xref: /linux/kernel/exit.c (revision d90be6e4aaf23cd4a2c202891399cbafe669aaab)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/blkdev.h>
53 #include <linux/task_work.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/kmsan.h>
64 #include <linux/random.h>
65 #include <linux/rcuwait.h>
66 #include <linux/compat.h>
67 #include <linux/io_uring.h>
68 #include <linux/kprobes.h>
69 #include <linux/rethook.h>
70 #include <linux/sysfs.h>
71 #include <linux/user_events.h>
72 #include <linux/uaccess.h>
73 
74 #include <uapi/linux/wait.h>
75 
76 #include <asm/unistd.h>
77 #include <asm/mmu_context.h>
78 
79 #include "exit.h"
80 
81 /*
82  * The default value should be high enough to not crash a system that randomly
83  * crashes its kernel from time to time, but low enough to at least not permit
84  * overflowing 32-bit refcounts or the ldsem writer count.
85  */
86 static unsigned int oops_limit = 10000;
87 
88 #ifdef CONFIG_SYSCTL
89 static struct ctl_table kern_exit_table[] = {
90 	{
91 		.procname       = "oops_limit",
92 		.data           = &oops_limit,
93 		.maxlen         = sizeof(oops_limit),
94 		.mode           = 0644,
95 		.proc_handler   = proc_douintvec,
96 	},
97 };
98 
99 static __init int kernel_exit_sysctls_init(void)
100 {
101 	register_sysctl_init("kernel", kern_exit_table);
102 	return 0;
103 }
104 late_initcall(kernel_exit_sysctls_init);
105 #endif
106 
107 static atomic_t oops_count = ATOMIC_INIT(0);
108 
109 #ifdef CONFIG_SYSFS
110 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
111 			       char *page)
112 {
113 	return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
114 }
115 
116 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
117 
118 static __init int kernel_exit_sysfs_init(void)
119 {
120 	sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
121 	return 0;
122 }
123 late_initcall(kernel_exit_sysfs_init);
124 #endif
125 
126 static void __unhash_process(struct task_struct *p, bool group_dead)
127 {
128 	nr_threads--;
129 	detach_pid(p, PIDTYPE_PID);
130 	if (group_dead) {
131 		detach_pid(p, PIDTYPE_TGID);
132 		detach_pid(p, PIDTYPE_PGID);
133 		detach_pid(p, PIDTYPE_SID);
134 
135 		list_del_rcu(&p->tasks);
136 		list_del_init(&p->sibling);
137 		__this_cpu_dec(process_counts);
138 	}
139 	list_del_rcu(&p->thread_node);
140 }
141 
142 /*
143  * This function expects the tasklist_lock write-locked.
144  */
145 static void __exit_signal(struct task_struct *tsk)
146 {
147 	struct signal_struct *sig = tsk->signal;
148 	bool group_dead = thread_group_leader(tsk);
149 	struct sighand_struct *sighand;
150 	struct tty_struct *tty;
151 	u64 utime, stime;
152 
153 	sighand = rcu_dereference_check(tsk->sighand,
154 					lockdep_tasklist_lock_is_held());
155 	spin_lock(&sighand->siglock);
156 
157 #ifdef CONFIG_POSIX_TIMERS
158 	posix_cpu_timers_exit(tsk);
159 	if (group_dead)
160 		posix_cpu_timers_exit_group(tsk);
161 #endif
162 
163 	if (group_dead) {
164 		tty = sig->tty;
165 		sig->tty = NULL;
166 	} else {
167 		/*
168 		 * If there is any task waiting for the group exit
169 		 * then notify it:
170 		 */
171 		if (sig->notify_count > 0 && !--sig->notify_count)
172 			wake_up_process(sig->group_exec_task);
173 
174 		if (tsk == sig->curr_target)
175 			sig->curr_target = next_thread(tsk);
176 	}
177 
178 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
179 			      sizeof(unsigned long long));
180 
181 	/*
182 	 * Accumulate here the counters for all threads as they die. We could
183 	 * skip the group leader because it is the last user of signal_struct,
184 	 * but we want to avoid the race with thread_group_cputime() which can
185 	 * see the empty ->thread_head list.
186 	 */
187 	task_cputime(tsk, &utime, &stime);
188 	write_seqlock(&sig->stats_lock);
189 	sig->utime += utime;
190 	sig->stime += stime;
191 	sig->gtime += task_gtime(tsk);
192 	sig->min_flt += tsk->min_flt;
193 	sig->maj_flt += tsk->maj_flt;
194 	sig->nvcsw += tsk->nvcsw;
195 	sig->nivcsw += tsk->nivcsw;
196 	sig->inblock += task_io_get_inblock(tsk);
197 	sig->oublock += task_io_get_oublock(tsk);
198 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
199 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
200 	sig->nr_threads--;
201 	__unhash_process(tsk, group_dead);
202 	write_sequnlock(&sig->stats_lock);
203 
204 	/*
205 	 * Do this under ->siglock, we can race with another thread
206 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
207 	 */
208 	flush_sigqueue(&tsk->pending);
209 	tsk->sighand = NULL;
210 	spin_unlock(&sighand->siglock);
211 
212 	__cleanup_sighand(sighand);
213 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
214 	if (group_dead) {
215 		flush_sigqueue(&sig->shared_pending);
216 		tty_kref_put(tty);
217 	}
218 }
219 
220 static void delayed_put_task_struct(struct rcu_head *rhp)
221 {
222 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
223 
224 	kprobe_flush_task(tsk);
225 	rethook_flush_task(tsk);
226 	perf_event_delayed_put(tsk);
227 	trace_sched_process_free(tsk);
228 	put_task_struct(tsk);
229 }
230 
231 void put_task_struct_rcu_user(struct task_struct *task)
232 {
233 	if (refcount_dec_and_test(&task->rcu_users))
234 		call_rcu(&task->rcu, delayed_put_task_struct);
235 }
236 
237 void __weak release_thread(struct task_struct *dead_task)
238 {
239 }
240 
241 void release_task(struct task_struct *p)
242 {
243 	struct task_struct *leader;
244 	struct pid *thread_pid;
245 	int zap_leader;
246 repeat:
247 	/* don't need to get the RCU readlock here - the process is dead and
248 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
249 	rcu_read_lock();
250 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
251 	rcu_read_unlock();
252 
253 	cgroup_release(p);
254 
255 	write_lock_irq(&tasklist_lock);
256 	ptrace_release_task(p);
257 	thread_pid = get_pid(p->thread_pid);
258 	__exit_signal(p);
259 
260 	/*
261 	 * If we are the last non-leader member of the thread
262 	 * group, and the leader is zombie, then notify the
263 	 * group leader's parent process. (if it wants notification.)
264 	 */
265 	zap_leader = 0;
266 	leader = p->group_leader;
267 	if (leader != p && thread_group_empty(leader)
268 			&& leader->exit_state == EXIT_ZOMBIE) {
269 		/*
270 		 * If we were the last child thread and the leader has
271 		 * exited already, and the leader's parent ignores SIGCHLD,
272 		 * then we are the one who should release the leader.
273 		 */
274 		zap_leader = do_notify_parent(leader, leader->exit_signal);
275 		if (zap_leader)
276 			leader->exit_state = EXIT_DEAD;
277 	}
278 
279 	write_unlock_irq(&tasklist_lock);
280 	seccomp_filter_release(p);
281 	proc_flush_pid(thread_pid);
282 	put_pid(thread_pid);
283 	release_thread(p);
284 	put_task_struct_rcu_user(p);
285 
286 	p = leader;
287 	if (unlikely(zap_leader))
288 		goto repeat;
289 }
290 
291 int rcuwait_wake_up(struct rcuwait *w)
292 {
293 	int ret = 0;
294 	struct task_struct *task;
295 
296 	rcu_read_lock();
297 
298 	/*
299 	 * Order condition vs @task, such that everything prior to the load
300 	 * of @task is visible. This is the condition as to why the user called
301 	 * rcuwait_wake() in the first place. Pairs with set_current_state()
302 	 * barrier (A) in rcuwait_wait_event().
303 	 *
304 	 *    WAIT                WAKE
305 	 *    [S] tsk = current	  [S] cond = true
306 	 *        MB (A)	      MB (B)
307 	 *    [L] cond		  [L] tsk
308 	 */
309 	smp_mb(); /* (B) */
310 
311 	task = rcu_dereference(w->task);
312 	if (task)
313 		ret = wake_up_process(task);
314 	rcu_read_unlock();
315 
316 	return ret;
317 }
318 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
319 
320 /*
321  * Determine if a process group is "orphaned", according to the POSIX
322  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
323  * by terminal-generated stop signals.  Newly orphaned process groups are
324  * to receive a SIGHUP and a SIGCONT.
325  *
326  * "I ask you, have you ever known what it is to be an orphan?"
327  */
328 static int will_become_orphaned_pgrp(struct pid *pgrp,
329 					struct task_struct *ignored_task)
330 {
331 	struct task_struct *p;
332 
333 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
334 		if ((p == ignored_task) ||
335 		    (p->exit_state && thread_group_empty(p)) ||
336 		    is_global_init(p->real_parent))
337 			continue;
338 
339 		if (task_pgrp(p->real_parent) != pgrp &&
340 		    task_session(p->real_parent) == task_session(p))
341 			return 0;
342 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
343 
344 	return 1;
345 }
346 
347 int is_current_pgrp_orphaned(void)
348 {
349 	int retval;
350 
351 	read_lock(&tasklist_lock);
352 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
353 	read_unlock(&tasklist_lock);
354 
355 	return retval;
356 }
357 
358 static bool has_stopped_jobs(struct pid *pgrp)
359 {
360 	struct task_struct *p;
361 
362 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
363 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
364 			return true;
365 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
366 
367 	return false;
368 }
369 
370 /*
371  * Check to see if any process groups have become orphaned as
372  * a result of our exiting, and if they have any stopped jobs,
373  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
374  */
375 static void
376 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
377 {
378 	struct pid *pgrp = task_pgrp(tsk);
379 	struct task_struct *ignored_task = tsk;
380 
381 	if (!parent)
382 		/* exit: our father is in a different pgrp than
383 		 * we are and we were the only connection outside.
384 		 */
385 		parent = tsk->real_parent;
386 	else
387 		/* reparent: our child is in a different pgrp than
388 		 * we are, and it was the only connection outside.
389 		 */
390 		ignored_task = NULL;
391 
392 	if (task_pgrp(parent) != pgrp &&
393 	    task_session(parent) == task_session(tsk) &&
394 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
395 	    has_stopped_jobs(pgrp)) {
396 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
397 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
398 	}
399 }
400 
401 static void coredump_task_exit(struct task_struct *tsk)
402 {
403 	struct core_state *core_state;
404 
405 	/*
406 	 * Serialize with any possible pending coredump.
407 	 * We must hold siglock around checking core_state
408 	 * and setting PF_POSTCOREDUMP.  The core-inducing thread
409 	 * will increment ->nr_threads for each thread in the
410 	 * group without PF_POSTCOREDUMP set.
411 	 */
412 	spin_lock_irq(&tsk->sighand->siglock);
413 	tsk->flags |= PF_POSTCOREDUMP;
414 	core_state = tsk->signal->core_state;
415 	spin_unlock_irq(&tsk->sighand->siglock);
416 
417 	/* The vhost_worker does not particpate in coredumps */
418 	if (core_state &&
419 	    ((tsk->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER)) {
420 		struct core_thread self;
421 
422 		self.task = current;
423 		if (self.task->flags & PF_SIGNALED)
424 			self.next = xchg(&core_state->dumper.next, &self);
425 		else
426 			self.task = NULL;
427 		/*
428 		 * Implies mb(), the result of xchg() must be visible
429 		 * to core_state->dumper.
430 		 */
431 		if (atomic_dec_and_test(&core_state->nr_threads))
432 			complete(&core_state->startup);
433 
434 		for (;;) {
435 			set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
436 			if (!self.task) /* see coredump_finish() */
437 				break;
438 			schedule();
439 		}
440 		__set_current_state(TASK_RUNNING);
441 	}
442 }
443 
444 #ifdef CONFIG_MEMCG
445 /*
446  * A task is exiting.   If it owned this mm, find a new owner for the mm.
447  */
448 void mm_update_next_owner(struct mm_struct *mm)
449 {
450 	struct task_struct *c, *g, *p = current;
451 
452 retry:
453 	/*
454 	 * If the exiting or execing task is not the owner, it's
455 	 * someone else's problem.
456 	 */
457 	if (mm->owner != p)
458 		return;
459 	/*
460 	 * The current owner is exiting/execing and there are no other
461 	 * candidates.  Do not leave the mm pointing to a possibly
462 	 * freed task structure.
463 	 */
464 	if (atomic_read(&mm->mm_users) <= 1) {
465 		WRITE_ONCE(mm->owner, NULL);
466 		return;
467 	}
468 
469 	read_lock(&tasklist_lock);
470 	/*
471 	 * Search in the children
472 	 */
473 	list_for_each_entry(c, &p->children, sibling) {
474 		if (c->mm == mm)
475 			goto assign_new_owner;
476 	}
477 
478 	/*
479 	 * Search in the siblings
480 	 */
481 	list_for_each_entry(c, &p->real_parent->children, sibling) {
482 		if (c->mm == mm)
483 			goto assign_new_owner;
484 	}
485 
486 	/*
487 	 * Search through everything else, we should not get here often.
488 	 */
489 	for_each_process(g) {
490 		if (g->flags & PF_KTHREAD)
491 			continue;
492 		for_each_thread(g, c) {
493 			if (c->mm == mm)
494 				goto assign_new_owner;
495 			if (c->mm)
496 				break;
497 		}
498 	}
499 	read_unlock(&tasklist_lock);
500 	/*
501 	 * We found no owner yet mm_users > 1: this implies that we are
502 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
503 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
504 	 */
505 	WRITE_ONCE(mm->owner, NULL);
506 	return;
507 
508 assign_new_owner:
509 	BUG_ON(c == p);
510 	get_task_struct(c);
511 	/*
512 	 * The task_lock protects c->mm from changing.
513 	 * We always want mm->owner->mm == mm
514 	 */
515 	task_lock(c);
516 	/*
517 	 * Delay read_unlock() till we have the task_lock()
518 	 * to ensure that c does not slip away underneath us
519 	 */
520 	read_unlock(&tasklist_lock);
521 	if (c->mm != mm) {
522 		task_unlock(c);
523 		put_task_struct(c);
524 		goto retry;
525 	}
526 	WRITE_ONCE(mm->owner, c);
527 	lru_gen_migrate_mm(mm);
528 	task_unlock(c);
529 	put_task_struct(c);
530 }
531 #endif /* CONFIG_MEMCG */
532 
533 /*
534  * Turn us into a lazy TLB process if we
535  * aren't already..
536  */
537 static void exit_mm(void)
538 {
539 	struct mm_struct *mm = current->mm;
540 
541 	exit_mm_release(current, mm);
542 	if (!mm)
543 		return;
544 	mmap_read_lock(mm);
545 	mmgrab_lazy_tlb(mm);
546 	BUG_ON(mm != current->active_mm);
547 	/* more a memory barrier than a real lock */
548 	task_lock(current);
549 	/*
550 	 * When a thread stops operating on an address space, the loop
551 	 * in membarrier_private_expedited() may not observe that
552 	 * tsk->mm, and the loop in membarrier_global_expedited() may
553 	 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
554 	 * rq->membarrier_state, so those would not issue an IPI.
555 	 * Membarrier requires a memory barrier after accessing
556 	 * user-space memory, before clearing tsk->mm or the
557 	 * rq->membarrier_state.
558 	 */
559 	smp_mb__after_spinlock();
560 	local_irq_disable();
561 	current->mm = NULL;
562 	membarrier_update_current_mm(NULL);
563 	enter_lazy_tlb(mm, current);
564 	local_irq_enable();
565 	task_unlock(current);
566 	mmap_read_unlock(mm);
567 	mm_update_next_owner(mm);
568 	mmput(mm);
569 	if (test_thread_flag(TIF_MEMDIE))
570 		exit_oom_victim();
571 }
572 
573 static struct task_struct *find_alive_thread(struct task_struct *p)
574 {
575 	struct task_struct *t;
576 
577 	for_each_thread(p, t) {
578 		if (!(t->flags & PF_EXITING))
579 			return t;
580 	}
581 	return NULL;
582 }
583 
584 static struct task_struct *find_child_reaper(struct task_struct *father,
585 						struct list_head *dead)
586 	__releases(&tasklist_lock)
587 	__acquires(&tasklist_lock)
588 {
589 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
590 	struct task_struct *reaper = pid_ns->child_reaper;
591 	struct task_struct *p, *n;
592 
593 	if (likely(reaper != father))
594 		return reaper;
595 
596 	reaper = find_alive_thread(father);
597 	if (reaper) {
598 		pid_ns->child_reaper = reaper;
599 		return reaper;
600 	}
601 
602 	write_unlock_irq(&tasklist_lock);
603 
604 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
605 		list_del_init(&p->ptrace_entry);
606 		release_task(p);
607 	}
608 
609 	zap_pid_ns_processes(pid_ns);
610 	write_lock_irq(&tasklist_lock);
611 
612 	return father;
613 }
614 
615 /*
616  * When we die, we re-parent all our children, and try to:
617  * 1. give them to another thread in our thread group, if such a member exists
618  * 2. give it to the first ancestor process which prctl'd itself as a
619  *    child_subreaper for its children (like a service manager)
620  * 3. give it to the init process (PID 1) in our pid namespace
621  */
622 static struct task_struct *find_new_reaper(struct task_struct *father,
623 					   struct task_struct *child_reaper)
624 {
625 	struct task_struct *thread, *reaper;
626 
627 	thread = find_alive_thread(father);
628 	if (thread)
629 		return thread;
630 
631 	if (father->signal->has_child_subreaper) {
632 		unsigned int ns_level = task_pid(father)->level;
633 		/*
634 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
635 		 * We can't check reaper != child_reaper to ensure we do not
636 		 * cross the namespaces, the exiting parent could be injected
637 		 * by setns() + fork().
638 		 * We check pid->level, this is slightly more efficient than
639 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
640 		 */
641 		for (reaper = father->real_parent;
642 		     task_pid(reaper)->level == ns_level;
643 		     reaper = reaper->real_parent) {
644 			if (reaper == &init_task)
645 				break;
646 			if (!reaper->signal->is_child_subreaper)
647 				continue;
648 			thread = find_alive_thread(reaper);
649 			if (thread)
650 				return thread;
651 		}
652 	}
653 
654 	return child_reaper;
655 }
656 
657 /*
658 * Any that need to be release_task'd are put on the @dead list.
659  */
660 static void reparent_leader(struct task_struct *father, struct task_struct *p,
661 				struct list_head *dead)
662 {
663 	if (unlikely(p->exit_state == EXIT_DEAD))
664 		return;
665 
666 	/* We don't want people slaying init. */
667 	p->exit_signal = SIGCHLD;
668 
669 	/* If it has exited notify the new parent about this child's death. */
670 	if (!p->ptrace &&
671 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
672 		if (do_notify_parent(p, p->exit_signal)) {
673 			p->exit_state = EXIT_DEAD;
674 			list_add(&p->ptrace_entry, dead);
675 		}
676 	}
677 
678 	kill_orphaned_pgrp(p, father);
679 }
680 
681 /*
682  * This does two things:
683  *
684  * A.  Make init inherit all the child processes
685  * B.  Check to see if any process groups have become orphaned
686  *	as a result of our exiting, and if they have any stopped
687  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
688  */
689 static void forget_original_parent(struct task_struct *father,
690 					struct list_head *dead)
691 {
692 	struct task_struct *p, *t, *reaper;
693 
694 	if (unlikely(!list_empty(&father->ptraced)))
695 		exit_ptrace(father, dead);
696 
697 	/* Can drop and reacquire tasklist_lock */
698 	reaper = find_child_reaper(father, dead);
699 	if (list_empty(&father->children))
700 		return;
701 
702 	reaper = find_new_reaper(father, reaper);
703 	list_for_each_entry(p, &father->children, sibling) {
704 		for_each_thread(p, t) {
705 			RCU_INIT_POINTER(t->real_parent, reaper);
706 			BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
707 			if (likely(!t->ptrace))
708 				t->parent = t->real_parent;
709 			if (t->pdeath_signal)
710 				group_send_sig_info(t->pdeath_signal,
711 						    SEND_SIG_NOINFO, t,
712 						    PIDTYPE_TGID);
713 		}
714 		/*
715 		 * If this is a threaded reparent there is no need to
716 		 * notify anyone anything has happened.
717 		 */
718 		if (!same_thread_group(reaper, father))
719 			reparent_leader(father, p, dead);
720 	}
721 	list_splice_tail_init(&father->children, &reaper->children);
722 }
723 
724 /*
725  * Send signals to all our closest relatives so that they know
726  * to properly mourn us..
727  */
728 static void exit_notify(struct task_struct *tsk, int group_dead)
729 {
730 	bool autoreap;
731 	struct task_struct *p, *n;
732 	LIST_HEAD(dead);
733 
734 	write_lock_irq(&tasklist_lock);
735 	forget_original_parent(tsk, &dead);
736 
737 	if (group_dead)
738 		kill_orphaned_pgrp(tsk->group_leader, NULL);
739 
740 	tsk->exit_state = EXIT_ZOMBIE;
741 	/*
742 	 * sub-thread or delay_group_leader(), wake up the
743 	 * PIDFD_THREAD waiters.
744 	 */
745 	if (!thread_group_empty(tsk))
746 		do_notify_pidfd(tsk);
747 
748 	if (unlikely(tsk->ptrace)) {
749 		int sig = thread_group_leader(tsk) &&
750 				thread_group_empty(tsk) &&
751 				!ptrace_reparented(tsk) ?
752 			tsk->exit_signal : SIGCHLD;
753 		autoreap = do_notify_parent(tsk, sig);
754 	} else if (thread_group_leader(tsk)) {
755 		autoreap = thread_group_empty(tsk) &&
756 			do_notify_parent(tsk, tsk->exit_signal);
757 	} else {
758 		autoreap = true;
759 	}
760 
761 	if (autoreap) {
762 		tsk->exit_state = EXIT_DEAD;
763 		list_add(&tsk->ptrace_entry, &dead);
764 	}
765 
766 	/* mt-exec, de_thread() is waiting for group leader */
767 	if (unlikely(tsk->signal->notify_count < 0))
768 		wake_up_process(tsk->signal->group_exec_task);
769 	write_unlock_irq(&tasklist_lock);
770 
771 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
772 		list_del_init(&p->ptrace_entry);
773 		release_task(p);
774 	}
775 }
776 
777 #ifdef CONFIG_DEBUG_STACK_USAGE
778 static void check_stack_usage(void)
779 {
780 	static DEFINE_SPINLOCK(low_water_lock);
781 	static int lowest_to_date = THREAD_SIZE;
782 	unsigned long free;
783 
784 	free = stack_not_used(current);
785 
786 	if (free >= lowest_to_date)
787 		return;
788 
789 	spin_lock(&low_water_lock);
790 	if (free < lowest_to_date) {
791 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
792 			current->comm, task_pid_nr(current), free);
793 		lowest_to_date = free;
794 	}
795 	spin_unlock(&low_water_lock);
796 }
797 #else
798 static inline void check_stack_usage(void) {}
799 #endif
800 
801 static void synchronize_group_exit(struct task_struct *tsk, long code)
802 {
803 	struct sighand_struct *sighand = tsk->sighand;
804 	struct signal_struct *signal = tsk->signal;
805 
806 	spin_lock_irq(&sighand->siglock);
807 	signal->quick_threads--;
808 	if ((signal->quick_threads == 0) &&
809 	    !(signal->flags & SIGNAL_GROUP_EXIT)) {
810 		signal->flags = SIGNAL_GROUP_EXIT;
811 		signal->group_exit_code = code;
812 		signal->group_stop_count = 0;
813 	}
814 	spin_unlock_irq(&sighand->siglock);
815 }
816 
817 void __noreturn do_exit(long code)
818 {
819 	struct task_struct *tsk = current;
820 	int group_dead;
821 
822 	WARN_ON(irqs_disabled());
823 
824 	synchronize_group_exit(tsk, code);
825 
826 	WARN_ON(tsk->plug);
827 
828 	kcov_task_exit(tsk);
829 	kmsan_task_exit(tsk);
830 
831 	coredump_task_exit(tsk);
832 	ptrace_event(PTRACE_EVENT_EXIT, code);
833 	user_events_exit(tsk);
834 
835 	io_uring_files_cancel();
836 	exit_signals(tsk);  /* sets PF_EXITING */
837 
838 	acct_update_integrals(tsk);
839 	group_dead = atomic_dec_and_test(&tsk->signal->live);
840 	if (group_dead) {
841 		/*
842 		 * If the last thread of global init has exited, panic
843 		 * immediately to get a useable coredump.
844 		 */
845 		if (unlikely(is_global_init(tsk)))
846 			panic("Attempted to kill init! exitcode=0x%08x\n",
847 				tsk->signal->group_exit_code ?: (int)code);
848 
849 #ifdef CONFIG_POSIX_TIMERS
850 		hrtimer_cancel(&tsk->signal->real_timer);
851 		exit_itimers(tsk);
852 #endif
853 		if (tsk->mm)
854 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
855 	}
856 	acct_collect(code, group_dead);
857 	if (group_dead)
858 		tty_audit_exit();
859 	audit_free(tsk);
860 
861 	tsk->exit_code = code;
862 	taskstats_exit(tsk, group_dead);
863 
864 	exit_mm();
865 
866 	if (group_dead)
867 		acct_process();
868 	trace_sched_process_exit(tsk);
869 
870 	exit_sem(tsk);
871 	exit_shm(tsk);
872 	exit_files(tsk);
873 	exit_fs(tsk);
874 	if (group_dead)
875 		disassociate_ctty(1);
876 	exit_task_namespaces(tsk);
877 	exit_task_work(tsk);
878 	exit_thread(tsk);
879 
880 	/*
881 	 * Flush inherited counters to the parent - before the parent
882 	 * gets woken up by child-exit notifications.
883 	 *
884 	 * because of cgroup mode, must be called before cgroup_exit()
885 	 */
886 	perf_event_exit_task(tsk);
887 
888 	sched_autogroup_exit_task(tsk);
889 	cgroup_exit(tsk);
890 
891 	/*
892 	 * FIXME: do that only when needed, using sched_exit tracepoint
893 	 */
894 	flush_ptrace_hw_breakpoint(tsk);
895 
896 	exit_tasks_rcu_start();
897 	exit_notify(tsk, group_dead);
898 	proc_exit_connector(tsk);
899 	mpol_put_task_policy(tsk);
900 #ifdef CONFIG_FUTEX
901 	if (unlikely(current->pi_state_cache))
902 		kfree(current->pi_state_cache);
903 #endif
904 	/*
905 	 * Make sure we are holding no locks:
906 	 */
907 	debug_check_no_locks_held();
908 
909 	if (tsk->io_context)
910 		exit_io_context(tsk);
911 
912 	if (tsk->splice_pipe)
913 		free_pipe_info(tsk->splice_pipe);
914 
915 	if (tsk->task_frag.page)
916 		put_page(tsk->task_frag.page);
917 
918 	exit_task_stack_account(tsk);
919 
920 	check_stack_usage();
921 	preempt_disable();
922 	if (tsk->nr_dirtied)
923 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
924 	exit_rcu();
925 	exit_tasks_rcu_finish();
926 
927 	lockdep_free_task(tsk);
928 	do_task_dead();
929 }
930 
931 void __noreturn make_task_dead(int signr)
932 {
933 	/*
934 	 * Take the task off the cpu after something catastrophic has
935 	 * happened.
936 	 *
937 	 * We can get here from a kernel oops, sometimes with preemption off.
938 	 * Start by checking for critical errors.
939 	 * Then fix up important state like USER_DS and preemption.
940 	 * Then do everything else.
941 	 */
942 	struct task_struct *tsk = current;
943 	unsigned int limit;
944 
945 	if (unlikely(in_interrupt()))
946 		panic("Aiee, killing interrupt handler!");
947 	if (unlikely(!tsk->pid))
948 		panic("Attempted to kill the idle task!");
949 
950 	if (unlikely(irqs_disabled())) {
951 		pr_info("note: %s[%d] exited with irqs disabled\n",
952 			current->comm, task_pid_nr(current));
953 		local_irq_enable();
954 	}
955 	if (unlikely(in_atomic())) {
956 		pr_info("note: %s[%d] exited with preempt_count %d\n",
957 			current->comm, task_pid_nr(current),
958 			preempt_count());
959 		preempt_count_set(PREEMPT_ENABLED);
960 	}
961 
962 	/*
963 	 * Every time the system oopses, if the oops happens while a reference
964 	 * to an object was held, the reference leaks.
965 	 * If the oops doesn't also leak memory, repeated oopsing can cause
966 	 * reference counters to wrap around (if they're not using refcount_t).
967 	 * This means that repeated oopsing can make unexploitable-looking bugs
968 	 * exploitable through repeated oopsing.
969 	 * To make sure this can't happen, place an upper bound on how often the
970 	 * kernel may oops without panic().
971 	 */
972 	limit = READ_ONCE(oops_limit);
973 	if (atomic_inc_return(&oops_count) >= limit && limit)
974 		panic("Oopsed too often (kernel.oops_limit is %d)", limit);
975 
976 	/*
977 	 * We're taking recursive faults here in make_task_dead. Safest is to just
978 	 * leave this task alone and wait for reboot.
979 	 */
980 	if (unlikely(tsk->flags & PF_EXITING)) {
981 		pr_alert("Fixing recursive fault but reboot is needed!\n");
982 		futex_exit_recursive(tsk);
983 		tsk->exit_state = EXIT_DEAD;
984 		refcount_inc(&tsk->rcu_users);
985 		do_task_dead();
986 	}
987 
988 	do_exit(signr);
989 }
990 
991 SYSCALL_DEFINE1(exit, int, error_code)
992 {
993 	do_exit((error_code&0xff)<<8);
994 }
995 
996 /*
997  * Take down every thread in the group.  This is called by fatal signals
998  * as well as by sys_exit_group (below).
999  */
1000 void __noreturn
1001 do_group_exit(int exit_code)
1002 {
1003 	struct signal_struct *sig = current->signal;
1004 
1005 	if (sig->flags & SIGNAL_GROUP_EXIT)
1006 		exit_code = sig->group_exit_code;
1007 	else if (sig->group_exec_task)
1008 		exit_code = 0;
1009 	else {
1010 		struct sighand_struct *const sighand = current->sighand;
1011 
1012 		spin_lock_irq(&sighand->siglock);
1013 		if (sig->flags & SIGNAL_GROUP_EXIT)
1014 			/* Another thread got here before we took the lock.  */
1015 			exit_code = sig->group_exit_code;
1016 		else if (sig->group_exec_task)
1017 			exit_code = 0;
1018 		else {
1019 			sig->group_exit_code = exit_code;
1020 			sig->flags = SIGNAL_GROUP_EXIT;
1021 			zap_other_threads(current);
1022 		}
1023 		spin_unlock_irq(&sighand->siglock);
1024 	}
1025 
1026 	do_exit(exit_code);
1027 	/* NOTREACHED */
1028 }
1029 
1030 /*
1031  * this kills every thread in the thread group. Note that any externally
1032  * wait4()-ing process will get the correct exit code - even if this
1033  * thread is not the thread group leader.
1034  */
1035 SYSCALL_DEFINE1(exit_group, int, error_code)
1036 {
1037 	do_group_exit((error_code & 0xff) << 8);
1038 	/* NOTREACHED */
1039 	return 0;
1040 }
1041 
1042 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1043 {
1044 	return	wo->wo_type == PIDTYPE_MAX ||
1045 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1046 }
1047 
1048 static int
1049 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1050 {
1051 	if (!eligible_pid(wo, p))
1052 		return 0;
1053 
1054 	/*
1055 	 * Wait for all children (clone and not) if __WALL is set or
1056 	 * if it is traced by us.
1057 	 */
1058 	if (ptrace || (wo->wo_flags & __WALL))
1059 		return 1;
1060 
1061 	/*
1062 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
1063 	 * otherwise, wait for non-clone children *only*.
1064 	 *
1065 	 * Note: a "clone" child here is one that reports to its parent
1066 	 * using a signal other than SIGCHLD, or a non-leader thread which
1067 	 * we can only see if it is traced by us.
1068 	 */
1069 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1070 		return 0;
1071 
1072 	return 1;
1073 }
1074 
1075 /*
1076  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1077  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1078  * the lock and this task is uninteresting.  If we return nonzero, we have
1079  * released the lock and the system call should return.
1080  */
1081 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1082 {
1083 	int state, status;
1084 	pid_t pid = task_pid_vnr(p);
1085 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1086 	struct waitid_info *infop;
1087 
1088 	if (!likely(wo->wo_flags & WEXITED))
1089 		return 0;
1090 
1091 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1092 		status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1093 			? p->signal->group_exit_code : p->exit_code;
1094 		get_task_struct(p);
1095 		read_unlock(&tasklist_lock);
1096 		sched_annotate_sleep();
1097 		if (wo->wo_rusage)
1098 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1099 		put_task_struct(p);
1100 		goto out_info;
1101 	}
1102 	/*
1103 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1104 	 */
1105 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1106 		EXIT_TRACE : EXIT_DEAD;
1107 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1108 		return 0;
1109 	/*
1110 	 * We own this thread, nobody else can reap it.
1111 	 */
1112 	read_unlock(&tasklist_lock);
1113 	sched_annotate_sleep();
1114 
1115 	/*
1116 	 * Check thread_group_leader() to exclude the traced sub-threads.
1117 	 */
1118 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1119 		struct signal_struct *sig = p->signal;
1120 		struct signal_struct *psig = current->signal;
1121 		unsigned long maxrss;
1122 		u64 tgutime, tgstime;
1123 
1124 		/*
1125 		 * The resource counters for the group leader are in its
1126 		 * own task_struct.  Those for dead threads in the group
1127 		 * are in its signal_struct, as are those for the child
1128 		 * processes it has previously reaped.  All these
1129 		 * accumulate in the parent's signal_struct c* fields.
1130 		 *
1131 		 * We don't bother to take a lock here to protect these
1132 		 * p->signal fields because the whole thread group is dead
1133 		 * and nobody can change them.
1134 		 *
1135 		 * psig->stats_lock also protects us from our sub-threads
1136 		 * which can reap other children at the same time.
1137 		 *
1138 		 * We use thread_group_cputime_adjusted() to get times for
1139 		 * the thread group, which consolidates times for all threads
1140 		 * in the group including the group leader.
1141 		 */
1142 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1143 		write_seqlock_irq(&psig->stats_lock);
1144 		psig->cutime += tgutime + sig->cutime;
1145 		psig->cstime += tgstime + sig->cstime;
1146 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1147 		psig->cmin_flt +=
1148 			p->min_flt + sig->min_flt + sig->cmin_flt;
1149 		psig->cmaj_flt +=
1150 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1151 		psig->cnvcsw +=
1152 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1153 		psig->cnivcsw +=
1154 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1155 		psig->cinblock +=
1156 			task_io_get_inblock(p) +
1157 			sig->inblock + sig->cinblock;
1158 		psig->coublock +=
1159 			task_io_get_oublock(p) +
1160 			sig->oublock + sig->coublock;
1161 		maxrss = max(sig->maxrss, sig->cmaxrss);
1162 		if (psig->cmaxrss < maxrss)
1163 			psig->cmaxrss = maxrss;
1164 		task_io_accounting_add(&psig->ioac, &p->ioac);
1165 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1166 		write_sequnlock_irq(&psig->stats_lock);
1167 	}
1168 
1169 	if (wo->wo_rusage)
1170 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1171 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1172 		? p->signal->group_exit_code : p->exit_code;
1173 	wo->wo_stat = status;
1174 
1175 	if (state == EXIT_TRACE) {
1176 		write_lock_irq(&tasklist_lock);
1177 		/* We dropped tasklist, ptracer could die and untrace */
1178 		ptrace_unlink(p);
1179 
1180 		/* If parent wants a zombie, don't release it now */
1181 		state = EXIT_ZOMBIE;
1182 		if (do_notify_parent(p, p->exit_signal))
1183 			state = EXIT_DEAD;
1184 		p->exit_state = state;
1185 		write_unlock_irq(&tasklist_lock);
1186 	}
1187 	if (state == EXIT_DEAD)
1188 		release_task(p);
1189 
1190 out_info:
1191 	infop = wo->wo_info;
1192 	if (infop) {
1193 		if ((status & 0x7f) == 0) {
1194 			infop->cause = CLD_EXITED;
1195 			infop->status = status >> 8;
1196 		} else {
1197 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1198 			infop->status = status & 0x7f;
1199 		}
1200 		infop->pid = pid;
1201 		infop->uid = uid;
1202 	}
1203 
1204 	return pid;
1205 }
1206 
1207 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1208 {
1209 	if (ptrace) {
1210 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1211 			return &p->exit_code;
1212 	} else {
1213 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1214 			return &p->signal->group_exit_code;
1215 	}
1216 	return NULL;
1217 }
1218 
1219 /**
1220  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1221  * @wo: wait options
1222  * @ptrace: is the wait for ptrace
1223  * @p: task to wait for
1224  *
1225  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1226  *
1227  * CONTEXT:
1228  * read_lock(&tasklist_lock), which is released if return value is
1229  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1230  *
1231  * RETURNS:
1232  * 0 if wait condition didn't exist and search for other wait conditions
1233  * should continue.  Non-zero return, -errno on failure and @p's pid on
1234  * success, implies that tasklist_lock is released and wait condition
1235  * search should terminate.
1236  */
1237 static int wait_task_stopped(struct wait_opts *wo,
1238 				int ptrace, struct task_struct *p)
1239 {
1240 	struct waitid_info *infop;
1241 	int exit_code, *p_code, why;
1242 	uid_t uid = 0; /* unneeded, required by compiler */
1243 	pid_t pid;
1244 
1245 	/*
1246 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1247 	 */
1248 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1249 		return 0;
1250 
1251 	if (!task_stopped_code(p, ptrace))
1252 		return 0;
1253 
1254 	exit_code = 0;
1255 	spin_lock_irq(&p->sighand->siglock);
1256 
1257 	p_code = task_stopped_code(p, ptrace);
1258 	if (unlikely(!p_code))
1259 		goto unlock_sig;
1260 
1261 	exit_code = *p_code;
1262 	if (!exit_code)
1263 		goto unlock_sig;
1264 
1265 	if (!unlikely(wo->wo_flags & WNOWAIT))
1266 		*p_code = 0;
1267 
1268 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1269 unlock_sig:
1270 	spin_unlock_irq(&p->sighand->siglock);
1271 	if (!exit_code)
1272 		return 0;
1273 
1274 	/*
1275 	 * Now we are pretty sure this task is interesting.
1276 	 * Make sure it doesn't get reaped out from under us while we
1277 	 * give up the lock and then examine it below.  We don't want to
1278 	 * keep holding onto the tasklist_lock while we call getrusage and
1279 	 * possibly take page faults for user memory.
1280 	 */
1281 	get_task_struct(p);
1282 	pid = task_pid_vnr(p);
1283 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1284 	read_unlock(&tasklist_lock);
1285 	sched_annotate_sleep();
1286 	if (wo->wo_rusage)
1287 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1288 	put_task_struct(p);
1289 
1290 	if (likely(!(wo->wo_flags & WNOWAIT)))
1291 		wo->wo_stat = (exit_code << 8) | 0x7f;
1292 
1293 	infop = wo->wo_info;
1294 	if (infop) {
1295 		infop->cause = why;
1296 		infop->status = exit_code;
1297 		infop->pid = pid;
1298 		infop->uid = uid;
1299 	}
1300 	return pid;
1301 }
1302 
1303 /*
1304  * Handle do_wait work for one task in a live, non-stopped state.
1305  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1306  * the lock and this task is uninteresting.  If we return nonzero, we have
1307  * released the lock and the system call should return.
1308  */
1309 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1310 {
1311 	struct waitid_info *infop;
1312 	pid_t pid;
1313 	uid_t uid;
1314 
1315 	if (!unlikely(wo->wo_flags & WCONTINUED))
1316 		return 0;
1317 
1318 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1319 		return 0;
1320 
1321 	spin_lock_irq(&p->sighand->siglock);
1322 	/* Re-check with the lock held.  */
1323 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1324 		spin_unlock_irq(&p->sighand->siglock);
1325 		return 0;
1326 	}
1327 	if (!unlikely(wo->wo_flags & WNOWAIT))
1328 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1329 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1330 	spin_unlock_irq(&p->sighand->siglock);
1331 
1332 	pid = task_pid_vnr(p);
1333 	get_task_struct(p);
1334 	read_unlock(&tasklist_lock);
1335 	sched_annotate_sleep();
1336 	if (wo->wo_rusage)
1337 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1338 	put_task_struct(p);
1339 
1340 	infop = wo->wo_info;
1341 	if (!infop) {
1342 		wo->wo_stat = 0xffff;
1343 	} else {
1344 		infop->cause = CLD_CONTINUED;
1345 		infop->pid = pid;
1346 		infop->uid = uid;
1347 		infop->status = SIGCONT;
1348 	}
1349 	return pid;
1350 }
1351 
1352 /*
1353  * Consider @p for a wait by @parent.
1354  *
1355  * -ECHILD should be in ->notask_error before the first call.
1356  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1357  * Returns zero if the search for a child should continue;
1358  * then ->notask_error is 0 if @p is an eligible child,
1359  * or still -ECHILD.
1360  */
1361 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1362 				struct task_struct *p)
1363 {
1364 	/*
1365 	 * We can race with wait_task_zombie() from another thread.
1366 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1367 	 * can't confuse the checks below.
1368 	 */
1369 	int exit_state = READ_ONCE(p->exit_state);
1370 	int ret;
1371 
1372 	if (unlikely(exit_state == EXIT_DEAD))
1373 		return 0;
1374 
1375 	ret = eligible_child(wo, ptrace, p);
1376 	if (!ret)
1377 		return ret;
1378 
1379 	if (unlikely(exit_state == EXIT_TRACE)) {
1380 		/*
1381 		 * ptrace == 0 means we are the natural parent. In this case
1382 		 * we should clear notask_error, debugger will notify us.
1383 		 */
1384 		if (likely(!ptrace))
1385 			wo->notask_error = 0;
1386 		return 0;
1387 	}
1388 
1389 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1390 		/*
1391 		 * If it is traced by its real parent's group, just pretend
1392 		 * the caller is ptrace_do_wait() and reap this child if it
1393 		 * is zombie.
1394 		 *
1395 		 * This also hides group stop state from real parent; otherwise
1396 		 * a single stop can be reported twice as group and ptrace stop.
1397 		 * If a ptracer wants to distinguish these two events for its
1398 		 * own children it should create a separate process which takes
1399 		 * the role of real parent.
1400 		 */
1401 		if (!ptrace_reparented(p))
1402 			ptrace = 1;
1403 	}
1404 
1405 	/* slay zombie? */
1406 	if (exit_state == EXIT_ZOMBIE) {
1407 		/* we don't reap group leaders with subthreads */
1408 		if (!delay_group_leader(p)) {
1409 			/*
1410 			 * A zombie ptracee is only visible to its ptracer.
1411 			 * Notification and reaping will be cascaded to the
1412 			 * real parent when the ptracer detaches.
1413 			 */
1414 			if (unlikely(ptrace) || likely(!p->ptrace))
1415 				return wait_task_zombie(wo, p);
1416 		}
1417 
1418 		/*
1419 		 * Allow access to stopped/continued state via zombie by
1420 		 * falling through.  Clearing of notask_error is complex.
1421 		 *
1422 		 * When !@ptrace:
1423 		 *
1424 		 * If WEXITED is set, notask_error should naturally be
1425 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1426 		 * so, if there are live subthreads, there are events to
1427 		 * wait for.  If all subthreads are dead, it's still safe
1428 		 * to clear - this function will be called again in finite
1429 		 * amount time once all the subthreads are released and
1430 		 * will then return without clearing.
1431 		 *
1432 		 * When @ptrace:
1433 		 *
1434 		 * Stopped state is per-task and thus can't change once the
1435 		 * target task dies.  Only continued and exited can happen.
1436 		 * Clear notask_error if WCONTINUED | WEXITED.
1437 		 */
1438 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1439 			wo->notask_error = 0;
1440 	} else {
1441 		/*
1442 		 * @p is alive and it's gonna stop, continue or exit, so
1443 		 * there always is something to wait for.
1444 		 */
1445 		wo->notask_error = 0;
1446 	}
1447 
1448 	/*
1449 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1450 	 * is used and the two don't interact with each other.
1451 	 */
1452 	ret = wait_task_stopped(wo, ptrace, p);
1453 	if (ret)
1454 		return ret;
1455 
1456 	/*
1457 	 * Wait for continued.  There's only one continued state and the
1458 	 * ptracer can consume it which can confuse the real parent.  Don't
1459 	 * use WCONTINUED from ptracer.  You don't need or want it.
1460 	 */
1461 	return wait_task_continued(wo, p);
1462 }
1463 
1464 /*
1465  * Do the work of do_wait() for one thread in the group, @tsk.
1466  *
1467  * -ECHILD should be in ->notask_error before the first call.
1468  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1469  * Returns zero if the search for a child should continue; then
1470  * ->notask_error is 0 if there were any eligible children,
1471  * or still -ECHILD.
1472  */
1473 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1474 {
1475 	struct task_struct *p;
1476 
1477 	list_for_each_entry(p, &tsk->children, sibling) {
1478 		int ret = wait_consider_task(wo, 0, p);
1479 
1480 		if (ret)
1481 			return ret;
1482 	}
1483 
1484 	return 0;
1485 }
1486 
1487 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1488 {
1489 	struct task_struct *p;
1490 
1491 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1492 		int ret = wait_consider_task(wo, 1, p);
1493 
1494 		if (ret)
1495 			return ret;
1496 	}
1497 
1498 	return 0;
1499 }
1500 
1501 bool pid_child_should_wake(struct wait_opts *wo, struct task_struct *p)
1502 {
1503 	if (!eligible_pid(wo, p))
1504 		return false;
1505 
1506 	if ((wo->wo_flags & __WNOTHREAD) && wo->child_wait.private != p->parent)
1507 		return false;
1508 
1509 	return true;
1510 }
1511 
1512 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1513 				int sync, void *key)
1514 {
1515 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1516 						child_wait);
1517 	struct task_struct *p = key;
1518 
1519 	if (pid_child_should_wake(wo, p))
1520 		return default_wake_function(wait, mode, sync, key);
1521 
1522 	return 0;
1523 }
1524 
1525 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1526 {
1527 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1528 			   TASK_INTERRUPTIBLE, p);
1529 }
1530 
1531 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1532 				 struct task_struct *target)
1533 {
1534 	struct task_struct *parent =
1535 		!ptrace ? target->real_parent : target->parent;
1536 
1537 	return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1538 				     same_thread_group(current, parent));
1539 }
1540 
1541 /*
1542  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1543  * and tracee lists to find the target task.
1544  */
1545 static int do_wait_pid(struct wait_opts *wo)
1546 {
1547 	bool ptrace;
1548 	struct task_struct *target;
1549 	int retval;
1550 
1551 	ptrace = false;
1552 	target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1553 	if (target && is_effectively_child(wo, ptrace, target)) {
1554 		retval = wait_consider_task(wo, ptrace, target);
1555 		if (retval)
1556 			return retval;
1557 	}
1558 
1559 	ptrace = true;
1560 	target = pid_task(wo->wo_pid, PIDTYPE_PID);
1561 	if (target && target->ptrace &&
1562 	    is_effectively_child(wo, ptrace, target)) {
1563 		retval = wait_consider_task(wo, ptrace, target);
1564 		if (retval)
1565 			return retval;
1566 	}
1567 
1568 	return 0;
1569 }
1570 
1571 long __do_wait(struct wait_opts *wo)
1572 {
1573 	long retval;
1574 
1575 	/*
1576 	 * If there is nothing that can match our criteria, just get out.
1577 	 * We will clear ->notask_error to zero if we see any child that
1578 	 * might later match our criteria, even if we are not able to reap
1579 	 * it yet.
1580 	 */
1581 	wo->notask_error = -ECHILD;
1582 	if ((wo->wo_type < PIDTYPE_MAX) &&
1583 	   (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1584 		goto notask;
1585 
1586 	read_lock(&tasklist_lock);
1587 
1588 	if (wo->wo_type == PIDTYPE_PID) {
1589 		retval = do_wait_pid(wo);
1590 		if (retval)
1591 			return retval;
1592 	} else {
1593 		struct task_struct *tsk = current;
1594 
1595 		do {
1596 			retval = do_wait_thread(wo, tsk);
1597 			if (retval)
1598 				return retval;
1599 
1600 			retval = ptrace_do_wait(wo, tsk);
1601 			if (retval)
1602 				return retval;
1603 
1604 			if (wo->wo_flags & __WNOTHREAD)
1605 				break;
1606 		} while_each_thread(current, tsk);
1607 	}
1608 	read_unlock(&tasklist_lock);
1609 
1610 notask:
1611 	retval = wo->notask_error;
1612 	if (!retval && !(wo->wo_flags & WNOHANG))
1613 		return -ERESTARTSYS;
1614 
1615 	return retval;
1616 }
1617 
1618 static long do_wait(struct wait_opts *wo)
1619 {
1620 	int retval;
1621 
1622 	trace_sched_process_wait(wo->wo_pid);
1623 
1624 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1625 	wo->child_wait.private = current;
1626 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1627 
1628 	do {
1629 		set_current_state(TASK_INTERRUPTIBLE);
1630 		retval = __do_wait(wo);
1631 		if (retval != -ERESTARTSYS)
1632 			break;
1633 		if (signal_pending(current))
1634 			break;
1635 		schedule();
1636 	} while (1);
1637 
1638 	__set_current_state(TASK_RUNNING);
1639 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1640 	return retval;
1641 }
1642 
1643 int kernel_waitid_prepare(struct wait_opts *wo, int which, pid_t upid,
1644 			  struct waitid_info *infop, int options,
1645 			  struct rusage *ru)
1646 {
1647 	unsigned int f_flags = 0;
1648 	struct pid *pid = NULL;
1649 	enum pid_type type;
1650 
1651 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1652 			__WNOTHREAD|__WCLONE|__WALL))
1653 		return -EINVAL;
1654 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1655 		return -EINVAL;
1656 
1657 	switch (which) {
1658 	case P_ALL:
1659 		type = PIDTYPE_MAX;
1660 		break;
1661 	case P_PID:
1662 		type = PIDTYPE_PID;
1663 		if (upid <= 0)
1664 			return -EINVAL;
1665 
1666 		pid = find_get_pid(upid);
1667 		break;
1668 	case P_PGID:
1669 		type = PIDTYPE_PGID;
1670 		if (upid < 0)
1671 			return -EINVAL;
1672 
1673 		if (upid)
1674 			pid = find_get_pid(upid);
1675 		else
1676 			pid = get_task_pid(current, PIDTYPE_PGID);
1677 		break;
1678 	case P_PIDFD:
1679 		type = PIDTYPE_PID;
1680 		if (upid < 0)
1681 			return -EINVAL;
1682 
1683 		pid = pidfd_get_pid(upid, &f_flags);
1684 		if (IS_ERR(pid))
1685 			return PTR_ERR(pid);
1686 
1687 		break;
1688 	default:
1689 		return -EINVAL;
1690 	}
1691 
1692 	wo->wo_type	= type;
1693 	wo->wo_pid	= pid;
1694 	wo->wo_flags	= options;
1695 	wo->wo_info	= infop;
1696 	wo->wo_rusage	= ru;
1697 	if (f_flags & O_NONBLOCK)
1698 		wo->wo_flags |= WNOHANG;
1699 
1700 	return 0;
1701 }
1702 
1703 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1704 			  int options, struct rusage *ru)
1705 {
1706 	struct wait_opts wo;
1707 	long ret;
1708 
1709 	ret = kernel_waitid_prepare(&wo, which, upid, infop, options, ru);
1710 	if (ret)
1711 		return ret;
1712 
1713 	ret = do_wait(&wo);
1714 	if (!ret && !(options & WNOHANG) && (wo.wo_flags & WNOHANG))
1715 		ret = -EAGAIN;
1716 
1717 	put_pid(wo.wo_pid);
1718 	return ret;
1719 }
1720 
1721 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1722 		infop, int, options, struct rusage __user *, ru)
1723 {
1724 	struct rusage r;
1725 	struct waitid_info info = {.status = 0};
1726 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1727 	int signo = 0;
1728 
1729 	if (err > 0) {
1730 		signo = SIGCHLD;
1731 		err = 0;
1732 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1733 			return -EFAULT;
1734 	}
1735 	if (!infop)
1736 		return err;
1737 
1738 	if (!user_write_access_begin(infop, sizeof(*infop)))
1739 		return -EFAULT;
1740 
1741 	unsafe_put_user(signo, &infop->si_signo, Efault);
1742 	unsafe_put_user(0, &infop->si_errno, Efault);
1743 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1744 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1745 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1746 	unsafe_put_user(info.status, &infop->si_status, Efault);
1747 	user_write_access_end();
1748 	return err;
1749 Efault:
1750 	user_write_access_end();
1751 	return -EFAULT;
1752 }
1753 
1754 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1755 		  struct rusage *ru)
1756 {
1757 	struct wait_opts wo;
1758 	struct pid *pid = NULL;
1759 	enum pid_type type;
1760 	long ret;
1761 
1762 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1763 			__WNOTHREAD|__WCLONE|__WALL))
1764 		return -EINVAL;
1765 
1766 	/* -INT_MIN is not defined */
1767 	if (upid == INT_MIN)
1768 		return -ESRCH;
1769 
1770 	if (upid == -1)
1771 		type = PIDTYPE_MAX;
1772 	else if (upid < 0) {
1773 		type = PIDTYPE_PGID;
1774 		pid = find_get_pid(-upid);
1775 	} else if (upid == 0) {
1776 		type = PIDTYPE_PGID;
1777 		pid = get_task_pid(current, PIDTYPE_PGID);
1778 	} else /* upid > 0 */ {
1779 		type = PIDTYPE_PID;
1780 		pid = find_get_pid(upid);
1781 	}
1782 
1783 	wo.wo_type	= type;
1784 	wo.wo_pid	= pid;
1785 	wo.wo_flags	= options | WEXITED;
1786 	wo.wo_info	= NULL;
1787 	wo.wo_stat	= 0;
1788 	wo.wo_rusage	= ru;
1789 	ret = do_wait(&wo);
1790 	put_pid(pid);
1791 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1792 		ret = -EFAULT;
1793 
1794 	return ret;
1795 }
1796 
1797 int kernel_wait(pid_t pid, int *stat)
1798 {
1799 	struct wait_opts wo = {
1800 		.wo_type	= PIDTYPE_PID,
1801 		.wo_pid		= find_get_pid(pid),
1802 		.wo_flags	= WEXITED,
1803 	};
1804 	int ret;
1805 
1806 	ret = do_wait(&wo);
1807 	if (ret > 0 && wo.wo_stat)
1808 		*stat = wo.wo_stat;
1809 	put_pid(wo.wo_pid);
1810 	return ret;
1811 }
1812 
1813 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1814 		int, options, struct rusage __user *, ru)
1815 {
1816 	struct rusage r;
1817 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1818 
1819 	if (err > 0) {
1820 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1821 			return -EFAULT;
1822 	}
1823 	return err;
1824 }
1825 
1826 #ifdef __ARCH_WANT_SYS_WAITPID
1827 
1828 /*
1829  * sys_waitpid() remains for compatibility. waitpid() should be
1830  * implemented by calling sys_wait4() from libc.a.
1831  */
1832 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1833 {
1834 	return kernel_wait4(pid, stat_addr, options, NULL);
1835 }
1836 
1837 #endif
1838 
1839 #ifdef CONFIG_COMPAT
1840 COMPAT_SYSCALL_DEFINE4(wait4,
1841 	compat_pid_t, pid,
1842 	compat_uint_t __user *, stat_addr,
1843 	int, options,
1844 	struct compat_rusage __user *, ru)
1845 {
1846 	struct rusage r;
1847 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1848 	if (err > 0) {
1849 		if (ru && put_compat_rusage(&r, ru))
1850 			return -EFAULT;
1851 	}
1852 	return err;
1853 }
1854 
1855 COMPAT_SYSCALL_DEFINE5(waitid,
1856 		int, which, compat_pid_t, pid,
1857 		struct compat_siginfo __user *, infop, int, options,
1858 		struct compat_rusage __user *, uru)
1859 {
1860 	struct rusage ru;
1861 	struct waitid_info info = {.status = 0};
1862 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1863 	int signo = 0;
1864 	if (err > 0) {
1865 		signo = SIGCHLD;
1866 		err = 0;
1867 		if (uru) {
1868 			/* kernel_waitid() overwrites everything in ru */
1869 			if (COMPAT_USE_64BIT_TIME)
1870 				err = copy_to_user(uru, &ru, sizeof(ru));
1871 			else
1872 				err = put_compat_rusage(&ru, uru);
1873 			if (err)
1874 				return -EFAULT;
1875 		}
1876 	}
1877 
1878 	if (!infop)
1879 		return err;
1880 
1881 	if (!user_write_access_begin(infop, sizeof(*infop)))
1882 		return -EFAULT;
1883 
1884 	unsafe_put_user(signo, &infop->si_signo, Efault);
1885 	unsafe_put_user(0, &infop->si_errno, Efault);
1886 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1887 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1888 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1889 	unsafe_put_user(info.status, &infop->si_status, Efault);
1890 	user_write_access_end();
1891 	return err;
1892 Efault:
1893 	user_write_access_end();
1894 	return -EFAULT;
1895 }
1896 #endif
1897 
1898 /*
1899  * This needs to be __function_aligned as GCC implicitly makes any
1900  * implementation of abort() cold and drops alignment specified by
1901  * -falign-functions=N.
1902  *
1903  * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11
1904  */
1905 __weak __function_aligned void abort(void)
1906 {
1907 	BUG();
1908 
1909 	/* if that doesn't kill us, halt */
1910 	panic("Oops failed to kill thread");
1911 }
1912 EXPORT_SYMBOL(abort);
1913