xref: /linux/kernel/exit.c (revision d8327c784b51b57dac2c26cfad87dce0d68dfd98)
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/config.h>
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/interrupt.h>
11 #include <linux/smp_lock.h>
12 #include <linux/module.h>
13 #include <linux/capability.h>
14 #include <linux/completion.h>
15 #include <linux/personality.h>
16 #include <linux/tty.h>
17 #include <linux/namespace.h>
18 #include <linux/key.h>
19 #include <linux/security.h>
20 #include <linux/cpu.h>
21 #include <linux/acct.h>
22 #include <linux/file.h>
23 #include <linux/binfmts.h>
24 #include <linux/ptrace.h>
25 #include <linux/profile.h>
26 #include <linux/mount.h>
27 #include <linux/proc_fs.h>
28 #include <linux/mempolicy.h>
29 #include <linux/cpuset.h>
30 #include <linux/syscalls.h>
31 #include <linux/signal.h>
32 #include <linux/cn_proc.h>
33 #include <linux/mutex.h>
34 
35 #include <asm/uaccess.h>
36 #include <asm/unistd.h>
37 #include <asm/pgtable.h>
38 #include <asm/mmu_context.h>
39 
40 extern void sem_exit (void);
41 extern struct task_struct *child_reaper;
42 
43 int getrusage(struct task_struct *, int, struct rusage __user *);
44 
45 static void exit_mm(struct task_struct * tsk);
46 
47 static void __unhash_process(struct task_struct *p)
48 {
49 	nr_threads--;
50 	detach_pid(p, PIDTYPE_PID);
51 	detach_pid(p, PIDTYPE_TGID);
52 	if (thread_group_leader(p)) {
53 		detach_pid(p, PIDTYPE_PGID);
54 		detach_pid(p, PIDTYPE_SID);
55 		if (p->pid)
56 			__get_cpu_var(process_counts)--;
57 	}
58 
59 	REMOVE_LINKS(p);
60 }
61 
62 void release_task(struct task_struct * p)
63 {
64 	int zap_leader;
65 	task_t *leader;
66 	struct dentry *proc_dentry;
67 
68 repeat:
69 	atomic_dec(&p->user->processes);
70 	spin_lock(&p->proc_lock);
71 	proc_dentry = proc_pid_unhash(p);
72 	write_lock_irq(&tasklist_lock);
73 	if (unlikely(p->ptrace))
74 		__ptrace_unlink(p);
75 	BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
76 	__exit_signal(p);
77 	/*
78 	 * Note that the fastpath in sys_times depends on __exit_signal having
79 	 * updated the counters before a task is removed from the tasklist of
80 	 * the process by __unhash_process.
81 	 */
82 	__unhash_process(p);
83 
84 	/*
85 	 * If we are the last non-leader member of the thread
86 	 * group, and the leader is zombie, then notify the
87 	 * group leader's parent process. (if it wants notification.)
88 	 */
89 	zap_leader = 0;
90 	leader = p->group_leader;
91 	if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
92 		BUG_ON(leader->exit_signal == -1);
93 		do_notify_parent(leader, leader->exit_signal);
94 		/*
95 		 * If we were the last child thread and the leader has
96 		 * exited already, and the leader's parent ignores SIGCHLD,
97 		 * then we are the one who should release the leader.
98 		 *
99 		 * do_notify_parent() will have marked it self-reaping in
100 		 * that case.
101 		 */
102 		zap_leader = (leader->exit_signal == -1);
103 	}
104 
105 	sched_exit(p);
106 	write_unlock_irq(&tasklist_lock);
107 	spin_unlock(&p->proc_lock);
108 	proc_pid_flush(proc_dentry);
109 	release_thread(p);
110 	put_task_struct(p);
111 
112 	p = leader;
113 	if (unlikely(zap_leader))
114 		goto repeat;
115 }
116 
117 /* we are using it only for SMP init */
118 
119 void unhash_process(struct task_struct *p)
120 {
121 	struct dentry *proc_dentry;
122 
123 	spin_lock(&p->proc_lock);
124 	proc_dentry = proc_pid_unhash(p);
125 	write_lock_irq(&tasklist_lock);
126 	__unhash_process(p);
127 	write_unlock_irq(&tasklist_lock);
128 	spin_unlock(&p->proc_lock);
129 	proc_pid_flush(proc_dentry);
130 }
131 
132 /*
133  * This checks not only the pgrp, but falls back on the pid if no
134  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
135  * without this...
136  */
137 int session_of_pgrp(int pgrp)
138 {
139 	struct task_struct *p;
140 	int sid = -1;
141 
142 	read_lock(&tasklist_lock);
143 	do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
144 		if (p->signal->session > 0) {
145 			sid = p->signal->session;
146 			goto out;
147 		}
148 	} while_each_task_pid(pgrp, PIDTYPE_PGID, p);
149 	p = find_task_by_pid(pgrp);
150 	if (p)
151 		sid = p->signal->session;
152 out:
153 	read_unlock(&tasklist_lock);
154 
155 	return sid;
156 }
157 
158 /*
159  * Determine if a process group is "orphaned", according to the POSIX
160  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
161  * by terminal-generated stop signals.  Newly orphaned process groups are
162  * to receive a SIGHUP and a SIGCONT.
163  *
164  * "I ask you, have you ever known what it is to be an orphan?"
165  */
166 static int will_become_orphaned_pgrp(int pgrp, task_t *ignored_task)
167 {
168 	struct task_struct *p;
169 	int ret = 1;
170 
171 	do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
172 		if (p == ignored_task
173 				|| p->exit_state
174 				|| p->real_parent->pid == 1)
175 			continue;
176 		if (process_group(p->real_parent) != pgrp
177 			    && p->real_parent->signal->session == p->signal->session) {
178 			ret = 0;
179 			break;
180 		}
181 	} while_each_task_pid(pgrp, PIDTYPE_PGID, p);
182 	return ret;	/* (sighing) "Often!" */
183 }
184 
185 int is_orphaned_pgrp(int pgrp)
186 {
187 	int retval;
188 
189 	read_lock(&tasklist_lock);
190 	retval = will_become_orphaned_pgrp(pgrp, NULL);
191 	read_unlock(&tasklist_lock);
192 
193 	return retval;
194 }
195 
196 static int has_stopped_jobs(int pgrp)
197 {
198 	int retval = 0;
199 	struct task_struct *p;
200 
201 	do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
202 		if (p->state != TASK_STOPPED)
203 			continue;
204 
205 		/* If p is stopped by a debugger on a signal that won't
206 		   stop it, then don't count p as stopped.  This isn't
207 		   perfect but it's a good approximation.  */
208 		if (unlikely (p->ptrace)
209 		    && p->exit_code != SIGSTOP
210 		    && p->exit_code != SIGTSTP
211 		    && p->exit_code != SIGTTOU
212 		    && p->exit_code != SIGTTIN)
213 			continue;
214 
215 		retval = 1;
216 		break;
217 	} while_each_task_pid(pgrp, PIDTYPE_PGID, p);
218 	return retval;
219 }
220 
221 /**
222  * reparent_to_init - Reparent the calling kernel thread to the init task.
223  *
224  * If a kernel thread is launched as a result of a system call, or if
225  * it ever exits, it should generally reparent itself to init so that
226  * it is correctly cleaned up on exit.
227  *
228  * The various task state such as scheduling policy and priority may have
229  * been inherited from a user process, so we reset them to sane values here.
230  *
231  * NOTE that reparent_to_init() gives the caller full capabilities.
232  */
233 static void reparent_to_init(void)
234 {
235 	write_lock_irq(&tasklist_lock);
236 
237 	ptrace_unlink(current);
238 	/* Reparent to init */
239 	REMOVE_LINKS(current);
240 	current->parent = child_reaper;
241 	current->real_parent = child_reaper;
242 	SET_LINKS(current);
243 
244 	/* Set the exit signal to SIGCHLD so we signal init on exit */
245 	current->exit_signal = SIGCHLD;
246 
247 	if ((current->policy == SCHED_NORMAL ||
248 			current->policy == SCHED_BATCH)
249 				&& (task_nice(current) < 0))
250 		set_user_nice(current, 0);
251 	/* cpus_allowed? */
252 	/* rt_priority? */
253 	/* signals? */
254 	security_task_reparent_to_init(current);
255 	memcpy(current->signal->rlim, init_task.signal->rlim,
256 	       sizeof(current->signal->rlim));
257 	atomic_inc(&(INIT_USER->__count));
258 	write_unlock_irq(&tasklist_lock);
259 	switch_uid(INIT_USER);
260 }
261 
262 void __set_special_pids(pid_t session, pid_t pgrp)
263 {
264 	struct task_struct *curr = current->group_leader;
265 
266 	if (curr->signal->session != session) {
267 		detach_pid(curr, PIDTYPE_SID);
268 		curr->signal->session = session;
269 		attach_pid(curr, PIDTYPE_SID, session);
270 	}
271 	if (process_group(curr) != pgrp) {
272 		detach_pid(curr, PIDTYPE_PGID);
273 		curr->signal->pgrp = pgrp;
274 		attach_pid(curr, PIDTYPE_PGID, pgrp);
275 	}
276 }
277 
278 void set_special_pids(pid_t session, pid_t pgrp)
279 {
280 	write_lock_irq(&tasklist_lock);
281 	__set_special_pids(session, pgrp);
282 	write_unlock_irq(&tasklist_lock);
283 }
284 
285 /*
286  * Let kernel threads use this to say that they
287  * allow a certain signal (since daemonize() will
288  * have disabled all of them by default).
289  */
290 int allow_signal(int sig)
291 {
292 	if (!valid_signal(sig) || sig < 1)
293 		return -EINVAL;
294 
295 	spin_lock_irq(&current->sighand->siglock);
296 	sigdelset(&current->blocked, sig);
297 	if (!current->mm) {
298 		/* Kernel threads handle their own signals.
299 		   Let the signal code know it'll be handled, so
300 		   that they don't get converted to SIGKILL or
301 		   just silently dropped */
302 		current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
303 	}
304 	recalc_sigpending();
305 	spin_unlock_irq(&current->sighand->siglock);
306 	return 0;
307 }
308 
309 EXPORT_SYMBOL(allow_signal);
310 
311 int disallow_signal(int sig)
312 {
313 	if (!valid_signal(sig) || sig < 1)
314 		return -EINVAL;
315 
316 	spin_lock_irq(&current->sighand->siglock);
317 	sigaddset(&current->blocked, sig);
318 	recalc_sigpending();
319 	spin_unlock_irq(&current->sighand->siglock);
320 	return 0;
321 }
322 
323 EXPORT_SYMBOL(disallow_signal);
324 
325 /*
326  *	Put all the gunge required to become a kernel thread without
327  *	attached user resources in one place where it belongs.
328  */
329 
330 void daemonize(const char *name, ...)
331 {
332 	va_list args;
333 	struct fs_struct *fs;
334 	sigset_t blocked;
335 
336 	va_start(args, name);
337 	vsnprintf(current->comm, sizeof(current->comm), name, args);
338 	va_end(args);
339 
340 	/*
341 	 * If we were started as result of loading a module, close all of the
342 	 * user space pages.  We don't need them, and if we didn't close them
343 	 * they would be locked into memory.
344 	 */
345 	exit_mm(current);
346 
347 	set_special_pids(1, 1);
348 	down(&tty_sem);
349 	current->signal->tty = NULL;
350 	up(&tty_sem);
351 
352 	/* Block and flush all signals */
353 	sigfillset(&blocked);
354 	sigprocmask(SIG_BLOCK, &blocked, NULL);
355 	flush_signals(current);
356 
357 	/* Become as one with the init task */
358 
359 	exit_fs(current);	/* current->fs->count--; */
360 	fs = init_task.fs;
361 	current->fs = fs;
362 	atomic_inc(&fs->count);
363 	exit_namespace(current);
364 	current->namespace = init_task.namespace;
365 	get_namespace(current->namespace);
366  	exit_files(current);
367 	current->files = init_task.files;
368 	atomic_inc(&current->files->count);
369 
370 	reparent_to_init();
371 }
372 
373 EXPORT_SYMBOL(daemonize);
374 
375 static void close_files(struct files_struct * files)
376 {
377 	int i, j;
378 	struct fdtable *fdt;
379 
380 	j = 0;
381 
382 	/*
383 	 * It is safe to dereference the fd table without RCU or
384 	 * ->file_lock because this is the last reference to the
385 	 * files structure.
386 	 */
387 	fdt = files_fdtable(files);
388 	for (;;) {
389 		unsigned long set;
390 		i = j * __NFDBITS;
391 		if (i >= fdt->max_fdset || i >= fdt->max_fds)
392 			break;
393 		set = fdt->open_fds->fds_bits[j++];
394 		while (set) {
395 			if (set & 1) {
396 				struct file * file = xchg(&fdt->fd[i], NULL);
397 				if (file)
398 					filp_close(file, files);
399 			}
400 			i++;
401 			set >>= 1;
402 		}
403 	}
404 }
405 
406 struct files_struct *get_files_struct(struct task_struct *task)
407 {
408 	struct files_struct *files;
409 
410 	task_lock(task);
411 	files = task->files;
412 	if (files)
413 		atomic_inc(&files->count);
414 	task_unlock(task);
415 
416 	return files;
417 }
418 
419 void fastcall put_files_struct(struct files_struct *files)
420 {
421 	struct fdtable *fdt;
422 
423 	if (atomic_dec_and_test(&files->count)) {
424 		close_files(files);
425 		/*
426 		 * Free the fd and fdset arrays if we expanded them.
427 		 * If the fdtable was embedded, pass files for freeing
428 		 * at the end of the RCU grace period. Otherwise,
429 		 * you can free files immediately.
430 		 */
431 		fdt = files_fdtable(files);
432 		if (fdt == &files->fdtab)
433 			fdt->free_files = files;
434 		else
435 			kmem_cache_free(files_cachep, files);
436 		free_fdtable(fdt);
437 	}
438 }
439 
440 EXPORT_SYMBOL(put_files_struct);
441 
442 static inline void __exit_files(struct task_struct *tsk)
443 {
444 	struct files_struct * files = tsk->files;
445 
446 	if (files) {
447 		task_lock(tsk);
448 		tsk->files = NULL;
449 		task_unlock(tsk);
450 		put_files_struct(files);
451 	}
452 }
453 
454 void exit_files(struct task_struct *tsk)
455 {
456 	__exit_files(tsk);
457 }
458 
459 static inline void __put_fs_struct(struct fs_struct *fs)
460 {
461 	/* No need to hold fs->lock if we are killing it */
462 	if (atomic_dec_and_test(&fs->count)) {
463 		dput(fs->root);
464 		mntput(fs->rootmnt);
465 		dput(fs->pwd);
466 		mntput(fs->pwdmnt);
467 		if (fs->altroot) {
468 			dput(fs->altroot);
469 			mntput(fs->altrootmnt);
470 		}
471 		kmem_cache_free(fs_cachep, fs);
472 	}
473 }
474 
475 void put_fs_struct(struct fs_struct *fs)
476 {
477 	__put_fs_struct(fs);
478 }
479 
480 static inline void __exit_fs(struct task_struct *tsk)
481 {
482 	struct fs_struct * fs = tsk->fs;
483 
484 	if (fs) {
485 		task_lock(tsk);
486 		tsk->fs = NULL;
487 		task_unlock(tsk);
488 		__put_fs_struct(fs);
489 	}
490 }
491 
492 void exit_fs(struct task_struct *tsk)
493 {
494 	__exit_fs(tsk);
495 }
496 
497 EXPORT_SYMBOL_GPL(exit_fs);
498 
499 /*
500  * Turn us into a lazy TLB process if we
501  * aren't already..
502  */
503 static void exit_mm(struct task_struct * tsk)
504 {
505 	struct mm_struct *mm = tsk->mm;
506 
507 	mm_release(tsk, mm);
508 	if (!mm)
509 		return;
510 	/*
511 	 * Serialize with any possible pending coredump.
512 	 * We must hold mmap_sem around checking core_waiters
513 	 * and clearing tsk->mm.  The core-inducing thread
514 	 * will increment core_waiters for each thread in the
515 	 * group with ->mm != NULL.
516 	 */
517 	down_read(&mm->mmap_sem);
518 	if (mm->core_waiters) {
519 		up_read(&mm->mmap_sem);
520 		down_write(&mm->mmap_sem);
521 		if (!--mm->core_waiters)
522 			complete(mm->core_startup_done);
523 		up_write(&mm->mmap_sem);
524 
525 		wait_for_completion(&mm->core_done);
526 		down_read(&mm->mmap_sem);
527 	}
528 	atomic_inc(&mm->mm_count);
529 	if (mm != tsk->active_mm) BUG();
530 	/* more a memory barrier than a real lock */
531 	task_lock(tsk);
532 	tsk->mm = NULL;
533 	up_read(&mm->mmap_sem);
534 	enter_lazy_tlb(mm, current);
535 	task_unlock(tsk);
536 	mmput(mm);
537 }
538 
539 static inline void choose_new_parent(task_t *p, task_t *reaper, task_t *child_reaper)
540 {
541 	/*
542 	 * Make sure we're not reparenting to ourselves and that
543 	 * the parent is not a zombie.
544 	 */
545 	BUG_ON(p == reaper || reaper->exit_state >= EXIT_ZOMBIE);
546 	p->real_parent = reaper;
547 }
548 
549 static void reparent_thread(task_t *p, task_t *father, int traced)
550 {
551 	/* We don't want people slaying init.  */
552 	if (p->exit_signal != -1)
553 		p->exit_signal = SIGCHLD;
554 
555 	if (p->pdeath_signal)
556 		/* We already hold the tasklist_lock here.  */
557 		group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
558 
559 	/* Move the child from its dying parent to the new one.  */
560 	if (unlikely(traced)) {
561 		/* Preserve ptrace links if someone else is tracing this child.  */
562 		list_del_init(&p->ptrace_list);
563 		if (p->parent != p->real_parent)
564 			list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
565 	} else {
566 		/* If this child is being traced, then we're the one tracing it
567 		 * anyway, so let go of it.
568 		 */
569 		p->ptrace = 0;
570 		list_del_init(&p->sibling);
571 		p->parent = p->real_parent;
572 		list_add_tail(&p->sibling, &p->parent->children);
573 
574 		/* If we'd notified the old parent about this child's death,
575 		 * also notify the new parent.
576 		 */
577 		if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
578 		    thread_group_empty(p))
579 			do_notify_parent(p, p->exit_signal);
580 		else if (p->state == TASK_TRACED) {
581 			/*
582 			 * If it was at a trace stop, turn it into
583 			 * a normal stop since it's no longer being
584 			 * traced.
585 			 */
586 			ptrace_untrace(p);
587 		}
588 	}
589 
590 	/*
591 	 * process group orphan check
592 	 * Case ii: Our child is in a different pgrp
593 	 * than we are, and it was the only connection
594 	 * outside, so the child pgrp is now orphaned.
595 	 */
596 	if ((process_group(p) != process_group(father)) &&
597 	    (p->signal->session == father->signal->session)) {
598 		int pgrp = process_group(p);
599 
600 		if (will_become_orphaned_pgrp(pgrp, NULL) && has_stopped_jobs(pgrp)) {
601 			__kill_pg_info(SIGHUP, SEND_SIG_PRIV, pgrp);
602 			__kill_pg_info(SIGCONT, SEND_SIG_PRIV, pgrp);
603 		}
604 	}
605 }
606 
607 /*
608  * When we die, we re-parent all our children.
609  * Try to give them to another thread in our thread
610  * group, and if no such member exists, give it to
611  * the global child reaper process (ie "init")
612  */
613 static void forget_original_parent(struct task_struct * father,
614 					  struct list_head *to_release)
615 {
616 	struct task_struct *p, *reaper = father;
617 	struct list_head *_p, *_n;
618 
619 	do {
620 		reaper = next_thread(reaper);
621 		if (reaper == father) {
622 			reaper = child_reaper;
623 			break;
624 		}
625 	} while (reaper->exit_state);
626 
627 	/*
628 	 * There are only two places where our children can be:
629 	 *
630 	 * - in our child list
631 	 * - in our ptraced child list
632 	 *
633 	 * Search them and reparent children.
634 	 */
635 	list_for_each_safe(_p, _n, &father->children) {
636 		int ptrace;
637 		p = list_entry(_p,struct task_struct,sibling);
638 
639 		ptrace = p->ptrace;
640 
641 		/* if father isn't the real parent, then ptrace must be enabled */
642 		BUG_ON(father != p->real_parent && !ptrace);
643 
644 		if (father == p->real_parent) {
645 			/* reparent with a reaper, real father it's us */
646 			choose_new_parent(p, reaper, child_reaper);
647 			reparent_thread(p, father, 0);
648 		} else {
649 			/* reparent ptraced task to its real parent */
650 			__ptrace_unlink (p);
651 			if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
652 			    thread_group_empty(p))
653 				do_notify_parent(p, p->exit_signal);
654 		}
655 
656 		/*
657 		 * if the ptraced child is a zombie with exit_signal == -1
658 		 * we must collect it before we exit, or it will remain
659 		 * zombie forever since we prevented it from self-reap itself
660 		 * while it was being traced by us, to be able to see it in wait4.
661 		 */
662 		if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
663 			list_add(&p->ptrace_list, to_release);
664 	}
665 	list_for_each_safe(_p, _n, &father->ptrace_children) {
666 		p = list_entry(_p,struct task_struct,ptrace_list);
667 		choose_new_parent(p, reaper, child_reaper);
668 		reparent_thread(p, father, 1);
669 	}
670 }
671 
672 /*
673  * Send signals to all our closest relatives so that they know
674  * to properly mourn us..
675  */
676 static void exit_notify(struct task_struct *tsk)
677 {
678 	int state;
679 	struct task_struct *t;
680 	struct list_head ptrace_dead, *_p, *_n;
681 
682 	if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT)
683 	    && !thread_group_empty(tsk)) {
684 		/*
685 		 * This occurs when there was a race between our exit
686 		 * syscall and a group signal choosing us as the one to
687 		 * wake up.  It could be that we are the only thread
688 		 * alerted to check for pending signals, but another thread
689 		 * should be woken now to take the signal since we will not.
690 		 * Now we'll wake all the threads in the group just to make
691 		 * sure someone gets all the pending signals.
692 		 */
693 		read_lock(&tasklist_lock);
694 		spin_lock_irq(&tsk->sighand->siglock);
695 		for (t = next_thread(tsk); t != tsk; t = next_thread(t))
696 			if (!signal_pending(t) && !(t->flags & PF_EXITING)) {
697 				recalc_sigpending_tsk(t);
698 				if (signal_pending(t))
699 					signal_wake_up(t, 0);
700 			}
701 		spin_unlock_irq(&tsk->sighand->siglock);
702 		read_unlock(&tasklist_lock);
703 	}
704 
705 	write_lock_irq(&tasklist_lock);
706 
707 	/*
708 	 * This does two things:
709 	 *
710   	 * A.  Make init inherit all the child processes
711 	 * B.  Check to see if any process groups have become orphaned
712 	 *	as a result of our exiting, and if they have any stopped
713 	 *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
714 	 */
715 
716 	INIT_LIST_HEAD(&ptrace_dead);
717 	forget_original_parent(tsk, &ptrace_dead);
718 	BUG_ON(!list_empty(&tsk->children));
719 	BUG_ON(!list_empty(&tsk->ptrace_children));
720 
721 	/*
722 	 * Check to see if any process groups have become orphaned
723 	 * as a result of our exiting, and if they have any stopped
724 	 * jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
725 	 *
726 	 * Case i: Our father is in a different pgrp than we are
727 	 * and we were the only connection outside, so our pgrp
728 	 * is about to become orphaned.
729 	 */
730 
731 	t = tsk->real_parent;
732 
733 	if ((process_group(t) != process_group(tsk)) &&
734 	    (t->signal->session == tsk->signal->session) &&
735 	    will_become_orphaned_pgrp(process_group(tsk), tsk) &&
736 	    has_stopped_jobs(process_group(tsk))) {
737 		__kill_pg_info(SIGHUP, SEND_SIG_PRIV, process_group(tsk));
738 		__kill_pg_info(SIGCONT, SEND_SIG_PRIV, process_group(tsk));
739 	}
740 
741 	/* Let father know we died
742 	 *
743 	 * Thread signals are configurable, but you aren't going to use
744 	 * that to send signals to arbitary processes.
745 	 * That stops right now.
746 	 *
747 	 * If the parent exec id doesn't match the exec id we saved
748 	 * when we started then we know the parent has changed security
749 	 * domain.
750 	 *
751 	 * If our self_exec id doesn't match our parent_exec_id then
752 	 * we have changed execution domain as these two values started
753 	 * the same after a fork.
754 	 *
755 	 */
756 
757 	if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
758 	    ( tsk->parent_exec_id != t->self_exec_id  ||
759 	      tsk->self_exec_id != tsk->parent_exec_id)
760 	    && !capable(CAP_KILL))
761 		tsk->exit_signal = SIGCHLD;
762 
763 
764 	/* If something other than our normal parent is ptracing us, then
765 	 * send it a SIGCHLD instead of honoring exit_signal.  exit_signal
766 	 * only has special meaning to our real parent.
767 	 */
768 	if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
769 		int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
770 		do_notify_parent(tsk, signal);
771 	} else if (tsk->ptrace) {
772 		do_notify_parent(tsk, SIGCHLD);
773 	}
774 
775 	state = EXIT_ZOMBIE;
776 	if (tsk->exit_signal == -1 &&
777 	    (likely(tsk->ptrace == 0) ||
778 	     unlikely(tsk->parent->signal->flags & SIGNAL_GROUP_EXIT)))
779 		state = EXIT_DEAD;
780 	tsk->exit_state = state;
781 
782 	write_unlock_irq(&tasklist_lock);
783 
784 	list_for_each_safe(_p, _n, &ptrace_dead) {
785 		list_del_init(_p);
786 		t = list_entry(_p,struct task_struct,ptrace_list);
787 		release_task(t);
788 	}
789 
790 	/* If the process is dead, release it - nobody will wait for it */
791 	if (state == EXIT_DEAD)
792 		release_task(tsk);
793 }
794 
795 fastcall NORET_TYPE void do_exit(long code)
796 {
797 	struct task_struct *tsk = current;
798 	int group_dead;
799 
800 	profile_task_exit(tsk);
801 
802 	WARN_ON(atomic_read(&tsk->fs_excl));
803 
804 	if (unlikely(in_interrupt()))
805 		panic("Aiee, killing interrupt handler!");
806 	if (unlikely(!tsk->pid))
807 		panic("Attempted to kill the idle task!");
808 	if (unlikely(tsk->pid == 1))
809 		panic("Attempted to kill init!");
810 
811 	if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
812 		current->ptrace_message = code;
813 		ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
814 	}
815 
816 	/*
817 	 * We're taking recursive faults here in do_exit. Safest is to just
818 	 * leave this task alone and wait for reboot.
819 	 */
820 	if (unlikely(tsk->flags & PF_EXITING)) {
821 		printk(KERN_ALERT
822 			"Fixing recursive fault but reboot is needed!\n");
823 		if (tsk->io_context)
824 			exit_io_context();
825 		set_current_state(TASK_UNINTERRUPTIBLE);
826 		schedule();
827 	}
828 
829 	tsk->flags |= PF_EXITING;
830 
831 	/*
832 	 * Make sure we don't try to process any timer firings
833 	 * while we are already exiting.
834 	 */
835  	tsk->it_virt_expires = cputime_zero;
836  	tsk->it_prof_expires = cputime_zero;
837 	tsk->it_sched_expires = 0;
838 
839 	if (unlikely(in_atomic()))
840 		printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
841 				current->comm, current->pid,
842 				preempt_count());
843 
844 	acct_update_integrals(tsk);
845 	if (tsk->mm) {
846 		update_hiwater_rss(tsk->mm);
847 		update_hiwater_vm(tsk->mm);
848 	}
849 	group_dead = atomic_dec_and_test(&tsk->signal->live);
850 	if (group_dead) {
851  		hrtimer_cancel(&tsk->signal->real_timer);
852 		exit_itimers(tsk->signal);
853 		acct_process(code);
854 	}
855 	exit_mm(tsk);
856 
857 	exit_sem(tsk);
858 	__exit_files(tsk);
859 	__exit_fs(tsk);
860 	exit_namespace(tsk);
861 	exit_thread();
862 	cpuset_exit(tsk);
863 	exit_keys(tsk);
864 
865 	if (group_dead && tsk->signal->leader)
866 		disassociate_ctty(1);
867 
868 	module_put(task_thread_info(tsk)->exec_domain->module);
869 	if (tsk->binfmt)
870 		module_put(tsk->binfmt->module);
871 
872 	tsk->exit_code = code;
873 	proc_exit_connector(tsk);
874 	exit_notify(tsk);
875 #ifdef CONFIG_NUMA
876 	mpol_free(tsk->mempolicy);
877 	tsk->mempolicy = NULL;
878 #endif
879 	/*
880 	 * If DEBUG_MUTEXES is on, make sure we are holding no locks:
881 	 */
882 	mutex_debug_check_no_locks_held(tsk);
883 
884 	if (tsk->io_context)
885 		exit_io_context();
886 
887 	/* PF_DEAD causes final put_task_struct after we schedule. */
888 	preempt_disable();
889 	BUG_ON(tsk->flags & PF_DEAD);
890 	tsk->flags |= PF_DEAD;
891 
892 	schedule();
893 	BUG();
894 	/* Avoid "noreturn function does return".  */
895 	for (;;) ;
896 }
897 
898 EXPORT_SYMBOL_GPL(do_exit);
899 
900 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
901 {
902 	if (comp)
903 		complete(comp);
904 
905 	do_exit(code);
906 }
907 
908 EXPORT_SYMBOL(complete_and_exit);
909 
910 asmlinkage long sys_exit(int error_code)
911 {
912 	do_exit((error_code&0xff)<<8);
913 }
914 
915 task_t fastcall *next_thread(const task_t *p)
916 {
917 	return pid_task(p->pids[PIDTYPE_TGID].pid_list.next, PIDTYPE_TGID);
918 }
919 
920 EXPORT_SYMBOL(next_thread);
921 
922 /*
923  * Take down every thread in the group.  This is called by fatal signals
924  * as well as by sys_exit_group (below).
925  */
926 NORET_TYPE void
927 do_group_exit(int exit_code)
928 {
929 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
930 
931 	if (current->signal->flags & SIGNAL_GROUP_EXIT)
932 		exit_code = current->signal->group_exit_code;
933 	else if (!thread_group_empty(current)) {
934 		struct signal_struct *const sig = current->signal;
935 		struct sighand_struct *const sighand = current->sighand;
936 		read_lock(&tasklist_lock);
937 		spin_lock_irq(&sighand->siglock);
938 		if (sig->flags & SIGNAL_GROUP_EXIT)
939 			/* Another thread got here before we took the lock.  */
940 			exit_code = sig->group_exit_code;
941 		else {
942 			sig->group_exit_code = exit_code;
943 			zap_other_threads(current);
944 		}
945 		spin_unlock_irq(&sighand->siglock);
946 		read_unlock(&tasklist_lock);
947 	}
948 
949 	do_exit(exit_code);
950 	/* NOTREACHED */
951 }
952 
953 /*
954  * this kills every thread in the thread group. Note that any externally
955  * wait4()-ing process will get the correct exit code - even if this
956  * thread is not the thread group leader.
957  */
958 asmlinkage void sys_exit_group(int error_code)
959 {
960 	do_group_exit((error_code & 0xff) << 8);
961 }
962 
963 static int eligible_child(pid_t pid, int options, task_t *p)
964 {
965 	if (pid > 0) {
966 		if (p->pid != pid)
967 			return 0;
968 	} else if (!pid) {
969 		if (process_group(p) != process_group(current))
970 			return 0;
971 	} else if (pid != -1) {
972 		if (process_group(p) != -pid)
973 			return 0;
974 	}
975 
976 	/*
977 	 * Do not consider detached threads that are
978 	 * not ptraced:
979 	 */
980 	if (p->exit_signal == -1 && !p->ptrace)
981 		return 0;
982 
983 	/* Wait for all children (clone and not) if __WALL is set;
984 	 * otherwise, wait for clone children *only* if __WCLONE is
985 	 * set; otherwise, wait for non-clone children *only*.  (Note:
986 	 * A "clone" child here is one that reports to its parent
987 	 * using a signal other than SIGCHLD.) */
988 	if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
989 	    && !(options & __WALL))
990 		return 0;
991 	/*
992 	 * Do not consider thread group leaders that are
993 	 * in a non-empty thread group:
994 	 */
995 	if (current->tgid != p->tgid && delay_group_leader(p))
996 		return 2;
997 
998 	if (security_task_wait(p))
999 		return 0;
1000 
1001 	return 1;
1002 }
1003 
1004 static int wait_noreap_copyout(task_t *p, pid_t pid, uid_t uid,
1005 			       int why, int status,
1006 			       struct siginfo __user *infop,
1007 			       struct rusage __user *rusagep)
1008 {
1009 	int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1010 	put_task_struct(p);
1011 	if (!retval)
1012 		retval = put_user(SIGCHLD, &infop->si_signo);
1013 	if (!retval)
1014 		retval = put_user(0, &infop->si_errno);
1015 	if (!retval)
1016 		retval = put_user((short)why, &infop->si_code);
1017 	if (!retval)
1018 		retval = put_user(pid, &infop->si_pid);
1019 	if (!retval)
1020 		retval = put_user(uid, &infop->si_uid);
1021 	if (!retval)
1022 		retval = put_user(status, &infop->si_status);
1023 	if (!retval)
1024 		retval = pid;
1025 	return retval;
1026 }
1027 
1028 /*
1029  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1030  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1031  * the lock and this task is uninteresting.  If we return nonzero, we have
1032  * released the lock and the system call should return.
1033  */
1034 static int wait_task_zombie(task_t *p, int noreap,
1035 			    struct siginfo __user *infop,
1036 			    int __user *stat_addr, struct rusage __user *ru)
1037 {
1038 	unsigned long state;
1039 	int retval;
1040 	int status;
1041 
1042 	if (unlikely(noreap)) {
1043 		pid_t pid = p->pid;
1044 		uid_t uid = p->uid;
1045 		int exit_code = p->exit_code;
1046 		int why, status;
1047 
1048 		if (unlikely(p->exit_state != EXIT_ZOMBIE))
1049 			return 0;
1050 		if (unlikely(p->exit_signal == -1 && p->ptrace == 0))
1051 			return 0;
1052 		get_task_struct(p);
1053 		read_unlock(&tasklist_lock);
1054 		if ((exit_code & 0x7f) == 0) {
1055 			why = CLD_EXITED;
1056 			status = exit_code >> 8;
1057 		} else {
1058 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1059 			status = exit_code & 0x7f;
1060 		}
1061 		return wait_noreap_copyout(p, pid, uid, why,
1062 					   status, infop, ru);
1063 	}
1064 
1065 	/*
1066 	 * Try to move the task's state to DEAD
1067 	 * only one thread is allowed to do this:
1068 	 */
1069 	state = xchg(&p->exit_state, EXIT_DEAD);
1070 	if (state != EXIT_ZOMBIE) {
1071 		BUG_ON(state != EXIT_DEAD);
1072 		return 0;
1073 	}
1074 	if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) {
1075 		/*
1076 		 * This can only happen in a race with a ptraced thread
1077 		 * dying on another processor.
1078 		 */
1079 		return 0;
1080 	}
1081 
1082 	if (likely(p->real_parent == p->parent) && likely(p->signal)) {
1083 		struct signal_struct *psig;
1084 		struct signal_struct *sig;
1085 
1086 		/*
1087 		 * The resource counters for the group leader are in its
1088 		 * own task_struct.  Those for dead threads in the group
1089 		 * are in its signal_struct, as are those for the child
1090 		 * processes it has previously reaped.  All these
1091 		 * accumulate in the parent's signal_struct c* fields.
1092 		 *
1093 		 * We don't bother to take a lock here to protect these
1094 		 * p->signal fields, because they are only touched by
1095 		 * __exit_signal, which runs with tasklist_lock
1096 		 * write-locked anyway, and so is excluded here.  We do
1097 		 * need to protect the access to p->parent->signal fields,
1098 		 * as other threads in the parent group can be right
1099 		 * here reaping other children at the same time.
1100 		 */
1101 		spin_lock_irq(&p->parent->sighand->siglock);
1102 		psig = p->parent->signal;
1103 		sig = p->signal;
1104 		psig->cutime =
1105 			cputime_add(psig->cutime,
1106 			cputime_add(p->utime,
1107 			cputime_add(sig->utime,
1108 				    sig->cutime)));
1109 		psig->cstime =
1110 			cputime_add(psig->cstime,
1111 			cputime_add(p->stime,
1112 			cputime_add(sig->stime,
1113 				    sig->cstime)));
1114 		psig->cmin_flt +=
1115 			p->min_flt + sig->min_flt + sig->cmin_flt;
1116 		psig->cmaj_flt +=
1117 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1118 		psig->cnvcsw +=
1119 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1120 		psig->cnivcsw +=
1121 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1122 		spin_unlock_irq(&p->parent->sighand->siglock);
1123 	}
1124 
1125 	/*
1126 	 * Now we are sure this task is interesting, and no other
1127 	 * thread can reap it because we set its state to EXIT_DEAD.
1128 	 */
1129 	read_unlock(&tasklist_lock);
1130 
1131 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1132 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1133 		? p->signal->group_exit_code : p->exit_code;
1134 	if (!retval && stat_addr)
1135 		retval = put_user(status, stat_addr);
1136 	if (!retval && infop)
1137 		retval = put_user(SIGCHLD, &infop->si_signo);
1138 	if (!retval && infop)
1139 		retval = put_user(0, &infop->si_errno);
1140 	if (!retval && infop) {
1141 		int why;
1142 
1143 		if ((status & 0x7f) == 0) {
1144 			why = CLD_EXITED;
1145 			status >>= 8;
1146 		} else {
1147 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1148 			status &= 0x7f;
1149 		}
1150 		retval = put_user((short)why, &infop->si_code);
1151 		if (!retval)
1152 			retval = put_user(status, &infop->si_status);
1153 	}
1154 	if (!retval && infop)
1155 		retval = put_user(p->pid, &infop->si_pid);
1156 	if (!retval && infop)
1157 		retval = put_user(p->uid, &infop->si_uid);
1158 	if (retval) {
1159 		// TODO: is this safe?
1160 		p->exit_state = EXIT_ZOMBIE;
1161 		return retval;
1162 	}
1163 	retval = p->pid;
1164 	if (p->real_parent != p->parent) {
1165 		write_lock_irq(&tasklist_lock);
1166 		/* Double-check with lock held.  */
1167 		if (p->real_parent != p->parent) {
1168 			__ptrace_unlink(p);
1169 			// TODO: is this safe?
1170 			p->exit_state = EXIT_ZOMBIE;
1171 			/*
1172 			 * If this is not a detached task, notify the parent.
1173 			 * If it's still not detached after that, don't release
1174 			 * it now.
1175 			 */
1176 			if (p->exit_signal != -1) {
1177 				do_notify_parent(p, p->exit_signal);
1178 				if (p->exit_signal != -1)
1179 					p = NULL;
1180 			}
1181 		}
1182 		write_unlock_irq(&tasklist_lock);
1183 	}
1184 	if (p != NULL)
1185 		release_task(p);
1186 	BUG_ON(!retval);
1187 	return retval;
1188 }
1189 
1190 /*
1191  * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold
1192  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1193  * the lock and this task is uninteresting.  If we return nonzero, we have
1194  * released the lock and the system call should return.
1195  */
1196 static int wait_task_stopped(task_t *p, int delayed_group_leader, int noreap,
1197 			     struct siginfo __user *infop,
1198 			     int __user *stat_addr, struct rusage __user *ru)
1199 {
1200 	int retval, exit_code;
1201 
1202 	if (!p->exit_code)
1203 		return 0;
1204 	if (delayed_group_leader && !(p->ptrace & PT_PTRACED) &&
1205 	    p->signal && p->signal->group_stop_count > 0)
1206 		/*
1207 		 * A group stop is in progress and this is the group leader.
1208 		 * We won't report until all threads have stopped.
1209 		 */
1210 		return 0;
1211 
1212 	/*
1213 	 * Now we are pretty sure this task is interesting.
1214 	 * Make sure it doesn't get reaped out from under us while we
1215 	 * give up the lock and then examine it below.  We don't want to
1216 	 * keep holding onto the tasklist_lock while we call getrusage and
1217 	 * possibly take page faults for user memory.
1218 	 */
1219 	get_task_struct(p);
1220 	read_unlock(&tasklist_lock);
1221 
1222 	if (unlikely(noreap)) {
1223 		pid_t pid = p->pid;
1224 		uid_t uid = p->uid;
1225 		int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1226 
1227 		exit_code = p->exit_code;
1228 		if (unlikely(!exit_code) ||
1229 		    unlikely(p->state & TASK_TRACED))
1230 			goto bail_ref;
1231 		return wait_noreap_copyout(p, pid, uid,
1232 					   why, (exit_code << 8) | 0x7f,
1233 					   infop, ru);
1234 	}
1235 
1236 	write_lock_irq(&tasklist_lock);
1237 
1238 	/*
1239 	 * This uses xchg to be atomic with the thread resuming and setting
1240 	 * it.  It must also be done with the write lock held to prevent a
1241 	 * race with the EXIT_ZOMBIE case.
1242 	 */
1243 	exit_code = xchg(&p->exit_code, 0);
1244 	if (unlikely(p->exit_state)) {
1245 		/*
1246 		 * The task resumed and then died.  Let the next iteration
1247 		 * catch it in EXIT_ZOMBIE.  Note that exit_code might
1248 		 * already be zero here if it resumed and did _exit(0).
1249 		 * The task itself is dead and won't touch exit_code again;
1250 		 * other processors in this function are locked out.
1251 		 */
1252 		p->exit_code = exit_code;
1253 		exit_code = 0;
1254 	}
1255 	if (unlikely(exit_code == 0)) {
1256 		/*
1257 		 * Another thread in this function got to it first, or it
1258 		 * resumed, or it resumed and then died.
1259 		 */
1260 		write_unlock_irq(&tasklist_lock);
1261 bail_ref:
1262 		put_task_struct(p);
1263 		/*
1264 		 * We are returning to the wait loop without having successfully
1265 		 * removed the process and having released the lock. We cannot
1266 		 * continue, since the "p" task pointer is potentially stale.
1267 		 *
1268 		 * Return -EAGAIN, and do_wait() will restart the loop from the
1269 		 * beginning. Do _not_ re-acquire the lock.
1270 		 */
1271 		return -EAGAIN;
1272 	}
1273 
1274 	/* move to end of parent's list to avoid starvation */
1275 	remove_parent(p);
1276 	add_parent(p, p->parent);
1277 
1278 	write_unlock_irq(&tasklist_lock);
1279 
1280 	retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1281 	if (!retval && stat_addr)
1282 		retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1283 	if (!retval && infop)
1284 		retval = put_user(SIGCHLD, &infop->si_signo);
1285 	if (!retval && infop)
1286 		retval = put_user(0, &infop->si_errno);
1287 	if (!retval && infop)
1288 		retval = put_user((short)((p->ptrace & PT_PTRACED)
1289 					  ? CLD_TRAPPED : CLD_STOPPED),
1290 				  &infop->si_code);
1291 	if (!retval && infop)
1292 		retval = put_user(exit_code, &infop->si_status);
1293 	if (!retval && infop)
1294 		retval = put_user(p->pid, &infop->si_pid);
1295 	if (!retval && infop)
1296 		retval = put_user(p->uid, &infop->si_uid);
1297 	if (!retval)
1298 		retval = p->pid;
1299 	put_task_struct(p);
1300 
1301 	BUG_ON(!retval);
1302 	return retval;
1303 }
1304 
1305 /*
1306  * Handle do_wait work for one task in a live, non-stopped state.
1307  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1308  * the lock and this task is uninteresting.  If we return nonzero, we have
1309  * released the lock and the system call should return.
1310  */
1311 static int wait_task_continued(task_t *p, int noreap,
1312 			       struct siginfo __user *infop,
1313 			       int __user *stat_addr, struct rusage __user *ru)
1314 {
1315 	int retval;
1316 	pid_t pid;
1317 	uid_t uid;
1318 
1319 	if (unlikely(!p->signal))
1320 		return 0;
1321 
1322 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1323 		return 0;
1324 
1325 	spin_lock_irq(&p->sighand->siglock);
1326 	/* Re-check with the lock held.  */
1327 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1328 		spin_unlock_irq(&p->sighand->siglock);
1329 		return 0;
1330 	}
1331 	if (!noreap)
1332 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1333 	spin_unlock_irq(&p->sighand->siglock);
1334 
1335 	pid = p->pid;
1336 	uid = p->uid;
1337 	get_task_struct(p);
1338 	read_unlock(&tasklist_lock);
1339 
1340 	if (!infop) {
1341 		retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1342 		put_task_struct(p);
1343 		if (!retval && stat_addr)
1344 			retval = put_user(0xffff, stat_addr);
1345 		if (!retval)
1346 			retval = p->pid;
1347 	} else {
1348 		retval = wait_noreap_copyout(p, pid, uid,
1349 					     CLD_CONTINUED, SIGCONT,
1350 					     infop, ru);
1351 		BUG_ON(retval == 0);
1352 	}
1353 
1354 	return retval;
1355 }
1356 
1357 
1358 static inline int my_ptrace_child(struct task_struct *p)
1359 {
1360 	if (!(p->ptrace & PT_PTRACED))
1361 		return 0;
1362 	if (!(p->ptrace & PT_ATTACHED))
1363 		return 1;
1364 	/*
1365 	 * This child was PTRACE_ATTACH'd.  We should be seeing it only if
1366 	 * we are the attacher.  If we are the real parent, this is a race
1367 	 * inside ptrace_attach.  It is waiting for the tasklist_lock,
1368 	 * which we have to switch the parent links, but has already set
1369 	 * the flags in p->ptrace.
1370 	 */
1371 	return (p->parent != p->real_parent);
1372 }
1373 
1374 static long do_wait(pid_t pid, int options, struct siginfo __user *infop,
1375 		    int __user *stat_addr, struct rusage __user *ru)
1376 {
1377 	DECLARE_WAITQUEUE(wait, current);
1378 	struct task_struct *tsk;
1379 	int flag, retval;
1380 
1381 	add_wait_queue(&current->signal->wait_chldexit,&wait);
1382 repeat:
1383 	/*
1384 	 * We will set this flag if we see any child that might later
1385 	 * match our criteria, even if we are not able to reap it yet.
1386 	 */
1387 	flag = 0;
1388 	current->state = TASK_INTERRUPTIBLE;
1389 	read_lock(&tasklist_lock);
1390 	tsk = current;
1391 	do {
1392 		struct task_struct *p;
1393 		struct list_head *_p;
1394 		int ret;
1395 
1396 		list_for_each(_p,&tsk->children) {
1397 			p = list_entry(_p,struct task_struct,sibling);
1398 
1399 			ret = eligible_child(pid, options, p);
1400 			if (!ret)
1401 				continue;
1402 
1403 			switch (p->state) {
1404 			case TASK_TRACED:
1405 				/*
1406 				 * When we hit the race with PTRACE_ATTACH,
1407 				 * we will not report this child.  But the
1408 				 * race means it has not yet been moved to
1409 				 * our ptrace_children list, so we need to
1410 				 * set the flag here to avoid a spurious ECHILD
1411 				 * when the race happens with the only child.
1412 				 */
1413 				flag = 1;
1414 				if (!my_ptrace_child(p))
1415 					continue;
1416 				/*FALLTHROUGH*/
1417 			case TASK_STOPPED:
1418 				/*
1419 				 * It's stopped now, so it might later
1420 				 * continue, exit, or stop again.
1421 				 */
1422 				flag = 1;
1423 				if (!(options & WUNTRACED) &&
1424 				    !my_ptrace_child(p))
1425 					continue;
1426 				retval = wait_task_stopped(p, ret == 2,
1427 							   (options & WNOWAIT),
1428 							   infop,
1429 							   stat_addr, ru);
1430 				if (retval == -EAGAIN)
1431 					goto repeat;
1432 				if (retval != 0) /* He released the lock.  */
1433 					goto end;
1434 				break;
1435 			default:
1436 			// case EXIT_DEAD:
1437 				if (p->exit_state == EXIT_DEAD)
1438 					continue;
1439 			// case EXIT_ZOMBIE:
1440 				if (p->exit_state == EXIT_ZOMBIE) {
1441 					/*
1442 					 * Eligible but we cannot release
1443 					 * it yet:
1444 					 */
1445 					if (ret == 2)
1446 						goto check_continued;
1447 					if (!likely(options & WEXITED))
1448 						continue;
1449 					retval = wait_task_zombie(
1450 						p, (options & WNOWAIT),
1451 						infop, stat_addr, ru);
1452 					/* He released the lock.  */
1453 					if (retval != 0)
1454 						goto end;
1455 					break;
1456 				}
1457 check_continued:
1458 				/*
1459 				 * It's running now, so it might later
1460 				 * exit, stop, or stop and then continue.
1461 				 */
1462 				flag = 1;
1463 				if (!unlikely(options & WCONTINUED))
1464 					continue;
1465 				retval = wait_task_continued(
1466 					p, (options & WNOWAIT),
1467 					infop, stat_addr, ru);
1468 				if (retval != 0) /* He released the lock.  */
1469 					goto end;
1470 				break;
1471 			}
1472 		}
1473 		if (!flag) {
1474 			list_for_each(_p, &tsk->ptrace_children) {
1475 				p = list_entry(_p, struct task_struct,
1476 						ptrace_list);
1477 				if (!eligible_child(pid, options, p))
1478 					continue;
1479 				flag = 1;
1480 				break;
1481 			}
1482 		}
1483 		if (options & __WNOTHREAD)
1484 			break;
1485 		tsk = next_thread(tsk);
1486 		if (tsk->signal != current->signal)
1487 			BUG();
1488 	} while (tsk != current);
1489 
1490 	read_unlock(&tasklist_lock);
1491 	if (flag) {
1492 		retval = 0;
1493 		if (options & WNOHANG)
1494 			goto end;
1495 		retval = -ERESTARTSYS;
1496 		if (signal_pending(current))
1497 			goto end;
1498 		schedule();
1499 		goto repeat;
1500 	}
1501 	retval = -ECHILD;
1502 end:
1503 	current->state = TASK_RUNNING;
1504 	remove_wait_queue(&current->signal->wait_chldexit,&wait);
1505 	if (infop) {
1506 		if (retval > 0)
1507 		retval = 0;
1508 		else {
1509 			/*
1510 			 * For a WNOHANG return, clear out all the fields
1511 			 * we would set so the user can easily tell the
1512 			 * difference.
1513 			 */
1514 			if (!retval)
1515 				retval = put_user(0, &infop->si_signo);
1516 			if (!retval)
1517 				retval = put_user(0, &infop->si_errno);
1518 			if (!retval)
1519 				retval = put_user(0, &infop->si_code);
1520 			if (!retval)
1521 				retval = put_user(0, &infop->si_pid);
1522 			if (!retval)
1523 				retval = put_user(0, &infop->si_uid);
1524 			if (!retval)
1525 				retval = put_user(0, &infop->si_status);
1526 		}
1527 	}
1528 	return retval;
1529 }
1530 
1531 asmlinkage long sys_waitid(int which, pid_t pid,
1532 			   struct siginfo __user *infop, int options,
1533 			   struct rusage __user *ru)
1534 {
1535 	long ret;
1536 
1537 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1538 		return -EINVAL;
1539 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1540 		return -EINVAL;
1541 
1542 	switch (which) {
1543 	case P_ALL:
1544 		pid = -1;
1545 		break;
1546 	case P_PID:
1547 		if (pid <= 0)
1548 			return -EINVAL;
1549 		break;
1550 	case P_PGID:
1551 		if (pid <= 0)
1552 			return -EINVAL;
1553 		pid = -pid;
1554 		break;
1555 	default:
1556 		return -EINVAL;
1557 	}
1558 
1559 	ret = do_wait(pid, options, infop, NULL, ru);
1560 
1561 	/* avoid REGPARM breakage on x86: */
1562 	prevent_tail_call(ret);
1563 	return ret;
1564 }
1565 
1566 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr,
1567 			  int options, struct rusage __user *ru)
1568 {
1569 	long ret;
1570 
1571 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1572 			__WNOTHREAD|__WCLONE|__WALL))
1573 		return -EINVAL;
1574 	ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru);
1575 
1576 	/* avoid REGPARM breakage on x86: */
1577 	prevent_tail_call(ret);
1578 	return ret;
1579 }
1580 
1581 #ifdef __ARCH_WANT_SYS_WAITPID
1582 
1583 /*
1584  * sys_waitpid() remains for compatibility. waitpid() should be
1585  * implemented by calling sys_wait4() from libc.a.
1586  */
1587 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1588 {
1589 	return sys_wait4(pid, stat_addr, options, NULL);
1590 }
1591 
1592 #endif
1593