exited with preempt_count %d\n", 1045 current->comm, task_pid_nr(current), 1046 preempt_count()); 1047 preempt_count_set(PREEMPT_ENABLED); 1048 } 1049 1050 /* 1051 * Every time the system oopses, if the oops happens while a reference 1052 * to an object was held, the reference leaks. 1053 * If the oops doesn't also leak memory, repeated oopsing can cause 1054 * reference counters to wrap around (if they're not using refcount_t). 1055 * This means that repeated oopsing can make unexploitable-looking bugs 1056 * exploitable through repeated oopsing. 1057 * To make sure this can't happen, place an upper bound on how often the 1058 * kernel may oops without panic(). 1059 */ 1060 limit = READ_ONCE(oops_limit); 1061 if (atomic_inc_return(&oops_count) >= limit && limit) 1062 panic("Oopsed too often (kernel.oops_limit is %d)", limit); 1063 1064 /* 1065 * We're taking recursive faults here in make_task_dead. Safest is to just 1066 * leave this task alone and wait for reboot. 1067 */ 1068 if (unlikely(tsk->flags & PF_EXITING)) { 1069 pr_alert("Fixing recursive fault but reboot is needed!\n"); 1070 futex_exit_recursive(tsk); 1071 tsk->exit_state = EXIT_DEAD; 1072 refcount_inc(&tsk->rcu_users); 1073 do_task_dead(); 1074 } 1075 1076 do_exit(signr); 1077 } 1078 1079 SYSCALL_DEFINE1(exit, int, error_code) 1080 { 1081 do_exit((error_code&0xff)<<8); 1082 } 1083 1084 /* 1085 * Take down every thread in the group. This is called by fatal signals 1086 * as well as by sys_exit_group (below). 1087 */ 1088 void __noreturn 1089 do_group_exit(int exit_code) 1090 { 1091 struct signal_struct *sig = current->signal; 1092 1093 if (sig->flags & SIGNAL_GROUP_EXIT) 1094 exit_code = sig->group_exit_code; 1095 else if (sig->group_exec_task) 1096 exit_code = 0; 1097 else { 1098 struct sighand_struct *const sighand = current->sighand; 1099 1100 spin_lock_irq(&sighand->siglock); 1101 if (sig->flags & SIGNAL_GROUP_EXIT) 1102 /* Another thread got here before we took the lock. */ 1103 exit_code = sig->group_exit_code; 1104 else if (sig->group_exec_task) 1105 exit_code = 0; 1106 else { 1107 sig->group_exit_code = exit_code; 1108 sig->flags = SIGNAL_GROUP_EXIT; 1109 zap_other_threads(current); 1110 } 1111 spin_unlock_irq(&sighand->siglock); 1112 } 1113 1114 do_exit(exit_code); 1115 /* NOTREACHED */ 1116 } 1117 1118 /* 1119 * this kills every thread in the thread group. Note that any externally 1120 * wait4()-ing process will get the correct exit code - even if this 1121 * thread is not the thread group leader. 1122 */ 1123 SYSCALL_DEFINE1(exit_group, int, error_code) 1124 { 1125 do_group_exit((error_code & 0xff) << 8); 1126 /* NOTREACHED */ 1127 return 0; 1128 } 1129 1130 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 1131 { 1132 return wo->wo_type == PIDTYPE_MAX || 1133 task_pid_type(p, wo->wo_type) == wo->wo_pid; 1134 } 1135 1136 static int 1137 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p) 1138 { 1139 if (!eligible_pid(wo, p)) 1140 return 0; 1141 1142 /* 1143 * Wait for all children (clone and not) if __WALL is set or 1144 * if it is traced by us. 1145 */ 1146 if (ptrace || (wo->wo_flags & __WALL)) 1147 return 1; 1148 1149 /* 1150 * Otherwise, wait for clone children *only* if __WCLONE is set; 1151 * otherwise, wait for non-clone children *only*. 1152 * 1153 * Note: a "clone" child here is one that reports to its parent 1154 * using a signal other than SIGCHLD, or a non-leader thread which 1155 * we can only see if it is traced by us. 1156 */ 1157 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 1158 return 0; 1159 1160 return 1; 1161 } 1162 1163 /* 1164 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1165 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1166 * the lock and this task is uninteresting. If we return nonzero, we have 1167 * released the lock and the system call should return. 1168 */ 1169 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1170 { 1171 int state, status; 1172 pid_t pid = task_pid_vnr(p); 1173 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1174 struct waitid_info *infop; 1175 1176 if (!likely(wo->wo_flags & WEXITED)) 1177 return 0; 1178 1179 if (unlikely(wo->wo_flags & WNOWAIT)) { 1180 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1181 ? p->signal->group_exit_code : p->exit_code; 1182 get_task_struct(p); 1183 read_unlock(&tasklist_lock); 1184 sched_annotate_sleep(); 1185 if (wo->wo_rusage) 1186 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1187 put_task_struct(p); 1188 goto out_info; 1189 } 1190 /* 1191 * Move the task's state to DEAD/TRACE, only one thread can do this. 1192 */ 1193 state = (ptrace_reparented(p) && thread_group_leader(p)) ? 1194 EXIT_TRACE : EXIT_DEAD; 1195 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 1196 return 0; 1197 /* 1198 * We own this thread, nobody else can reap it. 1199 */ 1200 read_unlock(&tasklist_lock); 1201 sched_annotate_sleep(); 1202 1203 /* 1204 * Check thread_group_leader() to exclude the traced sub-threads. 1205 */ 1206 if (state == EXIT_DEAD && thread_group_leader(p)) { 1207 struct signal_struct *sig = p->signal; 1208 struct signal_struct *psig = current->signal; 1209 unsigned long maxrss; 1210 u64 tgutime, tgstime; 1211 1212 /* 1213 * The resource counters for the group leader are in its 1214 * own task_struct. Those for dead threads in the group 1215 * are in its signal_struct, as are those for the child 1216 * processes it has previously reaped. All these 1217 * accumulate in the parent's signal_struct c* fields. 1218 * 1219 * We don't bother to take a lock here to protect these 1220 * p->signal fields because the whole thread group is dead 1221 * and nobody can change them. 1222 * 1223 * psig->stats_lock also protects us from our sub-threads 1224 * which can reap other children at the same time. 1225 * 1226 * We use thread_group_cputime_adjusted() to get times for 1227 * the thread group, which consolidates times for all threads 1228 * in the group including the group leader. 1229 */ 1230 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1231 write_seqlock_irq(&psig->stats_lock); 1232 psig->cutime += tgutime + sig->cutime; 1233 psig->cstime += tgstime + sig->cstime; 1234 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1235 psig->cmin_flt += 1236 p->min_flt + sig->min_flt + sig->cmin_flt; 1237 psig->cmaj_flt += 1238 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1239 psig->cnvcsw += 1240 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1241 psig->cnivcsw += 1242 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1243 psig->cinblock += 1244 task_io_get_inblock(p) + 1245 sig->inblock + sig->cinblock; 1246 psig->coublock += 1247 task_io_get_oublock(p) + 1248 sig->oublock + sig->coublock; 1249 maxrss = max(sig->maxrss, sig->cmaxrss); 1250 if (psig->cmaxrss < maxrss) 1251 psig->cmaxrss = maxrss; 1252 task_io_accounting_add(&psig->ioac, &p->ioac); 1253 task_io_accounting_add(&psig->ioac, &sig->ioac); 1254 write_sequnlock_irq(&psig->stats_lock); 1255 } 1256 1257 if (wo->wo_rusage) 1258 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1259 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1260 ? p->signal->group_exit_code : p->exit_code; 1261 wo->wo_stat = status; 1262 1263 if (state == EXIT_TRACE) { 1264 write_lock_irq(&tasklist_lock); 1265 /* We dropped tasklist, ptracer could die and untrace */ 1266 ptrace_unlink(p); 1267 1268 /* If parent wants a zombie, don't release it now */ 1269 state = EXIT_ZOMBIE; 1270 if (do_notify_parent(p, p->exit_signal)) 1271 state = EXIT_DEAD; 1272 p->exit_state = state; 1273 write_unlock_irq(&tasklist_lock); 1274 } 1275 if (state == EXIT_DEAD) 1276 release_task(p); 1277 1278 out_info: 1279 infop = wo->wo_info; 1280 if (infop) { 1281 if ((status & 0x7f) == 0) { 1282 infop->cause = CLD_EXITED; 1283 infop->status = status >> 8; 1284 } else { 1285 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1286 infop->status = status & 0x7f; 1287 } 1288 infop->pid = pid; 1289 infop->uid = uid; 1290 } 1291 1292 return pid; 1293 } 1294 1295 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1296 { 1297 if (ptrace) { 1298 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING)) 1299 return &p->exit_code; 1300 } else { 1301 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1302 return &p->signal->group_exit_code; 1303 } 1304 return NULL; 1305 } 1306 1307 /** 1308 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1309 * @wo: wait options 1310 * @ptrace: is the wait for ptrace 1311 * @p: task to wait for 1312 * 1313 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1314 * 1315 * CONTEXT: 1316 * read_lock(&tasklist_lock), which is released if return value is 1317 * non-zero. Also, grabs and releases @p->sighand->siglock. 1318 * 1319 * RETURNS: 1320 * 0 if wait condition didn't exist and search for other wait conditions 1321 * should continue. Non-zero return, -errno on failure and @p's pid on 1322 * success, implies that tasklist_lock is released and wait condition 1323 * search should terminate. 1324 */ 1325 static int wait_task_stopped(struct wait_opts *wo, 1326 int ptrace, struct task_struct *p) 1327 { 1328 struct waitid_info *infop; 1329 int exit_code, *p_code, why; 1330 uid_t uid = 0; /* unneeded, required by compiler */ 1331 pid_t pid; 1332 1333 /* 1334 * Traditionally we see ptrace'd stopped tasks regardless of options. 1335 */ 1336 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1337 return 0; 1338 1339 if (!task_stopped_code(p, ptrace)) 1340 return 0; 1341 1342 exit_code = 0; 1343 spin_lock_irq(&p->sighand->siglock); 1344 1345 p_code = task_stopped_code(p, ptrace); 1346 if (unlikely(!p_code)) 1347 goto unlock_sig; 1348 1349 exit_code = *p_code; 1350 if (!exit_code) 1351 goto unlock_sig; 1352 1353 if (!unlikely(wo->wo_flags & WNOWAIT)) 1354 *p_code = 0; 1355 1356 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1357 unlock_sig: 1358 spin_unlock_irq(&p->sighand->siglock); 1359 if (!exit_code) 1360 return 0; 1361 1362 /* 1363 * Now we are pretty sure this task is interesting. 1364 * Make sure it doesn't get reaped out from under us while we 1365 * give up the lock and then examine it below. We don't want to 1366 * keep holding onto the tasklist_lock while we call getrusage and 1367 * possibly take page faults for user memory. 1368 */ 1369 get_task_struct(p); 1370 pid = task_pid_vnr(p); 1371 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1372 read_unlock(&tasklist_lock); 1373 sched_annotate_sleep(); 1374 if (wo->wo_rusage) 1375 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1376 put_task_struct(p); 1377 1378 if (likely(!(wo->wo_flags & WNOWAIT))) 1379 wo->wo_stat = (exit_code << 8) | 0x7f; 1380 1381 infop = wo->wo_info; 1382 if (infop) { 1383 infop->cause = why; 1384 infop->status = exit_code; 1385 infop->pid = pid; 1386 infop->uid = uid; 1387 } 1388 return pid; 1389 } 1390 1391 /* 1392 * Handle do_wait work for one task in a live, non-stopped state. 1393 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1394 * the lock and this task is uninteresting. If we return nonzero, we have 1395 * released the lock and the system call should return. 1396 */ 1397 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1398 { 1399 struct waitid_info *infop; 1400 pid_t pid; 1401 uid_t uid; 1402 1403 if (!unlikely(wo->wo_flags & WCONTINUED)) 1404 return 0; 1405 1406 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1407 return 0; 1408 1409 spin_lock_irq(&p->sighand->siglock); 1410 /* Re-check with the lock held. */ 1411 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1412 spin_unlock_irq(&p->sighand->siglock); 1413 return 0; 1414 } 1415 if (!unlikely(wo->wo_flags & WNOWAIT)) 1416 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1417 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1418 spin_unlock_irq(&p->sighand->siglock); 1419 1420 pid = task_pid_vnr(p); 1421 get_task_struct(p); 1422 read_unlock(&tasklist_lock); 1423 sched_annotate_sleep(); 1424 if (wo->wo_rusage) 1425 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1426 put_task_struct(p); 1427 1428 infop = wo->wo_info; 1429 if (!infop) { 1430 wo->wo_stat = 0xffff; 1431 } else { 1432 infop->cause = CLD_CONTINUED; 1433 infop->pid = pid; 1434 infop->uid = uid; 1435 infop->status = SIGCONT; 1436 } 1437 return pid; 1438 } 1439 1440 /* 1441 * Consider @p for a wait by @parent. 1442 * 1443 * -ECHILD should be in ->notask_error before the first call. 1444 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1445 * Returns zero if the search for a child should continue; 1446 * then ->notask_error is 0 if @p is an eligible child, 1447 * or still -ECHILD. 1448 */ 1449 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1450 struct task_struct *p) 1451 { 1452 /* 1453 * We can race with wait_task_zombie() from another thread. 1454 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition 1455 * can't confuse the checks below. 1456 */ 1457 int exit_state = READ_ONCE(p->exit_state); 1458 int ret; 1459 1460 if (unlikely(exit_state == EXIT_DEAD)) 1461 return 0; 1462 1463 ret = eligible_child(wo, ptrace, p); 1464 if (!ret) 1465 return ret; 1466 1467 if (unlikely(exit_state == EXIT_TRACE)) { 1468 /* 1469 * ptrace == 0 means we are the natural parent. In this case 1470 * we should clear notask_error, debugger will notify us. 1471 */ 1472 if (likely(!ptrace)) 1473 wo->notask_error = 0; 1474 return 0; 1475 } 1476 1477 if (likely(!ptrace) && unlikely(p->ptrace)) { 1478 /* 1479 * If it is traced by its real parent's group, just pretend 1480 * the caller is ptrace_do_wait() and reap this child if it 1481 * is zombie. 1482 * 1483 * This also hides group stop state from real parent; otherwise 1484 * a single stop can be reported twice as group and ptrace stop. 1485 * If a ptracer wants to distinguish these two events for its 1486 * own children it should create a separate process which takes 1487 * the role of real parent. 1488 */ 1489 if (!ptrace_reparented(p)) 1490 ptrace = 1; 1491 } 1492 1493 /* slay zombie? */ 1494 if (exit_state == EXIT_ZOMBIE) { 1495 /* we don't reap group leaders with subthreads */ 1496 if (!delay_group_leader(p)) { 1497 /* 1498 * A zombie ptracee is only visible to its ptracer. 1499 * Notification and reaping will be cascaded to the 1500 * real parent when the ptracer detaches. 1501 */ 1502 if (unlikely(ptrace) || likely(!p->ptrace)) 1503 return wait_task_zombie(wo, p); 1504 } 1505 1506 /* 1507 * Allow access to stopped/continued state via zombie by 1508 * falling through. Clearing of notask_error is complex. 1509 * 1510 * When !@ptrace: 1511 * 1512 * If WEXITED is set, notask_error should naturally be 1513 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1514 * so, if there are live subthreads, there are events to 1515 * wait for. If all subthreads are dead, it's still safe 1516 * to clear - this function will be called again in finite 1517 * amount time once all the subthreads are released and 1518 * will then return without clearing. 1519 * 1520 * When @ptrace: 1521 * 1522 * Stopped state is per-task and thus can't change once the 1523 * target task dies. Only continued and exited can happen. 1524 * Clear notask_error if WCONTINUED | WEXITED. 1525 */ 1526 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1527 wo->notask_error = 0; 1528 } else { 1529 /* 1530 * @p is alive and it's gonna stop, continue or exit, so 1531 * there always is something to wait for. 1532 */ 1533 wo->notask_error = 0; 1534 } 1535 1536 /* 1537 * Wait for stopped. Depending on @ptrace, different stopped state 1538 * is used and the two don't interact with each other. 1539 */ 1540 ret = wait_task_stopped(wo, ptrace, p); 1541 if (ret) 1542 return ret; 1543 1544 /* 1545 * Wait for continued. There's only one continued state and the 1546 * ptracer can consume it which can confuse the real parent. Don't 1547 * use WCONTINUED from ptracer. You don't need or want it. 1548 */ 1549 return wait_task_continued(wo, p); 1550 } 1551 1552 /* 1553 * Do the work of do_wait() for one thread in the group, @tsk. 1554 * 1555 * -ECHILD should be in ->notask_error before the first call. 1556 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1557 * Returns zero if the search for a child should continue; then 1558 * ->notask_error is 0 if there were any eligible children, 1559 * or still -ECHILD. 1560 */ 1561 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1562 { 1563 struct task_struct *p; 1564 1565 list_for_each_entry(p, &tsk->children, sibling) { 1566 int ret = wait_consider_task(wo, 0, p); 1567 1568 if (ret) 1569 return ret; 1570 } 1571 1572 return 0; 1573 } 1574 1575 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1576 { 1577 struct task_struct *p; 1578 1579 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1580 int ret = wait_consider_task(wo, 1, p); 1581 1582 if (ret) 1583 return ret; 1584 } 1585 1586 return 0; 1587 } 1588 1589 bool pid_child_should_wake(struct wait_opts *wo, struct task_struct *p) 1590 { 1591 if (!eligible_pid(wo, p)) 1592 return false; 1593 1594 if ((wo->wo_flags & __WNOTHREAD) && wo->child_wait.private != p->parent) 1595 return false; 1596 1597 return true; 1598 } 1599 1600 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode, 1601 int sync, void *key) 1602 { 1603 struct wait_opts *wo = container_of(wait, struct wait_opts, 1604 child_wait); 1605 struct task_struct *p = key; 1606 1607 if (pid_child_should_wake(wo, p)) 1608 return default_wake_function(wait, mode, sync, key); 1609 1610 return 0; 1611 } 1612 1613 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1614 { 1615 __wake_up_sync_key(&parent->signal->wait_chldexit, 1616 TASK_INTERRUPTIBLE, p); 1617 } 1618 1619 static bool is_effectively_child(struct wait_opts *wo, bool ptrace, 1620 struct task_struct *target) 1621 { 1622 struct task_struct *parent = 1623 !ptrace ? target->real_parent : target->parent; 1624 1625 return current == parent || (!(wo->wo_flags & __WNOTHREAD) && 1626 same_thread_group(current, parent)); 1627 } 1628 1629 /* 1630 * Optimization for waiting on PIDTYPE_PID. No need to iterate through child 1631 * and tracee lists to find the target task. 1632 */ 1633 static int do_wait_pid(struct wait_opts *wo) 1634 { 1635 bool ptrace; 1636 struct task_struct *target; 1637 int retval; 1638 1639 ptrace = false; 1640 target = pid_task(wo->wo_pid, PIDTYPE_TGID); 1641 if (target && is_effectively_child(wo, ptrace, target)) { 1642 retval = wait_consider_task(wo, ptrace, target); 1643 if (retval) 1644 return retval; 1645 } 1646 1647 ptrace = true; 1648 target = pid_task(wo->wo_pid, PIDTYPE_PID); 1649 if (target && target->ptrace && 1650 is_effectively_child(wo, ptrace, target)) { 1651 retval = wait_consider_task(wo, ptrace, target); 1652 if (retval) 1653 return retval; 1654 } 1655 1656 return 0; 1657 } 1658 1659 long __do_wait(struct wait_opts *wo) 1660 { 1661 long retval; 1662 1663 /* 1664 * If there is nothing that can match our criteria, just get out. 1665 * We will clear ->notask_error to zero if we see any child that 1666 * might later match our criteria, even if we are not able to reap 1667 * it yet. 1668 */ 1669 wo->notask_error = -ECHILD; 1670 if ((wo->wo_type < PIDTYPE_MAX) && 1671 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type))) 1672 goto notask; 1673 1674 read_lock(&tasklist_lock); 1675 1676 if (wo->wo_type == PIDTYPE_PID) { 1677 retval = do_wait_pid(wo); 1678 if (retval) 1679 return retval; 1680 } else { 1681 struct task_struct *tsk = current; 1682 1683 do { 1684 retval = do_wait_thread(wo, tsk); 1685 if (retval) 1686 return retval; 1687 1688 retval = ptrace_do_wait(wo, tsk); 1689 if (retval) 1690 return retval; 1691 1692 if (wo->wo_flags & __WNOTHREAD) 1693 break; 1694 } while_each_thread(current, tsk); 1695 } 1696 read_unlock(&tasklist_lock); 1697 1698 notask: 1699 retval = wo->notask_error; 1700 if (!retval && !(wo->wo_flags & WNOHANG)) 1701 return -ERESTARTSYS; 1702 1703 return retval; 1704 } 1705 1706 static long do_wait(struct wait_opts *wo) 1707 { 1708 int retval; 1709 1710 trace_sched_process_wait(wo->wo_pid); 1711 1712 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1713 wo->child_wait.private = current; 1714 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1715 1716 do { 1717 set_current_state(TASK_INTERRUPTIBLE); 1718 retval = __do_wait(wo); 1719 if (retval != -ERESTARTSYS) 1720 break; 1721 if (signal_pending(current)) 1722 break; 1723 schedule(); 1724 } while (1); 1725 1726 __set_current_state(TASK_RUNNING); 1727 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1728 return retval; 1729 } 1730 1731 int kernel_waitid_prepare(struct wait_opts *wo, int which, pid_t upid, 1732 struct waitid_info *infop, int options, 1733 struct rusage *ru) 1734 { 1735 unsigned int f_flags = 0; 1736 struct pid *pid = NULL; 1737 enum pid_type type; 1738 1739 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED| 1740 __WNOTHREAD|__WCLONE|__WALL)) 1741 return -EINVAL; 1742 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1743 return -EINVAL; 1744 1745 switch (which) { 1746 case P_ALL: 1747 type = PIDTYPE_MAX; 1748 break; 1749 case P_PID: 1750 type = PIDTYPE_PID; 1751 if (upid <= 0) 1752 return -EINVAL; 1753 1754 pid = find_get_pid(upid); 1755 break; 1756 case P_PGID: 1757 type = PIDTYPE_PGID; 1758 if (upid < 0) 1759 return -EINVAL; 1760 1761 if (upid) 1762 pid = find_get_pid(upid); 1763 else 1764 pid = get_task_pid(current, PIDTYPE_PGID); 1765 break; 1766 case P_PIDFD: 1767 type = PIDTYPE_PID; 1768 if (upid < 0) 1769 return -EINVAL; 1770 1771 pid = pidfd_get_pid(upid, &f_flags); 1772 if (IS_ERR(pid)) 1773 return PTR_ERR(pid); 1774 1775 break; 1776 default: 1777 return -EINVAL; 1778 } 1779 1780 wo->wo_type = type; 1781 wo->wo_pid = pid; 1782 wo->wo_flags = options; 1783 wo->wo_info = infop; 1784 wo->wo_rusage = ru; 1785 if (f_flags & O_NONBLOCK) 1786 wo->wo_flags |= WNOHANG; 1787 1788 return 0; 1789 } 1790 1791 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop, 1792 int options, struct rusage *ru) 1793 { 1794 struct wait_opts wo; 1795 long ret; 1796 1797 ret = kernel_waitid_prepare(&wo, which, upid, infop, options, ru); 1798 if (ret) 1799 return ret; 1800 1801 ret = do_wait(&wo); 1802 if (!ret && !(options & WNOHANG) && (wo.wo_flags & WNOHANG)) 1803 ret = -EAGAIN; 1804 1805 put_pid(wo.wo_pid); 1806 return ret; 1807 } 1808 1809 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1810 infop, int, options, struct rusage __user *, ru) 1811 { 1812 struct rusage r; 1813 struct waitid_info info = {.status = 0}; 1814 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL); 1815 int signo = 0; 1816 1817 if (err > 0) { 1818 signo = SIGCHLD; 1819 err = 0; 1820 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1821 return -EFAULT; 1822 } 1823 if (!infop) 1824 return err; 1825 1826 if (!user_write_access_begin(infop, sizeof(*infop))) 1827 return -EFAULT; 1828 1829 unsafe_put_user(signo, &infop->si_signo, Efault); 1830 unsafe_put_user(0, &infop->si_errno, Efault); 1831 unsafe_put_user(info.cause, &infop->si_code, Efault); 1832 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1833 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1834 unsafe_put_user(info.status, &infop->si_status, Efault); 1835 user_write_access_end(); 1836 return err; 1837 Efault: 1838 user_write_access_end(); 1839 return -EFAULT; 1840 } 1841 1842 long kernel_wait4(pid_t upid, int __user *stat_addr, int options, 1843 struct rusage *ru) 1844 { 1845 struct wait_opts wo; 1846 struct pid *pid = NULL; 1847 enum pid_type type; 1848 long ret; 1849 1850 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1851 __WNOTHREAD|__WCLONE|__WALL)) 1852 return -EINVAL; 1853 1854 /* -INT_MIN is not defined */ 1855 if (upid == INT_MIN) 1856 return -ESRCH; 1857 1858 if (upid == -1) 1859 type = PIDTYPE_MAX; 1860 else if (upid < 0) { 1861 type = PIDTYPE_PGID; 1862 pid = find_get_pid(-upid); 1863 } else if (upid == 0) { 1864 type = PIDTYPE_PGID; 1865 pid = get_task_pid(current, PIDTYPE_PGID); 1866 } else /* upid > 0 */ { 1867 type = PIDTYPE_PID; 1868 pid = find_get_pid(upid); 1869 } 1870 1871 wo.wo_type = type; 1872 wo.wo_pid = pid; 1873 wo.wo_flags = options | WEXITED; 1874 wo.wo_info = NULL; 1875 wo.wo_stat = 0; 1876 wo.wo_rusage = ru; 1877 ret = do_wait(&wo); 1878 put_pid(pid); 1879 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr)) 1880 ret = -EFAULT; 1881 1882 return ret; 1883 } 1884 1885 int kernel_wait(pid_t pid, int *stat) 1886 { 1887 struct wait_opts wo = { 1888 .wo_type = PIDTYPE_PID, 1889 .wo_pid = find_get_pid(pid), 1890 .wo_flags = WEXITED, 1891 }; 1892 int ret; 1893 1894 ret = do_wait(&wo); 1895 if (ret > 0 && wo.wo_stat) 1896 *stat = wo.wo_stat; 1897 put_pid(wo.wo_pid); 1898 return ret; 1899 } 1900 1901 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1902 int, options, struct rusage __user *, ru) 1903 { 1904 struct rusage r; 1905 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL); 1906 1907 if (err > 0) { 1908 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1909 return -EFAULT; 1910 } 1911 return err; 1912 } 1913 1914 #ifdef __ARCH_WANT_SYS_WAITPID 1915 1916 /* 1917 * sys_waitpid() remains for compatibility. waitpid() should be 1918 * implemented by calling sys_wait4() from libc.a. 1919 */ 1920 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1921 { 1922 return kernel_wait4(pid, stat_addr, options, NULL); 1923 } 1924 1925 #endif 1926 1927 #ifdef CONFIG_COMPAT 1928 COMPAT_SYSCALL_DEFINE4(wait4, 1929 compat_pid_t, pid, 1930 compat_uint_t __user *, stat_addr, 1931 int, options, 1932 struct compat_rusage __user *, ru) 1933 { 1934 struct rusage r; 1935 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL); 1936 if (err > 0) { 1937 if (ru && put_compat_rusage(&r, ru)) 1938 return -EFAULT; 1939 } 1940 return err; 1941 } 1942 1943 COMPAT_SYSCALL_DEFINE5(waitid, 1944 int, which, compat_pid_t, pid, 1945 struct compat_siginfo __user *, infop, int, options, 1946 struct compat_rusage __user *, uru) 1947 { 1948 struct rusage ru; 1949 struct waitid_info info = {.status = 0}; 1950 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL); 1951 int signo = 0; 1952 if (err > 0) { 1953 signo = SIGCHLD; 1954 err = 0; 1955 if (uru) { 1956 /* kernel_waitid() overwrites everything in ru */ 1957 if (COMPAT_USE_64BIT_TIME) 1958 err = copy_to_user(uru, &ru, sizeof(ru)); 1959 else 1960 err = put_compat_rusage(&ru, uru); 1961 if (err) 1962 return -EFAULT; 1963 } 1964 } 1965 1966 if (!infop) 1967 return err; 1968 1969 if (!user_write_access_begin(infop, sizeof(*infop))) 1970 return -EFAULT; 1971 1972 unsafe_put_user(signo, &infop->si_signo, Efault); 1973 unsafe_put_user(0, &infop->si_errno, Efault); 1974 unsafe_put_user(info.cause, &infop->si_code, Efault); 1975 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1976 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1977 unsafe_put_user(info.status, &infop->si_status, Efault); 1978 user_write_access_end(); 1979 return err; 1980 Efault: 1981 user_write_access_end(); 1982 return -EFAULT; 1983 } 1984 #endif 1985 1986 /* 1987 * This needs to be __function_aligned as GCC implicitly makes any 1988 * implementation of abort() cold and drops alignment specified by 1989 * -falign-functions=N. 1990 * 1991 * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11 1992 */ 1993 __weak __function_aligned void abort(void) 1994 { 1995 BUG(); 1996 1997 /* if that doesn't kill us, halt */ 1998 panic("Oops failed to kill thread"); 1999 } 2000 EXPORT_SYMBOL(abort); 2001