1 /* 2 * linux/kernel/exit.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/mm.h> 8 #include <linux/slab.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/capability.h> 12 #include <linux/completion.h> 13 #include <linux/personality.h> 14 #include <linux/tty.h> 15 #include <linux/iocontext.h> 16 #include <linux/key.h> 17 #include <linux/security.h> 18 #include <linux/cpu.h> 19 #include <linux/acct.h> 20 #include <linux/tsacct_kern.h> 21 #include <linux/file.h> 22 #include <linux/fdtable.h> 23 #include <linux/freezer.h> 24 #include <linux/binfmts.h> 25 #include <linux/nsproxy.h> 26 #include <linux/pid_namespace.h> 27 #include <linux/ptrace.h> 28 #include <linux/profile.h> 29 #include <linux/mount.h> 30 #include <linux/proc_fs.h> 31 #include <linux/kthread.h> 32 #include <linux/mempolicy.h> 33 #include <linux/taskstats_kern.h> 34 #include <linux/delayacct.h> 35 #include <linux/cgroup.h> 36 #include <linux/syscalls.h> 37 #include <linux/signal.h> 38 #include <linux/posix-timers.h> 39 #include <linux/cn_proc.h> 40 #include <linux/mutex.h> 41 #include <linux/futex.h> 42 #include <linux/pipe_fs_i.h> 43 #include <linux/audit.h> /* for audit_free() */ 44 #include <linux/resource.h> 45 #include <linux/blkdev.h> 46 #include <linux/task_io_accounting_ops.h> 47 #include <linux/tracehook.h> 48 #include <linux/fs_struct.h> 49 #include <linux/init_task.h> 50 #include <linux/perf_event.h> 51 #include <trace/events/sched.h> 52 #include <linux/hw_breakpoint.h> 53 #include <linux/oom.h> 54 #include <linux/writeback.h> 55 #include <linux/shm.h> 56 57 #include <asm/uaccess.h> 58 #include <asm/unistd.h> 59 #include <asm/pgtable.h> 60 #include <asm/mmu_context.h> 61 62 static void exit_mm(struct task_struct * tsk); 63 64 static void __unhash_process(struct task_struct *p, bool group_dead) 65 { 66 nr_threads--; 67 detach_pid(p, PIDTYPE_PID); 68 if (group_dead) { 69 detach_pid(p, PIDTYPE_PGID); 70 detach_pid(p, PIDTYPE_SID); 71 72 list_del_rcu(&p->tasks); 73 list_del_init(&p->sibling); 74 __this_cpu_dec(process_counts); 75 } 76 list_del_rcu(&p->thread_group); 77 list_del_rcu(&p->thread_node); 78 } 79 80 /* 81 * This function expects the tasklist_lock write-locked. 82 */ 83 static void __exit_signal(struct task_struct *tsk) 84 { 85 struct signal_struct *sig = tsk->signal; 86 bool group_dead = thread_group_leader(tsk); 87 struct sighand_struct *sighand; 88 struct tty_struct *uninitialized_var(tty); 89 cputime_t utime, stime; 90 91 sighand = rcu_dereference_check(tsk->sighand, 92 lockdep_tasklist_lock_is_held()); 93 spin_lock(&sighand->siglock); 94 95 posix_cpu_timers_exit(tsk); 96 if (group_dead) { 97 posix_cpu_timers_exit_group(tsk); 98 tty = sig->tty; 99 sig->tty = NULL; 100 } else { 101 /* 102 * This can only happen if the caller is de_thread(). 103 * FIXME: this is the temporary hack, we should teach 104 * posix-cpu-timers to handle this case correctly. 105 */ 106 if (unlikely(has_group_leader_pid(tsk))) 107 posix_cpu_timers_exit_group(tsk); 108 109 /* 110 * If there is any task waiting for the group exit 111 * then notify it: 112 */ 113 if (sig->notify_count > 0 && !--sig->notify_count) 114 wake_up_process(sig->group_exit_task); 115 116 if (tsk == sig->curr_target) 117 sig->curr_target = next_thread(tsk); 118 /* 119 * Accumulate here the counters for all threads but the 120 * group leader as they die, so they can be added into 121 * the process-wide totals when those are taken. 122 * The group leader stays around as a zombie as long 123 * as there are other threads. When it gets reaped, 124 * the exit.c code will add its counts into these totals. 125 * We won't ever get here for the group leader, since it 126 * will have been the last reference on the signal_struct. 127 */ 128 task_cputime(tsk, &utime, &stime); 129 sig->utime += utime; 130 sig->stime += stime; 131 sig->gtime += task_gtime(tsk); 132 sig->min_flt += tsk->min_flt; 133 sig->maj_flt += tsk->maj_flt; 134 sig->nvcsw += tsk->nvcsw; 135 sig->nivcsw += tsk->nivcsw; 136 sig->inblock += task_io_get_inblock(tsk); 137 sig->oublock += task_io_get_oublock(tsk); 138 task_io_accounting_add(&sig->ioac, &tsk->ioac); 139 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 140 } 141 142 sig->nr_threads--; 143 __unhash_process(tsk, group_dead); 144 145 /* 146 * Do this under ->siglock, we can race with another thread 147 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 148 */ 149 flush_sigqueue(&tsk->pending); 150 tsk->sighand = NULL; 151 spin_unlock(&sighand->siglock); 152 153 __cleanup_sighand(sighand); 154 clear_tsk_thread_flag(tsk,TIF_SIGPENDING); 155 if (group_dead) { 156 flush_sigqueue(&sig->shared_pending); 157 tty_kref_put(tty); 158 } 159 } 160 161 static void delayed_put_task_struct(struct rcu_head *rhp) 162 { 163 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 164 165 perf_event_delayed_put(tsk); 166 trace_sched_process_free(tsk); 167 put_task_struct(tsk); 168 } 169 170 171 void release_task(struct task_struct * p) 172 { 173 struct task_struct *leader; 174 int zap_leader; 175 repeat: 176 /* don't need to get the RCU readlock here - the process is dead and 177 * can't be modifying its own credentials. But shut RCU-lockdep up */ 178 rcu_read_lock(); 179 atomic_dec(&__task_cred(p)->user->processes); 180 rcu_read_unlock(); 181 182 proc_flush_task(p); 183 184 write_lock_irq(&tasklist_lock); 185 ptrace_release_task(p); 186 __exit_signal(p); 187 188 /* 189 * If we are the last non-leader member of the thread 190 * group, and the leader is zombie, then notify the 191 * group leader's parent process. (if it wants notification.) 192 */ 193 zap_leader = 0; 194 leader = p->group_leader; 195 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { 196 /* 197 * If we were the last child thread and the leader has 198 * exited already, and the leader's parent ignores SIGCHLD, 199 * then we are the one who should release the leader. 200 */ 201 zap_leader = do_notify_parent(leader, leader->exit_signal); 202 if (zap_leader) 203 leader->exit_state = EXIT_DEAD; 204 } 205 206 write_unlock_irq(&tasklist_lock); 207 release_thread(p); 208 call_rcu(&p->rcu, delayed_put_task_struct); 209 210 p = leader; 211 if (unlikely(zap_leader)) 212 goto repeat; 213 } 214 215 /* 216 * This checks not only the pgrp, but falls back on the pid if no 217 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 218 * without this... 219 * 220 * The caller must hold rcu lock or the tasklist lock. 221 */ 222 struct pid *session_of_pgrp(struct pid *pgrp) 223 { 224 struct task_struct *p; 225 struct pid *sid = NULL; 226 227 p = pid_task(pgrp, PIDTYPE_PGID); 228 if (p == NULL) 229 p = pid_task(pgrp, PIDTYPE_PID); 230 if (p != NULL) 231 sid = task_session(p); 232 233 return sid; 234 } 235 236 /* 237 * Determine if a process group is "orphaned", according to the POSIX 238 * definition in 2.2.2.52. Orphaned process groups are not to be affected 239 * by terminal-generated stop signals. Newly orphaned process groups are 240 * to receive a SIGHUP and a SIGCONT. 241 * 242 * "I ask you, have you ever known what it is to be an orphan?" 243 */ 244 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) 245 { 246 struct task_struct *p; 247 248 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 249 if ((p == ignored_task) || 250 (p->exit_state && thread_group_empty(p)) || 251 is_global_init(p->real_parent)) 252 continue; 253 254 if (task_pgrp(p->real_parent) != pgrp && 255 task_session(p->real_parent) == task_session(p)) 256 return 0; 257 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 258 259 return 1; 260 } 261 262 int is_current_pgrp_orphaned(void) 263 { 264 int retval; 265 266 read_lock(&tasklist_lock); 267 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 268 read_unlock(&tasklist_lock); 269 270 return retval; 271 } 272 273 static bool has_stopped_jobs(struct pid *pgrp) 274 { 275 struct task_struct *p; 276 277 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 278 if (p->signal->flags & SIGNAL_STOP_STOPPED) 279 return true; 280 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 281 282 return false; 283 } 284 285 /* 286 * Check to see if any process groups have become orphaned as 287 * a result of our exiting, and if they have any stopped jobs, 288 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 289 */ 290 static void 291 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 292 { 293 struct pid *pgrp = task_pgrp(tsk); 294 struct task_struct *ignored_task = tsk; 295 296 if (!parent) 297 /* exit: our father is in a different pgrp than 298 * we are and we were the only connection outside. 299 */ 300 parent = tsk->real_parent; 301 else 302 /* reparent: our child is in a different pgrp than 303 * we are, and it was the only connection outside. 304 */ 305 ignored_task = NULL; 306 307 if (task_pgrp(parent) != pgrp && 308 task_session(parent) == task_session(tsk) && 309 will_become_orphaned_pgrp(pgrp, ignored_task) && 310 has_stopped_jobs(pgrp)) { 311 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 312 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 313 } 314 } 315 316 /* 317 * Let kernel threads use this to say that they allow a certain signal. 318 * Must not be used if kthread was cloned with CLONE_SIGHAND. 319 */ 320 int allow_signal(int sig) 321 { 322 if (!valid_signal(sig) || sig < 1) 323 return -EINVAL; 324 325 spin_lock_irq(¤t->sighand->siglock); 326 /* This is only needed for daemonize()'ed kthreads */ 327 sigdelset(¤t->blocked, sig); 328 /* 329 * Kernel threads handle their own signals. Let the signal code 330 * know it'll be handled, so that they don't get converted to 331 * SIGKILL or just silently dropped. 332 */ 333 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; 334 recalc_sigpending(); 335 spin_unlock_irq(¤t->sighand->siglock); 336 return 0; 337 } 338 339 EXPORT_SYMBOL(allow_signal); 340 341 int disallow_signal(int sig) 342 { 343 if (!valid_signal(sig) || sig < 1) 344 return -EINVAL; 345 346 spin_lock_irq(¤t->sighand->siglock); 347 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; 348 recalc_sigpending(); 349 spin_unlock_irq(¤t->sighand->siglock); 350 return 0; 351 } 352 353 EXPORT_SYMBOL(disallow_signal); 354 355 #ifdef CONFIG_MM_OWNER 356 /* 357 * A task is exiting. If it owned this mm, find a new owner for the mm. 358 */ 359 void mm_update_next_owner(struct mm_struct *mm) 360 { 361 struct task_struct *c, *g, *p = current; 362 363 retry: 364 /* 365 * If the exiting or execing task is not the owner, it's 366 * someone else's problem. 367 */ 368 if (mm->owner != p) 369 return; 370 /* 371 * The current owner is exiting/execing and there are no other 372 * candidates. Do not leave the mm pointing to a possibly 373 * freed task structure. 374 */ 375 if (atomic_read(&mm->mm_users) <= 1) { 376 mm->owner = NULL; 377 return; 378 } 379 380 read_lock(&tasklist_lock); 381 /* 382 * Search in the children 383 */ 384 list_for_each_entry(c, &p->children, sibling) { 385 if (c->mm == mm) 386 goto assign_new_owner; 387 } 388 389 /* 390 * Search in the siblings 391 */ 392 list_for_each_entry(c, &p->real_parent->children, sibling) { 393 if (c->mm == mm) 394 goto assign_new_owner; 395 } 396 397 /* 398 * Search through everything else. We should not get 399 * here often 400 */ 401 do_each_thread(g, c) { 402 if (c->mm == mm) 403 goto assign_new_owner; 404 } while_each_thread(g, c); 405 406 read_unlock(&tasklist_lock); 407 /* 408 * We found no owner yet mm_users > 1: this implies that we are 409 * most likely racing with swapoff (try_to_unuse()) or /proc or 410 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 411 */ 412 mm->owner = NULL; 413 return; 414 415 assign_new_owner: 416 BUG_ON(c == p); 417 get_task_struct(c); 418 /* 419 * The task_lock protects c->mm from changing. 420 * We always want mm->owner->mm == mm 421 */ 422 task_lock(c); 423 /* 424 * Delay read_unlock() till we have the task_lock() 425 * to ensure that c does not slip away underneath us 426 */ 427 read_unlock(&tasklist_lock); 428 if (c->mm != mm) { 429 task_unlock(c); 430 put_task_struct(c); 431 goto retry; 432 } 433 mm->owner = c; 434 task_unlock(c); 435 put_task_struct(c); 436 } 437 #endif /* CONFIG_MM_OWNER */ 438 439 /* 440 * Turn us into a lazy TLB process if we 441 * aren't already.. 442 */ 443 static void exit_mm(struct task_struct * tsk) 444 { 445 struct mm_struct *mm = tsk->mm; 446 struct core_state *core_state; 447 448 mm_release(tsk, mm); 449 if (!mm) 450 return; 451 sync_mm_rss(mm); 452 /* 453 * Serialize with any possible pending coredump. 454 * We must hold mmap_sem around checking core_state 455 * and clearing tsk->mm. The core-inducing thread 456 * will increment ->nr_threads for each thread in the 457 * group with ->mm != NULL. 458 */ 459 down_read(&mm->mmap_sem); 460 core_state = mm->core_state; 461 if (core_state) { 462 struct core_thread self; 463 up_read(&mm->mmap_sem); 464 465 self.task = tsk; 466 self.next = xchg(&core_state->dumper.next, &self); 467 /* 468 * Implies mb(), the result of xchg() must be visible 469 * to core_state->dumper. 470 */ 471 if (atomic_dec_and_test(&core_state->nr_threads)) 472 complete(&core_state->startup); 473 474 for (;;) { 475 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 476 if (!self.task) /* see coredump_finish() */ 477 break; 478 freezable_schedule(); 479 } 480 __set_task_state(tsk, TASK_RUNNING); 481 down_read(&mm->mmap_sem); 482 } 483 atomic_inc(&mm->mm_count); 484 BUG_ON(mm != tsk->active_mm); 485 /* more a memory barrier than a real lock */ 486 task_lock(tsk); 487 tsk->mm = NULL; 488 up_read(&mm->mmap_sem); 489 enter_lazy_tlb(mm, current); 490 task_unlock(tsk); 491 mm_update_next_owner(mm); 492 mmput(mm); 493 } 494 495 /* 496 * When we die, we re-parent all our children, and try to: 497 * 1. give them to another thread in our thread group, if such a member exists 498 * 2. give it to the first ancestor process which prctl'd itself as a 499 * child_subreaper for its children (like a service manager) 500 * 3. give it to the init process (PID 1) in our pid namespace 501 */ 502 static struct task_struct *find_new_reaper(struct task_struct *father) 503 __releases(&tasklist_lock) 504 __acquires(&tasklist_lock) 505 { 506 struct pid_namespace *pid_ns = task_active_pid_ns(father); 507 struct task_struct *thread; 508 509 thread = father; 510 while_each_thread(father, thread) { 511 if (thread->flags & PF_EXITING) 512 continue; 513 if (unlikely(pid_ns->child_reaper == father)) 514 pid_ns->child_reaper = thread; 515 return thread; 516 } 517 518 if (unlikely(pid_ns->child_reaper == father)) { 519 write_unlock_irq(&tasklist_lock); 520 if (unlikely(pid_ns == &init_pid_ns)) { 521 panic("Attempted to kill init! exitcode=0x%08x\n", 522 father->signal->group_exit_code ?: 523 father->exit_code); 524 } 525 526 zap_pid_ns_processes(pid_ns); 527 write_lock_irq(&tasklist_lock); 528 } else if (father->signal->has_child_subreaper) { 529 struct task_struct *reaper; 530 531 /* 532 * Find the first ancestor marked as child_subreaper. 533 * Note that the code below checks same_thread_group(reaper, 534 * pid_ns->child_reaper). This is what we need to DTRT in a 535 * PID namespace. However we still need the check above, see 536 * http://marc.info/?l=linux-kernel&m=131385460420380 537 */ 538 for (reaper = father->real_parent; 539 reaper != &init_task; 540 reaper = reaper->real_parent) { 541 if (same_thread_group(reaper, pid_ns->child_reaper)) 542 break; 543 if (!reaper->signal->is_child_subreaper) 544 continue; 545 thread = reaper; 546 do { 547 if (!(thread->flags & PF_EXITING)) 548 return reaper; 549 } while_each_thread(reaper, thread); 550 } 551 } 552 553 return pid_ns->child_reaper; 554 } 555 556 /* 557 * Any that need to be release_task'd are put on the @dead list. 558 */ 559 static void reparent_leader(struct task_struct *father, struct task_struct *p, 560 struct list_head *dead) 561 { 562 list_move_tail(&p->sibling, &p->real_parent->children); 563 564 if (p->exit_state == EXIT_DEAD) 565 return; 566 /* 567 * If this is a threaded reparent there is no need to 568 * notify anyone anything has happened. 569 */ 570 if (same_thread_group(p->real_parent, father)) 571 return; 572 573 /* We don't want people slaying init. */ 574 p->exit_signal = SIGCHLD; 575 576 /* If it has exited notify the new parent about this child's death. */ 577 if (!p->ptrace && 578 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 579 if (do_notify_parent(p, p->exit_signal)) { 580 p->exit_state = EXIT_DEAD; 581 list_move_tail(&p->sibling, dead); 582 } 583 } 584 585 kill_orphaned_pgrp(p, father); 586 } 587 588 static void forget_original_parent(struct task_struct *father) 589 { 590 struct task_struct *p, *n, *reaper; 591 LIST_HEAD(dead_children); 592 593 write_lock_irq(&tasklist_lock); 594 /* 595 * Note that exit_ptrace() and find_new_reaper() might 596 * drop tasklist_lock and reacquire it. 597 */ 598 exit_ptrace(father); 599 reaper = find_new_reaper(father); 600 601 list_for_each_entry_safe(p, n, &father->children, sibling) { 602 struct task_struct *t = p; 603 do { 604 t->real_parent = reaper; 605 if (t->parent == father) { 606 BUG_ON(t->ptrace); 607 t->parent = t->real_parent; 608 } 609 if (t->pdeath_signal) 610 group_send_sig_info(t->pdeath_signal, 611 SEND_SIG_NOINFO, t); 612 } while_each_thread(p, t); 613 reparent_leader(father, p, &dead_children); 614 } 615 write_unlock_irq(&tasklist_lock); 616 617 BUG_ON(!list_empty(&father->children)); 618 619 list_for_each_entry_safe(p, n, &dead_children, sibling) { 620 list_del_init(&p->sibling); 621 release_task(p); 622 } 623 } 624 625 /* 626 * Send signals to all our closest relatives so that they know 627 * to properly mourn us.. 628 */ 629 static void exit_notify(struct task_struct *tsk, int group_dead) 630 { 631 bool autoreap; 632 633 /* 634 * This does two things: 635 * 636 * A. Make init inherit all the child processes 637 * B. Check to see if any process groups have become orphaned 638 * as a result of our exiting, and if they have any stopped 639 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 640 */ 641 forget_original_parent(tsk); 642 643 write_lock_irq(&tasklist_lock); 644 if (group_dead) 645 kill_orphaned_pgrp(tsk->group_leader, NULL); 646 647 if (unlikely(tsk->ptrace)) { 648 int sig = thread_group_leader(tsk) && 649 thread_group_empty(tsk) && 650 !ptrace_reparented(tsk) ? 651 tsk->exit_signal : SIGCHLD; 652 autoreap = do_notify_parent(tsk, sig); 653 } else if (thread_group_leader(tsk)) { 654 autoreap = thread_group_empty(tsk) && 655 do_notify_parent(tsk, tsk->exit_signal); 656 } else { 657 autoreap = true; 658 } 659 660 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE; 661 662 /* mt-exec, de_thread() is waiting for group leader */ 663 if (unlikely(tsk->signal->notify_count < 0)) 664 wake_up_process(tsk->signal->group_exit_task); 665 write_unlock_irq(&tasklist_lock); 666 667 /* If the process is dead, release it - nobody will wait for it */ 668 if (autoreap) 669 release_task(tsk); 670 } 671 672 #ifdef CONFIG_DEBUG_STACK_USAGE 673 static void check_stack_usage(void) 674 { 675 static DEFINE_SPINLOCK(low_water_lock); 676 static int lowest_to_date = THREAD_SIZE; 677 unsigned long free; 678 679 free = stack_not_used(current); 680 681 if (free >= lowest_to_date) 682 return; 683 684 spin_lock(&low_water_lock); 685 if (free < lowest_to_date) { 686 printk(KERN_WARNING "%s (%d) used greatest stack depth: " 687 "%lu bytes left\n", 688 current->comm, task_pid_nr(current), free); 689 lowest_to_date = free; 690 } 691 spin_unlock(&low_water_lock); 692 } 693 #else 694 static inline void check_stack_usage(void) {} 695 #endif 696 697 void do_exit(long code) 698 { 699 struct task_struct *tsk = current; 700 int group_dead; 701 702 profile_task_exit(tsk); 703 704 WARN_ON(blk_needs_flush_plug(tsk)); 705 706 if (unlikely(in_interrupt())) 707 panic("Aiee, killing interrupt handler!"); 708 if (unlikely(!tsk->pid)) 709 panic("Attempted to kill the idle task!"); 710 711 /* 712 * If do_exit is called because this processes oopsed, it's possible 713 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before 714 * continuing. Amongst other possible reasons, this is to prevent 715 * mm_release()->clear_child_tid() from writing to a user-controlled 716 * kernel address. 717 */ 718 set_fs(USER_DS); 719 720 ptrace_event(PTRACE_EVENT_EXIT, code); 721 722 validate_creds_for_do_exit(tsk); 723 724 /* 725 * We're taking recursive faults here in do_exit. Safest is to just 726 * leave this task alone and wait for reboot. 727 */ 728 if (unlikely(tsk->flags & PF_EXITING)) { 729 printk(KERN_ALERT 730 "Fixing recursive fault but reboot is needed!\n"); 731 /* 732 * We can do this unlocked here. The futex code uses 733 * this flag just to verify whether the pi state 734 * cleanup has been done or not. In the worst case it 735 * loops once more. We pretend that the cleanup was 736 * done as there is no way to return. Either the 737 * OWNER_DIED bit is set by now or we push the blocked 738 * task into the wait for ever nirwana as well. 739 */ 740 tsk->flags |= PF_EXITPIDONE; 741 set_current_state(TASK_UNINTERRUPTIBLE); 742 schedule(); 743 } 744 745 exit_signals(tsk); /* sets PF_EXITING */ 746 /* 747 * tsk->flags are checked in the futex code to protect against 748 * an exiting task cleaning up the robust pi futexes. 749 */ 750 smp_mb(); 751 raw_spin_unlock_wait(&tsk->pi_lock); 752 753 if (unlikely(in_atomic())) 754 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", 755 current->comm, task_pid_nr(current), 756 preempt_count()); 757 758 acct_update_integrals(tsk); 759 /* sync mm's RSS info before statistics gathering */ 760 if (tsk->mm) 761 sync_mm_rss(tsk->mm); 762 group_dead = atomic_dec_and_test(&tsk->signal->live); 763 if (group_dead) { 764 hrtimer_cancel(&tsk->signal->real_timer); 765 exit_itimers(tsk->signal); 766 if (tsk->mm) 767 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 768 } 769 acct_collect(code, group_dead); 770 if (group_dead) 771 tty_audit_exit(); 772 audit_free(tsk); 773 774 tsk->exit_code = code; 775 taskstats_exit(tsk, group_dead); 776 777 exit_mm(tsk); 778 779 if (group_dead) 780 acct_process(); 781 trace_sched_process_exit(tsk); 782 783 exit_sem(tsk); 784 exit_shm(tsk); 785 exit_files(tsk); 786 exit_fs(tsk); 787 exit_task_namespaces(tsk); 788 exit_task_work(tsk); 789 check_stack_usage(); 790 exit_thread(); 791 792 /* 793 * Flush inherited counters to the parent - before the parent 794 * gets woken up by child-exit notifications. 795 * 796 * because of cgroup mode, must be called before cgroup_exit() 797 */ 798 perf_event_exit_task(tsk); 799 800 cgroup_exit(tsk, 1); 801 802 if (group_dead) 803 disassociate_ctty(1); 804 805 module_put(task_thread_info(tsk)->exec_domain->module); 806 807 proc_exit_connector(tsk); 808 809 /* 810 * FIXME: do that only when needed, using sched_exit tracepoint 811 */ 812 flush_ptrace_hw_breakpoint(tsk); 813 814 exit_notify(tsk, group_dead); 815 #ifdef CONFIG_NUMA 816 task_lock(tsk); 817 mpol_put(tsk->mempolicy); 818 tsk->mempolicy = NULL; 819 task_unlock(tsk); 820 #endif 821 #ifdef CONFIG_FUTEX 822 if (unlikely(current->pi_state_cache)) 823 kfree(current->pi_state_cache); 824 #endif 825 /* 826 * Make sure we are holding no locks: 827 */ 828 debug_check_no_locks_held(); 829 /* 830 * We can do this unlocked here. The futex code uses this flag 831 * just to verify whether the pi state cleanup has been done 832 * or not. In the worst case it loops once more. 833 */ 834 tsk->flags |= PF_EXITPIDONE; 835 836 if (tsk->io_context) 837 exit_io_context(tsk); 838 839 if (tsk->splice_pipe) 840 free_pipe_info(tsk->splice_pipe); 841 842 if (tsk->task_frag.page) 843 put_page(tsk->task_frag.page); 844 845 validate_creds_for_do_exit(tsk); 846 847 preempt_disable(); 848 if (tsk->nr_dirtied) 849 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 850 exit_rcu(); 851 852 /* 853 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed 854 * when the following two conditions become true. 855 * - There is race condition of mmap_sem (It is acquired by 856 * exit_mm()), and 857 * - SMI occurs before setting TASK_RUNINNG. 858 * (or hypervisor of virtual machine switches to other guest) 859 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD 860 * 861 * To avoid it, we have to wait for releasing tsk->pi_lock which 862 * is held by try_to_wake_up() 863 */ 864 smp_mb(); 865 raw_spin_unlock_wait(&tsk->pi_lock); 866 867 /* causes final put_task_struct in finish_task_switch(). */ 868 tsk->state = TASK_DEAD; 869 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */ 870 schedule(); 871 BUG(); 872 /* Avoid "noreturn function does return". */ 873 for (;;) 874 cpu_relax(); /* For when BUG is null */ 875 } 876 877 EXPORT_SYMBOL_GPL(do_exit); 878 879 void complete_and_exit(struct completion *comp, long code) 880 { 881 if (comp) 882 complete(comp); 883 884 do_exit(code); 885 } 886 887 EXPORT_SYMBOL(complete_and_exit); 888 889 SYSCALL_DEFINE1(exit, int, error_code) 890 { 891 do_exit((error_code&0xff)<<8); 892 } 893 894 /* 895 * Take down every thread in the group. This is called by fatal signals 896 * as well as by sys_exit_group (below). 897 */ 898 void 899 do_group_exit(int exit_code) 900 { 901 struct signal_struct *sig = current->signal; 902 903 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 904 905 if (signal_group_exit(sig)) 906 exit_code = sig->group_exit_code; 907 else if (!thread_group_empty(current)) { 908 struct sighand_struct *const sighand = current->sighand; 909 spin_lock_irq(&sighand->siglock); 910 if (signal_group_exit(sig)) 911 /* Another thread got here before we took the lock. */ 912 exit_code = sig->group_exit_code; 913 else { 914 sig->group_exit_code = exit_code; 915 sig->flags = SIGNAL_GROUP_EXIT; 916 zap_other_threads(current); 917 } 918 spin_unlock_irq(&sighand->siglock); 919 } 920 921 do_exit(exit_code); 922 /* NOTREACHED */ 923 } 924 925 /* 926 * this kills every thread in the thread group. Note that any externally 927 * wait4()-ing process will get the correct exit code - even if this 928 * thread is not the thread group leader. 929 */ 930 SYSCALL_DEFINE1(exit_group, int, error_code) 931 { 932 do_group_exit((error_code & 0xff) << 8); 933 /* NOTREACHED */ 934 return 0; 935 } 936 937 struct wait_opts { 938 enum pid_type wo_type; 939 int wo_flags; 940 struct pid *wo_pid; 941 942 struct siginfo __user *wo_info; 943 int __user *wo_stat; 944 struct rusage __user *wo_rusage; 945 946 wait_queue_t child_wait; 947 int notask_error; 948 }; 949 950 static inline 951 struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 952 { 953 if (type != PIDTYPE_PID) 954 task = task->group_leader; 955 return task->pids[type].pid; 956 } 957 958 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 959 { 960 return wo->wo_type == PIDTYPE_MAX || 961 task_pid_type(p, wo->wo_type) == wo->wo_pid; 962 } 963 964 static int eligible_child(struct wait_opts *wo, struct task_struct *p) 965 { 966 if (!eligible_pid(wo, p)) 967 return 0; 968 /* Wait for all children (clone and not) if __WALL is set; 969 * otherwise, wait for clone children *only* if __WCLONE is 970 * set; otherwise, wait for non-clone children *only*. (Note: 971 * A "clone" child here is one that reports to its parent 972 * using a signal other than SIGCHLD.) */ 973 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 974 && !(wo->wo_flags & __WALL)) 975 return 0; 976 977 return 1; 978 } 979 980 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, 981 pid_t pid, uid_t uid, int why, int status) 982 { 983 struct siginfo __user *infop; 984 int retval = wo->wo_rusage 985 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 986 987 put_task_struct(p); 988 infop = wo->wo_info; 989 if (infop) { 990 if (!retval) 991 retval = put_user(SIGCHLD, &infop->si_signo); 992 if (!retval) 993 retval = put_user(0, &infop->si_errno); 994 if (!retval) 995 retval = put_user((short)why, &infop->si_code); 996 if (!retval) 997 retval = put_user(pid, &infop->si_pid); 998 if (!retval) 999 retval = put_user(uid, &infop->si_uid); 1000 if (!retval) 1001 retval = put_user(status, &infop->si_status); 1002 } 1003 if (!retval) 1004 retval = pid; 1005 return retval; 1006 } 1007 1008 /* 1009 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1010 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1011 * the lock and this task is uninteresting. If we return nonzero, we have 1012 * released the lock and the system call should return. 1013 */ 1014 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1015 { 1016 unsigned long state; 1017 int retval, status, traced; 1018 pid_t pid = task_pid_vnr(p); 1019 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1020 struct siginfo __user *infop; 1021 1022 if (!likely(wo->wo_flags & WEXITED)) 1023 return 0; 1024 1025 if (unlikely(wo->wo_flags & WNOWAIT)) { 1026 int exit_code = p->exit_code; 1027 int why; 1028 1029 get_task_struct(p); 1030 read_unlock(&tasklist_lock); 1031 if ((exit_code & 0x7f) == 0) { 1032 why = CLD_EXITED; 1033 status = exit_code >> 8; 1034 } else { 1035 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1036 status = exit_code & 0x7f; 1037 } 1038 return wait_noreap_copyout(wo, p, pid, uid, why, status); 1039 } 1040 1041 /* 1042 * Try to move the task's state to DEAD 1043 * only one thread is allowed to do this: 1044 */ 1045 state = xchg(&p->exit_state, EXIT_DEAD); 1046 if (state != EXIT_ZOMBIE) { 1047 BUG_ON(state != EXIT_DEAD); 1048 return 0; 1049 } 1050 1051 traced = ptrace_reparented(p); 1052 /* 1053 * It can be ptraced but not reparented, check 1054 * thread_group_leader() to filter out sub-threads. 1055 */ 1056 if (likely(!traced) && thread_group_leader(p)) { 1057 struct signal_struct *psig; 1058 struct signal_struct *sig; 1059 unsigned long maxrss; 1060 cputime_t tgutime, tgstime; 1061 1062 /* 1063 * The resource counters for the group leader are in its 1064 * own task_struct. Those for dead threads in the group 1065 * are in its signal_struct, as are those for the child 1066 * processes it has previously reaped. All these 1067 * accumulate in the parent's signal_struct c* fields. 1068 * 1069 * We don't bother to take a lock here to protect these 1070 * p->signal fields, because they are only touched by 1071 * __exit_signal, which runs with tasklist_lock 1072 * write-locked anyway, and so is excluded here. We do 1073 * need to protect the access to parent->signal fields, 1074 * as other threads in the parent group can be right 1075 * here reaping other children at the same time. 1076 * 1077 * We use thread_group_cputime_adjusted() to get times for the thread 1078 * group, which consolidates times for all threads in the 1079 * group including the group leader. 1080 */ 1081 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1082 spin_lock_irq(&p->real_parent->sighand->siglock); 1083 psig = p->real_parent->signal; 1084 sig = p->signal; 1085 psig->cutime += tgutime + sig->cutime; 1086 psig->cstime += tgstime + sig->cstime; 1087 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1088 psig->cmin_flt += 1089 p->min_flt + sig->min_flt + sig->cmin_flt; 1090 psig->cmaj_flt += 1091 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1092 psig->cnvcsw += 1093 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1094 psig->cnivcsw += 1095 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1096 psig->cinblock += 1097 task_io_get_inblock(p) + 1098 sig->inblock + sig->cinblock; 1099 psig->coublock += 1100 task_io_get_oublock(p) + 1101 sig->oublock + sig->coublock; 1102 maxrss = max(sig->maxrss, sig->cmaxrss); 1103 if (psig->cmaxrss < maxrss) 1104 psig->cmaxrss = maxrss; 1105 task_io_accounting_add(&psig->ioac, &p->ioac); 1106 task_io_accounting_add(&psig->ioac, &sig->ioac); 1107 spin_unlock_irq(&p->real_parent->sighand->siglock); 1108 } 1109 1110 /* 1111 * Now we are sure this task is interesting, and no other 1112 * thread can reap it because we set its state to EXIT_DEAD. 1113 */ 1114 read_unlock(&tasklist_lock); 1115 1116 retval = wo->wo_rusage 1117 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1118 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1119 ? p->signal->group_exit_code : p->exit_code; 1120 if (!retval && wo->wo_stat) 1121 retval = put_user(status, wo->wo_stat); 1122 1123 infop = wo->wo_info; 1124 if (!retval && infop) 1125 retval = put_user(SIGCHLD, &infop->si_signo); 1126 if (!retval && infop) 1127 retval = put_user(0, &infop->si_errno); 1128 if (!retval && infop) { 1129 int why; 1130 1131 if ((status & 0x7f) == 0) { 1132 why = CLD_EXITED; 1133 status >>= 8; 1134 } else { 1135 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1136 status &= 0x7f; 1137 } 1138 retval = put_user((short)why, &infop->si_code); 1139 if (!retval) 1140 retval = put_user(status, &infop->si_status); 1141 } 1142 if (!retval && infop) 1143 retval = put_user(pid, &infop->si_pid); 1144 if (!retval && infop) 1145 retval = put_user(uid, &infop->si_uid); 1146 if (!retval) 1147 retval = pid; 1148 1149 if (traced) { 1150 write_lock_irq(&tasklist_lock); 1151 /* We dropped tasklist, ptracer could die and untrace */ 1152 ptrace_unlink(p); 1153 /* 1154 * If this is not a sub-thread, notify the parent. 1155 * If parent wants a zombie, don't release it now. 1156 */ 1157 if (thread_group_leader(p) && 1158 !do_notify_parent(p, p->exit_signal)) { 1159 p->exit_state = EXIT_ZOMBIE; 1160 p = NULL; 1161 } 1162 write_unlock_irq(&tasklist_lock); 1163 } 1164 if (p != NULL) 1165 release_task(p); 1166 1167 return retval; 1168 } 1169 1170 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1171 { 1172 if (ptrace) { 1173 if (task_is_stopped_or_traced(p) && 1174 !(p->jobctl & JOBCTL_LISTENING)) 1175 return &p->exit_code; 1176 } else { 1177 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1178 return &p->signal->group_exit_code; 1179 } 1180 return NULL; 1181 } 1182 1183 /** 1184 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1185 * @wo: wait options 1186 * @ptrace: is the wait for ptrace 1187 * @p: task to wait for 1188 * 1189 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1190 * 1191 * CONTEXT: 1192 * read_lock(&tasklist_lock), which is released if return value is 1193 * non-zero. Also, grabs and releases @p->sighand->siglock. 1194 * 1195 * RETURNS: 1196 * 0 if wait condition didn't exist and search for other wait conditions 1197 * should continue. Non-zero return, -errno on failure and @p's pid on 1198 * success, implies that tasklist_lock is released and wait condition 1199 * search should terminate. 1200 */ 1201 static int wait_task_stopped(struct wait_opts *wo, 1202 int ptrace, struct task_struct *p) 1203 { 1204 struct siginfo __user *infop; 1205 int retval, exit_code, *p_code, why; 1206 uid_t uid = 0; /* unneeded, required by compiler */ 1207 pid_t pid; 1208 1209 /* 1210 * Traditionally we see ptrace'd stopped tasks regardless of options. 1211 */ 1212 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1213 return 0; 1214 1215 if (!task_stopped_code(p, ptrace)) 1216 return 0; 1217 1218 exit_code = 0; 1219 spin_lock_irq(&p->sighand->siglock); 1220 1221 p_code = task_stopped_code(p, ptrace); 1222 if (unlikely(!p_code)) 1223 goto unlock_sig; 1224 1225 exit_code = *p_code; 1226 if (!exit_code) 1227 goto unlock_sig; 1228 1229 if (!unlikely(wo->wo_flags & WNOWAIT)) 1230 *p_code = 0; 1231 1232 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1233 unlock_sig: 1234 spin_unlock_irq(&p->sighand->siglock); 1235 if (!exit_code) 1236 return 0; 1237 1238 /* 1239 * Now we are pretty sure this task is interesting. 1240 * Make sure it doesn't get reaped out from under us while we 1241 * give up the lock and then examine it below. We don't want to 1242 * keep holding onto the tasklist_lock while we call getrusage and 1243 * possibly take page faults for user memory. 1244 */ 1245 get_task_struct(p); 1246 pid = task_pid_vnr(p); 1247 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1248 read_unlock(&tasklist_lock); 1249 1250 if (unlikely(wo->wo_flags & WNOWAIT)) 1251 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code); 1252 1253 retval = wo->wo_rusage 1254 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1255 if (!retval && wo->wo_stat) 1256 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat); 1257 1258 infop = wo->wo_info; 1259 if (!retval && infop) 1260 retval = put_user(SIGCHLD, &infop->si_signo); 1261 if (!retval && infop) 1262 retval = put_user(0, &infop->si_errno); 1263 if (!retval && infop) 1264 retval = put_user((short)why, &infop->si_code); 1265 if (!retval && infop) 1266 retval = put_user(exit_code, &infop->si_status); 1267 if (!retval && infop) 1268 retval = put_user(pid, &infop->si_pid); 1269 if (!retval && infop) 1270 retval = put_user(uid, &infop->si_uid); 1271 if (!retval) 1272 retval = pid; 1273 put_task_struct(p); 1274 1275 BUG_ON(!retval); 1276 return retval; 1277 } 1278 1279 /* 1280 * Handle do_wait work for one task in a live, non-stopped state. 1281 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1282 * the lock and this task is uninteresting. If we return nonzero, we have 1283 * released the lock and the system call should return. 1284 */ 1285 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1286 { 1287 int retval; 1288 pid_t pid; 1289 uid_t uid; 1290 1291 if (!unlikely(wo->wo_flags & WCONTINUED)) 1292 return 0; 1293 1294 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1295 return 0; 1296 1297 spin_lock_irq(&p->sighand->siglock); 1298 /* Re-check with the lock held. */ 1299 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1300 spin_unlock_irq(&p->sighand->siglock); 1301 return 0; 1302 } 1303 if (!unlikely(wo->wo_flags & WNOWAIT)) 1304 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1305 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1306 spin_unlock_irq(&p->sighand->siglock); 1307 1308 pid = task_pid_vnr(p); 1309 get_task_struct(p); 1310 read_unlock(&tasklist_lock); 1311 1312 if (!wo->wo_info) { 1313 retval = wo->wo_rusage 1314 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1315 put_task_struct(p); 1316 if (!retval && wo->wo_stat) 1317 retval = put_user(0xffff, wo->wo_stat); 1318 if (!retval) 1319 retval = pid; 1320 } else { 1321 retval = wait_noreap_copyout(wo, p, pid, uid, 1322 CLD_CONTINUED, SIGCONT); 1323 BUG_ON(retval == 0); 1324 } 1325 1326 return retval; 1327 } 1328 1329 /* 1330 * Consider @p for a wait by @parent. 1331 * 1332 * -ECHILD should be in ->notask_error before the first call. 1333 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1334 * Returns zero if the search for a child should continue; 1335 * then ->notask_error is 0 if @p is an eligible child, 1336 * or another error from security_task_wait(), or still -ECHILD. 1337 */ 1338 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1339 struct task_struct *p) 1340 { 1341 int ret = eligible_child(wo, p); 1342 if (!ret) 1343 return ret; 1344 1345 ret = security_task_wait(p); 1346 if (unlikely(ret < 0)) { 1347 /* 1348 * If we have not yet seen any eligible child, 1349 * then let this error code replace -ECHILD. 1350 * A permission error will give the user a clue 1351 * to look for security policy problems, rather 1352 * than for mysterious wait bugs. 1353 */ 1354 if (wo->notask_error) 1355 wo->notask_error = ret; 1356 return 0; 1357 } 1358 1359 /* dead body doesn't have much to contribute */ 1360 if (unlikely(p->exit_state == EXIT_DEAD)) { 1361 /* 1362 * But do not ignore this task until the tracer does 1363 * wait_task_zombie()->do_notify_parent(). 1364 */ 1365 if (likely(!ptrace) && unlikely(ptrace_reparented(p))) 1366 wo->notask_error = 0; 1367 return 0; 1368 } 1369 1370 /* slay zombie? */ 1371 if (p->exit_state == EXIT_ZOMBIE) { 1372 /* 1373 * A zombie ptracee is only visible to its ptracer. 1374 * Notification and reaping will be cascaded to the real 1375 * parent when the ptracer detaches. 1376 */ 1377 if (likely(!ptrace) && unlikely(p->ptrace)) { 1378 /* it will become visible, clear notask_error */ 1379 wo->notask_error = 0; 1380 return 0; 1381 } 1382 1383 /* we don't reap group leaders with subthreads */ 1384 if (!delay_group_leader(p)) 1385 return wait_task_zombie(wo, p); 1386 1387 /* 1388 * Allow access to stopped/continued state via zombie by 1389 * falling through. Clearing of notask_error is complex. 1390 * 1391 * When !@ptrace: 1392 * 1393 * If WEXITED is set, notask_error should naturally be 1394 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1395 * so, if there are live subthreads, there are events to 1396 * wait for. If all subthreads are dead, it's still safe 1397 * to clear - this function will be called again in finite 1398 * amount time once all the subthreads are released and 1399 * will then return without clearing. 1400 * 1401 * When @ptrace: 1402 * 1403 * Stopped state is per-task and thus can't change once the 1404 * target task dies. Only continued and exited can happen. 1405 * Clear notask_error if WCONTINUED | WEXITED. 1406 */ 1407 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1408 wo->notask_error = 0; 1409 } else { 1410 /* 1411 * If @p is ptraced by a task in its real parent's group, 1412 * hide group stop/continued state when looking at @p as 1413 * the real parent; otherwise, a single stop can be 1414 * reported twice as group and ptrace stops. 1415 * 1416 * If a ptracer wants to distinguish the two events for its 1417 * own children, it should create a separate process which 1418 * takes the role of real parent. 1419 */ 1420 if (likely(!ptrace) && p->ptrace && !ptrace_reparented(p)) 1421 return 0; 1422 1423 /* 1424 * @p is alive and it's gonna stop, continue or exit, so 1425 * there always is something to wait for. 1426 */ 1427 wo->notask_error = 0; 1428 } 1429 1430 /* 1431 * Wait for stopped. Depending on @ptrace, different stopped state 1432 * is used and the two don't interact with each other. 1433 */ 1434 ret = wait_task_stopped(wo, ptrace, p); 1435 if (ret) 1436 return ret; 1437 1438 /* 1439 * Wait for continued. There's only one continued state and the 1440 * ptracer can consume it which can confuse the real parent. Don't 1441 * use WCONTINUED from ptracer. You don't need or want it. 1442 */ 1443 return wait_task_continued(wo, p); 1444 } 1445 1446 /* 1447 * Do the work of do_wait() for one thread in the group, @tsk. 1448 * 1449 * -ECHILD should be in ->notask_error before the first call. 1450 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1451 * Returns zero if the search for a child should continue; then 1452 * ->notask_error is 0 if there were any eligible children, 1453 * or another error from security_task_wait(), or still -ECHILD. 1454 */ 1455 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1456 { 1457 struct task_struct *p; 1458 1459 list_for_each_entry(p, &tsk->children, sibling) { 1460 int ret = wait_consider_task(wo, 0, p); 1461 if (ret) 1462 return ret; 1463 } 1464 1465 return 0; 1466 } 1467 1468 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1469 { 1470 struct task_struct *p; 1471 1472 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1473 int ret = wait_consider_task(wo, 1, p); 1474 if (ret) 1475 return ret; 1476 } 1477 1478 return 0; 1479 } 1480 1481 static int child_wait_callback(wait_queue_t *wait, unsigned mode, 1482 int sync, void *key) 1483 { 1484 struct wait_opts *wo = container_of(wait, struct wait_opts, 1485 child_wait); 1486 struct task_struct *p = key; 1487 1488 if (!eligible_pid(wo, p)) 1489 return 0; 1490 1491 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1492 return 0; 1493 1494 return default_wake_function(wait, mode, sync, key); 1495 } 1496 1497 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1498 { 1499 __wake_up_sync_key(&parent->signal->wait_chldexit, 1500 TASK_INTERRUPTIBLE, 1, p); 1501 } 1502 1503 static long do_wait(struct wait_opts *wo) 1504 { 1505 struct task_struct *tsk; 1506 int retval; 1507 1508 trace_sched_process_wait(wo->wo_pid); 1509 1510 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1511 wo->child_wait.private = current; 1512 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1513 repeat: 1514 /* 1515 * If there is nothing that can match our critiera just get out. 1516 * We will clear ->notask_error to zero if we see any child that 1517 * might later match our criteria, even if we are not able to reap 1518 * it yet. 1519 */ 1520 wo->notask_error = -ECHILD; 1521 if ((wo->wo_type < PIDTYPE_MAX) && 1522 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) 1523 goto notask; 1524 1525 set_current_state(TASK_INTERRUPTIBLE); 1526 read_lock(&tasklist_lock); 1527 tsk = current; 1528 do { 1529 retval = do_wait_thread(wo, tsk); 1530 if (retval) 1531 goto end; 1532 1533 retval = ptrace_do_wait(wo, tsk); 1534 if (retval) 1535 goto end; 1536 1537 if (wo->wo_flags & __WNOTHREAD) 1538 break; 1539 } while_each_thread(current, tsk); 1540 read_unlock(&tasklist_lock); 1541 1542 notask: 1543 retval = wo->notask_error; 1544 if (!retval && !(wo->wo_flags & WNOHANG)) { 1545 retval = -ERESTARTSYS; 1546 if (!signal_pending(current)) { 1547 schedule(); 1548 goto repeat; 1549 } 1550 } 1551 end: 1552 __set_current_state(TASK_RUNNING); 1553 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1554 return retval; 1555 } 1556 1557 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1558 infop, int, options, struct rusage __user *, ru) 1559 { 1560 struct wait_opts wo; 1561 struct pid *pid = NULL; 1562 enum pid_type type; 1563 long ret; 1564 1565 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1566 return -EINVAL; 1567 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1568 return -EINVAL; 1569 1570 switch (which) { 1571 case P_ALL: 1572 type = PIDTYPE_MAX; 1573 break; 1574 case P_PID: 1575 type = PIDTYPE_PID; 1576 if (upid <= 0) 1577 return -EINVAL; 1578 break; 1579 case P_PGID: 1580 type = PIDTYPE_PGID; 1581 if (upid <= 0) 1582 return -EINVAL; 1583 break; 1584 default: 1585 return -EINVAL; 1586 } 1587 1588 if (type < PIDTYPE_MAX) 1589 pid = find_get_pid(upid); 1590 1591 wo.wo_type = type; 1592 wo.wo_pid = pid; 1593 wo.wo_flags = options; 1594 wo.wo_info = infop; 1595 wo.wo_stat = NULL; 1596 wo.wo_rusage = ru; 1597 ret = do_wait(&wo); 1598 1599 if (ret > 0) { 1600 ret = 0; 1601 } else if (infop) { 1602 /* 1603 * For a WNOHANG return, clear out all the fields 1604 * we would set so the user can easily tell the 1605 * difference. 1606 */ 1607 if (!ret) 1608 ret = put_user(0, &infop->si_signo); 1609 if (!ret) 1610 ret = put_user(0, &infop->si_errno); 1611 if (!ret) 1612 ret = put_user(0, &infop->si_code); 1613 if (!ret) 1614 ret = put_user(0, &infop->si_pid); 1615 if (!ret) 1616 ret = put_user(0, &infop->si_uid); 1617 if (!ret) 1618 ret = put_user(0, &infop->si_status); 1619 } 1620 1621 put_pid(pid); 1622 return ret; 1623 } 1624 1625 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1626 int, options, struct rusage __user *, ru) 1627 { 1628 struct wait_opts wo; 1629 struct pid *pid = NULL; 1630 enum pid_type type; 1631 long ret; 1632 1633 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1634 __WNOTHREAD|__WCLONE|__WALL)) 1635 return -EINVAL; 1636 1637 if (upid == -1) 1638 type = PIDTYPE_MAX; 1639 else if (upid < 0) { 1640 type = PIDTYPE_PGID; 1641 pid = find_get_pid(-upid); 1642 } else if (upid == 0) { 1643 type = PIDTYPE_PGID; 1644 pid = get_task_pid(current, PIDTYPE_PGID); 1645 } else /* upid > 0 */ { 1646 type = PIDTYPE_PID; 1647 pid = find_get_pid(upid); 1648 } 1649 1650 wo.wo_type = type; 1651 wo.wo_pid = pid; 1652 wo.wo_flags = options | WEXITED; 1653 wo.wo_info = NULL; 1654 wo.wo_stat = stat_addr; 1655 wo.wo_rusage = ru; 1656 ret = do_wait(&wo); 1657 put_pid(pid); 1658 1659 return ret; 1660 } 1661 1662 #ifdef __ARCH_WANT_SYS_WAITPID 1663 1664 /* 1665 * sys_waitpid() remains for compatibility. waitpid() should be 1666 * implemented by calling sys_wait4() from libc.a. 1667 */ 1668 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1669 { 1670 return sys_wait4(pid, stat_addr, options, NULL); 1671 } 1672 1673 #endif 1674